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Abstract: This paper demonstrates lasing of the whispering gallery modes
in polymer coated optofluidic capillaries and their application to refractive
index sensing. The laser gain medium used here is fluorescent Nile Red dye,
which is embedded inside the high refractive index polymer coating. We
investigate the refractometric sensing properties of these devices for different
coating thicknesses, revealing that the high Q factors required to achieve low
lasing thresholds can only be realized for relatively thick polymer coatings
(in this case > 800 nm). Lasing capillaries therefore tend to have a lower
refractive index sensitivity, compared to non-lasing capillaries which can
have a thinner polymer coating, due to the stronger WGM confinement
within the polymer layer. However we find that the large improvement in
signal-to-noise ratio realized for lasing capillaries more than compensates for
the decreased sensitivity and results in an order-of-magnitude improvement
in the detection limit for refractive index sensing.
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1. Introduction

Whispering gallery modes (WGMSs) are resonances that occur when light is trapped by total
internal reflection (TIR) within a structure presenting at least one axis of revolution. Common
WGM resonators include spheres [1, 2], disks and toroids [3, 4], optical fibers [5-7], and
capillaries [8, 9]. WGM resonators have attracted considerable interest within the sensing
community largely due to their potential use in refractometry-based fluid sensing and label-
free biosensing applications [10]. While there are many examples of remarkable sensing
performance using such optical resonators [3, 4, 11], the interogation strategies typically used
are cumbersome and impractical. The typical approach involving evanescent coupling to excite
and probe the WGMs, relies on the use of a tapered optical fiber or prism that is phase-matched
to the resonator. In such a setup the coupling efficiency is however never perfectly stable, and
the coupler can cause undesired resonance wavelength shifts or Q-spoiling due to slight
movements and vibrations [12].

In contrast, fluorescence-based resonators do not have the same practical limitations. Rather
than using a waveguide or prism to evanescently couple light into and out of the device, a
fluorophore is used to excite the resonances indirectly. This permits remote excitation and
detection of a WGM-modulated fluorescence spectrum. The performance of fluorescence-
based microresonators is, however, in general far worse than for their passive counterparts.
This is due in part to the significantly lower achievable Q factors resulting from absorption,
scattering, and the intrinsically broad linewidth of the emitters [13], as well as intrinsic
resonator asphericity [14]. One particular strategy that can improve the performance is to
induce lasing of the WGMs. It has been shown previously that lasing of the WGMs in dye-
doped microspheres enables a two fold increase in Q factor, resulting in improved detection
limits for refractive index sensing compared with microspheres operated below the lasing
threshold [15].

Among the different resonator geometries supporting WGMs, capillaries have the unique
property of having the evanescent fields extend into and sample the medium inside the
resonator, which is particularly interesting because the resonator itself serves as a microfluidic
channel. Fluorescent capillary resonators have previously been demonstrated [9, 16-19], in
essence building on the considerable body of literature on fluorescent microspheres going back
many years [20]. In this context, the gain medium can be introduced through a thin high-
refractive-index coating deposited onto the inner surface of the capillary. Examples of such
coatings include dye-doped polymers [21] and semiconductor quantum dots [22]. The resonator
itself then provides the optofluidic channel through which a liquid solution can be delivered
and sampled simultaneously.

Previously, lasing has been exploited in microspheres to decrease the resonance linewidths
(i.e. increase the Q factors) and therefore improve the detection limit [23], or to enable
alternative sensing modalities involving for instance mode-splitting for the detection of
nanoparticles [3]. The first demonstration of any type of lasing WGMs in capillaries was
performed by Knight et al. [24], in which a thin-walled capillary was simply filled with a
rhodamine 6G solution. Subsequently several variations of the same concept were reported [25-
27], although filling the entire capillary with a gain medium is not readily compatible with the
main purpose of using these structures as optofluidic refractive index sensors. Although lasing
has previously been shown in high refractive index polymer coated capillaries [28-30], these
demonstrations have been restricted to the use of very high refractive index polymer (n>1.67)



and thick polymer coatings (1.9 um) [28], making these lasing microcapillaries unsuitable for
refractive index sensing applications.

Here we investigate the lasing behavior of optofluidic capillary resonators and their
application to refractive index sensing. We demonstrate the first channel-coated lasing
microcapillary suitable for refractive index sensing and investigate the conditions under which
lasing occurs. We analyze the refractometric sensing capacity of these devices below and above
the lasing threshold, determining whether lasing provides a significant benefit to the overall
performance.

2. Materials and methods
2.1 Preparation of active optofluidic resonators

Commercial silica capillaries (Beckman Coulter) with inner and outer diameters of 50 and 360
pum, respectively, were processed as follows. First the polyimide coating was removed from the
outer surface of the capillary using a blowtorch and the residue was wiped off with ethanol.
Different solutions of poly (benzyl methacrylate) (PBZMA; Polysciences) in tetrahydrofuran
(THF) were then prepared with various concentrations (25, 50, 75 and 100 mg/mL) for coating
the inner surface of the capillary. Another solution was also prepared, consisting of a
fluorescent dye (Nile Red) dissolved in THF up to its solubility limit. The dye was the gain
medium to be doped within the deposited polymer coating. This particular organic dye was
chosen for its excellent lasing properties [31] and convenient emission spectrum between 590
and 630 nm. Subsequently, 200 pL of each polymer solution was combined with 10 puL of the
gain medium solution, and each resulting mixture was allowed to fill a capillary by capillary
forces.

Fig. 1. Cross-sectional SEM images (90,000 times magnification) of the polymer coated
capillaries for polymer solution concentrations of (A) 25, (B) 50, (C) 75 and (D) 100 mg/mL.

Once the capillaries were filled with the fluorescent polymer solutions described above,
they were placed in an oven at 70°C for 1 h, allowing the solvent to evaporate. During this
process, as the solvent evaporates the meniscus leaves behind a thin layer of polymer on the



channel surface as it retreats down the length of the capillary [21]. The thickness t of the
resulting polymer layer was then measured by cleaving several sections of the given polymer
coated capillary and examining them end-on using a field emission scanning electron
microscope (FEI Quanta 450 FEG, 10 kV) in the secondary electron mode. Figure 1 shows
typical SEM images for the four different polymer coated capillaries. The SEM images permit
the characterization of the relationship between thickness of the deposited polymer coating and
the polymer solution concentration (Table 1). There was excellent controllability, with a near-
linear relationship between polymer solution concentration and coating thickness. The
uniformity of the layer along the length of the capillary was however impossible to assess due
to the enclosed nature of the resonator.

Once the relationship between the polymer solution concentration and the resulting
thickness of the deposited layer was established, a new batch of capillaries was prepared but
this time adjusting the amount of dye in each sample to ensure it matches the optimum lasing
concentration of 5 pug/mL [32]. This concentration enables one to reach the maximum gain of
the fluorescent dye, thereby reducing the lasing power threshold. Increasing the dye
concentration beyond this point results in self-quenching due to non-radiative energy transfer
between nearby dye molecules [32].

2.2 Optical setup

The optical setup shown in Fig. 2 was used for measuring the WGM spectra of the dye-doped
polymer coated capillaries. The excitation of the WGMs was achieved using either a 532 nm
CW laser (JDS Uniphase), or, for the case of characterizing the lasing behavior, a 532 nm
frequency doubled Nd:YAG laser (Quanta-Ray INDI, Spectra Physics, 10 Hz, 5 ns pulses).
Neutral density filters were used to adjust the excitation power in the latter case, while an
energy meter (Gentec-EO M link) was used for measuring the absolute pulse energy delivered
to the capillary. A 10x microscope objective was used for focusing the laser (spot size ~ 400
p1m in diameter) onto the capillary, which was mounted onto a 3-axis translation stage (Thorlabs
NanoMax). A second microscope objective (20x) was used to collect the WGM-modulated
fluorescence signal from the capillaries. A longpass filter (A = 550 nm) was used to remove the
scattered pump laser light, and an analyzer was used for selecting the WGM polarization. Here
the TE polarization (electric field parallel to the capillary axis) was selected to increase mode
visibility, since the TE modes tend to exhibit higher Q factors compared with the TM modes,
and hence also have lower lasing thresholds [31]. We note however that the refractive index
sensitivity of the TE modes is marginally smaller compared with the TM modes [17].

Long pass filter ) Dye doped polymer coated
(550nm) capillary
& /
Analyzer \
532 nm CW
R or
UV-VIS ‘ o Freq. doubled YAG
Spectrometer (532 nm, 10 Hz, 5 ns)

o

Fig. 2. Depiction of the optical setup used for measuring the WGM-modulated fluorescence
spectra from the dye-doped polymer coated capillaries.

The fluorescence signal was spectrally resolved using a UV-VIS spectrometer (Horiba iHR
550) equipped with a 1200 lines/mm grating and a 2048-pixel CCD camera (Horiba Synapse).
This system has a nominal spectral resolution of 18 pm. One end of the capillary was then



connected to a syringe pump, allowing liquids with different refractive indices to be pumped
through the capillary for refractometric measurements. The solutions used were different
concentrations of glucose in water, since this system is simple to work with and the refractive
index as a function of concentration is well known [33]. Fluid that flowed out of the ejection
end of the capillary was simply allowed to collect inside a small container.

2.3. Optical constants of PBZMA

The refractive index of PBZMA is nominally 1.568 at a wavelength of 589.3 nm [34]. Polymers
can, however, have significant dispersion across the broad gain bands associated with
fluorescent dyes. Since no data is available in the literature for the wavelength-dependence of
the optical constants of PBZMA, they had to be measured using variable angle spectroscopic
ellipsometry (VASE). First, a polymer film was fabricated by spin coating PBZMA in either
toluene or tetrahydrofuran (THF) at a rate of 6100 rev/minute onto a standard silicon wafer.
The reflection spectra were measured on a JA Wollam model M-2000V spectroscopic
ellipsometer, and the measured ellipsometric ywand A values (relating to the reflected amplitude
and phase) were least-squares fit using a standard Fresnel model to extract the optical constants,
Cauchy coefficients, and the thickness of the polymer. The PBZMA films deposited from
toluene were found to be smooth over large areas, as inferred from the uniformity of the film
interference colors over a range of ~1 cm?, whereas those deposited from THF had observable
surface ripples on a millimeter scale. The smoother polymer film yielded smaller uncertainties
in the values of the Cauchy coefficients in the model fit.
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Fig. 3. Optical constants of the PBZMA film. The main panel shows the real part of the refractive
index (m) and the inset shows the extinction coefficient ().

The resulting optical constants for the polymer film are shown in Fig. 3, with the coefficients
of the Cauchy model m(2) = A + B/A? + C/A* found to be A = 1.5420 + 0.0003, B = 0.00628 +
0.00003 and C = 0.000240 + 0.000004, where m is the refractive index. The refractive index
obtained at the reference wavelength of 4 =589.3 nm was found to be slightly lower than the
one quoted by the manufacturer (1.563 vs. 1.568, respectively) [34].

3. Results and discussion

3.1. Whispering gallery mode structure



To model the whispering gallery modes of the coated capillaries, estimate the Q factor and
refractometric sensitivity, and to verify experimental observations, the electric field profiles of
the modes were first modeled following the method described in Ref. [35], which is based on
an earlier theory for spherical resonators [36]. Accordingly, the refractive index profile of the
coated capillary is,
m,, r<b
m(r)=qm,, b<r<ap,
m

)]

5, r-a
where my, m; and mjs are the refractive indices in the channel, polymer layer and capillary wall,
respectively, whilst a and b are the outer and inner radii of the polymer coating of thickness t
=a-h. By applying the relevant boundary conditions for the cylindrical harmonics associated
with the TE polarization, the radial electric field function is given by [35],

AJ;(mk,r), r<b )
E, (mkor)=1BH® (mk,r)+CHY (mkr), b<r<at, )
DHY (myk,r) r>a

with azimuthal mode number I and arbitrary coefficients A, Bi, Ci and Dy, with C; set to unity.
In Eq. (2), the definitions are as usual: Ji(R) is the cylindrical Bessel function of the first kind
and H*2(R) are the cylindrical Hankel functions given by HM(R) = J(R) + iYi(R) and H/@(R)=
J(R) — iYi(R), respectively, with Y,(R) being the cylindrical Bessel function of the second kind
and the argument R = mkor. The relative field intensity is found by setting | proportional to
|Es|?. Setting the electric field and its derivatives equal at the boundaries as appropriate for the
TE polarization (E field parallel to cylinder axis) one obtains,

mHP (k) BH (mia) +H (ma) @
mzHl(l)(mskoa) B,H,(z)(mzkoa)+ Hl(l)(mzkoa) ’

where,
~md (mkp)HY (mkb)—mJ; (mkpb)HY (mk b) @)
(I . f y
—m,J, (mk,p) H? (m,kob) +m,J; (mk,b)H? (m,ksb)

By numerically solving Egs. (3) and (4) for the complex roots ko, the quality factor is then
simply Q = Re[ko]/2Im[ko] and the resonance wavelength is Ao = 2n/Re[ko]. The electric field
intensity profiles are calculated by first solving for the constants A; and D, that satisfy the
continuous boundary conditions for the TE polarization. The results are shown in Fig. 4 for
800, 600, 400 and 200 nm polymer coatings. Each of the intensity profiles shown is for the
resonance closest to 610 nm, in accordance with the experimental results in Fig. 5. Finally, the
refractive index sensitivity of the capillary channel is given by,

AL 5)
TE '
m L +1,+1,
in which I, 1, and I3 are the relative field intensities in the channel, polymer layer, and capillary
wall, respectively. These values can be obtained by substituting ko into the three piecewise parts
of Eq. (2) and squaring the result. As shown later in Table 1, the Q factors computed using this
model agree reasonably closely with the experimental results for the non-lasing capillaries.



Moreover, the free spectral ranges predicted by Egs. (1-5) are found to be virtually identical to
the measured values.
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Fig. 4. Intensity profiles for the resonance closest to 610 nm (i.e. | = 390-377) for polymer
thicknesses: (A) 800 nm, (B) 600 nm, (C) 400 nm and (D) 200 nm. The thin polymer film is
represented by the red-shaded region between the dotted lines; the inner region is water [37] and
the outer region is silica glass [38]. Dispersion was incorporated for all calculations.

3.2 WGMs in polymer coated capillaries

The capillaries were then filled with millipore water using the connected syringe pump and the
fluorescent WGMs for each capillary were excited with the 532 nm CW laser as pump source
(~1 mW, 0.1s acquisition). Typical WGM spectra for the capillaries with different coating
thicknesses are shown in Fig. 5.

| ——800nm 600nm M
0.04 ——400nm 200nm

T T T
600 605 610 615 620 625
Wavelength (nm)

=
n
L

Normalized Intensity (
5 o 0
5

Fig. 5. WGM spectra of the dye-doped polymer coated capillaries with the polymer coating
thickness varying from 200-800 nm. For clarity the different spectra were normalized and offset.

The thinnest coating (200 nm) exhibited only background fluorescence and no modes were
observed, although the numerical calculation of the electric field shown in Fig. 4 (D) predicts
the existence of very low-Q WGMs. At a polymer thickness of 400 nm, the modes were clearly
visible (Q ~ 460) despite the considerable background noise. The WGM signal-to-noise ratio
and Q factor increased further for the 600 and 800 nm polymer layer thicknesses. For the 800
nm polymer coating a Q factor as high as ~2800 was observed. Additionally, a periodic
modulation of the WGM spectrum was apparent for the thicker films, in which every second



mode was distinctly more intense. This effect probably arises from interference associated with
reflections coming from the outer walls of the capillary [24].

3.3. Lasing WGM s in coated capillaries

The lasing capability of the capillaries supporting WGMs was investigated by replacing the
CW pump laser with the frequency doubled Nd:YAG laser. The WGM spectra of the different
capillaries were then acquired as a function of the incident pulse energy. Figs. 6 (A)-(C) show
the typical behavior observed as the pump energy is increased. As reported for other fluorescent
resonators, such as microspheres [31], a clear transition or threshold exists upon which some
modes start lasing. The fluorescence intensity of the resonance modes and their Q factors,
exhibit two different regimes depending on the pulse energy; i.e. the fluorescence regime and
the stimulated emission regime, as shown in Fig. 6 (D). For the various capillaries tested, only
those with a polymer coating thickness of 600 or 800 nm exhibited this lasing behavior, with
lasing thresholds of 16 + 2 pJ and 1.2 + 0.1 J, respectively. The large error on the lasing
threshold is predominately due to the fluctuation of the laser pulse energy (£ 11%).
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Fig. 6. (A), (B) and (C) WGM spectrum of the capillary with the 800 nm thick polymer coating,
for pump powers of 0.71, 0,89 and 1.13 pJ respectively. (D) The intensity of the dominant
resonance (black symbols) and its Q factor (green symbols) as a function of the pulse energy.
The dashed lines highlight both the fluorescence (black) and stimulated emission regimes (red).
(E) The fluctuation of the resonance position as a function of the pump pulse energy for the most
intense resonance.

For both of the lasing capillaries, significant increases in the Q factor were observed upon
transitioning into the lasing regime. The 600 nm thick polymer coated capillaries exhibited a
Q factor of 1800 below and 4000 above the lasing threshold, while those with the 800 nm
coating exhibited a Q factor of 2800 below and 6000 above the lasing threshold. In both cases
the increase in Q factor was by approximately a factor of 2, which is comparable to values for
lasing WGMs in dye-doped microspheres [31]. Surprisingly, the resonance position was also
found to vary with the pump energy as seen in Fig. 6 (E), although this behavior hasn’t been
reported for other polymer-based WGM lasers (the vast majority being made of polystyrene).
Whereas the thermo-optic constants for polystyrene can be found in the literature [39], the
values are not available for PBZMA. Thus, whilst an intensity-induced redshift is probably



consistent with heating effects in the polymer, capillary, and channel region, the lack of any
data on PBZMA renders difficult an unambiguous interpretation of this phenomenon. This
behavior highlights the need to keep the pump energy constant to avoid any drift in the
resonance position for refractive index sensing applications.

3.4. Refractive index sensing with lasing and non-lasing capillaries

Refractive index sensing measurements were performed with both the 800 nm thick polymer
coated lasing capillary and the 400 nm polymer coated non-lasing capillary. Although the 600
nm polymer coated capillary also exhibited lasing behavior, it proved impossible to sustain the
lasing operation over the timeframe required for completing the refractive index sensing
measurements due to rapid photobleaching of the gain medium at the higher pump power
required. Increasing the pump energy was avoided as this affects the resonance wavelength as
previously stated. Therefore we limited the refractive index sensing measurements to the
following two scenarios; (i) using the non-lasing capillary with presumably the highest
refractive index sensitivity (i.e. 400 nm thick polymer coating) and (ii) the capillary with the
highest Q factor and also stable lasing operation (i.e. 800 nm thick polymer coating).
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Fig. 7. (A)-(B) Two lasing WGM resonances of the 800 nm polymer coated capillary, monitored
as different refractive index solutions were pumped through the channel. (C) The entire lasing
WGM spectrum of the same capillary showing the two monitored resonances and (D) the
resonance positions as a function of the refractive index inside the capillary channel.

To measure the refractometric sensitivity, different concentration solutions of glucose in
water were pumped into each capillary. The typical behavior of two consecutive first order
resonances (see complete spectrum in Fig. 7 (C)) of the lasing capillary with 800 nm thick
polymer coating is demonstrated in Figs. 7 (A) and 7 (B), as the concentration of glucose
increases. The central positions of the resonances were calculated by fitting them with
Lorentzian functions. The resonance positions are shown in Fig. 7 (D) as a function of the
refractive index of the fluid inside the capillary. Under these conditions, a refractive index
sensitivity of 2.9 + 0.4 nm/RIU was measured with the lasing capillaries for the most intense
peak, and the second mode considered with lower intensity (e.g. Fig. 7 (B)) exhibited similar
sensitivity (3.0 £ 0.6 nm/RIU). The sensitivities were also measured below the lasing thresholds
and were found to be within the errors stated above. The non-lasing capillary (400 nm polymer



coating) tested under the same conditions had a refractive index sensitivity of 23.0 + 0.8
nm/RIU. Note that the experimental results consistently have a factor 2 higher sensitivity
compared to the predicted values. While the origin of this discrepancy remains uncertain, it has
been observed before in non-lasing fluorescent capillaries [17], in which it was tentatively
attributed to interference effects caused by reflection of a portion of the emitted fluorescence
at the external interface. Alternatively, a fluctuation of the polymer coating thickness inside the
capillary, which is however inherently difficult to measure, could be partially responsible for
the higher-than-expected refractive index sensitivities [21].

Table 1. Thickness of the polymer coating, and the Q factor of the WGMs as a function of polymer concentration.

Polvmer Q factor
Polymer Thic)llmess Lasing Below and Q factor S S
Concentration Threshold  Above Lasing nm/RIU nm/RIU
(Mean + (Theory)
(mg/mL) (W) Threshold (Exp.) (Theory)
Stand. Dev.)
(Exp.)
2800
100 799 + 16 12+01 6000 2170 3.0 1.7
1800
75 590 + 25 16+2 4000 1920 - 43
50 414+ 14 NA ?\16: 784 23 10.2
25 211+£13 NA NA 75 NA 19.0

It becomes apparent that there is a tradeoff in achieving lasing in optofluidic capillaries. A
thicker polymer coating is required to sustain the high Q factors necessary to achieve lasing
and to also minimize photobleaching by ensuring a low lasing threshold. The thicker polymer
coating however reduces the refractive index sensitivity. The sensitivity by itself can however
be a rather misleading parameter for evaluating the performance of a given resonator [40]. The
detection limit (DL) which represents the smallest refractive index change that is measurable
is more relevant [40]. The detection limit of the resonator is given by the ratio of the sensor
resolution (R) and the resonator sensitivity (S), DL = R/S [40]. Several formalisms have been
developed for calculating the (wavelength shift) resolution, R. For example, White et al. [40]
calculate the resolution based on the accuracy which resonance maxima can be determined,
whereas Silverstone et al. [41] base the resolution on model fits and Fourier analysis.

Using the approach given by White et al. [40], the sensor resolution is 3¢ of the noise in
the system and can be approximated by,

2 2 2
30 =3, laamp + Otemp T Opect - (6)

where oamp IS amplitude noise, owemp IS temperature induced noise, and Gspect IS Spectrometer
noise associated with the finite spectral resolution of the spectrometer. The amplitude noise
(camp) relates to the Q factor and the signal-to-noise ratio (SNR) of the resonances, and can be
approximated as,
o oL 2 %
am 45 (SNR)%Q !

where A is the resonance wavelength and the SNR is in linear units. This term accounts for the
uncertainty in the location of the resonance peak. Here we assume the conservative values of
10 fm for the temperature induced noise (6temp) and 0.29 pm for the spectral noise (Gspect) given
by White et al. [40]. We find that the 800 nm polymer coated lasing capillaries (SNR = 50 dB)
have an approximately 127 times higher wavelength shift resolution than the 400 nm polymer
coated non-lasing capillaries (SNR = 10 dB). The refractive index sensitivity of the lasing
capillary is however 8 times lower than for the non-lasing capillary. Despite this the detection



limit is actually an order of magnitude greater (i.e. a 13-fold increase) for the lasing capillary
(1.2x10° RIU and 1.6x10?2 RIU for the 800 nm lasing and 400 nm non-lasing capillaries
respectively).

Alternatively, using the formalism by Silverstone et al. [41], the wavelength shift
resolution is given by,

20 029 ., 065
_2.2x1077 x Af o x P (8)

min — SNRO'51 ’
where Afpeax is the full width at half maximum of the resonance and P is the pitch of the
spectrometer (i.e. the spectral frequency range per pixel), both in Hz. Given a Q factor
enhancement of a factor 2 and a signal-to-noise ratio (SNR) increase from ~10 to 50 dB, as
observed here, the minimum wavelength shift measurable can decrease significantly. Taking
into account the improvement in the wavelength shift resolution of the lasing capillaries from
Eg. (8) and factoring in the lower sensitivity, one obtains an overall detection limit 16 times
smaller compared with the non-lasing capillaries. Both formalisms for calculating the
wavelength shift resolution therefore suggest significantly improved detection limits for the
lasing capillary by around an order of magnitude. The increase in the wavelength shift
resolution overwhelms the decreased sensitivity imposed by the necessity to use thicker
polymer coatings to achieve stable lasing in the lasing microcapillaries.

4. Conclusion

In this paper we demonstrated for the first time lasing of the whispering gallery modes in
polymer coated optofluidic capillaries for refractive index sensing. The lasing operation
requires the introduction of a gain medium such as Nile Red dye into the high-refractive-index
polymer coating. The coating also has to be of sufficient thickness to support modes with high
Q factors that permit low-enough lasing thresholds to avoid the issue of photobleaching. The
refractive index sensitivities of optofluidic resonators with different polymer coating
thicknesses were characterized, revealing that high Q factor lasing capillaries (requiring thicker
coatings) exhibit significantly lower refractive index sensitivities. However, the detection limit,
given by the ratio of sensor resolution and sensitivity, improves significantly upon lasing. This
is mainly because of the dramatic increase in signal-to-noise ratio and Q factor when the sensors
are pumped above their lasing thresholds. While other hollow resonators, such as
microcapillaries and microbubbles, have been used for refractive index sensing with even lower
detection limits [42, 43], our platform does not require the use of a fiber taper for probing the
WGM resonances. Instead our approach relies on the gain medium inside the resonator for free
space excitation and collection of the WGMs, making the setup simpler to use and implement.
Further improvements could be made to the sensing properties, by using a more efficient gain
medium which would allow for a reduction in the lasing threshold or a reduction in Q factor
requirements. The latter would make it possible to achieve lasing with thinner polymer
coatings. Inducing lasing in a 400 nm thick polymer coating, would for example allow for a
detection limit in the range of 10 RIU to be reached.
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