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RUNNING TITLE 

REE distributions: a new IOCG exploration tool. 

ABSTRACT 

Iron oxide copper gold (IOCG) systems display well-developed spatial zonation with 

respect to alteration assemblages, mineralogy and the distribution of rare earth elements 

(REE). The Middleback Ranges, South Australia, located in the Olympic Province, 

Gawler Craton, hosts anomalous Fe-oxide-bearing Cu-Au mineralisation, and are 

considered potentially prosperous for larger IOCG-style deposits. This study 

investigates whether the distribution of REE and other trace elements within selected 

minerals represents a potential exploration tool in the area. Iron-oxides (hematite and 

magnetite), potassium feldspar, albite and accessory minerals have been analysed by 

laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) from two 

prospects (Moola and Princess) and in samples of the Myola Volcanics. The resultant 

multi-element datasets are compared to other IOCG systems. 

The results support the presence of sizeable and/or multiple IOCG alteration envelopes 

within the Middleback Ranges. Significant evolving hydrothermal events resulted in 

hydrolithic alteration and remobilisation of REE within the Moola Prospect and Myola 

Volcanics.  

Replacement of early magnetite by hematite (martitisation) in the Myola Volcanics is 

accompanied by an influx of REE visible on LA-ICP-MS element maps showing partial 

martitisation at the grain-scale. It is thus inferred the initial generation of magnetite 

must have pre-dated introduction of oxidised, REE-enriched hydrothermal fluids into 

the system. Sulphide assemblages observed within the Moola Prospect are complex and 

record sequential recrystallisation under evolving fS2 and fO2 conditions. Trace 

minerals, cycles of brecciation and replacement, and distributions of REE within 

minerals are similar to that observed in other IOCG domains. The Princess Prospect 

displays REE distributions in minerals which are dissimilar to the Moola Prospect, the 

Myola Volcanics and also those reported from other IOCG domains. This is interpreted 

as indicating that the Moola Prospect and Myola Volcanics in the south of the 

Middleback Ranges are more prospective IOCG targets. 
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