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Abstract 1 

The mechanical properties of the ECM strongly influence the behavior of all cell 2 

types within a given tissue. Increased matrix tension promotes epithelial cell 3 

proliferation by engaging mitogenic mechanotransduction signaling including the 4 

Salvador/Warts/Hippo, PI 3-kinase, Rho, Wnt and MAP kinase pathways. The Rho 5 

signaling pathways in particular are capable of increasing intra-cellular tension by 6 

elevating the production and contractility of the actomyosin cytoskeleton, which 7 

counteracts tension changes within the matrix in a process termed mechano-8 

reciprocity.  We have discovered that Rho-ROCK signaling increases the production 9 

of ECM through paracrine signaling between the epithelium and fibroblasts and also 10 

the remodeling of the ECM by regulating focal adhesion dynamics in fibroblasts. 11 

These two phenomena together cause increased ECM tension. Enhanced mechano-12 

reciprocity results in ever-increasing intra- and extra-cellular tension in a vicious 13 

cycle that promotes cell proliferation and tumor progression. These insights reveal 14 

that inhibiting mechano-reciprocity, reducing ECM tension and targeting cancer-15 

associated fibroblasts in a coordinated fashion has potential as cancer therapy. 16 
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Introduction 1 

Mechanical forces in biology 2 

The capacity to exert mechanical force upon an object is a fundamental requirement 3 

for physical interaction with the environment. Flowing from this is the need to detect 4 

and measure external forces exerted upon the body. Everyday activities like sitting, 5 

standing and handling objects require not only the exertion of mechanical force, but 6 

the ability to detect mechanical signals and coordinate a timely response. This is 7 

facilitated by the sense of proprioception, which is mediated by mechanoreceptors, 8 

nerve endings specialized for the detection of forces. However, it has been clear for 9 

some time that mechanical force can be detected not only by specialized nerve 10 

receptors, but also by all other cell types. Indeed, the generation and detection of 11 

mechanical force is a key aspect of cell and developmental biology. Cells interact 12 

with their environment by exerting and sensing mechanical forces between 13 

themselves and the extra-cellular matrix (ECM). These mechanical forces greatly 14 

influence cell behavior, by guiding decisions about cell migration, growth, division 15 

and differentiation.  16 

Mechanical signaling and cancer 17 

Whereas the biochemical aspects of unrestrained cell growth and proliferation in 18 

cancer have been extensively studied over many decades, an understanding of the 19 

biophysical mechanisms underlying how force and mechanical stress influence 20 

tumor development is only just emerging. However, as early as 1972, reports 21 

appeared that mechanical force has the capacity to influence tumor growth and 22 

metastasis1. Throughout the late 70s and early 80s, reports emerged that the 23 

application of mechanical stress upon cells is capable of eliciting distinct phenotypic 24 
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responses2-4. The first clues into how mechanical force may be converted to a 1 

biochemical signal for propagation within the cell were provided by Carvalho et al.5, 2 

who demonstrated that integrin expression and subcellular distribution is markedly 3 

altered upon the application of external force on cells. As integrins were well known 4 

to link cells to the extra-cellular matrix6 and were dysregulated in cancers, they then 5 

became the prime candidates for the mechanosensing (Figure 1) receptors 6 

transducing mechanical signals to the intra-cellular biochemical machinery. This 7 

pioneering work caused a flurry of papers providing evidence for a link between 8 

extra-cellular mechanical stresses and changes in actin cytoskeletal structure, 9 

adhesion complex composition and number, cell migration and spreading, and 10 

proliferation via integrin ligation (reviewed in 7), thereby linking extra-cellular 11 

biophysical signals to intra-cellular biochemical changes. This process became 12 

known as mechanotransduction (Figure 1) and several signaling pathways including 13 

those mediated by Salvador/Warts/Hippo8, PI 3-kinase9, Rho small GTPases10, 14 

Wnts11,12 and MAP kinases10 have been shown to be activated downstream of 15 

changes in the mechanical properties of the ECM.  16 

It therefore follows that changes in the mechanical properties of the ECM have 17 

implications for tumor progression, as mitogenic pathways are directly linked to 18 

changes in ECM stiffness via mechanotransduction. However, the observation that 19 

ECM was increased in many different cancers and directly influenced tumor growth 20 

and spread13,14 suggested that tumors themselves were capable of strongly 21 

promoting changes in the ECM that facilitated their growth and spread. Several 22 

growth factors of tumor origin, including TGFβ, CTGF, IL6 and LIF are known to 23 

directly act upon tumor-associated fibroblasts and other stromal cells to increase the 24 

production and remodeling of ECM molecules to increase ECM stiffness15-18. While 25 



 

5 
 

some of the mechanisms underlying mechano-sensation, mechanotransduction and 1 

conversely the direct involvement of tumors in regulating ECM stiffness are 2 

beginning to be uncovered, a precise understanding of how these processes are 3 

integrated and coordinated still remains elusive. 4 

The Rho family of small GTPases and the regulation of intracellular tension 5 

Rho (Ras homology) GTPases are monomeric GTP-binding proteins and are a 6 

subset of the Ras superfamily, comprising 22 members of which the best 7 

characterized are Rho, Rac and Cdc42. Rho family members act as molecular 8 

regulators of signal transduction by switching between GDP-bound inactive and 9 

GTP-bound active states, and have numerous molecular targets including kinases, 10 

transcription factors and scaffold proteins that mediate diverse cellular processes 11 

such as migration, proliferation, adhesion and apoptosis in cell type and temporal 12 

context-dependent ways (reviewed in 19). The regulation of actomyosin cytoskeletal 13 

dynamics by these proteins is the best studied aspect of their biology.  14 

Dynamic remodeling of the actin cytoskeleton to generate intra-cellular force is key 15 

to cell migration. The extension of actin filament networks by actin polymerization 16 

generates intracellular forces, as filaments in the leading edge are compressed 17 

between transient associations with the cell membrane and the bulk of the actin 18 

cytoskeletal network behind them. As protrusions grow and retract, individual actin 19 

filaments undergo tension from transient bonds with the membrane, and are bent or 20 

compressed depending on their orientation20. Myosin-mediated contraction of the 21 

actin cytoskeleton results in a reduction in plasma membrane surface area and 22 

causes clustering of cell surface integrins, which are responsible for attachment to 23 

the ECM. Integrin-mediated ECM adhesion activates guanine nucleotide exchange 24 
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factors (GEFs), which enhance RhoA activity21. During ameboid cell movement, Rac 1 

interacts with lamellipodin at the leading edge to extend actin filaments and generate 2 

lamellipodia, sheet-like cell protrusions supported by short actin filaments in a 3 

branched network, which adhere to substrates and determine the direction of cell 4 

movement22. Cdc42 controls the formation of filopodia, thin protrusions from the cell 5 

membrane that contain parallel actin bundles for mechanosensing the environment 6 

in order to determine cell polarity – another mechanism by which the direction of 7 

movement is determined23. In order to direct migration, actin polymerization must be 8 

restricted to a portion of the plasma membrane. Cdc42 directs this polarity, by acting 9 

through the Par polarity complex, localizing Rac activity and stabilizing microtubules 10 

within the cytoskeleton. At the trailing edge of cells exhibiting mesenchymal motility, 11 

and to a lesser extent those exhibiting ameboid motility, RhoA controls retraction 12 

through activation of effector kinases such as Rho-associated kinase (ROCK)24,25. 13 

Furthermore, Rho-mediated activation of ROCK is required for the formation of 14 

membrane ruffles and lamellae and in particular membrane blebs. Membrane blebs 15 

are a feature of ameboid motility (also termed blebbing motility), a mode of cell 16 

migration that is independent of lamellipodia and frequently observed in cancer 17 

cells26. Rho signaling is also responsible for the generation of intra-cellular tension, 18 

which is required for the morphological changes associated with other cellular 19 

processes such as apoptosis27,28 and cytokinesis29. 20 

The effector proteins of Rho signaling, Rho-associated kinases 1 and 2 (ROCK1 and 21 

ROCK2), are serine-threonine kinases containing a Rho-binding domain and are 22 

activated upon interaction with Rho-GTP30. Activation of ROCK by Rho induces 23 

stress fiber assembly in a number of ways. ROCK directly phosphorylates and 24 

activates the regulatory myosin light chain (MLC)31, it indirectly increases MLC 25 
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phosphorylation by phosphorylating and inhibiting the myosin targeting subunit of 1 

MLC phosphatase (MYPT)32 and directly phosphorylating and activating  the LIM 2 

kinases (LIMK1 and LIMK2), which subsequently phosphorylate and inhibit cofilin 3 

and stabilizes actin structures33. In cultured cells, parallel bundles of actin filaments 4 

form stress fibers that link sites of focal adhesions, permitting tension to be 5 

transmitted between focal adhesions and thereby to the ECM. As well as being the 6 

product of intracellular tension, stress fibers themselves are able to exert force upon 7 

focal adhesions, permitting forces exerted by the external environment to be 8 

counteracted21.  9 

Rho-ROCK signaling and the regulation of extracellular tension 10 

Not surprisingly, cells are not merely passive reactors to changes in the mechanical 11 

properties of the ECM, but are active players in the remodeling of their 12 

environments. Protein components of the ECM can be degraded by a variety of 13 

proteinases such as the families of matrix metalloproteinases (MMPs)34 and a 14 

disintegrin and metalloproteinases (ADAMs)35 that are produced by cancer cells to 15 

remodel the ECM. While most proteinases acting on the ECM are secreted, a subset 16 

of MMPs are membrane tethered, permitting cells to exert a greater degree of spatial 17 

control over their deployment36. The ECM may also be remodeled by changes to its 18 

composition and level of cross-linking. Lysyl oxidases and lysyl hydroxylases are 19 

produced by cells to crosslink collagen chains, thereby increasing ECM stiffness37. 20 

The mechanical properties of the ECM are also significantly altered in diseased 21 

states, such as chronic wounds, cancer and fibrosis, by changes to ECM 22 

composition38,39.  23 
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Recently, we demonstrated a mechanism by which epithelial cells and tumor cells of 1 

epithelial origin are capable of increasing the mechanical stiffness of the ECM by 2 

elevating the production of ECM components14,39,40. Activation of ROCK in the 3 

context of tumor cells or the hyper-proliferation of epidermal cells in the context of 4 

wound healing results in paracrine signals arising from the proliferating epithelia that 5 

act on stromal fibroblasts, increasing their production of collagen, fibronectin, 6 

periostin and tenascin C, components of the ECM, and thereby increasing matrix 7 

stiffness14,39. While the nature of the specific paracrine signals caused by activation 8 

of ROCK remains to be uncovered, cytokines and other secreted molecules of tumor 9 

origin have been previously implicated in the recruitment and activation of cancer-10 

associated fibroblasts, the key regulators of ECM composition and stiffness in the 11 

tumor context15-17. Nevertheless, ROCK activation in tumor cells results in increased 12 

ECM stiffness of the magnitude frequently observed in epithelial cancers including 13 

cutaneous squamous cell carcinoma14, breast cancer13 and pancreatic cancer41 and 14 

promotes tumor progression. We therefore propose that ROCK integrates inputs 15 

from growth factor and mechanotransduction signaling to produce the appropriate 16 

cellular response, be it migration, proliferation, ECM production or remodeling. 17 

Biochemical changes arising from increased extra-cellular tension 18 

External forces drive clustering of integrin molecules at the cell membrane, 19 

stabilizing focal adhesions and linking the intracellular actin cytoskeleton to the ECM. 20 

The stiffer the ECM or substrate to which a cell is attached, the greater the size and 21 

strength of those focal adhesions, and the greater the cellular response, as intra-22 

cellular forces are generated to balance the extra-cellular forces. Upon integrin 23 

activation, talin and vinculin are recruited to the complex, and focal adhesion kinase 24 

(FAK) is auto-phosphorylated at Y397 and/or Y925 and activated. FAK 25 
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phosphorylation results in the recruitment of Src-homology-2 (SH2) domain-1 

containing proteins Src and Shc that link FAK to the Ras pathway and Rho-ROCK 2 

pathway and, via PI 3-kinase and Akt activation, to the stabilization of β-catenin and 3 

the transcriptional activity of TCF/LEF transcription factors. Extracellular signal-4 

regulated kinase (ERK) is also regulated by the FAK-Src complex, and is responsible 5 

for mechanical signal transduction from the microenvironment, to regulate 6 

intracellular processes10,14,42.  7 

Responses to cell-matrix interactions are governed by a complex interplay between 8 

signaling pathways involving FAK, ERK, β-catenin, Rho and others, and cells are 9 

therefore able to respond to extracellular forces in myriad ways. For example, in the 10 

mammary gland, where development and homeostasis occur within the context of a 11 

pliable ECM, Rho activity in fibroblasts was increased upon heightened matrix 12 

rigidity. This led to an increase in focal adhesion assembly and growth factor-13 

dependent ERK activation, suggesting that a mechano-regulatory “circuit” 14 

amalgamates stimulatory extracellular tension with focal adhesion formation through 15 

ERK and Rho-dependent cytoskeletal changes, to maintain homeostasis13.  16 

Mechano-reciprocity 17 

Mechano-reciprocity (Figure 1)is the ability of cells to enhance or moderate intra-18 

cellular tension in order to adapt to increased or reduced extra-cellular stiffness 19 

respectively43 (termed outside-in signaling), but conversely may also refer to their 20 

ability to remodel the extra-cellular matrix and modify its mechanical properties in 21 

order to offset changes in intra-cellular tension (inside-out signaling). In a situation 22 

where sustained growth factor stimulation or oncogenic mutation causes increased 23 

mechanotransduction signaling such as via the Rho, YAP, β-catenin and/or MAP 24 
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kinase pathways, the combination of inside-out and outside-in signaling has the 1 

potential to establish a vicious cycle by which ever-escalating ECM stiffness causes 2 

uncontrolled cell proliferation. Indeed, this is observed in mechano-responsive 3 

cancers such as those of the skin, breast and intestine14,44 and is characterized by 4 

persistent activation of the ROCK protein. We have shown that enhanced mechano-5 

reciprocity of this kind promotes tumor progression14. Targeting runaway mechano-6 

reciprocity is therefore a novel way in which diseases of cellular homeostasis 7 

characterized by increased ECM stiffness such as cancer or fibrosis may be treated. 8 

Mechano-reciprocity in diseases of cellular homeostasis 9 

It is becoming increasingly evident that persistent mechanical signaling can advance 10 

cancer progression. Overexpression of Rho GTPases has been associated with 11 

progression of disease in a number of malignancies, and Rho, Rac, Cdc42 and 12 

ROCK45 have all been reported to be mutated in various cancers to confer tumor 13 

promoting functions and inhibit tumor suppressive functions (reviewed in 46). 14 

The role of mechanical signaling in driving tumorigenesis has been well 15 

characterized in the mammary gland. A known mechano-responsive tissue44, the 16 

mammary epithelium is subjected to a multitude of external forces throughout 17 

development and cycling, such as ductal morphogenesis, lactation, and involution to 18 

remodel the gland and degrade the ECM47. A pliable ECM is best suited to these 19 

morphological changes. Compression analysis of normal and tumor tissue of murine 20 

mammary origin demonstrated that although normal mammary tissue was soft, 21 

tumor and peri-tumoral tissue was significantly stiffer10. Matrix stiffness is promoted 22 

by a greater amount of collagen cross-linking48. This ECM stiffening is sensed by 23 

cellular integrins, which in turn activate RhoA signaling, resulting in generation of 24 
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focal adhesions and influencing tumor cell invasion, cell proliferation, and changes in 1 

cytoskeletal organization. Thus, a persistent and high level of mechano-reciprocity is 2 

potentially able to create a feed forward mechanism, promoting further cancer 3 

development. This phenotype is often seen in patients with a high mammographic 4 

density and it is becoming clearer that mammographic density in the normal breast is 5 

an important prognostic marker for breast cancer, with a higher density indicating a 6 

four-to-six fold higher likelihood of developing breast cancer49.  7 

We have found that skin in which ROCK had been hyper-activated exhibited 8 

increased MLC2 phosphorylation and elevated ECM production resulting in greater 9 

tissue stiffness. Increased tissue stiffness gave rise to mechano-reciprocal activation 10 

of the PI 3-kinase signaling pathway which led to the stabilization of β-catenin and 11 

epidermal hyper-proliferation. Interestingly, in the context of the multi-step chemical 12 

carcinogenesis model, mechano-reciprocity cooperated with oncogenic 13 

transformation to promote tumor progression in a manner that was dependent on 14 

ROCK-induced tissue stiffness. Conversely, inhibition of ROCK signaling by 15 

treatment with the inhibitor Y-27632 lowered ECM stiffness and impeded tumor 16 

formation and growth14,50. These observations clearly show that tumor cells have a 17 

key role in establishing a stiff ECM that promotes their own proliferation and growth. 18 

A number of parallels exist between normal and malignant tissue development and 19 

wound healing. Rapid cell proliferation and mechanisms mediating cytoskeletal 20 

changes during cell migration are similar in acute wound healing to those involved in 21 

tumor progression. At all stages of wound healing, including hemostasis, 22 

inflammation, proliferation and remodeling, examples of mechano-reciprocity exist 23 

between the ECM and a number of cell types including platelets, immune cells, 24 

fibroblasts, endothelial cells and keratinocytes51. We have recently reported that 25 
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enhanced signaling through ROCK, occurring during either cutaneous squamous cell 1 

carcinoma progression or acute skin wound healing and which causes increased 2 

ECM production in both contexts, is negatively regulated by the phospho-serine 3 

binding molecular adaptor protein 14-3-3ζ39. 14-3-3ζ bound to the ROCK antagonist 4 

MYPT1, promoting its MLC phosphatase function and antagonizing ROCK-mediated 5 

phosphorylation of MLC. Mice lacking 14-3-3ζ exhibited increased signal flux through 6 

ROCK leading to enhanced mechano-reciprocity, causing rapid wound healing. This 7 

observation was corroborated using a novel pharmacological inhibitor of 14-3-3ζ, 8 

which accelerated acute wound healing in wild-type mice39.  9 

Interestingly, this negative regulatory mechanism that moderated signaling through 10 

ROCK and thereby limited mechano-reciprocity, was lost in the majority of patient 11 

samples of cutaneous squamous cell carcinoma, which exhibited little or no 14-3-3ζ 12 

compared to normal skin. Accordingly, 14-3-3ζ-deficient mice on the multi-step 13 

chemical carcinogenesis protocol formed larger tumors than wild-type mice of the 14 

same strain background. Taken together, these observations lead us to the 15 

conclusion that 14-3-3ζ-mediated promotion of MLC dephosphorylation is a 16 

mechanism by which mechano-reciprocity is maintained within manageable limits 17 

such that normal wound healing is facilitated while tumor formation is prevented 18 

(Figure 2).  19 

We do not believe that 14-3-3ζ is the only negative regulator of mechano-reciprocity. 20 

Under steady-state conditions, 14-3-3ζ-deficient mice exhibit thinner skin than wild-21 

type mice39, suggesting that compensatory mechanisms as yet undiscovered and not 22 

involving the seven other 14-3-3 family members are capable of maintaining normal 23 

cellular homeostasis at near-physiological rates.  24 



 

13 
 

Targeting mechano-reciprocity and the extra-cellular matrix as therapy 1 

Given the highly tumor-promoting environment caused by increased mechano-2 

reciprocity, targeting the players that facilitate it (ROCK signaling, fibroblasts and 3 

their activation) and enhancing the activities of its negative regulators (14-3-3ζ) are 4 

potentially novel approaches to cancer therapy. However, an important consideration 5 

is the effect that inhibition of pleiotropic proteins like ROCK or 14-3-3ζ may have on 6 

cellular homeostasis and indeed normal development. For instance, tumor capillary 7 

endothelial cells subjected to stress exhibited cytoskeletal rearrangements, and 8 

exerted stronger Rho-ROCK-mediated traction compared to non-cancer cells. Pre-9 

treatment with the ROCK inhibitor Y-27632 before the application of stress restored 10 

normal actin behavior in tumor cells, but caused significant cytoskeletal disruption in 11 

normal cells52. This indicates that normal and tumor cells differ in sensitivity to 12 

external mechanical force as governed by ROCK signaling and illustrates the 13 

challenges accompanying attempts to target tumors via the mechanotransduction 14 

machinery. 15 

The most common current therapy regimes involve targeting tumor cells directly via 16 

inhibition of cell-intrinsic functions such as their proliferative capacity or their ability to 17 

evade apoptosis, whereas the therapies that offer the most promise, such as 18 

immunotherapy or hormone therapy, target non-intrinsic functions that require cell to 19 

cell communication. Their need for cell to cell communication could be viewed as a 20 

vulnerability of cancers. The cell to ECM communication mechanisms that enhance 21 

mechano-reciprocity are mediated by communication between cancer cells and 22 

normal (fibroblast) cells lacking oncogenic mutations, a particularly serious 23 

vulnerability. Normalizing the ECM by normalizing tumor-associated fibroblasts 24 

therefore holds out the tantalizing possibility of therapies that halt or even reverse 25 
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tumor progression. This approach may also provide new opportunities for 1 

combination therapies where the tumor and its ECM are both targeted concurrently.  2 

Concluding Remarks 3 

In conclusion, analyzing Rho-ROCK pathway activation in the in vivo context has 4 

revealed its function in augmenting mechano-reciprocity via enhanced ECM 5 

stiffness. These observations have also highlighted the importance of mechano-6 

reciprocity in normal tissue homeostasis and demonstrated that negative regulators 7 

of this process have significant therapeutic utility. 8 
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Figure Legends 1 

Figure 1 2 

Mechanosensing through engagement of integrins with the ECM causes 3 

mechanotransduction, by activation of Talin and autophosphorylation of FAK, which 4 

initiates several intra-cellular signal transduction pathways, including PI 3-kinase/Akt 5 

and ROCK signaling. Mechanotransduction gives rise to increased actin 6 

polymerization and actomyosin contractility, establishing mechano-reciprocity, which 7 

in turn leads to paracrine signaling between the parenchyma and the stroma, 8 

increasing ECM production and remodeling. 9 

Figure 2 10 

ROCK activation enhances intracellular tension in epidermal cells by activating MLC 11 

and LIM kinases. It also increases extracellular tension by elevating ECM production 12 

by dermal fibroblasts. ROCK activation in dermal fibroblasts promotes ECM 13 

remodeling by regulating focal adhesion dynamics and fibroblast migration. In both 14 

contexts, 14-3-3ζ limits signal flux through ROCK, thereby maintaining mechano-15 

reciprocity between normal physiological boundaries, permitting normal wound 16 

healing and protecting against tumor formation. This figure has been adapted from 17 

50. 18 
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