
ACCEPTED VERSION 

 

 

George M. Opie, John G. Semmler 
Intracortical inhibition assessed with paired-pulse transcranial magnetic stimulation is 
modulated during shortening and lengthening contractions in young and old adults 
Brain Stimulation, 2016; 9(2):258-267 
 
 
© 2016 Elsevier Inc. All rights reserved. 

This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 

Final publication at http://dx.doi.org/10.1016/j.brs.2015.12.005 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      http://hdl.handle.net/2440/100700 

PERMISSIONS 

http://www.elsevier.com/about/company-information/policies/sharing#acceptedmanuscript 

Accepted manuscript 

Authors can share their accepted manuscript: 

[…] 

After the embargo period 

 via non-commercial hosting platforms such as their institutional repository 
 via commercial sites with which Elsevier has an agreement 

In all cases accepted manuscripts should: 

 link to the formal publication via its DOI 
 bear a CC-BY-NC-ND license – this is easy to do, click here to find out how 
 if aggregated with other manuscripts, for example in a repository or other site, be 

shared in alignment with our hosting policy 
 not be added to or enhanced in any way to appear more like, or to substitute for, 

the published journal article 

Embargo 

1935-861X Brain Stimulation 12 

 

9 May 2017 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.brs.2015.12.005
http://hdl.handle.net/2440/100700
http://www.elsevier.com/about/company-information/policies/sharing#acceptedmanuscript
http://www.elsevier.com/about/company-information/policies/sharing#acceptedmanuscript
http://www.elsevier.com/about/company-information/policies/sharing/how-to-attach-a-user-license
http://www.elsevier.com/about/company-information/policies/hosting


Page 1 

 

 

 

 

Intracortical inhibition assessed with paired-pulse transcranial 

magnetic stimulation is modulated during shortening and 

lengthening contractions in young and old adults  

 

George M Opiea and John G Semmlera 

 

a. Discipline of Physiology, School of Medicine, The University of Adelaide, Adelaide, 

Australia 

 

Running Head:  Age- and movement related changes in intracortical inhibition 

 

Correspondence: John G. Semmler, Ph.D. 

 School of Medicine 

 The University of Adelaide 

 Adelaide, South Australia 5005 

 Australia 

 Telephone: Int + 61 8 8313 7192 

 FAX: Int + 61 8 8313 4398 

 E-mail:  john.semmler@adelaide.edu.au 



Age- and movement-related changes in intracortical inhibition 

 

 

Page 2 

 

Abstract 

Background: The modulation of intracortical inhibition is thought to be impaired in older 

adults, which may contribute to their reduced fine motor control, particularly during 

lengthening muscle contractions.  

Objective: To quantify the magnitude of intracortical inhibition and movement performance 

during postural, shortening and lengthening contractions of a hand muscle in young and old 

adults.  

Methods: In 18 young (23.2 ± 4.2) and 16 old (70.6 ± 6.5) subjects, paired-pulse transcranial 

magnetic stimulation (TMS) was used to assess short- (SICI) and long-interval intracortical 

inhibition (LICI) during a movement task involving the first dorsal interosseous muscle. The 

task required a constant load (50 g) to be slowly lifted and lowered using the index finger 

while single- or paired-pulse TMS was delivered during the shortening or lengthening 

contraction.  

Results: Relative to postural contractions, SICI during shortening contractions was reduced 

by 29% in young subjects (P < 0.0001) and 43% in old subjects (P < 0.0001), whereas SICI 

during lengthening contractions was reduced by 11% in young subjects (P = 0.0004) and 

33% in old subjects (P < 0.0001). Furthermore, SICI was significantly less in older adults 

during lengthening contractions (P-values < 0.01). For LICI, inhibition was not influenced by 

contraction type in old subjects, but was increased by 11% during shortening contractions (P 

< 0.0001) and 9% during lengthening contractions in young subjects (P = 0.0008). In 

addition, old subjects showed significantly less LICI than young subjects in each movement 

phase (both P-values < 0.05).  

Conclusions: Shortening and lengthening contractions with a constant load are associated 

with a modulation of GABAergic inhibition that is altered by healthy ageing. 
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Introduction 

A growing body of evidence suggests that the neural control of lengthening contractions 

represents a unique component of movement control. This includes observations that 

voluntary activation, electromyography (EMG), force generation and spinal motoneuron 

excitability are all different during lengthening contractions [1, 2]. Furthermore, recent 

evidence from studies using a range of neurophysiological and neuroimaging techniques have 

provided compelling support for distinct patterns of cortical activity during lengthening 

contractions [3-11]. In addition, lengthening contractions are also associated with reduced 

motor performance [12-14]. Interestingly, the magnitude of this deficit is thought to be 

increased by advancing age, with greater impairments in performance observed in old adults 

during lengthening movements [13, 15-18], which may contribute to the increased incidence 

of falls in the elderly [19]. 

Although age-related differences in neuromuscular function are well established [20] our 

understanding of the CNS mechanisms contributing to this movement deficit in old adults is 

limited. One factor that may contribute to this impaired motor performance is changes in 

inhibitory neurotransmission within primary motor cortex (M1) mediated by the 

neurotransmitter gamma amino-butyric acid (GABA). In young subjects, transcranial 

magnetic stimulation (TMS) has been used to show that the modulation of local GABAergic 

inhibition is important for motor performance during isometric contractions [21-24]. 

Furthermore, variations in GABAergic inhibition during shortening and lengthening muscle 

contractions have also been proposed in young subjects [7, 8, 25], suggesting that these 

circuits may contribute to the accurate performance of slow movements. However, these 

previous studies have relied on the assessment of GABAergic inhibition from measures of the 

EMG silent period (SP) duration following TMS during shortening and lengthening 
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contractions [7, 8, 25], which is difficult to interpret and highly sensitive to changes in spinal 

excitability (for review, see; [26]). As previous studies with paired-pulse TMS have shown 

that a reduced ability to modulate GABAergic inhibition prior to contraction is associated 

with impaired motor performance in older adults [27], it is possible that age-related changes 

in the modulation of M1 GABAergic inhibition during movements (particularly lengthening 

contractions) may contribute to the movement performance deficits commonly observed in 

the elderly.  

The main aim of the current study was therefore to investigate variations in GABAergic 

inhibition within contralateral M1 of young and old subjects during functional movements 

that involve shortening and lengthening contractions. We used paired-pulse TMS to assess 

GABAA-mediated short-interval intracortical inhibition (SICI) and GABAB-mediated long-

interval intracortical inhibition (LICI), which provides a more robust assessment of M1 

GABAergic inhibition compared with previous studies involving the SP [28]. As previous 

findings suggest that lengthening contractions are associated with disinhibition of 

contralateral M1 [7, 8, 25], we expected that lengthening movements would also be 

associated with a reduction in SICI and LICI. In addition, as the activity-dependent 

modulation of inhibitory tone is thought to be reduced in old adults [27, 29, 30], and this has 

been related to impaired motor performance in the elderly [27], we expected that old 

individuals would demonstrate less modulation of cortical inhibition during movement, and 

that this would be associated with greater motor deficits in older adults.   

Methods 

Eighteen young (mean ± SD: 23.3 ± 4.2 years; 9 females) and 16 old (70.6 ± 6.5 years, 9 

females) healthy subjects were recruited from the university and wider community to 

participate in the current study. Exclusion criteria included a history of neurological or 
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psychiatric disease, or current use of psychoactive medication (sedatives, antipsychotics, 

antidepressants etc.). Hand preference and laterality was assessed using the Edinburgh 

Handedness Inventory [31]. All experimentation was approved by the University of Adelaide 

Human Research Ethics Committee and conducted in accordance with the declaration of 

Helsinki. Each subject provided written, informed consent prior to participation. 

Experimental arrangement 

Subjects were seated in a chair with their right arm abducted approximately 45° at the 

shoulder. The right hand and forearm was pronated on a purpose built manipulandum, similar 

to that described previously [32], which was located on a table in front of the subject. The 

index finger was extended over a cavity within the manipulandum, while the third, fourth and 

fifth fingers were flexed around the edge of the cavity at the level of the metacarpophalangeal 

(MCP) joint. The thumb was extended against a padded support on the manipulandum and 

the forearm was strapped to an adjustable rest. A strap was also placed across the hand to 

minimise movement. This position allowed abduction-adduction of the index finger that was 

isolated to activation of the first dorsal interosseous (FDI) muscle. A circular plastic cast 

placed around the distal end of the index finger was attached to a 50 g load via a length of 

low compliance line. The line ran over a pulley attached to the edge of the manipulandum, 

suspending the load in mid-air. Within this setup, abduction movements corresponded to 

raising the load (shortening contraction), while adduction movements corresponded to 

lowering the load (lengthening contractions), with the combined movements against the load 

defined hereafter as an anisometric contraction. 

Surface EMG was used to record responses from the FDI muscle of the right hand. Two Ag-

AgCl electrodes (1.5 cm diameter) were attached to the skin over the muscle in a belly-

tendon montage, with a strap around the wrist grounding the electrodes. Acceleration of the 
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index finger in the abduction-adduction plane was measured using a uniaxial accelerometer 

(V94-41, Coulbourn Instruments, Whitehall, PA) that was placed on the medial surface of the 

plastic cast attached to the index finger. Position of the index finger was assessed via a 

potentiometer where the rotational axis was aligned with the MCP joint and securely attached 

along the length of the index finger.  EMG was amplified (300 X) and band-pass filtered (20 

Hz high pass, 1 kHz low pass) using a CED1902 (Cambridge Electronic Design, Cambridge, 

UK).  EMG, position and acceleration signals were digitized at 2 kHz using a CED1401 

interface (Cambridge Electronic Design), before being recorded and stored offline for 

analysis. To facilitate muscle relaxation when required, real-time EMG signals were 

displayed under high gain (50 µV/ division) on an oscilloscope placed in front of the subject.  

Experimental Procedures 

Maximal Voluntary Contraction. Index finger abduction force during maximum voluntary 

contraction (MVC) was assessed for each subject. MVCs were conducted with the hand 

positioned on the manipulandum as described above and with 0° of index finger abduction. 

When instructed, subjects abducted the lateral surface of the index finger against a force 

transducer (LC1205-K020; A&D Mercury Pty Ltd, Australia) placed in-line with the distal 

phalanx. Subjects were required to produce maximum force for 3 s in several repetitions, 

separated by 30 s rest, until the maximal force of three trials were within a 10% margin. The 

largest force recorded during these trials was chosen as the subject’s MVC. To optimise force 

production, feedback was displayed on a computer monitor placed at eye level in front of the 

subject, and verbal encouragement was provided by the experimenter. 

Postural, shortening and lengthening contractions. Subjects performed two types of low-

intensity contractions against a 50 g inertial load: 1) postural contractions, during which the 

index finger was held abducted at a constant position of 10° from the index fingers neutral 
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position; and 2) anisometric contractions, during which the subject performed abduction-

adduction movements of the index finger over a 20° range of motion. For both contraction 

types, a display screen showing two cursors was placed at eye level in front of the subject. 

One cursor represented the position of the index finger, while the second represented a target 

position. Subjects performed the required movement by matching the position cursor to the 

target cursor. During postural contractions, the target cursor was static, representing the 

required abduction angle, whereas during anisometric contractions, the target cursor formed a 

triangular template representing a constant velocity contraction of 4 degs/s. The assessment 

of intracortical inhibition during postural contractions required subjects to maintain index 

finger abduction for approximately 4 minutes, while the assessment of intracortical inhibition 

during movement required the completion of 72 shortening and 72 lengthening contractions 

(see below). At the beginning of both postural and anisometric contractions, subjects were 

instructed to match the position of the target cursor as accurately as possible at all times. 

During the contractions, encouragement to perform the task accurately was also provided by 

the experimenter.  

Transcranial magnetic stimulation. TMS was applied to the left primary motor cortex using a 

figure-of-eight coil (external wing diameter 9 cms) with two Magstim 2002 magnetic 

stimulators connected via a Bistim unit (Magstim, Dyfed, UK). The coil was held tangentially 

to the scalp at an angle of 45° to the sagittal plane, with the handle pointed backwards and 

laterally, producing an anteriorly directed current flow in the brain. The coil was positioned 

on the scalp over the location producing an optimum response in the relaxed FDI muscle. 

This location was marked on the scalp for reference and continually checked throughout the 

experiment.  During resting and postural measurements, TMS was delivered at 0.2 Hz. 

However, during anisometric measurements, the rate of TMS delivery depended on which 

contraction phase the previous stimulus had been applied, with a frequency of 0.14 Hz 
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occurring when a stimulus on the lengthening phase followed a stimulus on the shortening 

phase, and a frequency of 0.08 Hz occurring when a stimulus on the shortening phase 

followed a stimulus on the lengthening phase.  

Resting and Active motor thresholds (RMT and AMT, respectively) were obtained in FDI 

while the TMS coil was placed at the optimal location over primary motor cortex. RMT was 

defined as the minimum TMS intensity producing a response amplitude ≥ 50 V in three out 

of five trials in resting FDI muscle, and expressed relative to the maximum stimulator output 

(MSO). Active motor threshold (AMT) was defined as the minimum TMS intensity 

producing a response amplitude ≥ 200 V in three out of five trials while subjects performed 

the postural contraction at 10° of index finger abduction. In addition, AMT was also assessed 

separately for shortening and lengthening contractions. Due to time constraints, this 

assessment utilised a modified version of the anisometric contraction described above; 

subjects abducted and adducted the index finger over a 10° range of motion, from 5° to 15° of 

index finger abduction, with stimuli applied at 10°. This ensured that stimuli were applied at 

a comparable muscle length to that used during all other assessments. 

Intracortical inhibition. Contraction phase-dependent changes in intracortical inhibition were 

assessed by examining measurements of SICI and LICI recorded during postural, shortening 

and lengthening contractions of FDI. To ensure that each subject exhibited a moderate level 

of inhibition during the postural contraction (baseline) that could be modulated (increased or 

decreased) during movement, the intensity of the conditioning stimulus for SICI and LICI 

was adjusted during the postural contraction to produce an ~50% reduction (range 25 to 75% 

reduction) in the amplitude of a 2 mV test MEP (when assessed in isolation). A test MEP 

amplitude of 2 mV was used as this produced a consistent and clearly discernable MEP 

relative to background EMG during each contraction phase, and matched that used during 
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active contractions in a previous study of intracortical inhibition in older adults [33]. The 2 

mV intensity was determined separately for postural, shortening and lengthening 

contractions. This was performed because preliminary experiments at a constant test TMS 

intensity produced large variations (range from 1 mV in the postural task to 8 mV during 

shortening) in test MEP amplitude during the different contraction phases, and these large 

differences in MEP amplitude would confound the comparison of SICI and LICI between 

tasks [34, 35]. Measurements of SICI used a 2 ms interstimulus interval (ISI), whereas 

measurements of LICI used a 150 ms ISI.  

For the assessment of baseline inhibition during a postural contraction, both paradigms were 

applied in the same block, allowing normalisation to a common test alone MEP. As 24 

conditioned trials (12 SICI, 12 LICI) and 12 unconditioned trials were included in a block, 36 

trials were applied to assess baseline inhibition. For the assessment of contraction type-

dependent changes in inhibition, TMS was applied at the midpoint of each contraction phase 

(i.e., 10° of abduction) to match the joint angle used during postural contractions. 

Furthermore, while a single movement trial consisted of both shortening and lengthening 

movements, TMS was only applied on one contraction phase (shortening or lengthening) for 

each trial. As 24 conditioned (12 SICI, 12 LICI) and 12 unconditioned trials were applied in 

each phase, a total of 72 trials were used to assess contraction type-dependent changes in 

intracortical inhibition. However, as a single trial lasted 12 s, the experimental block was 

broken into 6 blocks of 12 trials, with a 30 s break between blocks, to avoid fatigue and loss 

of attention.  

To enable comparisons with previous studies, SP duration was also assessed from a subset of 

subjects that demonstrated a reliable SP. These measurements were assessed in each 

contraction type during application of the test alone MEP. EMG was first rectified then SP 
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duration was assessed from the time of TMS to the point at which EMG crossed the pre-

stimulus mean (using a 200 ms pre-stimulus period). This was calculated using a modified 

cumulative sum (CUSUM) method [36]. 

Data Analysis 

Data analysis was completed manually by visual inspection of offline EMG. MEP amplitudes 

from each trial were measured peak-to-peak and expressed in mV. Paired-pulse 

measurements of intracortical inhibition were quantified by expressing the amplitude of 

individual conditioned MEPs as a percentage of the average unconditioned MEP amplitude. 

For all contraction types and in both subject groups, the level of muscle activity in each 

condition was assessed by quantifying the mean rectified EMG amplitude in the 100 ms prior 

to the conditioning stimulus for SICI and LICI trials, or the test stimulus for test alone MEP 

trials. These values were normalised to the mean rectified EMG amplitude recorded during 

MVC. Motor output during different contraction types was assessed using acceleration SD 

and the absolute error between position and target cursors. During postural contractions, 

acceleration SD and absolute error were averaged over the 800 ms prior to application of 

TMS, whereas during anisometric contractions, acceleration SD and absolute error were 

averaged over the middle 3 s of each contraction phase. As the muscle twitch associated with 

TMS would confound the assessment of performance, only phases in which TMS was not 

applied were used for analysis of movement performance.  

Statistical analysis 

Normality of distribution was assessed using Kolmogorov-Smirnov tests, while homogeneity 

of variance was assessed using Levene’s test. Measurements that failed to meet these 

assumptions were analysed using either non-parametric tests (when available) or parametric 

tests on Log transformed data. Mann-Whitney U tests were used to compare age, handedness 
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and RMT between young and old groups. The effects of contraction type (postural hold, 

shortening, lengthening) and age (young, old) on AMT and test TMS intensity were 

investigated using individual 2-way repeated measures analysis of variance (ANOVARM). A 

2-way ANOVARM was also used to investigate the effects of contraction type and age on Log 

transformed prestimulus EMG data. All main effects and interactions were further 

investigated using Bonferroni post hoc tests. Individual linear mixed models with repeated 

measures were used to compare the fixed effects of contraction type and age on indices of 

performance (acceleration SD, absolute position error), SICI, LICI, SP duration and the 

amplitude of the test alone MEP within SICI and LICI blocks. For all models, analysis was 

carried out on Log transformed data, subject was included as a random effect and all 

significant main effects and interactions were further investigated using Bonferroni post hoc 

tests. Linear regression of individual subject data was used to investigate associations 

between measurements of inhibition and indices of motor performance derived from postural 

and anisometric contractions. Unless otherwise stated, significance was set at P < 0.05 for all 

comparisons. Data not Log transformed prior to analysis are presented as mean ± 95% 

confidence interval (CI) [lower limit, upper limit], whereas Log transformed data have been 

back-calculated and are presented as the geometric mean ± 95% CI [lower limit, upper limit].  

Results 

All subjects completed the experiment in full and without adverse reaction. However, it was 

not possible to produce the required level of baseline SICI or LICI during postural 

contractions (i.e., ~ 50% inhibition of test MEP amplitude) in some subjects. Subsequently, 

not all subjects contribute data to the analysis of both measurements. Fourteen subjects from 

each age group are included in the analysis of SICI, whereas 15 subjects from each group are 
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included in the analysis of LICI. A total of 11 young and 13 old subjects contributed data to 

both measurements.  

Baseline characteristics for all subjects are shown in Table 1. The results of the Edinburgh 

Handedness Inventory showed that the study cohort was, on average, right hand dominant, 

and that this was not effected by age (P = 0.4). Furthermore, no differences were found 

between groups for RMT (P = 0.8), or MVC force (P = 0.3), whereas MVC EMG was 

significantly reduced in older subjects (P = 0.01). AMT differed between contraction types 

(F2,32 = 24.84, P < 0.001), with post hoc analysis showing that AMT during postural 

contractions was increased relative to both shortening and lengthening contractions (P < 

0.0001), but not different between shortening and lengthening contractions (P = 0.03). 

Furthermore, there was no difference between age groups (F1,32 = 0.08, P = 0.8) and no 

interaction between factors (F2,64 = 1.98, P = 0.1). Pre-stimulus EMG differed between age 

groups (F1,32 = 10.42, P = 0.003), with post hoc testing showing increased activity in old 

subjects (P = 0.003), but there was no difference between contraction types (F2,32 = 1.75, P = 

0.2) and no interaction between factors (F2,64 = 0.63, P = 0.5). 

Intracortical inhibition  

Representative SICI and LICI data from a single old subject (75 years) during each 

contraction type is shown in Figure 1A and 1B. For this subject, AMT was 33% MSO, 31% 

MSO and 32% MSO during postural, shortening and lengthening contractions, respectively, 

while test TMS intensity was 40% MSO, 37% MSO and 36% MSO during postural, 

shortening and lengthening contractions, respectively. This subject showed SICI of 66% 

during postural contractions, which was reduced to 85% during shortening contractions and 

68% during lengthening contractions (Figure 1A). For LICI, inhibition of 52% was obtained 
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during postural contractions, and this was reduced to 63% and 87% during shortening and 

lengthening contractions, respectively (Figure 1B).     

Short interval intracortical inhibition. For all subjects that demonstrated a moderate level of 

baseline SICI, the amplitude of the test alone MEP used to assess SICI during each 

contraction type is shown for both young (n = 14) and old (n = 14) subjects in figure 2A. The 

test alone MEP varied between contraction types (F2,553 = 2.97, P = 0.05), but post hoc 

testing failed to show any significant differences between specific contraction types (all P-

value > 0.08) Furthermore, test MEP amplitude was comparable between age groups (F1,25 = 

0.005, P = 0.9) and there was no interaction between factors (F2,553 = 2.12, P = 0.1). The 

TMS intensity used to produce the test alone MEP differed between contraction types (F2,26 = 

52.83, P < 0.001), with post hoc analysis showing that the intensity required during postural 

contractions (young, 48.7 [45.1, 52.3] MSO; old, 47.6 [42.7, 52.4]% MSO) was greater than 

during either lengthening (young, 45.0 [41.9, 48.1] MSO; old, 44.3 [39.6, 49.0]% MSO) 

contractions (P-values < 0.001) or shortening (young, 43.1 [39.8, 46.3]% MSO; old, 42.6 

[38.3, 46.8]% MSO), and that the TMS intensity during lengthening contractions was greater 

than during shortening contractions (P = 0.001). However, no effect of age (F1,26 = 0.08, P = 

0.8) or interaction between factors (F2,52 = 0.19, P = 0.8) was found.  

Variations in SICI during each contraction type are compared between young and old 

subjects in figure 2B. The magnitude of SICI differed between contraction types (F2,553 = 

88.03, P < 0.001) and age groups (F1,25 = 5.35, P = 0.03), and there was an interaction 

between factors (F2,553 = 5.35, P = 0.005). In young subjects, post hoc analysis showed that 

SICI during shortening contractions was reduced relative to both postural and lengthening 

contractions, whereas SICI during lengthening contractions was reduced relative to postural 

contractions (all P-values < 0.001). In old subjects, SICI during both shortening and 
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lengthening contractions was reduced relative to postural contractions (P < 0.001). Age-

related comparisons within each contraction type showed that SICI was not different between 

age groups during postural (P = 0.3) or shortening contractions (P = 0.06), but was reduced in 

old subjects during lengthening contractions (P = 0.002).  

Long interval intracortical inhibition. For all subjects that demonstrated the target level of 

baseline LICI (15 young, 15 old), the amplitude of the test alone MEP used to assess LICI in 

each contraction type is shown in Figure 3A. The test MEP varied between contraction types 

(F2,521 = 6.18, P = 0.002), with post hoc testing showing that test MEP amplitude was 

reduced during lengthening contractions relative to both postural (P = 0.01) and shortening 

contractions (P = 0.002). Despite this, there was no difference between age groups (F1,28 = 

0.83, P = 0.4) and no interaction between factors (F2,521 = 1.22, P = 0.3). The TMS intensity 

used to generate the test alone MEP varied between contraction types (F2,28 = 36.08, P < 

0.001), with post hoc testing showing that the intensity of the test stimulus during the postural 

contraction (young, 47.4 ± 2.0% MSO; old, 46.8 ± 2.2% MSO) was greater than during either 

shortening (young, 41.9 ± 1.8% MSO; old, 42.7 ± 2.0% MSO) or lengthening (young, 44.1 ± 

1.7% MSO; old, 44.3 ± 2.2% MSO) contractions (P-values < 0.001), and greater during the 

lengthening than shortening contractions (P = 0.002). However, stimulus intensities were not 

different between age groups (F1,28 = 0.002, P = 0.9) and there was no interaction between 

factors (F2,56 = 0.69, P = 0.5).  

The magnitude of LICI in each contraction phase is compared between groups in figure 3B. 

LICI differed between contraction types (F2,670 = 5.04, P = 0.007) and age groups (F1,27 = 

6.73, P = 0.02), and there was an interaction between factors (F2,670 = 9.26, P < 0.001). For 

young subjects, post hoc analysis showed that the magnitude of LICI was increased during 

both shortening and lengthening contractions when compared to postural contractions (both 
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P-values < 0.001), but was not different between shortening and lengthening contractions (P 

= 0.5). For old subjects, the magnitude of LICI was not different between contraction types 

(all P-values > 0.1). Age-related comparisons within each contraction type showed that LICI 

was not different between groups during postural contractions (P = 0.3), but significantly 

reduced in old subjects during both shortening (P = 0.003) and lengthening (P = 0.003) 

contractions. 

EMG Silent Period The duration of the SP in each contraction type is compared between a 

subset of young and old subjects that demonstrated a reliable SP (13 young and 14 old) in 

Figure 4. Subject data was considered reliable if CUSUM analysis provided an accurate 

estimate of SP duration (assessed via visual comparison with raw data) for at least 6 out of 12 

trials in all contraction types. Furthermore, the amplitude of the test MEP, which is known to 

effect SP duration [37], was not different between age groups or contraction types (see 

above). For all subjects, SP duration was not different between age groups (F1,25 = 0.64, P = 

0.4), but differed between contraction types (F2,401 = 67.39, P < 0.001) and there was an 

interaction between factors (F2,401 = 11.69, P < 0.001). In young subjects, post hoc analysis 

showed that SP duration during lengthening contractions was reduced relative to postural 

contractions (P < 0.001), whereas SP duration during shortening contractions was reduced 

relative to both postural (P < 0.001) and lengthening contractions (P < 0.001). In old subjects, 

the SP during shortening contractions was reduced relative to both postural (P < 0.001) and 

lengthening (P = 0.001) contractions. Age-related comparisons within each contraction type 

showed that the SP duration was reduced in young subjects during shortening contractions (P 

= 0.01). 
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Motor output during anisometric movements 

Absolute movement error differed between contraction types (F2,1554 = 1559.14, P < 0.001) 

and age groups (F1,34 = 7.03, P = 0.01), and there was an interaction between factors (F2,1554 = 

5.74, P = 0.003; Figure 5A). For both age groups, post hoc testing showed that movement 

error during shortening contractions was greater than during postural contractions, and 

greater during lengthening than either shortening or postural contractions (P < 0.001 for all 

comparisons). Age-related comparisons within each contraction type showed that movement 

error was significantly increased in older adults during shortening (P < 0.001) and 

lengthening (P = 0.005) contractions, but unaffected by age during postural contractions (P = 

0.3).  

The SD of Acceleration during movement also differed between contraction types (F2,1353 = 

2176.68, P < 0.001) and age groups (F1,32 = 4.79, P = 0.04), and there was an interaction 

between factors (F2,1353 = 9.74, P < 0.001; Figure 5B). Post hoc testing showed that, in both 

groups, the SD of acceleration during shortening contractions was greater than postural 

contractions, and greater during lengthening contractions than during either shortening or 

postural contractions (P < 0.001 for all comparisons). Age-related comparisons within each 

contraction type showed that acceleration SD was significantly increased in old adults during 

both postural (P = 0.03) and shortening contractions (P = 0.02).  

Linear regression 

Linear regression of individual subject data was used to investigate associations between 

measures of intracortical inhibition and movement performance, as well as between paired- 

and single-pulse TMS measure of intracortical inhibition, during each contraction type in 

young and old subjects. No significant correlations were found between motor performance 

(acceleration SD or movement tracking error) and either the magnitude or modulation of (i.e., 
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difference between measurements during postural and anisometric contractions) intracortical 

inhibition (Table 2). However, a significant association between the magnitude of SICI and 

the SP was found in young but not old subjects during shortening contractions (young, r2 = 

0.47, P = 0.01; old, r2 = 0.10, P = 0.3), with a tendency towards a similar association during 

lengthening contractions (young, r2 = 0.28, P = 0.08; old, r2 = 0.06, P = 0.4). No significant 

relationship was found between LICI and the SP in either contraction type or group. Within 

each age group, linear regression analysis was also used to investigate whether pre-stimulus 

EMG predicted the change in inhibition observed during each movement phase. Results of 

these analyses showed no significant relationship between pre-stimulus EMG and the 

magnitude of SICI or LICI during either shortening or lengthening contractions in either 

group.   

Discussion 

The current study investigated age-related changes in intracortical inhibition with paired-

pulse TMS during constant-load shortening and lengthening contractions involving the index 

finger. At least 4 new findings related to the cortical control of movement were obtained from 

this experimental approach. First, performance of constant-load shortening and lengthening 

contractions is accompanied by a reduction of SICI in both young and old adults. Second, 

performance of shortening and lengthening contractions is accompanied by increased LICI in 

young but not old subjects. Third, there was less GABAergic inhibition during movements in 

older adults. Fourth, these changes in inhibition appear to be unrelated to age-related 

differences in motor performance during movement. 
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SICI is reduced during movement in young and old adults 

Reductions in the magnitude of SICI during isometric muscle activation have been well 

documented [21-24, 38], and suggested to reflect modulation of GABAA inhibition that is 

likely to be cortical in origin [39, 40]. However, the current study is the first to investigate if 

SICI within contralateral M1 is also modulated during movement when lifting and lowering a 

constant load. In young subjects, we found reductions in SICI during movement that differed 

between contraction types, with greater disinhibition observed during shortening 

contractions. These observations suggest that although both shortening and lengthening 

contractions are associated with a reduction of GABAA-mediated inhibitory tone within M1, 

a greater disinhibition of this circuit is apparent during slow shortening contractions to lift 

loads.  

Previous studies using electroencephalography (EEG) in young subjects have reported that 

movement related cortical potentials are greater during lengthening than shortening 

contractions [10, 11], suggesting that reductions in inhibitory tone should be greatest during 

muscle lengthening. However, a more recent study using functional magnetic resonance 

imaging (fMRI) has localised this increased cortical activity during lengthening contractions 

to higher order motor areas, such as the pre-supplementary motor area and anterior cingulate 

cortex [9]. The same study reported that activity within M1 (the area of focus in the current 

study) was actually increased during shortening contractions [9]. It therefore seems likely 

that the greater disinhibition of SICI we observed during shortening contractions is a 

reflection of this enhanced motor cortical activity during muscle shortening.  

In old subjects, a reduction in SICI was also observed during movement. However, in 

contrast to the young group, the magnitude of this modulation was not different between 

shortening and lengthening contractions. This lack of phase-specificity could suggest that old 
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adults demonstrate a reduced ability (or need) to differentially modulate GABAA-mediated 

inhibition during slow shortening and lengthening contractions with a light (50 g) load. We 

have previously observed age-related reductions in the ability to modulate GABAA-mediated 

inhibition during different isometric motor tasks [30], and there is reduced modulation of 

SICI during movement preparation in old adults [27]. Taken together, these findings may 

reflect a loss of task-specificity in the modulation of inhibitory neurotransmission in older 

adults.  

Changes in LICI and the SP during anisometric contractions 

Although this is the first study to investigate movement-related changes in the magnitude of 

LICI, several previous studies have assessed changes in the duration of the SP, an alternative 

assessment of GABAB-mediated inhibition [41], during anisometric contractions in young 

subjects [7, 8, 25]. While two of these reported reduced SP duration during lengthening 

contractions [7, 8], the third reported reduced SP duration during shortening contractions 

[25]. In support of Sekiguchi et al., [25], the greatest reduction in SP duration within the 

current study was seen during shortening contractions, although this effect was reduced in old 

adults. As Duclay and colleagues targeted muscles of the lower leg, whereas Sekiguchi and 

colleagues and the current study targeted an intrinsic hand muscle, it seems possible that 

physiological differences in the target muscle contributed to these inconsistencies [42]. 

Furthermore, both Sekiguchi et al., [25] and Duclay et al., [7] used a constant intensity test 

stimulus to compare silent period durations between shortening and lengthening contractions, 

which likely result in variations in the test MEP amplitude during each contraction, 

confounding measurements of silent period duration [37].  

Both LICI and the SP are thought to have contributions from GABAB mediated inhibitory 

neurotransmission. However, this has been more clearly defined for LICI [43-45], with some 
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evidence suggesting that the SP may reflect composite activity of both GABAA and GABAB 

receptors [46], as well as have contributions from brain areas ‘upstream’ from M1 [47]. Our 

assessment of LICI therefore provides a more precise measure of changes in GABAB 

mediated inhibition within M1 during shortening and lengthening contractions.  In contrast to 

SP duration, our findings demonstrate that LICI in young subjects was greater during both 

shortening and lengthening contractions, suggesting increased GABAB mediated inhibition 

within M1 during movement in healthy young subjects. This increase in LICI is consistent 

with a previous report that the EEG derived N100 response is greater during movement 

preparation in young subjects [48]. Despite this, LICI in old subjects was unaffected by 

contraction type, suggesting that the ageing process results in reduced modulation of 

intracortical GABAB-mediated circuitry during movement.  These changes in LICI were 

unrelated to the changes in SP during movements in young and old subjects, which may 

indicate an altered contribution of GABAB inhibition to SP duration during movements. In 

contrast, there was a significant association between SICI and SP in young subjects, 

suggesting that there may be a greater contribution of GABAA to the CSP duration during 

slow movements. 

Age-related differences in GABAergic inhibition during movements 

Previous literature suggests contradictory effects of age on SICI and LICI during both 

relaxation [27, 29, 49-62] and isometric muscle activation [30, 33, 63], with variations in 

methodology and subject characteristics likely contributing to this heterogeneity. Despite this, 

as the conditioning stimulus intensity was adjusted to produce 50% inhibition of the test MEP 

during postural contractions, our findings could not have been confounded by any age-related 

differences in inhibition at baseline. Within the current study, we found that inhibition during 

movement was consistently reduced in old adults irrespective of measurement or contraction 
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type. Interestingly though, this occurred through an increased movement-related modulation 

of SICI, but decreased movement-related modulation of LICI. As reductions in inhibitory 

tone are thought to facilitate the activation of cortical areas required for the generation of 

movement [21], this non-specific cortical disinhibition could allow the generation of stronger 

descending commands for movement in an attempt to maintain motor output in spite of age-

related neuromuscular insufficiencies. However, while disinhibition is required for the 

generation of motor commands, accurate performance during movement also relies on an 

adequate balance between excitation and inhibition in M1, resulting in the finely tuned motor 

commands necessary for precise movements. An alternative interpretation of our data could 

therefore be that the generalised cortical disinhibition observed in old adults may not provide 

the optimal balance to maximise performance during movement, resulting in impaired motor 

function. This possibility remains to be explored. 

Movement-related changes in inhibition and motor performance 

Within the current study, absolute tracking error and acceleration SD of the index finger were 

both increased in old adults, suggesting that old subjects performed these tasks with reduced 

accuracy and steadiness. However, linear regression analysis of individual subject data failed 

to demonstrate any significant associations between the indices of performance used in the 

present study (movement accuracy and steadiness) and measures of SICI, LICI and the SP. 

These findings suggest that age-related changes in inhibitory modulation during slow 

movements are unlikely to account for age-related deficits in these measures of motor 

performance. However, several limitations may have contributed to the lack of interaction 

between measures of inhibition and movement performance. First, the measures of inhibition 

and motor performance were obtained in separate movement trials, as the muscle twitch 

following the TMS pulse influenced movement accuracy. Second, changes in task 
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performance (i.e., motor learning) over the 72 trials included in the anisometric task may 

have obscured interactions between inhibition and performance. Finally, in order to assess the 

effect of the modulation of intracortical inhibition on movement-related motor performance, 

it was essential to test subjects that displayed a moderate level of inhibition during the 

postural task (baseline). The possibility exists that this may have biased our findings, as it has 

previously been shown that abnormal facilitation (rather than inhibition) in resting muscle 

may be associated with impaired manual dexterity [59].  However, motor performance during 

shortening and lengthening contractions was similar in the excluded subjects that did not 

have moderate baseline inhibition during the postural task (4 SICI, 3 LICI) compared with 

the included sample population, so it is unlikely that this influenced our motor performance 

data.   

Methodological considerations 

A pivotal aspect of the current study was to match the amplitude of the test MEP between 

young and old adults in each contraction type. This was necessary because the magnitude of 

inhibition recorded during paired-pulse TMS paradigms varies depending on the amplitude of 

the test MEP [34]. While the amplitude of the test MEP was matched between contraction 

types for SICI, the test MEP for LICI was slightly reduced during lengthening contractions. 

As the magnitude of LICI was not different between shortening and lengthening contractions, 

it seems unlikely that variations in the test MEP confounded our findings. In addition, pre-

stimulus EMG was increased in old adults, which may confound our measures of inhibition. 

However, this was not different between contraction phases, and linear regression analysis 

failed to show any significant interaction between EMG activity and measures of inhibition. 

We therefore feel that this factor had limited influence on our findings. Finally, as we did not 
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assess peripheral excitability, we cannot exclude the possibility that changes at the spinal 

level may have contributed to our results.  

In conclusion, we used paired-pulse TMS to assess age-related differences in intracortical 

inhibition during slow shortening and lengthening contractions when lifting and lowering a 

constant load with the index finger. We found that GABAA-mediated SICI was reduced 

during shortening and lengthening contractions in both young and old subjects, whereas 

GABAB-mediated LICI was increased during both shortening and lengthening contractions in 

young adults only. These task-related changes resulted in reduced GABAergic inhibition 

during movements in old compared with young subjects. These differences were 

accompanied by reduced task accuracy and steadiness during shortening and lengthening 

contractions in older adults, but there was no association between measures of intracortical 

inhibition and task performance in individual subjects. These findings suggest that shortening 

and lengthening muscle contractions are associated with the modulation of GABAergic 

inhibition, and that this modulation is altered in older adults. However, the functional 

implications of these differences in intracortical inhibition during movements in older adults 

require further investigation. 
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Figure 1. Representative data showing variations in SICI (A) and LICI (B) during postural, 

shortening and lengthening contractions. An example of a single trial for the postural and 

anisometric tasks, demonstrating the target position, position of the index finger (C) and the 

associated index finger acceleration (D), are also shown.   

Figure 2. Effects of contraction type on SICI compared between young and old adults. The 

amplitude of the test alone MEP used to assess SICI (A) and the magnitude of SICI (B) are 

compared between young (black bars) and old (white bars) subjects during postural (left 

columns), shortening (middle columns) and lengthening (right columns) contractions. The 

dotted horizontal line represents no inhibition, with values below 100% showing inhibition of 

the test MEP. Data are presented as the geometric mean and 95% confidence interval. #P < 

0.05 when compared to postural; †P < 0.05 when compared to postural and shortening 

contractions; *P < 0.05 between age groups.  

Figure 3. Effects of contraction type on LICI compared between young and old adults. The 

amplitude of the test alone MEP used to assess LICI (A) and the magnitude of LICI (B) are 

compared between young (black bars) and old (white bars) subjects during postural (left 

columns), shortening (middle columns) and lengthening (right columns) contractions. The 

dotted horizontal line represents no inhibition, with values below 100% showing inhibition of 

the test MEP. Data are presented as the geometric mean and 95% confidence interval. #P < 

0.05 when compared to postural contractions; ‡P < 0.05 when compared to postural and 

shortening contractions. 

Figure 4. Effects of age and contraction type on the duration of the EMG SP. Data show the 

geometric mean SP duration (and 95% confidence interval) for a subset of 13 young (black 

bars) and 14 old adults (white bars) during postural (left columns), shortening (middle 

columns) and lengthening (right columns) contractions. #P < 0.05 when compared to postural 
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contractions;  †P < 0.05 when compared to postural and shortening contractions; ‡P < 0.05 

when compared to postural and lengthening contractions; *P < 0.05 between age groups.   

Figure 5. Motor performance during different contraction types in young and old adults. 

Performance during postural, shortening and lengthening contractions was investigated by 

comparing the absolute error between finger and target positions (A) and the SD of 

acceleration during movement (B) between young (black bars) and old (white bars) subjects. 

Data are presented as the geometric mean and 95% confidence interval. #P < 0.05 when 

compared to shortening contractions; †P < 0.05 when compared to postural and shortening 

contractions; *P < 0.05 between age groups. 
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Table 1. Subject Characteristics 

 Young  Old 

Age (years) 23.3 [21.3, 25.2]  70.6  [67.4, 73.8]a 

Handedness (L.Q) 0.93 [0.89, 0.98]  0.84 [0.72, 0.96] 

MVC force (N) 31.7 [26.5, 36.9]  28.2 [23.4, 32.9]  

RMT (%MSO) 43.5 [40.6, 46.4]  44.8 [40.6,49.0]  

MVC EMG (mV) 0.38 [0.32, 0.43]  0.28 [0.23, 0.32]a 

AMT (%MSO)    

-Postural 37.7 [35.2, 40.1]  37.8 [33.8, 41.9] 

-Shortening 35.8 [33.5, 38.2]b  34.5 [31.1, 37.9]b 

-Lengthening 36.3 [34.2,38.5]b  35.7 [32.0, 39.3]b 

Pre-stimulus EMG  

(% MVC EMG) 
 

 
 

-Postural *5.9 [5.2, 6.6]   *10.6 [9.2, 12.2]  

-Shortening *5.7 [5.1, 6.5]  *10.2 [8.9, 11.7] 

-Lengthening *5.9 [5.2, 6.6]  *10.2 [9.0, 11.6] 
aP < 0.05 compared to young; bP < 0.05 compared to postural; *values show the geometric 

mean generated by back-calculation of log transformed data 

 
 

 

Table 2. Relationship between ICI and performance measures 

 Log(Acceleration SD)  Log(Movement Error) 

 r2  P - value  r2  P - value 

Shortening        

Log(SICI) 

Young 0.06  0.4  0.003  0.9 

Old 0.01  0.7  0.02  0.7 

Log(LICI)        

Young 0.2  0.1  0.006  0.8 

Old 0.0005  0.9  0.007  0.8 

Lengthening        

Log(SICI)        

Young 0.02  0.6  0.009  0.7 

Old 0.1  0.2  0.004  0.8 

Log(LICI)        

Young 0.03  0.6  0.1  0.2 

Old 0.01  0.7  0.03  0.5 

 


