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Abstract

This research focuses on the electromagnetic design of permanent magnet (PM) machines
in terms of the iron loss, torque pulsations and field-weakening performance. It covers the
investigation of the effect of stator-slot and rotor-pole number combinations for surface-
mounted PM (SPM) machines, and the stator-slot and rotor-effective-slot number
combinations for interior permanent magnet (IPM) machines.

The effect of changing the number of slots and poles on the performance of a
particular SPM machine design is studied in detail using finite element analysis. This
includes examining the back-EMF, the open-circuit/full-load power losses, the
cogging/ripple torque, and the field-weakening performance. The simulation results are
compared with the expected relationships to provide electric machine designers useful
insights on the effect of the number of slots and poles on the performance of SPM
machines.

Operation at high speed in traction drives corresponds to deep field-weakening
conditions. Due to the high electrical frequencies, the iron loss of IPM machines at high

speeds can significantly affect the overall efficiency. This thesis investigates the rotor-



cavity positioning and the combination of stator-slot and rotor-effective-slot number on the
eddy-current loss for IPM/reluctance machines operating under deep field-weakening
conditions. A new closed-form expression for the stator and rotor eddy-current loss is
developed. The optimal barrier-positioning for the minimum total loss and the effect on the
eddy-current loss of varying the stator-slot and rotor-effective-slot number are investigated
for 1-, 2-, 3- and full-layered rotors.

FEM optimisation and experimental verification of an example IPM machine design
are presented. An optimized 30 slot, 4 pole (slot/pole/phase = 2.5) three-layered IPM
machine with a significantly reduced iron loss under field-weakening operation is proposed
and compared to the baseline 36-slot 4-pole (slot/pole/phase = 3) three-layered IPM
machine. The detailed comparison of the optimized and baseline designs using a

combination of the analytical, FEM and experimental tests are presented.
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Stator circumferential coordinates
Synchronous angular frequency
Magnetic permeability of vacuum
rotor cavity angular position
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elec. deg
elec. deg
mech. deg
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Bx Stator-teeth flux density T

By Stator-yoke flux density T
Behi Rotor-channel tunnelling flux density T
Epn Phase back-EMF voltage Vims
f Synchronous frequency Hz
fs Stator MMF At
fsh Stator MMF spatial harmonics At
fr Rotor MMF At
frn Rotor MMF spatial harmonics At
e Effective airgap length m
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Lend Stator end-winding inductance H
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Ns Number of stator slot per pole-pair



Nr
N

Y

P
Peddy
Pteeth
Pyoke
Pen
Iy

T

Rs

Tmag
Trel

Vyoke

Vteeth

Number of rotor slot per pole-pair
Number of series turns per phase
Number of pole-pairs

Number of poles

Eddy-current loss density
Stator-teeth eddy-current loss density
Stator-yoke eddy-current loss density
Rotor channel eddy-current loss density
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Rotor channel magnetic potential
Stator phase resistance

Rotor barrier magnetic reluctance
Sectional airgap magnetic reluctance
Stator-yoke average radius
Stator-teeth average radius

Rotor outer radius

Stator slot number

Total average torque

Magnet torque

Reluctance torque

Stator phase voltage

Stator-yoke volume

Stator-teeth volume

Rotor-channel volume

Rotor-channel mean width

Cavity thickness

d-axis reactance

g-axis reactance

wW/m?
wW/m?
wim®
w/m®
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Acronyms

CPSR
EMF
FEM
FW
IPM
MMF
MTPA
PM
SPM
SPP
THD

Constant Power Speed Ratio
Electric-Motive Force
Finite-Element Method
Field-Weakening

Interior Permanent Magnet
Magneto-Motive Force
Maximum Torque per Ampere
Permanent Magnet

Surface Permanent Magnet
Slots/Pole/Phase

Total Harmonic Distortion
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