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Abstract 24 

Clinical studies have reported beneficial effects of a maternal low glycaemic index (GI) diet 25 

on pregnancy and neonatal outcomes, but the impact of the diet on the offspring in later life, 26 

and the mechanisms underlying these effects, remain unclear. In this study, Albino Wistar rats 27 

were fed either a low GI (n=14) or high GI (n=14) diet during pregnancy and lactation and their 28 

offspring weaned onto either the low or high GI diet. Low GI dams had better glucose tolerance 29 

(AUC[glucose], 1322 ± 55 vs 1523 ± 72 mmol.min/l, P<0.05) and a lower proportion of visceral 30 

fat (19.0 ± 2.9 vs 21.7 ± 3.8% of total body fat, P<0.05) compared to high GI dams. Female 31 

offspring of low GI dams had lower visceral adiposity (0.45 ± 0.03 vs 0.53 ± 0.03% body 32 

weight, P<0.05) and higher glucose tolerance (AUC[glucose], 1243 ± 29 vs 1351 ± 39 33 

mmol.min/l, P<0.05) at weaning, as well as lower hepatic PI3K-p85 mRNA at 12 weeks  of 34 

age.  No differences in glucose tolerance or hepatic gene expression were observed in male 35 

offspring, but the male low GI offspring did have reduced hepatic lipid content at weaning. 36 

These findings suggest that consuming a low GI diet during pregnancy and lactation can 37 

improve glucose tolerance and reduce visceral adiposity in the female offspring at weaning, 38 

and may potentially produce long-term reductions in the hepatic lipogenic capacity of these 39 

offspring.  40 

Key Words: programming, insulin resistance, fat mass 41 

 42 

  43 
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Introduction 44 

The glycaemic index (GI) ranks food according to how they impact on blood glucose 45 

concentration immediately after consumption, with high GI foods causing a sharp increase in 46 

plasma glucose and low GI foods providing a more sustained glucose release1. Epidemiological 47 

and clinical studies have reported that prolonged consumption of a high GI diet is associated 48 

with insulin resistance and type 2 diabetes 2,3, while low GI diets improve insulin sensitivity 49 

and reduce body weight 4,5. Experimental animal studies have also demonstrated that rats fed 50 

on low GI diets have a reduced body fat mass, improved glucose tolerance and reduced 51 

expression of lipogenic genes in the liver compared with those maintained on high GI diets 6-52 

8.  53 

Epidemiological and experimental animal studies have demonstrated that exposure to an 54 

elevated glucose supply in utero, as a consequence of gestational diabetes or even mild 55 

impairments to maternal glucose tolerance, significantly increases the risk of the offspring 56 

developing obesity, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD) in adult life 57 

14-16. This has led to suggestions that interventions that reduce maternal glucose concentrations 58 

and/or improve maternal glucose tolerance, including a low GI diet, may have beneficial effects 59 

on the long term metabolic outcomes of the offspring. A small number of human studies have 60 

investigated the effects of low GI diets during pregnancy and lactation on infant outcomes9, 10. 61 

However, while some studies have supported the potential benefits of a low GI diet in 62 

pregnancy for maternal and pregnancy outcomes, including a reduced risk of delivering a large 63 

for gestational age infant, no studies to date have evaluated the impact of this diet on  the 64 

metabolic health of the offspring beyond the immediate postnatal period 13.  In addition, 65 

whether the long-term metabolic effects of exposure to a low GI diet during the fetal and 66 

suckling periods are dependent on the GI of the diet consumed after weaning is also unknown.  67 
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Therefore, the aims of the present study were to use a rodent model to 1) compare the effects 68 

of maternal consumption of a low GI vs high GI diet during pregnancy and lactation on fat 69 

deposition, glucose tolerance, hepatic fat content and gene expression in the offspring at 70 

weaning and in young adulthood, and 2) determine whether the effects of maternal low GI diet 71 

consumption on young adult offspring differed according to whether the offspring were weaned 72 

onto a low GI or high GI diet.   73 

 74 

Methods 75 

Dams and feeding regime 76 

This study was approved by the University of Adelaide Animal Ethics Committee. Twenty-77 

eight (28) female Albino Wistar rats (~200g) were brought into the animal facility and housed 78 

individually in a 12hr light/12hr dark cycle environment at a constant temperature of ~25ºC. 79 

Rats were acclimatised to the environment for at least 1 week prior to the commencement of 80 

the experiment. During this time, they had free access to standard rodent chow (AIN93M, 81 

Specialty Feeds, Glen Forrest, Western Australia) and tap water. 82 

Following acclimatisation, rats were assigned to either the low GI (n=14) or high GI (n=14) 83 

group. The diets each group received were identical in appearance, energy content, macro- and 84 

micronutrient composition, the only difference being the carbohydrate type; in the low GI 85 

group the diet included carbohydrate in the form of Gel Crisp starch (Diet SF10-084) while in 86 

the high GI group the diet included carbohydrate in the form of dextrinised starch (Diet SF10-87 

081). Both diets were manufactured by Specialty Feeds (Glen Forrest, Western Australia). A 88 

validated in vitro starch digestion assay was used as an indicator of the likely glycaemic 89 

response to each of the diets 19. At the 20 min time point, the amount of rapidly available 90 

glucose (RAG) in the high GI feed was 56% higher than the low GI feed (P= 0.006). Similarly, 91 
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at 120 min of digestion, the amount of glucose released was 44% higher in the high GI feed 92 

(P=0.0006). In addition, an in vivo pilot study was undertaken in which we measured blood 93 

glucose concentrations in rats for two hours after the consumption of either the high or low GI 94 

diet. The results obtained confirmed that the diets resulted in post-prandial glucose curves 95 

which were different and consistent with the profile expected for low and high GI foods (data 96 

not shown). 97 

 98 

The diets were provided ad libitum and all rats had free access to water throughout the 99 

experiment. Female rats were fed their respective diets for a minimum of 4 weeks before mating 100 

and throughout pregnancy and lactation. Body weight was determined weekly during this time. 101 

Fresh food was provided every second day, and on each of these occasions, the remaining food 102 

was weighed and the weight subtracted from the amount provided at the start of the 2 day 103 

period to calculate food intake.  104 

After 4 weeks, vaginal smears were performed daily to determine the stages of the estrous 105 

cycle. On the night of diestrous/proestrous the female rat was placed with a male (fed ad libitum 106 

on standard rodent chow) overnight. The presence of sperm in vaginal smears conducted the 107 

following morning was considered as confirmation of successful mating and designated as 108 

gestation day 0. A total of 4 males were used for mating and the same males were used for 109 

mating females in both the low GI and high GI groups in order to minimise the influence of 110 

paternal effects on offspring outcomes.  111 

 112 

Offspring  113 

Pups were born on day 21-22 of gestation. Within 24 hours of birth (postnatal day 1), pups 114 

were culled to 8 per litter, with 4 males and 4 females where possible. Pups were weighed on 115 

postnatal day 1 and every 2 days thereafter during the suckling period and were weaned on 116 
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postnatal day 21. At the time of weaning, tissue was collected from 1 male and 1 female pup 117 

from each litter, remaining were group-housed with their same sex littermates (2 animals per 118 

cage), and were provided with either the same diet as their mother or the alternate diet. This 119 

gave rise to 4 groups (1) offspring of low GI dams weaned onto the same low GI diet (L-L, 120 

n=14, 7 males and 7 females), (2) offspring of low GI dams weaned onto a high GI diet (L-H, 121 

n=14, 7 males and 7 females), (3) offspring of high GI dams weaned onto a low GI diet (H-L, 122 

n=14, 7 males and 7 females) and (4) offspring of high GI dams weaned onto a high GI diet 123 

(H-H, n=14, 7 males and 7 females). Food intake was determined every 2 days in all offspring 124 

and fresh food provided. Fresh water was available ad libitum. All offspring were weighed 125 

once per week from weaning until 12 weeks of age. 126 

 127 

Intraperitoneal Glucose Tolerance Test (IPGTT) 128 

IPGTTs were performed after an overnight fast on dams at the end of lactation as well as on 129 

the offspring at 3wks and 12wks of age. Baseline blood samples were collected from the tail 130 

vein and a glucose bolus (2g/kg of 50% dextrose in sterile 0.9% saline) was then injected 131 

intraperitoneally. Blood samples were collected from the tail vein at 5, 10, 15, 30, 60 and 120 132 

minutes following glucose delivery. Glucose concentrations were determined using a handheld 133 

Accu-Chek Performa glucometer (Accu-Chek Performa©, Roche, Germany) at each time-134 

point.  135 

 136 

Post mortem and tissue collection 137 

Post mortem and tissue collection was conducted on dams after weaning on the day following 138 

the IPGTT and on 1 male and 1 female offspring per litter (selected at random) at weaning and 139 

1 male and 1 female offspring per litter at 12 weeks of age. Dams and offspring were killed 140 

using an overdose of CO2 in the non-fasted state. Immediately after euthanasia, blood samples 141 
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were collected via cardiac puncture into heparinised tubes and centrifuged at 3,500 g at 4ºC for 142 

15 minutes. The plasma was collected and stored at -20ºC for subsequent analyses of hormone 143 

and metabolite concentrations. Body weight, length (nose to tail) and abdominal circumference 144 

were determined. All internal organs were weighed and all visible fat depots, including omental 145 

fat, retroperitoneal fat, gonadal fat, subcutaneous fat and interscapular fat, were dissected to 146 

determine the weights of the individual depots. The weights of omental, retroperitoneal and 147 

gonadal fat were added together to determine visceral fat mass, and the weights of all individual 148 

fat depots were added together to determine total body fat mass. The weights of all fat depots 149 

were expressed relative to body weight. At both weaning and 12 weeks of age, a sample of 150 

liver (from the same site in each animal) was snap frozen in liquid nitrogen and stored at -80ºC 151 

for subsequent  analysis of lipid content and gene expression. 152 

Hepatic lipid content, RNA extraction and gene expression analysis 153 

Total hepatic lipid content was determined gravimetrically following homogenisation and 154 

extraction of 200mg of frozen tissue in chloroform-methanol (2:1, v/v) as previously described 155 

20, 21. Total mRNA was extracted from the liver using Trizol reagent (Invitrogen Australia, 156 

Mount Waverley, Vic, Australia), purified using an RNeasy Mini kit (Qiagen Australia, 157 

Doncaster, Vic, Australia) and cDNA synthesized using Superscript III reverse transcriptase 158 

(Invitrogen Australia) and random hexamers.  159 

 160 

Quantitative Real Time PCR was performed using the SYBR green system on the Applied 161 

Biosystems ViiA 7 Real Time PCR machine (Applied Biosystems, Foster City, CA, USA). 162 

The target genes included key genes involved in hepatic lipid metabolism and insulin 163 

signalling: acetyl-CoA carboxylase (ACC), peroxisome proliferator activated receptor-α 164 

(PPARα), sterol regulatory element binding protein-1α (SREBP1α), fatty acid synthase (FAS), 165 

the phosphatidylinositol 3-kinase regulatory p85 subunit (PI3K-p85) and phosphokinase C-ζ 166 
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(PKCζ), all of which have been implicated in non-alcoholic fatty liver disease (NAFLD) 22, 23. 167 

The primers were designed using the Primer3 and NCBI websites, with all primers crossing 168 

exon-exon boundaries to prevent annealing to genomic DNA.  All primers were validated for 169 

use in our laboratory by running the PCR product on a gel to confirm amplicon size as well as 170 

sequencing to ensure the correct gene was amplified. Primer sequences are shown in Table 1. 171 

The expression of target genes was quantified relative to the housekeeper genes β-actin and 172 

HPRT, using the Applied Biosystems Data Assist software (Applied Biosystems, Foster City, 173 

CA, USA). Two quality controls as well as a negative RT control were used on each 96-well 174 

plate to ensure inter-plate consistency and melt curves were obtained at the end of each run to 175 

confirm amplicon heterogeneity. 176 

 177 

Plasma hormone and metabolite assays 178 

Plasma glucose, alanine amino transferase (ALT), uric acid, total cholesterol, HDL cholesterol 179 

(Thermo Electron, Pittsburgh, PA), and NEFA (WAKO Pure Chemical Industries Ltd., Osaka, 180 

Japan) were determined using a Konelab 20X (Thermoscientific, Vantaa, Finland). Plasma 181 

leptin and insulin concentrations were measured using commercially available immunoassay 182 

kits (Crystal Chem Inc, Downers Grove, IL, USA and ALPCO Diagnostics, Salem, NH, USA). 183 

All assays were conducted in accordance with the manufacturer's instructions and intra- and 184 

inter-assay coefficients of variation were always <10%.  185 

 186 

Statistical analyses 187 

Data are presented as mean ± SEM. The dam (litter) was used as the unit of analysis in all 188 

statistical tests. A power analysis was conducted to determine sample size using changes in fat 189 

mass as the primary outcome. The effect of the low or high GI diet in the dams and pre-weaning 190 

offspring was determined using a Student’s unpaired t-test. The area under the curve (AUC) 191 
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for glucose following the IPGTT was calculated for each animal using the incremental AUC 192 

method. The relative effects of exposure to maternal low GI diet or high GI diet and exposure 193 

to the diets after weaning were analysed using a 2-way ANOVA. When a significant interaction 194 

between maternal diet and post-weaning diet was identified, all groups were analysed together 195 

using a one-way ANOVA and Tukey’s post hoc analysis. Differences in the effects of the low 196 

GI and high GI diets over time were analysed using a repeated measures ANOVA. Male and 197 

female offspring were analysed separately for all measures. Repeated measures ANOVAs were 198 

performed using Stata 11 (StataCorp LP, Texas, USA). All other analyses were performed 199 

using SPSS for Windows Version 19.0 (SPSS Inc., Chicago, IL, USA). A probability of P<0.05 200 

was considered statistically significant. 201 

 202 

RESULTS 203 

Maternal outcomes 204 

Food intake and body weight 205 

Body weights were not different between dams assigned to the low GI and high GI diets at the 206 

commencement of the experimental diets (high GI, 244.1 ± 5.4g; low GI, 257.9 ± 6.4g, 207 

P=0.11). However, at the time of mating (i.e. ~4 weeks after commencement of the 208 

experimental diets), dams in the low GI group were heavier than those in the high GI group 209 

(Fig 1A, P<0.05). There was no difference, however, in the average body weight during 210 

pregnancy or at the end of lactation (Fig 1A), and low GI dams gained less weight during 211 

pregnancy than the high GI dams (high GI, 116.3 ± 5.1g; low GI, 90.9 ± 8.6g, P<0.05). There 212 

was also no difference in maternal food intake between groups either before mating, during 213 

pregnancy or during lactation (Fig 1B). 214 

 215 

Fat mass  216 
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At the end of lactation, low GI dams had a higher abdominal circumference (high GI, 217 

17.8±0.3cm; low GI 19.3±0.4cm, P<0.05) and higher gastrointestinal tract mass relative to 218 

body weight compared to high GI dams (high GI 8.7±0.6%; low GI 11.6±0.7%, P<0.01). There 219 

were no differences in the total percentage body fat or the weight of any of the individual fat 220 

depots between the low GI and high GI groups (supplementary material-table 1). However, GI 221 

dams had a lower amount of visceral fat as a proportion of their total fat mass compared to the 222 

high GI dams (Fig 2A, P<0.05).  223 

 224 

Glucose tolerance and plasma measures 225 

There was no difference in fasting glucose levels between low GI and high GI dams before the 226 

administration of the glucose bolus (high GI, 5.9 ± 0.3mmol/l; low GI, 5.9 ± 0.2mmol/l, 227 

P=0.19). The low GI dams also had a lower peak glucose following intraperitoneal glucose 228 

administration (Fig 2B, P<0.05) and a lower glucose AUC during the IPGTT compared to the 229 

high GI group (Fig 2C, P<0.05). There were no differences in the plasma concentrations of 230 

insulin, glucose, NEFA or leptin between low GI and high GI dams at the time of post-mortem 231 

(supplementary material-table 1).  232 

 233 

Offspring outcomes birth to weaning 234 

Growth from birth to weaning 235 

There was no difference in birth weight between the low GI and high GI groups in either 236 

females or males (females: high GI, 6.1 ± 0.1g; low GI, 6.1 ± 0.2g, P=0.93; males: high GI, 237 

6.2 ± 0.3g; low GI, 6.5± 0.3g, P=0.43). Weight gain during the suckling period between groups 238 

was also comparable (male F=1.74, P=0.26 and female F=1.09, P=0.31) and there was no 239 
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difference in body weight at weaning (3 weeks of age) (females: high GI, 42.6 ± 1.8 g; low GI, 240 

43.3 ± 1.5g, P=0.99; males: high GI, 44.4 ± 1.9g; low GI, 45.3 ± 1.5g, P=0.70).  241 

 242 

Fat mass at 3 weeks of age 243 

In female offspring relative omental fat mass (P<0.05) and the total relative mass of visceral 244 

fat (P<0.05) at 3 weeks of age were both significantly reduced in the low GI group compared 245 

to the high GI group (Table 2). Individual weights of other fat depots and total relative body 246 

fat mass were not different (Table 2). In male offspring, there were no differences between 247 

groups in either total or relative fat mass at this time (Table 2).  248 

Glucose tolerance and plasma measures at 3 weeks of age 249 

At 3 weeks of age, female offspring of low GI dams had a lower peak plasma glucose post 250 

intraperitoneal glucose administration (Fig 3A, P<0.01) and a lower glucose AUC during the 251 

glucose tolerance test compared to female high GI offspring (Fig 3B, P<0.05). There was no 252 

difference in peak glucose or the glucose AUC in males (Fig 3C, D, P=0.59).  253 

In females, non-fasting glucose concentrations at 3 weeks of age were lower in the low GI 254 

compared to the high GI group (high GI 11.62 ± 0.45mmol/L; low GI 9.90 ±0.39 mmol/L, 255 

P<0.05). There were no differences in glucose concentrations between groups in male offspring 256 

or in plasma NEFA, cholesterol, insulin or leptin concentrations in either females or males 257 

(supplementary material-table 2). 258 

 259 

Hepatic lipid content and gene expression at 3 weeks of age 260 

Relative liver weights were not different between the low GI and high GI groups in either male 261 

(high GI 4.00±0.10%; low GI 4.01±0.06%, P=0.97) or female (high GI, 3.89±0.07%; low GI 262 
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3.91±0.09%, P=0.54) offspring. However, male offspring of low GI dams had a lower hepatic 263 

fat content as a percentage of liver weight compared to high GI males (high GI 6.35± 0.50%; 264 

low GI 4.07±0.40%, P<0.05). There was no difference in liver fat percentage in females (high 265 

GI 6.13± 0.84%; low GI 6.67±1.06%, P=0.29).  266 

 267 

Plasma concentrations of uric acid and alanine transaminase (ALT), both established 268 

biomarkers of liver function, were not different between low and high GI groups in either males 269 

or females. Hepatic expression of key genes involved in lipogenesis and insulin signalling 270 

(ACCβ, PPARα, SREBP1α, FAS, PI3K-p85 and PKCζ) was also not different between the low 271 

GI and high GI groups in either males or females (supplementary material- table 4). 272 

 273 

Offspring outcomes – post weaning 274 

Food intake and growth 275 

There was no difference in food intake during the post-weaning period between offspring of 276 

low GI and high GI dams (data not shown). In female offspring, the rate of weight gain from 277 

weaning to 12 weeks of age was higher in offspring of low GI dams, independent of the post 278 

weaning diet (F=5.14, P<0.01), and these offspring were heavier between 6 and 10 weeks of 279 

age, although not at 12 weeks of age, compared to offspring of high GI dams (Fig 4A).  There 280 

were no differences between groups in body weight in male offspring at any time after weaning 281 

(Fig 4B).  282 

 283 

Fat mass at 12 weeks of age 284 

In females, relative interscapular fat mass was significantly lower in offspring of low GI dams, 285 

independent of their post-weaning diet (P<0.05, Table 3), however the relative mass of other 286 

individual fat depots and the relative visceral and total fat mass were not different. In males, 287 
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there was no difference in total fat mass or the relative weight of any of the individual fat depots 288 

between groups (Table 3).  289 

 290 

Glucose tolerance and plasma hormone concentrations at 12 weeks of age 291 

In female offspring, there was an interaction between the effects of the maternal and post-292 

weaning diets in relation to glucose tolerance at 12 weeks of age.  Thus, offspring of high GI 293 

dams tended to have lower glucose tolerance if they were weaned onto a low GI diet compared 294 

to if they were weaned onto a high GI diet (AUC[glucose], H-L, 1797 ± 194 vs H-H 1346 ± 97 295 

mmol.min/L, P<0.07). However, no statistical difference was observed when the interaction 296 

was explored by using a one-ANOVA with post-hoc analysis. There were no differences in 297 

plasma glucose, NEFA, leptin or total cholesterol concentrations at 12 weeks of age in either 298 

males or females (supplementary material table 3). 299 

Hepatic lipid content and gene expression at 12 weeks of age 300 

There was no difference between groups in relative liver weight or liver fat content in either 301 

male or female offspring at 12 weeks of age (Table 4). In females, offspring of low GI dams 302 

had increased plasma ALT concentrations in comparison with offspring of high GI dams, 303 

independent of their post-weaning diet (low GI 130.75±53.15 IU/L vs high GI 15.75±5.02 304 

IU/L, P<0.05).  305 

 306 

In females, hepatic PI3K-p85 mRNA expression at 12 weeks of age was lower in offspring of 307 

low GI mothers, independent of the post-weaning diet (P<0.05, Table 4). SREBP1ɑ mRNA 308 

expression at 12 weeks of age was higher in offspring of high GI dams who were weaned onto 309 

the low GI diet compared to all other groups (P<0.05, Table 4). There was no effect of either 310 
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the maternal or post-weaning diet on hepatic mRNA expression of PI3K-p85 or SREBP1α in 311 

males on in ACC, PPARɑ, PKCζ or FAS in either male or female offspring (Table 4). 312 

 313 

DISCUSSION 314 

This study was the first to directly compare the effect of a maternal high vs low GI diet on 315 

offspring and maternal metabolic outcomes beyond the immediate postnatal period. We 316 

showed for the first time that consuming a low GI diet pre-pregnancy and throughout 317 

pregnancy and lactation reduces visceral adiposity and increases glucose tolerance in female 318 

offspring at 3 weeks of age, and lowers female hepatic PI3K expression at 12 weeks. We also 319 

identified significant interactions between the maternal and post-weaning diet such the female 320 

offspring of high GI dams switched to a low GI diet had higher hepatic SREBP1ɑ expression 321 

as adults. By examining the effect of high and low GI diets on gene expression and metabolic 322 

outcomes in the mother and offspring, this study provides a solid foundation for continuing 323 

investigations on the mechanisms underlying the effects of reducing the GI of the maternal diet 324 

on the metabolic health of the offspring.  325 

 326 

Maternal Outcomes 327 

The increase in bodyweight we identified in the dams consuming the low GI diet prior to mating 328 

was unexpected given previous reports of low GI diets increasing satiety, lowering food 329 

consumption and reducing weight gain24-26. We consider it likely, however, that our results 330 

were biased by the fact that body weights were not recorded in the fasting state, since low GI 331 

diets are known to increase the weight of the large bowel and caecum 26. In line with this the 332 

weight of the gastrointestinal tract at post-mortem was ~10 g heavier in the low GI compared 333 

to high GI dams, and if this value was subtracted from the pre-pregnancy weights of the low 334 
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GI dams then the difference between groups was no longer significant. In support of this, 335 

despite the increase in pre-mating bodyweight we found no difference in total fat mass between 336 

the low GI and high GI dams at the end of lactation. Interestingly, however, the low GI diet 337 

appeared to affect fat distribution, since the dams fed the low GI diet had a lower ratio of 338 

visceral to total fat mass than their high GI counterparts. This is consistent with previous studies 339 

in non-pregnant adults, which reported that low GI diets preferentially enhance the mobilisation 340 

of visceral compared to subcutaneous fat27, 28.  341 

 342 

Growth and metabolic outcomes in the offspring at weaning  343 

A key finding of the current study was that maternal consumption of a low GI diet reduced 344 

visceral adiposity, lowered plasma glucose concentrations and increased glucose tolerance in 345 

female, but not male offspring at weaning. While the mechanisms behind this remain unclear, 346 

one possibility is that the exposure to lower glucose concentrations as result of higher glucose 347 

tolerance during the development of adipose depots ‘programmed’ a reduced lipogenic 348 

capacity in visceral adipocytes. This hypothesis is indirectly supported by a study in sheep 349 

which demonstrated that exposure to elevated glucose concentrations in utero is associated 350 

with a precocial up-regulation of lipogenic genes in the main visceral adipose depot of the fetus 351 

29.  However, further studies will be required to test this directly. While male offspring of low 352 

GI dams did not exhibit any differences in body fat mass or glucose tolerance, they did have 353 

reduced hepatic lipid content. The functional significance of this is not clear, however, since it 354 

did not translate into alterations in hepatic gene expression or circulating of biomarkers liver 355 

function, and was no longer present at 12 weeks of age, even when offspring were maintained 356 

on the low GI diet after weaning  357 

 358 

Growth and metabolic outcomes in the offspring in young adulthood 359 
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Interestingly, and contrary to expectations, female offspring of low GI dams exhibited a phase 360 

of accelerated weight gain after weaning, independent of their post-weaning diet. This was 361 

particularly unexpected given the reduced gestational weight gain in low GI dams, which is 362 

generally associated with improved metabolic outcomes in the offspring30, 31. The period of 363 

increased body in the current study  coincided with the timing of puberty - a period associated 364 

with a marked increase in secretion of gonadotrophin releasing-hormones and estrogen and 365 

increased body fat accrual 32. One possibility, therefore, is that this period of accelerated growth 366 

may be the result of an interaction between the effects of sex hormones and programmed 367 

changes in other insulin-responsive tissues, such as the skeletal muscle, induced by exposure 368 

to a maternal low GI diet. Whilst it is possible that the higher body weight of the low GI dams 369 

at mating may have contributed to this increased body weight, this appears unlikely given that 370 

there were no differences in birth weight between the low and high GI pups, and that maternal 371 

weight for the majority of pregnancy was not different between groups.  372 

 373 

The higher SREBP1α mRNA expression in female offspring of high GI dams provided with a 374 

low GI diet after weaning may be indicative of an increased propensity for excess hepatic lipid 375 

storage, since SREBP1α activation is associated with the up-regulation of hepatic lipogenesis33-376 

35. The fact that SREBP1ɑ expression was increased in offspring of high GI dams that were 377 

switched to a low GI diet after weaning, but not in those who continued to consume the high 378 

GI diet, suggests that this may have been driven by a ‘mis-match’ between the nutritional 379 

environment experienced pre- and post- weaning. The concept of a mis-match between the 380 

environment experienced in postnatal life compared to the environment ‘predicted’ by the 381 

perinatal nutritional experience being associated with an increased risk of disease in postnatal 382 

life, including metabolic disease, is well described, however this is the first time it has been 383 

described in the context of switching from a high to low GI diet 36. 384 
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 385 

We also observed a reduced expression of PI3K-p85 mRNA in female offspring of low GI 386 

dams at 12 weeks of age, independent of the post-weaning diet. PI3K plays a key role in the 387 

response of the liver to insulin, as part of the PI3K/Akt axis, and activation of this kinase 388 

suppresses gluconeogenesis and promotes glycogen/lipid synthesis and cell growth 37, 38, 39.  389 

Consequently, the lower PI3K mRNA expression would be expected to reduce insulin-390 

stimulated hepatic lipogenesis, and therefore has the potential to inhibit hepatic fat storage in 391 

response excess energy intake. In light of this finding, further studies focussed on the effect of 392 

maternal low GI diets on the expression, protein abundance and activity of key components of 393 

the insulin signalling pathway, and on the impact of obesogenic diets on hepatic lipid storage 394 

are warranted, and will provide clearer insights into the potential longer-term benefits of 395 

maternal low GI diets on hepatic function in the offspring 40. Furthermore, the reduction in 396 

PI3K is also difficult to reconcile with the elevated plasma ALT concentrations which were 397 

also present in female offspring of low GI dams in young adulthood, since this is generally 398 

considered to be a marker of poorer hepatic function. However, studies relating ALT levels to 399 

hepatic function are generally restricted to adult humans, and the reliability as an indicator of 400 

hepatic function in the perinatal period and/or in rodents is not clear.  401 

 402 

Perspectives and Significance  403 

The present study is the first to directly compare the effect of a maternal high vs low GI diet 404 

on offspring metabolic outcomes beyond the immediate postnatal period. We demonstrated 405 

that consumption of a low GI diet during pregnancy and lactation led to increased glucose 406 

tolerance in the dam as well as reduced visceral adiposity and increased glucose tolerance in 407 

the female offspring at weaning. The long term impact of the GI of the maternal diet on the 408 

offspring was less clear; however the results did indicate a potential benefit of maternal low GI 409 
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diet consumption for reducing hepatic lipid synthetic capacity in female offspring, by reducing 410 

the expression of PI3K in early adulthood. The increase in SREBP1ɑ in the female offspring 411 

of high-GI dams switched to a low GI diets, however suggests the existence of a complex 412 

relationship between nutritional exposures pre- and post-weaning, which will need to be further 413 

explored in future studies. Nevertheless, the results of the present study provide an important 414 

foundation for future studies aimed at determining whether the changes in glucose tolerance, 415 

fat deposition and hepatic gene expression associated with maternal low GI diet consumption 416 

can translate into an improved capacity of the offspring of low GI dams to resist metabolic 417 

challenges later in life.   418 
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Figure legends 441 

Figure 1 (A) Average maternal body during pre-pregnancy (4 weeks after the commencement 442 

of the diets), pregnancy and lactation in high GI (open bar, n=14) and low GI dams (closed bar, 443 

n=14), * P<0.05. The average bodyweight is calculated based on the weekly bodyweights 444 

recorded within each time period. (B) Maternal food intake during pre-pregnancy, pregnancy 445 

and lactation in high GI (open bar, n=14) and low GI dams (closed bar, n=14). Food intake was 446 

measured every two days throughout the experiment and the data was normalised to 447 

bodyweight. Data presented as mean±SEM, statistical analysis done using a Student’s unpaired 448 

T-Test. 449 

 450 

Figure 2 (A) The relative proportion of visceral fat at the end of lactation in high GI (open bar, 451 

n=14) and low GI dams (closed bar, n=14), * P<0.05 (B) Maternal glucose concentrations 452 

during an IPGTT in low GI (filled squares, solid line, n=14) and high GI (open triangles, dashed 453 

line, n=14) dams at the end of lactation. Low GI dams had a lower peak in glucose (P<0.05) 454 

(C) Glucose tolerance was better in low GI compared to high GI dams as indicated by lower 455 

AUC and lower peak plasma glucose concentrations during the IPGTT (P<0.05). Data 456 

presented as mean±SEM, statistical analysis done using a Student’s unpaired T-Test. 457 

 458 

Figure 3 (A) Blood glucose concentrations during an IPGTT in female offspring of low GI 459 

(filled squares, solid line, n=14) and high GI (open triangles, dashed line, n=12) dams at the 460 

end of lactation. Female low GI offspring had a significantly lower peak in glucose (P<0.05). 461 

(B) Glucose tolerance was better in low GI compared to high GI female offspring as indicated 462 

by lower AUC and lower peak plasma glucose concentrations during the IPGTT (P<0.05). C) 463 

Blood glucose concentrations during an IPGTT in male offspring of low GI (filled squares, 464 



Gugusheff et al.              Maternal low/high GI diets and offspring 

outcomes 

21 
 

solid line, n=14) and high GI (open triangles, dashed line, n=12) dams at the end of lactation. 465 

(D) No difference in glucose tolerance as indicated by AUC was observed between low GI and 466 

high GI male offspring. Data presented as mean±SEM, statistical analysis done using a two-467 

way ANOVA within each sex. 468 

 469 

 470 

Figure 4 Weight gain from weaning to 12 weeks of age in (A) female and (B) male offspring 471 

of low GI (filled squares, solid line) and high GI (open triangles, dashed line) dams. * P<0.05 472 

compared to the high GI group, n=14 for all groups. Data presented as mean±SEM, statistical 473 

analysis done using a repeated measures ANOVA within each sex. 474 

 475 

  476 
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Table 1: Primer Sequences for Determination of Hepatic Gene Expression 477 

  478 

Gene Forward Primer (5’-3’) Reverse Primer (5’-3’)  Gene Accession 

number 

PI3 Kinase 

p85 

ACCAGTGTTGACCCTTCCTG  

 

TGCTGGAGCTCTGTGTTCTG  NM_013005.1 

ACCβ CCATGCTTTTTCAGACAGGTGC 

 

GGACACTGCGTTCCCATACT  NM_053922.1 

SREBP-1α GCGCCATGGAGGAGCTGCCCTT 

 

GTCACTGTCTTGGTTGTTGATG NM_ 001276707 

PPARα CCTGTGAACACGATCTGAAAG 

 

ACAAAGGCGGATTGTTG NM_031347.1 

 

PKCζ AAGTGGGTGGACAGTGAAGG 

 

GGGAAAACGTGGATGATGAG NM_022507.1 

FAS TGCTCCCAGCTGCAGGC 

 

GCCCGGTAGCTCTGGGTGTA NM_017332 

HPRT CTCATGGACTGATTATGGACAG 

 

GCAGGTCAGCAAAGAACTTATA NM_012583.2 

β-actin GCACCACACCTTCTACAATG 

 

TGCTTGCTGATCCACATCTG NM_017101.1 
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 480 

 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 

 492 

 
 

 
 Male                    Female             

Parameter 

 

   High GI 

     (n=14) 

   Low GI 

     (n=14) 

    High GI 

    (n=14) 

    Low GI 

     (n=14) 

  Mean SEM Mean SEM Mean SEM 
 

Mean 
SEM  

Gonadal fat 0.22 0.03 0.37 0.03 0.26 0.01 0.19 0.02 

Retroperitoneal fat 0.35 0.03 0.37 0.03 0.36 0.02 0.38 0.03 

Omental fat  0.49 0.04 0.45 0.04 0.53 0.03 0.45* 0.03 

Visceral fat  1.06 0.07 1.17 0.15 1.23 0.13 1.02* 0.05 

Subcutaneous 

fat 
 2.89 0.30 3.29 0.31 3.71 0.40 3.73 0.03 

Interscapular 

fat 
 0.59 0.05 0.59 0.04 0.58 0.03 0.60 0.02 

Total fat  4.55 0.04 5.04 0.41 5.44 0.48 5.34 0.32 

Table 2 Fat mass as % bodyweight in male and female offspring of high and low GI 

dams at 3 weeks of age 

Data presented as mean±SEM, * indicates significantly different mean between groups within 

each sex, P<0.05.  
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Table 3. Weights of individual fat depots and visceral and total fat mass as a percentage of bodyweight in the male and female offspring of High GI and Low 

GI dams fed a low or high GI diet at 12 weeks of age. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      Data are presented as mean ± SEM. n=7 per sex for all groups Different letters denote significantly different means within each sex, P<0.05  

 
                                              Male 

 

                                            Female 

Parameter 
    L-L    L-H    H-L   H-H 

 

   L-L    L-H    H-L    H-H 

Gonadal fat  1.13±0.12 1.17±0.15 1.34±0.17 1.18±0.16 
 

1.95±0.19 2.17±0.21 2.42±0.35 2.40±0.23 

Retroperitoneal fat  1.45±0.11 1.70±0.15 1.49±0.22 1.57±0.17 
 

1.40±0.07 1.57±0.13 1.51±0.24 1.61±0.19 

Omental fat  0.86±0.13 1.15±0.09 1.08±0.14 1.19±0.13 
 

1.25±0.26 1.48±0.09 1.48±0.17 1.44±0.14 

Visceral fat  3.44±0.28 3.97±0.34 3.92±0.51 3.95±0.37 
 

4.60±0.49 5.11±0.36 5.42±0.75 5.44±0.33 

Subcutaneous fat  3.65±0.19 4.15±0.23 3.78±0.58 3.91±0.22 
 

3.35±0.63 3.98±0.41 4.22±0.40 4.03±0.87 

Interscapular fat  0.21±0.01 0.26±0.02 0.26±0.03 0.23±0.03 
 

0.25±0.02a 0.26±0.01a 0.30±0.03b 0.30±0.02b 

Total fat  7.30±0.49 8.35±0.51 7.95±1.08 8.12±0.57 
 

8.20±0.49 9.36±0.72 9.91±1.13 9.78±0.53 
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Table 4  Relative liver weight (as a % of body weight), % liver lipids and mean normalised expression of hepatic genes in male and female 

offspring of High GI and Low GI dams fed a low or high diet at 12 weeks of age. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data are presented as mean ± SEM. n=7 per sex for all groups. Values for gene expression data have been multiplied by one thousand for ease of 

presentation, Different letters denote significantly different means within each sex, P<0.05

 
                                             Male 

 

                                               Female 

Parameter 
L-L L-H H-L H-H 

 

L-L L-H H-L H-H 

Relative liver 

weight (%) 
4.32±0.08 4.16±0.11 4.13±0.09 4.22±0.08 

 
4.18±0.09 3.98±0.11 4.00±0.10 3.93±0.11 

% liver lipids 5.04±0.48 7.37±1.31 5.75±1.28 5.63±1.11  5.24±0.81 7.27±0.81 6.44±1.61 3.65±0.63 

Hepatic Genes          

ACCβ 45.40±6.45 44.20±7.91 47.70±4.57 39.60±4.40  55.02±5.52 57.09±8.74 63.58±7.27 66.09±6.90 

PPARɑ 10.40±1.93 16.70±3.28 17.40±3.04 15.70±1.32  11.47±2.44 14.24±2.97 15.45±2.27 16.67±0.08 

SREBP1ɑ 33.30±6.02 38.00±6.03 32.10±4.20 31.60±2.71  30.13±3.67a 26.13±3.31a 45.14±4.83b 30.05±3.64a 

PI3K 27.45±4.10 37.19±10.35 55.10±9.99 38.35±9.08  33.29±4.16a 42.02±3.54a 50.09±4.80b 58.74±8.67b 

G3PDH 381.94±54.09 301.41±70.21 381.30±53.71 357.65±44.14  334.68±40.07 296.78±36.27 358.22±24.41 389.77±44.82 

FAS 287.93±38.55 521.25±19.59 358.66±96.05 426.68±99.98  508.01±88.17 407.36±125.01 378.02±69.38 396.31±61.04 

PKCζ 0.67±0.13 0.45±0.11 0.51±0.04 0.43±0.04  0.53±0.07 0.94±0.14 0.84±0.09 0.82±0.04 
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