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Abstract

Modelling water quality within complex, man-made and natural environmental
systems can represent a challenge to practitioners. Many conventional modelling
tools are not capable of representing the complexities of physical and chemical
processes often observed in these systems. Consequently, there has been a great
deal of interest in the application of computational intelligence techniques, such
as artificial neural networks (ANNs). However, “black-box” approaches, such as
ANN modelling, are often criticised due to a perceived lack of transparency in
the model development methodology. This research has therefore focussed on
improving the tools and techniques that are used in the development of ANN
models for water quality prediction and forecasting.

The body of research presented in this thesis is described by several peer reviewed
articles. These articles describe the theoretical basis and practical context for the
ANN model development techniques that have been proposed and applied as a
part of this research. Specifically, the ANN development framework has been
further enhanced by this research through the development of novel approaches
to perform two key tasks: input variable selection (IVS) and data splitting.

The IVS problem is to select variables as ANN inputs from a number of potential
candidates, so as to minimise the number of inputs, but maximise the predictive
performance of the model. A forward-selection approach for IVS has been ex-
amined that is based on partial mutual information (PMI), which can identify an
optimal set of variables to use as inputs to ANN models, given a set of candidate
variables. Of particular concern is that the use of MI in place of the more tradi-
tionally used correlation, provides a more appropriate basis for the selection of
inputs based on non-linear relevance. Moreover, the accuracy of MI estimates for
a given sample size is difficult to determine. Quantifying the accuracy of MI es-
timates is necessary to determine critical values of MI, since this forms the basis
for of the termination criterion that stops the forward selection process.

Novel termination criteria were developed that alternatively determine the op-
timum number of candidate input variables. In comparison to the existing ap-
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Abstract

proach, which is based on a computationally expensive, yet potentially inaccu-
rate bootstrap approach, the alternative criteria were found to both reduce the
computational requirements and increase selection accuracy of the PMI-based

IVS approach, resulting in a much improved algorithm.

Data splitting is an essential part of ANN model development, as the available
modelling data must be partitioned into subsets for training, testing and valida-
tion. Depending on the data splitting method employed, the data split can have
a significant effect on model performance, or reduce confidence in performance
assessment. A popular method based on clustering of the self-organizing map
(SOM) was examined. The approach was found to be sensitive to SOM size and
the manner in which samples are drawn from within the SOM units. However,
despite an optimal number of partitions, the SOM can generate partitions that
are non-uniformly distributed, and which differ in size and shape. Although con-
ventional rules to increase the sampling rate within larger clusters can reduce
variance, the remaining variance can still be significant.

A hybrid algorithm called SOMPLEX was developed, which combines clustering
on the SOM, and the DUPLEX algorithm used to perform intra-cluster sampling.
DUPLEX is a fully deterministic algorithm that generates a representative sample,
regardless of the size or distribution of data within a SOM cluster. For several ex-
ample applications to predicting water quality, SOMPLEX was found to generate
representative data for training, testing and validation, with no variation. The
hybrid SOMPLEX approach combines the strengths of the two individual data
splitting algorithms, in that the clustering on the SOM reduces the operational
complexity, and the DUPLEX sampling improves on random sampling of SOM
units to reduce sample variability and increase the representativeness of datasets
generated.

In terms of the overall ANN development framework, the outcomes of this re-
search have been an increased understanding of how to best implement ANN
techniques, and an appreciation for their place within the context of a water qual-
ity modelling toolkit, which comprises both conventional and non-conventional
modelling approaches. It was also observed that although the ANN modelling
paradigm is quite powerful, it is not without limitations. Many of the limitations
and problems encountered with ANN model development are more indicative of
the application, rather than the modelling approach itself.
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