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Abstract

Forward osmosis (FO) process has recently been viewed as a low energy membrane
separation technology for desalination process due to the absence of high hydraulic
pressure. Typical FO desalination is a two-step process: water separation and water
recovery, where the water recovery stage currently consumes more energy than the
reverse osmosis (RO) process. There has been surge of interest to lower the energy
requirement during water recovery process by finding suitable draw materials. One
of the potential draw agents proposed for FO desalination is the thermoresponsive
polymer hydrogel, which is able to absorb and release water reversibly by a slight
change in the operational temperature. Unfortunately, the performance of these
hydrogels as FO draw agents was very poor compared to other types of draw agents
such as thermolytic solutes and linear polymers. As a result, further work in
developing thermoresponsive polymer hydrogels as practical FO draw agent is

necessary.

In this thesis, thermoresponsive copolymer microgels were proposed and applied
as FO draw agent for the first time. A series of copolymer microgels of N-
isopropylacrylamide and acrylic acid was synthesized and evaluated as FO draw
agent. The microgels show significantly improved performance than the previously
synthesized bulk hydrogels due to their large surface areas. The microgels could
generate high water flux up to 23.8 LMH and water recovery up to 55% depending
on the concentration of acrylic acid in the microgels. The subsequent study
investigated the effect of different acidic comonomers in the copolymer microgels on

the FO water flux and water recovery performance. The results show that microgel

XViii



with itaconic acid had the best overall performance among other acidic microgels
due to the strong ionization of this comonomer as indicated by its pKa. The water
flux and water recovery for this microgel are 44.8 LMH and 47.2 %, respectively.
The apparent water flux of this microgel is 3.1 LMH. Thermoresponsive cationic
copolymer microgels with different chemical structures of cationic comonomers
were then synthesized and applied as FO draw agent to overcome long equilibrium
swelling times of the acidic copolymer microgels. It was shown that microgel with 2-
(diethylamino) ethyl methacrylate as a comonomer had the best performance among
other cationic copolymer microgels. Furthermore, the shortest equilibrium swelling
time, 30 minutes, among other microgels was achieved when this microgel was
applied as FO draw agent. The water flux and water recovery for this microgel are
45.6 LMH and 44.8 %, respectively. The apparent water flux of this microgel is 5.5
LMH which is higher than the previously synthesized acidic microgels. In this study,
Hansen solubility parameter was also proposed as a tool to predict the performance
of the microgels as FO draw agents. The solubility parameters of the comonomers
and the dissociation constants of the comonomers correlated well with the
experimental results. Finally, different non-ionic copolymer microgels were
synthesized and applied as FO draw agent. The microgel with acrylamide as a
comonomer shows enhanced water recovery performance while maintaining
relatively high water flux when used as FO draw agent. The water flux and water
recovery for this microgel are 24.7 LMH and 78.7 %, respectively. The apparent
water flux of this microgel is 6.1 LMH. This work will pave the way to design

functional polymer materials as draw agent for FO desalination application.
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