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OPEN

REVIEW

Glial contributions to visceral pain: implications for disease
etiology and the female predominance of persistent pain
KN Dodds1, EAH Beckett1, SF Evans2,3, PM Grace2,4, LR Watkins4 and MR Hutchinson1,5

In the central nervous system, bidirectional signaling between glial cells and neurons (‘neuroimmune communication’) facilitates
the development of persistent pain. Spinal glia can contribute to heightened pain states by a prolonged release of neurokine
signals that sensitize adjacent centrally projecting neurons. Although many persistent pain conditions are disproportionately
common in females, whether specific neuroimmune mechanisms lead to this increased susceptibility remains unclear. This review
summarizes the major known contributions of glia and neuroimmune interactions in pain, which has been determined principally
in male rodents and in the context of somatic pain conditions. It is then postulated that studying neuroimmune interactions
involved in pain attributed to visceral diseases common to females may offer a more suitable avenue for investigating unique
mechanisms involved in female pain. Further, we discuss the potential for primed spinal glia and subsequent neurogenic
inflammation as a contributing factor in the development of peripheral inflammation, therefore, representing a predisposing factor
for females in developing a high percentage of such persistent pain conditions.

Translational Psychiatry (2016) 6, e888; doi:10.1038/tp.2016.168; published online 13 September 2016

FROM ‘HYSTERIA’ TO A MOLECULAR UNDERSTANDING OF
FEMALE PAIN
Historical descriptions of chronic debilitating pain without obvious
visible cause were originally restricted to females, and dated
back over 2000 years to the era of renowned Greek physician
Hippocrates (460–370 BC). Episodes of severe emotional and
physical distress in women were diagnosed as ‘hysteria’, a
condition attributed to the movement of the uterus outside of
the pelvis (the ‘wandering womb’).1 Towards the end of the
nineteenth century, the stigma surrounding female hysteria
diminished owing to accumulating evidence that men could
also suffer from persistent pain, work which was largely pioneered
by Sigmund Freud (1856–1939).2 Considering pain as sex-
independent in this context, along with general medical advances
from the mid-twentieth century, has contributed to an immense
expansion in our understanding of the mechanisms underlying
the development of persistent pain. Notably, this is now known to
involve bidirectional signaling between neurons and glia within
the central nervous system (CNS).
However, a key discrepancy that remains in the literature is the

clear over-representation of females among patients with
persistent pain. There is an almost unanimous consensus that
women are not only more sensitive in detecting painful stimuli,
but are also the predominant sex with the most common painful
disorders.3–6 This includes, but is not limited to, conditions
associated with neuropathic pain, musculoskeletal pain (such as
back pain, fibromyalgia, osteoarthritis and complex regional pain
syndrome), orofacial pain (including temporomandibular joint
pain), abdominal and pelvic pain (such as irritable bowel

syndrome, painful bladder syndrome and dyspareunia) and
headache/migraine.5

Extensive epidemiological, clinical and experimental evidence
implicates several biopsychosocial factors as contributing to the
disparity in pain susceptibility across the sexes.4 Despite this, a
dichotomy exists in the pain research field at large, where the vast
majority of preclinical studies have characterized pain models
using male subjects only.7 Moreover, evidence implicating
neuroimmune signaling in the development of persistent pain
has primarily been acquired using animal models of neuropathic
and somatic inflammatory pain. This has included, but is not
restricted to, muscle inflammation, spinal cord injury, peripheral
nerve injury, arthritis, bone cancer and chemotherapy. Although
many of these pathologies are important for understanding
female pain, there is a lack of research into the large number of
female-dominant conditions that stem from the viscera. Conse-
quently, the specific biological mechanisms underlying the
predisposition of females to persistent pain remain elusive.
It is possible that past research generalizing nociceptive

mechanisms across the sexes has limited our approach in
effectively treating female pain. Is it appropriate to assume that
females process pain via identical mechanisms to males? Can we
learn from, adapt and update aspects of the ancient Greek
philosophy, by regarding female pain as a fundamentally distinct
entity? And, to what extent do the sex-specific anatomical and
neuroendocrine systems influence the heightened sensitivity of
females to persistent pain?
To consider these questions, this review provides a summary of

neuroimmune contributions, specifically those provided by astro-
cytes and microglia, to persistent pain signaling within the spinal

1Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia; 2Discipline of Pharmacology, School of Medicine, University of Adelaide, Adelaide,
SA, Australia; 3Pelvic Pain SA, Norwood, SA, Australia; 4Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
and 5ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, Australia. Correspondence: KN Dodds, Discipline of Physiology, School of
Medicine, University of Adelaide, Medical School North 416, Frome Road, Adelaide, SA 5005, Australia.
E-mail: kelsi.dodds@adelaide.edu.au
Received 2 June 2016; revised 14 July 2016; accepted 22 July 2016

Citation: Transl Psychiatry (2016) 6, e888; doi:10.1038/tp.2016.168

www.nature.com/tp

http://dx.doi.org/10.1038/tp.2016.168
mailto:kelsi.dodds@adelaide.edu.au
http://dx.doi.org/10.1038/tp.2016.168
http://www.nature.com/tp


cord. The concept that female sex hormones may modulate
central neuroimmune signaling is then discussed, and that
variations in these processes may have relevance for female-
dominant pain conditions, as exemplified by several visceral
inflammatory diseases. In addition, the dorsal root reflex is
re-explored as a central driver of peripheral neurogenic inflamma-
tion, leading to the hypothesis that sensitized spinal glia might
contribute to, and predispose, a subpopulation of females to
persistent inflammatory pain.

PERSISTENT PAIN ARISES FROM CENTRAL SENSITIZATION
Pain is a complex, unpleasant sensory and emotional experience
that arises in response to, or is described in terms of, tissue
damage.8 Distinct from the well-established protective and
adaptive functions of acute pain, pain persisting beyond tissue
healing is maladaptive and serves no known physiological
function. In contrast to acute pain, the mechanisms involved in
the development and maintenance of persistent pain are not fully
understood. One potential mechanism that has received detailed
investigation is the process of ‘central sensitization’, whereby
long-lasting molecular changes cause amplification of pain
signaling by nociceptive neurons within the CNS. Central
sensitization can include conditions of both hyperalgesia (heigh-
tened pain to a previously noxious stimulus) and allodynia (pain
caused by a normally innocuous stimulus).9,10 It is now acknowl-
edged that the development of central sensitization engages not
only neuronal, but also glial processes. Hence, the following
sections outline the rationale for considering persistent pain
to be a ‘gliopathy’,11 in addition to the previously described
‘neuropathy’.

GLIA AND THE TETRAPARTITE SYNAPSE SUPPORT THE
MAINTENANCE OF CNS HOMEOSTASIS
Glia are a non-neuronal, immune-like cell population that
constitute the vast majority of cells within the CNS. They comprise
satellite glial cells in the ganglia, and microglia, astrocytes and
oligodendrocytes within the spinal cord and brain. The anatomical
co-localization of astrocytes and microglia in the spinal cord,
combined with pre- and postsynaptic neurons, forms a key site of
interaction termed the ‘tetrapartite synapse’.12,13 Each cell within
this functional unit reciprocally signals to another, contributing to
a ‘neuroimmune communication’ that allows glia to respond
rapidly to disruptions in neuronal signaling.14,15 The reactivity
state and control of astrocytes and microglia is therefore critical in
maintaining healthy CNS activity.

DYSREGULATION OF HEALTHY GLIAL ACTIVITY CONTRIBUTES
TO THE DEVELOPMENT OF PERSISTENT PAIN
Following injury and aberrant nociceptive events, microglia and
astrocytes increase their expression and secretion of various
proinflammatory cytokines and chemokines.15 The stimulation of
glial cells can occur by neurokine products released as a result of
tissue injury, or by neurotransmitters released from activated
neurons. Many of the proinflammatory responses of glia are
important in protecting against challenges that disrupt the
homeostatic balance of the CNS, such as during the sickness
response—a constellation of adaptive behaviors and physiological
responses that promote recovery from illness.16 However, under
certain conditions, glial reactivity is not advantageous and can
instead be detrimental to neuronal function, such as during the
manifestation of persistent pain.
In response to strong or persistent receptor stimulation, micro-

glia switch from a surveillance state to an active response state,
and astrocytes transition from a regulatory to reactive state.11

Under these circumstances, the release of proinflammatory

mediators by glia can contribute to ongoing nociception, by
inducing long-lasting plastic changes of synaptic connectivity that
enhances the transmission of ascending nociceptive information.
As such, glia and their products are sufficient to create
exaggerated pain. This has been shown where intrathecal transfer
of highly reactive microglia alone, or injection or induction of their
proinflammatory products (such as interleukin (IL)-1β and tumor
necrosis factor-α (TNFα)) into naive animals, can induce symptoms
of neuropathic pain.17–19

The downstream effects of enhanced glial reactivity are
strengthened by the fact that immune mediators, including those
released by glia, are substantially more potent in modulating
neuronal signaling compared with classical neurotransmitters on a
per molecule basis.11 Glial proliferation, morphological changes
and increases in protein expression can persist for months after
initial injury, even beyond tissue healing.20,21 Moreover, proin-
flammatory mediators and glial-derived neurotransmitters can
reciprocally stimulate glia in an autocrine and paracrine manner,
thereby amplifying a positive feedback loop of unfavorable
activity.22–24

How do glia become activated?
Glia function as a product of their microenvironment, and as such
the types of receptors they express vary from site to site, and
many receptors can be upregulated to make glia more ‘tuned’ to
ongoing stimulation. Within the spinal cord, microglia are sensitive
to ATP that binds to ionotropic (for example, P2X4 and P2X7)
and metabotropic (for example, P2Y6 and P2Y12) purinergic
receptors.25–28 Chemokine receptors, such as CX3CR1 (with
CX3CL1/fractalkine as ligand) and CCR2 (activated by CCL2/
MCP-1), also contribute to the microglial proinflammatory
response,29–32 as well as receptors for the sensory neuropeptide,
calcitonin gene-related peptide (CGRP)33 and interferons (IFN),
such as IFNγ.34 Akin to microglia, astrocytes can respond to ATP via
the surface expression of P2X7 (refs 35,36) and P2Y1 (refs 25,37)
and can be stimulated by IFNγ,38 CGRP39–41 and several mediators
released by microglia themselves, including TNFα and IL-18 (for
reviews, see refs 11,42). There is also evidence that astrocytes
express tachykinergic NK1 receptors,43 with substance P poten-
tiating the IL-1β-mediated induction of IL-1β and prostaglandin E2
(PGE2) secretion from spinal cord astrocytes.44

Furthermore, a receptor family expressed by both glial cell types
that has gained much recent attention, with regard to pain and
immunity, are the Toll-like receptors (TLRs).45 TLRs allow glia to
sense the presence of pathogen- or microbial-associated mole-
cular products. Importantly, some receptor subtypes, such as TLR4,
can additionally recognize endogenous ‘self’ warning molecules.
Numerous putative ligands have been identified for these so-
called damage-associated molecular patterns in the processing of
pain, including high mobility group box 1 protein,46–48 heat-shock
protein 90 (ref 49) and fibronectin.50

What proinflammatory products do glia release upon activation?
Glial-induced upregulation of proinflammatory signaling is
achieved through the induction of gene expression by numerous
second messenger-mediated pathways. This includes activation of
transcription by phosphorylation of mitogen-activated protein
kinases and nuclear factor-κB. Specifically, the mitogen-activated
protein kinases implicated here are p38 in microglia,51 c-Jun
N-terminal kinase in astrocytes52 and extracellular signal-regulated
kinases (ERKs) in both glial cell types.53,54 The proinflammatory
products subsequently released from microglia include IL-1β, IL-6,
IL-18, TNFα, PGE2, nitric oxide and brain-derived neurotrophic
factor, and IL-1β, IL-6, TNFα, IFNγ, CCL2, CXCL1, CXCL21 and MMP9
from astrocytes (for reviews, see refs 55–58). In addition, astrocytes
can increase their release of gliotransmitters, such as ATP,59

glutamate and D-serine.60
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As the discovery of neuroimmune contributions to pain more
than two decades ago,61–63 knowledge of glial-mediated mole-
cular alterations in central sensitization has grown exponentially.
Overall, their proinflammatory effects enhance excitatory tone and
synaptic efficiency, thereby facilitating an exaggerated pain state.
The sequelae of mediators released and resultant outcome are
now realized to be highly dependent on the type of glial cell that
is activated, the degree of its reactivity and the nature of the
stimulus.64,65 For this reason, we will provide a brief summary of
the major known excitatory and inhibitory adaptations, and
strongly encourage readers to explore other excellent in-depth
reviews.11,14,15,42,66,67

GLIA ENHANCE EXCITATORY NOCICEPTIVE SIGNALING
Glial-derived proinflammatory mediators enhance nociceptive
signaling in the spinal cord first by facilitating glutamatergic
neurotransmission (Figure 1). IL-1β has been shown to increase
presynaptic release of glutamate,68 and IL-1β, TNFα, CCL2 and
IFNγ increase postsynaptic N-methyl-D-aspartic (NMDA) and AMPA

receptor currents.69–74 Postsynaptic neurons may further be
excited by the release of glutamate from reactive astrocytes.75,76

TNFα can increase postsynaptic NMDA and AMPA-mediated
activity by trafficking more receptor to the cell surface,77 and by
increasing subsequent Ca2+ conductance through phosphoryla-
tion of neuronal ERK.78 In addition, IL-1β can induce SRC-1-
mediated phosphorylation of the NR1 subunit on NMDA.79,80

D-serine, a powerful neuromodulator released by reactive astro-
cytes, enhances depolarizing NMDA cation currents by binding to
the NMDAR glycine site.81 There is also a persistent decrease in
astrocytic expression of GLAST and GLT-1;82,83 loss of function of
these glutamate transporters causes an elevation in extracellular
glutamate concentrations within the synapse.84,85 Thus, the
resultant aberrant uptake and/or release of glutamate, as well as
the enhanced activity of its postsynaptic receptors, can contribute
to excessive nociceptive signaling reaching the brain.
In addition, increased exocytosis of ATP from reactive

astrocytes42 can directly stimulate neuronal excitation86 or induce
glutamate release from presynaptic neurons,87 an effect that is
facilitated by the upregulation of purinoceptors, such as
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Figure 1. Schematic representation of the major proinflammatory glial-mediated alterations to excitatory synapses within the spinal dorsal
horn that contribute to central sensitization. Strong or long-term noxious activation of astrocytes and microglia within the spinal dorsal horn
can lead to the aberrant synthesis and release of proinflammatory mediators, such as TNFα and IL-1β. The overarching effect of these
neurokine signals in excitatory synapses contributes to central sensitization and facilitates the transmission of nociceptive signals to the brain.
Some of the major known adaptations include the following. (1) Increased release of the excitatory neurotransmitter, glutamate, from
presynaptic nerve terminals. (2) Suppression of astrocytic glutamate reuptake via downregulation of GLT-1 and GLAST activity. (3) Release of
the glutamate from astrocytes, which is capable of increasing the excitability of nearby neurons. (4) D-serine, also released from astrocytes,
enhances Ca2+ influx via binding to glycine sites on NMDA receptors on postsynaptic neurons. (5) Astrocytic release of ATP also increases
postsynaptic excitability via activation of ligand-gated purinergic receptors, P2X4R and P2X7R. (6) TNFα and IL-1β increase translocation of
NMDA receptors to the postsynaptic membrane and increases their conductance via an ERK-dependent pathway. (7) IL-1β, TNFα, IFNγ and
CCL2 increase NMDA receptor-mediated excitatory signaling; in the case of IL-1β, this is thought to involve the phosphorylation of receptor
subunits including NR1, 2a and 2b. (8) Proinflammatory cytokines have been linked to increased expression and activation of AMPA receptors
at excitatory synapses. (9) Reactive microglia have increased expression of receptors for various neurotransmitters and chemokines (for
example, AMPARs, NK1Rs and CX3CR1), which can induce the further release of proinflammatory cytokines upon stimulation, thereby
perpetuating neuronal excitation. ERK, extracellular signal-regulated kinase; IFN, interferon; IL, interleukin; TNFα, tumor necrosis factor-α.
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P2X4R,50,88 P2X7R89,90 and P2Y12R.91,92 Levels of other cytokine
and chemokine receptors are also upregulated, including IL-6-
induced microglial CX3CR1 (refs 29,93) that enhances pain via
IL-1β.94 Under certain conditions, such as IL-1β stimulation, both
glial cell types may increase NK1-receptor expression.95 This
potentiates the response to substance P,43 in turn facilitating the
release of astrocytic ATP59 and proinflammatory cytokines,
including TNFα, IL-6 and PGE2.44,96,97 Last, TNFα, IL-1β and IL-6
can elicit long-term synaptic plasticity by inducing the phosphor-
ylation of the transcription factor cAMP response element-binding
protein (CREB),70 which may lead to the CREB-mediated transcrip-
tion of COX-2 and NK1.98–100

GLIA ATTENUATE THE INHIBITION OF NOCICEPTIVE
SIGNALING
Heightened glial activation can also induce disinhibition; that is, a
loss of inhibitory signals within the CNS that usually suppress
nociceptive transmission, such as GABA and glycine signaling
(Figure 2). The activation of microglial TLR4 by lipopolysaccharide
(LPS) in rodent spinal slices induces IL-1β release, which
suppresses postsynaptic GABA receptor function through the
activation of protein kinase C.101 IL-1β-induced protein kinase C
activation also attenuates astrocytic GLT-1 activity, leading to
increased glutamate within the synaptic cleft.101 This not only

drives a sustained excitation of postsynaptic neurons, but also
a deficiency in the supply of glutamine, which is metabolized
from glutamate following its reuptake. Consequently, glutamate–
glutamine cycle-dependent GABA synthesis by the presynaptic
neuron is attenuated.102 Moreover, TNFα can prevent action
potentials in inhibitory presynaptic neurons;103 IL-1β and IL-6
suppress presynaptic GABA and glycine currents;70 and PGE2,
CCL2 and IFNγ can attenuate postsynaptic electrical activity
mediated by GABA or glycine.104–106 Thus, suppression of inhibi-
tory influences within the spinal cord by glial-derived factors may
exacerbate pain, by potentiating the transduction of nociceptive
information.

FEMALE SEX HORMONES AND NEURONAL HYPOTHESES
UNDERLYING THE SEXUAL DIMORPHISM OF PAIN
In addition to many pain syndromes having greater prevalence in
females than males, other anecdotal evidence suggests that sex
steroid hormones can have a direct influence on somatic and
visceral persistent pain. In women, for instance, certain painful
conditions typically occur during the menstrual years, and
symptoms tend to fluctuate with the menstrual cycle.107,108

Symptom severity of several visceral pain conditions, such as
irritable bowel syndrome, has been reported to decrease following
menopause,109 and increase with hormone replacement therapy
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Figure 2. Schematic depicting the major proinflammatory glial-mediated changes to inhibitory synapses within the spinal dorsal horn that
facilitate central sensitization. As mentioned in Figure 1, prolonged stimulation of astrocytes and microglia can lead to the increased synthesis
and release of various proinflammatory cytokines and chemokines. Within inhibitory synapses of the spinal cord dorsal horn, the effects of
these mediators ultimately lead to a reduction in inhibitory neurotransmission (‘disinhibition’), which further facilitates central sensitization.
For example: (1) IL-1β can mediate a decrease in the astrocytic uptake of glutamate, via a PKC-mediated suppression of glutamate transporter
GLT-1. (2) The reduced uptake of glutamate via GLT-1 leads to decreased availability of glutamine for GABA synthesis. (3) IL-1β and IL-6 inhibit
presynaptic GABA and glycine currents. (4) Last, IL-1β, PGE2, CCL2, TNFα and IFNγ decrease GABA and glycine receptor activity; in the case of
IL-1β, this is thought to be mediated via a PKC-dependent pathway. IFN, interferon; IL, interleukin; PKC, protein kinase C; TNFα, tumor necrosis
factor-α.
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in postmenopausal women.110 Similarly, nociceptive stimuli in
rodent visceral pain models are sensitive to both the changing
steroid hormone levels throughout the estrous cycle,111–113 and
during hormone supplementation following ovariectomy.114–116

Thus, it has been suggested that either elevated or fluctuating
levels of sex hormones have a key role in exacerbating persistent
pain.117

However, the mechanisms underlying this modulation remain
unclear and, to date, much of the research has focused on sex
steroid-mediated alterations in neural activity and/or molecular
targets expressed by neurons. For example, antagonism of
neuronal NMDA receptors, often co-expressed with estrogen
receptor α (ERα), can attenuate the visceromotor reflex to
colorectal distension with greater potency in untreated ovariecto-
mized rats, compared with those with estradiol replacement.118

Colorectal distension is correlated with an increase in PKA-
mediated NMDAR NR1 subunit expression and phosphorylation in
ovariectomized, estrogen-supplemented animals, compared with
those not receiving estrogen.118 Furthermore, intrathecal admin-
istration of estrogen or an ERα-selective agonist can cause an
increase in distension-evoked dorsal horn neuron pERK expres-
sion, and reverse the decrease in distension-evoked visceromotor
reflex produced by ovariectomized rats.119

DOES FEMALE SEX HORMONE MODULATION OF GLIAL
REACTIVITY CONTRIBUTE TO THE FEMALE PREDOMINANCE OF
PERSISTENT PAIN?
Despite our understanding of the tetrapartite synapse in facilitat-
ing nociceptive signaling, it is likely that the contribution of glia
has not yet received sufficient attention with regard to the female
susceptibility to persistent pain. Intriguingly, TLRs - which, as
discussed previously, are one receptor family expressed by glia
and have an important role in the immunological response to
pathogenic stimuli—are well situated to serve as an important
molecular target for persistent pain conditions. This is particularly
true for hormonally regulated female pain, as estrogen appears to
influence TLR4-mediated proinflammation and pain in various
conditions. For instance, glucuronide metabolites (which typically
have a longer half-life than the parent molecule) of estrogen cause
potent activation of TLR4 in vitro, correlating with enhanced
mechanical allodynia in rats in vivo.120 The proinflammatory
response to LPS is potentiated by estrogen in female but not male
neonatal microglia.121 Moreover, although adult hippocampal
microglia from ovariectomized rats in ex vivo preparations show a
downregulation in LPS-induced inflammation upon estrogen
supplementation, IL-1β mRNA is potentiated when estrogen is
administered in vivo.121 Long-term estrogen exposure in ovar-
iectomized mice promotes the expression of inflammatory
mediators by CNS and peritoneal macrophages, in response to
LPS activation in vivo122 and ex vivo,123 respectively. Intravenous
administration of LPS in humans induces a similar decrease in
visceral and musculoskeletal pain thresholds, although intrigu-
ingly a much more pronounced increase in circulating levels of
plasma TNFα and IL-6 was evidenced in females compared with
males.124 A recent randomized control trial additionally showed
that low-dose LPS was perceived to increase pain from supra-
threshold noxious thermal stimuli in women only, and impaired
conditioned pain modulation, a measure of endogenous pain
inhibition.125

Other studies have reported that TLR-mediated responses are
important in male but not female pain. Using LPS-induced (in TLR4
mutant mice)126 and spinal nerve ligation (in TLR4 knockout
mice)127 models of pain enhancement, it was reported that
mechanical allodynia is TLR4-dependent in males but TLR4-
independent in females. Inhibition of spinal p38 MAP kinase has
been effective in attenuating inflammatory and neuropathic pain
in male, but not female mice.128 It has further been proposed that

female pain is independent of microglia in a rodent model of
mechanical allodynia, alternatively involving the recruitment of
T cells.129 However, this argument bears further consideration
given that males are comparable to females in the generation of
autoimmune T cells, but the phenotype of regulatory T cells (Treg),
which serve to suppress inflammatory processes, may be more
aggressive in males.130

Perhaps these opposing results mirror the highly complex, and
well recognized, nature of estrogen being both a pronociceptive
and antinociceptive hormone (see reviews in refs 131–135).
Regardless, it is evident that the effects of female sex hormones
on TLR4-mediated signaling are multifaceted and, given the range
of receptors and pathways utilized by glia, highlight the need for
research into neuroimmune mechanisms that may be specific to
pain in females.

SOMATIC VERSUS VISCERAL PAIN
Persistent pain is a cardinal feature of chronic inflammation of
peripheral tissues; thus, our increase in knowledge of neuroim-
mune signaling has led to investigations of the link between glia
and persistent pain associated with inflammation. These data have
been primarily acquired using animal models of neuropathic and
somatic inflammatory pain, with considerably less attention given
to pain arising from the viscera. Although there are many
commonalities in the processing of somatic and visceral pain,
there are also several important clinical distinctions (for reviews,
see refs 136–138). For instance, pain cannot be evoked from all
viscera; visceral pain is diffuse and poorly localized, owing to
relatively few visceral afferents with extensive receptive fields;
visceral pain can often be referred to remote locations,
attributable to visceral and somatic afferent pathways converging
into shared spinal levels; injury to the viscera does not necessarily
cause pain; and intense motor and autonomic reflexes, such as
nausea and muscle tension, usually accompany visceral pain. This
aside, the fundamental mechanisms leading to the perception of
somatic and visceral pain are similar, where enhanced activity
from peripheral nociceptors activates ascending central pathways
to the brain. Consequently, the involvement of neuroimmune
signaling in persistent pain attributed to visceral inflammation has
gained interest in the past few years.139

NEUROIMMUNE CONTRIBUTIONS TO THE FEMALE
PREDOMINANCE OF PAIN ASSOCIATED WITH INFLAMMATION
OF THE PELVIC VISCERA
The viscera are also where sex divergences in pain processing
become particularly intriguing, owing to the unique organization
of the reproductive and pelvic anatomy in males and females. It
has been estimated that women are at greater risk of developing
persistent pain within the pelvis, currently affecting between 15
and 24% of women140,141 (versus 1.8–12% in men142,143), including
pain due to menstruation, intercourse, pregnancy and childbirth,
and infection and inflammation via the vagina, cervix and
uterus.3,144,145 Spinal microglia been found to contribute to pain
in male animals with chronic prostatitis.146,147 To our knowledge,
however, there are currently no comprehensive studies investigat-
ing glial contributions to pain associated with visceral diseases that
have been restricted to, or with a substantial focus on, females. This
alternative scope in research could reveal distinct female pain
mechanisms that may be exploited to improve pain management.
Potential neuroimmune contributions to three visceral condi-

tions that have a greater prevalence in, or are exclusive to, females
are discussed below: inflammatory bowel disease (IBD), painful
bladder syndrome and endometriosis. These pathologies share
several features of neuropathic pain and somatic inflammation,
such as heightened neural activity, decreased pain thresholds
and increased pain behavior, indicating that central neuroimmune
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adaptations are probably taking place. This is supported
by evidence demonstrating that experimentally induced IBD,
cystitis or endometriosis can result in the sensitization of
adjacent pelvic organs (for example, intestines, bladder and
uterus).148–151 A similar phenomenon is observed clinically with
the clustering of comorbidities in women with pelvic pain, such
as patients with irritable bowel often presenting with viscero-
visceral (for example, bladder or menstrual pain) or viscero-
somatic (for example, pelvic muscle spasm, temporomandibular
pain) complaints.

Inflammatory bowel disease
IBD comprises ulcerative colitis and Crohn’s disease, both of which
involve colonic inflammation; however, each has distinctive
pathologic features.152 Although the prevalence of ulcerative
colitis in males and females is generally similar, the female–male
ratio of Crohn’s disease in adults is increased up to approximately
1.2–1.3 times.153,154 The studies on glia and IBD have utilized
rodent models of di- or trinitrobenzene sulfonic acid-induced
colitis, and potential differences between the sexes have not been
analyzed.155–158 Nonetheless, marked increases in reactivity were
described for microglia in the spinal cord and hippocampus,155,156

and activated satellite glia in the dorsal root ganglia.156 This is
associated with an upregulation of TNFα levels,155,156 and closer
apposition between satellite glial cells and primary afferent
neurons in the dorsal root ganglia156 via enhanced neuron–glia
gap junction coupling.158 Associated centrally derived hyper-
algesia was assessed by various methods, including increased
visceromotor reflex activity156 and abdominal withdrawal
reflex,157 to graded colonic distension. Intracerebroventricular,155

intrathecal or systemic156 minocycline or intrathecal administra-
tion of an anti-TNFα antibody157 attenuated the respective pain
behaviors examined.

Painful bladder syndrome
Contributions of neuroimmune overactivity to persistent pain
have also been suggested in animal models of, and human
patients with, painful bladder syndrome. Formally known as
interstitial cystitis, painful bladder syndrome affects approximately
3–7% of adult females and 2–4% of males, encompassing a range
of bladder disorders that involve persistent pelvic pain or
discomfort, nonspecific urinary symptoms and often
cystitis.142,159,160 In a preliminary study using pooled data from
male and female cats with spontaneous feline interstitial cystitis,
the fluorescent intensity and number of GFAP-immunopositive
astrocytes in the S1 spinal cord dorsal horn was increased com-
pared with healthy unaffected cats.161 In addition, it has recently
been demonstrated that peripheral blood mononuclear cells from
women with painful bladder have an increased proinflammatory
response to TLR2 and TLR4 stimulation in vitro.162 The magnitude
of the proinflammatory response also positively correlated with
the extent of pelvic and extra-pelvic pain, and the manifestation of
comorbid conditions.163 This observation has great importance, as
the TLR responsivity of peripheral blood mononuclear cells could
serve as a neuroimmune biomarker for persistent pain,164 given
the functional similarities between TLR signaling of immune cells
in the periphery and in the CNS. Thus, the heightened TLR
responsivity of peripheral immune cells in females with painful
bladder syndrome may indicate that CNS sensitization involving
neuroimmune modulation may be occurring in parallel, and
remains to be explored further.

Endometriosis
Endometriosis is an estrogen-dependent, chronic, inflammatory
medical condition in women, defined as the presence of
endometrial tissue in extra-uterine locations, and commonly

associated with painful pelvic symptoms. It affects an estimated
5–10% women of reproductive age,165 and up to 60% women
with persistent pelvic pain.166 Endometriosis-associated pain is
thought to solely arise from the presence of lesions, yet pain
symptoms attributed to the disease can occur in women with
lesions removed,167 and the severity of experienced pain
correlates poorly with the degree of lesions.168,169 Thus, it
exemplifies all that is female, from the unique visceral anatomy
to the complex hormonal interplay, and the long-standing
association with unexplained persistent pain.
Given that the conditions mentioned above affect the visceral

organs present in both sexes, studying endometriosis (and indeed
other female-specific conditions, such as vulvodynia) may provide
further insight into subpopulation adaptations of neuroimmune-
mediated pain. Neural changes have been studied in detail,170,171

and it has been suggested that pain attributed to endometriosis is
likely to involve neuronal processes leading to central
sensitization.115,170,172,173 However, a potential role for glia has
yet to be investigated. Accumulating evidence nevertheless
demonstrates that there are alterations in peripheral immune
function in endometriosis patients.174,175 LPS-stimulated perito-
neal macrophages from women with endometriosis secrete
significantly higher levels of proinflammatory cytokines (for
example, IL-6 and TNFα) than non-diseased counterparts, an
effect that can be attenuated by pre-treatment with a TLR4-
neutralizing antibody.176 TLR4 mRNA transcript expression is
increased up to sixfold in endometriosis lesions compared with
eutopic endometrium,177 and TLR2 and TLR9 mRNA from
peritoneal effusions are upregulated in endometriosis patients
compared with healthy controls.178 It remains to be determined
whether the increased TLR levels are owing to an upregulation of
the receptors per immune cell, or recruitment of TLR-bearing cells
to the diseased area. There is now also solid evidence from
multiple lines of investigation that the development and
maintenance of endometriosis involves atypical peritoneal macro-
phage activity.179,180

Collectively, these data suggest that several alterations in
neural, immune and neuroimmune functions exist in the female-
predominant conditions of IBS, painful bladder and endometriosis.
Studies that further investigate visceral disease-associated mod-
ifications in neuroimmune signaling are desirable. Such informa-
tion would further our knowledge of persistent pain mechanisms,
and may also identify a molecular basis of pain susceptibility in the
subpopulation of females.

DOES THE DORSAL ROOT REFLEX AND NEUROGENIC
INFLAMMATION CONTRIBUTE TO THE DEVELOPMENT OF
VISCERAL INFLAMMATORY CONDITIONS?
Besides painful symptoms, many chronic inflammatory diseases
present with visible tissue abnormalities and consequently a vast
number of studies focus on characterizing and treating these
lesions. However, attention has recently shifted to unraveling the
complex molecular pathways that instead underlie disease
etiology. This is particularly interesting in the example of
endometriosis, which is generally attributed to the movement of
menstrual debris through the fallopian tubes into the abdomino-
pelvic cavity during menses (retrograde menstruation).181

Although it is estimated that approximately 90% women aged
15–49 years will exhibit retrograde menstruation,182 only around
one in ten will develop endometriosis lesions. Similarly, in many
patients, the onset of IBD follows a bout of gastroenteritis,183 yet
not all individuals with gastroenteritis will develop IBD. Thus it
seems other factors affect the likelihood of disease formation in
subsets of patients, leaving them susceptible to developing
disease compared with their peers.
It is well established that sensitized sensory nerves can initiate

or exacerbate inflammatory conditions by the release of
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neuropeptides from peripheral nerve terminals, such as CGRP and
substance P.184–186 This results in edema, immune cell infiltrate
and other sequelae reminiscent of inflammation; hence has been
termed neurogenic inflammation.187 The release of such peptides
in the periphery is known to occur via two antidromic signaling
mechanisms. Initially, there is strong local stimulation of peripheral
nerve terminals at the site of disease, known as the ‘axonal reflex’.
With increased afferent input, the central terminals of sensory
neurons within the spinal dorsal horn may also be excited, leading
to anterograde propagation of action potentials back to the
periphery (the ‘dorsal root reflex’).188–190

Centrally derived neurogenic inflammation via the dorsal root
reflex contributes to pathology in several animal models of
peripheral inflammation, mostly involving the skin191–196 and
joints,197–199 but also colitis.200 Compared with control animals
receiving infused saline, colonic tissues from rats stimulated with
intrathecal SP to the lumbar spine showed increased protein
expression of the proinflammatory cytokine, migration inhibitory
factor, mucosal edema and lymphocyte infiltration, effects that
were attenuated by intrathecal pre-treatment with an NK1-
receptor antagonist. The efferent propagation of inflammation
via central dorsal horn activation has also been supported in

humans, by observations that relapses in ulcerative colitis
have been associated with electrical stimulation of the spinal
cord.201–203

DOES CENTRAL GLIAL STIMULATION AND OVERACTIVITY
TRIGGER PERIPHERAL NEUROGENIC INFLAMMATION OF THE
VISCERA?
In addition to neuropeptides, it has been suggested that pro-
inflammatory cytokines are able to stimulate dorsal horn afferents
to influence the development of peripheral inflammation.204,205 It
has been reported that spinal IL-1β, associated with reactive
astrocytes, can contribute to the induction and maintenance of
temporomandibular arthritis and associated pain.205 In these
experiments, central disruption or inhibition of spinal IL-1 receptor
type 1 (a receptor for IL-1β) signaling in mice with established
arthritis, resulted in significant attenuation of joint pathology. Mice
without previously established arthritis showed an upregulation of
astrocyte reactivity within the dorsal horn following local spinal
overexpression of IL-1β, as well as joint changes indicative of
the initial stages of arthritic disease. Enhanced CGRP expression
was observed in primary sensory fibers of mice with
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Figure 3. Possible involvement of centrally mediated neurogenic inflammation in the development of visceral inflammatory disease in the
periphery: example for endometriosis. (1) During menstruation, endometrial debris passes both per vaginum and in a retrograde fashion
through the fallopian tubes to the peritoneal cavity. (2) In certain women, the inflammatory events initiated by ectopic endometrial tissue
activate sensory afferents innervating adjacent visceral structures, which transmit the noxious information to the spinal dorsal horn. In
addition to exciting ascending neural signals projecting to the brain, afferent neurotransmitter release could potentially also activate spinal
astrocytes and microglia, whose proinflammatory products contribute to the development of central sensitization and exaggerated pain (see
Figures 1 and 2 for details). (3) Strong ongoing afferent stimulation associated with regular monthly menstruation and dysmenorrhea, as well
as the excitatory environment created by reactive glia, may reciprocally activate the central terminals of sensory nerves. This can then induce
the antidromic release of neuropeptides (such as SP and CGRP) at the peripheral site of disease (the ‘dorsal root reflex’). (4) The subsequent
induction of neurogenic inflammation, including the release of cytokines (IL-1β and TNFα), PGE2 and nerve growth factor (NGF) from local
immune cells, may then contribute to an environment that encourages the implantation of endometrial debris onto the peritoneum, and the
development of endometriotic lesions (including the associated neovascularization and sprouted innervation). CGRP, calcitonin gene-related
peptide; IL, interleukin; PGE2, prostaglandin E2; TNFα, tumor necrosis factor-α.
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IL-1β-overexpression (peripheral projections, dorsal root ganglia
and central projections), which also displayed spontaneous
behavior indicative of pain. It was suggested that bidirectional
crosstalk between the CNS and peripheral joints, via spinal IL-1β
stimulation of sensory afferents to release CGRP in the periphery,
may have a role in the exacerbation of inflammation and pain.205

Therefore, heightened spinal glial reactivity and proinflammatory
signaling may contribute to ongoing peripheral inflammation, as
well as enhancing pain by central sensitization.
This raises the interesting question as to whether centrally

derived neurogenic inflammation, generated in part by neuroim-
mune signaling, contributes to the perpetuation of other
inflammatory diseases. Indeed, neurogenic inflammatory pro-
cesses have been implicated in the exacerbation of IBD, cystitis
and endometriosis.206–209 In endometriosis, neurogenic inflamma-
tion is thought to create an optimal peritoneal environment for
ectopic lesion formation in the visceral tissues.210,211 In this
setting, enhanced afferent signaling in response to accumulating
endometrial debris may facilitate lesion development by a positive
feedback loop (Figure 3). Further research into the role of glia and
the dorsal root reflex in the development of inflammation are
recommended.

EARLY-LIFE STRESSORS AS CENTRAL GLIAL PRIMERS FOR
VISCERAL INFLAMMATION
It is now realized that glia have the ability to be ‘primed’ by prior
experience to over-respond to new immune challenges (a ‘two-hit
hypothesis’14). This is shown where laparotomy and intraperito-
neal injection of LPS each individually cause modest increases in
mechanical allodynia. However, allodynia is potentiated up to
threefold when laparotomy and LPS are administered sequentially,
with enhanced pain being associated with heightened microglial
reactivity.212

Many studies are currently investigating the impact of early-life
stressors, such as maternal separation or injury, on long-lasting
glial alterations in the adult. Such events can be the ‘first hit’ that
primes glia to over-respond and be detrimental in restoring
‘second hit’ immune challenges later in life. Visceral hyperalgesia
can be enhanced by early adverse events,213–216 although
associations with glia have thus far been described only for
somatic pain. For instance, incisional surgery of the neonatal rat
hind paw caused an increase in the intensity of microglial
activation and expression within the dorsal horn that persisted
into adulthood.20 This was associated with hyperalgesia following
incisional surgery as an adult, and was prevented by intrathecal
administration of minocycline at the time of adult injury. Thus, this
suggests that early adverse life events provoking long-term
heightened glial reactivity may lead to greater sensitivity to future
harmful stimuli.
Priming of spinal glia may provide an explanation for why some

subpopulations, such as females, are predisposed to developing
certain painful conditions. If the neuroimmune communication
has been primed before a persistent pain-triggering insult, then
this mechanism may inherently increase disease burden in
females (or males) due to the increased release of proinflamma-
tory products, and may also be exacerbated by the activity of sex
hormones, such as estradiol. Early aggravation of spinal glia might
therefore contribute to the development of peripheral inflamma-
tion, via the dorsal root reflex or otherwise. Regarding endome-
triosis, clinical records from female monkeys have indicated that
animals exposed to prior adverse life events, such as laparoscopic
examination and cesarean section, were associated with an
increase in the incidence of developing endometriosis.217,218 The
initial scenario of gastroenteritis preceding IBD could further
represent the ‘first hit’ of irritation that sensitizes the neuroim-
mune system, later contributing to disease progression. Direct

evidence linking early-life glial priming and the incidence of
visceral inflammation in adulthood await to be studied.

BEYOND ‘HYSTERIA’ TOWARDS TARGETED TREATMENT OF
FEMALE PAIN
Our current understanding of central sensitization leading to the
development of persistent pain involves interactions between
neurons and highly reactive glia. Studying alterations in these
neuroimmune connections under various conditions provides
enormous potential for meaningful new research discoveries and,
given the significant female predominance of pain, may
contribute to understanding the biological mechanisms that
underlie sex differences in pain processes. Using both male and
female subjects will be crucial for this future pain research.
Exploring painful conditions of the viscera that are most prevalent
or specific to each of the sexes, such as IBD, painful bladder
syndrome and endometriosis in females and prostatitis in males,
may additionally provide clues into the unique anatomical and
neuroendocrine influences on pain sensitivity. Indeed, the
potential contribution of neuroimmune and neurogenic signaling
to inflammation and pain is a novel avenue for gynecological and
urogenital research. Although much of this review has focused on
female sex hormones and pain, male sex hormones may also have
a critical role, where low testosterone levels are an emerging link
to persistent pain states in both the sexes.219,220 Thus, prospective
studies comparing the root causes of sex-specific pain conditions
may have important implications for both future pain prevention
and treatment strategies.
As we unravel the molecular pathways involved in enhancing

nociceptive transmission, this will provide opportunities for
resultant drug discovery. New pharmacotherapies that aim to
target glia to modulate their deleterious, proinflammatory
contributions to pain are now steadily emerging.14,221 This is
emphasized by recent exciting studies that have for the first time
demonstrated an upregulation of central glial cell reactivity in pain
patients in vivo.222–224 Although the translation of results from
animals to humans has been variable in effectiveness, an issue
plaguing the field of pain at large,225,226 it is likely that the future
analgesic success of these agents will be highly dependent on the
type of injury or disease, the selection of drug and dosing
regimen, the route of delivery and the timing of treatment. With
continued investigations, the neuroimmune system represents a
key target to decrease the burden of persistent pain.
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