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Abstract

Automatic identification of the necrotic zone boundary is important in the assessment of
treatments on in vitro tumour spheroids. This has been difficult especially when the difference
in cell density between the necrotic and viable zones of a tumour spheroid is small. To help
overcome this problem, we develop novel one-dimensional pair-correlation functions (PCFs) to
provide quantitative estimates of the radial distance of the necrotic zone boundary from the
centre of a tumour spheroid. We validate our approach on synthetic tumour spheroids in which
the position of the necrotic zone boundary is known a priori. It is then applied to nine real
tumour spheroids imaged with light sheet-based fluorescence microscopy. PCF estimates of the
necrotic zone boundary are compared to those of a human expert and an existing standard
computational method.

Keywords: tumour spheroid, necrotic zone, pair-correlation function

1 Introduction

Tumour spheroids are in vitro cell aggregates grown from a smaller number of cells initially placed
in a non-adhesive environment [1, 2, 3]. They provide a way to study cancer cell behaviours and
interactions in a well-controlled environment, whilst mimicking the in vivo arrangement of cells more
closely than monolayer cultures. Importantly, tumour spheroids are used in drug testing assays
[1, 4], and assessments of the effectiveness of anti-tumour treatments often rely on quantitative
measures of the cell distribution within the spheroid [5, 6].

∗Email: saber.dini@adelaide.edu.au
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Figure 1: Schematic of the necrotic, quiescent and proliferative zones within a tumour spheroid. In
the necrotic zone, cell death occurs due to an accumulation of toxic waste products and a lack of
oxygen and nutrient supply [7]. The quiescent zone is a region of viable and non-proliferative cells.
In the proliferative zone, cells receive enough oxygen and nutrients to proliferate [3].

In a sufficiently large spheroid, only the cells in the outermost cell layers can receive enough
oxygen and other nutrients to proliferate. This region is termed the proliferative zone, whilst
deeper inside the spheroid, quiescent and necrotic zones are formed [3]. Cells in the quiescent
zone remain viable but do not proliferate, whilst the innermost cells die due to an accumulation
of toxic waste products and a lack of oxygen and nutrient supply, forming the necrotic zone [7].
The schematic diagram of Fig. 1 illustrates the necrotic, quiescent and proliferative zones within
a tumour spheroid. Identifying and quantifying these three regions is important in the analysis of
comparative assays on tumour spheroids [8, 9, 10] and mathematical models of the tumour growth
process [11, 12, 13, 14].

In this paper, we analyse the in vitro distribution of cells in nine (homotypic) tumour spheroids.
Using light sheet-based fluorescence microscopy in combination with optical clearing, high-quality
three-dimensional images are generated [15]. Subsequently, the images are processed with a three-
dimensional segmentation method to obtain a point cloud representing the cell distribution. The
cell distribution gives a point pattern that is subsequently analysed, with the aim being to provide
an estimate of the position of the necrotic zone boundary, i.e. the distance from the spheroid centre
to where the necrotic zone transitions into the quiescent zone.

Standard density-based spatial clustering and data clustering methods (DBSCAN and k-means)
are implemented to identify the boundary of the necrotic zone [16, 17, 18]. However, we find that
using such existing methods can fail, or produce unreliable results when the difference in the cell
density between the quiescent zone and necrotic zone is small. Therefore, we offer an alternative,
statistically based, approach by developing a one-dimensional pair-correlation function to identify
the necrotic zone boundary in tumour spheroids.

The pair-correlation function (PCF) is a second-order summary statistic commonly used for
analysing point patterns in cell biology [19, 20, 21, 22, 23, 24]. Typically, PCFs describe the
relative frequency of Euclidean distances between pairs of data points, indicating the extent of
deviations from complete spatial randomness (CSR) [25, 26, 27, 28, 29]. The PCF for a stationary
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and isotropic point process is defined as

g(r) =
%(r)

λ2
, (1.1)

where r is usually the Euclidean distance between points, %(r) is the second-order product density
(frequency of points separated by a distance r) and λ is the intensity of the point process [27].
When points are distributed uniformly at random (i.e. CSR) %(r) = λ2 and thus g(r) = 1 at all
distances. Consequently, aggregation and segregation length-scales correspond to g(r) > 1 and
g(r) < 1, respectively. Therefore, we can quantify spatial features by estimating the PCF for point
patterns [30, 31, 32, 33].

However, in some situations the Euclidean distance between points is not the most appropriate
distance to study. For example, in a scratch assay used to assess wound healing in vitro, the
cells move into the wounded region as a front which is approximately a straight line. Binder and
Simpson [34] used a one-dimensional pair-correlation function to quantify the spatial patterning
of the cells in the Cartesian direction perpendicular to the front in both experimental images
and simulations. They also showed that there was no spatial structure in the Cartesian direction
parallel to the front. In other situations, the Euclidean distance between points may not be the
quantity of interest. For example, Binder et al. [35] analysed the angular separation of filaments
emanating from two-dimensional images of yeast colonies with a one-dimensional angular pair-
correlation function. Similarly, in attempting to identify the necrotic zone boundary in tumour
spheroids, we are concerned primarily with variations of cell density in one particular direction (the
radial direction).

This then motivates us to formulate a projected one-dimensional pair-correlation function to
analyse three-dimensional spatial point patterns with respect to the directions (radial, polar and
azimuthal) of the spherical coordinates. In the derivation of this PCF, the (usual) conditions of
stationarity and isotropy are relaxed because the projected point processes are in general non-
stationary and anisotropic. We examine the accuracy of our method by estimating the PCF for
simulated CSR and regular spatial patterns in the spherical coordinate system. In addition, we
generate synthetic datasets of cell distributions in tumour spheroids, and demonstrate that the
PCF can accurately identify the necrotic zone boundary. This helps with the interpretation and
analysis of the PCF results for nine experimental datasets which provide a ‘proof of concept’ for
the usefulness of our approach.

2 Mathematical methods

We derive a projected one-dimensional (non-periodic) pair-correlation function to analyse three-
dimensional spatial point patterns described in spherical coordinates, (r, θ, φ). The aim is to use
a sample of N data points to estimate the PCF of the underlying point process. The sample, or
point pattern, is a finite subset of three-dimensional space that we can define by

S =

{
bi
˜

= (ri, θi, φi) | 0 ≤ ri ≤ R, 0 ≤ θi ≤ π, 0 ≤ φi < 2π, i = 1, 2, · · · , N

}
,

where bi
˜

is the position vector of the ith sample point, and R = max(ri) for i = 1, 2, · · · , N .

Without loss of generality, we consider the projection, Q, of S onto the interval [0, L], to obtain
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the projected point pattern

Sa =

{
ai = Q(bi

˜
) | ai ∈ [0, L], i = 1, 2, · · · , N

}
,

where ai is the projected position of the ith sample point. Note that for the radial, polar and
azimuthal projections, we have ai = ri and L = R, ai = θi and L = π, and ai = φi and L = 2π,
respectively. The approach now taken in deriving the PCF is based on normalising the proportion of
pairs of projected data points, G(∆a), that are separated by a distance ∆a in Sa. The normalisation
is with respect to the probability of observing such pairs in the projection of the Poisson process,
G(∆a). Due to the discrete nature of points, G(∆a) has to be estimated using the average over an
interval (numerator of G(∆a) in Eqn. (2.1)). The quantities G(∆a) and G(∆a) are analogous to
the numerator and denominator in Eqn. (1.1).

To evaluate G(∆a), we introduce the bandwidth h, and obtain the expression

G(∆a) =

1

h

N∑
i=1

N∑
j>i

1(0,h](|aj − ai| −∆a)(
N

2

) , (2.1)

where

1(0,h](x) =

 1 if x ∈ (0, h]

0 otherwise.

Note that the denominator in Eqn. (2.1) accounts for the total number of all possible combinations
of pairs of data points.

To evaluate G(∆a), we first consider the homogeneous Poisson process, P, which is synonymous
with CSR. Depending on the form of the projection operator, Q, the projection of the Poisson
process, Pa, can be non-stationary and anisotropic (e.g. radial projection). However, since P is
the Poisson process, the probability density function fa for the projected points of Pa is known.
The projected points, Pa, can be considered as samples drawn from a random variable A with
probability density function fa.

In order to find the probability of having a pair of points that are separated by a distance ∆a in
Pa, we can use the density at a location a ∈ [0, L], and the cumulative distribution of the points
in the intervals (a+ ∆a, a+ ∆a+ h] and [a−∆a− h, a−∆a). Integrating over the interval [0, L]
then gives

G(∆a) =
1

h

∫ L−∆a

0
fa(a) P (a+ ∆a < A < a+ ∆a+ h) da

+
1

h

∫ L

∆a
fa(a) P (a−∆a− h < A < a−∆a) da. (2.2)

Since the probability of finding a pair of points a distance ∆a apart does not depend on the
order of counting the possible pairs (left-wise or right-wise) it can be shown that the two integrals
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in Eqn. (2.2) are equal. When written in terms of the probability density function, Eqn. (2.2)
becomes

G(∆a) =
2

h

∫ L−∆a

0
fa(a)

∫ a+∆a+h

a+∆a
fa(t)dt da. (2.3)

Using Eqns. (2.1) and (2.3), the estimate of the non-periodic PCF is then given by

g(∆a) =
G(∆a)

G(∆a)
, (2.4)

where the probability density function, fa, for each of the three projections is

fr(r) =


3r2

R3
for r ∈ [0, R]

0 otherwise,

(2.5)

fθ(θ) =


sin(θ)

2
for θ ∈ [0, π]

0 otherwise,

fφ(φ) =


1

2π
for φ ∈ [0, 2π)

0 otherwise.

2.1 CSR and regular spatial patterns

The method is validated by evaluating the non-periodic PCF, Eqn. (2.4), for simulated CSR and
regular spatial patterns within a sphere of radius R. The point patterns are shown in the panels of
the top row of Fig. 2. From left to right they are: (i) CSR pattern, (ii) segregated clusters of points
in spherical shells, (iii) segregated clusters of points that are locally aggregated around prescribed
angles of φ, and (iv) segregated clusters of points in conical shells. The three panels directly below
each test pattern in Fig. 2 correspond to the PCF evaluation of the radial, azimuthal and polar
projections from 1000 simulations.

At short and intermediate length-scales the results for the simulated CSR pattern, in the first
column of Fig. 2, indicate that there is no spatial structure (in any direction) as g ≈ 1. However,
we see that there is significant deviation from unity in the PCF signals at large distances. This
deviation at large distances appears to be inconsistent with our formulation of the PCF, as we
might expect the signal to be close to unity at all distances. The explanation for this disparity is
the division of small numbers in Eqn. (2.4), where the observed frequency and expected frequency
of pairs of points at large distances are both small. The results show that the non-periodic PCF is
a reliable predictor of CSR at short and intermediate length-scales.

We now consider the regular spatial patterns. They were chosen such that for each spatial pattern
there is only spatial structure expected in one of the three corresponding projected patterns. For
example, we discuss the results for the points distributed in spherical shells, in the second column
of Fig. 2. As expected, the PCF indicates that there is no spatial structure for the azimuthal and
polar projections (Figs. 2(g) and 2(h)). For the radial projection (Fig. 2(f)), we see a series of five
decreasing peaks for increasing values of ∆r in the PCF. The highest peak at ∆r = 0 corresponds to
pairs of points within each of the five spherical shells (e.g. pairs of red points, pairs of green points,
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Figure 2: CSR and regular point patterns, h = L/50. Top row: (a) CSR pattern, (e) segregated
clusters of points in spherical shells, (i) segregated clusters of points that are locally aggregated
around prescribed angles of φ, and (m) segregated clusters of points in conical shells. In the CSR
pattern, N = 5000 and R = 500. In all of the regular patterns, N = 1000. The centres of clusters are
equally spaced with distance (e) R/10, (i) π/5, (m) π/10, and the points are distributed uniformly
in each cluster in an interval of size (e) R/100, (i) π/50, (m) π/50. The remaining rows are for the
averaged non-periodic PCF from 1000 simulated patterns. Second row: radial projection. Third
row: azimuthal projection. Bottom row: polar projection.
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etc). The smallest peak at ∆r = 200 corresponds to pair of points with one point belonging to
the innermost spherical shell (red) and the other to the outermost spherical shell (black). Further
information about the spatial patterning can be easily obtained from the signal (e.g. the distance
between the peaks in the signal is a measure of distance between the spherical shells). A similar
discussion holds for the two sets of results in the last two columns of Fig. 2. This demonstrates the
application of the PCF to quantify spatial structures in point patterns.

2.2 Periodic pair-correlation function

In our analysis of the simulated CSR point pattern of Fig. 2, we observed that the non-periodic
PCF, Eqn. (2.4), had significant deviations from unity at large distances– due to the low frequency
of occurrence of large separations. This can lead to the incorrect assessment that a point pattern
has spatial structure at large distances. This problem of the division of small numbers at large
distances can be overcome by defining a periodic PCF.

Following the work of Agnew et al. [19] (and others), we re-define the distance between two points
in Eqn. (2.1) as

||aj − ai|| = min(|aj − ai|, L− |aj − ai|) for i 6= j ∈ {1, · · · , N}, (2.6)

with the consequence that

0 ≤ ||aj − ai|| ≤
L

2
.

Using Eqns. (2.1) and (2.6), the proportion of pairs of data points, Gp(∆a), separated by a distance
∆a is given by

Gp(∆a) =

1

h

N∑
i=1

N∑
j>i

1(0,h](||aj − ai|| −∆a)(
N

2

) . (2.7)

This implies that the number of pairs of points separated by a distance L −∆a will be added to
the number of pairs of points separated by a distance ∆a (for ∆a ≤ L/2). Therefore, we also need
to re-formulate the normalisation term for the periodic PCF, which yields

Gp(∆a) =
2

h

∫ L−∆a

0
fa(a)

∫ a+∆a+h

a+∆a
fa(t)dt da

+
2

h

∫ ∆a

0
fa(a)

∫ a+L−∆a

a+L−∆a−h
fa(t)dt da. (2.8)

Equations (2.7) and (2.8) then give the periodic PCF

gp(∆a) =
Gp(∆a)

Gp(∆a)
. (2.9)

When evaluating the periodic PCF, Eqn. (2.9), for the simulated CSR pattern in Fig. 2, we observed
a reduction in the deviations from unity at large distances (results not shown).

For the azimuthal projection the periodic distance that separates two points has a clear physical
interpretation. It is simply the acute angle that separates the two points ai and aj (i 6= j). However,
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the physical interpretation of the distance at which departures from unity occur in the periodic
PCF for the radial and polar projections are, in isolation, unclear. This is because the periodic PCF
cannot distinguish the distances L − ∆a and ∆a. Therefore, we evaluate both the non-periodic
PCF and periodic PCF for synthetic (Section 3) and experimental datasets of cell distributions
within a tumour spheroid (Section 4).

3 Synthetic tumour spheroids

We first analyse synthetic tumour spheroid datasets, to help with interpreting the PCFs for the
nine experimental datasets. A spatial model is used to generate point patterns with two zones of
uniform density. For each synthetic dataset a total of N points are distributed within a sphere of
radius R. The points are distributed under the assumption that there are two zones of uniform cell
density, partitioned by a radial distance, r = B, representing the necrotic zone boundary. The inner
zone, r < B, is the necrotic zone of the synthetic tumour. The outer zone, B < r < R, corresponds
to a viable zone (i.e. the quiescent and proliferative zones together). To ensure that the viable
zone has a larger cell density than the necrotic zone, we distribute uniformly at random N −∆N
points throughout the entire spatial domain, along with an additional ∆N points in the viable zone
only. There is no spatial structure in the azimuthal and polar projections of the synthetic datasets.
Therefore, we analyse the radial projection of the synthetic datasets with the non-periodic and
periodic PCF.

As the point process is known for the synthetic tumour spheroids, we can derive analytic ex-
pressions for the non-periodic and periodic PCF, see Electronic Supplementary Material (ESM),
Appendix A. Results for four values of the necrotic boundary are shown in Fig. 3. We observe
that the distance at which a slope discontinuity occurs in the non-periodic PCF (Fig. 3a), ∆r = s,
uniquely identifies the width of the viable zone, W = s. This means that the necrotic boundary,
B = R − W , can be identified from the non-periodic PCF. But the slope discontinuity in the
periodic PCF (at ∆r = s in Fig. 3b) identifies either the width of the viable zone, W = s, or
the necrotic boundary, B = s, with the non-uniqueness being due to periodicity, as discussed in
Section 2. Therefore, we cannot uniquely determine the necrotic zone boundary from the distance
at which the slope discontinuity occurs in the periodic PCF.

We now examine estimates of the non-periodic and periodic PCF from samples of 1000 syn-
thetic tumour spheroids. The central slice from synthetic tumour spheroids for four values of the
necrotic boundary are shown in the first row of Fig. 4, where the difference in density between the
necrotic and viable zones is visually undetectable (i.e. visually indistinguishable from CSR spatial
patterning). In the panels of the second and third row, directly below each test pattern, are the
corresponding average non-periodic and periodic PCFs (solid curves). The upper and lower broken
curves are the 95% confidence intervals, which are the 97.5 and 2.5 percentiles of the 1000 simula-
tions. The arrows identify critical points in the estimates of the PCFs, similar to that seen for the
points of slope discontinuity in the continuous PCFs (Fig. 3).

At short to moderate distances we find a comparable amount of (small) variability in both the
non-periodic and periodic PCFs (broken curves, second and third rows, Fig. 4). However, at
moderate to large distances there is a much greater variability in the non-periodic PCF than that
of the periodic PCF. This implies that we have greater confidence inferring salient features of the
periodic PCF at large distances. It is therefore advantageous to examine both PCFs together when
assessing the spatial pattern of tumours.
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Figure 3: Analytic PCFs for synthetic tumour spheroids, N = 5000,∆N = 1000, R = 500 and
h = R/50. Solid curves, B = 400. Dashed curves, B = 300. Dotted curves, B = 200. Dashed-
dotted curves, B = 100. (a) Non-period PCF. (b) Periodic PCF. The inner graph in (b) is for
B = 100 and it illustrates the small variations of gp in this case.

To assess the PCFs of the synthetic tumour spheroids it is useful to consider statistical significance
of the results, i.e. our confidence in distinguishing the results from the CSR state (null case). This
is done by presenting the 2.5 and 97.5 percentiles of the PCFs of simulated CSR point patterns
(the grey regions in the second and third rows of Fig. 4). In each case, 1000 CSR point patterns
are generated with the same number of points as the synthetic spheroid. Then, a point pattern’s
PCF signal found within the grey region could be interpreted as not distinctive from the CSR point
process. Therefore, this makes it difficult to estimate the critical points of the PCFs with just one
point pattern (or a small sample size) for B = 100 in Figs. 4(b) and (c), where the broken curves
essentially bound the grey CSR regions. In contrast, the two broken curves at the critical points in
Figs. 4(j), (n), (k) and (o) both lie below the grey CSR region. This indicates that it is possible to
provide an estimate of the necrotic boundary from just one point pattern in the cases when B = 300
and B = 400. We note that this contrast is mainly due to the difference in density between the
necrotic and viable zones, rather than the increase in the necrotic boundary (see ESM, Appendix
B, for a fixed value of B = 200 and varying ∆N).

The statistical significance of the PCF results is further examined by comparison to those for the
normalised density [35]. This first-order statistic is derived by considering the proportion of points
at a distance r from the origin

F (r) =

1

h

N∑
i=1

1(0,h](ri − r)

N
. (3.1)

Equation (3.1) is normalised by the radial projection of a Poisson process

F (r) =
1

h

∫ r+h

r

3r2

R3
dt =

(r + h)3 − r3

hR3
,

to obtain the normalised density

f(r) =
F (r)

F (r)
. (3.2)
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Figure 4: Synthetic tumour spheroid point patterns, N = 5000, ∆N = 1000, R = 500 and
h = R/50. Columns: left to right B = {100, 200, 300, 400}. Top row: Central slice of synthetic
tumour spheroid. The remaining rows are for statistics from 1000 realisations. Second row: Average
non-periodic PCF, solid curves. Third row: Average periodic PCF, solid curves. Fourth row:
Average normalised density, solid curves. The upper and lower broken curves are for the 97.5 and
2.5 percentiles, and the arrows are for the known distances of the critical points. The shaded region
is for the 97.5 and 2.5 percentiles of 1000 CSR point patterns.
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In the bottom row of Fig. 4, three of the four critical points lie within the grey CSR region and
the broken curves essentially bound the grey CSR region. This illustrates that it is difficult to
provide an estimate of the necrotic zone boundary from just one point pattern (or small sample
size) with the normalised density, demonstrating a greater confidence in the statistical significance
of the second-order PCF method.

4 Real tumour spheroids

We have shown that the PCF method can provide a reliable estimate of the (known) radial distance
of the necrotic zone boundary, B, from the centre of a synthetic tumour spheroid. However, in
practice, there are two important distinctions to consider when examining real tumour spheroids.

The first distinction is that real tumour spheroids can be ellipsoidal in shape, for example, see
Fig 5. Therefore, we consider an ellipsoidal spatial domain centred at the origin of a Cartesian
coordinate system and aligned with the axes,

x2

X2
+
y2

Y 2
+
z2

Z2
≤ 1,

where X,Y, Z are the lengths of the three semi-principle axes. We now project, or map the points
to the interval [0, 1] via

a =

√
x2

X2
+
y2

Y 2
+
z2

Z2
, with 0 ≤ a ≤ 1. (4.1)

The previous PCF analysis for the radial distance of spherical synthetic tumours holds for this
non-dimensional problem, with r = a and R = 1 in Eqn. (2.5). Therefore, we can estimate the
dimensionless necrotic zone boundary, B̃ ≤ 1, for this projection of the data points. The inverse
mapping then provides estimates for the lengths of the three semi-principle axes of the ellipsoidal
necrotic zone boundary

BX = B̃X, BY = B̃Y and BZ = B̃Z. (4.2)

The second distinction is that the necrotic zone boundary in a real tumour spheroid is unknown,
but it can be estimated by a human expert. Without prior knowledge of the PCF estimates, human
expert estimates for the necrotic zone boundary in nine tumour spheroids were obtained (see Table
2). In addition to this, we automate the data collection process and subsequent evaluation of the
PCF estimates of the necrotic zone boundary for each tumour (see Sections 4.1 and 4.2). Together,
this allows for an unbiased comparison between the human expert and PCF estimates of the necrotic
zone boundary for each tumour (see Tables 2 and 3).

4.1 Experiments and data collection

Nine homotypic tumour spheroids were formed from the breast cancer cell line T47D by the liquid
overlay method [36]. An initial number, Ns, of seed cells (see Table 1) together with medium were
placed in a convex well, which is coated with a non-adhesive layer. Mature spheroids were obtained
after being cultured for 12 days in the incubator, each with Ne number of cells (see Table 1). The
spheroids were then removed from the wells, fixed, stained with Draq 5 to label the nuclei, and
optically cleared. Imaging of the spheroids was performed with a Digital scanned laser light-sheet
fluorescence microscope [37]. They were categorised, by visual inspection, into three groups: (I)
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Group I Group II Group III
Ia Ib Ic IIa IIb IIc IIIa IIIb IIIc

X 93 102 114 173 173 145 169 190 169
Y 115 107 149 190 176 201 250 196 233
Z 110 88 133 145 159 178 218 165 180
Ns 500 1000 2000 5000 5000 5000 10000 10000 10000
Ne 4597 3983 10334 25806 23739 25943 36732 32916 35200
N 3607 3127 7900 16356 15593 17864 30555 21226 24729

Table 1: Data for nine tumour spheroids. Group I: no visible necrotic core. Group II: small necrotic
core. Group III: large necrotic core. X,Y, Z are the lengths of the three semi-principle axes in µm
for each ellipsoidal spatial domain. Ns is the number of initially seeded cells for each tumour
spheroid. Ne is the total number of cells in the raw data set for each mature tumour spheroid. N is
the number of cells in each data subset (i.e. ellipsoidal spatial domain) used in the spatial analysis.

spheroids with no visible necrotic core, (II) spheroids with a small necrotic core and (III) spheroids
with a large necrotic core. A central slice of the image stack of one tumour spheroid from each of
the three groups is shown in Fig. 5, with central slices from the remaining six tumour spheroids
presented in Fig. S2 of the ESM, Appendix C.

The point patterns, or raw data sets are the positions of the nuclei of the cells. Detecting the cell
nuclei in the three-dimensional images of the spheroids is achieved by applying a custom multi-scale
Laplacian of Gaussian (LoG) detection algorithm [38]. Further details of the detection method can
be found in the ESM, Appendix D.

Subsets of the raw data points are obtained by removing data points associated with the irreg-
ularities of the surface of the tumour spheroids. For each data subset a spatial domain is defined
by an ellipsoid centred at the origin with the three semi-principal axes aligned with the Cartesian
axes. This is done systematically. (1) Find the smallest convex set of points (i.e. the convex hull)
that contain all the raw data points [39]. (2) Fit an ellipsoid to the convex hull, using a linear least
squares algorithm [40], to obtain initial estimates of the lengths of the three semi-principal axes,
X∗, Y ∗ and Z∗, with X∗ ≤ Y ∗. (3) The origin is chosen as the centre of mass in each data set.
The MATLAB function #pca is used to find three orthogonal directions (principle components) in
which each data set has the largest variances. The point pattern is then rotated so that the three
principle axes of each data set coincide with the Cartesian coordinate system [41]. (4) The data
points are projected onto the interval [0, 1] using Eqn. (4.1), with X = X∗, Y = Y ∗ and Z = Z∗.
The global maximum of F (a), given by Eqn (3.1), provides an estimate of the non-dimensional
distance, a = Ã, associated with the surface irregularities of each tumour spheroid (see Fig. 6).
(5) Data points with a > Ã are removed from each raw data set and the inverse map, Eqn. (4.2),
provides the lengths of the three semi-principal axes, X = ÃX∗, Y = ÃY ∗ and Z = ÃZ∗, (with
X ≤ Y ) for the ellipsoidal spatial domains (see Table 1).

The subsets of N data points for each of the nine tumours (see ESM, Appendix E) are subse-
quently analysed with the PCF methods.
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Figure 5: Central image slice and corresponding point pattern analysis for one tumour spheroid
from each of the three groups. The rows top to bottom correspond to Ia, IIa and IIIa respectively.
The first column is the central slice of the tumour spheroids. The unit of the length in the images is
a µm. The white curves superimposed on the central image slices outline the necrotic zone identified
by a human assessor. The second and third columns are the non-periodic PCF and periodic PCF
respectively, h = 0.02. The blue curves are for the PCF statistics. The black curves are the analytic
PCFs best-fit to the statistics (blue curves), using a non-linear least squares method. The shaded
region is for the 97.5 and 2.5 percentiles of 1000 CSR point patterns.
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Figure 6: Removal of data points associated with the irregularities of the surface for three tumour
spheroids. Points with a > Ã are removed from the raw datasets. (a) Tumour spheroid Ia, Ã = 0.94.
(b) Tumour spheroid IIa, Ã = 0.80. (c) Tumour spheroid IIIa, Ã = 0.94.

4.2 Spatial analysis

The nine subsets of data points, with ellipsoidal spatial domains, are mapped to the interval [0, 1]
using Eqn. (4.1). The non-periodic and periodic PCFs (blue curves) are shown in Fig. 5, and
Fig. S2 of the ESM, Appendix C. The PCFs for the real tumour spheroids can be examined in a
similar way to that of the synthetic tumour spheroids, as discussed in Section 3. However, unlike
the synthetic tumour spheroids, the non-dimensional necrotic zone boundary, B̃, is unknown in
the real tumour spheroids. Additionally, it is difficult to provide an estimate of the necrotic zone
boundary by visual examination of the PCFs alone. To overcome this difficulty, and to automate
the PCF estimates of necrotic zone boundary, we fit the analytical PCFs (see ESM, Appendix A)
to the statistical PCFs. A non-linear least squares method with two parameters ∆N and B̃ is used
to find the best fit (e.g. see black curves in Fig. 5). The point at which there is slope discontinuity
in the fitted PCF is taken as the critical point used in determining the estimates for the necrotic
zone boundary, B̃. Equation (4.2) gives estimates for the lengths, BX , BY and BZ , of the three
semi-principle axes of the ellipsoidal necrotic zone boundary in each tumour spheroid. The two
lengths BX and BY (with BX ≤ BY ) for each tumour spheroid are recorded in the second and
third row of Table 2.

Group I Group II Group III
Ia Ib Ic IIa IIb IIc IIIa IIIb IIIc

Human
BX - - - 36 36 34 81 83 93
BY - - - 43 40 53 138 90 128

Non-periodic PCF
BX 12 6 23 42 46 34 94 92 96
BY 15 6 30 46 47 46 140 94 132

Periodic PCF
BX - - 52 42 49 30 94 101 95
BY - - 69 46 50 42 139 104 131

DBSCAN
BX 84 - - 43 47 33 77 74 80
BY 103 - - 47 48 45 114 77 110

Table 2: Necrotic zone boundary estimates in µm for the nine tumour spheroids. The shaded PCF
estimates are for fitted PCFs (and therefore critical points) that reside within the 97.5 and 2.5
percentiles of 1000 CSR point patterns (e.g. see first row of results for spheroid Ia in Fig. 5).

The shaded PCF estimates in Table 2 are for fitted PCFs (and therefore critical points) that
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Group II Group III
Average

IIa IIb IIc IIIa IIIb IIIc

Non-periodic PCF
BX 15.9% 26.9% 0.1% 16.5% 10.7% 3.2% 12.2%
BY 7.6% 18.2% -12.5% 1.4% 4.7% 3.5% 8%

Periodic PCF
BX 15.9% 35.2% -11.8% 16.5% 21.6% 2.1% 17.2%
BY 7.6% 25.8% -20.1% 0.6% 15.9% 2.7% 12.1%

DBSCAN
BX 18.1% 30.7% -4.2% -4.1% -10.6% -13.8% 13.6%
BY 10.0% 21.2% -14.1% -17.1% -14.7% -13.4% 15.1%

Table 3: Percentage difference in computed estimates relative to the human estimates, for Group
II and III tumour spheroids. The smallest (absolute) percentage differences are highlighted in blue.
The rightmost column shows the average (absolute) percentage difference for each method.

reside within the CSR shaded regions (e.g. see black curves for spheroid Ia in Fig. 5). This means
that we can reject these estimates as they may be considered as not distinctive from the CSR point
process. This is the case for all three Group I tumour spheroids with no visible necrotic cores,
and since the Group I tumour spheroids are the smallest in size it is reasonable to infer that the
innermost cells still have sufficient nutrient and oxygen to remain viable [42].

We compare the non-periodic and periodic PCF estimates for BX and BY to those of a human.
The human estimates are based on visual examination of a central image slice of each tumour,
where white curves are superimposed onto the images to identify the necrotic core boundary in
each tumour spheroid (e.g. see central image slices in Fig. 5). Fitting an ellipse to the white curves
in each image then provides human estimates for BX and BY , which are shown in the first row of
Table 2.

Recorded in Table 3 (first and second rows) are the percentage difference in the PCF estimates
relative to the human estimates for the Group II and III tumour spheroids, with visible necrotic
cores. The averaged results (rightmost column) show that the non-periodic PCF estimates have
the smallest (absolute) percentage difference, when compared to those of the human. A similar
result is found when calculating the overall mean squared error (MSE) for each PCF method; Non-
periodic PCF MSE=45 and Periodic PCF MSE=96. We believe that the main difference between
the PCF and human estimates can be attributed to the fact that the human estimates are based
on a single two-dimensional central slice of each spheroid, whereas the PCF estimates are based
on the three-dimensional point pattern data of each spheroid. Other contributing factors in the
percentage difference are likely to include the processing method of the raw data and the spatial
model used for the estimation of the the critical point in the PCFs. We also note that there appears
to be a positive bias in the estimates (21 out of 24 in Table 3), and further investigation of this is
left to future research.

To conclude the analysis, we implement an existing method commonly used to evaluate spatial
clustering, using the three-dimensional point pattern data of each spheroid. The density-based
spatial clustering of applications with noise (DBSCAN) algorithm classifies points in high-density
regions (e.g. viable zone) as a cluster [16]. Points that are in low-density regions (e.g. necrotic
zone) are classified as outliers. A subset of outliers for each tumour spheroid is used to calculate the
DBSCAN estimates shown in the bottom row of Table 2 (see ESM, Appendix F). The difference
in the DBSCAN and human estimates is comparable to the difference in the PCF and human
estimates (see bottom row of Table 3), with an overall MSE=138. The results demonstrate that
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the PCF method is a potentially useful alternative to existing standard clustering methods in
providing estimates for the necrotic zone boundary in tumour spheroids.

5 Discussion

We have derived one-dimensional non-periodic and periodic PCFs for the radial, azimuthal, and
polar projections of a point pattern. This is different from the usual Euclidean distance based PCF
[25, 26, 27, 28, 29]. Analysis of spatial structure with one-dimensional PCFs is useful in situations
where the Euclidean distance is not the main quantity of interest, as is the case in identifying the
necrotic zone boundary in tumour spheroids.

We analysed synthetic tumour spheroids (i.e. simulated datasets) with our PCFs to illustrate the
methodology for identifying the necrotic zone boundary. It was found that a critical point (at which
there is a slope discontinuity) in the non-periodic PCFs corresponds to the width of the viable zone
in synthetic tumour spheroids, and this allows us to identify the necrotic zone boundary. However,
for small sample sizes, when the non-periodic PCF is used, the critical point can be obscured by
noise (at large distances). Using the periodic PCF, we reduced the noise in the PCFs, but with the
drawback that the critical point corresponds to either the width of the viable zone, or the necrotic
zone boundary itself. However, by examining both the non-periodic and periodic PCFs, we are able
to provide a more statistically significant (i.e. it lies farther from CSR) estimate of the necrotic
zone boundary than that obtained using the normalised cell density.

The PCF method was modified to provide estimates for the lengths of the three semi-principle
axes of an ellipsoidal shaped necrotic zone boundary, and then applied to three-dimensional point
patterns of nine experimental tumour spheroids. The PCF estimates were compared to those of
a human and the DBSCAN method [16]. The primary difference in the computed and human
estimates was attributed to the human estimates being based only on a two-dimensional slice
(image) of each tumour spheroid. The average percentage differences of the PCF and DBSCAN
method were comparable (see rightmost column in Table 3), and this demonstrates that the PCF
method potentially has merit as an alternative to the existing DBSCAN method.

The focus of this study has been to provide estimates for the radial distance(s) of the necrotic core
boundary from the centre of a tumour spheroid. These estimates provide a simple metric to classify
and categorise tumour spheroids, which has potential application to high-throughput comparative
assays [8, 9, 10]. For example, the PCF method could be used to investigate population-level
variability in the size of the necrotic zone by using a larger sample of mature tumour spheroids
from the same cell-line, grown from the same number of seeded cells. This would allow one to
study differences in nutrient consumption between cell types, or the effects of different cell culture
methods, or drug treatments. The automatic evaluation of PCF estimates has clear advantage over
manual human estimates in the assessment of such high-throughput comparative assays.

The PCF method also has two main advantages over the DBSCAN method. The first being that
the DBSCAN method is semi-automatic, requiring human input for each tumour spheroid analysed.
The second advantage is that only the PCF method provides reliable estimates for point pattern
data that is visually indistinguishable from the CSR point process (see ESM, Appendix F).

Although this work is concerned with homotypic spheroids there are approaches that aim at
more complex spheroids, including different cell types and heterogeneities in the microenvironment.
Our data analysis can be readily applied to data sets from such complex spheroids. Furthermore,
adjusting the segementation method would allow for the extraction of cell position information from

16



histological stains and enable the analysis of sections of cancer patient tumours. Therefore, the
PCF method could potentially have a role in diagnostic testing and personalised cancer treatment.

More generally, and in addition to the estimates for the necrotic zone boundary, it is important
to understand that the PCFs can provide multi-scale spatial information on tumour spheroids (e.g.
Fig. 2). Previous studies have shown that the PCF is a close to a sufficient summary statistic,
essentially capturing all the spatial information in a given point pattern [34, 43]. Therefore, our
PCF method could be implemented in combination with inferencing algorithms such as approximate
Bayesian computation [43], which require close to sufficient summary statistics, to parameterise
tumour growth models for specific cell types and culture conditions [11, 12, 13, 14].
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