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David Michael Roberts The Weak Choice Principle
WISC may Fail in the
Category of Sets

Abstract. The set-theoretic axiom WISC states that for every set there is a set of sur-

jections to it cofinal in all such surjections. By constructing an unbounded topos over the

category of sets and using an extension of the internal logic of a topos due to Shulman,

we show that WISC is independent of the rest of the axioms of the set theory given by a

well-pointed topos. This also gives an example of a topos that is not a predicative topos

as defined by van den Berg.

Keywords: WISC, Choice principle, Set theory, ETCS, Toposes.

1. Introduction

Well-known from algebra is the concept of a projective object : in a finitely
complete category this is an object P such that any epimorphism with
codomain P splits. The axiom of choice (AC) can be stated as saying that
every set is projective in the category of sets. Various constructive set theo-
ries seek to weaken this, and in particular the axiom known as PAx (Presen-
tation Axiom) [1] or CoSHEP (Category of Sets Has Enough Projectives)
asks merely that every set X has an epimorphism P � X where P is a
projective set. Many results that seem to rely on the axiom of choice, such
as the existence of enough projectives in module categories, may be proved
instead with PAx. As a link with a more well-known axiom, PAx implies the
axiom of dependent choice.

There is, however, an even weaker option, here called WISC (to be ex-
plained momentarily). Consider the full subcategory Surj/X ↪→ set/X of
surjections with codomain X, in some category set of sets; clearly it is a
large category. Then PAx implies the statement that Surj/X has a weakly
initial object, namely an object with a map to any other object, not nec-
essarily unique (the axiom of choice says idX : X → X is weakly initial in

This is the final published version of the preprint arXiv:1311.3074.

Presented by Constantine Tsinakis; Received September 27, 2014

Studia Logica (2015) 103: 1005–1017
DOI: 10.1007/s11225-015-9603-6 c© Springer Science+Business Media Dordrecht 2015

http://arxiv.org/abs/1311.3074
http://crossmark.crossref.org/dialog/?doi=10.1007/s11225-015-9603-6&domain=pdf


1006 D. M. Roberts

Surj/X). Another way to think of the presentation axiom is that for every
set X there is a ‘cover’ P � X such that any surjection Y � P splits.

The axiom WISC (Weakly Initial Set of Covers), due to Toby Bartels and
Mike Shulman, asks merely that the category Surj/X has a weakly initial
set, for every X. This is a set IX of objects (that is, of surjections to X)
such that for any other object (surjection), there is a map from some object
in IX . To continue the geometric analogy, this is like asking that there is a
set of covers of any X such that each surjection Y � X splits locally over
at least one cover in that set. An example implication of WISC is that the
cohomology H1(X,G) defined by Blass in [2] is indeed a set. The assertion
that H1(X,G) is a proper class seems to be strictly weaker than ¬WISC,
but to the author’s knowledge no models have yet been produced where this
is the case.

The origin of the axiom WISC (see [8]) was somewhat geometric in flavour
but the question naturally arises whether toposes, and in particular the
category of sets, can fail to satisfy WISC. A priori, there is no particular
reason why WISC should hold, so the burden is to supply an example where
it fails. It goes without saying that neither AC nor PAx can hold in such an
example.

The first result in this direction was from van den Berg (see [12]1) who
proved that WISC implies the existence of a proper class of regular cardinals,
and so WISC must fail in Gitik’s model of ZF [4]. This model is constructed
assuming the existence of a proper class of certain large cardinals, and it
has no regular cardinals bigger than ℵ0. Working in parallel to the early
development of the current paper, Karagila [5] gave a model of ZF in which
there is a proper class of incomparable sets (sets with no injective resp.
surjective functions between them) surjecting onto the ordinal ω. This gave
a large-cardinal-free proof that WISC was independent of the ZF axioms,
answering a question raised by van den Berg.

The current paper started as an attempt to also give, via category-
theoretic methods, a large-cardinals-free proof of the independence of WISC
from ZF. Since the release of [5], this point is moot as far as independence
from ZF goes. However, the proof in [5] relies on a symmetric submodel of a
class-forcing model, which is rather heavy machinery. Thus this paper, while
proving a slightly weaker result, does so with, in the opinion of the author,
far less.

1In that paper, WISC is used in a guise of an equivalent axiom called AMC, the Axiom
of Multiple Choice. To avoid confusion with other axioms with that name, this paper sticks
with the term ‘WISC’.
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The approach we take is to consider the negation of WISC in the internal
logic of a (boolean) topos. This allows us to interpret the theory of a well-
pointed topos together with ¬WISC. However, since this internal version of
WISC holds in any Grothendieck topos (assuming for example AC in the
base topos of sets) [12], we necessarily consider a non-bounded topos over
the base topos of sets (recall that boundedness of a topos is equivalent to it
being a Grothendieck topos). In fact the topos we consider is a variant on
the ‘faux topos’ mentioned in [9, IV 2.8] (wherein ‘topos’ meant what we
now call a Grothendieck topos).

The reader familiar with such things may have already noticed that WISC
or its negation is not the sort of sentence that can be written via the usual
Kripke–Joyal semantics (see e.g. [7, §VI.6]) used for internal logic, as it
contains unbounded quantifiers. As a result, we will be using an extension
called the stack semantics, given by Shulman [10], that permits their use.
The majority of the proof is independent of the details of the stack semantics,
which are only used to translate WISC from a statement in a well-pointed
topos to a general topos (in fact a locally connected topos, as this is the
only case we will consider).

To summarise: starting from a well-pointed topos with natural number
object we give a proper-class-sized group Z equipped with a certain topol-
ogy, and consider the topos Zset of sets with a continuous action of this
group. Of course, the preceding sentence needs to be formalised appropri-
ately, and we do this in terms of a base well-pointed topos and a large
diagram of groups therein. We reduce the failure of WISC in the internal
logic of Zset to simple group-theoretic statements. It should be pointed out
that classical logic is used throughout, and all the toposes in this note are
boolean.

Finally, the topos constructed as in the previous paragraph is not a pred-
icative topos as defined in [11]. These are analogues of toposes that should
capture predicative mathematics, as toposes capture the notion of intuition-
istic mathematics. This apparent failure is understood and carefully dis-
cussed in loc. cit.; the example given in this paper is hopefully of use as a
foil in the development of predicative toposes.

2. WISC in the Internal Language

We use the following formulation of WISC, equivalent to the usual statement
in a well-pointed topos and due to Dorais [3].
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WISC (in set). For every set X there is a set Y such that for every sur-
jection q : Z → X there is a map s : Y → Z such that q ◦ s : Y → X is a
surjection.

The aim of this paper is to show that an internal version of ¬WISC is
valid in the (non-well-pointed) topos constructed in section 3 below. The
internal logic of a topos, in the generality required here, is given by the
stack semantics. We refer to [10, section 7] for more details on the stack
semantics, recalling purely what is necessary for the translation of WISC
into the internal logic of a topos S (Shulman takes weaker assumptions on
S, but this extra generality is not needed here).

If U is an object of S we say that a formula of category theory φ with
parameters in the category S/U is a formula over U . We have2 the base
change functor p∗ : S/U → S/V for any map p : V → U , and call the for-
mula over V given by replacing each parameter of φ by its image
under p∗ the pullback of φ (denoted p∗φ). Note that the language of cat-
egory theory is taken to be two-sorted, so there are quantifiers for both
objects and arrows separately. Here and later � denotes a map that is an
epimorphism.

Definition 1. (Shulman [10]) Given the topos S, and a sentence φ over U ,
we define the relation U � φ recursively as follows

• U � (f = g) ↔ f = g

• U � � always

• U � ⊥ ↔ U � 0

• U � (φ ∧ ψ) ↔ U � φ and U � ψ

• U � (φ ∨ ψ) ↔ U = V ∪ W , where i : V ↪→ U and j : W ↪→ U are
subobjects such that V � i∗φ and W � j∗ψ

• U � (φ ⇒ ψ) ↔ for any p : V → U such that V � p∗φ, also V � p∗ψ

• U � ¬φ ↔ U � (φ ⇒ ⊥)

• U � (∃X)φ(X) ↔ ∃p : V � U and A ∈ Obj(S/V ) such that V � p∗φ(A)

• U � (∃f : A → B)φ(f) ↔ ∃p : V � U and g : p∗A → p∗B ∈ Mor(S/V )
such that V � p∗φ(g)

• U � (∀X)φ(X) ↔ for any p : V → U and A ∈ Obj(S/V ), V � p∗φ(A)

2Technically, this is only after choosing a splitting of the fibred category S2 → S, but
in practice one only deals with a finite number of instances so this can be glossed over.
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• U � (∀f : A → B)φ(f) ↔ for any p : V → U and j : p∗A → p∗B ∈
Mor(S/V ), V � p∗φ(j)

If φ is a formula over 1 we say φ is valid if 1 � φ.

Comparing with [7, §VI.6] one can recognise the Kripke–Joyal seman-
tics as a fragment of the above, where attention is restricted to monomor-
phisms rather than arbitrary objects in slice categories, and all quantifiers
are bounded.

Since our intended model will be built using not just an arbitrary topos,
but a locally connected and cocomplete one, the following lemma will sim-
plify working in the internal logic. The proof follows that of Lemma 7.3 in
[10]. We recall that a locally connected topos E is a topos over set with
an additional left adjoint π0 to the inverse image part of the global section
functor, and an object A is called connected if π0(A) = 1.

Lemma 2. Let E be a locally connected cocomplete topos. Then then if for
any connected object V , arrow p : V → U and A ∈ Obj(S/V ) we have
V � p∗φ(A), then U � (∀X)φ(X).

Here ‘locally connected cocomplete’ is relative to a base topos set that is
well-pointed (hence boolean) topos with natural number object (nno). We
will refer to the objects of set as ‘sets’, but without an implication that these
arise from a particular collection of axioms. We will assume throughout that
all toposes will come with an nno.

For a locally connected and cocomplete topos the statement of WISC
translates, using definition 1 and applying Lemma 2, into the stack semantics
as follows:

∀ X → U, U connected,

∃ V
p
� U, Y → V,

∀ W
q→ V, W connected, Z

g
� W ×U X,

∃ T
r� W, T ×V Y

(pr1,l)−−−−→ T ×W Z,

the map T ×V Y
(pr1,l)−−−−→ T ×W Z

r∗(g)−−−→ T ×U X is an epi. (1)

Note also that “is an epi” is a proposition whose statement in the stack
semantics is equivalent to the external statement (see discussion around
example 7.10 of [10]). One does not need any knowledge of the stack seman-
tics for the rest of this paper, and the uninitiated may choose to take (1)
as the definition of WISC in the internal language of a locally connected
cocomplete topos, and ignore the stack semantics entirely.
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We will give a boolean set-topos E that is locally connected and cocom-
plete and in which the following statement, the negation of (1), holds:

∃ X → U, Uconnected,

∀ V
p
� U, Y → V,

∃ W
q→ V, W connected, Z

g
� W ×U X,

∀ T
r� W, T ×V Y

(pr1,l)−−−−→ T ×W Z,

the map T ×V Y
(pr1,l)−−−−→ T ×W Z

r∗(g)−−−→ T ×U X is not epi. (2)

We denote the natural number object of E by Nd, which is given by the
image of the nno N of set under the inverse image part of the geometric
morphism E → set.

Proposition 3. In a connected, locally connected cocomplete topos E such
that π0 reflects epimorphisms, the statement

∀ Y � V, V connected,

∃ Ω � Nd inducing π0(Ω) � π0(Nd),

∀ T � V, T connected, T ×V Y
l−→ Ω,

l is not epi. (3)

implies (2), the negation of WISC in the internal language of E.

Proof. We give some facts about toposes that we will use in what follows.
First, in a connected topos the terminal object is connected. Second, in a
cocomplete topos one has infinitary extensivity, namely A ×B

∐
i∈I Ci �∐

i∈I A ×B Ci, and the initial object 0 is strict : any map to it is an isomor-
phism. Third, since π0 is a left adjoint, it preserves epimorphisms. Combined
with the hypothesis on π0 this means a map f in E is an epimorphism if
and only if π0(f) is an epimorphism. Similarly π0 preserves initial objects
and the hypotheses imply it also reflects initial objects.

Now assume that (3) holds in E. In (2) take X → U to be Nd → 1
(using 1 is connected). Given an epimorphism V � 1, V has a component
as π0(V ) → 1 is onto and V =

∐
v∈π0(V ) Vv (and 1 is projective). Fix a

component V0 ↪→ V .
Given any Y → V , take Y0 = V0 ×V Y to get Y0 → V0. If Y0 is initial,

then (2) can be seen to hold by taking W = V0 and g = id since T ×V Y =
T ×V0 Y0 = 0 and as r is an epi and W is connected, T × Nd is not initial.

Hence we can assume Y0 is not initial, and hence has at least one compo-
nent and so Y0 → V0 is an epi. Fix some Ω � Nd inducing an isomorphism
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π0(Ω) � π0(Nd) such that the rest of (3) holds. In (2) take q to be the in-
clusion V0 ↪→ V (hence W = V0, which is connected), and Z = V0 × Ω with
the epimorphism g the product of idV0 and Ω � Nd.

Now take any T and pair of maps T � V0 and T ×V Y = T ×V0 Y0
(pr1,l)−−−−→

T ×V0 Z = T × Ω. We know that T has a component by a similar argument
to above, say T0 ↪→ T . Then T0 → V0 is epi so (3) implies T0 ×V0 Y0 =
T0 ×V Y → Ω is not epi. This then implies T0 ×V Y → Ω → Nd is not epi,
since if it were, π0(T0 ×V Y ) → π0(Ω) ∼−→ π0(Nd) would be epi, implying
π0(T0 ×V Y ) → π0(Ω) and hence T0 ×V Y → Ω was epi. Thus there is some
component of Nd not in the image of this map, say indexed by n ∈ N.

Then T0×V Y → T0×Nd is not epi, as the component of T0×Nd indexed
by n (isomorphic to T0, which has T0 → 1 epi) is not in its image. It then
follows that T ×V Y → T × Nd is not epi, and so (2) holds.

3. The Construction

Given our base topos set, we can consider the category of objects in set
equipped with a linear order with no infinite descending chains, which we
shall call ordinals, in analogy with material set theory. The usual Burali–
Forti argument—which requires no Choice—tells us there is a large category
O with objects ordinals and arrows the order-preserving injections onto ini-
tial segments. This large category is a linear preorder and has no infinite
strictly descending chains. That there are multiple representatives for a par-
ticular order type, that is, non-identical isomorphic ordinals, does not cause
any problems. We also note that O has small joins (defined up to isomor-
phism in O).

Given a topological group G, the category of sets with a continuous G
action forms a cocomplete boolean topos Gset. In practice, one specifies a
filter F of subgroups of G and then those G-sets all of whose stabiliser groups
belong to F are precisely those with a continuous action for the topology
generated by F .

For any group G, let C be a collection of finite-index subgroups closed
under finite intersections. Then there is a filter FC with elements those sub-
groups H ≤ G containing a subgroup appearing in C (we say the filter is
generated by C). The category of continuous G-sets is then a full subcategory
of the category of G-sets with finite orbits. The internal hom Y X is given
by taking the set set(X,Y ) then retaining only those functions whose sta-
biliser under the G-action f �→ g ·(f(g−1 · −)

)
belongs to FC. The subobject

classifier is the two-element set with trivial G-action.
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Remark 4. Notice that every transitive G-set X that is continuous with
respect to the topology given by FC (all G-sets will be assumed continuous
from now on) has an epimorphism from some G/L where L ∈ C. This is
because any stabiliser Stab(x) ∈ FC, x ∈ X, is assumed to contain an
element of C.

Example 5. For α an ordinal, let Z
α be the set of functions α → Z, con-

sidered as a group by pointwise addition. Consider functions d : α → N+ =
{1, 2, 3, . . .} such that d(i) �= 1 for only finitely many i ∈ α, which we
shall call local depth functions. Such a function defines a subgroup dZ :=∏

i∈α d(i)Z ≤ Z
α of finite index. The intersection of two such subgroups,

given by d1 and d2, is given by the function i �→ lcm{d1(i)d2(i)}. The sub-
groups belonging to the filter generated by this collection will be called
bounded depth subgroups. From now on Z

α will be regarded as having the
topology generated by this filter.

If we are given a split open surjection p : H → G (with p and its splitting
continuous) there is a geometric morphism (p∗ � p∗) : Hset → Gset with
p∗ fully faithful and possessing a left adjoint p! � p∗. Here p∗ sends a G-set
to the same set with the H-action via p and p!(X) = X/ ker(p) with the
obvious G-action. The inverse image functor p∗ is in this case also a logical
functor, meaning that it preserves the subobject classifier and internal hom,
as well as finite limits. In the case that G is the trivial group: p∗ is denoted
(−)d and sends a set to the same set with the trivial action; p! is denoted
π0 and π0(X) is the set of orbits of the H-action.

Example 6. For α ↪→ β ordinals, there is a split open surjection Z
β → Z

α,
projection being given by restriction of the domain, and the splitting given
by extending a function by 0. Note that a local depth function on α gives a
local depth function on β by extending it by 1.

Now consider a functor G : Oop → TopGrpsos, where TopGrpsos is
the category of topological groups and split open surjections. Define the
category Gset with objects pairs (α,X) where α is an ordinal and X is an
object of G(α)set, and arrows Gset((α,X), (β, Y )) = G(γ)(Xγ , Yγ) where
γ = max{α, β} and Xγ , Yγ are X,Y considered as G(γ)-sets via the inverse
image functors as above. The hom-sets are defined without making any
choices since O is a linear preorder, and so γ is either α or β (and we can
take γ = α if α � β). Composition is well defined due to the full faithfulness
of the inverse image functors. The objects of Gset will be referred to as G-
sets. Informally, this category is the colimit of the large diagram of inverse
image functors.
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Proposition 7. The category Gset is a connected, locally connected, atomic
and cocomplete boolean set-topos. Moreover, π0 reflects epimorphisms.

Proof. Let us first show that we have a topos. Finite limits exist because
they can be calculated in any G(α) where α is greater than all ordinals
appearing in the objects in the diagram, and when the universal property
is checked in G(β) for β > α, the limit is preserved by the inverse image
functor. Likewise the internal hom (α,X)(β,Y ) is defined as X

Yγ
γ in G(γ)

(γ = max{α, β}) and its universal property is satisfied due to inverse im-
age functors preserving internal homs. The subobject classifier 2 in set is
preserved by all inverse image functors set → G(α)set, so given any sub-
object in Gset it has a classifying map to 2. Thus Gset is a topos, and
has a geometric morphism ((−)d � (−)G) : Gset → set as it is locally small
((−)G := Gset(1,−) is the global points functor). It is easy to check there
is a functor π0 sending a G(α)-set to its set of orbits and this is a left ad-
joint to (−)d. Thus Gset is locally connected. Since (−)d is fully faithful and
logical Gset is also connected and atomic respectively. Small colimits can
be calculated in G(α) where α is some small join of the ordinals appearing
as the vertices of the diagram, and the universal property is verified since
inverse image functors preserve all small colimits. Lastly, Gset is boolean as
1 → 2 ← 1 is a coproduct cocone, using the definition of colimits and the
fact it is such in set.

To prove the last statement, suppose X → Y in Gset (without loss of
generality, take this in G(α)set for some α) is such that π0 induces an
epimorphism of connected components. Then for each orbit of Y there is an
orbit of X mapping to it, and equivariant maps between orbits are onto, so
X → Y is onto as a map of sets and hence an epi.

The stack semantics in Gset give a model of the structural set theory
underlying set, minus any Choice that may hold in set (see the discussion
after Lemma 7.13 in [10]). We will take a particular diagram of groups with
the properties we need.

Corollary 8. The diagram Z : α �→ Z
α, where Z

α is regarding as hav-
ing the topology given by the filter of bounded depth subgroups, gives rise
to a connected, locally connected boolean topos Zset such that π0 reflects
epimorphisms.

If one is working in a setting that permits such reasoning, the proper
class-sized group to which the introduction alludes is the colimit over the
inclusions Z(α) ↪→ Z(β) given by the splittings, for α ↪→ β. The rest of the
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paper will show that internal WISC fails in Zset, and so WISC itself fails
in the well-pointed topos given by the stack semantics of Zset.

4. The Failure of WISC

We need some facts that hold in Zset regarding local depth functions. As
a bit of notation, let us write Z/dZ for the transitive Z-set Z

α/dZ for
α = dom(d).

Lemma 9. Let Z/d1Z → Z/d2Z be an equivariant map of Z-sets. Then for
every i ∈ α we have d2(i) | d1(i).

Proof. The existence of the map implies d1Z is conjugate to a subgroup of
d2Z, but all groups here are abelian so it is a subgroup of d2Z. This implies
d1(i)Z ≤ d2(i)Z ≤ Z for each i ∈ α and the result follows.

We also need to consider what taking pullbacks looks like from the point
of view of local depth functions.

Lemma 10. Any orbit in

Z/(d1Z ∩ d2Z) ⊂ Z/d1Z ×Z/d3Z Z/d2Z

is isomorphic to a transitive Z-set with local depth function d given by

d(i) = lcm{d1(i), d2(i)}, ∀i ∈ α

where α = max{dom(d1), dom(d2)}.

Proof. Notice that the fibred product as given is isomorphic to
∏

i∈α

Z/d1(i)Z ×Z/d3(i)Z Z/d2(i)Z

where the Z
α action is such that the ith coordinate—a copy of Z—acts

diagonally on the ith factor of the preceeding expression. The stabiliser
of any (ni, n

′
i)i∈α is then the product of the stabilisers of the Z-action of

the various Z/d1(i)Z ×Z/d3(i)Z Z/d2(i)Z. We thus only need to consider the
simpler problem of determining the stabilisers for a Z-set Z/kZ×Z/mZ Z/lZ.

The stabiliser of (0, 0) is Z/(kZ ∩ lZ), from which the result follows
by the description in example 5 of the intersection of subgroups given by
local depth functions. We only then need to consider the stabilisers of (0, n)
for n ∈ Z/lZ as all others are equal to one of these by abelianness – but
Stab(0, n) is again Z/(kZ ∩ lZ) using abelianness. The statement regarding
local depth functions then follows.



The Weak Choice Principle WISC... 1015

We need a special collection of subgroups of Z
α in the proof of theorem

11 below, namely those given by local depth functions δ[α, n, i] : α → N+

defined as

δ[α, n, i](k) =

{
n if k = i;
1 if k �= i.

Note that the transitive Z-set Z/δ[α, n, i]Z has underlying set Z/nZ, and
that Ω[α, i] :=

∐
n∈N+

Z/δ[α, n, i]Z is an object of Zset for any α ∈ O and
i ∈ α.

Theorem 11. The statement of WISC in the stack semantics in Zset fails.

Proof. In the notation of Proposition 3, taking transitive Z-sets for con-
nected objects, we need to show that for any Y � Z/H, there is an Ω
such that for any r : Z/K → Z/H, any l : Z/K ×Z/H Y → Ω is not an
epimorphism.

Let us write Y =
∐

y∈π0(Y ) Yy, and note that this coproduct, like all
colimits in Zset takes place in some Z

αset. In particular, by remark 4
each Yy has an epimorphism from some Z/dyZ for a local depth function
dy : α → N+. As a result H ≤ Z

α, so fix some dH : α → N+ to get an
epimorphism Z/dHZ → Z/H. Define Ω = Ω[α + 1,�α+1], where �α+1 is
the top element of the ordinal α + 1. Given Z/K → Z/H, fix a local depth
function dK : β → N+ such that dKZ ≤ K (without loss of generality, we
can assume α ≤ β).

Since Zset is infinitary extensive, we have

Z/K ×Z/H Y �
∐

y∈π0(Y )

Z/K ×Z/H Yy.

Any map l : Z/K ×Z/H Y → Ω is then given by a collection of maps
ly : Z/K ×Z/H Yy → Ω. We need to show that this collection of maps is
not jointly surjective, and will do this by showing the image of ly, for ar-
bitrary y, must be contained in a strict subobject of Ω that is independent
of y.

Given an epimorphism Z/dyZ → Yy, consider, in Z/dKZ×Z/dHZZ/dyZ,
an orbit Z/δyZ where δy(i) = lcm{dK(i), dy(i)} for each i ∈ β, by Lemma
10. In particular, we have that δy(�α+1) = dK(�α+1) =: N0 is independent
of y.

Compose the inclusion Z/δyZ ↪→ Z/K ×Z/H Yy with ly to get a map

l′y : Z/δyZ → Ω =
∐

n∈N+

Z/δ[α, n, i]Z.
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Applying Lemma 9 to this map with i = �α+1 we find that n | N0 for any
n such that Z/δ[α, n, i]Z ⊂ im l′y. Thus the image of any ly and hence of l
is contained in

∐

n|N0

Z/δ[α, n, i]Z � Ω,

hence l is not an epimorphism.

Recall that ETCS is a set theory defined by specifying the properties of
the category of sets [6], namely that it is a well-pointed topos (with nno)
satisfying the axiom of choice. We can likewise specify a choiceless version,
which is the theory of a well-pointed topos (with nno). Given a model set
of ETCS, we have constructed a well-pointed topos in which WISC is false.
Thus we have our main result.

Corollary 12. Assuming ETCS is consistent, so is the theory of a well-
pointed topos with nno plus the negation of WISC.

Finally, we recall the definition from [11] of a predicative topos: this is a
ΠW -pretopos satisfying WISC (or, as called there, AMC).

Corollary 13. The topos Zset is not a predicative topos.
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