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Abstract

Community noise is one of the most poorly controlled environmental pollutants. Controlling the
noise generated by bluff-body flow can alleviate community noise generated by transportation
systems such as aircraft, automobiles and highspeed rail. A foundational example of bluff-body
flow is the flow around a square Finite Wall-Mounted Cylinder (FWMC). An FWMC models
the major noise producing components of transportation systems, such as landing gear and
pantographs, but is also relevant to many facets of engineering including flow around chimney
stacks, wind turbine masts, heat exchangers and mountains.

This thesis studies the flow-induced noise generated by square FWMCs with aspect ratios
ranging from 0 < L/W < 23 immersed in boundary layers of thickness 6 /W = 1.3 and §/W = 3.7
at a Reynolds number based on the side width, W, of Rey = 1.45 x 10*. The flow-induced noise
is measured using single microphone, directivity and phased microphone array measurements.
The measured noise is related to the flow around the FWMC with fluctuating wake velocity
measurements using a single hot-wire. Surface pressure measurements and oil-film flow visualisation
are also conducted to further investigate the flow physics.

The flow-induced noise of FWMCs is characterised in terms of the frequency, magnitude and
directivity of the low frequency acoustic tones generated through periodic vortex shedding and
the magnitude of the high frequency broadband component. It is found that as the aspect ratio
increases, the FWMC transitions through four vortex shedding regimes based on the number of
tones in their acoustic spectra. The aspect ratio where the FWMC transitions from one regime to
another is dependent on the boundary layer thickness. Within each shedding regime, the noise
producing vortex filaments are observed to have different topological structures, corresponding to
either a single or multi-cellular wake.

Measurements of the mean and fluctuating aerodynamics using wake velocity and surface
pressure measurements provide explanations for the observed acoustic phenomena. In particular,
it is discovered that maximum three-dimensional interaction of the free-end downwash with
spanwise vortices can disrupt the wake and reduce the flow-induced noise to near background
levels, even for aspect ratios as large as L/W = 7.

Several numerical models are also developed to aid the analysis. These include a modified
version of Curle’s Aeolian tone theory suitable for FWMCs and a wake model of higher aspect
ratio FWMCs used to study cellular wake vortex topologies.

Finally, phased array source localisation shows that the magnitude of the high frequency
broadband noise is closely related to dynamics of the large-scale vortex structures that generate
tonal noise. Because of this, broadband noise can be reduced by approximately 30% when the

boundary layer is thickened, even when the free-end of the FWMC lies well outside the edge of
the boundary layer.
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Nomenclature

The majority of the mathematical symbols and abbreviations used in this dissertation

are outlined below. In some cases, the same symbol has been used for multiple purposes.

These should be unambiguous based on the context of the work in which they appear.

SEEEE - = N

Bw
Cq
C

Greek symbols

Circulation

Boundary layer pressure gradient parameter

Temperature coefficient of resistance

Base suction coefficient

Ratio of specific heats of air

Boundary layer thickness

Displacement thickness

Expanded uncertainty, Strength of the van der Pol oscillator
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Kinematic viscosity

Density

Cross correlation coefficient function

Standard deviation

Variance

Phase angle

Frequency
Roman symbols

The DAMAS A-matrix
Number of averaging blocks
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Drag coefficient
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