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Genetic Algorithms for Reliability-Based Optimization of Water Distribution Systems
Bryan A. Tolson, Holger R. Maier, Angus R. Simpson and Barbara J. Lence

Abstract A new approach for reliability-based optimization of water distribution networks is
presented. The approach links a genetic algorithm (GA) as the optimization tool with the first-order
reliability method (FORM) for estimating network capacity reliability. Network capacity reliability in
this case study refers to the probability of meeting minimum allowable pressure constraints across
the network under uncertain nodal demands and uncertain pipe roughness conditions. The critical
node capacity reliability approximation for network capacity reliability is closely examined and new
methods for estimating the critical nodal and overall network capacity reliability using FORM are
presented. FORM approximates Monte Carlo simulation reliabilities accurately and efficiently. In
addition, FORM can be used to automatically determine the critical node location and corresponding
capacity reliability. Network capacity reliability approximations using FORM are improved by
considering two failure modes. This research demonstrates the novel combination of a GA with
FORM as an effective approach for reliability-based optimization of water distribution networks.
Correlations between random variables are shown to significantly increase optimal network costs.

Keywords - Algorithms; Water distribution; Optimization; Hydraulic networks; Network reliability.
Introduction

Water distribution networks (WDNs) are essential and costly infrastructure in every modern
community. As WDNs continue to age and cities continue to grow, the design of new WDNs and the
rehabilitation or upgrade of existing WDNs will continue to be an important problem. The general
WDN design problem involves minimizing whole of life network costs (e.g., pipe and construction)
subject to meeting minimum allowable pressure and/or maximum allowable velocity constraints
under design demand levels. Traditionally, WDN design, upgrade, or rehabilitation has been based
on engineering judgment. More recently, a significant amount of research has focused on the
optimal design or upgrade of WDNs. Some of the first studies utilized linear programming (LP)
(Alperovits and Shamir 1977; Quindry et al. 1981) while later studies applied nonlinear programming
(NLP) (Su et al. 1987; Lansey and Mays 1989; Xu and Goulter 1999), or chance constrained
approaches (Lansey et al. 1989) to the pipe network optimization problem. Much of the recent
literature has utilized genetic algorithms (GAs) for the determination of low cost WDN designs and
they have been shown to have several advantages over more traditional optimization methods
(Simpson et al. 1994; Savic and Walters 1997).

The focus of a number of the above studies is the least-cost design of reliable WDNs. Goulter (1995)
states that reliability is generally concerned with the ability of WDNs to provide an adequate level of
service to consumers, under both normal and abnormal conditions. For example, failure to meet an
adequate level of service would occur due to nodal flow demands being supplied at inadequate
pressures or flow rates. In general, WDN reliability-based optimization is focused on either the
mechanical failure of components (e.g., Goulter and Coals 1986; Su et al. 1987) such as pipe or pump
failure, or the hydraulic failure of the system due to degraded pipe capacities and/or uncertain nodal
demand flows (Lansey and Mays 1989; Xu and Goulter 1999). Goulter (1995) and Xu and Goulter
(1999) provide reviews of reliability analysis methods.

Reliability-based optimization of WDNs requires the combination of an optimization algorithm with a
method for estimating WDN reliability. In this paper, a novel approach to reliability-based
optimization of WDNs is proposed and tested on a 14-pipe case study. This approach combines a GA
as the optimization tool with improved methods for estimating different WDN reliability measures



based on the first-order reliability method (FORM). It should be noted that the approach presented
in this paper is restricted to “capacity reliability’” estimation as in Xu and Goulter (1999), which
refers to the probability that the minimum allowable nodal pressures are met under the assumption
that the required nodal demand flows are satisfied, and is a function of the uncertain nodal
demands and the uncertain degree to which pipe hydraulic capacities will be reduced over the
design period.

Proposed Approach

Optimization

Although GAs have been found to be a robust technique for the optimization of deterministic WDNs
(Simpson et al. 1994; Savic and Walters 1997), their application to reliability-based optimization of
WNDNs is scarce and they appear to have only been used in studies where a surrogate of reliability is
considered in the optimization framework (Halhal et al. 1997; Shin and Park 1999). This is despite
the fact that GAs have a number of advantages over the mathematical programming techniques
traditionally used for WDN optimization (e.g., NLP), including (1) decision variables are represented
as a discrete set of possible values, (2) the ability to find near globally optimum solutions, and (3) the
generation of a range of good solutions in addition to one leading solution. Consequently, GAs are
used as the optimization technique as part of the proposed approach.

GAs are robust heuristic iterative search methods that are based on Darwinian evolution and survival
of the fittest (Holland 1975; Goldberg 1989). The GA techniques and mechanisms selected as part of
the proposed approach are binary coding of the decision variables, tournament selection, uniform
crossover, creep mutation, elitism, and the MicroGA technique. These combined GA procedures
produce a relatively new and efficient GA called the small-elitist-creeping-uniform-restart GA or
“securGA” that is built on the MicroGA technique (see Krishnakumar 1989) and is first introduced by
Yang et al. (1998). Computational efficiency is important in the context of reliability-based
optimization, as GAs generally require many more function evaluations compared with traditional
optimization methods.

Briefly, the securGA works by using a smaller population size (relative to that which would be used in
a traditional GA) that evolves like a traditional GA using uniform crossover, elitism, and creep
mutation. When convergence is reached, however, a new random population is generated and
combined with the elite individual from the previous generation and the evolution process repeats
itself using a new pool of genetic information. This cycle continues until a maximum generation limit
is reached.

Reliability Estimation

The performance of any engineered system can be expressed in terms of its load and resistance. If
X=(X1, Xa,..., X,)" is the vector of random variables that influences a system’s load (L) and/or
resistance (R), the performance function, G(X), is commonly written as

GX)=R-1L (1)
The failure (limit state) surface G=0 separates all combinations of X that lie in the failure domain (F)

from those in the survival domain (S). Consequently, the probability of failure, py, is given as (Sitar et
al. 1987)

pr = Pr{X e F} = Pr{G(X) < 0} = fG(X)<0 fx(X) dx (2)

where f X(x) is the joint probability density function (PDF) of X.



In most realistic applications, the integral in Eq. (2) is difficult to compute. Approximate solutions can
be obtained by using a variety of techniques including Monte Carlo simulation (MCS) and the first-
order reliability method (FORM) (Madsen et al. 1986). The most accurate reliability estimation
method is MCS with a large number of realizations. Since all other reliability estimation techniques
are generally developed to be more computationally efficient than MCS, their accuracy should
always be assessed in comparison with MCS benchmark solutions.

MCS approximates the integral in Eq. (2) by repeatedly generating random realizations of the
variables in X and then evaluating the performance function in Eq. (1) for each realization. The
reliability measure as given by MCS is then the ratio of the number of realizations where G(X)>0 to
the total number of MCS realizations evaluated. The MCS reliability estimate approaches the actual
reliability as the number of MCS realizations used increases.

The objective of FORM is to compute the reliability index B, which is then used to obtain the
reliability a, using

a=1-pr=1-d(-p) = d(B) (3)

where F( )5standard normal cumulative distribution function (CDF). In the n-dimensional space of
the n random variables, B can be interpreted as the minimum distance between the point defined by
the values of the n variable means (mean point) and the failure surface. The point on the failure
surface closest to the mean point is generally referred to as the design point, which may be thought
of as the most likely failure point. The reliability obtained using FORM is only an approximation,
unless the performance function is linear. The degree of non-linearity in the performance function,
and hence the accuracy of FORM, is problem dependent (see Madsen et al. (1986) and Xu and
Goulter (1999) for a more complete description of FORM).

Much of the research in WDN reliability studies has utilized Monte Carlo simulation (MCS) for WDN
reliability estimation (Bao and Mays 1990; Gargano and Pianese 2000). However, as MCS is relatively
computationally inefficient, Xu and Goulter (1998, 1999) pioneered the use of the first-order
reliability method (FORM) for WDN capacity reliability estimation. This research builds on the work
by Xu and Goulter (1999) on the use of FORM for approximating MCS predictions of WDN capacity
reliability within an optimization framework by introducing new formulations for using FORM to
estimate critical node and overall network capacity reliability.

Both MCS and FORM can be used to estimate nodal, critical node, and network capacity reliability.
Nodal and critical node capacity reliabilities are defined with respect to a specified node

and the node in the network that has the worst nodal capacity reliability, respectively. In contrast,
network capacity reliability can be defined as the probability that the minimum allowable pressures
are met at all nodes. The way MCS and FORM can be used to estimate these different measures of
reliability is discussed below.

Nodal Capacity Reliability
The performance function used to evaluate the capacity reliability of node i, by MCS or FORM is

G;(X) = H(X) — H™™ (4)

where Hj(X)=head predicted at node i as a function of the vector of both random nodal demands and
pipe hydraulic capacities, X, and Himi“=minimum allowable specified head required at node /. In
order to assess the reliability at all the nodes in the network using FORM, the performance function
in Eq. (4) must be specified for each node and a separate FORM computational procedure is then



required. In contrast, MCS can be used to estimate the reliability at all nodes in the network in the
same computational procedure since the performance functions at all nodes can be evaluated for
each MCS realization. Therefore, the relative computational advantage of FORM over MCS
diminishes quickly if the reliability at many or all nodes in the network is of interest.

Critical Node Capacity Reliability

The most basic way that FORM or MCS can be used to determine the critical node capacity reliability
is to evaluate Eq. (4) for each node in the network and then select the smallest nodal reliability.
When MCS is used, this approach is no less efficient than a single nodal capacity reliability estimate.
However, as recognized by Xu and Goulter (1999), the increased computational burden imposed by
FORM for estimating multiple nodal capacity reliabilities makes this basic approach for critical node
determination undesirable when FORM is the reliability estimation technique. Consequently, Xu and
Goulter (1999) employed Eq. (4) to find one measure of nodal capacity reliability at the most critical
node in the network. Xu and Goulter (1999) identified the most critical node in the network by
analyzing the intermediate results of FORM and therefore observed the increase in computational
time to be minimal. A detailed description of this approach is given by Xu and Goulter (1998).

Depending on the reliability analysis program utilized to implement FORM, the intermediate results
of FORM may not be available to the program user. Therefore, an alternative approach that does not
require intermediate FORM results is proposed and tested here for identification of the critical node
in the network. The following performance function can be defined for use with FORM to identify
the critical node in the network:

G.(X) = min(H;(X) — HM™™), 1,2,..,1 (5)

where G/(X)=performance function at the node that is most critical with respect to meeting its
corresponding minimum pressure requirement and /=number of nodes considered. In this
performance function, the location of the critical node is not fixed and can change locations with
each FORM evaluation of the performance function. Thus, FORM is left to converge to the critical
node location at the design point. This performance function is designed so that the critical node
location and reliability at the critical node are determined without accessing the intermediate results
of the FORM computational procedure.

Network Capacity Reliability

It is often convenient and sometimes more meaningful to estimate a single reliability measure that
characterizes overall network performance. Previous approaches have proposed heuristic measures
of network reliability such as the arithmetic mean or weighted average of all nodal reliabilities (e.g.,
Bao and Mays 1990). Another common heuristic measure is to use the critical node reliability as an
approximation of network reliability (e.g., Bao and Mays 1990; Xu and Goulter 1999). While these
heuristics can provide reasonable estimates of network reliability, it is important to realize that MCS
can be used to directly estimate network reliability by treating WDNs as a series system in which
failure to provide adequate heads at any one or more nodes with a minimum pressure requirement
constitutes a network failure.

A direct estimate of the above definition of network capacity reliability can be found using MCS to
evaluate the performance function in Eqg. (5). Even though both FORM and MCS can be used to
evaluate the performance function defined in Eq. (5), the reliability measures estimated by each
method are not the same. When Eq. (5) is used as the FORM performance function, FORM searches
for and converges to the critical node at the design point (i.e., the single most likely event to cause
failure) and therefore estimates the capacity reliability only for that event at that node. If the same
performance function is defined for MCS reliability estimation, failure is defined with respect to



meeting the minimum pressure requirement at the most critical node in the system for each MCS
realization. Thus, the MCS technique measures the reliability with respect to all failure events
simultaneously, instead of just measuring the reliability with respect to the most likely failure event.

When FORM is used for reliability estimation in WDNs, a heuristic measure of network reliability
must be employed. At present, the only proposed approach for approximating network reliability
using FORM is to assume it is approximately equal to the critical node reliability (Xu and Goulter
1999). Relying on a heuristic measure of network reliability such as the critical node reliability is a
significant disadvantage of FORM with respect to MCS for network reliability estimation unless the
heuristic measure accurately approximates the MCS measure of network reliability. A common
assumption in the literature is that the critical node reliability does in fact closely approximate the
true network reliability. Although this may be the case and could even be evaluated in reliability
studies dealing with a limited number of predefined network configurations, it is probably
unreasonable to extend this assumption to WDN reliability-based design studies for two reasons.
First, the critical node reliability approximation is non-conservative as it only considers failure at a
single node in the network. Events leading to failure at other nodes in the network that are
independent of failure at the critical node are not considered by this heuristic. Therefore, when the
approximation is not accurate, the reliability of the network is overestimated. The other difficulty
with this assumption is that in many or even all WDN design situations it is generally impossible to
determine the appropriateness of the assumption for all or even a significant proportion of the vast
number of possible network designs (often greater than a million). The combined effect that these
two shortcomings have on the critical node approximation to network reliability is that when the
approximation is employed in network optimization trials, there will most likely be a number of
candidate network designs that are judged to have a significantly higher network reliability than
their true network reliabilities. Consequently, if FORM is to be used to approximate network
reliability in reliability-based optimization models, the FORM network reliability estimate should be
improved.

The FORM measure of network capacity reliability can be enhanced if an additional failure mode is
considered. For example, two failure modes could represent the capacity reliability at two nodes of
interest in the network. In any system with two failure modes, the probability of system failure, p, is

Dfs = Df1 — Py2 — Pr1z = Pr{G; < 0} + Pr{G, < 0} — Pr{G; < 0 and G, < 0} (6)

where ps and pp=probabilities of failure due to failure Modes 1 and 2, respectively; pp,=joint
probability of failure for failure Modes 1 and 2 and G;=G(X;) and G,=G(X,) are the performance
functions for failure Modes 1 and 2, respectively. The failure probabilities for the individual failure
modes (pn and pp) can be obtained using Eq. (3) while the joint probability of failure, ps, is given by
Madsen et al. (1986) as

p12

Pr1z = ®(=B1,=P2; p12) = (=B P(=F2) + [ “W(=B1,—B2;y) dy (7)

where ®( , ;p)=CDF for a bivariate normal vector with zero mean values and unit variances and
correlation coefficient r and Yi( , ;p)5corresponding PDF. The integral in Eq. (7) is generally obtained
numerically. The approximate correlation coefficient needed to evaluate this integral, pi,, is
calculated using (Madsen et al. 1986)

v;Tv; 1

:_=_V*TV* 8
P12 = elvsl = Bups L V2 (8)

where V; and V;=design points in standard normal space for failure Modes 1 and 2, respectively.



Although Eq. (6) can be evaluated exactly when there are only two failure modes, only the bounds
on the system probability of failure can be calculated when there are more than two modes of
failure. In addition, consideration of each additional mode of failure adds one more FORM
computational procedure. Therefore, it is proposed that a more accurate point estimate of network
capacity reliability for a reasonable increase in computational cost can be evaluated using FORM for
reliability estimation in the two most critical failure modes (i.e., at two nodes in the network) in
conjunction with Egs. (6), (7), and (8) to estimate the series system probability of failure. The basic
idea underlying this approach is to identify the second most critical failure node, in addition to the
most critical failure node in the network, to attempt to account for a significant fraction of the
network failure events that may not lead to failure at the most critical node. The two most critical
nodes in the network are determined by first estimating the most critical nodal capacity reliability
using the performance function defined in Eq. (5) and then estimating the capacity reliability for the
next most critical node in the network according to the following performance function:

G2c(X) = min[H;(X) — HM™™], 1,2,..,] and i#1 (9)

where the performance function in the second mode of failure is Eq. (9) and is defined as in Eq. (5)
except that node /, the critical node determined in the first failure mode, is not considered as a
possible location of failure in the second mode of failure.

Based on Eq. (6), the new system reliability measure, as, as estimated by FORM becomes
as =1—pr1 = Pr2 + P12 =1 — Pys (10)

where the individual probabilities of failure at the first and second most critical nodes in the network
are pf 1 and pf 2, respectively, and are calculated from Eq. (3), and the joint probability of failure
between the two most critical nodes (pf 12) is calculated from Eq. (7).

Case Study

The novel combination of a GA with FORM for reliability-based optimization of WDNs is
demonstrated for a case study that has been previously optimized under deterministic conditions
(Simpson et al. 1994). The original design problem was to determine the required pipe sizes for an
expansion to an existing WDN in order to minimize total pipe costs while still meeting the minimum
nodal head requirements under three different flow demand patterns. The three demand patterns
considered represent the peak-hour demand pattern and two fire-loading demand patterns that
occur for a demand equal to the average peak-day demand pattern.

The layout of the case study WDN and the proposed expansion, other network characteristics, and
the head requirements and mean nodal flows for each demand pattern, are summarized in Fig. 1.
There are five new pipes to be sized (Pipes 6, 8, 11, 13, and 14) and three existing pipes (Pipes 1, 4,
and 5) that can be left as is, cleaned, or duplicated with another pipe in parallel. New pipes and
cleaned pipes are assumed to have a Hazen-Williams coefficient C value of 12°0. For the five new
pipes, eight possible diameters from which to choose, in millimeters, are 152, 203, 254, 305, 356,
406, 457, and 508. The available pipe diameters considered in the duplication of the existing pipes
are, in millimetres 152, 203, 254, 305, 356, and 406. Therefore, there are also eight possible
decisions for Pipes 1, 4, and 5. The pipe costs per meter associated with each possible decision are
listed in Table 1.
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Figure 1. Layout of two-reservoir network upgrade problem under uncertainty

Table 1. Available Pipe Sizes and Associated Costs from Simpson et al. (1994)

Diameter Cost of new Cost of cleaning
(mm) pipe ($/m) existing pipe ($/m)
152 49.5 47.6
203 63.3 51.5
254 94.8 55.1
305 1329 58.1
356 170.9 60.7
406 194.9 63.0
457 231.3 66.3
508 262.5 69.2

Modifications to the Original Case Study

The original deterministic problem in Simpson et al. (1994) must be converted to a design problem
under uncertain conditions. The objectives of the expansion of the WDN in Fig. 1 are to minimize
total pipe costs and maximize network capacity reliability during the three critical demand patterns.
In order to combine the network reliability values for each demand pattern, the three demand
patterns are assumed to be of equal importance with respect to meeting the required nodal
pressures. Therefore, the minimum network capacity reliability of the three demand patterns is used
to represent the value of the reliability objective. In other words, the network reliability of each
demand pattern is evaluated independently and then the minimum reliability is taken as the value of
the reliability objective. This is just one way to generate a composite reliability measure
characterizing multiple design events. It should be noted that the network capacity reliability
measures outlined earlier are meant to estimate network reliability during a single design
condition—not to combine reliabilities across multiple design conditions.

The sources of uncertainty considered are the uncertain values of roughness for each pipe and the
uncertain nodal demand flows for each demand pattern. Estimation of WDN reliability during the
critical design demand levels is complicated by the combination of the pipe hydraulic capacities and
the nodal demand flows as uncertain variables because the time scales at which these sources of
uncertainty vary are different. For example, pipe hydraulic capacities degrade slowly over time due



to corrosion and deposition instead of varying randomly over time, as could be the case with the
critical demand patterns. Therefore, the reliability in this study is calculated with respect to the
uncertain conditions at the end of the design period under consideration and will thus, generally, be
the worst-case network reliability during any point in time during the design period. It is assumed
that a random amount of degradation in the pipe hydraulic capacities (i.e., random reductions in the
C values from present day values) will occur over the design period and that the variability in the
annual nodal demand patterns will be constant throughout the entire design period.

The reduction in C values of each pipe is assumed to be represented by a normal random variable
with an average degradation of 10% over the design period and a coefficient of variation of the
reduction in C(COV() of 40%. For example, a pipe that has a present day C value of 120 is reduced on
average by 0.1*120=12, with a standard deviation of 0.4*12=4.8, to C=120-N(12,4.8) at the end of
the design period. The random amount of degradation in each pipe is assumed to be independent
and is bounded such that the minimum and maximum C values at the end of the design period are
60 and the present day C value, respectively. It should be noted that the reliability analysis program
used in this work for the implementation of MCS and FORM automatically adjusts the PDF for each
bounded random variable so that the total probability is equal to one. The nodal demand flows in all
three critical demand patterns are assumed to be normally distributed, with means as listed in Fig. 1
and a COV of 40% for all nonfire demand nodes. The fire demand nodes considered are Node 7, in
Demand Pattern 2, and Node 12, in Demand Pattern 3, and both are assumed to have a reduced
COV of 5%. All nodal demands are bounded to be greater than 0 and are assumed uncorrelated
unless stated otherwise.

Model Formulation and Implementation

The optimization formulation presented in this section is defined in general terms such that the
reliability objective can be based on any measure of reliability, estimated by either MCS or FORM,
and the cost objective can be based on any network cost characterization. The reliability-constrained
cost minimization model involves minimizing the total pipe costs of the WDN while meeting a
specified minimum reliability constraint for the demand pattern with the lowest reliability and is
given as follows:

Maximize: {k(¥) + A[100(h*(Y, Hiyin, Xbar) — a*)]B}_l (11)

where k(Y)=total cost of the network as a function of Y, the vector of the selected decision variables
in the system; ht(Y,anin,Xgar)=estimated value of the reliability measure of interest for demand
pattern t, which has the lowest reliability of the three demand patterns considered, and is a function
of the vector of decision variables Y, the vector of minimum specified nodal head requirements for
demand pattern tanin , and the vector of probability distribution parameters for demand pattern
tXf,ar that describe the random variables in the WDN model; a*=minimum desired reliability level
for the WDN under the least reliable demand pattern and A and B are the penalty coefficient and
exponent, respectively, in the GA penalty function. A penalty is only imposed, per reliability unit (i.e.,
per 1%) in which the reliability constraint is violated, if the estimated reliability is less than the
specified minimum reliability level. Values of A and B need to be selected such that the penalty term
in Eq. (11) drives the objective function value to very small values for unacceptable designs. The
objective is inverted to become a maximization objective because the GA utilized in this work, as
with most GAs, is coded as a maximization algorithm. Reliability-cost trade-off curves can be
constructed by solving this model for a range of reliability constraints.

The general reliability-constrained cost minimization model is applied to the WDN case study. The
mathematical formulation considers the objectives of minimizing total pipe costs and maximizing the
minimum reliability of the three critical demand patterns. For each trial WDN design, the total pipe



costs and the reliability under all three critical demand patterns must be estimated. The model is
implemented in FORTRAN by linking a hydraulic network solver, a reliability analysis program, and a
GA program together. All three of these programs, as well as all supplemental subroutines, such as
that needed for the calculation of the WDN pipe costs, are also written in FORTRAN. The Wadiso
hydraulic network simulation program (Gessler and Walski 1985) is used to simulate the hydraulic
system for each set of random variables and pipe network configurations generated during the
optimization trials. Wadiso assumes that the nodal demand flows are met and solves for the
resultant nodal heads across the network. The original version of Wadiso is modified so that it can
be repeatedly executed without the use of an input file and its accuracy is verified against a standard
hydraulic simulation package (EPANET2). A slightly modified version of the general reliability analysis
program RELAN (Foschi et al. 1993) is used to implement the FORM and MCS reliability estimation
techniques. RELAN has been previously used and described in many studies such as Maier et al.
(2001) and is generally robust for high reliability estimation given that it was developed to analyze
very low probability structural failures. FORM and MCS as implemented in RELAN allow random
variables to be drawn from a number of probability distributions and allow the user to specify
correlations between any combination of the random variables. The RELAN implementation of
FORM uses the Rackwitz-Fiessler method (Madsen et al. 1986) to find the minimum B.

The GA source code used in this study (FORTRAN GA version 1.7.1) after minor modifications is
written by Dr. David Carroll and is available at http://cuaerospace.com/carroll/ga.html (also see
Yang et al. 1998). An efficient set of GA parameters, as determined by Tolson (2000) for use in a
different case study, is used. The securGA parameter values used here are a population size of 5, a
maximum generation limit of 1,000, a uniform crossover probability of 0.5, a creep mutation
probability of 0.1, and a single offspring per pair of parents. The binary coded values of the decision
variables that are used by Simpson et al. (1994) are also adopted in this study. The deterministic
network optimization problem solved by Simpson et al. (1994) and Simpson and Goldberg (1994) is
solved again with the above GA parameter set with ten random seeds to ensure that the securGA
with the above parameter settings is comparable in efficiency to the GAs used in these previous
studies. Results show approximately the same or better performance in comparison with the
previous GAs used to solve this problem.

Analyses Conducted
The first set of analyses conducted involves testing the various FORM and MCS reliability definitions
on six example network designs and then further analyses demonstrating the application of the
reliability-constrained cost minimization model follow. The six example designs are selected so as to
cover network designs that span a range of reliability values. The pipe sizes and total cost of the six
designs selected are summarized in Table 2. For each network design, the three demand patterns
are analyzed. Consequently, the first sets of analyses are carried out on 18 different design
conditions.

1. Node Capacity Reliability Estimation. To test whether FORM provides a good approximation to
MCS reliabilities for the case study considered, FORM and MCS estimates of nodal reliability are
obtained for each node across all 18 design conditions in accordance with Eq. (4). Initial testing
is undertaken to determine the number of MCS realizations required to generate accurate MCS
benchmark reliabilities. MCS nodal and network reliability estimates using 100,000 realizations
converge to within approximately 0.001 of the MCS reliabilities found using 500,000 realizations.
Therefore, all benchmark MCS reliabilities are generated using 100,000 realizations;

2. Critical Node Capacity Reliability Identification. To test whether FORM can be used to
automatically determine the critical node, FORM is used to estimate the critical node
reliabilities in accordance with Eqg. (5) for all 18 design conditions. The results obtained are
compared with the known FORM reliability predictions at the critical node obtained as part of
the complete enumeration of the nodal capacity reliabilities in (1) above;



Network Capacity Reliability Estimation. To quantify the difference between critical node and
network capacity reliability estimates for the case study under consideration, network capacity
reliability is calculated using MCS in accordance with Eq. (5) for the 18 design cases and the
results obtained are compared with the critical node capacity reliabilities obtained using MCS in
(1) above.

Network Capacity Reliability Approximation Using FORM. To quantify the improvement
associated with considering two failure modes when using FORM to approximate network
capacity reliability, rather than using a single failure mode, estimates of network capacity
reliability are obtained for the 18 design cases in accordance with Eq. (10) using FORM, and the
results obtained are compared with the FORM results obtained using a single failure mode in (2)
above and the true network capacity reliabilities obtained using MCS in (3) above;

Reliability Constrained Cost Minimization. The reliability-constrained cost minimization model is
solved using the securGA to obtain minimum cost solutions for reliability constraints of 0.7, 0.8,
0.9, 0.95, 0.99, and 0.999. The FORM approximation of network capacity reliability [obtained
using two failure modes—see (4) above] is utilized as the reliability constraint. The penalty
exponent in Eq. (11) is set at 1.0 for all model evaluations to remain consistent with Simpson et
al. (1994). However, the penalty coefficient is determined by trial and error for different
reliability constraint levels. The penalty coefficients found to be reasonable are 0.1 million
dollars for reliability constraints under 0.9, 0.5 million for constraints between 0.9 and 0.99, and
1.0 million for reliability constraints to 0.999. Since the operation of the GA is probabilistic in
nature, at least two optimization trials, using different random GA seeds, are used to generate
all model solutions; and

Correlated Nodal Demands. To investigate the impact nodal demand correlations have on the
reliability-constrained cost minimization model solutions, the analyses in (5) above are repeated
with a correlation coefficient of 0.5 (rather than 0.0) between the nodal demands. Correlations
between pipe roughness coefficients are not considered.

Table 2. Water Distribution Network Designs Selected for Evaluation of Proposed Water Distribution

Pipe diameter sizes (mm)

Design ) ) ) ] . Pipe Pipe Pipe Totgl cost
Pipe [1] | Pipe[4] | Pipe[5] | Pipe[6] | Pipe [8] [11] [13] [14] (10° S/yr)

A dup356 | dup356 | dup254 406 356 254 254 305 3.1860

B dup254 | dup356 | dup305 254 508 305 203 356 2.9378

C leave dup406 clean 356 305 305 254 305 2.4035

D dup406 | dup305 | dupl52 254 305 254 203 254 2.6585

E dup152 | dup356 clean 305 203 254 152 254 2.1738

F dup356 | dup305 | dupl52 305 254 203 203 254 2.4922

Note: dup254 means the pipe is duplicated with a pipe 254 mm in diameter in parallel.

Results and Discussion

Nodal Capacity Reliability Estimation
The comparison of 180 MCS and FORM nodal capacity reliabilities for (1) above shows that, at worst,
the absolute difference in the FORM and MCS estimates of nodal reliability is 0.026 at a reliability
level of approximately 0.5. The magnitude of the absolute differences decreases as the reliability
level increases. For example, above a reliability level of 0.95, the absolute differences between
FORM and MCS are most often less than 0.001 and a maximum of 0.006. For nodal reliabilities
between 0.8 and 0.95, the absolute differences in FORM and MCS reliabilities range between 0.000
and 0.017 with an average absolute difference of 0.007. Therefore, the case study is deemed
appropriate for evaluating the new FORM reliability measures.



In 17 of the 18 design cases considered for (2) above, the use of Eq. (5) leads to the correct
identification of the critical node and the correct reliability estimate for that node, indicating that
FORM can be used to automatically determine the critical node. In the one case where the correct
critical node is not identified, the third most critical node is identified as critical and the difference in
reliabilities between the critical and third most critical node is less than 0.002. The average and
worst observed increase in computational cost associated with using Eq. (5) instead of specifically
identifying the critical node as in Eq. (4) is observed to be 11.4 and 31.0%, respectively. This small
average increase in computational cost is deemed a reasonable trade-off for the simplicity,
consistency, and accuracy with which the proposed performance function definition allows FORM to
determine the critical node and its corresponding capacity reliability without accessing intermediate
FORM results.

Network Capacity Reliability Estimation

The comparison of the MCS critical node and critical network capacity reliabilities for (3) above
shows that for 11 of the 18 design cases investigated, the approximation to network capacity
reliability given by the critical node capacity reliability is quite reasonable, as the critical node
capacity reliability approximations fall within 0.001 of the actual network capacity reliability. Even
though the results for the remaining seven cases remain close approximations, the differences in
reliabilities in excess of 0.001 show that these two quantities can be dissimilar. The largest
discrepancy in the approximation occurs for a case where the actual network capacity reliability of
0.943 is overestimated by 0.015 with a critical node capacity reliability of 0.958. Although this error
may seem small, such a difference could have a significant impact on network cost. Therefore, FORM
approximations of network reliability are necessary that go beyond the critical node capacity
reliability.

Table 3 presents the FORM approximations to network capacity reliability for (4) above obtained
using two failure modes (Column 3), as well as the MCS estimates of network capacity reliability
(Column 2), and the FORM critical node reliability estimates (Column 4). Many cases show little or no
absolute improvement by using the FORM estimate of network capacity reliability as can be seen by
comparing Columns (3) and (4) in Table 3. However, if the relative reduction in the FORM
approximation errors is considered (last column in Table 3 which compares Columns 3 and 4), then it
becomes clear that for several designs the novel FORM approximation of network capacity reliability
proposed here results in more accurate estimates of the MCS network capacity reliability. In fact, the
average reduction in error for the eight cases where the reduction is greater than 0% is 35.2%.

Design B(2) in Table 3 shows the largest observed error reduction and can be analyzed further to
show that the improvement is significant with respect to the approximate 95% confidence limits on
the MCS reliability (a binomial proportion). Since the approximate confidence limits are calculated as
(0.942,0.944) and do not contain the FORM critical node capacity reliability (0.958), the
approximation using FORM with two failure modes (0.946) that is now closer to the upper bound of
the confidence limits demonstrates that the improvement is significant. More evidence that the
improvement in network reliability estimation by FORM is noteworthy is that in 8 of 13 design cases
where improvement is possible (e.g., Column 4zColumn 2 in Table 3), at least some error reduction
is observed. The increase in computational time required for FORM evaluation of two failure modes
over the critical node approximation to network reliability is approximately 100% since this new
measure of network reliability requires two FORM computational procedures instead of one.



Table 3. Comparison of Alternative Measures of Network Capacity

Design Monte Carlo First-order reliability First-order reliability Percent reduction in First-
(demand | simulation network method network method critical node order reliability method
pattern) capacity reliability capacity reliability capacity reliability approximation error® (%)

A(1) 1.000 1.000 1.000 -

A(2) 0.981 0.982 0.982 0.0
A(3) 1.000 1.000 1.000 -

B(1) 0.995 0.996 0.998 66.7
B(2) 0.943 0.946 0.958 80.0
B(3) 0.995 0.996 0.996 0.0
C(1) 0.999 0.999 0.999 -

C(2) 0.924 0.924 0.924 -

C(3) 0.996 0.996 0.996 -

D(1) 0.954 0.957 0.957 0.0
D(2) 0.804 0.822 0.826 18.2
D(3) 0.818 0.835 0.835 0.0
E(1) 0.982 0.985 0.987 40.0
E(2) 0.689 0.709 0.719 33.3
E(3) 0.948 0.954 0.957 33.3
F(1) 0.911 0.919 0.919 0.0
F(2) 0.605 0.621 0.622 5.9
F(3) 0.524 0.549 0.55 3.8

Reliability-Constrained Cost Minimization

Reliability-cost trade-off curves obtained for (5) above by solving the reliability-constrained cost
minimization model with the FORM network capacity reliability as estimated from Eq. (10) are
shown in Fig. 2. The best solution of the two or more optimization trials used to solve the model at
each reliability constraint is plotted. Fig. 2 shows that the model solutions found do not all occur
adjacent to their respective reliability constraints. This suggests that the total number of noninferior
solutions in this problem may be fairly limited. For each model solution in Fig. 2, the FORM network
capacity reliabilities were checked using 100,000 MCS realizations. The magnitude of the absolute
differences between FORM and MCS network reliability estimates are a maximum of 0.017 at
approximately the 0.80 reliability level and remain below 0.004 for all solutions with reliability levels
greater than or equal to 0.90. Therefore, FORM approximates MCS network reliability quite well for
the trade-off solutions in the range where most realistic designs would be considered (e.g., above
0.9 reliability).
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Figure 2. Reliability-cost trade-off curves generated by reliability-constrained cost minimization model with
correlation coefficients between random nodal demands of 0 and 0.5




The typical execution time for one optimization model trial (i.e., the generation of one trade-off
curve point) with 5,000 GA evaluations is approximately 75 min on a Pentium Ill, 666 MHz processor
although some trials required in excess of 120 min for execution. The variance in the processor time
is due to varying convergence rates of FORM for the trial network configurations. In comparison, if
2,000 MCS realizations were used to estimate network capacity reliability in the model instead of
FORM, the execution time is increased approximately six times over the typical FORM execution
time.

Comparison of the trade-off curves with and without demand correlations for (6) above in Fig. 2
shows that if correlation between nodal demands is considered, higher cost network designs are
generally required to achieve a given desired level of network capacity reliability. Furthermore, the
difference in cost between the trade-off curves increases as more reliable designs are required.
Consequently, it is important that correlations between the random variables are taken into account.

Limitations and Future Work

There are some limitations to the ideas presented in this case study that are noteworthy. First of all,
the accuracy of FORM relative to MCS is generally application specific and initial testing is required
to determine if FORM is appropriate for other reliability-based optimization studies. Other
limitations relate to the application of the ideas presented here to larger, more complex WDNs.
Future work in this area is needed to extend the approaches outlined here to be applicable to large
networks with hundreds and perhaps thousands of pipes. These limitations are discussed in more
detail below to help guide future work.

Although convergence to the critical node is observed in this case study, future applications using Eq.
(5) should initially be tested to ensure that FORM does converge to the correct critical node and
critical node reliability. In practice, large networks are likely to require a modified approach to that
proposed here. In particular, the new FORM methods proposed here could likely be applied to
subsections of large networks such that FORM was constrained to find the critical node in a
subsection of a network and then further constrained to find the second most critical node in
another subsection of the network. This approach would function to find nonadjacent nodes as the
two most critical nodes and would thus improve the accuracy of the FORM network reliability
measure.

As network size increases, the number of failure events caused by independent failures at multiple
nodes also increases. Therefore, the errors in any approximation of network reliability that does not
capture some of the possible failure events will also generally increase. Studies that are focused on
managing for network reliability should consider this since the result is that the critical node
reliability approximation of network reliability, and even the approximation using the FORM network
reliability measure with two failure modes, may not be sufficiently accurate. Consequently, when
FORM is to be utilized, more than two failure modes may need to be considered. However, there is a
trade-off between the accuracy of the network reliability approximation and required computational
time using FORM.

Conclusions

This paper has introduced a number of new and useful techniques for consideration in future
reliability-based optimization studies of WDNs. Some techniques proposed are specific to studies
employing FORM for WDN reliability estimation while others are more general and should be
applicable in future WDN reliability-based optimization studies regardless of the type of reliability
measure considered. FORM has been applied to accurately estimate WDN nodal capacity reliability
and a new FORM approach that is both accurate and efficient is proposed which automatically



identifies the most critical node in the network. For this case study, it is demonstrated that the MCS
critical node capacity reliability approximation can significantly underestimate the true MCS network
capacity reliability. Considering that the critical node capacity reliability approximation to network
capacity reliability estimation may not be reasonable in all WDN reliability-based optimization
studies, a new and more accurate FORM approximation to network capacity reliability is developed
that considers failure events at the two most critical nodes in the network. This work also
demonstrates the novel combination of a GA with FORM as a reasonably efficient approach for
reliability-based optimization of WDNs. Last, correlations between nodal demands are shown to
significantly increase WDN costs designed to meet a specific reliability target.
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Notation

The following symbols are used in this paper:

A = penalty multiplier;

B = penalty exponent;

C = Hazen-Williams coefficient;

F = failure domain;

f x(x) = is joint probability density function (PDF) of X;

G(X) = performance function, where failure (limit state) surface G=0 separates all combinations of X
that lie in failure domain from those in survival domain;

G.(X), Ga(X) = performance function at node that is most critical with respect to meeting its
corresponding minimum allowable pressure requirement, 2 refers to second most critical node;

Hi(X) = head predicted at node j;

Himin = minimum allowable specified head required at node ;

ht(Y, HE Xf,ar)= estimated value of reliability measure for demand pattern with lowest reliability
of three demand patterns considered as function of vector of decision variables Y, vector of
minimum specified nodal head requirements anin and vector of probability distribution
parameters Xh,y;

I = number of nodes in network with minimum pressure requirements;

i = index for specific node in network;

k(Y) = total cost of network

L = system’s load;

| = most critical node in network;

pr,pn = probability of failure, 1 refers to Mode 1;

pgs = probability of system failure;

pa2 = joint probability of failure for failure Modes 1 and 2;

R = system’s resistance;

S = survival domain;

Vi = design point in standard normal space for failure Mode 1;

X = vector of random variables that influences system’s load and resistance;

Y = vector of decision variable values (pipe sizes);

= reliability;

X = system reliability measure;

o* = is minimum desired reliability level for WDN under any critical demand pattern;

B = reliability index;



@ () = standard normal cumulative density function;

@ (, ;p) = CDF for bivariate normal vector with zero mean values, unit variances, and correlation
coefficient p; and

y(, ;p) = PDF for bivariate normal vector with zero mean values, unit variances, and correlation
coefficient p.
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