
PUBLISHED VERSION  

http://hdl.handle.net/2440/102661  

 

G. Aad … P. Jackson … L. Lee … A. Petridis … N. Soni ... M. White ... et al. (The ATLAS Collaboration) 
Electron reconstruction and identification efficiency measurements with the ATLAS detector 
using the 2011 LHC proton-proton collision data 
European Physical Journal C: Particles and Fields, 2014; 74(7):1-38 

© The Author(s) 2014. © CERN for the benefit of the ATLAS collaboration 2014. This article is 
published with open access at Springerlink.com. This article is distributed under the terms of the 
Creative Commons Attribution License which permits any use, distribution, and reproduction in any 
medium, provided the original author(s) and the source are credited. Funded by SCOAP3 / License 
Version CC BY 4.0. 

Originally published at: 
http://doi.org/10.1140/epjc/s10052-014-2941-0  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PERMISSIONS 

 

http://creativecommons.org/licenses/by-nc/4.0/  

 

 

  

 

 

http://hdl.handle.net/2440/102661
http://doi.org/10.1140/epjc/s10052-014-2941-0
http://creativecommons.org/licenses/by-nc/4.0/


Eur. Phys. J. C (2014) 74:2941
DOI 10.1140/epjc/s10052-014-2941-0

Regular Article - Experimental Physics

Electron reconstruction and identification efficiency
measurements with the ATLAS detector using
the 2011 LHC proton–proton collision data

The ATLAS Collaboration�

CERN, 1211 Geneva 23, Switzerland

Received: 16 April 2014 / Accepted: 15 June 2014 / Published online: 15 July 2014
© CERN for the benefit of the ATLAS collaboration 2014. This article is published with open access at Springerlink.com

Abstract Many of the interesting physics processes to be
measured at the LHC have a signature involving one or more
isolated electrons. The electron reconstruction and identifi-
cation efficiencies of the ATLAS detector at the LHC have
been evaluated using proton–proton collision data collected
in 2011 at

√
s = 7 TeV and corresponding to an integrated

luminosity of 4.7 fb−1. Tag-and-probe methods using events
with leptonic decays of W and Z bosons and J/ψ mesons
are employed to benchmark these performance parameters.
The combination of all measurements results in identifica-
tion efficiencies determined with an accuracy at the few per
mil level for electron transverse energy greater than 30 GeV.

1 Introduction

The good performance of electron1 reconstruction and iden-
tification in the ATLAS experiment at the Large Hadron
Collider (LHC) based at the CERN Laboratory has been an
essential ingredient to its successful scientific programme. It
has played a critical role in several analyses, as for instance
in Standard Model measurements [1–4], the discovery of a
Higgs boson [5], and the searches for new physics beyond
the Standard Model [6]. Isolated electrons produced in many
interesting physics processes can be subject to large back-
grounds from misidentified hadrons, electrons from pho-
ton conversions, and non-isolated electrons originating from
heavy-flavour decays. For this reason, it is important to effi-
ciently reconstruct and identify electrons over the full accep-
tance of the detector, while at the same time to have a signif-
icant background rejection. In ATLAS, this is accomplished
using a combination of powerful detector technologies: sil-
icon detectors and a transition radiation tracker to identify

1 Throughout this paper, the term “electron” usually indicates both
electrons and positrons.

� e-mail: atlas.publications@cern.ch

the track of the electron and a longitudinally layered elec-
tromagnetic calorimeter system with fine lateral segmenta-
tion to measure the electron’s energy deposition, followed
by hadronic calorimeters used to veto particles giving rise to
significant hadronic activity.

During the 2011 data-taking period at
√

s = 7 TeV, the
LHC steadily increased the instantaneous luminosity from
5 × 1032 cm−2 s−1 to 3.7 × 1033 cm−2 s−1, with an aver-
age superposition (“pile-up”) of approximately nine proton–
proton interactions per beam crossing. In contrast to the
electron performance goals for the 2010 period [7], which
focused on robustness for the first LHC running, the goals
for the 2011 period aimed at substantially increasing the
background rejection power in this much busier environ-
ment to keep the online output rate of events triggered by
electron signatures within its allocated budget while at the
same time preserving high reconstruction and identification
efficiencies for electrons. During this period, ATLAS col-
lected large samples of isolated electrons from W → eν,
Z → ee, and J/ψ → ee events, allowing precise mea-
surements of the electron reconstruction and identification
efficiencies over the range of transverse energies, ET, from
7 to 50 GeV. This paper reports on the methods used to per-
form these measurements, describes the improvements with
respect to previous results [7], and benchmarks the perfor-
mance of the 2011 electron reconstruction and identification
used in various analyses performed with proton–proton col-
lisions.

The structure of the paper is as follows. Section 2 pro-
vides a brief summary of the main components of the ATLAS
detector. The electron trigger design, the algorithm for elec-
tron reconstruction and the electron identification criteria are
described in Sect. 3. Section 4 focuses on the method used
to compute the various efficiencies. The data and simulation
samples used in this work are given in Sect. 5 together with
the main triggers that enabled the event collection. Section 6
reports on the identification efficiency measurement, pre-
senting the background evaluation and the results obtained
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with the tag-and-probe technique. A similar methodology,
but using a subset of the samples available for the identifica-
tion efficiency measurement, is used to extract the efficiency
of the electron reconstruction described in Sect. 7. The study
of the probability to mismeasure the charge of an electron is
presented in Sect. 8. The summary of the work is given in
Sect. 9.

2 The ATLAS detector

The ATLAS detector is designed to observe particles pro-
duced in high-energy proton–proton and heavy-ion colli-
sions. It is composed of an inner tracking detector (ID)
immersed in a 2 T axial magnetic field produced by a
thin superconducting solenoid, electromagnetic (EM) and
hadronic calorimeters outside the solenoid, and air-core-
toroid muon spectrometers. A three-level triggering system
reduces the total data-taking rate from a bunch-crossing fre-
quency of approximately 20 MHz to several hundred Hz.
A detailed description of the detector is provided elsewhere
[8]. In the following, only an overview of the main systems
relevant to the results reported in this paper is provided.

The inner tracking detector provides precise reconstruc-
tion of tracks within a pseudorapidity range2 |η| � 2.5. The
innermost part of the ID consists of a silicon pixel detec-
tor providing typically three measurement points for charged
particles originating in the beam-interaction region. The clos-
est layer to the beam-pipe (referred to as the b-layer) con-
tributes significantly to precision vertexing and provides dis-
crimination against photon conversions. A SemiConductor
Tracker (SCT) consisting of modules with two layers of sil-
icon micro-strip sensors surrounds the pixel detector, pro-
viding typically eight hits per track at intermediate radii.
The outermost region of the ID is covered by a Transi-
tion Radiation Tracker (TRT) consisting of straw drift tubes
filled with a Xenon mixture, interleaved with polypropy-
lene/polyethylene transition radiators. For charged particles
with transverse momentum pT > 0.5 GeV within its pseu-
dorapidity coverage (|η| � 2), the TRT provides typically
35 hits per track. The TRT offers additional electron iden-
tification capability via the detection of transition-radiation
photons generated by the radiators.

The ATLAS calorimeter system has both electromag-
netic and hadronic components and covers the pseudorapid-

2 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-axis
along the beam-pipe. The x-axis points from the IP to the centre of the
LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ)
are used in the transverse plane, φ being the azimuthal angle around the
beam-pipe. The pseudorapidity is defined in terms of the polar angle θ
as η = − ln tan(θ/2). Transverse momenta and energies are defined as
pT = p sin θ and ET = E sin θ , respectively.

ity range |η| < 4.9, with finer granularity over the region
matched to the inner detector. The central EM calorimeters
are of an accordion-geometry design made from lead/liquid-
argon (LAr) detectors, providing a full φ coverage. These
detectors are divided into two half-barrels (−1.475 < η < 0
and 0 < η < 1.475) and two endcap (EMEC) components
(1.375 < |η| < 3.2), with a transition region between the
barrel and the endcaps (1.37 < |η| < 1.52) which contains a
relatively large amount of inactive material. Over the region
devoted to precision measurements (|η| < 2.47, excluding
the transition regions), the EM calorimeter is segmented into
longitudinal (depth) compartments called front (also known
as strips), middle, and back. The front layer consists of strips
finely grained in the η direction, offering excellent discrimi-
nation between photons and π0 → γ γ . At high electron or
photon energy, most of the energy is collected in the mid-
dle layer, which has a lateral granularity of 0.025 × 0.025
in (η, φ) space, while the back layer provides measurements
of energy deposited in the tails of the shower. The hadronic
calorimeters, which surround the EM detectors, provide addi-
tional discrimination through further energy measurements
of possible shower tails. The central EM calorimeter is
complemented by two presampler detectors in the region
|η| < 1.52 (barrel) and 1.5 < |η| < 1.8 (endcaps), made
of a thin LAr layer, providing a sampling for particles that
start showering in front of the EM calorimeters. The for-
ward calorimeter (FCal), a copper–tungsten/LAr detector,
provides coverage at high pseudorapidity (3.1 < |η| < 4.9)
with EM-shower identification capability given by its lateral
granularity and longitudinal segmentation into three layers;
this calorimeter plays an important role in extending the pseu-
dorapidity range where electrons from Z -boson decays can
be identified.

The inner detectors, including their services, as well as the
cryostat containing the LAr calorimeter system correspond
to a significant pseudorapidity-dependent amount of mate-
rial located in front of the EM calorimeters and can impact
the electron reconstruction and identification performance.
Figure 1 shows the distribution of the material in front of
the cryostat in terms of radiation lengths as a function of
pseudorapidity. The observed material variations suggest a
pseudorapidity-dependent optimisation of the selection cri-
teria.

3 Electron trigger, reconstruction, and identification

3.1 Trigger

The trigger system in ATLAS [8,9] comprises a hardware-
based Level-1 trigger (L1) and software-based High-Level
Triggers (HLT), composed of the Level-2 trigger (L2) and
the Event Filter (EF). Inside the L1, the transverse energy
ET of electromagnetic showers collected in the calorimeters
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Fig. 1 Amount of material in front of the cryostat, housing the solenoid
and the EM calorimeters, in units of radiation length X0, traversed by a
particle as a function of |η|. The contributions of the different detector
elements, including the services, are shown separately by filled colour
areas

is computed within a granularity of Δη ×Δφ ≈ 0.1 × 0.1.
The selected objects must satisfy an ET threshold and are
used to seed the L2 reconstruction, which combines calori-
metric and track information using fast algorithms. In the EF,
offline-like algorithms are deployed for the reconstruction of
the calorimetric quantities while an adapted version of the
offline software is used to treat the information of the inner
detector. During the 2011 run, the L1 output rate was kept
below 60 kHz, the L2 rate below 5 kHz and the EF rate was
approximately 400 Hz, averaged over the LHC fills.

3.2 Reconstruction

3.2.1 Central electrons

The electron-reconstruction algorithm used in the central
region of the detector equipped with the ID (|η| < 2.5) iden-
tifies energy deposits in the EM calorimeter and associates
these clusters of energy with reconstructed tracks in the inner
detector. The three-step process is as follows.

Cluster reconstruction: EM clusters are seeded from energy
deposits with total transverse energy above 2.5 GeV by using
a sliding-window algorithm with window size 3 × 5 in units
of 0.025 × 0.025 in (η, φ) space. From Monte Carlo (MC)
simulations of W and Z leptonic decays, the efficiency of the
initial cluster reconstruction is expected to be approximately
97 % at ET = 7 GeV and almost 100 % for electrons with
ET > 20 GeV.

Track association with the cluster: Within the tracking vol-
ume, tracks with pT > 0.5 GeV are extrapolated from their
last measured point to the middle layer of the EM calorime-
ter. The extrapolated η and φ coordinates of the impact point
are compared to a corresponding seed cluster position in that

layer. A track and a cluster are considered to be successfully
matched if the distance between the track impact point and
the EM cluster barycentre is |Δη| < 0.05. To account for the
effect of bremsstrahlung losses on the azimuthal distance,
the size of the Δφ track–cluster matching window is 0.1 on
the side where the extrapolated track bends as it traverses
the solenoidal magnetic field. An electron candidate is con-
sidered to be reconstructed if at least one track is matched
to the seed cluster. In the case where more than one track is
matched to a cluster, tracks with hits in the pixel detector or
the SCT are given priority, and the match with the smallest
ΔR = √

(Δη)2 + (Δφ)2 distance is chosen. In the absence
of a matching track, the cluster is classified as an uncon-
verted photon candidate. Electrons are distinguished from
converted photons by investigating the presence of pairs of
close-by tracks originating from a vertex displaced from the
interaction point and by verifying the location of the first hits
along the path of the single tracks [10].

Reconstructed electron candidate: After a successful track–
cluster matching, the cluster sizes are optimised to take
into account the overall energy distributions in the different
regions of the calorimeter. In the EM barrel region, the energy
of the electron cluster is collected by enlarging its size to 3×7
in units of 0.025 × 0.025 in (η, φ) space, while in the EM
endcaps the size is increased to 5×5. The total reconstructed
electron-candidate energy is determined from the sum of four
contributions [11]: the estimated energy deposit in the mate-
rial in front of the EM calorimeter; the measured energy
deposit in the cluster, corrected for the estimated fraction of
energy measured by the sampling calorimeter; the estimated
energy deposit outside the cluster (lateral leakage); and the
estimated energy deposit beyond the EM calorimeter (longi-
tudinal leakage). The correction for the material is aided by
the measured presampler signal, while the other three cor-
rections are derived from MC simulations. The (η, φ) spa-
tial coordinates of the electron candidate are taken from the
parameters of the matched track at the interaction vertex. The
absolute energy scale and the intercalibration of the differ-
ent parts of the EM calorimeter are determined using tightly
selected electrons from Z → ee, J/ψ → ee and W → eν
decays [7].

The relative alignment of the calorimeter components with
respect to the inner detector has been measured using electron
candidates with transverse energy ET > 20 GeV selected
with strict identification criteria, similar to those used for
the energy calibration, and compatible with coming from the
decay of W or Z bosons. The difference between the electron
cluster position and the impact point of the track extrapola-
tion to the calorimeter indicates the size of possible relative
displacements between the two detectors. The derived align-
ment constants are applied to correct both the η (as shown in
Fig. 2) and φ electron cluster coordinates.

123



2941 Page 4 of 38 Eur. Phys. J. C (2014) 74:2941

track extrap
η-

cluster
η

-0.015 -0.01 -0.005 0 0.005 0.01 0.015

A
rb

itr
ar

y 
un

its

0

0.01

0.02

0.03

0.04

0.05

0.06

 < -1.52η-2.47 < 

ATLAS  = 7 TeVs2011 Data, 
Before alignment
After alignment

/ee MCνe→W/Z

track extrap
η-

cluster
η

-0.015 -0.01 -0.005 0 0.005 0.01 0.015

A
rb

itr
ar

y 
un

its

0

0.01

0.02

0.03

0.04

0.05

 < 0η-1.37 < 

ATLAS  = 7 TeVs2011 Data, 
Before alignment
After alignment

/ee MCνe→W/Z

track extrap
η-

cluster
η

-0.015 -0.01 -0.005 0 0.005 0.01 0.015

A
rb

itr
ar

y 
un

its

0

0.01

0.02

0.03

0.04

0.05

0.06

 < 1.37η0 < 

ATLAS  = 7 TeVs2011 Data, 
Before alignment
After alignment

/ee MCνe→W/Z

track extrap
η-

cluster
η

-0.015 -0.01 -0.005 0 0.005 0.01 0.015

A
rb

itr
ar

y 
un

its

0

0.01

0.02

0.03

0.04

0.05

0.06

 < 2.47η1.52 < 

ATLAS  = 7 TeVs2011 Data, 
Before alignment
After alignment

/ee MCνe→W/Z

(a) (b)

(c) (d)

Fig. 2 Distributions of the difference between the cluster η position
determined from the first layer of the EM calorimeter, and the η posi-
tion of the ID track extrapolated to the entrance of that layer. Before
the alignment procedure, the estimated detector positions were based
on the best knowledge from survey and construction. The distribution is
shown before (red points) and after (black triangles) the alignment cor-
rections. Monte Carlo distributions using a perfect tracker–calorimeter

alignment are also shown as a coloured histogram. The four figures
correspond to two half-barrels (−1.37 < η < 0 in b and 0 < η < 1.37
in c) and the two endcaps (−2.47 < η < −1.52 in a and 1.52 < η <

2.47 in d). The two-peak structure visible in the endcap plots a and d
before alignment is due to an endcap transverse displacement of 5 mm
with respect to the beam-line

3.2.2 Forward electrons

In the forward region (2.5 < |η|<4.9), which is not equipped
with tracking detectors, the electron reconstruction uses only
the information from the EMEC and forward calorimeters
and therefore no distinction is possible between electrons
and photons. Due to the reduced detector information in this
region, the use of forward electrons in physics analyses is
restricted to the range ET > 20 GeV. In contrast to the fixed-
size sliding-window clustering used in the central region, the
forward region uses a topological clustering algorithm [12]:
cells with deposited energy significantly above the noise level
are grouped in three dimensions in an iterative procedure,
starting from seed cells. The number of cells in the cluster
is not fixed and the sum of their energies defines the energy
of the cluster, with corrections made to account for energy
losses in the passive material in front of the calorimeters.

As determined from simulation, the efficiency of the cluster
reconstruction is better than 99 % for ET > 20 GeV. An
electron candidate in the forward region is reconstructed if
it has a transverse energy of ET > 5 GeV and has only a
small energy component in the hadronic calorimeters. The
direction of the forward-electron candidates is defined by
the barycentre of the cells belonging to the cluster.

3.3 Electron identification

3.3.1 Central electrons

The identification criteria for central-electron candidates are
implemented based on sequential cuts on calorimeter, on
tracking, and on combined track–cluster variables. These
requirements are optimised in 10 cluster-η bins, motivated
by the structure of the detector, and 11 ET bins (from 5 to
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80 GeV), in order to provide good separation between signal
(isolated) electrons and background from hadrons misiden-
tified as electrons, non-isolated electrons (e.g. from semilep-
tonic decays of heavy-flavour particles), and electrons from
photon conversions.

Three sets of reference selection criteria, labelled loose,
medium and tight, are designed for use in analyses. These
three sets were revisited with respect to those described in
Ref. [7], which were designed mostly for robustness at the
startup of the LHC machine with low-luminosity conditions.
These criteria are designed in a hierarchical way so as to
provide increasing background-rejection power at some cost
to the identification efficiency. The increased background-
rejection power was obtained both by adding discriminating
variables at each step and by tightening the requirements
on the original variables. The different selections used for
central-electron identification are detailed in Table 1 and
described below.

Loose: The loose selection uses shower-shape variables
in both the first and second layers of the EM calorime-
ter, in contrast to the original selection [7], which did not
use the former. As before, hadronic leakage information is
used. Additional requirements on the quality of the elec-
tron track and track–cluster matching improve the rejec-
tion of hadronic backgrounds by a factor of ∼5 in the ET

range 30 to 40 GeV while maintaining a high identification
efficiency.

Medium: The medium selection adds to the loose discrimi-
nating variables by requiring the presence of a measured hit
in the innermost layer of the pixel detector (to reject electrons
from photon conversions), applying a loose selection require-
ment on the transverse impact parameter |d0|, and identify-
ing transition radiation in the TRT (to reject charged-hadron
background), when available. The requirements on the dis-
criminating variables in common with the loose selection are

Table 1 Variables used in the loose, medium, and tight electron identification criteria in the central region of the detector (|η| < 2.47)

Category Description Variable

loose

Acceptance |η| < 2.47

Hadronic leakage In |η| < 0.8 and |η| > 1.37: ratio of ET in the first
layer of the hadronic calorimeter to ET of the EM
cluster

Rhad,1

In 0.8 < |η| < 1.37: ratio of ET in whole hadronic
calorimeter to ET of the EM cluster

Rhad

Middle layer of the EM Ratio of energies in 3 × 7 cells over 7 × 7 cells Rη

Lateral width of the shower wη2

Front layer of the EM Total shower width wstot

Energy difference of the largest and second largest
energy deposits in the cluster divided by their sum

Eratio

Track quality and track–cluster matching Number of hits in the pixel detector (>0)

Number of hits in the silicon detectors (≥7)

|Δη| between the cluster position in the first layer
and the extrapolated track (<0.015)

Δη1

medium (includes loose with tighter requirements on shower shapes)

Track quality and track–cluster matching Number of hits in the b-layer >0 for |η| < 2.01

Number of hits in the pixel detector >1 for
|η| > 2.01

Transverse impact parameter |d0| < 5 mm d0

Tighter |Δη1| cut (<0.005)

TRT Loose cut on TRT high-threshold fraction

tight (includes medium)

Track quality and track–cluster matching Tighter transverse impact parameter cut
(|d0| < 1 mm)

Asymmetric cut on Δφ between the cluster position
in the middle layer and the extrapolated track

Δφ

Ratio of the cluster energy to the track momentum E/p

TRT Total number of hits in the TRT

Tighter cut on the TRT high-threshold fraction

Conversions Reject electron candidates matched to reconstructed
photon conversions
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Table 2 Variables used to identify electrons in the forward region of the detector (2.5 < |η| < 4.9)

Category Description Variable

Acceptance 2.5 < |η| < 4.9

Shower depth Distance of the shower barycentre from the calorimeter front face measured along the shower axis λcentre

Maximum cell energy Fraction of cluster energy in the most energetic cell fmax

Longitudinal second moment Second moment of the distance of each cell to the shower centre in the longitudinal direction (λi ) 〈λ2〉
Transverse second moment Second moment of the distance of each cell to the shower centre in the transverse direction (ri ) 〈r2〉
Normalised lateral moment w2 and wmax are second moments of ri for different weights per cell w2

w2+wmax

Normalised longitudinal moment l2 and lmax are the second moments of λi for different weights per cell l2
l2+lmax

also tightened, allowing the background-rejection power to
increase by approximately an order of magnitude with respect
to loose.

Tight: The tight selection makes full use of the particle-
identification tools available for electron identification. In
addition to the generally tighter requirements on medium
selection discriminating variables, stricter requirements on
track quality in the presence of a track extension in the TRT
detector, on the ratio of the EM cluster energy to the track
momentum, and a veto on reconstructed photon conversion
vertices associated with the cluster [10] are applied. Overall,
a rejection power higher by a factor of two is achieved with
respect to the medium selection.

The loose, medium, and tight identification criteria natu-
rally exclude a large fraction of candidates with additional
close-by activity, such as electrons within jets. It is impor-
tant to note that none of the electron identification criteria
explicitly apply requirements on the presence of other par-
ticles (additional tracks or energy deposits outside the EM
cluster) close to the identified electrons. The optimisation
of such dedicated requirements (so-called isolation require-
ments), is strongly dependent on the physics process and is
performed separately in each analysis.

3.3.2 Forward electrons

Electron identification in the forward region also is based on
sequential cuts on discriminating variables; however, these
variables are mostly based on topological cluster moments,3

as defined in Table 2. As for the central region, three reference
sets of selection criteria, labelled loose, medium, and tight,
are defined. To compensate for the absence of tracking infor-
mation in the forward region, variables describing both the
lateral and longitudinal shower development are employed.

3 The cluster moment of degree n for a variable x is defined as:

〈xn〉 =
[
∑

i

Ei xn
i

]

/

[
∑

i

Ei

]

,

where i is the cell index within the cluster.

In addition, due to the significantly harsher pile-up condi-
tions at high pseudorapidity with respect to those described in
Ref. [7], the identification criteria for forward electrons were
redesigned and optimised directly with data in nine cluster-
η bins: six in the EMEC calorimeter (2.5 < |η| < 3.16)
and three in the FCal (3.35 < |η| < 4.90). The transition
region between the two calorimeters (3.16 < |η| < 3.35) is
excluded from the study. No explicit dependence on cluster
ET or isolation energy is introduced in the forward-electron
identification criteria. However, in contrast to the central
electrons, the identification criteria are also optimised in
four bins of the number of primary vertices reconstructed
in the event NPV (1–3, 4–6, 7–10,>10), allowing for similar
electron-identification efficiency for different pile-up condi-
tions. These three reference sets use the same variables in
each set, but with increasing background rejection power
coming from tightened requirements, with the tight identifi-
cation providing a rejection factor approximately two to three
times higher than the loose selection.

3.4 Bremsstrahlung-mitigation algorithms

An electron can lose a significant amount of its energy due
to bremsstrahlung when interacting with the material it tra-
verses. Because of the electron’s small mass, radiative losses
can be substantial, resulting in alterations of the curvature
of the electron’s trajectory when it propagates through a
magnetic field and hence of the reconstructed electron track.
The electron-reconstruction scheme described in Sect. 3.2.1
employs the same tracking algorithm for all charged par-
ticles, with all tracks fitted using a pion mass hypothesis to
estimate the material effects. The lack of special treatment for
bremsstrahlung effects results in inefficiencies in reconstruct-
ing the electron trajectory. It also results in the degradation of
the estimated track parameters, increasing with the amount of
material encountered. The effect is strongly dependent on the
electron pseudorapidity, as shown in Fig. 1. By taking into
account possible bremsstrahlung losses (and the resulting
alteration of the track curvature), the estimated electron track
parameters can be improved. In 2011–2012, a two-step pro-
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gramme was underway in ATLAS to improve electron recon-
struction: first to correct all track parameters associated with
electron candidates by performing a bremsstrahlung refitting
procedure prior to the matching with the electron cluster, and
then performing bremsstrahlung recovery at the initial step of
the electron trajectory formation, to allow more efficient track
reconstruction. By the end of the 2011 data-taking period,
the first step [13] was made available to analyses, improving
the track-related electron identification variables. The second
step was implemented in time for the 2012 data-taking period,
increasing the electron reconstruction efficiency by several
percent, especially at low ET. Results presented in this paper
do not use the bremsstrahlung-mitigation algorithms.

4 Methodology for efficiency measurements

Isolated electrons are important ingredients in Standard
Model measurements and searches for physics beyond the
Standard Model. However, the experimentally determined
electron spectra must be corrected for instrumentation ineffi-
ciencies, such as those related to trigger, reconstruction, and
identification, before absolute measurements can be made.
These inefficiencies may be directly estimated from data
using so-called tag-and-probe methods [7]. These methods
are used to select, from known resonances such as Z → ee,
unbiased samples of electrons (probes) by using strict selec-
tion requirements on the second object produced from the
particle’s decay (tags). The efficiency of a requirement can
then be determined by applying it directly to the probe sample
after accounting for residual background contamination. The
efficiency factor relating a true single-electron spectrum to
one determined experimentally may be factorised as a prod-
uct of different efficiency terms:

εe = εcluster · εreco · εid · εtrig · εother,

where εcluster is the efficiency to reconstruct an electromag-
netic cluster, εreco is the electron reconstruction algorithm
efficiency given the presence of the cluster (Sect. 3.2), and
εid is the efficiency of identification criteria with respect to
the reconstructed electron candidates (Sect. 3.3). The vari-
able εtrig denotes the trigger efficiency with respect to recon-
structed electron candidates passing the identification crite-
ria. The variable εother is the efficiency of any extra selection
requirements applied to the electrons satisfying the identifi-
cation criteria, such as isolation of the electron cluster and/or
track, or selections on the significance of the impact param-
eter of the fitted electron track (both are used in many anal-
yses). This paper reports on the measurement of the recon-
struction efficiency εreco and the identification efficiency εid

as determined from data and compared with expectations
from simulated events. The term εcluster is determined from
simulation to be close to unity, with typical values in the cen-
tral and forward regions provided in Sect. 3.2. Measurements

of the trigger efficiency εtrig can be found in Ref. [14]. The
term εother is largely process-dependent and so must be mea-
sured separately in each analysis. Section 8 presents a mea-
surement of the efficiency to correctly identify the charge of
an electron, εcharge, with respect to the reconstructed electron
candidates satisfying the various identification criteria.

Tag-and-probe-based measurements based on samples of
Z → ee, W → eν, and J/ψ → ee events are presented. The
combination of the three samples allows efficiency measure-
ments over a significant ET range, from 7 to 50 GeV, while
still providing overlapping measurements between the sam-
ples.4 In the case of Z → ee and J/ψ → ee decays, events
are selected on the basis of the electron-positron invariant
mass and strict identification criteria applied to the tag elec-
tron. Electron identification efficiencies are also extracted
from W → eν decays, tagging on the presence of missing
transverse momentum in the event; this channel contributes
significantly to the overall efficiency determination due to its
high statistical power. At the LHC, J/ψ mesons are produced
directly and in b-hadron decays. Prompt J/ψ decays occur
in the vicinity of the primary event vertex while many of the
non-prompt J/ψ particles have displaced decay vertices due
to the relatively long lifetime of their b-hadron parent. The
J/ψ candidates come from a mixture of these two processes;
however, their ability to extend the reach of efficiency mea-
surements to low ET makes them nonetheless very attractive,
in spite of this added complication.

The shower profiles of electrons in the calorimeters
depend on both the energy of the electrons and the amount
of material traversed by the electrons before reaching the
calorimeter. For this reason, electron efficiency measure-
ments in the central region (|η| < 2.47) are made binned in
two dimensions, both transverse energy and pseudorapidity,
in contrast to the previous results [7] whose statistical pre-
cision could only provide one-dimensional binning in either
variable. Eight bins of 5 GeV in transverse energy are used
in the range from 10 to 50 GeV, with an additional bin cov-
ering the low ET range from 7 to 10 GeV. Depending on the
available statistics in each ET bin, efficiencies are measured
in three different, largely detector-motivated, η granularities:

– coarse: 11 bins in η with limits −2.47, −2.01, −1.52,
−1.37, −0.8, −0.1, 0.1, 0.8, 1.37, 1.52, 2.01, 2.47

– middle: 20 bins in ηwith |η| limits 0.0, 0.1, 0.6, 0.8, 1.15,
1.37, 1.52, 1.81, 2.01, 2.37, 2.47

– fine: 50 bins in ηwith a typical granularity of 0.1 covering
the full pseudorapidity range (|η| < 2.47).

In the forward region the measurements are performed
binned only in absolute electron pseudorapidity:

4 Results in the high transverse energy region ET > 50 GeV are dis-
cussed in Ref. [15].
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– forward: 9 bins in |η| with limits 2.5, 2.6, 2.7, 2.8, 2.9,
3.0, 3.16, 3.35, 3.6, 4.0, 4.9.

The efficiency is defined as the fraction of electrons pass-
ing a particular selection in a given (ET, η) bin. For the case
of εreco, the electron reconstruction efficiency is calculated
with respect to the sample satisfying the cluster-building step.
Hence, clusters associated with reconstructed photons are
also included in the denominator of the measured reconstruc-
tion efficiency, provided that they are separated byΔR > 0.4
from any other cluster associated with a reconstructed elec-
tron. As no reconstructed charge is available for clusters with-
out an associated track, no requirement on the charge of the
tag and the probe is applied. For the case of εid, the efficiency
to identify an electron as loose, medium, or tight is calculated
with respect to a reconstructed electron candidate, resulting
in three ratios: εloose, εmedium, and εtight, respectively. For the
case of εcharge, the efficiency to correctly identify the charge
of an electron is calculated by comparing the ensemble of
di-electron pairs without any requirement on the sign of the
charge of the track to that of the yield of opposite-sign pairs
consistent with the decay of a Z boson. The statistical uncer-
tainty of these efficiencies is computed assuming a binomial
distribution. If the evaluation of the number of events (before
or after the selection under investigation) is the result of a
background subtraction, the corresponding uncertainties are
also included in the statistical uncertainty.

5 The 2011 data and simulation samples

The data recorded during the 2011 proton–proton collision
run at 7 TeV are subdivided into several periods correspond-
ing to the changing conditions of the detector, including the
energy thresholds of the primary triggers, as well as the
instantaneous luminosity of the LHC. Monte Carlo samples
are generated to mimic the same period granularity. In order
to reproduce the pile-up effects observed in the data, addi-
tional inelastic proton–proton interactions in the form of sim-
ulated Pythia [16] minimum-bias events are included in the
Monte Carlo simulation.

5.1 Samples

All data collected by the ATLAS detector undergo careful
scrutiny to ensure the quality of the recorded information.
In particular, data used for the efficiency measurements are
filtered requiring that all detector subsystems needed in the
analysis (calorimeters and tracking detectors) are operating
nominally. Several detector defects had minor impacts on the
quality of the 2011 data set. The total integrated luminosity
used for the measurement presented in this paper is L =
4.7 fb−1 [17].

Samples of simulated Z → ee, W → eν, and J/ψ → ee
decays are used to benchmark the expected electron recon-
struction and identification performance. The primary Z →
ee and W → eν MC samples are generated with Powheg
version r1556 [18–21] and parton showering is accomplished
using Pythia version 6.425. The J/ψ samples are gener-
ated using the same version of Pythia. All generators are
interfaced to Photos version 3.0 [22] to simulate the effect
of final-state QED radiation. The generated event samples
are passed through a detailed ATLAS detector simulation
[23] using GEANT4 [24]. The MC events are reconstructed
using the same software suite as used for the data. Because
background subtraction is not performed on the MC sig-
nal samples when assessing the expected electron efficiency,
generator-level information is used to select electrons origi-
nating only from Z → ee, W → eν, or J/ψ → ee decays.
Correction factors are applied to the simulation to account
for known discrepancies with the data. These include correc-
tions in the form of event weights applied to the simulated
events to match the average interaction rate per bunch cross-
ing and the width of the beam-spot in the z-direction, both as
measured in the 2011 data set. Both corrections are important
for the measurements presented in this paper since the iden-
tification efficiency depends on the instantaneous luminosity
and the position of the primary interaction.

Important improvements to the ATLAS GEANT4 simula-
tion were made as a consequence of observed Monte Carlo–
data discrepancies in 2010 related to the transverse shower
shapes of electrons in the EM calorimeter [7]. The implemen-
tation of a new GEANT4 version (4.9.3), combined with a
change of the ATLAS geometry description resulted in a sig-
nificant improvement in the 2011 MC simulation samples.
The residual differences that are still observed when com-
paring data and MC for some variables, as shown in Fig. 3,
have to be taken into account in the analyses by applying
appropriate data-to-MC efficiency corrections as presented
in this paper.

5.2 Triggers

The samples used in these measurements were selected by the
primary electron triggers as well as by specifically designed
supporting triggers. In order to keep the trigger rates to an
acceptable level with the increase of the instantaneous lumi-
nosity in 2011, the primary single-electron trigger selection
had to be adjusted several times by raising the minimum
transverse energy threshold and tightening the selection cri-
teria. These same trigger conditions are also implemented in
the Monte Carlo simulations.

– Z → ee events were collected using the unprescaled
single-electron triggers, requiring the candidates to pass a
minimum ET threshold. These events were also required
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Fig. 3 Comparison of the shapes in data and MC simulation for two variables related to the lateral shower extension in the second layer of the EM
calorimeter (see Table 1): Rη in a and wη2 in b. Electrons with ET in the range 40–45 GeV from Z → ee decays are used to extract these shapes

Table 3 Single-electron trigger evolution during the 2011 data taking,
with their respective ET thresholds at EF level

Single-electron Luminosity ET threshold
triggers [cm−2 s−1] [GeV]

e20_medium Up to 2 × 1033 20

e22_medium 2−2.3 × 1033 22

e22vh_medium1 >2.3 × 1033 22

to satisfy strict quality criteria; initially, the so-called
medium and later medium1 criteria introduced to tighten
the requirements on the shower shapes and track prop-
erties, limitations on the amount of energy deposited in
the hadronic calorimeter, and η-dependent ET thresholds
(indicated in the trigger name by “vh”) at L1. These trig-
gers are summarised in Table 3 [14].

– W → eν events were collected with specialised triggers
based on the missing transverse momentum5 Emiss

T sig-
nificance xs = Emiss

T /(α(
√∑

ET − c)), where the sum
runs over all energy deposits and the constants α and
c are optimised such that the denominator represents the
Emiss

T resolution. The xs variable offers the ability to sup-
press the background significantly, allowing the triggers
to run unprescaled at any pile-up rate. An xs selection
requirement was used in combination with an electron
ET cluster threshold of 10 or 13 GeV. During the 2011
run, additional track-quality requirements were applied
to the probe electron candidates. The Emiss

T vector was
required to be separated by at least Δφ = 0.7 from any
jet with pT > 10 GeV, where the jets were reconstructed
with the anti-kt algorithm [25] with distance parameter
R = 0.4.

5 In a collider event, the missing transverse momentum is defined as
the momentum imbalance in the plane transverse to the beam axis and
is obtained from the negative vector sum of the momenta of all particles
detected in the event.

Table 4 Di-electron triggers used for collecting J/ψ → ee events.
The first part of each trigger name indicates the threshold of the tight
tag electron, while the second corresponds to the loosely selected probe
one. The di-electron mass is required to be in the 1–6 GeV mass range

Di-electron Tag electron ET Probe electron ET
triggers threshold [GeV] threshold [GeV]

e5e4 5 4

e5e9 5 9

e5e14 5 14

e9e4 9 4

e14e4 14 4

– J/ψ → ee events were collected with five dedicated
prescaled di-electron triggers, mainly enabled towards
the end of LHC fills, by requiring a candidate with tight
identification criteria exceeding a minimum ET threshold
for the tag electron, an electromagnetic cluster exceeding
a minimum ET threshold for the probe electron, and a
tag–probe invariant mass between 1 and 6 GeV. These
triggers are summarised in Table 4.

While the triggers used for the collection of W → eν
and J/ψ → ee events do apply some requirements on probe
electrons and on the event topology, these are chosen to be
looser than the offline selection and thus do not impact the
efficiency measurement. In the case of Z → ee collection,
it is ensured that the tag electron was sufficient to trigger the
event, thus avoiding any bias on the probe properties.

6 Identification efficiency measurement

6.1 Central-electron identification efficiency

Events from W → eν, Z → ee, and J/ψ → ee samples
are used to measure the central-electron identification effi-
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ciencies for various identification criteria, in the transverse
energy range from 7 to 50 GeV and pseudorapidity range
|η|< 2.47.

6.1.1 Selection requirements and sample sizes

A common set of requirements is applied to all triggered
events to ensure good data quality and suppress contam-
ination from background events. All electron candidates,
whether they be tag or probe electrons, must be reconstructed
within |η|< 2.47 with at least six hits in the SCT and one
in the pixel detector. The effect of these requirements is
accounted for in the reconstruction efficiency; see Sect. 7.
Tight selection criteria are applied to the tagging object that
triggered the event, that is, to one of the two electrons in
Z → ee and J/ψ → ee events or to Emiss

T in the case of
W → eν events. For the case of W → eν and Z → ee
candidates, the probe electrons must also satisfy a require-
ment limiting the amount of leakage of the shower into the
hadronic calorimeter (also accounted for in the reconstruc-
tion efficiency; see Sect. 7). Further criteria are imposed in
each channel to improve the separation between signal and
background events.

W → eν channel: A range of requirements is applied
to the minimum value of the transverse mass6 mT (40 to
50 GeV), and on the missing transverse momentum, Emiss

T
(25 to 40 GeV), of the event in order to obtain event samples
with differing background fractions. A minimum transverse-
energy requirement of ET > 15 GeV is applied to the probe
electrons and the entire event is discarded if more than one
probe candidate in a given event satisfies the medium criteria.
Two additional requirements are imposed in order to reduce
contributions from hadrons misidentified as electrons. The
probe electron candidate is required to be separated from
any R = 0.4 anti-kt jet with pT > 25 GeV found within a
cone of radiusΔR = 0.4. Similarly, the Emiss

T vector must be
separated from jets with pT > 25 GeV by at least an angular
distance of Δφ = 0.7. After the final selection, a sample of
6.8 million W → eν candidate events was collected when
requiring Emiss

T > 25 GeV and mT > 40 GeV.

Z → ee channel: The tag electron is required to have
ET > 20 GeV and to lie outside the calorimeter transi-
tion region (1.37 < |η| < 1.52). The probe electron must
have ET > 15 GeV and be separated from any jet with
pT > 20 GeV found within a cone of ΔR = 0.4. For
each pair, the tag and the probe electrons are required to
have opposite reconstructed charges. A typical di-electron
invariant mass range used in this analysis is 80 to 100 GeV,

6 mT =
√

2ET Emiss
T (1 − cosΔφ) where Δφ is the azimuthal sepa-

ration between the directions of the electron and missing transverse
momentum.
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Fig. 4 Pseudo-proper time fit of J/ψ → ee candidate events for all
selected probes within the ET range 7–10 GeV and integrated over η.
The prompt contribution is modelled by two Gaussian functions, while
the non-prompt component uses an exponential function convolved with
two Gaussians. Points with error bars represent the data sample after
background subtraction. The blue dashed line shows the prompt signal
component while the non-prompt component is drawn with a dashed
green line. The red curve is the sum of the fitted prompt and non-prompt
components

although this range is varied in systematic studies. After the
final selection, a sample of 2.1 million probes from Z → ee
candidate events with opposite-charge electrons is extracted
from the 2011 data set.

J/ψ → ee channel: The J/ψ → ee events come from
a mixture of both the prompt and non-prompt decays, with
their relative fraction depending both on the triggers used to
collect the data and also on the ET of the probe electrons.
Given the difficulties associated with the fact that electrons
from non-prompt decays are often surrounded by hadronic
activity, two methods have been developed to measure the
efficiency for isolated electrons at low ET, both exploiting
the pseudo-proper time variable.7 The first method, the so-
called “short-lifetime method” uses J/ψ → ee decays mea-
sured within very small values of the pseudo-proper time
where the prompt component is enhanced, thereby limiting
the non-prompt contribution ( fNP) to 8–20 % of the yield.
The second method, the so-called “lifetime-fit method”, uses
the full J/ψ → ee candidate sample, corrected for the non-
prompt fraction, which is obtained by performing a fit of the
pseudo-proper time distribution at each identification stage.
An example of this pseudo-proper time fit is shown in Fig. 4.
For both J/ψ → ee methods, the main challenge is the sup-
pression of the large background present in the low electron
ET region. In order to reduce this background, tighter require-

7 The pseudo-proper time is defined as t0 = Lxy · m J/ψ
PDG/pJ/ψ

T , where
Lxy is the displacement of the J/ψ vertex with respect to the primary
vertex projected onto the flight direction of the J/ψ in the transverse
plane, m J/ψ

PDG is the nominal J/ψ mass [26] and pJ/ψ
T is the J/ψ recon-

structed transverse momentum.
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Fig. 5 Distributions of probe ET in a and η in b for the three samples of probes satisfying tight identification criteria. The non-continuous ET
spectrum of the J/ψ → ee sample is due to the different ET thresholds of the triggers utilised to collect this sample

ments are imposed on the quantities measured with the TRT
hits associated with the tag electron, and the probe electron
is required to be isolated from surrounding energy deposits.8

Moreover, both the tag and probe tracks are required to orig-
inate from the same primary vertex and to be within 0.2 mm
of each other in the z-direction at the vertex (x, y)-position.
The probe electron must have ET > 5 GeV. Both the tag
and probe are permitted to point toward the calorimeter tran-
sition region. After the final selection, a sample of 120,000
J/ψ → ee candidate events with opposite-charge electrons
is collected in the invariant mass range 2.8–3.3 GeV.

The ET and η distributions of tight electron probes for the
three tag-and-probe samples are shown in Fig. 5.

6.1.2 Background evaluation

After the selections described in Sect. 6.1.1 are applied to the
data, the three samples still contain background originating
from hadrons misidentified as electrons as well as from true
electrons from photon conversions and non-isolated electrons
originating from heavy-flavour decays. For each sample and
in each (ET, η) bin, the level of background is evaluated by
the use of sensitive discriminating variables to build tem-
plates able to provide some separation between signal and
background events. These templates are then either fitted
or normalised to data to evaluate and subtract the estimated
background component in the signal sample.

W → eν channel: Electron isolation [27] is used as the dis-
criminating variable. Templates are built from the sum of
the transverse energies in the electromagnetic and hadronic

8 Tighter TRT and isolation requirements are applied on the probe sam-
ples entering in both the numerator and denominator of the efficiency
ratio; both criteria were verified in simulation not to affect the measured
identification efficiency.

calorimeters contained in a cone of size ΔR = X around
the probe, excluding the probe’s contribution. The size X of
the cone is typically 0.3 or 0.4. This isolation variable is cor-
rected on an event-by-event basis for pile-up and underlying
event contributions [28] and then normalised to the probe’s
transverse energy. The resulting quantity is referred to as
Econe

T (X)/ET. The background template is constructed from
the probe selection by reversing two of the electron iden-
tification criteria, namely the total shower width wstot and
the ratio of high-threshold hits to all TRT hits (see Table 1).
To ensure adequate statistics in each bin, the background
templates are constructed in (ET,|η|) bins, assuming similar
background at positive and negative pseudorapidity values.
In the outermost |η| bins where no information from the TRT
is available, the template from the last bin with TRT infor-
mation is employed. A threshold requirement is applied to
the Econe

T (X)/ET variable to separate the signal-dominated
and background-dominated regions located below and above
this threshold, respectively. The Econe

T (X)/ET spectrum is
normalised to the data in this latter region and then used
to estimate the background fraction in the signal-dominated
region located below the threshold. Figure 6a shows a typi-
cal Econe

T (0.3)/ET distribution together with the normalised
template shape. The signal-to-background ratio S/B typically
varies from 6 to 60 for probes with ET in the ranges of 15–
20 to 35–40 GeV, respectively. After performing this back-
ground subtraction, 5.2 million events remain in the signal
region. As part of the systematic uncertainties studies, tem-
plates are also built by applying an additional reverse require-
ment on Rφ9 to the original template selection. Both sets
of templates adequately describe the high Econe

T (X)/ET tail
while offering differing shapes close to the signal region.

9 Rφ is the ratio of the energy contained in 3×3 in (η× φ) cells, to the
energy in 3×7 cells, computed in the middle layer of the EM calorimeter.
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Fig. 6 Examples of discriminating variables and background-
subtraction techniques for illustrative (ET, η) bins. a The
Econe

T (0.3)/ET distribution of probes in the W → eν sample
superimposed with the normalised background template. The black
dashed line indicates the threshold chosen to delineate the signal and
background regions. The Econe

T (0.3)/ET variable may take negative
values due to the applied average corrections for electronic noise and
pileup. b Invariant mass distribution in the Z → ee sample. The nor-
malised shapes of two different background templates are also shown
(see text for details). The invariant mass for pairs where the probe
satisfies the tight criteria is also shown. c Invariant mass distribution
for the J/ψ → ee sample in the short-lifetime range. The purple curve

corresponds to the measured background with same-sign (SS) pairs,
the dashed green line shows the opposite-sign (OS) background, the
blue curve indicates the extracted signal and the red line is the fit to data
taking into account signal, background, and ψ(2S) (not shown in the
figure) contributions. For presentational purposes the red line has been
smoothed. d Invariant mass distribution for the J/ψ → ee sample
using the lifetime-fit method. Points with error bars represent the
number of opposite-sign minus the number of same-sign data pairs, the
fitted signal is drawn by the dashed blue line, and the ψ(2S) resonance
by the dashed orange line. The residual opposite-sign background is
represented by the dashed green curve

Z → ee channel: Two discriminating variables are used to
evaluate the background yield in this channel. The first vari-
able is the invariant mass distribution mee of the tag–probe
pair. In this case, the background template is constructed from
events failing at least two loose identification requirements
and having a significant energy deposit in a cone around
the probe (see “Bkg template 1” in Fig. 6b). This template
is normalised to the invariant mass distribution of recon-
structed events in the high-mass region of mee > 120 GeV
and then used to evaluate the background fraction in the sig-
nal region (typically defined as 80 < mee < 100 GeV).
A small correction of ≤1 % is performed to account for
Z/γ ∗ → ee signal contribution in the high-mass tail. This
is estimated from signal MC normalized to data in the peak

region after tight identification cuts. In comparison to using a
functional fit to describe the background shape, this method
has the advantage of providing reliable results over the entire
(ET, η) kinematic range. The second variable employed is
the Econe

T (X)/ET value of the probe, as used in the W → eν
channel and following the same background subtraction tech-
niques. A typical invariant mass distribution is shown in
Fig. 6b. The S/B ratio typically varies from 5 to 160 for probes
with ET in the ranges of 15–20 and 35–40 GeV, respectively.
After performing this background subtraction, two million
probes remain in the signal region.

J/ψ → ee channel: As for the Z → ee channel, the discrim-
inating variable is the tag–probe invariant mass distribution.
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The mee spectrum of opposite-sign pairs is fitted, typically
in the range of 1.8 to 4.6 GeV, considering four distinct com-
ponents. Two Crystal Ball functions [29] separately model
the signal shape and that of the ψ(2S) resonance (the lat-
ter function is centred on the nominal PDG [26] value). The
background contribution in the signal region is largely mod-
elled by same-sign pairs as measured in data, with an addi-
tional Chebyshev polynomial used to model the remaining
background from opposite-sign pairs. For the short-lifetime
method, these contributions are fitted to the mee spectrum as
measured in data to evaluate the background contribution in
the signal region (see Fig. 6c). For the lifetime-fit method, an
unbinned maximum likelihood fit is performed, where same
(opposite)-sign pairs are considered with a negative (posi-
tive) weight (see Fig. 6d). The J/ψ → ee sample suffers
from a higher background contamination than the other two
channels such that the S/B ratio in the typical signal extrac-
tion range of 2.8 < mee < 3 GeV varies between ∼0.5 and
∼3. After performing the background subtraction, 88,000
(66,000) events remain in the signal region in the full (short)
pseudo-proper time range.

6.1.3 Identification efficiency measurement systematics

For all three channels, the dominant systematic uncertain-
ties are related to the evaluation of the background contri-
bution to the signal region. Possible biases affecting the effi-
ciency measurement are investigated by varying the selection
of events such that the signal-to-background ratio is modi-
fied substantially or by re-evaluating the efficiencies with
alternative templates or background models. Each analysis
is repeated with a large set of variations and the spread of
the corresponding results is used to quantify the systematic
uncertainties. These variations are designed to allow a rea-
sonable modification of the S/B ratio depending on the back-
ground level affecting each mode.

W → eν channel: The baseline sample of W → eν events
is varied by using alternative Emiss

T and mT selection require-
ments, and by changing the isolation discriminating variable
(Econe

T (0.4)/ET and Econe
T (0.3)/ET) as well as its associated

threshold requirement used to delineate the signal and back-
ground regions. For each variation, both sets of background
templates are used to normalise the isolation distributions
above the thresholds. Within the 80 variations used, the S/B
ratio distribution in the signal region exhibits an RMS (Root
Mean Square) of ∼30 % at low ET (15–20 GeV) and ∼25 %
at high ET (35–40 GeV). The combined effect of the charge
misidentification and the different W + and W − production
cross-sections at the LHC leads to an up to 5 % difference in
efficiency using the tight criteria between e+ and e− in the
calorimeter endcap bins for probes with 25 < ET < 30 GeV.

This difference is very well modelled in the MC efficiency,
leading to a negligible uncertainty for most analyses.

Z → ee channel: The baseline sample of Z → ee events
is modified by using alternative selection criteria defining
the tag electrons. Three mee windows (80–100, 70–100 and
75–105 GeV) are used to extract the signal events. More-
over, the size and composition of the background are varied
by modifying the reverse requirements used to generate the
templates. As an example, the curves “Bkg template 1 and
2” in Fig. 6b are similar in that the events used to build these
templates are required to fail some of the loose identifica-
tion requirements (template 1 fails at least two requirements
while template 2 fails three) and have a significant energy
deposit in a cone around the probe. However, in contrast to
template 1, template 2 is also built from events passing addi-
tional track-quality requirements and having little hadronic
activity associated with the candidate. In the case where the
invariant mass is the discriminating variable, an isolation con-
dition (Econe

T (0.4) < 5 GeV) is optionally applied to the tag
requirement. A total of 36 variations are performed, for which
the S/B ratio distribution exhibits an RMS of ∼10 %. In the
case where the isolation of the probe electron plays the role of
discriminating variable, the radius of the isolation cone and
its associated threshold are also varied, giving in total 120
variations. The method employing the invariant mass as the
discriminating variable is used as the primary efficiency mea-
surement. However, the efficiencies computed using either
variable agree well with each other within the systematic
uncertainties. Figure 7a shows the differences of the data-to-
MC tight efficiency ratios between the two methods in the
ET = 35−40 GeV bin, which are generally compatible with
zero within less than two standard deviations; these differ-
ences are considered as additional uncorrelated systematic
uncertainties on the primary measurement.

J/ψ → ee channel: The baseline sample of J/ψ → ee
events is similarly modified by using alternative selection
criteria to define the tag electron (additional isolation criteria,
tight TRT requirements) and by enlarging the 2.8–3.3 GeV
mass window defining the signal range. The functional fit
for the background from opposite-sign pairs is modified to
assess the uncertainty on the background subtraction (using
Chebyshev polynomial functions or exponential fits). The
range and the function used for the pseudo-proper time fit
as well as the size of the isolation cone and its associated
threshold are also varied. Both the track-based and energy-
based isolation criteria are investigated. A total of 76 and
52 variations resulting in an S/B ratio distribution RMS of
∼30 % are used for the lifetime-fit and the short-lifetime
methods, respectively.

The method using the short-lifetime range relies on the
non-prompt fraction, fNP, extracted from the J/ψ differ-
ential cross-section measurement [30], which is used to
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Fig. 7 a Data-to-MC efficiency ratio difference between the two meth-
ods to estimate background (Method 1: invariant mass, Method 2: iso-
lation) used in the Z → ee analysis for central electrons, for the tight
criteria and for probes in the 35–40 GeV ET bin. b The same difference

for the lifetime-fit (Method 1) and short-lifetime (Method 2) methods
used for the J/ψ → ee analysis for tight criteria and for probes in 15–
20 GeV bin. In both figures, the error bars represent only the systematic
uncertainties associated with the individual methods

combine the MC samples corresponding to prompt and
non-prompt J/ψ production. Selections targeting further
suppression of the non-isolated probes decrease fNP, as
expected, and this variation is taken into account as pre-
dicted by simulation. The non-prompt fraction increases with
the probe ET and is found to be independent of η. It enters
into the computation of the combined MC efficiency predic-
tion with an uncertainty of 10 %. In contrast, the lifetime-fit
method extracts fNP from the data, by fitting the lifetime
distribution in the range from −1 to +3 ps. As in the first
method, this fraction is computed in bins of ET only, since
no significant variation was observed as a function of η. Sys-
tematic uncertainties on the value of fNP obtained from data
are assessed by varying the range and the function used in the
fit. The results from the two methods agree reasonably well,
within the total uncertainties, as shown in Fig. 7b where the
difference of the data-to-MC tight efficiency ratios between
the two methods is shown for the bin ET = 15−20 GeV.
There is an approximate 75 % statistical overlap between the
candidates selected by the two methods. In the final combi-
nation, both the short-lifetime and lifetime-fit methods are
treated as variations of a single measurement.

The steady increase of the instantaneous luminosity dur-
ing the 2011 period induced pile-up effects that varied pro-
portionally to the average number of interactions per beam
crossing. Increased pile-up causes higher-energy deposits in
the calorimeters and more tracks in the inner detector, which
may impact the electron reconstruction and identification.
These effects are confirmed when measuring the identifica-
tion efficiency with Z → ee events as a function of the num-
ber of reconstructed primary vertices in an event (see Fig. 8),
where the efficiency is seen to drop by up to 2 and 5 % for
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Fig. 8 The loose, medium, and tight identification efficiencies as a
function of the number of reconstructed primary vertices in the event,
for Z → ee events and for central-electron probes in the ET range 15–
50 GeV. The quoted error bars correspond to the total uncertainties.
The observed loss in efficiency is well modelled by the simulation. The
yellow histogram indicates the NPV distribution in data

the loose and tight criteria, respectively. These effects are
well modelled by simulation with a maximum difference of
approximately two standard deviations observed in the case
of medium criteria. Variations of the pile-up simulation and
of the weighting procedure applied to the simulation to match
the pile-up conditions observed in data impact the efficiency
at the per mil level.

6.1.4 Combination and results

The Z → ee, W → eν, and J/ψ → ee channels are statisti-
cally independent and so are combined to increase the preci-
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Fig. 9 Comparison of the scale factors extracted from the various chan-
nels in two ET bins, shown as a function of the tight probe-electron pseu-
dorapidity. In a, scale factors from Z → ee, W → eν, and J/ψ → ee
are compared in the ET range 15–20 GeV. In b, scale factors from

Z → ee and W → eν are shown in the ET range 35–40 GeV. The
error bars correspond to the total uncertainties in each channel. Some
points are slightly shifted horizontally within the η bin for better visi-
bility

sion of the identification efficiency measurements. Although
the efficiencies in a given (ET, η) bin may be slightly differ-
ent in each channel due to effects related to e.g. resolution
and migration effects or the influence of the trigger, these dif-
ferences are expected largely to cancel when taking the data-
to-MC efficiency ratios, referred to as scale factors (SF). The
combination of the three channels is therefore performed by
first calculating the corresponding scale factors in a double-
differential binning in electron ET and η. As examples, the
scale factors of the different channels are shown for two illus-
trative ET bins in Fig. 9. The agreement among the channels
is in general fair, with the most notable discrepancy observed
in the ET range of 15–20 GeV where the J/ψ → ee results
in the barrel region are lower than for Z → ee and W → eν
with a significance of approximately two standard deviations.

A global χ2 minimisation [31] is used to compute an aver-
age value of the SFi in each bin i common to all channels:

χ2 =
∑

i,k

[
μi,k − SFi − ∑

j γ
i,k
j SFi b j

]2

(
δ

i,k
sta

)2
μi,kSFi

(
1 − ∑

j γ
i,k
j b j

)
+

(
δ

i,k
uncSFi

)2

+
∑

j

b2
j ,

where i , k, and j indices run over the (ET, η) bins, the three
channels, and the correlated systematics, respectively. The
latter are extracted from the systematic variations used to
compute the scale factor μi

k in each channel. The variables

δ
i,k
sta , δi,k

unc, and γ i,k
j represent the relative statistical, uncorre-

lated, and correlated systematic uncertainties, respectively.
The nuisance parameters b j are related to correlated uncer-
tainties, which are dominated by the background subtraction
uncertainties. The combined scale factors are given by SFi .

During the minimisation procedure, the central values of
the scale factors may be shifted by an amount which is a frac-
tion of the correlated uncertainties, such that the minimal χ2

is reached. In 0.5 % of all bins, the absolute value of the pull10

is larger than two. To be conservative, the uncorrelated uncer-
tainties are in this case inflated by the pull divided by

√
2 and

the global minimisation is performed once again. The com-
bination of independent measurements constrains the bin-
to-bin correlated uncertainties and reduces their size by up
to about 30 %, thereby reducing the total uncertainty. This
reduction is most significant in the range ET = 25−40 GeV,
where the Z → ee and W → eν measurements have the
highest statistical precision.

High-ET measurements: ET > 20 GeV. In this region, copi-
ous statistics from the low background Z → ee and W → eν
channels are available and so the measurement is performed
in all three η granularities (coarse, middle, fine). The total
uncertainty in this region is at most 1–2 % for tight elec-
trons. In general, the precision reaches the few per mil level
at 35 GeV and is statistically limited.

Low-ET measurements: 7 < ET < 20 GeV. In this region,
the measurement is driven by the J/ψ → ee sample,
although in the 15–20 GeV bin results from both W → eν
and Z → ee are also used in the combination. In this range,
only the coarse η binning is used due to the statistics avail-
able for the measurements. The measurement is limited by
the statistical precision and the total uncertainty varies from
3 % in the calorimeter barrel regions to 7 % in the endcap
regions.

10 The pull gives the deviation from the average value of a measurement
in units of standard deviation.
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Fig. 10 Examples of combined scale factors for the three identifica-
tion criteria (loose, medium, tight) as a function of the probe-electron
pseudorapidity. Results are shown for 15–20 GeV in a and 35–40 GeV

in b probes. In each η bin, the points for loose, medium and tight crite-
ria are slightly shifted horizontally for better visibility. The error bars
indicate the total uncertainties

Figure 10 illustrates some of the combined scale factors
at low and high probe-electron ET resulting from this min-
imisation procedure. These scale factors are used in all anal-
yses involving electrons, to correct for residual differences
between data and simulation that are mainly due to the mod-
elling of the shower shapes in the calorimeter and to the TRT
detector calibration in the region 1 < |η| < 2. These correc-
tions are usually no more than a few percent.

In the following, the combined data efficiencies are
extracted by multiplying the combined scale factors by the
efficiencies computed from a Z → ee Monte Carlo simula-
tion. Figure 11 shows, for the coarse η granularity in the low-
ET region and the fine granularity in the region ET > 20 GeV,
the efficiencies obtained in this way. The precision of the
efficiency measurements is in general dominated by the sta-
tistical component, as shown in Fig. 12 for the tight criteria.
Possible sources of systematic uncertainties arising from the
choice of MC generator to derive the scale factors are not
accounted for in this analysis but are expected to have a neg-
ligible impact on these results. This is due to the fact that the
final results as shown in Figs. 11 and 12 are obtained from
data-driven efficiency measurements, combined through the
use of scale factors, but then multiplied by a Z → ee MC
sample.

In the case of loose identification criteria, efficiencies are
fairly uniform with pseudorapidity, while a slight dependence
is observed both for medium and tight. The identification effi-
ciency is sensitive to the readout granularity of the detectors
and to the non-uniformities of the material along the path of
the electron. These variations are taken into account in the
identification criteria by defining pseudorapidity-dependent
thresholds for the selection variables, in addition to selec-
tions dependent on transverse energy. As the tighter medium
and tight criteria make use of both calorimetric and track
information, they are more sensitive to such effects. Depen-

dencies are most notable at |η| < 0.1 and in the transition
region 1.37 < |η| < 1.52. In the region |η| > 2, where the
requirements on the shower shapes are tightened to preserve
the needed rejection in the absence of the transition radiation
information, a degradation of the efficiencies is observed.

The dependence of the efficiency on the transverse energy
of the electron is made more explicit when integrating over
the whole pseudorapidity range of the Z → ee sample, as
shown in Fig. 13a. In the ET range from 7 to 50 GeV, the
loose efficiency varies from about 90 to 98 %. The medium
and tight criteria show a more significant dependence on
energy due to the tighter requirements applied to provide the
desired background rejection. The efficiency increases from
about 80 % at 7 GeV to 90 % at 50 GeV for the medium
criteria and from about 65 % at 7 GeV to 80 % at 50 GeV
for the tight criteria. The integration over the pseudorapidity
range decreases the statistical and uncorrelated systematic
uncertainties of the measurement. However, given that almost
half of the systematic uncertainty is correlated amongst all
η bins, the size of this component does not improve after
integration. Thus, the total systematic uncertainties on the
efficiency measurements as a function of ET are dominant
over much of the lower ET range and of comparable size to
the statistical uncertainties at high ET as is shown in Fig. 13b.

6.2 Forward-electron identification efficiency

In the forward region of the calorimeters, the electron identi-
fication efficiency is measured with a Z → ee sample where
a well-isolated ET > 25 GeV tag electron satisfying the tight
requirement is identified in the central region of the calorime-
ter and the probe cluster with ET > 20 GeV is found in the
region 2.5 < |η| < 4.9. The candidate events are required to
have a low missing transverse momentum, in order to sup-
press the contributions from W → eν background.
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Fig. 11 Electron identification efficiencies, extracted by multiplying
the combined scale factors evaluated from the Z → ee, W → eν,
and J/ψ → ee channels by efficiencies computed from a Z → ee
Monte Carlo simulation, as a function of the η value of the probe for
nine ET bins, from 7–10 GeV (top) to 45–50 GeV (bottom). The three
colours correspond to the three identification criteria (loose, medium,

tight). For ET < 20 GeV, the coarse binning is used and the efficiencies
are plotted symmetrically for both the positive and negative η bins. For
ET > 20 GeV, the efficiencies are shown in the 50 η bins available
using the fine granularity. The error bars indicate the total uncertainties

The invariant mass of the tag–probe system is fitted in
each of the pseudorapidity bins defined in Sect. 3.3.2, in the
range 55 < mee < 130 GeV to a Crystal Ball function con-
volved with a non-relativistic Breit–Wigner function with
fixed Z width [26] to model the signal, and a Landau func-
tion to model the background. The S/B ratio is ∼7 and ∼5
in the EMEC and the FCal, respectively. After background
subtraction, a total of 192,000 and 76,000 probes remain in
the two regions. Variations of the tag requirements are per-
formed, which change the S/B ratio by up to a factor of two.
In addition, alternative fit models for signal and background
distributions and different fit ranges are used to assess the
systematic uncertainties on the electron yields. The total sys-
tematic uncertainty is computed by summing in quadrature
the effects observed in the individual variations. The largest
contributions are related to the choice of background model
and signal fit range. Examples of invariant mass fits are shown
in Fig. 14.

The electron identification efficiencies measured in data
remain stable with increasing pile-up but vary with ET and
|η|. The simulation models well the measured efficiency
shape as a function of pile-up and of ET. However, it does not
describe adequately the efficiency measurements as a func-
tion of |η|, as shown in Fig. 15. This discrepancy is due to
a mismodelling of the shower shapes in the calorimeter and
increases with the tightness of applied identification criteria.
Data-to-simulation scale factors are computed in each |η| bin
to correct for these differences (see Fig. 15d). The resulting
total uncertainty is 2–4 and 4–8 % in the EMEC and FCal
regions, respectively, and it is dominated by the systematic
component.

7 Reconstruction efficiency measurement

The EM cluster reconstruction efficiency εcluster, for both
the central and forward electrons is determined from sim-
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Fig. 12 Total, systematic, and statistical uncertainties of the tight effi-
ciency (extracted by multiplying the combined scale factors evaluated
from the Z → ee, W → eν, and J/ψ → ee channels by efficiencies
computed from a Z → ee Monte Carlo simulation) as a function of
the η value of the probe for nine ET bins, from 7–10 GeV (top) to 45–
50 GeV (bottom). For ET < 20 GeV, the coarse binning is used and the
uncertainties are plotted symmetrically for both the positive and neg-

ative η bins. For ET > 20 GeV, the uncertainties are shown in the 50
η bins available using the fine granularity. The total uncertainties are
dominated by the statistical component. The systematic uncertainties
are dominated by the uncorrelated component, which is largely due to
the difference of the two Z → ee methods and thus affected by limited
statistics of the different data samples employed for the background-
subtraction procedures
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Fig. 13 a Dependence of the combined identification efficiencies on
the transverse energy of the probe for central electrons. Error bars corre-
spond to the total uncertainties. b Decomposition of the total uncertainty
into its statistical and systematic components. The three colours corre-
spond to the three identification criteria (loose, medium, tight). Some

points are slightly shifted horizontally within the ET bin for better vis-
ibility. In the ET region above the Jacobian peak (ET > 45 GeV), both
the statistical and systematic uncertainties increase with respect to the
highest precision region (ET ∼ 35 GeV), as shown in Fig. 12
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Fig. 14 Example fits of invariant mass distributions for probes in the EMEC in a and FCal in b regions
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Fig. 15 The a loose, b medium, and c tight identification efficiencies
as a function of the |η| of the probe cluster in the forward region of the
calorimeters for data and simulation. In d, the data/MC ratio is shown

for the three identification criteria, slightly shifted for better visibility.
All plots are for probe electrons with ET > 20 GeV. In all four figures,
error bars correspond to the total uncertainties

ulation of Z → ee decays. From Sect. 3, the forward
EM cluster reconstruction efficiency is better than 99 % for
ET > 20 GeV and the central EM cluster reconstruction
efficiency is 97 and 99 % at 7 and 15 GeV, respectively.

It then follows that the central-electron reconstruction effi-
ciency as measured in data reflects the performance of the
track reconstruction and the track–cluster matching proce-
dure. Efficiency values are measured for three event samples:
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– all reconstructed electron candidates;
– electron candidates satisfying in addition a requirement

on the quality of the matching track; this is to match the
probe definition of the J/ψ → ee selection used in the
electron identification efficiency measurement;

– electron candidates with a good track and satisfying in
addition the requirement on the hadronic leakage Rhad

defined by the loose identification criteria; this is to match
the probe definition of the W → eν and Z → ee selec-
tions.

For this measurement, only one of the channels available
to the identification efficiency measurement, a Z → ee sam-
ple, can be used. The Z → ee event selection follows closely
that used for the measurement of the identification efficiency
as described in Sect. 6.1.1, with the two exceptions noted in
Sect. 4 related to the inclusion of photons in the denominator
of the efficiency definition and lack of charge requirements
on the tag and probe pairs due to the presence of probe clus-
ters without a matched track.

Figure 16 shows typical examples of the cluster–pair
invariant mass distributions used to evaluate εreco. A total
of 2.2 million probes were used to perform this measure-
ment. The backgrounds entering the numerator and denom-
inator of εreco are evaluated differently due to the inclu-
sion of clusters associated with reconstructed photons in the
denominator.

7.1 Background evaluation

The electron background contribution is estimated using a
methodology similar to that employed for the identifica-
tion efficiency measurements discussed in Sect. 6.1.2, based
on the electron–positron invariant mass. The background
cluster–pair invariant mass template is obtained from data
by reversing identification requirements on the probe object
and then normalising the distribution to the background-
dominated cluster–pair invariant mass distribution in the
110–250 GeV region. When measuring the reconstruction
efficiency alone, the probe electrons of the background tem-
plate are required to fail at least two of the requirements
defining the loose identification, with the exception of those
associated with the track quality, and to satisfy the anti-
isolation requirement Econe

T (0.4)/ET > 0.05 (see Fig. 16b).
When measuring the reconstruction efficiency for electrons
passing the track quality requirement, the background tem-
plates are obtained from objects either passing or failing this
extra requirement. The background templates used for the
measurement employing the additional requirement on the
hadronic leakage Rhad are built in a similar fashion (see
Fig. 16c, d).

The background from real photons is estimated using the
invariant mass distribution of pairs composed of an electron

tag and a probe reconstructed only as a photon, meγ . The
sideband regions above and below the Z -boson resonance
mainly contain background events. These regions, corrected
for the expected number of genuine electron–positron pairs as
estimated from simulation are fit to a third-order polynomial
function. The number of background events associated with
photons is then obtained by integrating this fit function in the
signal region (see Fig. 16a).

7.2 Reconstruction efficiency and systematics

The reconstruction efficiency as a function of pseudorapidity
for all three event selections is shown in Fig. 17 in ET bins
ranging from 15 to 50 GeV. In the lowest ET bin, a coarser η
binning is used to cope with the smaller data sample, and still
ensure that the total uncertainty is equally shared between
statistical and systematic sources.

The systematic uncertainties are assessed by varying
parameters in the fitting procedure and measuring the global
systematic uncertainty as the RMS of the distribution of
the results obtained with each configuration. These varia-
tions include identification quality of the tag electron, the
invariant-mass range used to select the signal events, the
template shape used for electrons, and the sideband fit range
for the photon background evaluation. For this latter uncer-
tainty, the systematic uncertainty associated with the esti-
mate of the genuine electron–positron events in the side-
band region is evaluated by varying this number by ±30 %
in each meγ bin, assuming this variation is fully correlated
between bins. The 30 % variation is conservatively esti-
mated from the largest observed difference between data
and simulation for the probability with which electrons are
misidentified as photons. The signal contamination in the
template and in the normalisation region is taken into account
by varying the amount of signal leaking into the cluster–
pair invariant mass template, and by estimating the signal
contamination in all other regions from simulation. Simi-
larly to what is done for the photon background evalua-
tion, the latter prediction is assigned a conservative 20 %
uncertainty.

From Fig. 17, the efficiency to reconstruct an electron or
positron having a track of good quality and matching an elec-
tromagnetic cluster that fulfils the Rhad requirement varies
for high-ET probes from about 96 % in the barrel region
of the calorimeter, to about 90 % in the endcap region for
ET > 30 GeV. For ET < 25 GeV, this efficiency drops
to about 93 % (85 %) in the barrel (endcap) region. For
ET > 35 GeV, the total uncertainty on the measured recon-
struction efficiencies is well below 0.5 %.

The reconstruction efficiency may be affected by the ambi-
ent activity resulting from pile-up interactions. The final plot
in Fig. 17 shows the values of the three reconstruction effi-
ciencies as a function of the number of reconstructed primary
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Fig. 16 Examples of cluster–pair invariant mass distributions at dif-
ferent levels of the probe selection, in the bin 40 ≤ ET < 45 GeV. a
All reconstructed clusters associated with electrons and photons, used
in the denominator of εreco; the photon background estimation used to
evaluate the corresponding systematic uncertainty is shown. b Recon-
structed electrons used in the numerator of εreco. c Reconstructed elec-

trons passing the track quality requirement. d Reconstructed electrons
passing the track quality and Rhad requirements; two of the different
background templates used to estimate the associated systematic uncer-
tainty are shown. In all cases, the shaded histograms show the distribu-
tions obtained with probes after tight identification, to give an indication
of the expected signal shape

vertices NPV in the event. The Rhad requirement introduces
the largest sensitivity to pile-up, demonstrated by the few
percent efficiency variation as NPV varies from 1 to 20; this
dependence is well modelled by the simulation.

The significant background contamination and low statis-
tics of probes at low ET does not permit a measurement of the
reconstruction efficiency for ET < 15 GeV from Z → ee
decays. Furthermore it is not possible to trigger a sufficiently
large sample of J/ψ → ee or W → eν events unbiased
with respect to the reconstruction efficiency measurement. In
the region from 7 to 15 GeV, the prediction from simulation
is used instead with fair confidence, based on the observed
good MC modelling in the ET region beyond 15 GeV. For
this extrapolation, conservative uncertainties of 2 and 5 %
are assigned in the barrel and endcap regions, respectively.
Figure 18 shows the three types of reconstruction efficien-
cies as a function of ET. In the two lowest ET bins, where

no data measurement exists, the expected efficiencies from
a Z → ee MC sample were used, assigning the systematic
uncertainties quoted above. The integration of the measure-
ments over the pseudorapidity range decreases the statistical
uncertainty such that the systematic component dominates
overs the entire ET range.

7.3 Combined reconstruction and identification efficiency
measurement

The reconstruction efficiency presented in this section and
the identification efficiency in Sect. 6 are combined to pro-
vide the electron reconstruction and identification efficiency
measurement. This combined efficiency, integrated over the
range |η| < 2.47, along with the corresponding uncertainty,
is presented as a function of ET in Fig. 19.
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Fig. 17 The three types of reconstruction efficiencies, with their total
uncertainties, as measured in data and simulation in bins of probe ET
from 15 < ET < 20 GeV to 45 < ET < 50 GeV. The final plot on
the bottom right shows the efficiency as a function of the number of

reconstructed primary vertices in the event. The solid yellow histogram
indicates the NPV distribution in the data. The error bars correspond to
the total uncertainties
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Fig. 18 a Reconstruction efficiency as a function of ET for central
electrons. The error bars correspond to the total uncertainties. b Com-
position of the total uncertainties is shown as a function of ET. For
ET < 15 GeV no measurement with data was possible and the expected

efficiencies from the Z → ee MC sample were used directly. In this
case, conservative uncertainties of 2 and 5 % were assigned for the bar-
rel and the endcap regions, respectively. Some points are slightly shifted
horizontally within the ET bin for better visibility
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Fig. 19 a Central-electron combined reconstruction and identification
efficiencies as a function of ET, for the reconstruction plus track quality
plus hadronic leakage requirements and all three identification criteria.
The error bars correspond to the total uncertainties. b Breakdown of

the total uncertainty of the combined measurement into statistical and
systematic components as a function of ET. Some points are slightly
shifted horizontally within the ET bin for better visibility

8 Charge-identification efficiency

The correct identification of the charge of an electron is
important in many analyses, e.g. when exploiting charge
correlations of the final-state particles. Electron charge-
misidentification may occur when electrons radiate early in
the detector, such as near the entrance of the inner tracking
detector, and resulting photons subsequently convert and are
reconstructed as high pT tracks. A particle with reconstructed
charge opposite to the parent electron may then accidentally
be associated with the calorimeter cluster. These effects are
expected to follow the distribution of material in the detector,
which Fig. 1 shows to be |η| dependent.

The probability to correctly identify the charge of the
candidate electron is evaluated with a tag-and-probe anal-

ysis employing a Z → ee sample, considering as probes
the ensemble of di-electron pairs without any requirement
on the reconstructed sign of the track. The tag is required
to satisfy tight identification criteria, to be well isolated
(Econe

T (0.3)/ET < 0.15) and to have transverse energy
greater than 25 GeV. To ensure a well-measured tag charge,
the tag is confined to the barrel region of the calorimeter
(|η| < 1.37) where the charge reconstruction efficiency is
observed to be very high. The probe electron is also required
to have ET > 25 GeV and be anywhere within the acceptance
of the inner detector. No correction is applied for the misiden-
tification of the tight central tag electron. This increases the
measured charge-identification probability by about 0.2 %.

The invariant mass of the tag–probe system is used as the
discriminating variable to separate signal from background
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Fig. 20 Charge-identification efficiency for electrons with ET >

25 GeV in a Z → ee sample given as a function of the probe |η|. a Mea-
surement of the data charge-identification efficiencies for reconstructed,
loose, medium, and tight probes. b Comparison of the efficiencies for
all electron and positron probes as measured in data (closed points) and

in simulation (open points). The sign within the bracket is the charge
of the tag while the sign next to it is that of the probe. The error bars
correspond to the total uncertainties. Some points are slightly shifted
horizontally within the η bin for better visibility

events. The background template is obtained from events that
have the tag candidate satisfying the medium criteria and
the probe candidate failing to satisfy the loose criteria. The
invariant mass spectrum as measured in data is fit in the region
66 < mee < 116 GeV using the sum of the Z → ee signal
template from simulation and the background template from
data. The yield in the signal region is counted in the invariant
mass range of 80 to 101 GeV.

The charge-identification efficiency, extracted by compar-
ing this yield to the subset of opposite-sign pairs, is mea-
sured for all levels of electron identification: reconstruction,
loose, medium, and tight, as shown in Fig. 20a and compared
with the equivalent numbers as extracted from simulation in
Fig. 20b. The tightness of the tag selection and the defini-
tion of the signal region are varied to assess the systematic
uncertainty. The charge-identification efficiency is found to
be high (>99.7 %) and relatively constant in the barrel region
of the calorimeter decreasing to 93 % in the endcap region.
In this region, the efficiency increases to 97 % when apply-
ing the tight selection to the probes. The agreement between
data and simulation is good for all η values except at the out-
ermost edge of the acceptance where the simulation predicts
a higher misidentification probability. This discrepancy may
originate from incorrectly modelled material in the simula-
tion. The same figure shows that the measured efficiencies
do not depend on the reconstructed sign of the probe track.

9 Summary

The ATLAS experiment at the LHC recorded approximately
4.7 fb−1 of proton–proton collision data in 2011 at a centre-

of-mass energy of
√

s = 7 TeV. The tag-and-probe methods
developed to measure the components of the electron effi-
ciency with these data are described in detail. In compar-
ison to similar results based on 2010 data [7], the revised
analysis methods presented here, in combination with the
higher statistics provided by the 2011 data in the Z → ee,
W → eν and J/ψ → ee channels, have enabled precision
measurements of electron efficiency in a finely grained two-
dimensional grid of probe electron (ET, η).

The electron reconstruction efficiency, which is related
to the ability to associate a candidate electron track with
a corresponding EM cluster, was extracted from a Z → ee
sample of probe electrons in the central region of the detector
(|η| < 2.47) using a fine η granularity and seven ET bins
in the range of 15 to 50 GeV. The statistical precision is
the dominant source of uncertainty of the two-dimensional
measurement, with the total uncertainty varying from a few
percent in the lowest ET bin to ∼0.5 % at 35 GeV.

The efficiency to identify electrons given the existence
of a reconstructed-electron candidate is assessed in the cen-
tral region of the detector (|η| < 2.47) for three benchmark
selection criteria called loose, medium, and tight. A combi-
nation of the data to Monte Carlo efficiency ratios measured
from Z → ee, W → eν, and J/ψ → ee samples is per-
formed in a fine (ET, η) grid, over the probe ET range from
7 to 50 GeV. This results in a typical accuracy on the effi-
ciency to identify electrons from Z decays of a few per mil
at ET = 35 GeV and 1–2 % for ET < 20 GeV and it is dom-
inated by the statistical uncertainty. As a consequence of
improvements in the simulation, the measured efficiencies
demonstrate better agreement with expectations compared
to the results presented in Ref. [7], varying with ET and η
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from a few per mil to a few percent. In the forward region
(2.5 < |η| < 4.9), the efficiency of the entirely calorimeter-
based loose, medium, and tight criteria was measured in nine
|η| bins for probe ET > 20 GeV with a total uncertainty of
few percent, mostly arising from systematic effects. In this
region, a larger discrepancy is observed between measured
and expected efficiencies.

The efficiency for a correct charge reconstruction for tight
electrons with ET > 25 GeV is found from a Z → ee sample
to be>99.7 % in the barrel region of the detector, decreasing
to ∼97 % in the endcaps, independent of lepton charge.

Overall, the work presented in this paper has enabled
precision measurements of two-dimensional efficiencies,
improving by approximately an order of magnitude the
uncertainties assigned to the results presented in Ref. [7].
These improvements have greatly benefited the analyses per-
formed by the ATLAS collaboration.
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Pacheco Pages12, C. Padilla Aranda12, M. Pagáčová48, S. Pagan Griso15, E. Paganis140, C. Pahl100, F. Paige25, P. Pais85, K.
Pajchel118, G. Palacino160b, S. Palestini30, D. Pallin34, A. Palma125a,125b, J. D. Palmer18, Y. B. Pan174, E. Panagiotopoulou10, J.

123



Eur. Phys. J. C (2014) 74:2941 Page 31 of 38 2941

G. Panduro Vazquez76, P. Pani106, N. Panikashvili88, S. Panitkin25, D. Pantea26a, L. Paolozzi134a,134b, Th. D. Papadopoulou10,
K. Papageorgiou155,j, A. Paramonov6, D. Paredes Hernandez34, M. A. Parker28, F. Parodi50a,50b, J. A. Parsons35, U. Parzefall48,
E. Pasqualucci133a, S. Passaggio50a, A. Passeri135a, F. Pastore135a,135b,*, Fr. Pastore76, G. Pásztor49,aa, S. Pataraia176, N. D.
Patel151, J. R. Pater83, S. Patricelli103a,103b, T. Pauly30, J. Pearce170, M. Pedersen118, S. Pedraza Lopez168, R. Pedro125a,125b,
S. V. Peleganchuk108, D. Pelikan167, H. Peng33b, B. Penning31, J. Penwell60, D. V. Perepelitsa25, E. Perez Codina160a, M. T.
Pérez García-Estan168, V. Perez Reale35, L. Perini90a,90b, H. Pernegger30, R. Perrino72a, R. Peschke42, V. D. Peshekhonov64,
K. Peters30, R. F. Y. Peters83, B. A. Petersen87, J. Petersen30, T. C. Petersen36, E. Petit42, A. Petridis147a,147b, C. Petridou155,
E. Petrolo133a, F. Petrucci135a,135b, M. Petteni143, N. E. Pettersson158, R. Pezoa32b, P. W. Phillips130, G. Piacquadio144, E.
Pianori171, A. Picazio49, E. Piccaro75, M. Piccinini20a,20b, S. M. Piec42, R. Piegaia27, D. T. Pignotti110, J. E. Pilcher31,
A. D. Pilkington77, J. Pina125a,125b,125d, M. Pinamonti165a,165c,ab, A. Pinder119, J. L. Pinfold3, A. Pingel36, B. Pinto125a, S.
Pires79, C. Pizio90a,90b, M.-A. Pleier25, V. Pleskot128, E. Plotnikova64, P. Plucinski147a,147b, S. Poddar58a, F. Podlyski34, R.
Poettgen82, L. Poggioli116, D. Pohl21, M. Pohl49, G. Polesello120a, A. Policicchio37a,37b, R. Polifka159, A. Polini20a, C. S.
Pollard45, V. Polychronakos25, K. Pommès30, L. Pontecorvo133a, B. G. Pope89, G. A. Popeneciu26b, D. S. Popovic13a, A.
Poppleton30, X. Portell Bueso12, G. E. Pospelov100, S. Pospisil127, K. Potamianos15, I. N. Potrap64, C. J. Potter150, C. T.
Potter115, G. Poulard30, J. Poveda60, V. Pozdnyakov64, R. Prabhu77, P. Pralavorio84, A. Pranko15, S. Prasad30, R. Pravahan8,
S. Prell63, D. Price83, J. Price73, L. E. Price6, D. Prieur124, M. Primavera72a, M. Proissl46, K. Prokofiev47, F. Prokoshin32b,
E. Protopapadaki137, S. Protopopescu25, J. Proudfoot6, M. Przybycien38a, H. Przysiezniak5, E. Ptacek115, E. Pueschel85,
D. Puldon149, M. Purohit25,ac, P. Puzo116, Y. Pylypchenko62, J. Qian88, G. Qin53, A. Quadt54, D. R. Quarrie15, W. B.
Quayle165a,165b, D. Quilty53, A. Qureshi160b, V. Radeka25, V. Radescu42, S. K. Radhakrishnan149, P. Radloff115, P. Rados87,
F. Ragusa90a,90b, G. Rahal179, S. Rajagopalan25, M. Rammensee30, M. Rammes142, A. S. Randle-Conde40, C. Rangel-
Smith79, K. Rao164, F. Rauscher99, T. C. Rave48, T. Ravenscroft53, M. Raymond30, A. L. Read118, D. M. Rebuzzi120a,120b,
A. Redelbach175, G. Redlinger25, R. Reece138, K. Reeves41, L. Rehnisch16, A. Reinsch115, H. Reisin27, M. Relich164, C.
Rembser30, Z. L. Ren152, A. Renaud116, M. Rescigno133a, S. Resconi90a, B. Resende137, O. L. Rezanova108,p, P. Reznicek128,
R. Rezvani94, R. Richter100, E. Richter-Was38b, M. Ridel79, P. Rieck16, M. Rijssenbeek149, A. Rimoldi120a,120b, L. Rinaldi20a,
E. Ritsch61, I. Riu12, F. Rizatdinova113, E. Rizvi75, S. H. Robertson86,h, A. Robichaud-Veronneau119, D. Robinson28, J. E.
M. Robinson83, A. Robson53, C. Roda123a,123b, L. Rodrigues30, S. Roe30, O. Røhne118, S. Rolli162, A. Romaniouk97, M.
Romano20a,20b, G. Romeo27, E. Romero Adam168, N. Rompotis139, L. Roos79, E. Ros168, S. Rosati133a, K. Rosbach49, A.
Rose150, M. Rose76, P. L. Rosendahl14, O. Rosenthal142, V. Rossetti147a,147b, E. Rossi103a,103b, L. P. Rossi50a, R. Rosten139,
M. Rotaru26a, I. Roth173, J. Rothberg139, D. Rousseau116, C. R. Royon137, A. Rozanov84, Y. Rozen153, X. Ruan146c, F.
Rubbo12, I. Rubinskiy42, V. I. Rud98, C. Rudolph44, M. S. Rudolph159, F. Rühr48, A. Ruiz-Martinez63, Z. Rurikova48, N. A.
Rusakovich64, A. Ruschke99, J. P. Rutherfoord7, N. Ruthmann48, Y. F. Ryabov122, M. Rybar128, G. Rybkin116, N. C. Ryder119,
A. F. Saavedra151, S. Sacerdoti27, A. Saddique3, I. Sadeh154, H. F-W. Sadrozinski138, R. Sadykov64, F. Safai Tehrani133a,
H. Sakamoto156, Y. Sakurai172, G. Salamanna75, A. Salamon134a, M. Saleem112, D. Salek106, P. H. Sales De Bruin139, D.
Salihagic100, A. Salnikov144, J. Salt168, B. M. Salvachua Ferrando6, D. Salvatore37a,37b, F. Salvatore150, A. Salvucci105, A.
Salzburger30, D. Sampsonidis155, A. Sanchez103a,103b, J. Sánchez168, V. Sanchez Martinez168, H. Sandaker14, H. G. Sander82,
M. P. Sanders99, M. Sandhoff176, T. Sandoval28, C. Sandoval163, R. Sandstroem100, D. P. C. Sankey130, A. Sansoni47, C.
Santoni34, R. Santonico134a,134b, H. Santos125a, I. Santoyo Castillo150, K. Sapp124, A. Sapronov64, J. G. Saraiva125a,125d,
B. Sarrazin21, G. Sartisohn176, O. Sasaki65, Y. Sasaki156, I. Satsounkevitch91, G. Sauvage5,*, E. Sauvan5, P. Savard159,d,
D. O. Savu30, C. Sawyer119, L. Sawyer78,k, J. Saxon121, C. Sbarra20a, A. Sbrizzi3, T. Scanlon30, D. A. Scannicchio164, M.
Scarcella151, J. Schaarschmidt173, P. Schacht100, D. Schaefer121, R. Schaefer42, A. Schaelicke46, S. Schaepe21, S. Schaetzel58b,
U. Schäfer82, A. C. Schaffer116, D. Schaile99, R. D. Schamberger149, V. Scharf58a, V. A. Schegelsky122, D. Scheirich128,
M. Schernau164, M. I. Scherzer35, C. Schiavi50a,50b, J. Schieck99, C. Schillo48, M. Schioppa37a,37b, S. Schlenker30, E.
Schmidt48, K. Schmieden30, C. Schmitt82, C. Schmitt99, S. Schmitt58b, B. Schneider17, Y. J. Schnellbach73, U. Schnoor44, L.
Schoeffel137, A. Schoening58b, B. D. Schoenrock89, A. L. S. Schorlemmer54, M. Schott82, D. Schouten160a, J. Schovancova25,
M. Schram86, S. Schramm159, M. Schreyer175, C. Schroeder82, N. Schuh82, M. J. Schultens21, H.-C. Schultz-Coulon58a, H.
Schulz16, M. Schumacher48, B. A. Schumm138, Ph. Schune137, A. Schwartzman144, Ph. Schwegler100, Ph. Schwemling137,
R. Schwienhorst89, J. Schwindling137, T. Schwindt21, M. Schwoerer5, F. G. Sciacca17, E. Scifo116, G. Sciolla23, W. G.
Scott130, F. Scuri123a,123b, F. Scutti21, J. Searcy88, G. Sedov42, E. Sedykh122, S. C. Seidel104, A. Seiden138, F. Seifert127,
J. M. Seixas24a, G. Sekhniaidze103a, S. J. Sekula40, K. E. Selbach46, D. M. Seliverstov122,*, G. Sellers73, N. Semprini-
Cesari20a,20b, C. Serfon30, L. Serin116, L. Serkin54, T. Serre84, R. Seuster160a, H. Severini112, F. Sforza100, A. Sfyrla30, E.
Shabalina54, M. Shamim115, L. Y. Shan33a, J. T. Shank22, Q. T. Shao87, M. Shapiro15, P. B. Shatalov96, K. Shaw165a,165b,
P. Sherwood77, S. Shimizu66, C. O. Shimmin164, M. Shimojima101, M. Shiyakova64, A. Shmeleva95, M. J. Shochet31, D.
Short119, S. Shrestha63, E. Shulga97, M. A. Shupe7, S. Shushkevich42, P. Sicho126, D. Sidorov113, A. Sidoti133a, F. Siegert44,

123



2941 Page 32 of 38 Eur. Phys. J. C (2014) 74:2941

Dj. Sijacki13a, O. Silbert173, J. Silva125a,125d, Y. Silver154, D. Silverstein144, S. B. Silverstein147a, V. Simak127, O. Simard5,
Lj. Simic13a, S. Simion116, E. Simioni82, B. Simmons77, R. Simoniello90a,90b, M. Simonyan36, P. Sinervo159, N. B. Sinev115,
V. Sipica142, G. Siragusa175, A. Sircar78, A. N. Sisakyan64,*, S. Yu. Sivoklokov98, J. Sjölin147a,147b, T. B. Sjursen14, L. A.
Skinnari15, H. P. Skottowe57, K. Yu. Skovpen108, P. Skubic112, M. Slater18, T. Slavicek127, K. Sliwa162, V. Smakhtin173,
B. H. Smart46, L. Smestad118, S. Yu. Smirnov97, Y. Smirnov97, L. N. Smirnova98,ad, O. Smirnova80, M. Smizanska71, K.
Smolek127, A. A. Snesarev95, G. Snidero75, J. Snow112, S. Snyder25, R. Sobie170,h, F. Socher44, J. Sodomka127, A. Soffer154,
D. A. Soh152,s, C. A. Solans30, M. Solar127, J. Solc127, E. Yu. Soldatov97, U. Soldevila168, E. Solfaroli Camillocci133a,133b,
A. A. Solodkov129, O. V. Solovyanov129, V. Solovyev122, P. Sommer48, H. Y. Song33b, N. Soni1, A. Sood15, V. Sopko127,
B. Sopko127, V. Sorin12, M. Sosebee8, R. Soualah165a,165c, P. Soueid94, A. M. Soukharev108, D. South42, S. Spagnolo72a,72b,
F. Spanò76, W. R. Spearman57, R. Spighi20a, G. Spigo30, M. Spousta128, T. Spreitzer159, B. Spurlock8, R. D. St. Denis53,
S. Staerz44, J. Stahlman121, R. Stamen58a, E. Stanecka39, R. W. Stanek6, C. Stanescu135a, M. Stanescu-Bellu42, M. M.
Stanitzki42, S. Stapnes118, E. A. Starchenko129, J. Stark55, P. Staroba126, P. Starovoitov42, R. Staszewski39, P. Stavina145a,al,*,
G. Steele53, P. Steinberg25, I. Stekl127, B. Stelzer143, H. J. Stelzer30, O. Stelzer-Chilton160a, H. Stenzel52, S. Stern100, G.
A. Stewart53, J. A. Stillings21, M. C. Stockton86, M. Stoebe86, K. Stoerig48, G. Stoicea26a, P. Stolte54, S. Stonjek100, A.
R. Stradling8, A. Straessner44, J. Strandberg148, S. Strandberg147a,147b, A. Strandlie118, E. Strauss144, M. Strauss112, P.
Strizenec145b, R. Ströhmer175, D. M. Strom115, R. Stroynowski40, S. A. Stucci17, B. Stugu14, N. A. Styles42, D. Su144, J.
Su124, HS. Subramania3, R. Subramaniam78, A. Succurro12, Y. Sugaya117, C. Suhr107, M. Suk127, V. V. Sulin95, S. Sultansoy4c,
T. Sumida67, X. Sun33a, J. E. Sundermann48, K. Suruliz140, G. Susinno37a,37b, M. R. Sutton150, Y. Suzuki65, M. Svatos126,
S. Swedish169, M. Swiatlowski144, I. Sykora145a, T. Sykora128, D. Ta89, K. Tackmann42, J. Taenzer159, A. Taffard164, R.
Tafirout160a, N. Taiblum154, Y. Takahashi102, H. Takai25, R. Takashima68, H. Takeda66, T. Takeshita141, Y. Takubo65, M.
Talby84, A. A. Talyshev108,p, J. Y. C. Tam175, M. C. Tamsett78,ae, K. G. Tan87, J. Tanaka156, R. Tanaka116, S. Tanaka132, S.
Tanaka65, A. J. Tanasijczuk143, K. Tani66, N. Tannoury84, S. Tapprogge82, S. Tarem153, F. Tarrade29, G. F. Tartarelli90a, P.
Tas128, M. Tasevsky126, T. Tashiro67, E. Tassi37a,37b, A. Tavares Delgado125a,125b, Y. Tayalati136d, C. Taylor77, F. E. Taylor93,
G. N. Taylor87, W. Taylor160b, F. A. Teischinger30, M. Teixeira Dias Castanheira75, P. Teixeira-Dias76, K. K. Temming48, H.
Ten Kate30, P. K. Teng152, S. Terada65, K. Terashi156, J. Terron81, S. Terzo100, M. Testa47, R. J. Teuscher159,h, J. Therhaag21,
T. Theveneaux-Pelzer34, S. Thoma48, J. P. Thomas18, J. Thomas-Wilsker76, E. N. Thompson35, P. D. Thompson18, P. D.
Thompson159, A. S. Thompson53, L. A. Thomsen36, E. Thomson121, M. Thomson28, W. M. Thong87, R. P. Thun88,*, F.
Tian35, M. J. Tibbetts15, V. O. Tikhomirov95,af, Yu. A. Tikhonov108,p, S. Timoshenko97, E. Tiouchichine84, P. Tipton177, S.
Tisserant84, T. Todorov5, S. Todorova-Nova128, B. Toggerson164, J. Tojo69, S. Tokár145a, K. Tokushuku65, K. Tollefson89, L.
Tomlinson83, M. Tomoto102, L. Tompkins31, K. Toms104, N. D. Topilin64, E. Torrence115, H. Torres143, E. Torró Pastor168,
J. Toth84,aa, F. Touchard84, D. R. Tovey140, H. L. Tran116, T. Trefzger175, L. Tremblet30, A. Tricoli30, I. M. Trigger160a, S.
Trincaz-Duvoid79, M. F. Tripiana70, N. Triplett25, W. Trischuk159, B. Trocmé55, C. Troncon90a, M. Trottier-McDonald143,
M. Trovatelli135a,135b, P. True89, M. Trzebinski39, A. Trzupek39, C. Tsarouchas30, J. C-L. Tseng119, P. V. Tsiareshka91, D.
Tsionou137, G. Tsipolitis10, N. Tsirintanis9, S. Tsiskaridze12, V. Tsiskaridze48, E. G. Tskhadadze51a, I. I. Tsukerman96, V.
Tsulaia15, S. Tsuno65, D. Tsybychev149, A. Tua140, A. Tudorache26a, V. Tudorache26a, A. N. Tuna121, S. A. Tupputi20a,20b,
S. Turchikhin98,ad, D. Turecek127, I. Turk Cakir4d, R. Turra90a,90b, P. M. Tuts35, A. Tykhonov74, M. Tylmad147a,147b, M.
Tyndel130, K. Uchida21, I. Ueda156, R. Ueno29, M. Ughetto84, M. Ugland14, M. Uhlenbrock21, F. Ukegawa161, G. Unal30,
A. Undrus25, G. Unel164, F. C. Ungaro48, Y. Unno65, D. Urbaniec35, P. Urquijo21, G. Usai8, A. Usanova61, L. Vacavant84, V.
Vacek127, B. Vachon86, N. Valencic106, S. Valentinetti20a,20b, A. Valero168, L. Valery34, S. Valkar128, E. Valladolid Gallego168,
S. Vallecorsa49, J. A. Valls Ferrer168, R. Van Berg121, P. C. Van Der Deijl106, R. van der Geer106, H. van der Graaf106, R.
Van Der Leeuw106, D. van der Ster30, N. van Eldik30, P. van Gemmeren6, J. Van Nieuwkoop143, I. van Vulpen106, M. C. van
Woerden30, M. Vanadia133a,133b, W. Vandelli30, A. Vaniachine6, P. Vankov42, F. Vannucci79, G. Vardanyan178, R. Vari133a,
E. W. Varnes7, T. Varol85, D. Varouchas79, A. Vartapetian8, K. E. Varvell151, F. Vazeille34, T. Vazquez Schroeder54, J.
Veatch7, F. Veloso125a,125c, S. Veneziano133a, A. Ventura72a,72b, D. Ventura85, M. Venturi48, N. Venturi159, A. Venturini23, V.
Vercesi120a, M. Verducci139, W. Verkerke106, J. C. Vermeulen106, A. Vest44, M. C. Vetterli143,d, O. Viazlo80, I. Vichou166,
T. Vickey146c,ag, O. E. Vickey Boeriu146c, G. H. A. Viehhauser119, S. Viel169, R. Vigne30, M. Villa20a,20b, M. Villaplana
Perez168, E. Vilucchi47, M. G. Vincter29, V. B. Vinogradov64, J. Virzi15, O. Vitells173, I. Vivarelli150, F. Vives Vaque3, S.
Vlachos10, D. Vladoiu99, M. Vlasak127, A. Vogel21, P. Vokac127, G. Volpi123a,123b, M. Volpi87, H. von der Schmitt100, H. von
Radziewski48, E. von Toerne21, V. Vorobel128, K. Vorobev97, M. Vos168, R. Voss30, J. H. Vossebeld73, N. Vranjes137, M. Vran-
jes Milosavljevic106, V. Vrba126, M. Vreeswijk106, T. Vu Anh48, R. Vuillermet30, I. Vukotic31, Z. Vykydal127, W. Wagner176,
P. Wagner21, S. Wahrmund44, J. Wakabayashi102, J. Walder71, R. Walker99, W. Walkowiak142, R. Wall177, P. Waller73, B.
Walsh177, C. Wang152,ah, C. Wang45, F. Wang174, H. Wang15, H. Wang40, J. Wang42, J. Wang33a, K. Wang86, R. Wang104, S.
M. Wang152, T. Wang21, X. Wang177, A. Warburton86, C. P. Ward28, D. R. Wardrope77, M. Warsinsky48, A. Washbrook46,

123



Eur. Phys. J. C (2014) 74:2941 Page 33 of 38 2941

C. Wasicki42, I. Watanabe66, P. M. Watkins18, A. T. Watson18, I. J. Watson151, M. F. Watson18, G. Watts139, S. Watts83, B.
M. Waugh77, S. Webb83, M. S. Weber17, S. W. Weber175, J. S. Webster31, A. R. Weidberg119, P. Weigell100, B. Weinert60, J.
Weingarten54, C. Weiser48, H. Weits106, P. S. Wells30, T. Wenaus25, D. Wendland16, Z. Weng152,s, T. Wengler30, S. Wenig30,
N. Wermes21, M. Werner48, P. Werner30, M. Wessels58a, J. Wetter162, K. Whalen29, A. White8, M. J. White1, R. White32b,
S. White123a,123b, D. Whiteson164, D. Wicke176, F. J. Wickens130, W. Wiedenmann174, M. Wielers130, P. Wienemann21, C.
Wiglesworth36, L. A. M. Wiik-Fuchs21, P. A. Wijeratne77, A. Wildauer100, M. A. Wildt42,ai, H. G. Wilkens30, J. Z. Will99, H.
H. Williams121, S. Williams28, C. Willis89, S. Willocq85, J. A. Wilson18, A. Wilson88, I. Wingerter-Seez5, S. Winkelmann48,
F. Winklmeier115, M. Wittgen144, T. Wittig43, J. Wittkowski99, S. J. Wollstadt82, M. W. Wolter39, H. Wolters125a,125c, B. K.
Wosiek39, J. Wotschack30, M. J. Woudstra83, K. W. Wozniak39, M. Wright53, M. Wu55, S. L. Wu174, X. Wu49, Y. Wu88,
E. Wulf35, T. R. Wyatt83, B. M. Wynne46, S. Xella36, M. Xiao137, D. Xu33a, L. Xu33b,aj, B. Yabsley151, S. Yacoob146b,ak,
M. Yamada65, H. Yamaguchi156, Y. Yamaguchi156, A. Yamamoto65, K. Yamamoto63, S. Yamamoto156, T. Yamamura156, T.
Yamanaka156, K. Yamauchi102, Y. Yamazaki66, Z. Yan22, H. Yang33e, H. Yang174, U. K. Yang83, Y. Yang110, S. Yanush92, L.
Yao33a, W-M. Yao15, Y. Yasu65, E. Yatsenko42, K. H. Yau Wong21, J. Ye40, S. Ye25, A. L. Yen57, E. Yildirim42, M. Yilmaz4b,
R. Yoosoofmiya124, K. Yorita172, R. Yoshida6, K. Yoshihara156, C. Young144, C. J. S. Young30, S. Youssef22, D. R. Yu15,
J. Yu8, J. M. Yu88, J. Yu113, L. Yuan66, A. Yurkewicz107, B. Zabinski39, R. Zaidan62, A. M. Zaitsev129,x, A. Zaman149,
S. Zambito23, L. Zanello133a,133b, D. Zanzi100, A. Zaytsev25, C. Zeitnitz176, M. Zeman127, A. Zemla38a, K. Zengel23, O.
Zenin129, T. Ženiš145a, D. Zerwas116, G. Zevi della Porta57, D. Zhang88, F. Zhang174, H. Zhang89, J. Zhang6, L. Zhang152,
X. Zhang33d, Z. Zhang116, Z. Zhao33b, A. Zhemchugov64, J. Zhong119, B. Zhou88, L. Zhou35, N. Zhou164, C. G. Zhu33d, H.
Zhu33a, J. Zhu88, Y. Zhu33b, X. Zhuang33a, A. Zibell99, D. Zieminska60, N. I. Zimine64, C. Zimmermann82, R. Zimmermann21,
S. Zimmermann21, S. Zimmermann48, Z. Zinonos54, M. Ziolkowski142, R. Zitoun5, G. Zobernig174, A. Zoccoli20a,20b, M.
zur Nedden16, G. Zurzolo103a,103b, V. Zutshi107, L. Zwalinski30

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany, NY, USA
3 Department of Physics, University of Alberta, Edmonton, AB, Canada
4 (a) Department of Physics, Ankara University, Ankara, Turkey; (b) Department of Physics, Gazi University, Ankara,

Turkey; (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey; (d) Turkish Atomic
Energy Authority, Ankara, Turkey

5 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA
7 Department of Physics, University of Arizona, Tucson, AZ, USA
8 Department of Physics, The University of Texas at Arlington, Arlington, TX, USA
9 Physics Department, University of Athens, Athens, Greece

10 Physics Department, National Technical University of Athens, Zografou, Athens, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
13 (a) Institute of Physics, University of Belgrade, Belgrade, Serbia; (b) Vinca Institute of Nuclear Sciences, University of

Belgrade, Belgrade, Serbia
14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, USA
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern,

Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, UK
19 (a) Department of Physics, Bogazici University, Istanbul, Turkey; (b) Department of Physics, Dogus University, Istanbul,

Turkey; (c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20 (a) INFN Sezione di Bologna, Bologna, Italy; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna,

Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston, MA, USA
23 Department of Physics, Brandeis University, Waltham, MA, USA

123



2941 Page 34 of 38 Eur. Phys. J. C (2014) 74:2941

24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; (b) Federal University of Juiz de Fora
(UFJF), Juiz de Fora, Brazil; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil; (d) Instituto de
Fisica, Universidade de Sao Paulo, São Paulo, Brazil

25 Physics Department, Brookhaven National Laboratory, Upton, NY, USA
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest, Romania; (b) Physics Department, National

Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania; (c) University
Politehnica Bucharest, Bucharest, Romania; (d) West University in Timisoara, Timisoara, Romania

27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, UK
29 Department of Physics, Carleton University, Ottawa, ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago, IL, USA
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; (b) Departamento de Física,

Universidad Técnica Federico Santa María, Valparaiso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b) Department of Modern Physics,

University of Science and Technology of China, Hefei, Anhui, China; (c) Department of Physics, Nanjing University,
Nanjing, Jiangsu, China; (d) School of Physics, Shandong University, Jinan, Shandong, China; (e) Physics Department,
Shanghai Jiao Tong University, Shanghai, China

34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3,
Clermont-Ferrand, France

35 Nevis Laboratory, Columbia University, Irvington, NY, USA
36 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
37 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy; (b) Dipartimento di Fisica,

Università della Calabria, Rende, Italy
38 (a) Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland; (b)

Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
40 Physics Department, Southern Methodist University, Dallas, TX, USA
41 Physics Department, University of Texas at Dallas, Richardson, TX, USA
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham, NC, USA
46 SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova, Genoa, Italy; (b) Dipartimento di Fisica, Università di Genova, Genoa, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; (b) High Energy

Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, UK
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
56 Department of Physics, Hampton University, Hampton, VA, USA
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (b) Physikalisches

Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (c) ZITI Institut für technische Informatik,
Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 Department of Physics, Indiana University, Bloomington, IN, USA
61 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
62 University of Iowa, Iowa City, IA, USA

123



Eur. Phys. J. C (2014) 74:2941 Page 35 of 38 2941

63 Department of Physics and Astronomy, Iowa State University, Ames, IA, USA
64 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
65 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
66 Graduate School of Science, Kobe University, Kobe, Japan
67 Faculty of Science, Kyoto University, Kyoto, Japan
68 Kyoto University of Education, Kyoto, Japan
69 Department of Physics, Kyushu University, Fukuoka, Japan
70 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
71 Physics Department, Lancaster University, Lancaster, UK
72 (a) INFN Sezione di Lecce, Lecce, Italy; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
73 Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK
74 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
75 School of Physics and Astronomy, Queen Mary University of London, London, UK
76 Department of Physics, Royal Holloway University of London, Surrey, UK
77 Department of Physics and Astronomy, University College London, London, UK
78 Louisiana Tech University, Ruston, LA, USA
79 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris,

France
80 Fysiska institutionen, Lunds universitet, Lund, Sweden
81 Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
82 Institut für Physik, Universität Mainz, Mainz, Germany
83 School of Physics and Astronomy, University of Manchester, Manchester, UK
84 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
85 Department of Physics, University of Massachusetts, Amherst, MA, USA
86 Department of Physics, McGill University, Montreal, QC, Canada
87 School of Physics, University of Melbourne, Victoria, Australia
88 Department of Physics, The University of Michigan, Ann Arbor, MI, USA
89 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
90 (a) INFN Sezione di Milano, Milan, Italy; (b) Dipartimento di Fisica, Università di Milano, Milan, Italy
91 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
93 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
94 Group of Particle Physics, University of Montreal, Montreal, QC, Canada
95 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
96 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
97 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
98 D.V.Skobeltsyn Institute of Nuclear Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
99 Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich, Germany

100 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Munich, Germany
101 Nagasaki Institute of Applied Science, Nagasaki, Japan
102 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
103 (a) INFN Sezione di Napoli, Naples, Italy; (b) Dipartimento di Fisica, Università di Napoli, Naples, Italy
104 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
105 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef,

Nijmegen, The Netherlands
106 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands
107 Department of Physics, Northern Illinois University, DeKalb, IL, USA
108 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
109 Department of Physics, New York University, New York, NY, USA
110 Ohio State University, Columbus, OH, USA
111 Faculty of Science, Okayama University, Okayama, Japan
112 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA
113 Department of Physics, Oklahoma State University, Stillwater, OK, USA

123



2941 Page 36 of 38 Eur. Phys. J. C (2014) 74:2941

114 Palacký University, RCPTM, Olomouc, Czech Republic
115 Center for High Energy Physics, University of Oregon, Eugene, OR, USA
116 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
117 Graduate School of Science, Osaka University, Osaka, Japan
118 Department of Physics, University of Oslo, Oslo, Norway
119 Department of Physics, Oxford University, Oxford, UK
120 (a) INFN Sezione di Pavia, Pavia, Italy; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
121 Department of Physics, University of Pennsylvania, Philadelphia, PA, USA
122 Petersburg Nuclear Physics Institute, Gatchina, Russia
123 (a) INFN Sezione di Pisa, Pisa, Italy; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
124 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
125 (a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas-LIP, Lisbon, Portugal; (b) Faculdade de Ciências,

Universidade de Lisboa, Lisbon, Portugal; (c) Department of Physics, University of Coimbra, Coimbra, Portugal; (d)

Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; (e) Departamento de Fisica, Universidade do
Minho, Braga, Portugal; (f) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada,
Granada, Spain; (g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa,
Caparica, Portugal

126 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
127 Czech Technical University in Prague, Prague, Czech Republic
128 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
129 State Research Center Institute for High Energy Physics, Protvino, Russia
130 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
131 Physics Department, University of Regina, Regina, SK, Canada
132 Ritsumeikan University, Kusatsu, Shiga, Japan
133 (a) INFN Sezione di Roma, Rome, Italy; (b) Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
134 (a) INFN Sezione di Roma Tor Vergata, Rome, Italy; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Rome,

Italy
135 (a) INFN Sezione di Roma Tre, Rome, Italy; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy
136 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II,

Casablanca, Morocco; (b) Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat, Morocco; (c) Faculté
des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Marrakech, Morocco; (d) Faculté des Sciences,
Université Mohamed Premier and LPTPM, Oujda, Morocco; (e) Faculté des sciences, Université Mohammed V-Agdal,
Rabat, Morocco

137 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie
Atomique et aux Energies Alternatives), Gif-sur-Yvette, France

138 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA
139 Department of Physics, University of Washington, Seattle, WA, USA
140 Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
141 Department of Physics, Shinshu University, Nagano, Japan
142 Fachbereich Physik, Universität Siegen, Siegen, Germany
143 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
144 SLAC National Accelerator Laboratory, Stanford, CA, USA
145 (a) Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; (b) Department

of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
146 (a) Department of Physics, University of Cape Town, Cape Town, South Africa; (b) Department of Physics, University of

Johannesburg, Johannesburg, South Africa; (c) School of Physics, University of the Witwatersrand, Johannesburg,
South Africa

147 (a) Department of Physics, Stockholm University, Stockholm, Sweden; (b) The Oskar Klein Centre, Stockholm, Sweden
148 Physics Department, Royal Institute of Technology, Stockholm, Sweden
149 Departments of Physics and Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, USA
150 Department of Physics and Astronomy, University of Sussex, Brighton, UK
151 School of Physics, University of Sydney, Sydney, Australia
152 Institute of Physics, Academia Sinica, Taipei, Taiwan

123



Eur. Phys. J. C (2014) 74:2941 Page 37 of 38 2941

153 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
154 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
155 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
156 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
157 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
158 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
159 Department of Physics, University of Toronto, Toronto, ON, Canada
160 (a) TRIUMF, Vancouver, BC, Canada; (b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
161 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
162 Department of Physics and Astronomy, Tufts University, Medford, MA, USA
163 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
164 Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
165 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy; (b) ICTP, Trieste, Italy; (c) Dipartimento di

Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
166 Department of Physics, University of Illinois, Urbana, IL, USA
167 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
168 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica Molecular y Nuclear and Departamento de

Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC,
Valencia, Spain

169 Department of Physics, University of British Columbia, Vancouver, BC, Canada
170 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
171 Department of Physics, University of Warwick, Coventry, UK
172 Waseda University, Tokyo, Japan
173 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
174 Department of Physics, University of Wisconsin, Madison, WI, USA
175 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
176 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
177 Department of Physics, Yale University, New Haven, CT, USA
178 Yerevan Physics Institute, Yerevan, Armenia
179 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

a Also at Department of Physics, King’s College London, London, UK
b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
d Also at TRIUMF, Vancouver, BC, Canada
e Also at Department of Physics, California State University, Fresno, CA, USA
f Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
g Also at Università di Napoli Parthenope, Naples, Italy
h Also at Institute of Particle Physics (IPP), Canada
i Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
j Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece

k Also at Louisiana Tech University, Ruston, LA, USA
l Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain

m Also at CERN, Geneva, Switzerland
n Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
o Also at Manhattan College, New York, NY, USA
p Also at Novosibirsk State University, Novosibirsk, Russia
q Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
r Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
s Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
t Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
u Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and

CNRS/IN2P3, Paris, France

123



2941 Page 38 of 38 Eur. Phys. J. C (2014) 74:2941

v Also at School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, India
w Also at Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
x Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
y Also at Section de Physique, Université de Genève, Geneva, Switzerland
z Also at Department of Physics, The University of Texas at Austin, Austin, TX, USA

aa Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
ab Also at International School for Advanced Studies (SISSA), Trieste, Italy
ac Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA
ad Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
ae Also at Physics Department, Brookhaven National Laboratory, Upton NY, USA
af Also at Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
ag Also at Department of Physics, Oxford University, Oxford, UK
ah Also at Department of Physics, Nanjing University, Jiangsu, China
ai Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
aj Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA

ak Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
∗ Deceased

123


