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Abstract 

Affective Algorithmic Composition (AAC) is a field that focuses on the algorithmic 

generation of music specifically to affect its audience in a targeted way.  

This thesis presents a novel method for developing AAC systems based on collecting both 

perceived and induced affect data from human participants using multiple biosensor and 

surevey approaches, and modelling the resulting data in a predictive function based on a 

neural network. This in turn is used to drive the musical algorithm to generate music that can 

invoke any specified affective target. 

These various approaches to affect measurement can be assessed and compared by their 

respective predictive error when used to train a neural network, providing an assessment tool 

for further refinement and development. 

A pilot study of this method is also presented, The Affective Algorithmic Composer 

(AACr). AACr‟s predictive functions are trained using multiple forms of affect data collected 

from a group of participants, and can generate original music to invoke specific emotional 

states, physiological states, perceived content, and themes. Several generated compositions 

are included to demonstrate the abilities of the AACr to invoke affective states defined 

manually or directly taken from the user via biosensors. 

The thesis concludes by reflecting on the method‟s strengths, areas for further 

development, and methods that could be used to determine the success of future AAC 

systems. 
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List of Acronyms 

AAC: Affective Algorithmic Composition. A field of study where algorithmic composition is 

specifically designed to invoke a target affective state in the listener. 

AACr: Affective Algorithmic Composer. The software and hardware developed in this study. 

BCI: Brain Control Interface: A field of study, separate to AAC, where brain sensors are used 

to control computer systems. 

BCMI: Brain Control Musical Interface. A field of study, separate to AAC, where brain 

sensors are used to control computer systems for music. 

BIO: Biosensor (not including EEG). A descriptive abbreviation used in the AACr GUI. 

BR: Bayesian Regularisation. A learning function used in neural networking 

CAT: Computed Axial Tomography scanning. A brain scanning technology used in hospitals 

and laboratories involving X-rays. 

DIY: Do It Yourself. A common term for enthusiast projects built at home or as a hobby. 

ECG: Electrocardiogram. (sometimes EKG from Latin, „kardia‟) A sensor that reports heart 

rate by measuring the field generated from the electrical impulses of the heart muscle. 

EEG: Electroencephalogram. A sensor (or collection of sensors) that measures electric fields 

created by the brain‟s neurons firing. Also used in the AACr GUI as a descriptive 

abbreviation. 

EMG: Electromyography. A technique for measuring the electrical field changes created by 

muscles and their associated nerves. 

EOG: Electrooculogram. A device that measures electrical field changes created by 

movement of the eyeball. 

ERP: Event Related Potential. In EEG, a specific and often expected change in signals in 

reaction to a stimulus. 

EVM: Eulerian Video Magnification. A process where the most subtle temporal changes in a 

digital video file are magnified to become visible, such as the change in complexion due to 

heart beat, or a vibrating guitar string. 

fMRI: functional Magnetic Resonance Imaging. A brain scanning technology that is very 

common, but requires relatively large equipment and a magnetically isolated room. 

GP: Genetic Programming. Specifically in this paper in regards to GP as a method of 

implementing symbolic regression, where solutions to a curve are formed using random 

symbols as pieces, and improved using a fitness routine. 

GSR: Galvanic Skin Response. Another name for skin conductance. 

GUI: Graphical User Interface. That part of a program that presents controls and information 

to the user via the screen. 

HRV: Heart Rate Variance. The amount of variation from the average period of heart beats 

from a given sample. 
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IBI: Inter-Beat Intervals. The period in between each heartbeat. 

LED: Light Emitting Diode. Simple, polarised, light emitting electrical component. 

LIK: Likert. A descriptive abbreviation used in the AACr GUI. 

LM: Levenberg-Marquardt. A learning function used in neural networking. 

MEG: Magnetoencephalogram. A brain scanning technology measuring magnetic field 

changes, also requiring a magnetically isolated room. 

MIDI: Musical Instrument Digital Interface. A simple and very common language/protocol 

for controlling instruments and synthesizers via digital commands.  

MSE: Mean Squared Error. The average squares of the errors between data and a function 

trying to fit that data. 

NN: Neural Network. An umbrella term for machine learning systems that emulate neural 

processing as found in organic brain networks. 

NNS: Neural Network Server. A module of the Affective Algorithmic Composer system, 

described herein, that uses neural networks to calculates potential musical candidates for a 

given affective targets. 

OSC: Open Sound Control. A sound control interface protocol that uses TCP-IP addresses 

and can communicate via ethernet. 

R: (or R value) The correlation coefficient of two variables. If R is close to zero, the two 

variables in question are not related. As R approaches 1, the more the variables are related. 

SCG: Scaled Conjugate Grading. A learning function used in neural networking. 

SCL: Skin Conductance Level. The mean value of conductance between two electrodes on the 

skin of a set period of time. 

SCR: Skin Conductance Response. A time measurement of the period between the beginning 

of a skin conductance event and the point it reaches half way back to the original level. 

SQL: SQLite. An open and simple database language, natively implemented in Cycling‟74‟s 

Max software development environment. 
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Glossary of Terms 

Affect: To have influence on, or potential to cause change.  

Affective Target: A defined change in affective state that is required. In the AACr this 

involves a shopping cart type system, offering specific changes the user might like to 

attempt to invoke in the listener.  

Algorithmic Composition: A method of composition, typically experimental, that involves 

defining an audible rendering of a mathematical formula or procedure rather then defining 

the notes themselves. 

Arduino: One of many brands of small microprocessor\circuit boards that enables an 

electronic circuit to interface with a computer via USB or wirelessly. Other brands 

mentioned include Teensy and OpenEEG. 

Array: A computer programming term for a list of numbers, similar to a matrix or multi-

dimensional grid.  

Biomusicology: A field of study that focuses on biological musical phenomena, including 

evolution, physiology, and empirical studies. 

Biosensor Battery: Often a collection of different bio-sensors are collectively referred to as a 

battery, much like artillery.  

Boolean: A method of mathematical analysis commonly used in programming that returns 

either „true‟ or „false‟. For example, if a = 1, and b = 2, then “a < b” is true and “a > b” is 

false.  

Computational Critic: A part of a computer program that is responsible for assessing potential 

output (in this case musical passages) against the context of a defined target, usually using 

machine learning or some form of regression. 

Induced Affect: That affect which causes changes in the listener both physiologically and 

psychologically. For example, a song that triggers the emotion of sadness in a listener 

whether the listener thinks the song is about being sad or not. 

External Factors/Confounding Factors: May refer to anything which causes measured change 

in the participant other than the musical stimulus itself (distraction), influences that change 

(such as alcohol), or which causes the participant to react in ways beyond their 

personality/heritage (traumatic bias towards piano, illness).  

Heuristics: A term for methods by which a problem can be approached and solved, typically 

used in computer programming and machine learning. For example, different search 

engines use different heuristics and return different results to the same search line. 

Hierarchical Analysis: A traditional approach for analysing music using a range of levels or 

tiers of structure. Each tier influences the tier below it from the highest, overall form, right 

down to the lowest, individual motifs and notes. 

Likert: A method of survey that employs answers using scales. 
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Music Affect: Both a contemporary and historical field of study, involving the influence of 

music on the human being, as well as a term for the phenomenon itself. For practical 

differentiation, in this study, the phenomenon studied is referred to as musical affect. 

Music Algorithm: A system (typically a computer program) specifically designed to 

procedurally generate music. 

Neutral Period: A period of time where no musical stimulus is presented at all. 

Perceived Affect: Affect which is reported by the listener in terms of being expressed by the 

music. For example, “A song about being sad” does not necessarily trigger sadness in the 

listener. 

Phasic: An event that occurs in phases, involves a series of smaller events, or is temporal in 

nature. A phasic change might involve the change of the temporal, periodical, or dynamic 

nature of the phenomena in question. 

Predictive Function: Any mathematical or programming action that analyses a data set and 

extrapolates possible solutions to new enquiries, typically employing regression and 

machine learning techniques. 

Salient: Noticeable or important details 

Seed: See Structural Array 

Stochastic Data: Data using samples, which inherently contains errors or noisy variation to 

some degree. 

Structural Array:  Also called a „seed‟. Both terms are specific to this project. A structural 

array is the term used to refer to a list of numbers that represent all of the hierarchical 

variables needed to have the music algorithm generate a piece of music. 

Synaesthesia: A physiological condition where various receptive systems (sight, hearing, 

smell etc.) are confused or influence other receptive systems in the brain. Commonly 

symptoms include associating colour with certain aspects music or timbre, or having 

texture strongly associated with certain smells. 

Tag-word: A single word associated with a data entry, effectively forming a category so that 

all entries with a specific tag-word can be recalled using that tag-word. 
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1 Introduction 

Generative algorithmic music, the basis of so much modern ground breaking work and 

experimentation in musical composition, is, at its core, audible representation of formula, or 

sonic graphing. The complexity of generative algorithmic composition has increased 

exponentially with advancements in computing technology, and large amounts of quite 

sophisticated musical material can be almost-instantly generated, leaving the composer with a 

task of deciding what or how each result may be valuable or useful.  

Generative algorithmic composition has a different approach to traditionally composed 

music; this is especially true for expression, communication, and context. Where traditional 

composers have engaged human emotional concepts through a long established and delicately 

applied set of compositional protocols, harmonic movement, counterpoint, form, algorithmic 

approaches are much less able to accommodate human expressionistic protocols. Many 

composers have embraced this opportunity to explore the unfamiliar, but for certain purposes 

where emotional affect or reinforcement is paramount, such as in soundtracks for film or 

gaming, generative algorithmic music has found limited application, usually involving severe 

limitations on an algorithm‟s possible outcomes or laborious supervision by a human agent. It 

is within this realm of affective targeted music, -akin to film/media/gaming composition- that 

this generative algorithmic music project is focused. 

Algorithmic music essentially strives for automated composition; “…the process of using 

some formal process to make music with minimal human intervention” (Alpern, 1995. p. 13). 

Affective Algorithmic Composition (AAC) aims not only to relieve the human agent of this 

inherent dependence, but also to create a system that can invoke affect musically, in ways that 

can be understood by a human audience.  

It is worth discussing Williams‟ theme for the movie Jaws, (1975): two repeating notes, 

one semitone apart, with a long pause in between. The pause becomes progressively shorter 

dissonant embelishments increase as the protagonist approaches its prey until the rhythm is 
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relentless; a simple and functional composition specifically designed for reflecting and 

reinforcing the tension present in the film. This functional reinforcement approach to 

composition is reflected in the goals of AAC systems that “… are distinct from traditional 

algorithmic composition systems that do not consider an intended affective trajectory in the 

generated material: in AAC, the algorithm is always informed by an intended affective 

response” (Williams et al., 2014, p. 2). AAC is not concerned with experimental aesthetics; 

rather, any musical outcomes that can affect an audience.  

AAC systems typically use simple categorical emotion models or machine learning 

functions to predict the affective outcome of unheard passages of music. This gives rise to a 

musical algorithm that can search for a piece of music to suit a certain emotional or affective 

target. 

In this thesis, a method for affective algorithmic composition is proposed and 

demonstrated, based on training neural networks to recognise the affective qualities of 

musical structures, from the reactions of a group of volunteers. The method is focussed on 

reducing predictive error, and demonstrates the use of predictive error to assess and compare 

various methods of biofeedback measuring techniques, survey development, and 

implementation of the AAC for the user.  

This thesis is structured into an introduction, two main sections, and a conclusion. The 

introduction includes a background information section which is an overview of the slightly 

perilous topic of music affect as a field of study, its relationship to generative algorithmic 

composition and the two concepts coming together in the field of affective algorithmic 

composition. This background information helps to outline the current state of research, and 

sets the scene for the developments in the following two main sections. 

The first main section, Developing Methods for AAC, is a discussion of approaches and the 

related literature used in developing each aspect of this method. Topics include discussion of 

development of appropriate musical algorithms, equipment and software, collection and 
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analysis of affect data from volunteers, and the development and assessment of predictive 

functions using this data.  

The second main section is a detailed outline of the Affective Algorithmic Composer 

system (AACr); a pilot study and functioning AAC system developed to demonstrate the 

method proposed. This section contains detailed descriptions and discussion for each 

component of AACr system, including the music algorithm, the sensors and auditioning 

process, the creation and assessment of the neural network system, and discussion of the 

musical outcomes. 

In the conclusion, relative successes and future directions for research are discussed. 

Several generated pieces are included as demonstrations of the AACr‟s output. Recordings 

of unsupervised real-time music are presented, generated from both manual and biosensor 

defined affective target states. Among these examples, three relatively intricate pieces are 

generated, with some supervision, for three famous scenes from Fritz Lang‟s 1927 silent film 

Metropolis. These pieces demonstrate the AACr‟s abilities for real-time media applications 

and a non-real-time compositional aide role. 

1.1 Background Information 

The earliest computerised musical algorithms were considered as aids for composers. Iannis 

Xenakis, used a computer to „deduce‟ a score from a list of note densities and weights in 

Atrées (Xenakis, 1968). However, Xenakis was thoroughly involved in developing the final 

result. Cope critiques Atrées, “…the computer has not actually produced the resultant sound 

[or notation]; it has only aided the composer by virtue of its high speed computations.”(Cope, 

1976, p. 259).  

Hiller and Isaacson were responsible for what is commonly regarded as the first 

unsupervised algorithmic composition, The Illiac Suite, and also demonstrated that the 

algorithm responsible could be given new variables to generate new material (Hiller & 

Isaacson, 1979; Roads, 1996).  
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Algorithmic Composition  

Musical theory is inherently quantified and easily encoded, which on its own is generally 

enough shape for an algorithm to generate something that at least sounds like music. 

However, the re-useable nature of algorithms like The Illiac Suite has given to rise to a 

complex medium where composers capture an entire process for composing, rather than just 

rules for a song in itself. Thus „composition theory‟ is a more relevant focus for algorithmic 

music than „music theory‟ (Laske, 1989, p.46). This is a significant distinction, suggesting 

algorithm and music have perhaps never been exclusive of each other.  

The Illiac Suite chose the most suitable result via a mathematical set of rules acting as a 

filter. These mathematical rules were previously defined, and thus these choices were 

informed by the author. Automating this inference is a core focus for AAC developers. 

David Cope, speaking about the earliest development of EMI (Experiments in Musical 

Intelligence) eludes to his own human inference, speaking of his earliest attempts at 

algorithmic musical part writing,  

While some of the music composed using this approach did prove fairly successful, most of its 

output was equally uninteresting and unsatisfying. Having an intermediary –myself– form abstract 

sets of rules for composition seems artificial and unnecessarily premeditative (Cope, n.d.).  

 

Cope‟s solution was to automate the hierarchical analysis of other composer‟s works, 

taking the underlying structures and shapes to inform the algorithm in the creation of new 

pieces (Cope, 2005). In effect, EMI still relies on human inference, just not from the author. 

By imitating the structures that other composers most often deemed to be valuable and 

emulating them, EMI produced „original‟ music that featured uncanny similarities to the 

contributing composers.  

It is worth taking a moment here to consider that Cope‟s EMI stands out as one of the most 

famous musical algorithms of all time, and one of the most controversial for his misuse of the 
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word „creativity‟, which Wiggins criticises Cope for in his review of Computer Models of 

Musical Creativity (Wiggins, 2008).
1
  

Regardless, to develop an algorithmic system that can filter material that is affectively 

valuable from the uninteresting still means bridging a „gap‟ between symbolic mathematics 

and the communicational conventions of an emotional human audience. 

The Gap between an Algorithm and its Audience 

Composition is a human phenomenon of communication (Fedorenko, McDermott, Norman-

Haignere, & Kanwisher, 2012), and as such it often contains levels, structures, hierarchies, 

and syntaxes, not dissimilar to written language (Cogan, 1984, p. 111; Levitin, 2007, p. 154; 

Pinker, 1999, p. 532). Composed music typically elicits meaning or metaphor, and relies on 

certain points of mutual context to relay this metaphor (London, 2007; Mannes, 2011; 

Petsche, Linder, Rappelsberger, & Gruber, 1988; Scruton, 2009; Thompson & Biddle, 2013; 

Zbikowski, 2008). Throughout a lifetime of exposure a human composer naturally develops a 

semantic framework of generalisations about how an audience will be affected by certain 

musical sounds, informing their decisions on how to fill the physical framework of their 

compositions. It could be argued that a composer uses a form of inductive reasoning, taking 

previous musical interactions as samples, and developing generalisations from them for use in 

predicting the effect of each musical mechanism as they compose (“Deductive and Inductive 

Arguments,”). It is conceptually difficult to relate such abstract human compositional 

reasoning to an algorithmic compositions system. 

This highlights a „gap‟ between mathematical music and a human audience‟s 

communicative standard. This gap may be one reason why generative algorithmic 

                                                 

1 While misusing words like „creativity‟ in the field of artificial intelligence is at least highly problematic, Wiggins is 

ruthless, accusing Cope of crimes in “pseudo-science”. It seems unnecessary on Wiggins‟ part, or at least forgivable on 

Cope‟s, but the reader should take from this a warning that terminology is especially delicate when discussing artificial 

intelligence and AAC. It is important to establish as early as possible that affective algorithmic composition is a method of 

filtration. Potential results are filtered from the finite but large number of possibilities an algorithm can produce, according to 

their affective potential, not created. 



6 Pitman 

composition has not featured commonly in emotionally driven film/media/gaming musical 

application, as algorithmic music can difficult for an audience to contextualise emotionally.  

Not surprisingly it was once a common assumption that musical composition must be an 

exclusively human function that cannot be synthesised (Cope, 2004). More recently musical 

neuroscience, bio-musicology, and computational neuroscience have been measuring and 

reverse-engineering musical affect in several different ways that make programming a 

function to resemble the composer‟s the inner critic a much more feasible proposition. 

However, music affect as a field can be difficult to navigate. 

…the structure of affect theory mirrors the ambiguity, open-endedness, and messiness of that 

which we might call affect. (Thompson & Biddle, 2013, p. 6)  

 

The definition for „music affect‟, both as a field and as a phenomenon, varies greatly from 

author to author. For this project it is very important to recognise that this „stubbornly 

unrecognisable‟ term refers to a „myriad of approaches: sometimes subtly differentiated, 

sometimes markedly conflicting in their differences‟ (Thompson & Biddle, 2013, p. 6). As 

soon as anyone uses the word „affect‟ in a musical study, alarm bells ring, and they must 

commit to investigate the field and its definition for fear of being lost in the very ambiguity it 

suffers from. 

Affect Origins 

The Ancient Greeks wrote extensively on controlling human emotions with music, both in 

modes and with a system known as the four temperaments. But perhaps a more direct starting 

point for the study of musical affect is during the Renaissance, as German musicologists used 

the concept of affect (in German: Affektenlehre) to describe aesthetic concepts in Baroque 

music. Their idea of „Affekt‟ stemmed from Latin doctrines of rhetoric and oratory, which at 

that point were largely theoretical and were being used for discussing music composition. In 

these Baroque music treatises the composer was to move the „affects‟ of the listener much 
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like an orator moves his audience with rhetoric (Buelow, 2001). „The Affects‟ in this case 

referred to the emotions or passions of the listener.  

The Doctrine of Affections, also known as the Theory of Affections, became a common 

topic in the mid-17
th

 century. Many theorists began to devote large parts of their treatises to 

categorising and describing types of affect as well as describing the „affective connotations‟ 

of musical structures, instruments, scales, and rhythms (Buelow, 2001).  

The result was a library of instruction on eloquence, proper musical grammar, and systems 

of emotion. Affect took on a sophisticated role as the core reason for composing, even a 

spiritual role, and was at times considered a universal. In 1597 Lorenzo Giacomini defined the 

affections as a “spiritual movement or operation of the mind in which it is attracted or 

repelled by an object it has come to know [as] a result of an imbalance in the animal spirits 

and vapours that flow continually throughout the body” (Giacomini-Tebalducci-Malespini, 

1597). 

Music is clearly something that has an effect, and many sought to further understand and 

harness this phenomenon. Hoyt describes Descartes‟ (1649; Meyer, & Timmermans, 1990) 

Les Passions de lầme (The passions of the Soul) as one of the most decisive influences on the 

art of music. Descartes believed that there was a “rational, scientific explanation for the 

physiological nature of the passions” and that he had discovered the objective nature of 

emotion (Wilson, Buelow, & Hoyt). Descartes fostered a dualistic approach to bodily 

substances; extended matter on one side, and the immaterial mind on the other. While he 

stated that that mental experience could not emerge from pure mechanical dynamics, he 

treated the body as merely an organic machine.  

In L'homme, et la formation du foetus (Man and the formation of the foetus)(Descartes et 

al., 1677), he writes of the immaterial mind controlling the otherwise automated body, but 

that the passions of the body (not of the mind) can influence the mind in return if left 

unchecked: 



8 Pitman 

Thus, I say, when you reflect on how these functions follow completely naturally in this machine 

solely from the disposition of the organs, no more nor less than those of a clock or other automaton 

from its counterweights and wheels, then it is not necessary to conceive on this account any other 

vegetative soul, nor sensitive one, nor any other principle of motion and life, than its blood and 

animal spirits, agitated by the heat of the continually burning fire in the heart, and which is of the 

same nature as those fires found in inanimate bodies. (Descartes et al., 1677, p. 8) 

 

These early attempts to find understanding of human being‟s unusual engagement with these 

periodical and harmonious sounds remained a core aspect for Western musical theorists and 

critics, even though the word „affect‟ fell out of favour through the 18
th

 century. „Rhetoric‟ 

remained a fundamental term in theoretical studies, to the point where many considered the, 

“…musical surface as saturated with rhetorical symbols.” (Wilson et al.).  

Attitudes to the concept of rhetoric had flipped by the beginning of the twentieth century. 

Hoyt summarises that investigations of the time returned very little evidence that the classical 

composer‟s had actively sought training in rhetoric, or actively employed the concepts in their 

compositions. He instead suggests  

…that rhetoric did not provide models for composers; rather, writers on music seem to have 

adapted rhetorical concepts to conform –however tenuously– to musical practice. (Wilson et al.). 

Conflicting Approaches to Affect 

The human of the twenty-first century is still reacting emotionally and physiologically to 

music (Coutinho & Cangelosi, 2011; P. N. Juslin & Västfjäll, 2008). Music as a biological 

phenomenon is witnessed and studied throughout the world‟s cultures. Physiological and 

psychological reactions to music now have several fields of study, approached by both the 

musician and the scientist (Wallin, 1991).  

The exploitation of „the passions‟ can still be found in commercial music, creating simple, 

reliably affective, emotionally driven music. The American company, Muzak, renowned for 

their ambient elevator music cliché, was a massive entity in the music industry, exclusively 

selling music that purposefully promoted brain states that were more susceptible to 

commercial marketing and advertising techniques (Brown & Volgsten, 2006, p. 110). 
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Despite its modern use in the fields of pharmacology, neuroscience, psychology, and 

physiology, the term „affect‟ in music studies has remained for some an awkward or even 

pseudo-scientific concept amongst the fields of musicology. The modern music author, 

concerned with the musical studies on a physiological or psychological level, is forced to 

consider that the term „affect‟ has a certain history and air about it, something which renders 

its employment potentially undermining. It is perhaps better to address this blurred line, rather 

than skirt around it: 

The field of music affect suffers from inbuilt vagaries, an inability to explain experience 

with any authority, and a constant re-definition and re-stating of terms that never concretize. 

“The literature presents a confusing picture with conflicting views on almost every topic in 

the field” (P. N. Juslin & Västfjäll, 2008, p. 559). Even the Webster Dictionary‟s entry is 

contradictory,  

2: the conscious subjective aspect of an emotion considered apart from bodily changes; also: a set 

of observable manifestations of a subjectively experienced emotion… (“Definition of Affect”) 

 

The reader will often find that the word affect refers to both the music‟s influence on the 

listener as well as the change in the listener‟s state. Webster Dictionary also states that a thing 

which is affective, is “relating to, arising from, or influencing feelings or emotions” 

(“Definition of Affective”).  

More specific to the field, affect is also considered as a potential that something (i.e. 

music) can harbour, thus a passage of music may also contain affective potential which is yet 

to be heard and realised. This potential has at times been poetically liberated of a grounded 

definition. 

A work, which despite being titled Affect and Embodied Understanding in Musical 

Experience, actually only presents a series of anecdotes of musical euphoria,. This was 

apparently evidence for the solidarity of the audience being a catalyst to the creation of a field 

of “affective and transformative energies” (DeChaine, 2002). As pleasant and descriptive as 

these anecdotes were, it certainly wasn‟t empirical or a form of evidence or research. It serves 
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to highlight a kind of speculative approach that is at times unhelpful for the field of music 

affect and certainly offers nothing of value to an AAC project. We all know first-hand the 

power of music, but it might be better studied without poetic speculation, if only from an 

AAC point of view. 

Julie Reiser (2012), in a review of what was meant to be a definitive reader on affect, The 

Affect Theory Reader (Gregg and Seigworth, 2010), summed up perfectly the disarray that the 

field has suffered. 

…I also approached the volume wanting to be able to use it in a class on affect theory; wanting to 

be charmed by its inclusion of more persuasive, interesting theoreticians than I had yet 

encountered; wanting to be converted by that one pivotal essay that could somehow explain to me 

why so many of the best minds of my generation have been seduced by this literary phlogiston; and 

wanting, albeit totally unfairly, to see it create a sense of order and coherence for what otherwise 

appears to be an untidy, excessive exploration of that je ne sais quoi of human experience that has 

seemingly evaded complete explication by the whole of theory and philosophy for close to two 

millennia. (Reiser, 2012)  

 

Affect as an “ology” seems as elusive as the very experiences it hopes to study, and for fear of 

being lost in its own reputation for the internalistic and hopeless standing as an eccentric 

subfield of musicology, it might only be safely used when referring specifically to the 

historical concept, explicitly using the German „k‟; affekt. The needs of developing an AAC 

system are not satisfied by any conceptual model or internalised descriptions.  

It could appear that our claim that musical emotions must be investigated with regard to their 

underlying mechanisms is uncontroversial, and that all music researchers would agree. Yet, this is 

not how research has been conducted, which is ultimately what counts. Studies thus far have 

produced data that are collectively confusing and internally inconsistent, mainly because 

researchers have been considering only the induced emotions themselves, instead of trying to 

manipulate the underlying mechanisms in a systematic manner.  (P. N. Juslin & Västfjäll, 2008, p. 

574) 

 

This fresh approach in the field of music affect from musicologists, musical psychologists, 

and neuroscientists, is empowered with the by-product of more modern methodologies, 

approaches, and standards. For encoding a system of affect within a composition algorithm, 
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the focus is clearly shifted towards these mechanisms; a more consistent source of evidence 

and, by nature, empirically definable. 

Empirical Approaches: Perceived and Induced Affect 

It is important here to distinguish between two categories of empirical affect: perceived and 

induced affect (Lundqvist, Carlsson, Hilmersson, & Juslin, 2009, p. 61). A song that sounds 

like it is (or is perceived as being) about the heart racing could be very different to a song that 

induces a change in heart rate. A song that is perceived as sad could induce similar 

physiological changes as a happy song. A survey that has a tick box next to “heart racing” 

will not necessarily be ticked at the same time as the listener‟s heart races. (P. N. Juslin & 

Sloboda, 2011, Chapter 11.3.2; Williams et al., 2014, p. 4). 

There is a long history of empirical research into musical affect using biosensors and 

surveys. The following two cases studies, Hevner and Ellis, demonstrate perceived and 

induced affect literature, and are among early examples of a massive amount of empirical 

affect literature produced up to this day, critical for AAC development: 

Perceived Affect 

In 1937, Hevner published the last in a series of experiments measuring the expressiveness of 

music, where a group of participants selected tag words like “dignified, spiritual, poetic, 

sparkling” (Hevner, 1937, p. 622). The survey relayed information about perceived affect. It 

also led to some odd sounding conclusions like “High pitch shows its largest effects on the 

humorous-sparkling-playful tone and low pitch divides its effectiveness over sad, dignified, 

and vigorous-majestic groups.” (Hevner, 1937, p. 625-626).  
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It‟s easy to suggest that this is a limited approach; the participants were likely inclined to 

interpret each of the survey words differently; the various nuances and endless combinations 

of musical structures in use are hardly accounted for, and this categorical structuring of 

emotions seems difficult to legitimise. Hevner does acknowledge these limitations:  

Against the too hasty conclusions of a casual reader who may expect that we have undertaken to 

reveal a formula by means of which music may be written to fulfil the requirements of any desired 

mood effect, we cannot emphasize too often the limitations which must be applied to our results. 

(Hevner, 1937, p. 627) 

 

Hevner‟s work is still far more useful to AAC than that of Matthesson or DeChaine. It is 

impersonal and unbiased, and most importantly, an empirical approach. A quantified 

„formula‟ for emotion like this could -and has been (Hoeberechts, Demopoulos, & 

Katchabaw, 2007)- implemented as a model that can outline the structural inputs to a musical 

algorithm to fulfil „any desired mood effect‟. 

An AAC system based on this perceived affect data might tend towards higher pitched 

notes when instructed to express humorous/sparkling/playful concepts, or in the case of the 

chart from Figure 1, use higher tempos when instructed to generate exciting, happy, or 

graceful music. It may be a limited model as Hevner suggests, but prediction stems from 

Figure 1 - Example of Hevner's Results (Hevner, 1937, p.624) 
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generalisation: where a group of specific examples exist, generalisation allows a prediction of 

varying degrees of strength regarding future examples (“Deductive and Inductive 

Arguments”; Giere, 1997; Herms, 2014, p. 2). 

Induced Affect 

In contrast, the literature of biomusicology embraces neural-physical, neural-psychological, 

comparative, and evolutionary musicological perspectives (Wallin, 1991). The relatively new 

term, coined in 1995 by Wallin, could be considered a completely separate field to affect, or 

perhaps an empirical manifestation of it. The line is blurred at points as both fields consider 

the functions and uses of music, musical influence on behaviour, and both physiological and 

psychological processes of music in the human body (Wallin, Merker, & Brown, 2000). 

However, biomusicology does have a pre-established terminology and a consistency that the 

field of affect does not often enjoy.  

The 1952 publication, Effects of Music on Respiration and Heart Rate (Ellis & Brighouse, 

1952), although not the first study to assess musically induced changes to physiological 

functions (Ellis & Brighouse 39), was among the first to do so with a well-defined procedure 

and a reasonable number of cases. Like Hevner‟s study, Ellis and Brighouse‟s study also 

provides data that could be modelled in an AAC system.  

There are of course many external factors that could affect a subject‟s cardio and 

respiration rate, and Ellis takes definite measures, to the extremes of locking subjects in a 

cage with a mattress and interacting via speaker alone (Ellis & Brighouse 40), to ensure that 

external factors are insignificant. Ellis also outlines a stringent set of requirements that could 

be considered critical in a similar endeavour: 
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1. Individual rather than group treatment of Ss 

2. Careful control and adequate specification of the conditions under which Ss are exposed to 

music 

3. Use of several music selections 

4. Experimental design allowing for adequate statistical treatment of results 

5. Provisions for obtaining adequate measure before, during, and after music  

(Ellis & Brighouse, 1952, p. 40) 

 

 

Figure 2 shows clear increases for the breath and heart rate change over the period of the 

musical stimuli, and a fairly consistent difference between each of the three songs used. This 

study is exemplary of many later studies that outline the potential for measuring induced 

musical affect via its cardiac and respiratory manifestations (Bernardi, Porta, & Sleight, 2006; 

Birnbaum, Boone, & Huschle, 2009; R. J. Ellis, Sollers III, Havelka, & Thayer, 2009).  

Approaches to Affect in Algorithmic Music  

At the time these studies were written, the terms „perceived‟ and „induced‟ affect had not yet 

become as prominent as they are now in fields studying musical affect. The audience 

„perceives‟ affect consciously, but physiological changes are also „induced‟, and how the two 

are related remains elusive (P. N. Juslin & Sloboda, 2011, Chapter 11.3.2; Williams et al., 

2014, p. 4).  

Figure 2 - Cardio and Respiratory Reactions to Musical Stimuli (Ellis & Brighouse, 1952, p.42-43)  
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In the field of AAC, the distinction between perceived and induced affect has become a 

primary concern. In 2014, Williams reviewed thirty AAC systems and categorised them 

according to their abilities, structure, and feature sets (Williams et al., 2014, p. 10): 

 

• Are they capable of compositional and performative music making? 

• Do they use an entirely generative algorithm process? 

• Are they useable in both unsupervised real-time and compositional aide applications? 

• Are they also able to adapt to input directly from the biofeedback sensor array? 

• Do they utilise induced affect? 

 

It is a brief categorical structure for comparing AAC systems, and it may be useful for an 

aspiring AAC developer to assess their system by these criteria as a standard for comparison.
2
 

Of those reviewed Jiang and Zhou‟s system, Automated Composition System using GA 

(Genetic Algorithm) is perhaps the most relatable for this project, as it uses a neural network 

to analyse potential outcomes as well as a pre-established model of emotion quantification 

and categorisation (Jiang and Zhou, 2010). Jiang and Zhou describe the “PAD” system; three 

polar dimensions, “pleasure-displeasure”, “arousal-non-arousal”, and “dominance-

submissiveness”. These emotional categories are mapped to musical variables that are more 

descriptive than a direct representation of the music data; “the density of notes”, “the biggest 

interval”, or “the stability of pitch” etc.  

It‟s not well discussed if having a machine learning function as well as an emotional model 

benefits prediction. It is simply stated, “The experiment results show that our method can 

                                                 

2 Categories such as “composition or performance” are often only fickle matters of user interface design rather than 

fundamental limitations of the AAC method in question. The “supervised vs unsupervised” category makes categories like 

“composition versus performance” seem a little obsolete. Finally, it is curious to have an “induced affect” category only to 

put no entry into it, and then claim no such examples exist, more so when such examples do. Williams did not perhaps intend 

to devise a thorough or overarching standard, although he does inadvertently show that there is a requirement for such a thing 

in the field. 
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yield music which is pleasant to ordinary listeners” (Jiang and Zhou, 2010, p.380). This is a 

somewhat unsatisfying conclusion. 

Little discussion of measured success in AAC studies seems uniform at this date. 

Indeed, affective evaluation in the surveyed AAC systems is sparse. There is a significant amount 

of further work in such evaluations. (Williams et al., 2014, p. 18)  

 

Success in musical composition is difficult to define, but perhaps not so much for a researcher 

already wielding affect measuring equipment, and with the specific context that affect is 

ideally invoked accurately by the resulting compositions. In reality, this is more complex than 

just “seeing if it was right” (see Assessing the Predictive Functions p74). 

Another interesting aspect of Williams‟ overview is that among the AAC‟s that were 

reviewed none used induced affect, a point which Williams also stresses:  

A system for the real-time, adaptive induction of affective responses by algorithmic composition 

(either generative or transformative), including the affective evaluation of music by measurement 

of listener responses to such a system also remains a significant area for further work. (Williams et 

al., 2014, p. 18) 

This might be misleading, or involve complications of definition that Williams doesn‟t 

discuss, but outside of Williams‟ overview Chung and Vercoe developed the Affective 

Remixer, that adapts to user movements, like head nodding, foot tapping, clapping, air 

conducting, dancing, and other gestural information to control the real-time (re)arrangement 

of musical pieces (Chung & Vercoe, 2006). The system was trained by monitoring foot 

tapping, skin arousal, and a survey, and organised its data in a two dimensional 

arousal/valence space. This accounts for both perceived and –in the case of skin arousal- 

induced affect, despite Williams‟ concern that no such thing exists.
3
  

Chung and Vercoe also use a diversified approach to data collection: “Three unique sets of 

data were selected to provide diverse measures of affective response” (Chung & Vercoe, 

2006, p. 395). Chung and Vercoe do not go as far as using their multiple affect measuring 

                                                 

3 The EEG precursor to this project, (Pitman 2012), also counts as an AAC utilising induced affect. 
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approaches for assessment and comparison, providing grounds for further refinement of each 

individual affect measurement method, but this extrapolated premise will be shown to be a 

significant development for this project. 

1.2 Aims and Method 

Considering all the developments in AAC systems presented thus-far, it may be implied that 

the greater goals of AAC researchers still involve developing the processes by which practical 

and robust AAC systems can be created AND assessed.  

An ideal AAC system would be: 

 Robust enough to be used in unsupervised real time tasks such as musical therapy, 

computer gaming, film, affective environment music, or other dynamic situations. 

 Capable of predicting both perceived and induced affect. 

 Endowed with multiple approaches to measuring and predicting affect. 

 Able to entertain increasingly greater variations in musical structure. 

 Less dependent on categorical emotional models and more inclined towards 

machine learning or regression. 

 Somehow assessable or comparable in terms of success. 

This particular project hopes to contribute directly to these greater goals in AAC, but is also 

more specific in several ways: 

 Developing an algorithm focusing on musical structure (without timbre). 

 Developing and comparing multiple methods for collecting both perceived and 

induced affect data. 

 Establishing and exploiting predictive functions from this data using machine 

learning. 
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To achieve this, the following method is proposed: 

1. Develop a musical algorithm that is specifically capable of a broad range of 

musical structures. 

2. Play randomly structured passages from the algorithm to a volunteer audience and 

collect affect data using an array of biological sensors and surveys simultaneously. 

3. Use neural networks to develop a predictive function between musical structures 

and how those structures affected the human audience. 

4. Use neural networks to build predictive functions that can help us to automatically 

select music for any given affective target. 

5. Through an interface, generate affective musical passages as a compositional aide, 

unsupervised real-time system, and both in response to a user‟s current affective 

state and to manually define affective targets. 

6. Analyse, compare, and discuss the relative successes and failures of each 

element. 

Novel Approaches 

Several novel approaches in this method and differences to typical AAC methods can be 

observed in this work. This system is primarily focussed on statistical relevance, that is, it is 

designed to have as little prediction error as possible in its neural networks, which has several 

ramifications.  

Firstly the music algorithm, Two Hands, accepts an array of variables that each define an 

aspect of musical structure expected to be present in the passage generated. However, it is 

implied here that every variable that can affect the musical outcome should be considered by 

the predictive function. It can be argued that some small changes might only have a negligible 

influence on the potential affects within a passage; however it can also be argued that in 

certain cases these small changes have a significant influence on potential affect. This forces 

the algorithm design to use relatively few variables overall, to avoid having neural networks 

relatively complex. Further, the musical algorithm is forced to rely on quite straightforward 
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implementations, so that the musical structures intended are apparent to the listener in each 

passage. 

Next, this system does not prefer to transpose all of the biological sensor values via 

emotional models if possible. Instead, physiological changes are analysed directly by the 

neural networks, and as a result, are available for the end user to directly describe the target 

affective state. This means that rather than asking for a higher arousal, the user asks for 

increasing heart rate variations or increasing skin conductance. It was considered that 

categorical emotional models may provide an unnecessary and slightly abstracted layer of 

complication, which may negatively affect prediction error. The electroencephalogram (EEG) 

analysis is an exception to this, as it is unreasonable to consider EEG signal without a 

significant amount of analysis (discussed further in A Note on EEG Complexity p35). 

The Likert survey focuses on subjective aspects of the music, rather than perceived 

emotional content. This has some interesting ramifications on the interface; a user can ask for 

a piece that seems “thematic” or that “ends well” or “is easy to dance to”. This approach is 

intended to compliment, rather than conflict with, the affective aspects of the physiological 

sensors, and the same could be said for the tag word section of the survey.  

Limitations 

This project does not intend to reconcile or reveal the relationship between the biological 

mechanisms it measures and higher intellect or emotional content. Instead this project relies 

on existing evidence in literature to guide what mechanisms are relevant to musical influence, 

and how to best monitor them.  

EEG measurements are treated by Emotiv‟s proprietary analysis software that translates 

the physiological measurements into affective categories automatically. Critiquing this 

translation is not an intention for this project.
4
 

                                                 

4 While such a translation seems ideal, it could be argued, and should be investigated, whether such a translation is actually 

beneficial in terms of predictive error. While simple biological mechanisms of the body seem quite reasonably predictable in 
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This project focuses on musical structure, not timbre. Timbre is a significant part of the 

musical affect phenomenon, but due to the much larger number of variables needed to 

implement broad-spectrum timbre into the music algorithm, which in previous research has 

been found to totally dilute musical structure in terms of predictive relevance, it was deemed 

necessary to separate the two. 
5,6

 

„Success‟ in AAC requires more investigation. It will be evident that „success‟ here (and in 

other AAC literature) is represented by predictive error margins in the neural network, tested 

by comparing predictions against withheld data. It‟s not clear yet what the golden standard for 

„success‟ is in AAC neural network training, nor can we yet describe if or how well this 

translates to satisfactory music composition.  

Other limitations are present, and are best discussed in the relevant sections.  

                                                                                                                                                         

relation to musical affect, higher functions of the mind and emotional activity become increasingly complex and 

individualistic. 

5 For this project, the piano is used as something of a „vanilla‟ timbre, to which this AAC is now permanently tied. Whilst 

using this system, changing instruments (or timbre) would introduce a large change in affects, which are not allowed for by 

the predictive functions of this particular system.   

6 For a study considering timbre that is highly relevant to AAC, see (Klügel & Groh, 2013) 
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2 Developing Methods for Affective Algorithmic Composition 

Armed with Hevner‟s perceived affect example and Ellis and Brighouse‟s example for 

induced affect procedure, the development of an empirical affect study with an Affective 

Algorithmic Composition (AAC) implementation in mind is investigated. The following 

aspects, most important for making such an empirical affect study relevant for AAC 

development, are covered: 

 A music algorithm specifically designed for AAC 

 A range of surveys and biofeedback devices to collect data 

 And a predictive function based on machine learning 
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2.1 Musical Algorithm Considerations 

There are several approaches to musical algorithms in AAC literature. Chung and Vercoe‟s 

Affective Remixer recombines pre-defined sections of music into new arrangements, one of 

the more common approaches to algorithmic music often found in immersive computer game 

music (Chung & Vercoe, 2006). This category of algorithmic music is referred to as 

transformative. To generate music from scratch without preconceived musical pieces is 

categorised as purely generative (Williams et al., 2014, p. 9).
7
 

The requirements for a musical algorithm within an AAC are very specific and in many 

ways limiting. For this project, total control over all levels of musical structure is required, 

thus a purely generative approach is the focus, so that all levels of detail, down to the 

individual details of each note, can be traced back directly to the algorithm itself.  

To get a picture of how each musical structure relates to affect, the algorithm must be 

capable of a broad, if not extensive, range of structural outcomes, rhythmically, harmonically, 

and stylistically. Any variable in the code that influences musical structure should be included 

in the data presented to the neural networks. In effect, the complete list of these variables 

should describe a passage of music entirely; a structural array or seed. 

The number of variables used and the number of different values for each variable 

increases the number of possible outcomes that can be created with the algorithm. For 

instance, ten variables with ten values each means that there are in total 10
10

 possible 

outcomes. At one minute each, hypothetically, this would be already more music than can be 

heard in two hundred and fifty human lifetimes. The predictive error of the system can be 

improved if the number of possible outcomes is low, at the cost of algorithm complexity.  

With a clear focus on prediction error, there is less room for long Markov chains, advanced 

hyperlinking networks, or complex linguistic models. Manzolli‟s Roboser/Emotobot 

                                                 

7 Definitions and categories of computer generated music are not yet concretised, and seem to be fairly open to debate. There 

are many contributers (Ariza, 2005; Burns, 1994, Cope, 1991; Gerhard & Hepting, 2004; Miranda, 2000). However, various 

papers from America, Europe, and Asia still differ or do not specify exact definitions. For this work, William‟s example is 

followed. 
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composition system demonstrates the generation of an expansive range of novel musical 

variation using a minimum number of variables (Manzolli & Verschure, 2005, p. 55).  

Either way, the number of possible outcomes is still going to be much longer than human 

lifetimes, and finding ways to navigate this large number of possible outcomes is one of the 

primary motivations for developing an AAC in the first place. One might argue that the 

algorithm could be limited in other ways, such as with mathematical filters or stylistic 

limitations, but rather than exploring the possible outcomes such measures would only be a 

form of human inference; predictably sacrificing certain kinds of solution in favour of others.  

Natural limitations, such as restricting the notes to the range of two hands on a keyboard, 

or to a certain number of voices and ranges, can help reduce the total number of outcomes in 

more natural ways, making approaches to creating a broad-spectrum algorithm a very 

individualistic and creative endeavour, despite these inherent limitations. 

2.2 Collecting Affect Data  

The studies of Hevner and Ellis were early examples of nearly a century of empirical affect 

studies that can inform the AAC developer in choosing biological phenomenon to monitor. 

There are several imminent technologies, overviewed here, which are quite practical, 

accessible, and ready to be deployed in AAC development, as well as some emerging 

technologies that show much promise for AAC endeavours. Some factors that may influence 

the choice of sensors may include finance, expertise, and access to facilities and equipment 

needed to measure the phenomenon. Measuring the phenomenon may also have ethical issues 

that need to be considered (e.g. invasive surgery, privacy invasion). Finally, the apparatus 

may influence the subject in such a way as to undermine the results (blocking ears, 

intimidating or uncomfortable apparatus). 

Once a phenomenon has been chosen, further consideration must be given to implementing 

the sensors and their results. As Ellis and Brighouse outline, a biological measurement taken 

during musical stimuli often needs be compared to the same biological measurement taken 
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during a neutral period, usually immediately before or after the musical stimuli. Once 

connectivity, method, and procedure have been established, an analysis of the data must be 

considered so that concise data is presented to the predictive functions and later to the 

interface. 

An excellent and thorough overview of various physiological reactions to music can be 

found in the Oxford Handbook of Musical Psychology (Hallam, Cross, Thaut, & Hodges, 

2008, Chapter 11), which even includes information on biochemical responses and gastric 

motility. Particularly practical apparatuses are discussed here, along with considerations for 

developing musical affect surveys, and considerations for developing the procedure through 

which this data is collected: 

Cardio 

As already discussed, cardio-rate was shown to have a strong relationship to tempo in music 

and this is confirmed in more modern studies. It has also been shown that many musical 

structures contribute to changes in heart rate variability or variance (Bernardi et al., 2006; 

Birnbaum et al., 2009). It is therefore essential that any biofeedback study that seeks to 

ascertain any manifestation of musical affect consider both the change in heart rate and heart 

rate variability. 

Facilities/Equipment 

There are many different kinds of cardio monitors available which are simple and effective. 

Particularly common are electrocardiograms (ECG or EKG from Greek: Kardia) that are worn 

around the chest and monitor the considerable electrical field changes caused by the heart as it 

beats. Blood oxygen detectors monitor the blood‟s oxygen content as it fluctuates with each 

beat, the colour change easily detected at the fingertip‟s or earlobe‟s surface using a green 

LED and a light sensor. Recently both ECG and oxygen monitors have become very common 

commercial fitness products, often integrating easily into computer systems via USB or 

wirelessly. 
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Most devices automate the calculation of heart rate or send a regular real-time beat signal 

(the latter being advantageous). Further, there is a range of effective manufactured products 

that integrate into microprocessor systems like Arduino or Teensy. Assuming the subject 

cannot see the heart beat GUI, the sensor shouldn‟t impact results or deter the participant in 

anyway, thus there should be no unusual ethical concerns apart from minor discomfort. 

Analysis 

Typically, heart rate is measured in beats per minute. It has also been shown that sudden or 

tiny changes can be masked by such a simple analysis (R. J. Ellis et al., 2009, p. 1), thus it is 

also valuable to also calculate heart rate variability or variance (HRV). An increase in HRV 

suggests that the heart is less consistent in its rhythm or inter-beat intervals (IBI). 

Mathematically, HRV is the square root of the mean of squared successive differences in IBIs 

and is typically measured in milliseconds (Task Force of the European Society of Cardiology 

the North American Society of Pacing Electrophysiology, 1996). 

               √
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It is certainly possible to analyse cardio-rhythm and blood flow in more and more depth, 

including the oxygenation of blood, cerebral artery flow, blood pressure, and baroreflex 

(Bernardi et al., 2006, p. 445), however these measurements require increasing expertise. 

Respiration 

We are concerned here with physiologic respiration, specifically natural breathing. The effect 

of music on breathing rate has been anything but conclusive in literature. Breath rate has been 

associated with musical preference (Ries, 1969, p. 62), tempo (Bernardi et al., 2006, p. 448; 

Ellis & Brighouse, 1952, p. 42), or not with music at all (Davis & Thaut, 1989). Ellis and 

Brighouse state that some musical influence on breath rate might not even become present 

until minutes after the stimulus (Ellis & Brighouse, 1952, p. 47). It seems a necessity to 
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preface any discussion of music‟s effect on respiration with a disclaimer that research has not 

been conclusive. 

Facilities/Equipment 

Much research has been done by manually counting breaths as the participant‟s torso expands 

and contracts, however AAC development requires a more autonomous solution. Several 

devices that attach to the face or even inside the nose or throat, monitoring airflow directly, 

are found in medical applications. Such intrusive devices are not ideal for AAC.  

Eulerian Video Magnification (EVM) is a method for remotely breathing (and also heart 

rate) using video analysis (Wu et al., 2012). Subtle or minute temporal variations, normally 

impossible to see with the naked eye, are magnified in video data. This has led to applications 

where infant breathing can be monitored remotely via video, as well as pulses, structural 

vibrations, and other minute but repetitive movements. EVM is implemented using Matlab. 

Another unique approach to monitoring respiration is a rubber stretch sensor (Coyle, 

Mitchell, O‟Connor, Ward, & Diamond, 2009). A rubber cord or strap is cast with fine iron 

particles throughout that allow the rubber to modestly conduct electricity. As the rubber cord 

is stretched the resistance offered increases. This creates a very sensitive and useful stretch 

sensor that can be attached around the chest and/or abdomen to give feedback about the 

expansion or contraction of the torso while breathing.  

Analysis 

A breath sensor will typically track the number contractions or expansions over a minute 

(bpm) and also the relative size of each breath, potentially as a ratio or percentage of the 

maximum expansion of the torso. 

It is useful to allow for appropriate calibration of maximum and minimum thresholds in 

any breath counting solution and to perform this calibration diligently with each new 

participant, as lung size, torso size, and breathing style varies throughout the population.  
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Skin Conductance 

Also known as Galvanic Skin Response (GSR), skin conductance was very popular as a 

simple and effective psychological marker in the sixties and seventies, and is famous for its 

use in polygraphs (lie detectors). This bioelectrical phenomenon is strongly associated with 

emotions such as preference, fear, anger, disorientation, and anxiety. Chills, shivers, or 

pilomotor responses (goose bumps) can also be detected through skin conductance (Guhn, 

Hamm, & Zentner, 2007; Harrison & Loui, 2014). Not surprisingly, skin conductance is a 

core physiological cue in many music affect studies, and considering its simplicity, is an 

excellent candidate for AAC development (Coutinho & Cangelosi, 2008, 2011).  

The underlying mechanism revolves around measuring the ability for the skin, usually 

across the palm between two electrodes, to conduct or resist a small electric current. This 

resistance changes with the amount of fluid present in and on the skin, mostly due to sweat. 

Where voltage is constant, the current change is linearly proportional to sudomotor activity; a 

sympathetic nervous response (Lykken & Venables, 1971, p. 659).  

Facilities/Equipment 

Due to their simplicity, skin conductance sensors are commonly constructed, rather than 

bought. In Figure 3, Lykken outlines two common circuits used. In the resistance loop circuit 

on the left is commonly found in many DIY guides and Arduino kits and varies the voltage as 

skin resistance changes. However, Lykken argues that current and not voltage should be 

Figure 3 – Measuring voltage (left) and current (right) (Lykken & Venables, 1971,  656) 
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measured, as the typical resistance based voltage divider only returns a small amount of 

variation compared to the voltage at the load-bearing resistor. In the right diagram the voltage 

across the electrodes is kept roughly equal to the voltage at Re, thus the voltage at Rx varies 

directly with current across the electrodes.  

Either circuit will work to a degree with an Arduino, even unamplified, however the larger 

dynamic range of the conductance circuit can improve the resolution of the digitalised signal 

significantly, as would signal amplification with an OP-amp (a small IC based amplifier). 

More sophisticated circuits build on these basic concepts (MacPherson, MacNeil, Marble, & 

Reeves, 1976). 

The electrodes themselves must also be considered. In development, metal film electrodes 

that wrap around the finger provoked extra sweating. Certain “obvious-choice” metals such as 

aluminium foil perform poorly as electrodes. Ideally nickel or copper should be used, and 

fastened either by a conductive gel or a breathable binding so as not to induce sweating. Hand 

movements or the touching of conductive materials should also be avoided by participants.  

Finally, some consideration of room temperature may help to avoid unexpected skin 

conductance changes.  

Analysis 

There are two main concerns for measuring skin conductance, skin conductance level (SCL) 

or tonic level, and skin conductance response (SCR). The SCL is a long term standard, often 

taken as a mean value, or isolated entirely from stimulated changes. Phasic events are 

temporary spikes in response to emotional activity, such as being surprised or scared. SCR 

refers to the length in time these phasic changes last for, or more accurately, from an event‟s 

beginning through to the point where it returns to half its peak. These phasic events also have 

a long-term effect on the SCL (Lykken & Venables, 1971, p. 657). 

SCR can vary from seconds to minutes, thus is often difficult to measure during short 

passage of music. Further, a phasic change or an uncommonly high number of phasic changes 
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will affect the SCL reading, thus it could be considered that for short passages of music such 

as the ones in some AAC projects, SCL alone is a reasonable measure.  

Eye Tracking/Pupillometry 

Pupillometry involves measuring the diameter of the pupil of the eye. Since the 1960‟s pupil 

diameter has been shown to relate to psychological stimulus in many animals from birth 

including humans (Goldwater, 1972; Laeng, Sirois, & Gredeback, 2012). There is strong 

evidence that pupil dilation and contraction is related to appreciation or disapproval 

(Kuchinke, Trapp, Jacobs, & Leder, 2009; Mudd, Conway, & Schindler, 1990), as well as 

changes to timbre and pitch (Hallam et al., 2008). 

Electrooculography (EOG) is the measurement of electrical fields created as the eye, with a 

considerable inherent electrical potential, moves about. This is often measured with electrodes 

placed at the front of the temples. 

Facilities 

The Emotiv Epoc EEG headset can return some information about eye movement, likely 

using EOG methods (although this is only speculation, as the workings are proprietary) with 

mild reliability, but no measure of pupil dilation.  

A pupillometer measures pupil dilation using electronic or infrared cameras that take a 

very close up picture or film of the eye. The apparatus requires that the head of the subject be 

held very still, usually with a brace or clamp. This is very uncomfortable for any period of 

time, and despite the huge potential for pupillary information in an AAC study, no 

pupillometry apparatus has yet been suitable or adopted for this project.  

There is an emerging technology most notably implemented in prototype smart eyewear 

systems such as Google Glass or the ASL Mobile Eye Device. When worn these devices can 

track the user‟s eye movement and pupil dilation as well as the environment the user is 

viewing, so as to be able to distinguish changes which are reactions to environment from 
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those which are elicited by cognition (Józsa, 2010). Technology such as this, while intended 

for web based applications, would be ideal for future AAC developments. 

Electroencephalogram 

Neurons in the brain quickly build up a positive charge by absorbing ions from the fluid about 

them. When the neurons are activated, the charged is released to travel down the axiom 

inducing the release of various chemicals to receptors of other neurons. The neurons in the 

cerebral cortex are organised into 6 layers, parts of which are known to fire somewhat 

cohesively and in waves. The location and frequency of these waves gives us some remote 

information about what part of the brain is being used and to what degree.  

There are several devices that can detect and monitor the tiny electric fields produced by 

the brain such as electroencephalogram (EEG), magnetoencephalogram (MEG), functional 

magnetic resonance imaging (fMRI), and computed axial tomography scanning (CAT).  

fMRIs and MEGs produce much better imaging resolution than EEG, however require 

magnetically shielded rooms, large and expensive equipment, expertise, and can potentially 

isolate or intimidate a participant. CAT scans are x-ray based so are unethical for use in music 

research. Thus AAC typically focuses on EEG. 

EEG uses small electrodes to measure electric field changes around the skull. Electrodes 

work best when placed as close to the neurons as possible and surgically implanted electrodes 

have even enabled some control over robotic limbs and the interception and reconstruction of 

vision (Regalado, 2014; Stanley, Li, & Dan, 1999). However, most research applications only 

ethically warrant placement of electrodes on the outside of the skull, naturally including 

AAC.  

Even the best medical EEG systems suffer from a low spatial resolution. Each electrode 

can only measure the mean field of the tens of thousands of neurons beneath it. Penetration is 

also limited as the skull inhibits the signal, and muscle activity in the scalp causes 

interference. EEG is still by far the cheapest brain scanning technology, ranging from DIY 
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kits, toys, consumer oriented prototypes, through to the full laboratory grade apparatus with 

hundreds of electrodes. It also is relatively portable, requires relatively less expertise to 

operate, and has a long history of use in music related research. 

Knowledge of bioelectrical fields in the body and the brain were established by Galvani 

and Canton in the seventeenth century, although invention of the EEG is credited to Hans 

Berger in 1924 (Collura, 1993). Berger and his invention were oppressed by the Nazi regime, 

and the EEG went without acknowledgement by the scientific community until 1934. EEG 

research has since spread all over the globe, particularly praised for its uses in diagnosing 

epilepsy and other abnormalities of the brain. 

Rosenboom used EEG extensively in the 1970s to study, “… information processing 

modalities of the nervous system as they relate to aesthetic experience and creative activity” 

(Rosenboom, 1976). In 1988 detailed studies to concretise brain processes elicited by music 

found that a number of EEG parameters related to specific musical tasks (Petsche et al., 1988, 

p. 133), including a range of consistencies between groups of specific gender (Petsche et al., 

1988, p.142), and those with similar levels of musical training (Petsche et al., 1988, p.139).  

From the end of the twentieth century to the present, the EEG has experienced a wealth of 

musical research attention. There are many biomusicological studies using EEG to analyse 

manifestations of musical affect specifically (Behroozmand, Korzyukov, & Larson, 2012; 

Fedorenko et al., 2012; Janata & Petsche, 1993; Miranda, Sharman, Kilborn, & Duncan, 

2003; Pitman, 2012; Schaefer, Desain, & Suppes, 2009; Steinbeis & Koelsch, 2008; Tan, 

2012). Since 2000, EEG technology has taken centre stage in a lot of music affect research, 

propelled by Miranda, and others as well, who show that EEG can not only be used to analyse 

musical affect, but should also be able to control aspects of music creation as a brain control 

music interface (BCMI) (Miranda, 2010; Miranda & Brouse, 2005; Miranda et al., 2003). 
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Facilities/Equipment  

Essentially the AAC researcher has three options: 1) Build an EEG, 2) collaborate with a 

hospital department, 3) use one of several prototype consumer level devices that are now 

quite readily available. 

Through the nineties, as personal computing advanced rapidly, a surge in non-medical and 

non-academic interest by the general public created a small demand for consumer EEG 

technology. Hobbyists began to develop DIY systems, and formed communities such as the 

OpenEEG project, hosting an online forum and a database of free techniques and plans to 

build functional electrodes, amps, filters and even some software (“OpenEEG,”). A European 

company called Olimex produces several relatively affordable kit versions of some OpenEEG 

multi-electrode designs.  

This public demand also resulted in a number of commercial products becoming available. 

In 1992, Biocontrol Systems released a range of practical physiological sensors for the arts, 

including single electrode EEG, as well as EMG, EOG, and ECG, called the Biomuse System 

(Knapp, R. B., Lusted, H. S., & Lloyd, A. M., 1993).  

In 2007 Neurosky released the MindSet. It sports a single electrode and IC that was notably 

used in a series of toys such as the Starwars Force Trainer by Milton and the Mindflex by 

Mattel. These were often cannibalised by DIY enthusiast for multi-electrode systems. Single 

electrode systems have been employed in several products to date, many utilising NeuroSky 

technology, mobile phone apps, and simple Bluetooth connectivity. Single electrode systems 

can be useful in AAC development, but there are more sophisticated options. 

In 2011, Emotiv began releasing developer kits for their Epoc headset. The Epoc featured a 

new level of sophistication and was designed with both medium level research and computer 

gaming in mind. It featured 14 electrodes around the head, bluetooth connectivity, basic head 

tracking accelerometers, software with range of automated brain and EMG analysis features 

for the non-expert user, and a research edition that reports raw electrode data of a quality 

suitable for intermediate research applications (Badcock et al., 2013; Duvinage et al., 2013). 
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The „research edition‟, though more expensive, is also compatible with dedicated EEG 

software platforms such as OpenVibe, Mathworks‟s EEG Toolbox for Matlab, or BCI2000. 

Emotiv is planning to release a new 5 electrode headset, the Insight, in 2015. 

In 2014, the OpenBCI system was released. It is an open source microprocessor 

hobby/development board similar to an Arduino or Teensy, and features 8 electrode inputs per 

board. The boards interact with computers via USB and Bluetooth. As a research tool such a 

flexible system might be quite useful, however may require more expertise in both EEG 

implementation as well as an understanding of programmable hardware. The relatively new 

community has not developed a huge range of firmware, software, or analysis options yet, 

however this is likely to improve in the future and may soon offer an excellent, non-

laboratory, alternative option to the infamously proprietary Emotiv headsets. 

Analysis 

 

Electrodes are fitted to the skull of participants using various systems, including rubber caps, 

conductive gels, or plastic clamp designs. The positions of the electrodes are usually 

identified by the “10-20” system, named after the series of measurements, in degrees, that a 

practitioner uses to find each location. 21 key points are located around the scalp. 

 
Figure 4 – The 10-20 Electrode System of the International Federation (Jasper, 1958, p.371) 
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EEG signal suffers from a high noise ratio. As the electrodes are placed on the exterior of the 

skull, muscle movement, eye movement, or a general physical disturbance of the electrodes 

will ruin the signal. To combat this, the recording of electrical fields is divided into 

overlapping segments called epochs; usually 1 or 2 seconds in length. Any epoch that 

contains artefacts or noise is ignored. The overall value of each electrode is compared against 

a reference or earth electrode (often at the earlobe) or sometimes against the mean value of all 

electrodes. Often a range of temporal, frequency, and impulse filters are used to finally attain 

useable data.  

This data can be analysed in several ways. Most common is a simple frequency analysis in 

which each area of the brain is described in terms of its frequency of operation (see  

Figure 5), as initially demonstrated by Berger (Collura, 1993, p. 485). 

 

Label    Delta    Theta    Alpha    Beta 

Range 1-4Hz 4-8Hz 8-13 Hz 13-30Hz 

Associated 

Behaviour 

Deep sleep Light sleep, 

waking 

Meditating, 

resting 

Awake, 

perceptive, 

problem solving 

 

Figure 5 - EEG Frequencies and Brain States 

 

Coherence is used to describe two areas of the brain sharing a similar frequency or phase. If 

the electrodes are neighbouring they share local coherence. If they are hemispherically 

opposite, they are said to have interhemispherical coherence. Coherence has been shown to be 

quite common and useful in identifying musical activity (Petsche et al., 1988, p. 135). 

An Event Related Potential (ERP) is a signal change in response to a particular stimulus or 

event, for instance, a reaction to pain or succeeding in a test. Most ERPs are specific to the 

individual, but there are ERPs which have been found to be consistent throughout the 

population. For example, the P300 ERP is a specific ERP phenomenon localised to the 

occipital and central areas, and occurs after novel or salient stimuli (Polich, 2007, p. 2128). 
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The N100 ERP is elicited by unpredictable stimulus or a null result for an expected event and 

is particularly sensitive to aural stimuli (Näätänen & Picton, 1987, p. 375). ERPs are often 

exploited in BCI programming. 

With some expertise, more detailed analysis can be performed on raw data using a range of 

software. Matlab features an EEG toolbox, BCI2000 is a dedicated EEG analysis program, 

and OpenVibe is an open source modular programming environment.
8
 

A Note on EEG Complexity 

When considering an EEG as part of an AAC project, laboratory equipment is perhaps 

assumed to be ideal, yet requires some considerable expertise. During development of this 

project, some time was spent by this researcher at the Royal Adelaide Hospital, investigating 

and being trained to use the NeuroCart biofeedback system (specifically the EEG aspects) at 

the Pain and Anaesthesia Research Clinic. Even though the laboratory grade NeuroCart 

system is utmost in terms of signal clarity, and having completed the training required to 

collect the data, there was no end to complexities of analysing EEG data.  

Jacques Vidal, established as a pioneer of brain control interface using EEG in the 70s, 

reminds us of the complexity one faces in EEG analysis. He frequently criticised his peers and 

the equipment of the day: 

 

„…it had become obvious that most current methods and practices of EEG data acquisition and 

processing were utterly inadequate for the level of discrimination that was required…‟ (Vidal, 

1973, p. 164). 

 

Even the most extensive analysis still seems unable to identify musical affect with any 

authority, which is a major hurdle in the field of AAC. Much research in the field seems to be 

grinding against the complexities of EEG analysis with some faith that in the very near future 

                                                 

8 For an overview of EEG software see (Brunner et al., 2013). 
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EEG will somehow untangle its self and become considerably more robust. This is not 

entirely unlikely, as the Emotiv Epoc headset has been shown to provide a reasonable EEG 

affect analysis “out of the box” that is satisfactory as a starting point (Badcock et al., 2013). 

This analysis is very simple, targeting states of alertness rather than emotional categories, but 

is unfortunately not music specific. 

The promising BCMI-MIdAS project (Williams et al., 2014, p. 18), involving EEG and 

fMRI experts (and from other fields) promises to provide more insight into gaining musical 

affect information from EEG signal. EEG in its current state doesn‟t qualify as being any 

more useful for AAC development than biosensors that focus on simple and more predictable 

mechanisms throughout the body. This implies that AAC development requires a multiple 

sensor approach. 

Body Temperature 

Early music therapy experiments showed no significant relationship between music and skin 

temperature (Guzzetta, 1989; Zimmerman, Pierson, & Marker, 1988). In more recent times, 

body temperature has been shown to react to musical stimulus, but those studies have been 

conflicting about how (Lars-Olov Lundqvist, 2000; Rickard, 2004). Never the less, Rickard 

points out that these reactions are at times relatively large and the apparatus for measuring 

body temperature is considerably cheap and convenient, a clear argument for the inclusion of 

a body temperature sensor in an AAC system.  

Facilities/Equipment 

There are a large range of digital thermometers on the market for very little cost although it is 

worth specifying a higher degree of accuracy. The equipment chosen should measure at least 

tenths if not hundredths of a degree. Some digital thermometers will connect via Bluetooth or 

USB, and a significant number of devices for Arduino or other microprocessor systems are on 

the market, including simple individual components such as thermistors and the TMP36 

integrated circuit which returns a voltage signal linear to the Celsius scale. 
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Analysis 

Body temperature is considered here in degrees Celsius (℃). The temperature of a human 

body can range from 36.0℃ to just under 38.0℃, and baseline measurements can vary based 

on where the measurement is taken. 37.7℃ would be considered a fever in most adults, 

however half degree variation are common over the day, and the body temperature can also be 

affected by hunger, sleeplessness, or illness. 37℃ is considered normal internal body 

temperature, 36.8℃ under the tongue, and increasingly lower when measured externally on 

the skin away from the torso (Longo, 2012). 

Movement Tracking 

The link between human movement and music has been seen as so complex that some 

researchers conclude there must be more than one mechanism involved. Some tripartite-

category systems have been proposed (Berlyne, 1971; Dowling & Harwood, 1981; P. N. 

Juslin & Sloboda, 2011; Sloboda, 1998) that suggest that music is linked to movement 

through a formal similarity in the emotional signals. While there is a considerable need for 

empirical research in this area (P. N. Juslin & Västfjäll, 2008, p. 570) the mere existence of 

dancing and the nodding-to-music phenomenon suggests a strong if not fundamental link 

between musical rhythms and body movement. However, do not disregard the archetype 

classical music experience where the audience sits utterly still despite reporting to have been 

„moved greatly‟ (P. N. Juslin & Sloboda, 2011), uncannily similar to the participant‟s 

experience listening to algorithmic music in an empty room surrounded by a restrictive 

battery of biosensors. 

Several relevant movement-capturing technologies are worth mentioning. EVM analysis 

and body tracking video technologies similar to Microsoft‟s Kinect are immediately 

implementable, however more subtle measurements of body movement or rhythmic 

acknowledgement can be gained through contact microphones, bend and stretch sensors via 

microprocessor technology, or chairs with inbuilt pressure/stress sensors. Further, 
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electromyography (EMG) is an electrode-based technique for picking up muscular neuron 

activity in a very similar way to EEG. 

Survey 

A survey (while not technically a biofeedback element) is the primary method for collecting 

perceived affect as shown in the Hevener case study (see Perceived Affect p11). Any of the 

many established survey styles is useable in AAC, but some consideration of the resulting 

interface should be given. Williams shows that this is the dominant form of AAC system to 

date (Williams et al., 2014, p. 11), and perceived affect is not going to become obsolete or 

without potential as induced affect systems emerge. Survey design also provides some of the 

most creative opportunities in AAC development. 

The questions used in the survey should ideally reflect the contents of the interface 

elements desired. Where a Likert scale survey is employed, the resulting interface control will 

likely reflect a scaled control like a dial or slide. Where binary check box type options are 

used, the resulting interface will follow a similar form. It could be argued that the interface 

design will be largely informed by the survey design or vice versa.  

A survey can target perceived emotional content such as happiness or darkness, but it can 

also identify passages that the participants subjectively find very impressive or utterly boring. 

Music that suggests certain themes can also be identified through a tagging system. A survey 

can also target subjective musical features that are otherwise difficult to quantify. Pieces 

which are cadence-like can be identified by asking the participants subjective questions about 

whether or not the piece “felt like it ended well”. Further, and this is particularly relevant to 

those who might study or experience synaesthesia, the survey might be able to enquire about 

colours or smells, that will then reflected in a palette of colours and smells in the end user 

interface itself. 

There is no lack of creative possibilities for survey based AAC, however the more complex 

or abstracted the relationships between the questions and the musical stimulus, the more likely 
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that the predictive function will suffer struggle to find statistical relationships between the 

more abstracted survey results and the music played. For example, the survey that asks about 

subjective rhythmical content may potentially have a much lower prediction error than the 

survey that tries to ascertain what kind of animal the music invokes. 

Developing Auditioning Procedure  

The auditioning procedure is the process by which participants are exposed to musical 

passages and return their perceived and induced affect feedback data. It should initially be 

noted that assessing the reactions to music via physiological changes is an indirect approach. 

Among the many factors that affect our physiological states, reactions to music are but one 

subtle factor among many. Participants may have had too many coffees that day, or may have 

endured considerable exercise beforehand. They may have not slept well, or suffered an 

emotional blow such as a relationship breakdown. Even some basic medical conditions, such 

as arrhythmia of the heart or asthma, may need to be identified before the procedure can 

begin, and may also require some ethical consideration. Furthermore, for the duration of the 

experiment, the participants will need to be denied any stimulation other than the musical 

algorithm‟s output. Nevertheless some external factors may still influence the results and need 

to be identified later.  

In addition to the guidelines laid out by Ellis and Brighouse (1952, p. 40), the following 

checklist may also be considered: 

1. Does the participant feel fairly normal today? Tired? Hyperactive? Sick? 

2. Did the participant sleep relatively normal hours the night before? 

3. Has the participant enjoyed a fairly normal routine diet on this day? 

4. Has the participant endured any recent emotional disturbances or trauma recently?  

5. Does the participant have any medical conditions that might affect the results or hinder the 

sensors themselves? This might include a pacemaker or heart condition, asthma or 

breathing difficulties, an abnormal skull, an inability to sweat, hearing loss, or a diagnosed 

mental health issue such as irrational mood swings or depression. 

6. Is the participant under the influence of or recovering from any significant substances such 

as drugs, anaesthetics, alcohol, or anti-depressants? 
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Further, consider the space in which the procedure takes place. All forms of external 

stimulation like televisions, paintings, interesting equipment or instruments, internet, mobile 

phones, intrusions from other people, background noises, or music need to be removed. The 

changing state of the participants must be considered as well. With only algorithmic music to 

listen to for more than forty five minutes, participants often become bored, numb or sleepy, 

thus disengaging from the musical stimulus. Breaks should be scheduled regularly. 

As Ellis and Brighouse outline, each musical stimulus should be compared to a neutral 

period directly before or after the musical stimulus is played (Ellis and Brighouse, 1952, p. 

40). The biological measurements need to be considered as relative to this neutral period, 

measuring the difference in physiological state from before stimulus to after stimulus, rather 

than an overall biological values the may not be stable or consistent for each individual. Even 

so, a passage that would otherwise increase a participant‟s heart rate may have less or no 

affect if the participant‟s heart rate is already peaked, thus a period after hearing each 

passages is recommended to allow the participant to return to a more neutral physiological 

state.  

Overall, the goal is to collect enough stochastic data for more generalised patterns to 

emerge. How many samples are required to achieve this involves many factors, and as yet an 

effective ratio or standard has yet to be defined. 

2.3 Predictive Analysis- Creating a Computational Critic 

The next problem, having collected the appropriate amount of affective data, is modelling this 

data into a predictive function. Alpern describes a Computational Critic: 

For a simple problem with a well-defined solution, such as performing symbolic regression (the 

process of deriving a function to produce a set of data, given that set of data), creating the critic is 

easy -it merely has to calculate how close each data point generated by a program is to the target 

set. For a complex domain such as music, where judgements must be made about what is good 

music, something which is very hard to qualify, creating this critic can be a very difficult process. 

(Alpern, 1995, p 13) 
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As Alpern implies, a form of regression analysis is called for. There are several approaches 

to regression analysis in AAC literature. In earlier empirical affect literature, results were 

often calculated manually and were presented as isolated or linear relationships, but modern 

biomusicological studies have found that the relationships between musical structures 

(including timbre) and how they affect humans is more complex. 

Affect data also has a very specific nature. The relationship between music structure and 

affect is likely to be non-linear and covariance may exist between all variables, that is, no one 

structure variable will have an isolated relationship with any single affect outcome. The 

population (all possible outcomes) of an algorithm, broad enough to cover a large number of 

combinations of musical structures, is typically very large (hundreds of billions) and the 

number of training samples is bound to be relatively very small (hundreds). 

The data is stochastic in nature, that is, has a greater error when the population is larger or 

when the sample size is smaller. Therefore a useful solution will be generalised, that is to say, 

only the most common trends are relevant or helpful and less common trends are increasingly 

unhelpful. Further, as stochastic data sets become larger, the number of functions that may 

operate as solutions approaches infinity. 

Both the musical structure and affect aspects of the data contains discrete and continuous 

numerical values, and both nominal and ordinal categorical values. Typically musical 

structure data is more detailed than affect data (i.e. more variables) thus statistically predicting 

affect given musical structure is going to be more reliable than predicting musical structure 

given affect. 

Finally, the data is unique and unrepeatable. Different groups of participants, or even the 

same group at a different time, give different results. Similar to Hevner‟s disclaimer (see 

Perceived Affect p11), no overarching statements about „how music works‟ can be formulated 

even where a formula is revealed, as this will only represent the tiny sample of people used to 

audition the algorithm in the first place. 
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To analyse data of this kind requires a very careful and methodical approach, and to do this 

well, an aspiring AAC developer is likely to need a firm grasp of statistics, as well as 

advanced regression techniques (such as machine learning) as suggested by Alpern. 

Symbolic Regression 

Symbolic regression is the reduction of an observed pattern into a symbolic mathematic 

function. As an example, it may seem straightforward to see a suggestion of a straight 45 

degree line in your data, and to describe it as    . As the example increases in complexity 

so does the mathematical language, until the current limitations of symbolic mathematical 

language is reached.  

Symbolic regression was first implemented in genetic programming by John Koza (1994). 

A library of mathematical formula „pieces‟ are randomly arranged and then altered using a 

„survival of the fittest‟ routine until a best fit (given a specified level of generalisation) is 

found. The resulting formula can then be used as a function to predict Y given X. Each time 

the symbolic regression is performed a random starting point is used, and in complex 

scenarios, an almost infinite number of results conforms to the same data given a margin of 

error. 

The result is limited to that which is describable in symbolic mathematics, the size of the 

library used, and how many pieces can be employed. Developing a describable relationship is 

often desirable in many applications, such as developing engineering models, or generating 

electronic circuits (Dabhi & Vij, 2011; Zdaniuk, Walters, Luck, & Chamra, 2011). 

Neural Networks 

Neural Network (NN) is an umbrella term for a class of various statistical models that use 

layers of adaptive weights joined by nodes and are capable of approximating non-linear 

functions. NNs were initially based on the simulating neuron pathway organisation in organic 

brains; computational studies focussing on functional simulation, biological studies focussing 
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on simulating the entire biology of the neurons. This project uses functional studies for 

statistics and machine learning. 

NNs have been in development since 1943, when (McCulloch & Pitts) published A logical 

calculus of the ideas immanent in nervous activity. NN research would be fairly slow until the 

end of the twentieth century, when suitable computing power, the development of error back 

propagation (Rumelhart, Hinton, & Williams, 1986; Werbos, 1974), recurrent networks, and 

deep learning models gave rise to a series of NNs with beyond-human performances in tasks 

such identifying handwriting or traffic signs (Amara & Schmidhuber, 2012; Ciresan, Meier, 

& Schmidhuber, 2012). 

A typical supervised feed forward network, used for matching functions to observations, 

involves nodes arranged into an input layer, a number of „hidden layers‟, and an output layer. 

Each node in the input layer reflects an input variable from the data set to be modelled, and 

each output node reflects a target variable from the dataset. The nodes in the hidden layers 

contain activation functions which activate when its collective inputs surpass a threshold. 

Activation functions can include binary „on-off‟ functions like a transistor, a sigmoid 

gradient, or other logical functions, allowing for a range of possible behaviours.  

It is the pathways themselves that „store‟ the information. Every possible pathway through 

the network exists initially with a random weight, but these weights get adjusted to match the 

inputs and outputs during back propagation. As the dataset is run through the network, more 

common trends in the data begin to manifest as increasingly weighted pathways. Once the 

network is trained, making predictions simply involves presenting a set of inputs that in turn 

gives a set of the most likely outputs according to the most weighted paths.  

The function derived is totally abstracted in the weights of the pathways, leaving it nearly 

impossible to decode. Further, NNs can build mathematical representations that defy 

symbolic description. A well-structured and well-trained network can be very robust, given 

reasonable data, although there can be a lot of tweaking of architectural variables to achieve 

robustness, hence a reasonable degree of expertise is required. 
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Comparison 

Several studies comparing GP and NN performance show that these two methods can be more 

accurate than linear regression (LR), however in complex cases, both GP and NN provide 

different solutions each time they are generated (Dabhi & Vij, 2011; Dolado & Fernandez, 

1998; Zdaniuk et al., 2011). GP has the advantage of providing a writable formula of its 

solution, but this feature is not of much significance in AAC, where only functional 

implementation is required. It would be naive to assume any formula derived from such 

limited data could be authoritative enough to create a conceivable rule or guide (Hevner, 

1937, p. 627). 

While these studies suggest that GP predictions tend to have less error than NN 

predictions, there is a tendency to focus on fairly empirical industrial and engineering 

domains and problems. Where GP constructs its results from pieces of pre-written symbolic 

mathematical formula, NN solutions are completely abstract, and able to form relationships 

that are not describable with symbolic mathematical language (Dolado & Fernandez, 1998, p. 

157) thus one might expect that severely abstracted domains that defy description (such as 

AAC data) may benefit NN analysis. 

Feed forward NNs are well-established as universal approximators (Hornik, Stinchcombe, 

& White, 1989) that can handle deeply complex, noisy, and abstracted data, and are 

particularly common in biomusicological and similar AAC studies (Coutinho & Cangelosi, 

2011; Klügel & Groh, 2013; Korhonen, 2004; Minjun Jiang, 2010; Miranda et al., 2003; 

Schubert, 1999). 

NN and GP represent the most common ways of dealing with such interdependent and 

multivariate data, however, current developments in deep learning networks, non-linear 

support vector machines, and other machine learning systems suggest more approaches could 

soon be available (Meyer, Leisch, & Hornik, 2003; Patil, Pressnitzer, Shamma, & Elhilali, 

2012). Further, the field of neural computing itself is expanding quickly.  
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A thorough investigation of machine learning and regression techniques, specifically for 

such abstracted data such as is found in AAC studies, is part of a clear direction for future 

research.  

Training of a Neural Network 

A feed forward neural network‟s architecture is defined in many ways and often much 

tweaking is involved in achieving a robust system. There are also many considerations in 

formatting the data to work in a neural network environment. NNs are typically implemented 

with statistical software such as Matlab by Mathworks, IBM‟s SPSS, or the open source, R. 

Each input of the NN will correspond to a value in musical structure array. While tempo (a 

numerical value) can be represented by one input variable, a number reflecting one of ten 

musical scales to use (a categorical value) requires a binary input for each musical scale. The 

input values range from either 0-1 or -1 to 1 and are mapped to the numerical values as to a 

degree of accuracy in decimal points, or as binary integers for the categorical values. The 

scale of these mappings does not need to be interdependent. Similarly, the output variables 

must be scaled in the same way, and are mapped to the affect results. 

The layer of nodes between the inputs and outputs is called the hidden layer. Deep learning 

systems use multiple, task oriented, hidden layers (Ciresan et al., 2012), but in a feed forward 

system one hidden layer, given enough nodes, can theoretically represent any mathematical 

function (Hornik et al., 1989). It is difficult to ascertain how many nodes are required when 

the complexity of the function is unknown. There is no set rule, but a rough guide may be 

found by averaging the number of input and output nodes, adding half again, and 

experimenting from there, trading processing efficiency for complexity. A simple relationship 

might only require ten nodes, or hundreds of nodes might be appropriate. Some 

experimentation should be anticipated by the AAC developer. 

The weights for the pathways between each layer are initialised in a random fashion. When 

training begins, a sample is chosen from the data, and the inputs (in this case musical 
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variables) are entered into the network. The resulting outputs are calculated and compared to 

the known variables of the sample. In the back propagation phase, the weights of the 

pathways are adjusted according to the error between the outputs and the known result. This 

process is then repeated with the next sample, the entire data set often used several times over 

(each time being an epoch). Simply put, if the error stops decreasing significantly after each 

epoch, training is complete. 

Too much adjustment during back propagation can create an unstable network, so the 

amount of adjustment made is often a function of the error and the weightings themselves. 

Further, as network training becomes less and less generalised, there is a threshold beyond 

which it is no longer useful to train the network, as it will only begin to entertain outliers and 

stochastic error. Thus random sections of the data are often kept aside for comparison so that 

changes to the network weights can be stopped when they no longer positively affect both the 

training data and the test (or validation) data. Error! Reference source not found. shows 

plots of prediction versus known results over several stages, from untrained through to 

extremely overtrained. Weight adjustment and generalisation methods require much expertise 

and are usually prewritten by experts as learning or training functions. There are many 

available learning functions available that can guide the training of a network. (Mathworks, 

2014) provides a functional overview and comparison of some common learning functions, 

two of which might be relevant here. 
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Figure 6 - Overtraining 
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The common Levenberg-Marquardt (LM) training function performs speedily with simple 

networks (less than one hundred weights) and becomes less competitive as network 

complexity increases. It excels at regression tasks (curve matching), but not categorisation 

tasks (pattern recognition). AAC networks are large enough that other learning functions 

might be worth considering. 

Scaled Conjugate Grading (SCG) is much more suited to categorisation tasks and can 

handle networks with large numbers of weights, often as fast as LM functions can. SCG is 

very useful for analysing surveys.  

Another commonly found learning function is Bayesian Regularisation (BR), which is 

excellent at dealing with data with small numbers of samples or stochastic noise (Burden & 

Winkler, 2008). During the development of the AACr, it was found that BR functions did 

tend to overtrain significantly, rectified by manually selecting the generalisation threshold. 

Assessing a Predictive Function 

Once trained, the NN (or GP) function is in a position to be “asked” to make predictions about 

hypothetical musical structures presented as inputs. Using a small sample of training data that 

was withheld from the entire training process, predictions of the NN can be compared to 

known results to calculate a Mean Squared Error (MSE). As the training data is scaled from 0 

to 1, the test MSE of a successful network approaches 0, and an unsuccessful network 

approaches (or exceeds) 1. The R value is a measure of the correlation between the inputs and 

outputs. An R value of 1 suggests a direct relationship, where an R value of 0 means no 

relationship at all.  

Some tweaking of architecture and different learning functions can result in big 

improvements. This work will demonstrate that it is possible, if the auditioning procedure and 

data treatment are carefully executed, to achieve a NN with MSE less than 37% of the 

standard deviation of training data, ranging from less than 0.1, to as low as 0.02, with unseen 

test predictions. Different affect measurements can also be trained in isolation to gauge their 
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correlation. R values for unseen data range from 0.04 for an abstract tag-word survey, to 0.38 

for physiological bio feedback. It‟s not clear yet what the golden standard for “success” is in 

AAC NN training, nor can we know how well this translates to satisfactory musical 

composition; however this does provide some quantified assessment for further development 

of various aspects of AAC systems.  

Further research investigating methods for measuring AAC success is anticipated 

(Williams et al., 2014, p.16, 18), meanwhile, MSE and R values are already common 

standards in assessing the performance of neural networks themselves and could be utilised in 

any AAC system where methods of regression or machine learning are employed. 

Search Algorithms 

The AACr NN functions can do hundreds of thousands of simulated auditions in seconds, but 

it is still not feasible to run through all the possible combinations of musical structure 

available for even a simple broad-spectrum AAC musical algorithm as outlined here. To find, 

for example, the ten top musical structure combinations most likely to induce sweaty hands, it 

should be assumed that either a certain time limit is involved, or that there are many good 

solutions. This limits how many musical structure combinations need to be auditioned in the 

search for a best solution. A search algorithm is employed here. 

A „brute force‟ approach uses random sample by sample (or in bulk) predictions, returning 

the best scoring examples found in the time available. This is a fairly reasonable approach 

given the low correlation values of these networks. There are more informed search algorithm 

approaches that use heuristics, genetic algorithms, or partial knowledge of the function to 

inform the selection of potential pieces, however it is not yet proven that the results could be 

any more reliable than brute force given the low correlation values expected in AAC 

applications, and the largeness of the search space.  
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There is a requirement for further investigation into the effectiveness of various search 

algorithms for use in AAC, however, such investigation is dependent on the definition of a 

good solution or a measurement of success. 
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3 Pilot Study: The Affective Algorithmic Composer 

The Affective Algorithmic Composer (AACr) provides a working example of a complete 

AAC, demonstrating the methods outlined in Developing Methods for AAC. Each part of the 

AACr system is described: 

 The graphical user interface 

 TwoHands – the musical algorithm 

 Data collection 

 Predictive functions using neural networks 

 Assessing the predictive functions 
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3.1 Overview 

The AACr also directly addresses the aims of this project: 

 Developing a broad-spectrum algorithm focusing on musical structure (not timbre) 

for use in an AAC. 

 Developing and comparing methods for collecting both perceived and induced 

affect data. 

 Establishing and implementing predictive functions from this data using neural 

networks.  

 AACr includes a generative musical algorithm, a biofeedback and survey audition interface, a 

predictive function in the form of a series of trained neural networks, and an interface that 

allows for real-time unsupervised music production and functions as an aide for a human 

composer.  

 

Figure 7 – AACr Conceptual Model 
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The AACr has two main functions, data collection and music generation, both referring to 

the same neural network and musical algorithm. The left side of Figure 7 outlines the basic 

logical process of data collection for the AACr.  

The data collection task starts with the generation of random musical structures (in this 

case typical musical structures like scale, rhythm, chord progressions etc.) formatted as a 

string of variables or integers often referred to as seeds, structural arrays, or musical 

structures. This is sent to the music algorithm.  

The algorithm receives a list of structural variables, decodes them into a musical passage 

that features those musical structures, and plays them to the human participant. The system 

then records induced biofeedback from the selected sensors, perceived affect data from survey 

results, and deposits them into a database alongside the related musical structural array. This 

database is later used to train several feed forward neural networks (one for biosensors, one 

for EEG, one for the Likert survey, and one for the tag survey). These neural networks, now 

trained to predict affect from musical structure, are used in the music generation task on the 

right side of Figure 7. 

In the music generation task a target affective state is specified by either an external 

program, by using the biosensors, or manually. The neural networks immediately predict the 

affective values of every structural array in a pool of randomly selected passages as soon as 

the pool size is set. The search algorithm then only needs to score all the structural arrays 

relative to the specified target affective state. As the structural array pool is already all rated, 

this happens quite quickly and the top scoring seeds are quickly sent to the playlist ready for 

playback. 

3.2 Graphical User Interface 

The Graphical User Interface (GUI) for the AACr is written in Cycling 74‟s Max MSP 5.0. It 

is a graphical programming language frequently taught as a prelude to text programming in 

sonic arts courses, and it is efficient for establishing prototype user interfaces and audio 
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applications. It also has in-built compatibility with Ableton Live, Open Sound Control (OSC), 

SQLite, JavaScript, and serial communication with Arduino microprocessors; all of which are 

crucial in this project. Beyond this, in areas such as neural networking and the complex 

handling of arrays, Max is not ideal, and so this particular project uses several modules 

developed in different programming environments, including Supercollider and Matlab. 

The GUI reflects a two sided approach to AAC, both the data collection, and the predictive 

playback, as seen in Figure 8 and Figure 9. On the left in Figure 8 is the „Main Controls‟ 

section. Here the GUI allows the user to perform several key actions. The first thing that must 

be done before the AACr can play music is to connect the music algorithm script to the 

interface via OSC. This is done automatically when the algorithm script is loaded in 

Supercollider. When the music algorithm is connected it will automatically light up the 

„Algorithm OSC‟ light. The user can also use the GUI to dictate the MIDI device to be used 

for play-back by the algorithm, and reset the algorithm in the rare case of an error. 

Data Collection  

 

Figure 8 - The AACr GUI, in Data Collection mode. 
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The main controls section enables the user to enter basic participant information for the 

database, enable or disable the execution of biofeedback and survey recording, change which 

drive or folder raw biosensor data is to be stored in, or dictate the automation of neutral 

periods and pauses before and after music playback. It also allows the user to switch from 

data collection to playback control mode highlighted by the red circle in Figure 8 and Figure 

9. 

On the right hand side can be seen the „Database Setting‟ panel. This panel allows the user 

to create new databases, or load an existing database. It uses a functional but limited native 

implementation of the SQLite database environment via JavaScript. Each database has two 

tables, one for „Biodata‟, and one for „Survey‟ data. If the „Enable Biodata Recording‟ and 

„Enable Survey Recording‟ boxes are checked, and a database has been initialised correctly, 

then every time a musical piece is played, affect data will be recorded during playback, 

neutral periods, and finally the survey will pop up after the passage has completed. This entry 

will contain the time, date, key, participant ID, musical training, gender, the musical structural 

array played (seed00, seed01 etc.) and the feedback values gathered. Raw time stamped data 

from the sensors is also recorded into separate files named according to participant, key, and 

sensor name. Although not used for this project, this raw data will prove useful for more in-

depth analysis at a later date. 

The „Arduino Biosensors‟ panel is focussed on controlling the biofeedback sensors, which 

are implemented via the Arduino microprocessor. Once the Arduino is physically connected, 

the user can use the port search button and slide down menu to allocate which serial port is 

being used by the Arduino and open or close the flow of data from the Arduino to the GUI. 

Below this are graphical analyses of the four biosensors. There are various controls to 

calibrate the heart rate monitor and thresholds of the breath counter to ensure the best possible 

results are being recorded at all times. The Galvanic Skin Response (GSR) and body 

temperature sensors are more robust and don‟t depend on complex calibration. 
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The „EEG Connections‟ panel has the controls for interfacing with the Emotiv Epoc EEG 

headset. From the top it shows the port selection slide down menus that have yellow activity 

monitors so that the user can monitor the connection. The EEG connects to the interface via 

OSC on two separate occasions. The first is via a free community written application called 

Mind Your OSCs by (bitrayne, 2013) that sends pre-analysed results from the Affectiv Suite 

directly to the interface via OSC, which are recorded to the database. The second occasion is 

via a similar app called Mind Your EEGs or Mind Your OSCs 2 also by „bitrayne‟. This app 

sends raw EEG data from the individual electrodes to be recorded and time stamped, similar 

to the raw data recording of the biosensors. A record of artefact events as dictated by 

Emotiv‟s automated analyses is also recorded. The OSC ports can be selected in the GUI 

although the connection itself is initiated by these apps.  

Once connected, a graphical display shows the affective values being read from the 

participant as well as an overall readout of the total physiological changes of the participant 

including the Arduino biosensors.  

At the bottom of the GUI is a piano-like keyboard that reflects the note being played by the 

algorithm in blue for left-hand and red for right-hand. There is also a metronome volume 

control. It should be noted that the MIDI notes do not get generated by the interface itself but 

from the algorithm module. There is also an alarm that flashes at the bottom left of the 

keyboard section if „Enable Biorecording‟ is enabled but no signal flow is detected. 
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Figure 9 - The AACr GUI in Playback Mode 

 

 

 Figure 10 - Defining Target Affect Features 
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Playback Mode 

An information panel and the „Affect Designer/Playlist‟ control panel hide the database and 

sensor settings when the „Data Collection Mode‟ setting is unchecked (circled in red in Figure 

8 and Figure 9). The information panel includes a changing text display that describes the 

current action, version, and a list of updates from previous versions. This panel also serves as 

a handy cover to hide the biosensor and EEG feedback to avoid distracting the participant. 

The „Playlist‟ panel features the controls for sending random or predefined structural 

arrays to the musical algorithm, starting or stopping playback, loading and saving playlists, 

and automating looping and playlist progression. Playlists are the foremost composition tool 

in the AACr and can be constructed by the user or generated by the NN‟s from the „Affect 

Designer‟ panel. They are simply text files; listing structural arrays in the order they should be 

played. 

The „Affect Designer‟ takes a form similar to a shopping cart interface as demonstrated by 

(Ando, 2011). The user selects biological or survey paradigms, Boolean operators, and 

thresholds to describe the affective changes required. Once a defined target state is received, 

the neural network server can return a playlist of passages intended to invoke those same 

changes. 

First, as with the other features, the OSC link must be initiated from the Neural Network 

Server app (the AACr‟s predictive function) that contains the pre-trained NNs. The „Search 

Pool‟ setting defines how many structural arrays are auditioned by the Neural Network Server 

to create the results with a fairly conservative estimated CPU time provided alongside. It‟s 

estimated that 999999 structural arrays can be auditioned in about 588.23 seconds on a below 

average computer
9
 so care must be taken to ensure that pool sizes are balanced against any 

real-time playing constraints. 

                                                 

9 This is a somewhat arbitrary calculation, but demonstrates the need to consider NN calculation times in realtime music 

generation. 
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It‟s important to specify that the user outlines required affective state changes rather than 

static states. For example, a user might specify „Skin Conductance‟ and „is greater than‟ and 

„0.3‟ as a feature
10

 along with „TAG hammer‟ as a feature (tag words don‟t have a Boolean 

component) and so-on until a list of affect requirements is complete. Optionally, by pressing 

the „Import Biosensors‟ button, a brief analysis of the current state using only the biosensors 

and EEG can be used to create a target affective state, allowing the user to generate music 

reflecting the current bio-sensor wearer. As seen in Figure 10, paradigms are shown in one of 

four categories, BIO sensors, EEG, LIKert survey, and TAG word survey. 

With a pool size and target state defined, the „Generate Playlist‟ button causes the Neural 

Network Server to return those passages as a playlist which best matched the target, with the 

top scoring passages first in the list. 

The interface can simply start playing through the list as provided, or the user is able to 

save these playlists as text files and recombine them as they see fit. Text playlists can be 

reloaded into the interface for playback or recording. New lists can also be generated while 

the current piece is playing. This allows for a fairly flexible system that can generate affective 

music on the fly, generate random musical passages (used for data collection), or act as a 

compositional aide.  

3.3 Two Hands – The Music Algorithm 

This project only deals with musical structure and not timbre. While timbre certainly has been 

shown to be an active part of musical affect (Klügel & Groh, 2013; Patil et al., 2012; Pitman, 

2012; Schlemmer, Kulke, Kuchinke, & Van Der Meer, 2005) the algorithmic implementation 

of broad-spectrum timbre requires a whole new plethora of variables and considerations. To 

focus on musical structure the piano is adopted here as the main instrument; its broad pallet of 

                                                 

10 Read: „Skin Conductance should increase by more than 0.3‟. For induced affect, the emphasis is on change, as the current 

state of the listener is assumed to be unknowable, and regardless, inconsistent. This is not the case with all affect data. 
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expression is useful, but importantly, its position in western culture as something of a 

„vanilla‟ timbre provides as close to an unbiased standard timbre as is perhaps possible.  

For this project, the idea of only using notes that can be played within the reach of the two 

hands of a piano player provided a natural limitation and inspiration for the name TwoHands. 

It was developed using the open source Supercollider sound programming language by 

(James Mcartney). TwoHands accepts structural arrays with 40 variables.
11

  

Figure 12 provides a brief overview of the variables and their functions within the 

algorithm.   

TwoHands was not developed to be a cutting edge music algorithm on its own, and uses 

quite simple generative techniques to achieve its result with the minimum number of 

variables. When used with randomly generated variables it can output anything from 

incoherent hammering, to the sweetest four part lullaby. As one might assume, the total 

output often tends towards largely uninteresting and often awkward passages with the 

occasional “diamond in the rough”, hence the need to use well trained neural networks to 

navigate through the many possibilities.
12

  

Receiving a structural array (or seed) via OSC triggers the algorithm to decode that seed 

and begin MIDI playback. Some other basic transport commands are provided for such as 

„play, stop, pause, reset‟ and a function to reload the scripts in the rare case of an error. 

Harmonic progression is dictated using a matrix of predefined 

chords, referred to as the “chord board” (see Figure 11). The chord 

board is designed so that any chord can be reached by any other 

chord in one move (including moving over the edges to the 

                                                 

11 The reader should note that 40 part structural arrays (or seeds) are quite difficult to wield within MAX and OSC, and for 

the sake of convenience are often compacted to 20 digits using binary or ternary modulus functions. When used in neural 

network training in Matlab, seeds must be expanded to 81 integers, as categorical values are expanded to become a number of 

binary options. Regardless, the algorithm produces reliable reproductions of pieces (albeit with minor aesthetic changes) 

whenever the same seed is given. 

12 Again, this idea of value or usefulness is in the context of musical applications where affectivity is paramount as discuss 

on p. 1. Incoherent hammering is just as likely to be useful in a film/media/gaming context as any four part lullaby, so long as 

it produces the affective qualities desired. 

I IV VI I 

VII V II III 

V VI IV VII 

I II III V 

 

Figure 11 - The „Chord Board‟ 
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opposite side). It features two of every diatonic chord, and three of the tonic and dominant. 

Passages define a number of turns, moving in a chess piece fashion, dictated by several 

different styles of movement: a directional preference (up, left etc.), preference for a 

numerical difference from one chord to the next (2, 4, 6 etc.), a preference for odds over even 

(or vice versa), and a preference for or against repeating chords. At the end of the passage, 

potential cadence possibilities are given slightly higher considerations as well. 

Rhythms are described using a total number of pulses and two divisors (or factors) with 

probability environments that dictate which divisors are most likely to feature key rhythmic 

points and dynamics. A scale is selected from a list, and each hand is assigned a position and 

a mechanical mode by which to expand on the basic progression (chord playing, arpeggiating, 

melody, or bass line playing etc.). Each hand interprets the melody and rhythm in different 

ways according to their mode of operation and their own probability environments. The 

resulting sequence is then played out via the chosen MIDI device, intended for a real or 

virtual piano.  

The algorithm has distinct hierarchical phases. At the highest order the harmonic 

progression is changed, which then requires that all the lower order attributes be recalculated. 

The next highest is the rhythm, which then requires only the hand executions to be 

recalculated. Finally, the execution of the hands can be recalculated without redefining the 

higher orders. This is reflected in the organisation of the structural array itself. At the time of 

writing, this feature hasn‟t been established in the AACr interface module and currently 

structural arrays are triggered from scratch each time. The latent hierarchical isolation features 

of the algorithm are intended to be used for greater composition structures in future 

developments. 

The algorithm is capable of 2.40734712102912e+25 possible outcomes, which have an 

average length of 30 seconds each. Even for this most straightforward of algorithms, to listen 

to all possible outcomes would take 32,715,632,760 (over 32 billion) planets with Earth‟s 
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population 100 years of non-stop listening. This may be more people than will ever exist, a 

primary motivation for using AACr to help navigate these possibilities.  
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Anatomy of a Structural Array 

structural array in 
20 part Max format 

[5, 1, 1, 8, 1, 7, 45, 2, 8, 426, 652, 2, 0, 2, 26, 050, 1, 2, 10, 662 ] 

same structural array  
in 40 part format 

[1, 1, 1, 2, 0, 1, 2, 0, 0, 1, 1, 2, 0, 5, 4, 2, 8, 7, 3, 2, 2, 5, 6, 2, 0, 

2, 2, 2, 2, 0, 5, 0, 1, 2, 1, 0, 1, 2, 6, 6] 

Harmonic Variables  

~startpoint = [1, 1]; 
Matrix coordinates define the starting point on the chord board 

(Figure 11) and thus, the first chord. 

~inertia= [1, 2]; 
Defines number of chords selected for first and second half of 

the passage (not including the start) 

~vector=[0, 1]; 

Defines preferred direction (on the “chord board”) for the first 

and second half is direction is the primary method. (up, down, 

left etc.) 

~style=[2, 0]; 
 

Defines the preferred difference from one chord to the next for 

the first and second half.  

~preferOdd=[0, 1]; Binary, defines a preference for odd or even chords for each half 

~primarymethod= [1, 
2, 0]; 

Defines which of the methods (vector, style, or preferOdd) is 

given precedence or ignored in considering the next chord. 

~repeatness= [5, 4]; 
 

Increase or decrease preference for using chords that have 

already featured (first and second half). 

~scale = 2; 
 

Dictates a scale, (0 = ionian, 1 = dorian, 2 = phrygian, 3 = lydian 

and so on). Scales include all modes, harmonic minor, 

pentatonic, symmetrical scales, and a scale of octaves. 

~tonic = 8; Dictates the note to be tonic, as semitones above or below C  
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Rhythmic Variables  

~rhythm = [7, 3, 2]; 

Defines universal rhythmic characteristics, pulses per bar, two 

divisors (or factors) that denote key rhythmic and dynamic 

points. In this example there would be (7x3) 21 pulses per bar, 

with an underlying emphasis on every third and second beat. 

~probenv = [2, 5, 6]; 

Define probabilities used to generate dynamics and rhythmic 

results. 

 

~runTime = 2; 
Total runtime is ~runtime*4+20 second (in this example 28 

seconds), that in turn dictates pulse length.  

Hand positioning and behavioural variables (right and left hands) 

~lmode = 0; 
 ~rmode = 1; 

 

Operational mode: selected from basic chord playing, melodic, 

bass line melodic, and various kinds of arpeggiator. Here the left 

hand is playing basic chords, and the right a generated melody. 

~lpos = 0; 
 ~rpos = 2; 

~lpos defines how many octaves from the left the left hand is, 

and ~rpos defines how many octaves the right hand is up from 

the left hand. Here the left hand is at the lowest octave, and the 

right hand two octaves above it. 

~lrhythm = [2, 2, 2];  
~rrhythm = [1, 0, 1]; 

Takes the universal rhythm characteristics and rearranges them 

to create new sub-rhythms. The numbers refer to the index of 

the universal rhythms. So the right hand is actually playing 3/7:3 

and the left 2/2:2 

~lprob =[0, 5, 0]; 
 ~rprob = [2, 6, 6]; 

A probability environment, used in discerning rhythmic, 

dynamic, and harmonic variation in the execution of hand 

operations. 

 

Figure 12 - The Structural Array in Detail 
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3.4 Data Collection 

To collect and analyse EEG data, the Emotiv Epoc EEG headset was used alongside a battery 

of simple biosensors. The Arduino microprocessor was chosen as a platform to host four 

biosensors: heart rate and variance (HR, HRV), respiration rate and size (BR, BS), skin 

conductance level (SCL), and body temperature (BT).  

For perceived data, two surveys methods were chosen. The first was a Likert survey that 

asks musically oriented but subjective questions, and the second part was a tag-word selection 

survey. Results from these sensors and surveys were recorded along with the structural array 

of the musical stimulus played. As well as this, the interface also recorded a unique key 

number for each sample, time and date, the ID of the participant (using non-identifying 

codenames), the gender of the participant, the musical training of the participant, and a raw 

recording of each of the biosensors, EEG electrodes, and EEG artefacts for future 

analysis/redundancy.  

The sensors used in this project were chosen primarily for their simplicity in 

implementation, known relevance to musical affect, and to suit the project‟s scope and budget 

(see Collecting Affect Data p23). 

EEG 

Emotiv‟s Epoc uses interchangeable, saline soaked, passive 

electrodes and is easily positioned on the participants head without 

shaving hair, glues, or other impractical processes. Electrodes are 

placed at AF3, AF4, F3, F4, FC5, FC6, F7, F8, T7, T8, P7, P8, O1, 

and O2. The headset is connected wirelessly to the computer that 

presents both raw and analysed data through a control panel. A 

graphical guide helps the user to ensure each electrode has an 

appropriate connection with the scalp. 

 

Figure 13 - Epoc Electrodes 
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The software comes with three built in forms of analysis. The artefact, facial expression, 

and eye movement analysis is called „Expressiv Suite‟. The infamously fickle brain control 

interface system, „Congnitiv Suite‟, relies on training the system to recognise certain brain 

states for use as commands. Finally,„Affectiv Suite‟ delivers a reasonable but proprietary 

emotion/mood affect analysis in the paradigms of meditation, frustration, engagement, long 

and short term excitement(Lang, 2012), the main focus for this project.  

Affectiv Suite provides a surprisingly well-implemented overview of induced affect 

(“legitimising affective suite,”). These analysis technologies are unfortunately totally 

proprietary. More open approaches to deriving emotional content from physiological sensors 

are still in development (Miranda, 2010). 

The results of these analyses are exported via Open Sound Control (OSC) using two 

community made apps, Mind your OSCs that deals with pre-analysed data and Mind Your 

EEGs that deals with raw electrode data (bitrayne, 2013). OSC ports are selected and 

connections are simply initiated using these apps‟ interfaces.   

Biofeedback 

For this project, a battery of four biosensors was built around an Arduino microprocessor. 

The Arduino firmware runs a simple script that measures each of the data pins (one for each 

sensor), and reports the values to the interface. The Arduino doesn‟t perform any of the 

analyses itself, but sends raw data direct from the sensors to the interface via a USB serial 

connection. This serial connection is initiated in the interface.  

A small prototype shield was developed that contains connections for the heart beat sensor, 

thermometer component, and simple resistance loop circuits for the skin conductance 

electrodes and stretch/breath sensor.  

The heart beat sensor is a simple open source product called the PulseSensorAmped by Joel 

Murphy and Yury Gitman (Murphy & Gitman, 2014). It uses a simple light dependant diode 

and a bright green LED, placed against the finger or earlobe, to sense colour fluctuations 
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caused by oxygenation of the blood as the heart pumps. It can be attached directly to the 

Arduino. A simple signal analysis in the GUI provides cardio rate and variance. Should period 

between the beats be more irregular than an acceptable threshold, the cardio sensor interface 

will become visibly dimmed and brighten again once regular heartbeats have been detected. 

Similarly, the temperature monitor is a single component called the TMP36. It requires 

2.5-5.5v to operate and the output voltage is linear to the temperature in degrees Celsius, 

making analysis of the signal as simple as it is to connect the component straight up to the 

Arduino. 

Respiration rate is measured using a stretch sensor around the participant‟s rib cage. It was 

found that using rubber all the way around the participant‟s chest resulted in a very small 

range, where as a solid strap held together with 10-15 cm of rubber improved range 

considerably. Less length would result in the too much tension so the rubber did not perform 

well. It has been useful to confirm that the sensor is calibrated well by counting participant 

breaths by sight, comparing this to the interfaces count, and adjusting the sensitivity 

accordingly. Adjusting the length of the rubber section can also improve the accuracy in some 

cases.  

The skin conductance sensor was perhaps the most complicated sensor to implement for 

this project. Several versions were built using various materials. For the electrodes, 

aluminium proved to be less than ideal and having the contact wrap around the finger induced 

sweating. Eventually two steel/nickel coated snap-buttons were found suitable.  

Stiff connection wires proved to be too prone to bumping the various sensors and 

distrubing their signal. These were replaced by braided wire with soft rubber as the isolation 

material. 
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Figure 16 - Left: Biosensor connections. Centre: Revealing the prototype shield. Right: The underlying Arduino 

microprocessor  

 

 

  

Figure 17 - An ideal length for 

the stretch sensor  

Figure 14 - A Simple Open Source Heart Monitor for 

Arduino (Murphy and Gitman) 

Figure 15 - TMP36 Voltage to temperature response (“TMP36 

Datasheet” 5) 
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Survey 

 

Figure 18 - The AACr survey 

The survey is configured to come into view on the GUI after the musical stimulus and neutral 

periods have completed, as long as the „Enable Survey Recording‟ check box is enabled in 

„Main Controls‟. The survey used in this project has two sections.  

The first was nine questions on the subjective qualities of the music using Likert scales. 

These questions were designed to become tools that composing users might find useful such 

as feeling inclined to nod or dance, a potential for thematicism, a catchy phrase, or a positive 

or negative emotion. The second part of the survey required participants to choose four out of 

fifty possible tag words. The words featured a series of opposites such as bright and dark, a 

selection of colours (very popular with some participants), and several directly and indirectly 

descriptive words such as hammer, horse, fluid, and choppy.  

Whilst not dealing strictly with affect, it was intended that users using the affect designer 

could use some of these tag words to help find a passage to suit a particular theme or 

environment.  
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As a point of interest, some participants found the first section quite straightforward to 

complete, but often that the second section, with tag words, was quite difficult or even 

stressful to complete. This might relate to the level of mental abstraction, which may have 

contributed to the higher predictive error that the predictive function reported for the second 

survey. 

Participants 

Volunteers were recruited from various locations around the city of Adelaide using flyers. 

The main ethical consideration in AAC data collection is participant anonymity. In line with 

the ethical requirements outlined by the University of Adelaide, each volunteer was given a 

participant information sheet, consent form, and completed a brief meeting with the 

researcher regarding expectations. No reward was made available to volunteers apart from 

remuneration of travel expenses, and each volunteer chose a non-identifying nickname for the 

purposes of the project. 

There were several volunteers who were unable to participate due to medical reasons. One 

volunteer, diagnosed with hypomania, was prone to swinging from extremely energetic and 

alert to tired and sleepy, and would likely be unable to provide reliable affect data over time. 

A second volunteer suffered hypertension, a condition that can involve unexplained changes 

in a biological state, particularly heart rate, and would also render a participant unable to 

provide reasonable affect data. Eleven volunteers did participate and auditioned a total of 

three hundred and seventy five passages. 

Typically each participant would attend for around forty five minutes to one hour per day, 

once or twice per week, with short breaks as required. Most participants reported considerable 

mental fatigue after thirty to forty minutes. There was a broad variation in volunteer 

attendance, some visiting once, others five or more times. 

Participants were seated facing a blank wall, alone, and with as few distractions available 

as possible. Once sensors and EEG equipment were fitted and calibrated by the researcher, 
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participants were often quietly monitored until comfortable with the activity and then often 

left unsupervised for up to 45 minutes without a break. 

The activity itself, largely automated, involves several periods. preNeutral: a silent neutral 

period of ten seconds during which biosensors measurements labelled „preNeutral‟ are taken. 

music1, music2, music3: the collective period of one random musical stimulus from the 

algorithm (during which three biosensor measurements are taken labelled „music1‟ through 

„music 3‟). postNeutral: a final neutral period of ten seconds.  

Data Treatment 

The data is recorded into a simple SQLite database implementation native to Max 5.0, which 

is far more reliable than using „col‟ objects. SQLite features were implemented by Cycling‟ 

74 for the developers more than users, and the feature was not originally documented. It is 

accessible using a simple JavaScript object and a script to report the contents of the database 

to a 'jit.cellblock' object for viewing.
13

 

Not all the measurements taken are necessarily suited for training of the NN, and many 

outliers needed to be excluded. Several errors rose from hardware problems, participant 

behaviour, physiology problems, or software bugs.  

One participant was discovered to have an incredibly low and arrhythmic heart rate and it 

was later confirmed that a doctor had already diagnosed arrhythmia. The biosensor data for 

that particular participant had to be excluded (although the survey data remained). Other 

samples featuring measurements that were extremely unrealistic indicated probable equipment 

failure and were excluded. At one point, many of the measurements taken for “music1” and 

“music2” periods were erroneous due to a coding mistake that was soon fixed, however 

                                                 

13 For more information regarding this lesser known but powerful SQL feature see C74: Data Collection: Building Databases 

Using SQLite https://cycling74.com/2008/09/05/data-collection-building-databases-using-sqlite/  
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“music1” and “music2” are not used in training NNs. Overall 90 samples were excluded from 

biosensor data and 33 from EEG data. All the survey data remained valid.  

The biosensor and EEG data was defined by the difference between “music3” and 

“preNeutral” periods. 

3.5 Predictive Functions using Neural Networks 

There are four neural networks trained using Matlab, each focussing on a different aspect 

(biofeedback, EEG, Likert survey, and Tag word survey) of the data collected. This was a 

process of some experimentation in order to find the optimal architecture for each data type 

(see Training of a Neural Network p45). Best results included using a single hidden layer, and 

a straightforward feed forward architecture. This is a very simple implementation compared to 

the most recent developments in machine learning, but for this project, simple NN 

architectures prove effective when handled correctly and do lie within the scope of available 

expertise. 

Using a simple script for interfacing with the GUI via OSC, and the four neural networks 

as predictive functions, a Neural Network Server app (NNS) was created. It is intended that, 

as a standalone app, the NNS can be used with the AACr GUI or could potentially work with 

other applications via Open Sound Control protocol (OSC). 

 

Figure 19 - The Neural Network Server 
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Once the executable is run, clicking the „start‟ button will cause the NNS application to 

connect itself to the GUI via a predefined port in OSC (see Figure 19). When a pool size is 

defined in the interface, the NNS creates an array of the defined number of random seeds. 

Each seed is immediately given a predicted score by the neural networks for each value of 

affect. This can take some time initially, however when an affective target is defined by the 

user and sent to the neural network sever app, the seeds that score best, according to the 

affective target, can be returned to the interface almost immediately. A one-at-a-time 

approach to analysing passages was considered, as opposed to this bulk system, but in real 

time music generation tasks it became quite complex to manage time limitations and so the 

bulk system was preferred. 

OSC functionality is provided using oscmex, an open source library of functions for Matlab 

that enable sending and receiving of OSC data (“oscmex,” 2012). 

Neural Network Limitations 

The NNs currently only consider the affect data, and not the other consequential data of 

gender, ID, and musical training, despite being included in the auditioning process. If 

implemented, this might involve a kind of “handshake” format where the listener can 

volunteer information about themselves in order to improve the results from the NNs.  

Further, the NN training tools are as of yet able to be compiled, so a solution that allows 

real-time learning has not yet been developed. It is certainly a worthwhile investigation as it 

would allow unwanted pieces to be identified and ignored earlier in the training process, and 

potentially improve both the efficiency of the training process and the experience for the 

participants. Real-time learning would also allow long-term training programs that could 

build on the training progress made to date. Future projects may benefit from using a 

server/client architecture via the internet, allowing more broadly and recently trained NNs and 

other predictive systems to be available to users from the one client interface. 
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3.6 Assessing the Predictive Functions 

The chart in Figure 20 shows architecture specifications and test results for each of the four 

neural networks created: biosensors (BIO), the electroencephalogram (EEG), the Likert part 

of the survey (LIK), and the tag part of the survey (TAG). The „Method‟ column describes the 

number of hidden nodes and the learning function used, noticeably different for the TAG data.  

Of all the samples provided for training the networks, around 20% were randomly isolated 

for use in testing the networks for success. The results shown in blue in Figure 20 represent 

the regression R value (R) and mean squared error (MSE) of the training data at the 

generalisation threshold, and the pink columns show the results for the test data at the same 

threshold. Although MSE makes for a useful description of success, it can be easily 

misinterpreted as a small error if the data only has a relatively small deviation in the first 

place. The last column, „MSE%‟, shows the MSE as a percentage of standard deviation. A 

value of 100% would suggest that there is as much error as there is deviation in the 

predictions, a fairly hopeless scenario. A value of 0% suggests there is no error at all, which 

would be ideal if not very unlikely. The results of 30.61%, 31.76 and 36.33% for BIO, LIK, 

and EEG respectively are very promising, and exceeded expectations given the small number 

of samples available. 

The larger MSE% of 72.01% for TAG data deserves some discussion. The TAG 

implementation was intended to be one of the most useful aspects of the „Affect Designer‟. It 

has been considered that the high level of mental abstraction (where any individual is able to 

interpret the tag words differently) may have contributed to the high level of prediction error, 

or that perhaps the number of words available is too high for such a small sample to be able to 

extrapolate on.  

In Figure 21, the blue line represents the NN‟s number of correct guesses and the red line 

shows the number of times that participants chose to use that word. It‟s clear that tags used  
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Figure 20 - NN architecture and results 

 

 

  
 

Figure 21 - Predictability vs. Popularity in TAG data 
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more often by participants are more successfully predicted. It might then be reasonable to 

assume that the error percentage of 72.01% might be improved upon greatly should less tag 

words be provided in the survey (increasing the popularity of those remaining), and/or more 

samples be provided (although this can be taken for granted in most neural network 

applications). 

3.7 Interpreting Results 

When a playlist is returned, the Neural Network Server (NNS) has given what it deems to be 

the most likely passages of music to achieve the target affect state change desired by the user, 

as structural arrays or seeds. Each array represents a variable (or set of variables) that is 

critical to musical generation in the Two Hands algorithm.  

 

Affective Target 

0, "BIO Bpm Change Close to 0.301284 1 / 1 "; 

1, "BIO Breath Rate Close to 0.301284 1 / 1 "; 

2, "BIO Skin Cndct Close to 0.301284 1 / 1 "; 

3, "EEG Frustration Less Than -0.336023 1 / 1 "; 

4, "EEG Meditation Less Than 0.301495 1 / 1 "; 

5, "EEG Engagemnt Close to 0.332305 1 / 1 "; 

6, "LIK Rhthm Complex Less Than 0.332305 1 / 1 "; 

7, "LIK Outstanding Greater Than 0.200201 1 / 1 "; 

8, "LIK Positivity Close to -0.460319 1 / 1 "; 

9, "TAG machine Is Tagged -0.460319 1 / 1 "; 

11, "TAG stress Is Tagged -0.460319 1 / 1 "; 

Playlist Generated 

1, 11 4 06 5 03 16 17 00 03 396 386 5 1 1 16 254 2 0 09 111; 

2, 15 3 05 5 02 13 13 08 12 885 276 4 2 5 17 421 0 3 11 452; 

3, 11 2 06 3 15 05 05 12 00 852 686 1 2 0 15 459 1 1 00 442; 

4, 14 2 01 0 00 18 47 14 05 870 710 5 1 2 13 524 1 3 23 305; 

5, 11 8 09 1 01 13 83 10 06 852 481 1 2 5 10 238 0 0 26 802; 

6, 09 1 06 3 02 10 55 09 05 844 551 4 0 5 05 115 0 0 21 964; 

7, 11 2 07 5 00 13 24 06 07 995 038 1 0 1 17 715 1 0 04 683; 

8, 11 2 15 5 01 10 08 04 04 797 011 1 2 0 21 660 2 2 26 177; 

 

 

Figure 22 - Affective Target and Resulting Playlist 

 

Some rudimentary analysis can be done at a glance in Figure 22. The majority of playlists in 

this list have 11 as their first value, which denotes a VII chord (not specifically major, minor, 

or diminished) as the first chord to be played. Several entries have 2 as their second value, 

denoting the number of chords in the harmony progression, which would be quite short here.  
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Some analysis can also be accomplished using the post reports in Supercollider
14

 as the 

algorithm decodes the arrays. For the example playlist from Figure 22, Supercollider shows 

that the use of scales is varying (eighth column), but the method by which chords are selected 

is tending towards preferring a consistent number of pitches between chords (sixth column). 

Rhythmically the system seems to have preferred using varying time signatures but with 

consistent emphasis on the 3 beat (8xx values are common in the ninth column). For a 

detailed description regarding decoding seeds, see Figure 12 - The Structural Array in Detail. 

Further analysis requires playing back the passages audibly using the algorithm. This can 

be done conveniently using the “load” and “save” features of the GUI (audio files are also 

supplied on the digital accompaniment). 

The examples provided (appendix C-E) are intended to demonstrate the potential for the 

AACr‟s key intended uses as a real-time unsupervised musical agent, receiving affective state 

instructions from media or biosensor wearers and providing immediate music to reinforce or 

counter that state (appendix C and D), and as a composer‟s aid, rapidly producing suggestions 

for static but affective compositions (appendix E). 

For the most part the neural networks seem to respond more satisfactorily to lengthier 

affective designs, however, it is problematic to claim success from the various musical 

demonstration examples included. To claim success in this context would be fairly naive, and 

when listening to passages alongside media counterparts, notions of affective success may be 

potentially open to suggestion (perhaps most apparent in the Metropolis demonstrations). 

The demonstrations do show that these features are functioning as intended, however the 

problem of stating to what degree they function remains.  

 

 

                                                 

14 The software environtment that the musical algorithm was coded in. Most programming enviornments use a post window 

to show status, debugging information, and present information from „postln‟ or „print‟ commands. 
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3.8 Defining Success 

A thorough investigation of potential methods for defining AAC success is required in the 

field for comparison and refinement of future systems. An investigation into the success of 

the AACr as a musical system in regards to a any human audience is the immediate intended 

direction for further research. There are many factors to be considered, including the 

complications of induced affect, which are often focused on mechanics that are easily 

influenced by external factors. Where logistically possible, it might prove helpful to analyse 

the audience with biosensors, however in such an environment uncontrollable external 

influences would likely confound results beyond worth. 

Often, even with identical architectures, NNs can develop a potentially infinite number of 

different functions for such complex stochastic data. It may be found that from two identical 

NN models, one might be more pleasing than the other. This –somewhat ironic- individuality 

on the computer‟s behalf may need formal assessment as well. Once a success level is 

defined, the “sample size/success” ratio might identify the most efficient number of training 

samples for future AAC endeavours. 

In order to define a method for measuring success, there are several potential methods to 

consider. A Turing test is unsuited at this point, as the music algorithm inherently suffers 

from simplicity (see Musical Algorithm Considerations p22) such that even when being 

successfully affective, the AACr‟s music is consistently recognisable.  

A perceived affect study may be simply implemented, for example, where volunteers 

knowing the target affective state listen to two corresponding playlists; one generated 

randomly and one generated from NN predictions. How often the volunteers guess correctly 

which is the affect driven playlist could determine a measure of success.  
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4 Conclusion 

AAC systems have an enormous potential to provide a method to help us navigate the 

unthinkably massive realm of possibilities presented by even the most simple of musical 

algorithms, without the use of stylistic limitations or mathematical filters that restrict the 

algorithm in overly simplified ways that amount to human inference. These systems 

essentially do this by attempting to model or imitate the human audience in some way, which 

provides a context to filter (not create) potential musical passages. This is no small feat, but 

failing to systematically assess the effectiveness of these systems on an audience outside of 

the training participants, as is the current trend in the field (Williams et al., 2014, p. 18), 

cannot advance the field past its initial speculations. A clear direction for future research will 

be to determine if success can be defined, and if so, how this success relates to predictive 

error measurement.  

The aims of this project have been successfully achieved, and many new directions for 

improvement have arisen in the process: A broad-spectrum algorithm focusing on musical 

structure (without timbre) has been developed, the development and comparison of multiple 

methods for collecting both perceived and induced affect data was successful, a predictive 

function trained from this data was developed and implemented, and music was successfully 

generated, targeting specified affective states.  

If we rate the AACr using Williams‟ system of categorisation, the AACr is unique in 

satisfying all of Williams‟ categories: It is capable of compositional and performative music 

making, it does use an entirely generative algorithm process, it is capable of both 

unsupervised real-time and compositional aide applications, it is able to adapt to input directly 

from biofeedback in real-time, and it does utilise both perceived and induced (and is among 

the first entirely generative AAC systems to do so). 

The musical algorithm, Two Hands, has proven to be adequate for the job at hand, abut has 

outlined some issues as a result of the limited numbers of variables variables. The forced 
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simplistic nature of the algorithm causes a consistently recognisable quality throughout the 

passages generated, which brings into question the “breadth of its spectrum” (see p58). This is 

not to say the algorithm isn‟t capable of appropriate results, and this may also be an issue to 

consider in future survey design as well, but some further development in implementing 

simple musical structures is anticipated. 

There are several bugs, which are still present in the TwoHands system. Most interesting of 

these „bugs‟ is silence. During training the music algorithm was unintentionally left capable 

of producing tracks with one or zero notes, leaving the participants to quite frequently 

experience musical silence. Whilst silence is perfectly acceptable, the participants likely did 

not always engage with these silences musically or were not “free to enter into the act of 

listening” (Cage, 1961); frustrated that the machine might not be working, that the silences 

were too frequent and annoying, or that they were left to be distracted by their own thoughts 

and surroundings. It cannot be proven either way but it seems likely that as a result, silent 

passages may well be used by the AACr as a strategy to achieve affective targets featuring 

high frustration. Rather than removing these silences, perhaps a more enlightened approach 

would be to reduce their frequency, and brief the participants of the relevance of silence in 

modern music.  

Other bugs that were not addressed (despite great lengths being taken) before training took 

place include the algorithm‟s ability to exceed the limitations of pianos and player in pitch 

and tempo under certain circumstances. It is impossible to rectify these bugs in the musical 

algorithm in hindsight, without voiding the extensive training and predictions of the neural 

network. 

The physiological measurements from the biosensor data have not been translated into a 

typical emotional model (with the exception of the EEG data), but the AACr demonstrates 

that this is not actually necessary. The predictive error of the (non-EEG) biosensors was lower 

than all other groups, thus the AACr is currently able to define induced physiological target 

states with less predictive error than any of the other methods for predicting affect. This 
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suggests some interesting investigations are due where categorical emotional models are 

currently in use, such as the arousal and valence models commonly found in AAC projects to 

date. 

Not only do the relatively simple neural networks used here provide the predictive abilities 

that drive the generation of new affective music, they also provide one quantifiable method of 

defining success in terms of the system‟s ability to predict affect given musical structure. By 

adhering to simple measurement principles, addressing as many external factors as possible 

during auditioning, and using multiple simultaneous approaches for affect data collection, the 

AACr has improved hundred-fold over its predecessor (Pitman, 2012) in terms of predictive 

error despite only using a similar number of training samples. It should be expected that much 

more can yet be done to improve these predictions. 

The neural network‟s prediction error also allows for a comparison of the multiple 

approaches to collecting affect data, including relative successes (for EEG, Biosensors, and 

the Likert survey) and relative failures (in the case of the TAG word survey). This method can 

provide a unique opportunity in AAC for guiding the refinement of the individual methods in 

future incarnations. 

New breakthroughs in machine learning systems, such as deep learning neural networks 

and support vector networks, may have massive ramifications for AAC development, and will 

be a considerable focus for future research as well. 

 

In closing, this method of AAC development emphasises a clear principle: a focus on 

prediction statistics allowing for assessment and refinement of each individual component. 

Other methods of assessment are still required, but the AACr pilot can already provide a 

working example of the most important aspects of predicting affect in algorithmic 

composition. Future research on more complex biosensor analysis, machine learning systems, 

and broad-spectrum algorithmic implementations will no doubt lead to the development of 

AAC systems capable of more frequent applications in film, online media, and gaming, 



82 Pitman 

especially where quantity, adaptivity, or constant originality, are concerned, as well as 

medical applications such as assisting with biological function control, and many aspects of 

musical therapy. 
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Appendices 

Appendix A- AACr Code Examples 

The digital accompaniment includes all the commented code and patches for the GUI, 

music algorithm, Arduino, and neural network server required to run the AACr system. 

Standalone versions of the GUI and neural network server are provided as conveniences, 

which only require free runtime environments (see below) to use.   

 

Useful links to coding environments and runtimes: 

Supercollider (3.5.6 or newer) 

http://supercollider.github.io/download.html 

 

Cycling 74 Max 5.19 Runtime (Mac or Windows) 

https://cycling74.com/downloads/older/ 

 

Matlab Runtime (2012a or newer) 

http://au.mathworks.com/products/compiler/mcr/ 

 

Mind Your OSCs (Free) 

https://emotiv.com/store/product_85.html 

 

Arduino 1.6.3 

http://arduino.cc/en/Main/Software 
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GUI Code Examples 

It is impractical to display all of the max patching in a readable way here on paper, thus 

important or novel aspects have been isolated and demonstrated here. To review the patching 

in full, refer to the digital accompaniment. 
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Javascript for SQLite in Max 

 
var sqlite = new SQLite; 
var result = new SQLResult; 
 
function opendb(x) 
{ 
    sqlite.open(x, 1);  
} 
 
function closedb() 
{ 
    sqlite.close(); 
} 
 
function exec(arg) 
{ 
    sqlite.exec(arg, result); 
    formatResultForCellblock(); 
} 
 
function formatResultForCellblock() 
{ 
    var numfields = result.numfields(); 
    var numrecords = result.numrecords(); 
    var fieldnames = new Array(numfields); 
    var values = new Array(numfields); 
    outlet(0, "clear", "all"); 
    outlet(0, "cols", numfields); 
    outlet(0, "rows", numrecords + 1);   
    for(var i=0; i<numfields; i++) 
        outlet(0, "set", i, 0, result.fieldname(i)); 
    for(var i=0; i<numrecords; i++){ 
        for(var j=0; j<numfields; j++) 
            outlet(0, "set", j, i+1, result.value(j, i)); 
    } 
} 
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Music Algorithm Code Examples 

AACr_Twohands.scd: 

/* 
------------------------------------------------------ 
TwoHands - By Daniel Pitman 
A music algorithm, part of the Affective Algorithmic Composer (AACr) 
 
                      ****** 
 
This script is the loading code, which boots a Supercollider server, initialises MIDI, audio, 
and loads all the music algorithm and OSC functions. This is the only script which 
needs to be evaluated manually. OSC communications are initiated automatically. 
 
Comments are denoted with a "//" 
------------------------------------------------------- 
 
*/ 
 
//boot a server, and then determine the path for each module. 
 
s.waitForBoot{ 
 
 var 
 apppath=thisProcess.nowExecutingPath, 
 osc=apppath.replace("AACr_TwoHands", "TwoHands.OSC2MAXinterface"), 
 env=apppath.replace("AACr_TwoHands", "TwoHands.Core.EnvironmentVariables"), 
 har=apppath.replace("AACr_TwoHands", "TwoHands.Core.HarmonyGeneratorRoutines"), 
 ply=apppath.replace("AACr_TwoHands", "TwoHands.FormAndMidiPlayer"), 
 hnd=apppath.replace("AACr_TwoHands", "TwoHands.HandModes"), 
 arp=apppath.replace("AACr_TwoHands", "TwoHands.HandModes.arpegiator"); 
 
// setup memory allocations 
 Server.local.options.memSize = 2 ** 20; 
 Server.internal.options.memSize = 2 ** 20; 
 ("Local:"++Server.local.options.memSize).postln; 
 ("Internal:"++Server.internal.options.memSize).postln; 
 
 
//load each module 
 osc.load; 
 env.load; 
 har.load; 
 ply.load; 
 hnd.load; 
 arp.load; 
 
 
//initialize MIDI details 
 MIDIClient.init; 
//device can be altered later via the GUI 
 p=MIDIOut(0); 
 16.do({arg i; 
  p.allNotesOff(i); 
 }); 
 
//read metronome sound into memory (comment out to disable metronome). 
//this is the only part which actually requires the supercollider server be booted. 
 m = Buffer.read(s, Platform.resourceDir +/+ "sounds/SinedPink.aiff"); 
 
//test audio 
 SynthDef(\metro, {| out = 0, bufnum = 0, speed = 1, vol=0.5 | 
  var peep; 
  peep = PlayBuf.ar(1, bufnum, speed*BufRateScale.kr(bufnum), doneAction:2); 
  Out.ar([out, out+1],peep*vol); 
 }).play(s, [\out, 0, \bufnum, m, \vol, 0.8,]); 
 
 "Two Hands Loaded".postln; 
 
//an emergency reset option which allows the scripts to be reloaded from the GUI 
 ~reeset.free;~reeset = OSCresponder.new(nil, "reeset",{ 
  arg time, resp, command; 
 
  var 
  apppath=thisProcess.nowExecutingPath, 
  osc=apppath.replace("AACr_TwoHands", "TwoHands.OSC2MAXinterface"), 
  env=apppath.replace("AACr_TwoHands", "TwoHands.Core.EnvironmentVariables"), 
  har=apppath.replace("AACr_TwoHands", "TwoHands.Core.HarmonyGeneratorRoutines"), 
  ply=apppath.replace("AACr_TwoHands", "TwoHands.FormAndMidiPlayer"), 
  hnd=apppath.replace("AACr_TwoHands", "TwoHands.HandModes"), 
  arp=apppath.replace("AACr_TwoHands", "TwoHands.HandModes.arpegiator"); 
 
  //RE-load modules 
  osc.load; 
  env.load; 
  har.load; 
  ply.load; 
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  hnd.load; 
  arp.load; 
 
  //silence any preexisting MIDI notes 
  16.do({arg i; 
   p.allNotesOff(i); 
  }); 
 }).add; 
 
 
}; 
 

TwoHands.OSC2MAXinterface.scd 

/* 
------------------------------------------------------ 
TwoHands - By Daniel Pitman 
A music algorithm, part of the Affective Algorithmic Composer (AACr) 
 
                      ****** 
 
This script contains the OSC communication commands that can be sent 
from the GUI to the algorithm. 
 
Each OSCresponder object has a particular sciprt that is run when that 
command is received from the GUI. 
 
Comments are denoted with a "//" 
------------------------------------------------------- 
*/ 
// note: "z" is the main playback task. 
 
// some commands 
 
 
~pause.free;~pause = OSCresponder.new(nil, "pause",{ 
 arg time, resp, command; 
 "pause".postln; 
 z.pause; 
}).add; 
 
//midi all notes off and channel setting 
~midic.free;~midic = OSCresponder.new(nil, "midic",{ 
 arg time, resp, command; 
 
 16.do({arg i; 
  p.allNotesOff(i); 
 }); 
 
 p=MIDIOut(command[1]);  //select device 
 
}).add; 
 
//more playback control commands 
~start.free;~start = OSCresponder.new(nil, "start",{ 
 arg time, resp, command; 
 "start".postln; 
 
 //initialize MIDI details 
 //MIDIClient.init; 
 //p=MIDIOut(0);  //select device 
 16.do({arg i; 
  p.allNotesOff(i); 
 }); 
 z.stop; 
 z.reset; 
 z.start; 
}).add; 
 
~resume.free;~resume = OSCresponder.new(nil, "resume",{ 
 arg time, resp, command; 
 "resume".postln; 
 z.resume; 
}).add; 
 
~reset.free;~reset = OSCresponder.new(nil, "reset",{ 
 arg time, resp, command; 
 "reset".postln; 
 z.reset; 
 16.do({arg i; 
  p.allNotesOff(i); 
 }); 
}).add; 
 
~stop.free;~stop = OSCresponder.new(nil, "stop",{ 
 arg time, resp, command; 
 "stop".postln; 
 z.stop; 
 /*16.do({arg i; 
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  p.allNotesOff(i); 
 });*/ 
}).add; 
 
//received a seed from the GUI 
~newseed.free;~newseed = OSCresponder.new(nil, "seed",{ 
 arg time, resp, seed; 
 
 z.stop; 
 "1".postln; 
 seed.removeAt(0); 
 ~decodeSeed.reset; 
 ~decodeSeed.value(seed); 
 "new seed".postln; 
}).add; 
 
//Initialising a new passage 
~newharmony.free;~newharmony = OSCresponder.new(nil, "newharmony",{ 
 arg time, resp, command; 
 
 "2".postln; 
 ~genpat.reset; 
 ~chordpattern=nil; 
 ~chordpattern=~genpat.value;  //to generate a new chord pattern 
 //"new chord pattern".postln; 
}).add; 
 
~newrhythm.free;~newrhythm = OSCresponder.new(nil, "newrhythm",{ 
 arg time, resp, command; 
 
 "3".postln; 
 
 ~genrhythm.reset; 
 ~coreharmony=nil; 
 ~coreharmony=~genrhythm.value;  //to generate a new chord pattern 
 ~coreharmony.postln; 
}).add; 
 
 
//metronome volume control 
~metrovolume.free;~metrovolume = OSCresponder.new(nil, "metrovolume",{ 
 arg time, resp, command; 
 
 ~metvol=command[1]; 
 command[1].postln; 
 
}).add; 
 
//a command which recalculates the existing seed from scratch 
~newexecution.free;~newexecution = OSCresponder.new(nil, "newexecution",{ 
 arg time, resp, command; 
 
 "4".postln; 
 z.stop; 
 z.reset; 
 //"z reset".postln; 
 //b.sendMsg("recalculated execution",); 
}).add; 
 
 
//some basic port setup and "loaded" message 
a = NetAddr.langPort; 
b = NetAddr.new("127.0.0.1", 57130); 
b.sendMsg("port", a); 
b.sendMsg("loaded", 1); 
//b.sendMsg("OSC connected",); 
 

TwoHands.Core.EnvironmentVariables.scd: 

/* 
------------------------------------------------------ 
TwoHands - By Daniel Pitman 
A music algorithm, part of the Affective Algorithmic Composer (AACr) 
 
                      ****** 
 
Environment variables: These scripts are concerned with establishing environmental variables 
(such as the chord board, scales etc.) and also interpreting incoming seeds from OSC into the 
musical variables to which they relate. 
 
Comments are denoted with a "//" 
------------------------------------------------------- 
 
*/ 
 
//midi channel 
~channel = 1; 
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//a 2d matrix of chords to help navigate possible chord patterns. some chords are not 
available to all scales (ie no 7 in pentatonic scales etc.) 
 
~chordboard=[ 
 [1, 4, 6, 1], 
 [7, 5, 2, 3], 
 [5, 6, 4, 7], 
     [1, 2, 3, 5] 
]; 
 
 
//a selections of of scales by interval (must equal 12) 
~scales = [ 
 [2, 2, 1, 2, 2, 2, 1], // ion 
 [2, 1, 2, 2, 2, 1, 2], // dor 
 [1, 2, 2, 2, 1, 2, 2], // phryg 
 [2, 2, 2, 1, 2, 2, 1], // lydi 
 [2, 2, 1, 2, 2, 1, 2], // mixo 
 [2, 1, 2, 2, 1, 2, 2], // aeolian 
 [1, 2, 2, 1, 2, 2, 2], // loch 
 [2, 1, 2, 2, 2, 2, 1], // har minor 
 [1, 2, 2, 2, 2, 1, 2], //loch with raised 5th 
 [2, 2, 3, 2, 3],       //pents 
 [2, 3, 2, 3, 2], 
 [3, 2, 3, 2, 2], 
 [2, 3, 2, 2, 3], 
 [3, 2, 2, 3, 2], 
 
 [3, 3, 3, 3],          //symmetrical weird scales 
 [2, 2, 2, 2, 2, 2], 
 [12, 12, 12, 12]       //octaves 
]; 
 
//coordinates, up right down left, used on the chordboard during generation of core harmony. 
~possibilities= [[0, 1], [1, 0], [0, -1], [-1, 0], [1, 1], [1, -1], [-1, -1], [-1, 1]]; 
 
 //multiple passages did combined to make greater forms, however this is currently redundant. 
~form=["a"]; 
 
 
 
//************************************************************************ 
//an initial set of variable array elements 
 
 
    //core harmony variables are often divided into first half and second half options, 
approaching 'dominant' and departing from 'dominant'. Dominant is used loosely. 
 
~startpoint = [3, 2];               //matrix coordinates 
~inertia= [2, 3];                   //defines number of turns for first and second half 
~vector=[[1, -1], [0, -1]];         //defines preferred direction first and second half 
~style=[0, 2];                      //defines the preferred amount of change (notes) for each 
chord, first and second half. 
~preferOdd=[0, 0];                  //defines preferred odd or even chords 
~primarymethod= [0, 2, 0];          //defines rates methods (int. 0=vector, 1=style, 
2=preferodd) by importance (multiplier, thus 0 equals NO importance) 
~repeatness= [0.1, 0.4];            //increase or decrease probability of using chords which 
have already featured 
 
    //basic rhythm and timing variables 
 
~scale = [2, 1, 2, 2, 1, 2, 2];     //chosen scale (see environment variables) 
~tonic = 4;                         //changes the tonic from C in semitones 
~rhythm = [6, 4, 3];                //universal rhythmic characteristics 
 
~probenv = [0.2, 0.2, 0.3];         //define probabilities used to generate core harmony 
results 
~runTime = 35;                      //run time 
 
    //hand position and behavior variables 
 
~lmode = 0;                         //operational mode 
~lpos = 4;                          //octaves up from the far left 
~lrhythm = [6, 3, 2];               //rhymthm pattern 
~lprob = [0.2, 0.2, 0.1];           //three variables for controlling hand modes 
 
 
~rmode = 1;                         //operational mode 
~rpos = 3;                          //octaves up from the left hand 
~rrhythm = [4, 6, 2];               //rhymthm pattern 
~rprob = [0.3, 0.1, 0.6];           //three variables for controlling hand modes 
 
 
~currentseed = [ 14, 0, 14, 2, 1, 7, 13, 7, 4, 867, 833, 3, 0, 0, 8, 130, 0, 2, 5, 733 ]; 
~oldseed = [1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2]; 
~reallyoldseed = [2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2]; 
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//************************************************************************** 
 
//Processing a new seeds (20 numbers) into 40 variables. 
 
( 
 
~decodeSeed.reset; 
~decodeSeed=Routine({ arg seed; 
 
 seed.postln; 
 
 ~reallyoldseed=~oldseed; 
 ~oldseed=~currentseed; 
 ~currentseed=seed; 
 
 //startpoint (0-15) 
 ~startpoint[0]= floor(seed[0]/4); 
 ~startpoint[1]= seed[0]%4; 
 ["startpoint", ~startpoint].postln; 
 
 //inertia (0-15) 
 ~inertia[0]= (floor(seed[1]/4))+1; 
 ~inertia[1]= (seed[1]%4)+1; 
 ["inertia", ~inertia].postln; 
 
 //vector (0-15) 
 ~vector[0]=~possibilities[floor(seed[2]/4)]; 
 ~vector[1]=~possibilities[seed[2]%4]; 
 ["vector", ~vector].postln; 
 
 //style (0-8) 
 ~style[0]=floor(seed[3]/4); 
 ~style[1]=seed[3]%4; 
 ["style", ~style].postln; 
 
 //preferOdd (0-3) 
 ~preferOdd[0]=floor(seed[4]/2); 
 ~preferOdd[1]=seed[4]%2; 
 ["preferOdd", ~preferOdd].postln; 
 
 //primary methd (0-26) 
 ~primarymethod[0]=seed[5]%3; 
 ~primarymethod[1]=floor(seed[5]/3)%3; 
 ~primarymethod[2]=floor(floor(seed[5]/3)/3)%3; 
 ["primarymethod", ~primarymethod].postln; 
 
 //repeatness 99 
 ~repeatness[0]=(seed[6]%10)*0.1; 
 ~repeatness[1]=(floor(seed[6]/10))*0.1; 
 ["repeatness", ~repeatness].postln; 
 
 //scales 0-15 
 ~scale=~scales[seed[7]]; 
 ["scale", ~scale].postln; 
 
 //tonic 0-12 
 ~tonic=seed[8]; 
 ["tonic", ~tonic].postln; 
 
 //rhythm 0-999 
 ~rhythm[0]=(floor(floor(seed[9]%10)*0.5))+4; 
 ~rhythm[1]=(floor((floor(seed[9]/10)%10)*0.5))+2; 
 ~rhythm[2]=(floor((floor(seed[9]/100)%100)*0.3))+1; 
 ["rhythm", ~rhythm].postln; 
 
 //probability environment 
 ~probenv[0]=(seed[10]%10)*0.1; 
 ~probenv[1]=(floor(seed[10]/10)%10)*0.1; 
 ~probenv[2]=(floor(seed[10]/100)%100)*0.1; 
 ["probenv", ~probenv].postln; 
 
 //runtime 0-5 
 ~runTime=seed[11]*4+20; 
 ["runTime", ~runTime].postln; 
 
 //left hand 
 ~lmode=seed[12]; //(0-1) 
 
 ["lmode",~lmode].postln; 
 
 
 //left hand rhtyhm 0-26 
 ~lrhythm[0]=~rhythm[seed[14]%3]; 
 ~lrhythm[1]=~rhythm[floor(seed[14]/3)%3]; 
 ~lrhythm[2]=~rhythm[floor(floor(seed[14]/3)/3)%3]; 
 ["lrhythm", ~lrhythm].postln; 
 
 //left hand probability environment 
 ~lprob[0]=(seed[15]%10)*0.1; 
 ~lprob[1]=(floor(seed[15]/10)%10)*0.1; 
 ~lprob[2]=(floor(seed[15]/100)%100)*0.1; 
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 ["lprob", ~lprob].postln; 
 
 //right hand 
 ~rmode=seed[16]; //(0-1) 
 ["rmode", ~rmode].postln; 
 
 //hand positions 
 ~rpos=((seed[17])/2).ceil;   //(0-5) 
 ~lpos=seed[13]+1;   //(0-5) 
 
 ~rpos.do({arg i; 
  if (~rpos > 5, 
   { 
    if (~lpos > 1, 
     { 
      ~rpos=~rpos-1; 
      ~lpos=~lpos-1; 
     },{ 
      ~rpos=~rpos-1; 
    }); 
  }); 
 }); 
 
 
 
 ["rpos", ~rpos].postln; 
 ["lpos",~lmode].postln; 
 
 
//right hand rhtyhm 0-26 
 ~rrhythm[0]=~rhythm[seed[18]%3]; 
 ~rrhythm[1]=~rhythm[floor(seed[18]/3)%3]; 
 ~rrhythm[2]=~rhythm[floor(floor(seed[18]/3)/3)%3]; 
 ["rrhythm", ~rrhythm].postln; 
 
//right hand probability environment 
 ~rprob[0]=(seed[19]%10)*0.1; 
 ~rprob[1]=(floor(seed[19]/10)%10)*0.1; 
 ~rprob[2]=(floor(seed[19]/100)%100)*0.1; 
 ["rprob", ~rprob].postln; 
 
  
 seed.yieldAndReset; 
}); 
 
) 

TwoHands.Core.HarmonyGeneratorRoutines.scd 

/* 
------------------------------------------------------ 
TwoHands - By Daniel Pitman 
A music algorithm, part of the Affective Algorithmic Composer (AACr) 
 
                      ****** 
 
This script contains the two functions which implement the harmony and rhythmic 
data that will be used to guie the individual hand implementations. 
 
Comments are denoted with a "//" 
------------------------------------------------------- 
 
*/ 
 
 
//********************************************************************* 
//harmonic progression generator 
 
 
//GENerate a PATtern of chords from the chord board, based on the scoring routines above and 
the structural array data 
// It calls the ~fourpossible routine (in turn calls the ~notecounter routine) 
 
~genpat=Routine({ 
 var 
 half0=Array.newClear(~inertia[0]), 
 half1=Array.newClear(~inertia[1]), 
 result=k, 
 romnumresult=l; 
 
 half0.size.do({arg i;     //generate first half of chord pattern 
  var moves, motion; 
//score each possible new chord (routine) 
  if (i == 0, { 
   moves=~fourpossible.value([~startpoint[0], ~startpoint[1], 0, ~inertia[0]-i 
]); 
   },{ 
    moves=~fourpossible.value([ half0[i-1][0], half0[i-1][1], 0, 
~inertia[0]-i ]); 
  }); 
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  moves=moves.windex; 
 
//[i, "h0", moves].postln; 
//repeat or move? 
  if (moves==8, { 
   motion= [0,0]; 
   },{ 
    motion=~possibilities[moves]; 
  }); 
  half0.put(i, motion); 
 }); 
 
 
//generate second half of chord pattern 
 half1.size.do({arg i; 
  var moves1, 
  motion1; 
 
//score each possible new chord 
  if (i==0, { 
   //["i",i].postln; 
   moves1=~fourpossible.value([ half0[half0.size-1][0], half0[half0.size-1][1], 
1, ~inertia[1]-i ]); 
   },{ 
    moves1=~fourpossible.value([ half1[i-1][0], half1[i-1][1], 1, 
~inertia[1]-i ]); 
  }); 
 
 
  moves1=moves1.windex; 
 
 
  if (moves1==8, { 
//repeat or move? 
   motion1= [0,0]; 
   },{ 
    motion1=~possibilities[moves1]; 
  }); 
 
  half1.put(i, motion1); 
 }); 
 
 result= [~startpoint] ++ half0 ++ half1; 
 romnumresult=Array.newClear(result.size); 
 
//compile all the coords for the chords and make sure coordinates wrap 
 result.size.do({|i| 
  if (i==0, { 
   romnumresult[0] = result[0]; 
   romnumresult[i].size.do({|j| 
    if (romnumresult[i][j] >3 ,{romnumresult[i][j] = 
romnumresult[i][j]-4}); 
    if (romnumresult[i][j] <0 ,{romnumresult[i][j] = 
romnumresult[i][j]+4}); 
   }); 
   },{ 
    romnumresult[i] = romnumresult[i-1]+result[i]; 
 
    romnumresult[i].size.do({|j| 
     if (romnumresult[i][j] >3 ,{romnumresult[i][j] = 
romnumresult[i][j]-4}); 
     if (romnumresult[i][j] <0 ,{romnumresult[i][j] = 
romnumresult[i][j]+4}); 
    }); 
  }); 
 }); 
 
//look up coords on the chord board 
 romnumresult.size.do ({|i| 
  romnumresult[i] = ~chordboard[romnumresult[i][0]][romnumresult[i][1]]; 
 }); 
 
 
 ["romnum",romnumresult].postln; 
 romnumresult.yieldAndReset; 
 
 
}); 
 
 
 
//********************************************************************* 
//Rhythmic Application of the chord pattern (ie when the chords change) 
//dependant on yield from ~genpat routine 
 
 
~genrhythm=Routine({ arg val; 
 var chordresult, lapCount=0, length; 
 
//make a new array for the core chord pattern 
 
 length = ~chordpattern.size*~rhythm[0]*~rhythm[1]; 
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 chordresult = Array.newClear(length); 
 
 
 
//populate with correct number of chord positions 
 
 length.do({|i| 
 
  if (i % (length/~chordpattern.size) == 0, { 
 
 
   if (i==0, { 
    chordresult[i]= ~chordpattern[lapCount]; 
    },{ 
     chordresult[i+((~rhythm[2].bilinrand)*~rhythm[1])]= 
~chordpattern[lapCount]; 
   }); 
   lapCount=lapCount+1; 
     }); 
 }); 
 
 chordresult.yieldAndReset; 
}); 
 
 
 
 
//********************************************************************* 
//chord scoring routine (called by ~fourpossible) 
 
//a routine to yield the number of similare notes between two triad chord numbers. cha is an 
array with two numbers representing chords 
 
~notecounter= Routine ({arg cha; 
 
 
 var scalenumber=~scale.size, notecounter, chorda, chordb; 
 
 
//populate chord with note positions 
 
 chorda = [cha[0], cha[0]+2, cha[0]+4]; 
 chordb = [cha[1], cha[1]+2, cha[1]+4]; 
 
//keep it in one octave 
 chorda.size.do({|i| 
  if (chorda[i]> (scalenumber-1), {chorda[i] = chorda[i]-scalenumber}); 
  if (chordb[i]> (scalenumber-1), {chordb[i] = chordb[i]-scalenumber}); 
 }); 
 
//count the notes 
 notecounter=0; 
 chorda.size.do({|j| 
  chordb.size.do({|k| 
   if (chorda[j]==chordb[k], {notecounter = notecounter + 1}); 
  }); 
 }); 
 
//yield a result 
 notecounter.yieldAndReset; 
 
 
}); 
 
//********************************************************************* 
//score collecting (called by ~genpat) 
 
//a routine that considers all possible movements on chordboard and returns a normalized 
probability array (should be called eightpossible now) 
 
//required argument is an array with x coord, y coord, half, current inertia, 
~fourpossible = Routine ({ arg startcoord; 
 var startchord, half, inertia, previous, score, repeats, wrap; 
 
 wrap = [startcoord[0], startcoord[1]]; 
 wrap.size.do({ |i| 
  if (wrap[i] > 3, {wrap[i]=wrap[i]-4}); 
  if (wrap[i] < 0, {wrap[i]=wrap[i]+4}); 
 }); 
 
 
 startchord = ~chordboard[wrap[0]] [wrap[1]]; 
 half = startcoord[2]; 
 inertia = startcoord[3]; 
 previous = startcoord[4]; 
 score= [0, 0, 0, 0, 0, 0, 0, 0]; 
 repeats=0; 
 
 ~possibilities.size.do({arg i; 
  var thischord, thiscoord=[nil, nil], stylescore=0, thisint; 
 
  thiscoord.put(0, startcoord[0] + ~possibilities[i][0]); 
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  thiscoord.put(1, startcoord[1] + ~possibilities[i][1]); 
 
//wrap the coordinates if outside the matrix 
  thiscoord.size.do({arg j; 
   if (thiscoord[j] > 3, {thiscoord[j]=thiscoord[j]-4}); 
   if (thiscoord[j] < 0, {thiscoord[j]=thiscoord[j]+4}); 
  }); 
 
  thischord = ~chordboard[thiscoord[0]] [thiscoord[1]]; 
 
  if (thischord > ~scale.size, {stylescore = 0}, 
   { 
 
//get number of different notes changing 
    stylescore = ~notecounter.value([startchord, thischord]); 
 
// difference from wanted number changing 
    stylescore = (2 - (~style[half] - stylescore)) * ~primarymethod[1]; 
 
    if (~possibilities[i] == ~vector[half], {stylescore = stylescore + 
(2*~primarymethod[0])}); 
 
//get score regarding target chord (dominant in first half, tonic in second) 
    if (half == 0,{ 
     thisint = ~notecounter.value([thischord, 5]); 
     },{ 
      thisint = ~notecounter.value([thischord, 1]); 
    }); 
 
    if (~inertia[half] == inertia, {if (thisint == 3, 
{stylescore=stylescore-1}) }); 
    if (~inertia[half] - inertia == 0, {if (thisint == 3, 
{stylescore=stylescore+2},{stylescore=stylescore-2}) }); 
 
    if (~inertia[half] - inertia == 1, { 
     if (thisint == 3, {stylescore=stylescore-2}); 
     if (thisint == 2, {stylescore=stylescore+2}); 
    }); 
 
    if (thischord.odd && ~preferOdd[half] == 1, {stylescore=stylescore 
+ (1 * ~primarymethod[2])}, { 
     if (thischord.even && ~preferOdd[half] == 0, 
{stylescore=stylescore+(1 * ~primarymethod[2])}); 
    }); 
 
 
//check previous chords 
    repeats=0; 
 
    previous.size.do({arg j; 
     if (j != previous.size, { 
      if (previous[j] == thischord, 
{repeats=repeats+1}); 
 
     }); 
    }); 
 
    if (repeats > 1, {stylescore = stylescore - (0.5-
~repeatness[half])}); 
    if (repeats > 3, {stylescore = stylescore - (0.8-
~repeatness[half])}); 
  }); 
 
//post score! 
//score becomes an array with an entry for each possibile movement 
  score.put(i, stylescore); 
 
 }); 
 
 
//normalize the scores to 0-1 floating numbers 
 score = score.normalize (0); 
 
//add the possibility of not changing chord 
 score=score ++ ~repeatness[half]; 
 
//make the floating numbers add up to 1 in total as probability weights. 
 score=score.normalizeSum; 
 
 score.yieldAndReset; 
 
 
}); 
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TwoHands.HandModes.scd 

/* 
------------------------------------------------------ 
TwoHands - By Daniel Pitman 
A music algorithm, part of the Affective Algorithmic Composer (AACr) 
 
                      ****** 
 
A pair of routines that perform two potential hand modes, interpetting 
the heirarchical structure laid out in the core harmony routines, and  
elaborating on them in further detail. 
 
It is expected that future hand modes can be added to the system. 
 
Comments are denoted with a "//" 
------------------------------------------------------- 
 
*/ 
 
//basic rhythmic triads  
 
~basicchords=Routine({ arg hand; 
 var chordresult, markovCount=0, corestep, handprob, handrhythm, handpos; 
 
//set variables for hands 
 
 if (hand=="left", { 
  handprob= ~lprob; 
  handpos= ~lpos*12; 
  handrhythm = ~lrhythm; 
 }); 
 if (hand=="right", { 
  handprob= ~rprob; 
  handpos= (~lpos + ~rpos)*12; 
  handrhythm = ~rrhythm; 
 }); 
 
//check for existing coreharmony 
 
 if (~coreharmony == nil, {"ERROR = no coreharmony found!".yieldAndReset; 
  },{ 
 
//make new array 
  
   chordresult = Array.newClear(~coreharmony.size); 
 
   chordresult.size.do({arg i; 
 
    var 
    attempt=0, 
    nowchord= Array.newClear(3), 
    challenge; 
 
//setup the markov counter 
    if (i==0, {markovCount= handprob[1];}); 
 
//will the chord be changing 
    if (~coreharmony[i] == nil, {},{corestep=~coreharmony[i]}); 
 
//asses strength of attempt for chord to exists here 
    handrhythm.size.do({ arg j; 
     if (i % handrhythm[j] == 0, {attempt = attempt + 
(j+3).reciprocal}); 
    }); 
 
//asses challenge 
    challenge=0.2.rand + handprob[0] + markovCount; 
     
//attempt vs challenge 
     
    //play chord? 
    if (challenge <= attempt,{ 
      
//basic triad from coreharmony 
     nowchord=[corestep, corestep+2, corestep+4];   
     
//Include position and scale data to define actual chords: 
 
     nowchord.size.do({|j| 
      var knote=0; 
      if (nowchord[j]==0, {nowchord[j]= ~tonic+handpos; 
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       },{ 
        nowchord[j].do({|k| 
         knote = knote + 
~scale.wrapAt(k-1); 
        }); 
       
 nowchord[j]=[knote+~tonic+handpos, (attempt*0.5)+0.5]; 
      }); 
     }); 
 
//decrease likihood of chord immediately after 
     markovCount=markovCount + handprob[1]; 
 
//tell pulse before this one to noteoff 
     chordresult.put(i, [nowchord, "noteOn"]);  //NEED TO 
CHAnge format!~!! 
     if (i==0, {}, {chordresult[i-1][1]=("noteOff")}); 
 
     },{  
//don't play chord, put a nill entry, and slightly increase liklihood of playing on next pulse 
      markovCount=markovCount- handprob[2]; 
      chordresult.put(i, [[[nil, nil]], nil]); 
    }); 
 
 
   }); 
   ["chords", chordresult].postln; 
   chordresult.yieldAndReset; 
 
 }); 
 
}); 
 
 
 
//*************************************************************** 
 
 
 
// really simple bass line hand mode 
 
~basicbassline=Routine({ arg hand; 
 var chordresult, markovCount=0, corestep, handprob, handrhythm, handpos; 
 
//set variables for hands 
 if (hand=="left", { 
  handprob= ~lprob; 
  handpos= ~lpos*12; 
  handrhythm = ~lrhythm; 
 }); 
 if (hand=="right", { 
   handprob= ~rprob; 
   handpos= ~lpos+~rpos*12; 
   handrhythm = ~rrhythm; 
 }); 
 
//check for existing coreharmony 
 if (~coreharmony == nil, {"ERROR = no coreharmony found!".yieldAndReset; 
  },{ 
 
//make new array 
   chordresult = Array.newClear(~coreharmony.size); 
 
   chordresult.size.do({arg i; 
 
    var 
    attempt=0.0, 
    nowchord= Array.newClear(3), 
    challenge; 
 
//setup the markov counter 
    if (i==0, {markovCount= handprob[1];}); 
 
//will the chord be changing 
    if (~coreharmony[i] == nil, {},{corestep=~coreharmony[i]}); 
 
//asses strength of attempt for chord to exists here 
    handrhythm.size.do({ arg j; 
      
//strengthening bond to the "1" of each bar 
     if (i % handrhythm[0] == 0, {attempt = attempt + (1/(j+2)) 
 
      },{ 
       if (i % handrhythm[j] == 0, {attempt = 
attempt + (1/(j+3))}); 
 
     }); 
    }); 
 
//asses challenge 
    challenge=0.2.rand + handprob[0] + markovCount; 
 
//attempt vs challenge 
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    if (challenge <= attempt,{ 
     //play chord? 
 
     var neg = 0; 
//bassnote 
     nowchord=[corestep];   
     if (i % handrhythm[0] == 0,{},{ 
       
//if we arnt on the "one", we have several alternatives 
      nowchord = [[corestep,(corestep-3),(corestep-
1),(corestep+4),(corestep+7)].choose]; 
       
//if chosen note is below tonic, ie below 0, we can: 
      if (nowchord[0] < 0, {        
 
//stay positive by adding seven scale notes 
       nowchord = nowchord + 7;  
 
//offset by later subtracting 12 semitones 
       neg = -12;                
       },{ 
        neg=0; 
      }); 
 
     }); 
 
//Include position and scale data to define actual chords (obviously taken from basictriads 
but effective): 
     nowchord.size.do({|j| 
      var note, knote=0, vello=0; 
 
//establish actual note 
      if (nowchord[j]==0, { 
       note= ~tonic+handpos+neg; 
       },{ 
        nowchord[j].do({|k| 
         knote = knote + 
~scale.wrapAt(k-1); 
        }); 
        note=knote+~tonic+handpos+neg; 
      }); 
 
//establish velocity 
      if ((attempt*0.3)+0.5 > 1, {vello = 1}, {vello = 
(attempt*0.3)+0.5 }); 
 
//translate to our "midi" format 
      nowchord[j]=[note, vello]; 
     }); 
 
//decrease liklihood of chord immediately after 
     markovCount=markovCount + handprob[1]; 
 
//put the note in the array      
     chordresult.put(i, [nowchord, "noteOn"]); 
 
//include a note off for the previous note 
     if (i==0, {}, {chordresult[i-1][1]=("noteOff")}); 
     },{  
       
//don't play chord, put a nill entry, and slightly increase liklihood of playing on next pulse 
      markovCount=markovCount- handprob[2]; 
      chordresult.put(i, [[[nil, nil]], nil]); 
    }); 
 
 
   }); 
   ["bass", chordresult].postln; 
   chordresult.yieldAndReset; 
 
 }); 
 
}); 
 
 

TwoHands.HandModes.arpegiator.scd 

/* 
------------------------------------------------------ 
TwoHands - By Daniel Pitman 
A music algorithm, part of the Affective Algorithmic Composer (AACr) 
 
                      ****** 
 
A more hand mode routines that perform a series of differing arrpegiator techniques,  
interpreting the hierarchical structure laid out in the core harmony routines, and  
elaborating on them in further detail. 
 
This is an example of new hand modes added to the system. 
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Comments are denoted with a "//" 
------------------------------------------------------- 
 
*/ 
 
//arpegiator 
 
~basicarpeg=Routine({ arg hand; 
 var handprob, handrhythm, handpos; 
 
 //set variables for hands 
 if (hand=="left", { 
  handprob= ~lprob; 
  handpos= ~lpos*12; 
  handrhythm = ~lrhythm; 
 }); 
 if (hand=="right", { 
  handprob= ~rprob; 
  handpos= (~lpos+~rpos)*12; 
  handrhythm = ~rrhythm; 
 }); 
 
//check for existing coreharmony 
 if (~coreharmony == nil, {"ERROR = no coreharmony found!".yieldAndReset; 
  },{ 
   var 
//how many pulses per note 
   restartchord, 
   ascending, 
   startnote, 
   leap, 
   interval, 
   currentint=0, 
   currentchord=~chordpattern[0], 
   thing=handrhythm[0]*handrhythm[1], 
   run, 
   sizec=~coreharmony.size, 
   resultpeg, 
 
//make new array 
   chordresult = Array.newFrom(~coreharmony); 
 
//does the run restart on each new coreharmony chord or when run finishes? 
   if ((handprob[0]*10).asInteger.odd, {restartchord=true}, 
{restartchord=false}); 
 
//does the run start on the coreharmony note or use a leap interval? 
   if ((handprob[1]*10).asInteger.odd, {startnote=true}, {startnote=false}); 
 
//otherwise what interval is used for leaping back at the end of a run? 
   leap=((handprob[2]+0.1)*10).ceil; 
 
//arpegiating interval 
   interval=((handprob[1]+0.1)*5).ceil; 
 
//ascending or descending? 
   if ( handprob[0] >0.5, {ascending=true},{ascending=false}); 
   if (ascending,{leap=leap * (-1)},{interval=interval * (-1)}); 
 
//inserting starting points  
   if (restartchord, { 
 
    if (startnote, 
     { 
//reset rhythm coreharmony start on corehamrony chord? 
      run=0; 
      chordresult.size.do({arg i; 
       if (~coreharmony[i]!=nil, 
        { 
        
 currentchord=~coreharmony[i]; 
         run=i; 
       }); 
       if (i-run == 
(handrhythm[0]*handrhythm[1]), 
        { 
        
 chordresult[i]=currentchord; 
         run=i; 
       }); 
      }); 
     }, 
     { 
//reset with coreharmony notes, but using own own chords 
      run=0; 
      chordresult.size.do({arg i; 
       if (~coreharmony[i] != nil, 
        { 
        
 chordresult[i]=currentchord; 
        
 currentchord=currentchord+leap; 
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         run=i; 
       }); 
       if (i-run == 
(handrhythm[0]*handrhythm[1]), 
        { 
        
 chordresult[i]=currentchord; 
         run=i; 
       }); 
      }); 
    }); 
    },{ 
     if (startnote, 
      { 
//restart when run finishes only, but use coreharmony notes 
       run=0; 
       chordresult.size.do({arg i; 
        if (~coreharmony[i] != nil, 
         { 
         
 currentchord=~coreharmony[i]; 
        }); 
        if (i == 0, 
         { 
         
 chordresult[i]==currentchord; 
          run=i; 
        }); 
        if (i-run == 
(handrhythm[0]*handrhythm[1]), 
         { 
         
 chordresult[i]=currentchord; 
          run=i; 
        });   
      
       }); 
      }, 
      { 
//ignore coreharmony completely 
       run=0; 
 
       chordresult.size.do({arg i; 
        if (i == 0, 
         {  
         
         
 chordresult[i]=currentchord; 
         
 currentchord=currentchord+leap; 
          run=i; 
         },{ 
          if ((i-run) == 
(handrhythm[0]*handrhythm[1]), 
           
 { 
           
 chordresult[i]=currentchord; 
           
 currentchord=currentchord+leap; 
           
 run=i; 
          }); 
        });   
      
       }); 
     }); 
   }); 
 
//insert runs 
   currentchord=0; 
   currentint=0; 
   run=0; 
 
   chordresult.size.do({arg i; 
    var knote=0, 
       essex=0; 
 
    if (chordresult[i]!= nil, 
//each time a starting note is encountered, a run is constructed from that point onwards. 
     { 
      currentchord=chordresult[i]; 
      currentint=0; 
      run=i;     
  
      knote=currentchord; 
     }, 
     { 
      if (i-run == handrhythm[1], 
       { 
        currentint= currentint+interval; 
        knote=currentchord+currentint; 
        run=i 
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       }, 
       { 
        knote=nil; 
      }); 
    }); 
 
    if (knote!=nil, 
     { 
      knote.do({|k| 
       essex = essex + ~scale.wrapAt(k); 
      }); 
      chordresult[i]=essex+~tonic+handpos; 
    }); 
   }); 
 
//Formatting the data with velocity and noteOn/noteOff data 
   chordresult.size.do ({arg i; 
 
    var velo=0, length=0; 
    if (chordresult[i] != nil, 
     { 
//caluculate velocity 
      velo=0.2; 
      if (i % ~rhythm[0]==0, {velo = velo +0.3}); 
      if (i % ~rhythm[1]==0, {velo = velo +0.2}); 
      if (i % ~rhythm[2]==0, {velo = velo +0.1}); 
 
//calculate note length 
      length=handrhythm[1]-
((handrhythm[1]*(handrhythm[2]*0.1)).ceil); 
 
//insert parsed noteon 
      chordresult[i]= [[[chordresult[i], velo]], 
"noteOn"]; 
       
//and noteoff  (in apregiator, note lengths are predictable) 
      if (i-length > 0, 
       { 
        chordresult[i-
length][1]=("noteOff") 
      }); 
     }, 
     { 
      chordresult[i]= [[[nil, nil]], nil]; 
    }); 
   }); 
   
   ["arpeg",chordresult].postln; 
   chordresult.yieldAndReset; 
 }); 
}); 
 
 

TwoHands.FormAndMidiPlayer.scd 

/* 
------------------------------------------------------ 
TwoHands - By Daniel Pitman 
A music algorithm, part of the Affective Algorithmic Composer (AACr) 
 
                      ****** 
 
The chronologically last script to run. This code caluculates and performs 
the final result. The "z" playback routine is often controlled via OSC commands. 
 
It is expected that future hand modes can be added to the system. 
 
Comments are denoted with a "//" 
------------------------------------------------------- 
*/ 
 
z= Task({ 
 var thisLeft, thisRight, pulsetime, bpm; 
 
//check all is in order 
 
 if (~basicchords == nil, {"Handmode (~basicchord) not loaded".postln;}); 
 if (~basicbassline == nil, {"Handmode (~basicbassline) not loaded".postln;}); 
 if (~basicarpeg == nil, {"Handmode (~basicarpeg) not loaded".postln;}); 
 
 ~basicbassline.reset; 
 ~basicchords.reset; 
 ~basicarpeg.reset; 
 
//get the hand modes from the variable ~lmode and ~rmode organised for form parts a, b, and c. 
 if (~lmode== 0, {~aleft = ~basicbassline.value("left")}); 
 if (~lmode== 1, {~aleft = ~basicchords.value("left")}); 
 if (~lmode== 2, {~aleft = ~basicarpeg.value("left")}); 
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 if (~rmode== 0, {~aright = ~basicbassline.value("right")}); 
 if (~rmode== 1, {~aright = ~basicchords.value("right")}); 
 if (~rmode== 2, {~aright = ~basicarpeg.value("right")}); 
 
//play according to the form selected (note that forms using multiple seeds as sections 
//were initiated used but are not implemented for AAC training purposes. 
 pulsetime=~runTime/(~form.size*~aleft.size); 
 
//caluclate bpm and report to GUI 
 bpm=60/pulsetime; 
 b.sendMsg("bpm", bpm); 
 bpm.wait; 
 
//so in this script, form[h] always = a, however forms may be implemnted later for 
//greater composition systems where several forms such as "b" or "c" might refer to 
//the combination of several seeds in a rondo or ternary format, for example. 
//for now, only single seeds are required. 
 ~form.size.do({arg h; 
  if (~form[h]=="a", {thisLeft = ~aleft; thisRight = ~aright}); 
 
 
  p.allNotesOff(1); 
  ~onleft = [0]; 
  ~onright = [0]; 
 
//Find and play noteOffs for this pulse 
  thisLeft.size.do({arg i; 
 
   if (thisLeft[i][1]=="noteOff", { 
    ~onleft.size.reverseDo({|j| 
     if (j==0, {},{ 
      p.noteOff(1, ~onleft[j]); 
      ~onleft.removeAt(j); 
     }); 
 
//each note commnad is reported to GUI for the keyboard display 
     b.sendMsg("lnoteoff"); 
    }); 
   }); 
 
   if (thisRight[i][1]=="noteOff", { 
    ~onright.size.reverseDo({|j| 
     if (j==0, {},{ 
      p.noteOff(1, ~onright[j]); 
      ~onright.removeAt(j); 
     }); 
     b.sendMsg("rnoteoff"); 
    }); 
   }); 
 
//and noteons for this pulse 
   ["l", thisLeft[i][0][0]].postln; 
   ["ll",thisLeft[i][0][0][0]].postln; 
   if (thisLeft[i][0][0][0] != nil,   { 
    thisLeft[i][0].size.do ({|j| 
     p.noteOn ( 
      1, 
      note: thisLeft[i][0][j][0], 
      veloc: 127*thisLeft[i][0][j][1] 
     ); 
     b.sendMsg("lnoteon", thisLeft[i][0][j][0]); // 
     ~onleft = ~onleft ++ thisLeft[i][0][j][0]; 
    }); 
   }); 
   ["r",thisRight[i][0][0]].postln; 
   ["rr",thisRight[i][0][0][0]].postln; 
   if (thisRight[i][0][0][0] != nil,  { 
    thisRight[i][0].size.do ({|j| 
     p.noteOn ( 
      1, 
      note: thisRight[i][0][j][0], 
      veloc: 127*thisRight[i][0][j][1] 
     ); 
     b.sendMsg("rnoteon", thisRight[i][0][j][0]); 
     ~onright = ~onright ++ thisRight[i][0][j][0]; 
    }); 
   }); 
 
   if (i % ~rhythm[0] == 0, { 
 
//plays  metronome on beats (delayed slightly to match midi) 
    {Synth(\metro, [\out, 0, \speed, 1, \bufnum, m, \vol, 
~metvol]);}.defer(0.1); 
    b.sendMsg("metro", 1); 
   }); 
   if (i % ~rhythm[1] == 0, { 
 
//plays  metronome on beats (delayed slightly to match midi) 
    {Synth(\metro, [\out, 0, \speed, 2, \bufnum, m, \vol, 
~metvol]);}.defer(0.1); 
    b.sendMsg("metro", 2); 
   }); 
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//wait the appropriate time before starting the next pulse. 
   pulsetime.wait; 
 
   if (i+1 == thisLeft.size, {b.sendMsg("end", 1);}); 
  }); 
 
 }); 
}); 
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Neural Network Server Code Examples 

Function name Format Description 

AAC_nnserver.m 
(.exe) 

 

Creates an OSC server based on oscmex (“oscmex”). Upon receiving 

affective target matrices, result sizes, and search pool sizes, can use the 

following functions to return top scoring seeds to the interface playlist.    

newseed.m b=newseed(a) 
Creates a matrix „b‟ with „a‟ random structural arrays in it in 20 part 

format 

seed2nn.m c=seed2nn(b) 
If „b‟ contains 20 part arrays, converts all the 20 part structural arrays in 

„b‟ into 81 part neural network compatible arrays.  

judge.m  
Is responsible for coordinateing the neural networks addressing the seed 

pool. 

simBIOFnet.m 
simEEGFnet.m 
simLIKFnet.m 
simTAGCnet.m 

d=simBIOFnet(c) 

If „c‟ contains 81 part arrays, will audition all these via the biosensor 

neural network and return matrix „d‟, with all the affective predictions 

from each network. The neural networks are formatted as functions, for 

use in compiled applications (hence no ability to train on the fly as yet). 

scoring.m 
e=scoring(c, f, 

g) 

Scoring takes the auditioned results „c‟, compares them to the target 

affective state provided as matrix „f‟. Scoring will return the top „g‟ 

number of results with their index location and overall score as matrix „e‟. 

report.m h=report(e, b) 

Report looks up the index numbers provided by „e‟ in the original seeds 

provided as „b‟ and lists the correlating arrays (in 20 part format) as matrix 

„h‟. 

 

Included on the accompanying digital media is the scripts for the neural network server, as 

well as the oscmex library (which facilitates OSC functionality in Matlab), a collection of 

AACr data files and error analysis files in the file “AACdata.mat”, and the trained neural 

networks in a native matlab format in a file, “AACnns.mat”.  

AAC_nnserver.m 

function osc_server() 
  
%define a gui 
    handles = createGUI(); 
     
%OSC server and client 
    osc = []; 
    oscS = []; 
    Acontext=[]; 
    Aaudited=[]; 
    Aseed=[]; 
     
%create GUI 
    function h = createGUI() 
        h.fig = figure('Menubar','none', 'Resize','off', ... 
            'CloseRequestFcn',@onClose, ... 
            'Name','OSC Server', 'Position',[100 100 220 140]); 
        movegui(h.fig, 'center') 
        h.start = uicontrol('Style','pushbutton', 'String','Start', ... 
            'Callback',{@onClick,'start'}, ... 
            'Parent',h.fig, 'Position',[20 20 80 20]); 
        h.stop = uicontrol('Style','pushbutton', 'String','Stop', ... 
            'Callback',{@onClick,'stop'}, ... 
            'Parent',h.fig, 'Position',[120 20 80 20]); 
        h.txt = uicontrol('Style','text', 'String','', ... 
            'Parent',h.fig, 'Position',[60 80 100 20]); 
        set(h.stop, 'Enable','off'); 
        drawnow expose 
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%with a timer for checking the OSC server for inputs         
        h.timer = timer('TimerFcn',@receive, 'BusyMode','drop', ... 
            'ExecutionMode','fixedRate', 'Period',0.11); 
    end 
  
%when user is ready, start the server and client (ports 3330 and 3331 
%respectively) or free up addresses when stop is clicked 
  
    function onClick(~,~,action) 
        switch lower(action) 
            case 'start' 
                set(handles.start, 'Enable','off') 
                set(handles.stop, 'Enable','on') 
                osc = osc_new_server(3330); 
                oscS = osc_new_address('127.0.0.1', 3331); 
                d = struct('path','loaded', 'tt','i', 'data',{{1}}); 
                osc_send(oscS, d); 
                start(handles.timer); 
            case 'stop' 
                set(handles.start, 'Enable','on') 
                set(handles.stop, 'Enable','off') 
                osc_free_server(osc); osc = []; 
                osc_free_address(oscS); oscS = []; 
                stop(handles.timer); 
        end 
        drawnow expose 
    end 
  
%receive an OSC message, check the path for an idea of how to treat it 
    function receive(~,~) 
        if isempty(osc), return; end 
         
        m = osc_recv(osc, 0.1); 
        if isempty(m), return; end 
        n=[m{1}.path, m{1}.data]; 
        
        set(handles.txt, 'String',m{1}.path) 
        drawnow expose 
        
%generate a random seed pool 
        if strcmp (n(1), 'pool') == 1 
             
            Aseed=newseed([n{2}]); 
            Ainputs=seed2nn(Aseed); 
             
%and pass them through the neural networks for scoring 
            Aaudited=judge(Ainputs); 
            d = struct('path','done', 'tt','i', 'data',{{1}}); 
            osc_send(oscS, d); 
             
        end; 
  
%add to or create a target affect state  
        if strcmp (n(1), 'fitness') == 1 
            if isempty(Acontext) 
                Acontext =[[n{2}], [n{3}], [n{4}], [n{5}]]; 
                disp ('single');                 
            else 
                o=[[n{2}], [n{3}], [n{4}], [n{5}]]; 
                Acontext=[Acontext;o]; 
                disp('multi'); 
            end; 
             
  
        end; 
         
%or clear the existing affect state 
        if strcmp (n(1), 'clear') == 1 
            Acontext=[]; 
        end; 
         
%score the random seeds according to target affect state,  
%and then generate a playlist from the top scores 
         
        if strcmp (n(1), 'playlist') == 1 
%find our top scoring indexes 
            Ascores=scoring(Aaudited, Acontext, [n{2}]); 
            disp ('one'); 
 
%match them to the original seeds 
            Areport=report(Ascores, Aseed); 
            disp ('two'); 
             
%and populate the Max interface playlist with results. 
             
%parse 
            Plist=(1 : [n{2}]); 
            Plist=[Plist;Areport]; 
            disp ('three'); 
             
%and deliver, one track at a time 
            for i = 1:[n{2}] 
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                track=mat2str(Plist(:, i)'); 
              
            
                d = struct('path','plist', 'tt','s', 'data',{{track}}); 
                osc_send(oscS, d); 
            end; 
            disp ('four'); 
  
             
       end; 
   
    end 
  
%on closing the server, free up the addresses 
    function onClose(~,~) 
         if ~isempty(osc) 
            osc_free_server(osc); 
             
         end 
         if ~isempty(oscS) 
             osc_free_address(oscS); 
         end 
        stop(handles.timer); delete(handles.timer); 
        delete(handles.fig); 
        clear handles osc 
    end 
end 

  newseed.m 

function x = newseed(num) 
     
    %random seed generator 
    %seed is a term used to described the compact form of the structural array. 
    %where the integers are combined into groups. sdim will determine the size 
    %of a seed, which can later be expanded into a fully neural network 
    %compatible structural array with ordinals and nominals. 
  
    sdim = [16 16 16 9 4 27 100 16 13 1000 1000 6 3 6 27 1000 3 4 27 1000]; 
  
    %from this we can generate "num" random seeds in a matrix 
  
    x=zeros([num, 20]); 
  
    for j=1:num 
        for i=1:20 
            x(j, i) = randi(sdim(1, i))-1; 
        end; 
    end; 
   x=x'; 
  
end 

seed2nn.m 

function x = seed2nn (z) 
  
%this function takes the seed and parses it into a neural netowrk 
%compatible format. nominals and ordinals are handled in binary or scaled  
%binary in neural networks, however in this expanded form, are difficult  
%to handle. s is a matrix containing z seeds of 20 integers. 
  
%find the array dimensions 
z=z'; 
h=size(z, 1); 
  
%create a new array in the 81 integer format 
  
x = zeros([h, 82]); 
  
%parse 
  
for j=1:h 
    %z(1)H 
    if floor(z(j, 1)/4) == 0 
        x(j, 1) = 1; 
    elseif floor(z(j, 1)/4) == 1 
        x(j, 2) = 1; 
    elseif floor(z(j, 1)/4) == 2 
        x(j, 3) = 1; 
    elseif floor(z(j, 1)/4) == 3 
        x(j, 4) = 1; 
    end; 
    if mod(z(j, 1),4) == 0 
        x(j, 5) = 1; 
    elseif mod(z(j, 1),4) == 1 
        x(j, 6) = 1; 
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    elseif mod(z(j, 1),4) == 2 
        x(j, 7) = 1; 
    elseif mod(z(j, 1),4) == 3 
        x(j, 8) = 1; 
    end; 
    %z(2)I 
    x(j, 9) = (floor(z(j, 2)/4)+1)/4; 
    x(j, 10)= (mod(z(j, 2), 4)+1)/4; 
    %z(3)J 
    if floor(z(j, 3)/4) == 0 
        x(j, 11) = 1; 
    elseif floor(z(j, 3)/4) == 1 
        x(j, 12) = 1; 
    elseif floor(z(j, 3)/4) == 2 
        x(j, 13) = 1; 
    elseif floor(z(j, 3)/4) == 3 
        x(j, 14) = 1; 
    end; 
    if mod(z(j, 3),4) == 0 
        x(j, 15) = 1; 
    elseif mod(z(j, 3),4) == 1 
        x(j, 16) = 1; 
    elseif mod(z(j, 3),4) == 2 
        x(j, 17) = 1; 
    elseif mod(z(j, 3),4) == 3 
        x(j, 18) = 1; 
    end; 
    %z(4)K 
    if floor(z(j, 4)/4) == 0 
        x(j, 19) = 1; 
    elseif floor(z(j, 4)/4) == 1 
        x(j, 20) = 1; 
    elseif floor(z(j, 4)/4) == 2 
        x(j, 21) = 1; 
    end; 
    if mod(z(j, 4),4) == 0 
        x(j, 22) = 1; 
    elseif mod(z(j, 4),4) == 1 
        x(j, 23) = 1; 
    elseif mod(z(j, 4),4) == 2 
        x(j, 24) = 1; 
    elseif mod(z(j, 4),4) == 3 
        x(j, 25) = 1; 
    end; 
    %z(5)L 
    x(j, 26) = floor(z(j, 5)/2); 
    x(j, 27) = mod(z(j, 5), 2); 
    %z(6) M 
    if mod(z(j, 6), 3) == 0 
        x(j, 28) = 1;  
    elseif mod(z(j, 6), 3) == 1 
        x(j, 29) = 1; 
    elseif mod(z(j, 6), 3) == 2 
        x(j, 30) = 1; 
    end; 
    if mod(floor(z(j, 6)/3),3) == 0 
        x(j, 31) = 1; 
         
    elseif mod(floor(z(j, 6)/3),3) == 1 
        x(j, 32) = 1; 
         
    elseif mod(floor(z(j, 6)/3),3) == 2 
        x(j, 33) = 1; 
    end; 
    if mod(floor(floor(z(j, 6)/3)/3),3) == 0 
        x(j, 34) = 1; 
    elseif mod(floor(floor(z(j, 6)/3)/3),3) == 1 
        x(j, 35) = 1; 
    elseif mod(floor(floor(z(j, 6)/3)/3),3) == 2 
        x(j, 36) = 1; 
    end; 
    %z(7)N 
    x(j, 37) = mod(z(j, 7), 10)*0.1; 
    x(j, 38) = floor(z(j, 7)/10)*0.1; 
    %z(8) O 
    x(j, (39+z(j, 8))) = 1; 
    %z (9) P 
    x(j, 55)=z(j, 9)/12; 
    %z (10) Q 
    x(j, 56)= mod(z(j,10), 10)*0.1; 
    x(j, 57)=mod(floor(z(j, 10)*0.1), 10)*0.1; 
    x(j, 58)=floor(z(j, 10)*0.01)*0.1; 
    %z (11) R 
    x(j, 59)= mod(z(j,11), 10)*0.1; 
    x(j, 60)=mod(floor(z(j, 11)*0.1), 10)*0.1; 
    x(j, 61)=floor(z(j, 11)*0.01)*0.1; 
    %z (12) S 
    x(j, 62) = z(j, 12)/5; 
    %z(13) T 
    x(j, (63+z(j, 13))) = 1; 
    %z(14) U 
    x(j, 66) = z(j, 14)/5; 
    %z(15) V 
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    y=[x(j, 56), x(j, 57), x(j, 58)]; 
    x(j, 67)=y(mod(z(j, 15), 3)+1); 
    x(j, 68)=y(mod(floor(z(j, 15)/3),3)+1); 
    x(j, 69)=y(mod(floor(floor(z(j, 15)/3)/3),3)+1); 
    %z(16)W 
    x(j, 70)=mod(z(j, 16), 10)*0.1; 
    x(j, 71)=mod(floor(z(j, 16)*0.1), 10)*0.1; 
    x(j, 72) = floor(z(j, 16)*0.01)*0.1; 
    %z(17)X 
    x(j, (73+z(j, 17))) = 1; 
    %z(18)Y 
    x(j, 76)=z(j, 18)/3; 
    %z(19) Z 
    x(j, 77)=y(mod(z(j, 19), 3)+1); 
    x(j, 78)=y(mod(floor(z(j, 19)/3),3)+1); 
    x(j, 79)=y(mod(floor(floor(z(j, 19)/3)/3),3)+1); 
    %z(20) AA 
    x(j, 80)=mod(z(j, 20), 10)*0.1; 
    x(j, 81)=mod(floor(z(j, 20)*0.1), 10)*0.1; 
    x(j, 82) = floor(z(j, 20)*0.01)*0.1; 
     
end; 
x=x'; 
end 

judge.m 

function x = judge (z) 
  
%this script takes a matrix of NN compatible inputs (in the 82 integer format) and 
%passes them through each of the neural networks,  
%daniel pitman 2014 
  
h=size(z); 
w=h(2); 
h=h(1); 
  
error=0; 
  
%is z in 82 format? 
if (h==82) && (w == 82) 
    disp('82 interger format assuming variables are vertical');     
elseif (h~=82) && (w == 82) 
    disp ('82 integer format but will be transposed'); 
    z=z'; 
elseif (h==82) && (w ~= 82) 
    disp ('82 integer format but no transposing neccesary'); 
elseif (h~=82) && (w ~= 82) 
    disp ('Error - data is in the wrong format'); 
    error=1; 
     
end; 
  
  
  
if error ~= 1 
    %function based version of neural net simulation compatible with compiler 
    a=simBIOFnet(z); 
    b=simEEGFnet(z); 
    c=simLIKFnet(z); 
    d=simTAGCnet(z); 
     
    %a bit of parsing 
    for j = 1:  size(d, 2) 
        M=d(:, j); 
        [ bb, ix ] = sort( M, 'descend' ); 
        d(:, j)=0; 
        for k = 1:4 
            d(ix(k), j)=1; 
        end; 
    end; 
    %bring the tables together and report 
    x=[a ; b ; c ; d]; 
end; 
end 
 

simBIOFnet.m 

function [y1] = simBIOFnet(x1) 
%SIMBIOFNET neural network simulation function. 
% 
%  
% [y1] = simBIOFnet(x1) takes these arguments: 
%   x = 82xQ matrix, input #1 
% and returns: 
%   y = 7xQ matrix, output #1 
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% where Q is the number of samples. 
  
%#ok<*RPMT0> 
  
  % ===== NEURAL NETWORK CONSTANTS ===== 
   
  % Input 1 
  x1_step1_xoffset = 
[0;0;0;0;0;0;0;0;0.25;0.25;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0
;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0]; 
  x1_step1_gain = 
[2;2;2;2;2;2;2;2;2.66666666666667;2.66666666666667;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2
;2;2;2;2;2.22222222222222;2.22222222222222;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2.22222222222222;
2.22222222222222;2.22222222222222;2.22222222222222;2.22222222222222;2.22222222222222;2;2;2;2;2
;2.22222222222222;2.22222222222222;2.22222222222222;2.22222222222222;2.22222222222222;2.222222
22222222;2;2;2;2;2.22222222222222;2.22222222222222;2.22222222222222;2.22222222222222;2.2222222
2222222;2.22222222222222]; 
  x1_step1_ymin = -1; 
   
%(the list of weights for the following layers are extremely long, and have been excluded in 
print for practical reasons) 
 
  % Layer 1 
  b1 = [0.0083569848519827808;-0.0031274966019145486;… ]; 
  IW1_1 = [0.0024100434761767904 0.0060097415606493888… ];  
 
   
  % Layer 2 
  b2 = [-0.060311067158879211;0.031319003088078702;… ]; 
  LW2_1 = [-0.050920446032986573 0.023251668878365883…  ]; 
 
   
  % Output 1 
  y1_step1_ymin = -1; 
  y1_step1_gain = [1;1;1;1;1;1;1]; 
  y1_step1_xoffset = [-1;-1;-1;-1;-1;-1;-1]; 
   
  % ===== SIMULATION ======== 
   
  % Dimensions 
  Q = size(x1,2); % samples 
   
  % Input 1 
  xp1 = mapminmax_apply(x1,x1_step1_gain,x1_step1_xoffset,x1_step1_ymin); 
   
  % Layer 1 
  a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1); 
   
  % Layer 2 
  a2 = repmat(b2,1,Q) + LW2_1*a1; 
   
  % Output 1 
  y1 = mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin); 
end 
  
% ===== MODULE FUNCTIONS ======== 
  
% Map Minimum and Maximum Input Processing Function 
function y = mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin) 
  y = bsxfun(@minus,x,settings_xoffset); 
  y = bsxfun(@times,y,settings_gain); 
  y = bsxfun(@plus,y,settings_ymin); 
end 
  
% Sigmoid Symmetric Transfer Function 
function a = tansig_apply(n) 
  a = 2 ./ (1 + exp(-2*n)) - 1; 
end 
  
% Map Minimum and Maximum Output Reverse-Processing Function 
function x = mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin) 
  x = bsxfun(@minus,y,settings_ymin); 
  x = bsxfun(@rdivide,x,settings_gain); 
  x = bsxfun(@plus,x,settings_xoffset); 
end 

 
 

simEEGFnet.m 

function [y1] = simEEGFnet(x1) 
%SIMEEGFNET neural network simulation function. 
% 
%  
% [y1] = simEEGFnet(x1) takes these arguments: 
%   x = 82xQ matrix, input #1 
% and returns: 
%   y = 5xQ matrix, output #1 
% where Q is the number of samples. 
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%#ok<*RPMT0> 
  
  % ===== NEURAL NETWORK CONSTANTS ===== 
   
  % Input 1 
  x1_step1_xoffset = 
[0;0;0;0;0;0;0;0;0.25;0.25;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0
;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0]; 
  x1_step1_gain = 
[2;2;2;2;2;2;2;2;2.66666666666667;2.66666666666667;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2
;2;2;2;2;2.22222222222222;2.22222222222222;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2.22222222222222;
2.22222222222222;2.22222222222222;2.22222222222222;2.22222222222222;2.22222222222222;2;2;2;2;2
;2.22222222222222;2.22222222222222;2.22222222222222;2.22222222222222;2.22222222222222;2.222222
22222222;2;2;2;2;2.22222222222222;2.22222222222222;2.22222222222222;2.22222222222222;2.2222222
2222222;2.22222222222222]; 
  x1_step1_ymin = -1; 
 
%(the list of weights for the following layers are extremely long, and have been excluded in 
print for practical reasons) 
 
  % Layer 1 
  b1 = [-0.00026837059421779707;0.0027490534340656589;  …]; 
  IW1_1 = [0.00012976728762139716 -0.014158279982624873  …]; 
   
  % Layer 2 
  b2 = [-0.0017919281790146299;-0.086698114187520894;  …]; 
  LW2_1 = [0.090439168098039702 -0.0093490772034676133  …]; 
   
  % Output 1 
  y1_step1_ymin = -1; 
  y1_step1_gain = 
[1.37931034482759;4.44444444444444;2.40963855421687;1.33333333333333;4.44444444444444]; 
  y1_step1_xoffset = [-0.71;-0.2;-0.29;-0.73;-0.25]; 
   
  % ===== SIMULATION ======== 
   
  % Dimensions 
  Q = size(x1,2); % samples 
   
  % Input 1 
  xp1 = mapminmax_apply(x1,x1_step1_gain,x1_step1_xoffset,x1_step1_ymin); 
   
  % Layer 1 
  a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1); 
   
  % Layer 2 
  a2 = repmat(b2,1,Q) + LW2_1*a1; 
   
  % Output 1 
  y1 = mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin); 
end 
  
% ===== MODULE FUNCTIONS ======== 
  
% Map Minimum and Maximum Input Processing Function 
function y = mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin) 
  y = bsxfun(@minus,x,settings_xoffset); 
  y = bsxfun(@times,y,settings_gain); 
  y = bsxfun(@plus,y,settings_ymin); 
end 
  
% Sigmoid Symmetric Transfer Function 
function a = tansig_apply(n) 
  a = 2 ./ (1 + exp(-2*n)) - 1; 
end 
  
% Map Minimum and Maximum Output Reverse-Processing Function 
function x = mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin) 
  x = bsxfun(@minus,y,settings_ymin); 
  x = bsxfun(@rdivide,x,settings_gain); 
  x = bsxfun(@plus,x,settings_xoffset); 
end 
 
 

simLIKFnet.m 

function [y1] = simLIKFnet(x1) 
%SIMLIKFNET neural network simulation function. 
% 
%  
% [y1] = simLIKFnet(x1) takes these arguments: 
%   x = 82xQ matrix, input #1 
% and returns: 
%   y = 9xQ matrix, output #1 
% where Q is the number of samples. 
  
%#ok<*RPMT0> 
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  % ===== NEURAL NETWORK CONSTANTS ===== 
   
  % Input 1 
  x1_step1_xoffset = 
[0;0;0;0;0;0;0;0;0.25;0.25;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0
;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0]; 
  x1_step1_gain = 
[2;2;2;2;2;2;2;2;2.66666666666667;2.66666666666667;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2
;2;2;2;2;2.22222222222222;2.22222222222222;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2.22222222222222;
2.22222222222222;2.22222222222222;2.22222222222222;2.22222222222222;2.22222222222222;2;2;2;2;2
;2.22222222222222;2.22222222222222;2.22222222222222;2.22222222222222;2.22222222222222;2.222222
22222222;2;2;2;2;2.22222222222222;2.22222222222222;2.22222222222222;2.22222222222222;2.2222222
2222222;2.22222222222222]; 
  x1_step1_ymin = -1; 
   
%(the list of weights for the following layers are extremely long, and have been excluded in 
print for practical reasons) 
   
  % Layer 1 
  b1 = [0.0015126609741011507;-0.01378324579748802; …]; 
      IW1_1 = [-0.0088382264038172759 -0.0048981897555301825 …]; 
  % Layer 2 
  b2 = [-0.029921079401091049;0.0049106138259782453; …]; 
  LW2_1 = [-0.090793906886305772 0.10568794194880675  …]; 
   
  % Output 1 
  y1_step1_ymin = -1; 
  y1_step1_gain = [2;2;2;2;2;2;2;2;2]; 
  y1_step1_xoffset = [0;0;0;0;0;0;0;0;0]; 
   
  % ===== SIMULATION ======== 
   
  % Dimensions 
  Q = size(x1,2); % samples 
   
  % Input 1 
  xp1 = mapminmax_apply(x1,x1_step1_gain,x1_step1_xoffset,x1_step1_ymin); 
   
  % Layer 1 
  a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1); 
   
  % Layer 2 
  a2 = repmat(b2,1,Q) + LW2_1*a1; 
   
  % Output 1 
  y1 = mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin); 
end 
  
% ===== MODULE FUNCTIONS ======== 
  
% Map Minimum and Maximum Input Processing Function 
function y = mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin) 
  y = bsxfun(@minus,x,settings_xoffset); 
  y = bsxfun(@times,y,settings_gain); 
  y = bsxfun(@plus,y,settings_ymin); 
end 
  
% Sigmoid Symmetric Transfer Function 
function a = tansig_apply(n) 
  a = 2 ./ (1 + exp(-2*n)) - 1; 
end 
  
% Map Minimum and Maximum Output Reverse-Processing Function 
function x = mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin) 
  x = bsxfun(@minus,y,settings_ymin); 
  x = bsxfun(@rdivide,x,settings_gain); 
  x = bsxfun(@plus,x,settings_xoffset); 
end 
 

simTAGCnet.m 

function [y1] = simTAGCnet(x1) 
%SIMTAGCNET neural network simulation function. 
% 
% 
% [y1] = simTAGCnet(x1) takes these arguments: 
%   x = 82xQ matrix, input #1 
% and returns: 
%   y = 50xQ matrix, output #1 
% where Q is the number of samples. 
  
%#ok<*RPMT0> 
  
  % ===== NEURAL NETWORK CONSTANTS ===== 
   
  % Input 1 
  x1_step1_xoffset = 
[0;0;0;0;0;0;0;0;0.25;0.25;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0
;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0]; 
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  x1_step1_gain = 
[2;2;2;2;2;2;2;2;2.66666666666667;2.66666666666667;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2
;2;2;2;2;2.22222222222222;2.22222222222222;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2.22222222222222;
2.22222222222222;2.22222222222222;2.22222222222222;2.22222222222222;2.22222222222222;2;2;2;2;2
;2.22222222222222;2.22222222222222;2.22222222222222;2.22222222222222;2.22222222222222;2.222222
22222222;2;2;2;2;2.22222222222222;2.22222222222222;2.22222222222222;2.22222222222222;2.2222222
2222222;2.22222222222222]; 
  x1_step1_ymin = -1; 
   
%(the list of weights for the following layers are extremely long, and have been excluded in 
print for practical reasons) 
 
  % Layer 1 
  b1 = [-1.6063606855947747;-1.6202590147823288; …];  
  IW1_1 = [0.13441176976767255 0.18281823804068265 …]; 
  
  % Layer 2 
  b2 = [0.26242223005678944;-0.89590065634591398; …];  
  LW2_1 = [-0.57796284381775742 -0.2324463588647622  …]; 
   
  % Output 1 
  y1_step1_ymin = -1; 
  y1_step1_gain = 
[2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2
;2;2;2]; 
  y1_step1_xoffset = 
[0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0
;0;0;0]; 
   
  % ===== SIMULATION ======== 
   
  % Dimensions 
  Q = size(x1,2); % samples 
   
  % Input 1 
  xp1 = mapminmax_apply(x1,x1_step1_gain,x1_step1_xoffset,x1_step1_ymin); 
   
  % Layer 1 
  a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1); 
   
  % Layer 2 
  a2 = repmat(b2,1,Q) + LW2_1*a1; 
   
  % Output 1 
  y1 = mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin); 
end 
  
% ===== MODULE FUNCTIONS ======== 
  
% Map Minimum and Maximum Input Processing Function 
function y = mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin) 
  y = bsxfun(@minus,x,settings_xoffset); 
  y = bsxfun(@times,y,settings_gain); 
  y = bsxfun(@plus,y,settings_ymin); 
end 
  
% Sigmoid Symmetric Transfer Function 
function a = tansig_apply(n) 
  a = 2 ./ (1 + exp(-2*n)) - 1; 
end 
  
% Map Minimum and Maximum Output Reverse-Processing Function 
function x = mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin) 
  x = bsxfun(@minus,y,settings_ymin); 
  x = bsxfun(@rdivide,x,settings_gain); 
  x = bsxfun(@plus,x,settings_xoffset); 
end 

scoring.m  

function R = scoring(db, contextfile, resultsize) 
  
%Here the context file which contains the affective state is intepretted. 
% 
%Scoring takes the current pool and organises a list of the top entries  
%in order acording to the affective state's outlines. 
  
score=zeros(1, size(db, 2)); 
  
   for i= 1: size(contextfile, 1) 
         
       feature=contextfile(i, 1); 
       threshold = contextfile(i, 2); 
       sign = contextfile(i, 3); 
       if contextfile (i, 4) == 1 
           weight = 1; 
       else 
           weight = i; 
       end; 
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    %If the boolean is Less Than 
       if sign == 0 
           for j = 1: size(db, 2) 
               if db(feature, j) < threshold 
                   score(1, j)=score(1, j)+weight/i; 
               %else 
                    
               end;  
           end; 
       end; 
    %If the boolean is Greater Than 
       if sign == 1 
           for j = 1: size(db, 2) 
               if db(feature, j) > threshold 
                   score(1, j)=score(1, j)+weight/i; 
               %else 
                  
               end; 
           end; 
       end; 
      
     %If the boolean is Close Too 
       if sign == 2 
           for j = 1: size(db, 2) 
               if db(feature, j) - threshold < 0.1 && db(feature, j) - threshold > -0.1  
                   score(1, j)=score(1, j)+weight/i; 
              % else 
            
               end; 
           end; 
       end; 
       
       %If the boolean is Exactly Equal Too  
       if sign == 3 
           for j = 1: size(db, 2) 
               if db(feature, j) == threshold  
                   score(1, j)=score(1, j)+weight/i; 
               %else 
                    
               end; 
           end; 
       end; 
        
    %If the boolean is Tagged 
       if sign == 4 
           for j = 1: size(db, 2) 
               if db(feature, j) > 0 
                   score(1, j)=score(1, j)+weight/i; 
              % else 
             
               end; 
           end; 
       end; 
       
    %put results in order 
       [ bb, ix ] = sort( score, 'descend' ); 
       R=[ix(1:resultsize);bb(1:resultsize)]; 
          
        
   end; 
    
end 

report.m 

function x = report(score, seed) 
  
%Results from the scores are matches to their original 20 part seeds. 
  
ss=size(score, 2); 
  
    for i = 1 : ss 
        x (:, i)=seed(:, score(1, i)); 
    end; 
end 
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Appendix B- Data Collected 

It is impractical to present such a huge database in print, however on the accompanying 

digital media can be found the database file created by the GUI after all data was collected, an 

excel spread sheet which overviews the data used and highlights excluded entries, and a 

Matlab file containing the edited training data used to train the neural networks.  

Appendix C- Generating Affective Music 

Instructions for generating affective music: 

1. Run the AACr GUI - Use either Cycling 74‟s Max 5, or the Max 5 runtime. 

2. Run algorithm loading script - load the main algorithm script into the Supercollider 

IDE. Evaluate the file. This will load all the required algorithms scripts and initiate a 

connection to the GUI. The “Algorithm OSC” light will light up on the GUI. 

3. Select a MIDI device in the GUI - This may be tested by generating a random seed 

and playing it in the Playback controls of the GUI. A virtual Piano device is 

recommended. 

4. Load the Neural Network Server - Either run the “AAC_NNserver.exe” executable 

file (for windows) or run the uncompiled script „AAC_NNserver.m‟ in Matlab itself. 

Click start, and confirm that the “Neural Network Server Connected” light is on in the 

GUI. Select a pool size, and wait for the analysis process to complete. The process is 

complete when the “Affect Designer” interface is no longer greyed out. 

5. Define an affective state - Do this by either manually choosing affect aspects and 

thresholds from the shopping cart interface, or by clicking on the “Import Biosensors” 

button (preferably while some biosensors are being worn) 

6. Generate a Playlist - By selecting a playlist size, and then clicking on the “Generate 

Playlist” button, the required affective state is sent to the Neural Network Servers and 
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compared to the scores of the seeds within the current pool. The returned playlist will 

contain the highest scoring seeds first.  

7. Playback – In the “Playlist” control panel, select the “<|” button to force the playlist 

to return to the first track. Checking “autocue” will make the AACr play each track in 

turn without prompting, or tracks can be selected using the mouse. “Repeats” defines 

the number of times each track is played before stopping playback or proceeding to 

the next track in the list. 

 

In the digital accompaniment is a demonstration video. It covers some basic instructions for 

setting up the AACr, demonstrates manually and automatically generating the desired 

affective targets from biosensors, and using the Neural Network Server to generate a playlist 

to suit that affective target. 

 The resulting piece is included as audio, with a playlist and affective state file that can be 

loaded back into the AACr interface, also shown here: 

Affective Target 

0, "BIO Bpm Change Close to 0.301284 1 / 1 "; 

1, "BIO Breath Rate Close to 0.301284 1 / 1 "; 

2, "BIO Skin Cndct Close to 0.301284 1 / 1 "; 

3, "EEG Frustration Less Than -0.336023 1 / 1 "; 

4, "EEG Meditation Less Than 0.301495 1 / 1 "; 

5, "EEG Engagemnt Close to 0.332305 1 / 1 "; 

6, "LIK Rhthm Complex Less Than 0.332305 1 / 1 "; 

7, "LIK Outstanding Greater Than 0.200201 1 / 1 "; 

8, "LIK Positivity Close to -0.460319 1 / 1 "; 

9, "TAG machine Is Tagged -0.460319 1 / 1 "; 

11, "TAG stress Is Tagged -0.460319 1 / 1 "; 
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Playlist Generated 

1, 15 3 4 6 1 5 94 5 4 689 437 4 2 3 9 747 1 1 16 639; 

2, 15 12 3 8 2 1 58 8 0 409 253 5 2 1 14 812 1 2 18 131; 

3, 3 15 12 8 1 5 72 12 3 167 555 1 2 0 5 608 1 3 6 569; 

4, 7 13 6 0 2 17 59 14 1 995 770 3 2 4 25 345 0 3 9 850; 

5, 14 12 6 8 2 10 83 13 11 329 511 5 2 1 4 291 1 1 21 463; 

6, 14 13 1 0 0 2 78 1 12 389 478 5 0 5 23 701 2 1 22 184; 

7, 15 4 5 2 1 4 95 10 9 13 372 4 2 5 23 785 1 3 10 716; 

8, 13 15 13 0 3 4 8 13 4 567 646 5 2 2 1 231 2 3 18 138;  
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Appendix D- Unsupervised Output 

These pieces were generated by the AACr without supervision, as a demonstration of the 

AACr‟s immediate output. A brief description, discussion, and specifications for each track 

are provided here. Copies of the playlists, affect settings, and recordings are provided on the 

accompanying digital media. 

It‟s worth noting that several gaps are apparent, where passages with no notes (or few 

notes) have been generated. It was not intended by the programmer that passages have no 

notes, but the algorithm has proven to be quite capable of breaking out of expected behaviour, 

and in the case of silence, this might be a more of a feature than a bug, in keeping with Cage‟s 

philosophy on silence. Several of the arpeggio hand-modes are known to leave the range of a 

typical keyboard, tempos often defy the maximum speed of the action of a piano, and some 

passages may have notes but with no velocity.  

It most cases, addressing such bugs is a straight forward and largely anticipated 

developmental task, but in the case of an AAC algorithm, it is essential that the 

implementation of variables to musical output remain consistent once training has taken 

place, limiting what bugs can actually be fixed without interfering with the predictive aspects 

of the system. Thus, these demonstrations must unfortunately be presented flaws-and-all, in 

order to justly relay the underlying ability of the system. 
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Searching for Machine  

Method 

Manually defined affective state, playlist consists of top ten responses. 

Description 

A composition generated by the AACr in response to a manually entered affective target. This 

piece is a collection of ten passages (selected entirely without supervision) that are supposed 

to invoke an emotionally positive response, not increase your hand sweat, but are very likely 

to feature the tag "Machine". 

 

Playlist generated 

1, 2 5 0 7 3 7 80 14 10 660 355 5 0 3 7 919 0 3 15 283; 

2, 1 9 2 7 3 24 18 14 1 43 672 0 0 3 8 502 1 1 14 572; 

3, 15 1 3 5 1 9 50 14 6 54 176 2 1 2 25 899 1 3 23 353; 

4, 8 3 3 5 2 3 4 7 8 72 952 1 2 0 25 724 2 1 7 280; 

5, 5 2 15 6 0 6 93 1 3 417 361 1 2 5 24 719 2 1 25 350; 

6, 12 14 3 7 0 6 59 11 3 230 70 0 0 1 18 880 1 1 6 114; 

7, 9 1 15 4 2 24 11 10 1 585 968 4 1 4 1 3 2 2 7 103; 

8, 2 9 2 0 0 24 40 12 6 148 445 0 0 2 20 515 0 2 9 37; 

9, 6 0 3 8 0 25 75 7 0 172 29 4 0 2 7 526 1 0 5 294; 

10, 1 0 9 5 3 24 14 11 1 223 614 4 1 1 0 469 0 3 0 86; 
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Good vs. Evil  

Method 

Manually defined affective state, playlist consists of top ten responses. 

Description 

A composition generated by the AACr in response to a manually entered affective target. This 

piece is a collection of 10 passages (selected entirely without supervision) that are supposed 

to be theatrical, mildly engaging, and are very likely to invoke the tag words "Good" or 

"Evil". 

 

Playlist generated 

1, 1 3 9 7 0 7 83 4 1 338 685 2 0 2 19 91 1 3 9 485; 

2, 5 6 8 5 0 23 7 11 2 29 288 1 1 3 24 557 1 1 15 185; 

3, 4 0 0 5 0 22 54 4 1 252 728 1 0 3 19 170 0 3 13 65; 

4, 13 7 11 5 3 3 58 12 11 128 949 1 0 5 21 583 1 1 20 233; 

5, 13 0 0 4 2 21 32 10 9 809 318 2 2 2 5 696 0 0 3 58; 

6, 1 0 9 5 2 26 16 0 8 98 153 0 2 0 24 812 1 2 1 664; 

7, 2 6 1 1 2 13 55 12 7 78 636 5 0 2 8 870 1 3 19 306; 

8, 5 6 8 1 3 13 2 11 10 550 281 4 1 3 3 748 1 0 5 351; 

9, 2 15 10 3 1 22 53 12 7 80 960 2 0 4 18 794 0 2 22 182; 

10, 5 8 8 5 2 7 8 14 1 9 630 2 1 2 4 203 2 2 6 291; 
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Appendix E- Soundtrack for Fritz Lang’s Metropolis  

 

Figure 23 - A scene from Fritz Lang's Metropolis 

 

The pieces in this section are provided as demonstration of the AACr as a compositional aide. 

The three compositions here are intended to accompany three famous scenes from the silent 

film, Metropolis by Fritz Lang, (1927). The version referred to here is the restored version by 

Universum Film, (2003). 

For each moment in the film, a very detailed target affective state was defined to attempt to 

match the film‟s intent, and the most appropriate of between 3-7 suggestions was chosen for 

each moment. The whole result is a combination of each of these affective targets. Despite 

being „supervised‟, these compositions are still intended to reflect the more immediate results 

of the AACr to the affective states provided, thus the foremost passages outputted by the 

system were preferred unless flawed somehow. 

There was some minor editing to line up the music with the film but nothing that changes 

the music generated. The score arrangements attempt to reflect the pieces as much as possible, 

although have been „cleaned up‟ to be readable. There are often no clear time signatures (thus 

4/4 is often used by default) and key signatures are occasionally unclear, often being modal, 

chromatic, or atonal.  
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There are a few passages that leave the playable range of a lot of manual or small pianos, 

and passages that are probably too fast to play. It was decided to leave these passages in 

place, rather than re-arrange them for human players as digital instruments will have no 

trouble replicating these scores. Justly demonstrating the abilities of the system is the priority 

here. Players should simply ignore out of range notes, or play every alternate chord when the 

tempo exceeds the maximum speed of the piano‟s action.  

The accompanying digital media has the video files of the film scenes (where copyright 

permits) with music audio synced, audio only files, PDF versions of the scores, and AACr 

compatible playlists and affect design files. 

The timestamps included reference the 2003 restored version of the film, 2.30:11 in length. 
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Moloch!  

(Starting at 13:29) Freder has descended into the worker‟s city only to be confronted by a 

horrific accident that wounds and kills workers. Freder is confronted by hallucinations of the 

machine taking the likeness of Moloch; a demon of metal and soulless industry who demands 

human sacrifices to be appeased. 

This particular scene was chosen, for its dramatic scenes, action, and mechanical rhythmic 

movement. 

Playlist 

1, 15 12 2 1 3 16 30 13 0 175 821 5 2 5 9 499 0 0 4 925; 

2, 6 7 11 7 1 26 62 5 12 900 549 0 2 0 5 343 0 2 16 812; 

3, 4 11 9 7 1 6 44 10 4 939 645 2 2 4 26 132 2 3 17 887; 

4, 8 14 10 1 3 25 92 14 1 742 746 4 1 1 0 497 0 3 0 35; 

5, 4 4 5 7 0 9 0 8 12 621 54 3 1 1 11 347 2 0 16 804; 

6, 8 13 7 2 3 7 99 15 7 681 568 3 1 0 24 725 1 0 6 579; 

7, 0 4 8 2 3 24 1 5 3 513 740 3 2 3 3 675 1 3 7 835; 

 

Affective Target for Part 1 

0, "BIO Hrv Change Close to 0.000000 1 / 1 "; 

1, "BIO Breath Sizes Close to 0.000000 1 / 1 "; 

2, "BIO Skin Cndct Close to 0.000000 1 / 1 "; 

3, "EEG Frustration Less Than -0.090000 1 / 1 "; 

4, "EEG Meditation Greater Than 0.410000 1 / 1 "; 

5, "EEG Engagemnt Greater Than 0.410000 1 / 1 "; 

6, "LIK Rhthm Complex Close to 0.020000 1 / 1 "; 

7, "LIK Repeatblty Greater Than 0.640000 1 / 1 "; 

8, "LIK Outstanding Greater Than 0.640000 1 / 1 "; 

9, "TAG dark Is Tagged 0.800000 1 / 1 "; 

10, "TAG lonely Is Tagged 0.800000 1 / 1 "; 

11, "TAG machine Is Tagged 0.800000 1 / 1 "; 

12, "TAG forest Is Tagged 0.800000 1 / 1 "; 

 

Affective Target for Part 2 

0, "BIO Bpm Change Close to 0.300000 1 / 1 "; 

1, "BIO Breath Sizes Close to 0.300000 1 / 1 "; 

2, "BIO Skin Cndct Close to 0.300000 1 / 1 "; 

3, "EEG Meditation Less Than 0.000000 1 / 1 "; 

4, "EEG ST Exctmnt Close to 0.510000 1 / 1 "; 

5, "EEG Engagemnt Close to 0.350000 1 / 1 "; 

6, "LIK Rhthm Complex Close to 0.352000 1 / 1 "; 

7, "LIK Repeatblty Close to 0.954000 1 / 1 "; 

8, "LIK Thematicism Close to 0.520000 1 / 1 "; 



128 Pitman 

9, "LIK Outstanding Close to 0.730000 1 / 1 "; 

11, "TAG machine Is Tagged -0.098000 1 / 1 "; 

12, "TAG dark Is Tagged -0.098000 1 / 1 "; 

13, "TAG hammer Is Tagged -0.098000 1 / 1 "; 

14, "TAG trickle Is Tagged -0.098000 1 / 1 "; 

 

Affective Target for Part 3 

0, "BIO Bpm Change Close to 0.300000 1 / 1 "; 

1, "BIO Breath Sizes Close to 0.300000 1 / 1 "; 

2, "BIO Skin Cndct Close to 0.300000 1 / 1 "; 

3, "EEG Meditation Less Than 0.000000 1 / 1 "; 

4, "EEG ST Exctmnt Close to 0.510000 1 / 1 "; 

5, "EEG Engagemnt Close to 0.350000 1 / 1 "; 

6, "LIK Rhthm Complex Close to 0.352000 1 / 1 "; 

7, "LIK Repeatblty Close to 0.954000 1 / 1 "; 

8, "LIK Thematicism Close to 0.520000 1 / 1 "; 

9, "LIK Outstanding Close to 0.730000 1 / 1 "; 

11, "TAG machine Is Tagged -0.098000 1 / 1 "; 

12, "TAG dark Is Tagged -0.098000 1 / 1 "; 

13, "TAG hammer Is Tagged -0.098000 1 / 1 "; 

 

Affective Target for Part 4 

0, "BIO Bpm Change Greater Than 1.235272 1 / 1 "; 

1, "BIO hrv Percent Greater Than 1.235272 1 / 1 "; 

2, "BIO Breath Sizes Greater Than 1.235272 1 / 1 "; 

3, "BIO Skin Cndct Greater Than 1.235272 1 / 1 "; 

4, "EEG Frustration Greater Than 1.235272 1 / 1 "; 

5, "LIK Rhthm Complex Greater Than 1.235272 1 / 1 "; 

6, "LIK Positivity Less Than -0.210000 1 / 1 "; 

7, "TAG choppy Is Tagged -0.210000 1 / 1 "; 

8, "TAG stress Is Tagged -0.210000 1 / 1 "; 

9, "TAG machine Is Tagged -0.210000 1 / 1 "; 

10, "TAG loud Is Tagged -0.210000 1 / 1 "; 

 

Affective Target for Part 5 

0, "BIO Bpm Change Precisely 0.000000 1 / 1 "; 

1, "BIO Breath Rate Precisely 0.000000 1 / 1 "; 

2, "BIO Skin Cndct Precisely 0.000000 1 / 1 "; 

3, "BIO Temp change Greater Than 0.300000 1 / 1 "; 

4, "EEG Meditation Greater Than 0.300000 1 / 1 "; 

5, "EEG LT Exctmnt Greater Than 0.300000 1 / 1 "; 

6, "EEG Engagemnt Greater Than 1.235272 1 / 1 "; 

7, "LIK Repeatblty Greater Than 1.109300 1 / 1 "; 

8, "LIK Thematicism Close to 0.000000 1 / 1 "; 

9, "LIK Cadential Greater Than 0.760000 1 / 1 "; 

11, "TAG demon Is Tagged 0.760000 1 / 1 "; 

12, "TAG poetry Is Tagged 0.760000 1 / 1 "; 
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13, "TAG manic Is Tagged 0.760000 1 / 1 "; 

14, "TAG train Is Tagged 0.760000 1 / 1 "; 

 

Affective Target for Part 6 

0, "BIO Bpm Change Precisely 0.000000 1 / 1 "; 

1, "BIO Breath Rate Precisely 0.000000 1 / 1 "; 

2, "BIO Skin Cndct Precisely 0.000000 1 / 1 "; 

3, "BIO Temp change Greater Than 0.300000 1 / 1 "; 

4, "EEG Meditation Greater Than 0.300000 1 / 1 "; 

5, "EEG LT Exctmnt Greater Than 0.300000 1 / 1 "; 

6, "EEG Engagemnt Greater Than 1.235272 1 / 1 "; 

7, "LIK Repeatblty Greater Than 1.109300 1 / 1 "; 

8, "LIK Thematicism Close to 0.000000 1 / 1 "; 

9, "LIK Cadential Greater Than 0.760000 1 / 1 "; 

11, "TAG demon Is Tagged 0.760000 1 / 1 "; 

12, "TAG poetry Is Tagged 0.760000 1 / 1 "; 

13, "TAG manic Is Tagged 0.760000 1 / 1 "; 

14, "TAG train Is Tagged 0.760000 1 / 1 "; 

 

Affective Target for Part 7 

0, "BIO Bpm Change Close to -0.211896 1 / 1 "; 

1, "BIO Skin Cndct Close to -0.211896 1 / 1 "; 

2, "BIO Breath Rate Greater Than 0.140000 1 / 1 "; 

3, "BIO Temp change Less Than 0.000000 1 / 1 "; 

4, "EEG Meditation Greater Than 0.362000 1 / 1 "; 

5, "EEG ST Exctmnt Less Than 0.000000 1 / 1 "; 

6, "LIK Rhthm Complex Less Than 0.000000 1 / 1 "; 

7, "LIK Affective Close to 0.817000 1 / 1 "; 

8, "TAG smooth Is Tagged 0.817000 1 / 1 "; 

9, "TAG poetry Is Tagged 0.817000 1 / 1 "; 

11, "TAG death Is Tagged 0.817000 1 / 1 "; 

12, "TAG fear Is Tagged 0.817000 1 / 1 "; 
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Maria’s Dance  

(Starting 1:30.11) A robot designed to imitate Maria, the prophet of the workers, is sent to 

seduce and corrupt the wealthy and powerful men of Metropolis with a hypnotic dance. 

Simultaneously, bed ridden Ferder suffers fever induced hallucinations of the figure of Death 

and a coming apocalypse. 

The combination of hypnotic dancing themes and undertones of madness and apocalyptic 

visions makes this a particularly interesting challenge for affective target design.  

Playlist 

1, 3 8 0 5 0 19 49 5 2 852 569 0 0 4 17 619 1 2 13 47; 

2, 1 7 0 6 2 5 67 8 11 558 901 2 1 2 6 929 1 1 11 702; 

3, 15 13 14 8 2 20 77 8 6 192 593 1 0 5 16 863 1 3 19 180; 

4, 6 0 12 7 1 5 33 11 12 126 420 1 2 3 12 617 1 3 21 635; 

5, 2 14 13 6 3 14 5 15 10 284 673 3 2 0 4 191 0 1 11 840; 

6, 12 15 14 0 2 19 99 12 5 76 337 2 2 2 21 732 2 3 9 955; 

7, 1 7 2 7 2 22 26 14 12 339 881 3 0 4 5 558 1 1 9 310; 

8, 7 12 9 8 2 16 58 1 0 648 448 4 1 1 25 448 0 2 17 201; 

 

Affective Target for Part 1 

0, "BIO Bpm Change Less Than 0.100000 1 / 1 "; 

1, "BIO Skin Cndct Less Than 0.100000 1 / 1 "; 

2, "EEG ST Exctmnt Close to 0.190000 1 / 1 "; 

3, "LIK Dancey Close to 0.209800 1 / 1 "; 

4, "LIK Positivity Close to 0.000000 1 / 1 "; 

5, "TAG bright Is Tagged 0.650000 1 / 1 "; 

6, "TAG glide Is Tagged 0.650000 1 / 1 "; 

7, "TAG green Is Tagged 0.650000 1 / 1 "; 

8, "TAG quiet Is Tagged 0.650000 1 / 1 "; 

9, "LIK Repeatblty Close to 0.800000 1 / 1 "; 

10, "TAG trickle Is Tagged 0.800000 1 / 1 "; 

 

Affective Target for Part 2 

0, "BIO Hrv Change Close to 0.450000 1 / 1 "; 

1, "BIO Breath Rate Less Than 0.000000 1 / 1 "; 

2, "BIO Temp change Less Than 0.000000 1 / 1 "; 

3, "BIO Skin Cndct Greater Than 0.137000 1 / 1 "; 

4, "EEG ST Exctmnt Greater Than 0.378000 1 / 1 "; 

5, "EEG Engagemnt Greater Than 0.378000 1 / 1 "; 

6, "EEG Meditation Greater Than 0.000000 1 / 1 "; 

7, "LIK Rhthm Complex Close to 0.291000 1 / 1 "; 

8, "LIK Outstanding Close to 0.588000 1 / 1 "; 

9, "LIK Positivity Close to 0.000000 1 / 1 "; 
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11, "TAG deity Is Tagged 0.384000 1 / 1 "; 

12, "TAG machine Is Tagged 0.384000 1 / 1 "; 

13, "TAG white Is Tagged 0.384000 1 / 1 "; 

14, "TAG quiet Is Tagged 0.384000 1 / 1 "; 

15, "TAG sky Is Tagged 0.384000 1 / 1 "; 

 

Affective Target for Part 3 

0, "BIO Hrv Change Close to 0.461000 1 / 1 "; 

1, "BIO Skin Cndct Close to 0.461000 1 / 1 "; 

2, "BIO Temp change Less Than 0.000000 1 / 1 "; 

3, "EEG ST Exctmnt Close to 0.297000 1 / 1 "; 

4, "LIK Dancey Greater Than 0.833000 1 / 1 "; 

5, "LIK Rhthm Complex Less Than 0.440000 1 / 1 "; 

6, "LIK Thematicism Close to 0.503000 1 / 1 "; 

7, "EEG Frustration Less Than 0.000000 1 / 1 "; 

8, "LIK Positivity Close to 0.000000 1 / 1 "; 

9, "TAG celebration Is Tagged 0.000000 1 / 1 "; 

11, "TAG yellow Is Tagged 0.000000 1 / 1 "; 

12, "TAG rising Is Tagged 0.000000 1 / 1 "; 

13, "TAG sky Is Tagged 0.000000 1 / 1 "; 

 

Affective Target for Part 4 

0, "BIO Hrv Change Greater Than 0.290000 1 / 1 "; 

1, "BIO Breath Sizes Greater Than 0.290000 1 / 1 "; 

2, "BIO Skin Cndct Greater Than 0.610000 1 / 1 "; 

3, "EEG Frustration Greater Than 0.610000 1 / 1 "; 

4, "EEG Meditation Close to 0.610000 1 / 1 "; 

5, "EEG ST Exctmnt Less Than 0.279000 1 / 1 "; 

6, "EEG Engagemnt Greater Than 0.279000 1 / 1 "; 

7, "LIK Thematicism Greater Than 0.940000 1 / 1 "; 

8, "LIK Cadential Greater Than 0.600000 1 / 1 "; 

9, "LIK Positivity Less Than 0.000000 1 / 1 "; 

11, "TAG demon Is Tagged 0.000000 1 / 1 "; 

12, "TAG poetry Is Tagged 0.000000 1 / 1 "; 

13, "TAG loud Is Tagged 0.000000 1 / 1 "; 

 

Affective Target for Part 5 

0, "BIO Hrv Change Close to 0.000000 1 / 1 "; 

1, "BIO Breath Rate Close to 0.000000 1 / 1 "; 

2, "BIO Skin Cndct Close to 0.000000 1 / 1 "; 

3, "EEG LT Exctmnt Close to 0.000000 1 / 1 "; 

4, "EEG Engagemnt Close to 1.235272 1 / 1 "; 

5, "LIK Dancey Close to 1.100000 1 / 1 "; 

6, "LIK Thematicism Close to 1.100000 1 / 1 "; 

7, "LIK Cadential Close to 1.100000 1 / 1 "; 

8, "LIK Outstanding Close to 1.100000 1 / 1 "; 

9, "LIK Positivity Less Than 0.011000 1 / 1 "; 
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11, "TAG gushing Is Tagged 0.011000 1 / 1 "; 

12, "TAG math Is Tagged 0.011000 1 / 1 "; 

13, "TAG hammer Is Tagged 0.011000 1 / 1 "; 

14, "TAG hate Is Tagged 0.011000 1 / 1 "; 

 

Affective Target for Part 6 

0, "BIO Bpm Change Greater Than 0.649000 1 / 1 "; 

1, "BIO Breath Rate Less Than 0.010000 1 / 1 "; 

2, "BIO Skin Cndct Close to 1.235272 1 / 1 "; 

3, "EEG Frustration Less Than 0.150000 1 / 1 "; 

4, "EEG ST Exctmnt Greater Than 0.750000 1 / 1 "; 

5, "EEG Engagemnt Greater Than 0.750000 1 / 1 "; 

6, "LIK Dancey Greater Than 0.750000 1 / 1 "; 

7, "LIK Repeatblty Greater Than 0.750000 1 / 1 "; 

8, "LIK Chordal Greater Than 0.400000 1 / 1 "; 

9, "LIK Affective Close to 0.270000 1 / 1 "; 

11, "TAG evil Is Tagged 0.270000 1 / 1 "; 

12, "TAG deity Is Tagged 0.270000 1 / 1 "; 

13, "TAG math Is Tagged 0.270000 1 / 1 "; 

14, "TAG loud Is Tagged 0.270000 1 / 1 "; 

15, "TAG manic Is Tagged 0.270000 1 / 1 "; 

 

Affective Target for Part 7 

0, "BIO Bpm Change Greater Than 0.960000 1 / 1 "; 

1, "BIO Breath Sizes Greater Than 0.960000 1 / 1 "; 

2, "BIO Skin Cndct Greater Than 0.960000 1 / 1 "; 

3, "EEG Frustration Less Than 0.000000 1 / 1 "; 

4, "EEG ST Exctmnt Greater Than 0.960000 1 / 1 "; 

5, "LIK Thematicism Greater Than 0.960000 1 / 1 "; 

6, "LIK Chordal Greater Than 0.960000 1 / 1 "; 

7, "LIK Outstanding Greater Than 0.960000 1 / 1 "; 

8, "LIK Positivity Close to -0.211896 1 / 1 "; 

9, "LIK Affective Greater Than 0.940000 1 / 1 "; 

11, "TAG choppy Is Tagged 0.940000 1 / 1 "; 

12, "TAG hammer Is Tagged 0.940000 1 / 1 "; 

13, "TAG train Is Tagged 0.940000 1 / 1 "; 

14, "TAG horse Is Tagged 0.940000 1 / 1 "; 

 

Affective Target for Part 8 

0, "TAG death Is Tagged -0.211896 1 / 1 "; 

1, "TAG poetry Is Tagged -0.211896 1 / 1 "; 

2, "TAG hammer Is Tagged -0.211896 1 / 1 "; 

3, "BIO Skin Cndct Close to 0.630000 1 / 1 "; 

4, "BIO Bpm Change Close to 0.630000 1 / 1 "; 

5, "EEG Frustration Close to -0.211896 1 / 1 "; 

6, "LIK Positivity Close to -0.211896 1 / 1 "; 

7, "TAG dark Is Tagged -0.211896 1 / 1 "; 
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8, "LIK Rhthm Complex Close to 0.300000 1 / 1 "; 

9, "TAG loud Is Tagged 0.300000 1 / 1 "; 

11, "LIK Cadential Greater Than 0.300000 1 / 1 "; 
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Reunion/Final Scene  

(Starting 2.21:58) Rothwang the scientist, driven by an insane confusion between his now 

destroyed robot and Maria herself, falls to his death after fighting with Freder. Maria and 

Freder are finally reunited and are able to mediate a final truce between the workers and the 

city‟s elite. 

For this last piece, the AACr‟s approach to more dramatic and emotional affect states is 

tested with the target affects designed to mimic or reinforce the subtler emotional drama of 

the couple as lovers and the two factions struggling to find grounds for peace. 

Where the other pieces have been generated without limitations of producing music that is 

playable by a human performer, this piece was specifically limited to be playable by human 

performers. 

Playlist 

1, 15 11 13 5 3 5 76 3 5 610 801 2 1 1 1 362 2 0 15 420; 

2, 3 1 15 6 1 16 5 2 0 569 354 5 0 3 20 875 0 2 15 262; 

3, 3 3 13 3 0 1 64 15 5 41 649 5 1 1 20 16 2 1 20 802; 

4, 15 3 13 7 2 17 60 7 1 649 433 5 0 5 3 667 1 1 8 267; 

5, 5 0 11 7 3 25 94 3 5 812 601 4 2 1 26 432 1 0 24 871; 

6, 11 3 15 2 0 26 72 13 3 410 249 1 2 2 11 6 2 3 24 198; 

7, 5 5 13 6 1 11 9 13 10 555 779 5 2 4 0 781 2 2 20 520; 

8, 2 6 1 7 0 13 90 11 3 630 930 5 0 2 10 303 0 3 23 579; 

9, 1 0 14 0 1 16 38 9 10 95 273 4 1 2 9 899 0 1 3 224; 

 

Affective Target for Part 1 

0, "BIO Bpm Change Close to 0.000000 1 / 1 "; 

1, "BIO Skin Cndct Close to 0.000000 1 / 1 "; 

2, "BIO Breath Rate Close to 0.250000 1 / 1 "; 

3, "EEG ST Exctmnt Close to 0.550000 1 / 1 "; 

4, "EEG Frustration Close to -0.211896 1 / 1 "; 

5, "LIK Outstanding Close to 0.250000 1 / 1 "; 

6, "LIK Positivity Close to -0.211896 1 / 1 "; 

7, "TAG machine Is Tagged -0.211896 1 / 1 "; 

8, "TAG healing Is Tagged -0.211896 1 / 1 "; 

9, "TAG falling Is Tagged -0.211896 1 / 1 "; 

10, "TAG driven Is Tagged -0.211896 1 / 1 "; 

 

Affective Target for Part 2 

0, "BIO Bpm Change Close to 0.700000 1 / 1 "; 

1, "BIO Skin Cndct Close to 0.700000 1 / 1 "; 
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2, "EEG ST Exctmnt Close to 0.700000 1 / 1 "; 

3, "EEG Engagemnt Close to 0.700000 1 / 1 "; 

4, "EEG Meditation Close to -0.054000 1 / 1 "; 

5, "LIK Thematicism Close to 1.235272 1 / 1 "; 

6, "TAG rising Is Tagged 1.235272 1 / 1 "; 

7, "TAG stress Is Tagged 1.235272 1 / 1 "; 

8, "TAG driven Is Tagged 1.235272 1 / 1 "; 

9, "TAG good Is Tagged 1.235272 1 / 1 "; 

 

Affective Target for Part 3 

0, "BIO Skin Cndct Close to 1.235272 1 / 1 "; 

1, "BIO hrv Percent Close to 1.235272 1 / 1 "; 

2, "EEG Frustration Close to 1.235272 1 / 1 "; 

3, "EEG ST Exctmnt Close to 1.235272 1 / 1 "; 

4, "LIK Thematicism Close to 1.235272 1 / 1 "; 

5, "LIK Cadential Close to 1.235272 1 / 1 "; 

6, "LIK Positivity Close to 0.000000 1 / 1 "; 

7, "LIK Outstanding Close to 1.235272 1 / 1 "; 

8, "TAG falling Is Tagged 1.235272 1 / 1 "; 

9, "TAG destruction Is Tagged 1.235272 1 / 1 "; 

11, "TAG trickle Is Tagged 1.235272 1 / 1 "; 

 

Affective Target for Part 4 

0, "TAG love Is Tagged 1.235272 1 / 1 "; 

1, "TAG healing Is Tagged 1.235272 1 / 1 "; 

2, "TAG good Is Tagged 1.235272 1 / 1 "; 

3, "TAG smooth Is Tagged 1.235272 1 / 1 "; 

4, "BIO Bpm Change Close to -0.170000 1 / 1 "; 

5, "BIO Skin Cndct Close to 0.000000 1 / 1 "; 

6, "EEG Engagemnt Close to 0.720000 1 / 1 "; 

7, "LIK Outstanding Close to 0.720000 1 / 1 "; 

8, "LIK Positivity Close to 0.210000 1 / 1 "; 

9, "LIK Thematicism Close to 0.730000 1 / 1 "; 

 

Affective Target for Part 5 

0, "TAG gushing Is Tagged 1.000000 1 / 1 "; 

1, "TAG stress Is Tagged 1.000000 1 / 1 "; 

2, "TAG poetry Is Tagged 1.000000 1 / 1 "; 

 

Affective Target for Part 6 

0, "TAG poetry Is Tagged 1.000000 1 / 1 "; 

1, "TAG healing Is Tagged 1.000000 1 / 1 "; 

2, "TAG easy Is Tagged 1.000000 1 / 1 "; 

3, "TAG earth Is Tagged 1.000000 1 / 1 "; 

4, "TAG good Is Tagged 1.000000 1 / 1 "; 

5, "TAG green Is Tagged 1.000000 1 / 1 "; 

6, "BIO Bpm Change Close to 0.000000 1 / 1 "; 
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7, "BIO Skin Cndct Close to 0.000000 1 / 1 "; 

8, "BIO Breath Rate Close to 0.000000 1 / 1 "; 

9, "LIK Rhthm Complex Close to 0.460000 1 / 1 "; 

11, "LIK Thematicism Close to 0.810000 1 / 1 "; 

12, "LIK Positivity Close to 0.810000 1 / 1 "; 

13, "EEG Engagemnt Close to 0.810000 1 / 1 "; 

 

Affective Target for Part 7 

0, "TAG poetry Is Tagged 1.000000 1 / 1 "; 

1, "TAG healing Is Tagged 1.000000 1 / 1 "; 

2, "TAG easy Is Tagged 1.000000 1 / 1 "; 

3, "TAG earth Is Tagged 1.000000 1 / 1 "; 

4, "TAG good Is Tagged 1.000000 1 / 1 "; 

5, "TAG green Is Tagged 1.000000 1 / 1 "; 

6, "BIO Bpm Change Close to 0.000000 1 / 1 "; 

7, "BIO Skin Cndct Close to 0.000000 1 / 1 "; 

8, "BIO Breath Rate Close to 0.000000 1 / 1 "; 

9, "LIK Rhthm Complex Close to 0.460000 1 / 1 "; 

11, "LIK Thematicism Close to 0.810000 1 / 1 "; 

12, "LIK Positivity Close to 0.810000 1 / 1 "; 

13, "EEG Engagemnt Close to 0.810000 1 / 1 "; 

 

Affective Target for Part 8 

0, "TAG love Is Tagged 0.610000 1 / 1 "; 

1, "TAG celebration Is Tagged 0.610000 1 / 2 "; 

2, "LIK Cadential Greater Than 0.666000 1 / 3 "; 

3, "LIK Positivity Greater Than 0.666000 1 / 4 "; 

4, "LIK Outstanding Greater Than 0.666000 1 / 5 "; 

 

Affective Target for Part 9 

0, "BIO hrv Percent Close to 0.520000 1 / 1 "; 

1, "EEG LT Exctmnt Close to 0.520000 1 / 2 "; 

2, "EEG Engagemnt Close to 0.520000 1 / 3 "; 

3, "LIK Dancey Close to 0.520000 1 / 4 "; 

4, "LIK Chordal Close to 0.520000 1 / 5 "; 

5, "LIK Outstanding Close to 0.520000 1 / 6 "; 

6, "LIK Positivity Close to 0.520000 1 / 7 "; 

7, "TAG good Is Tagged 0.520000 1 / 8 "; 

8, "TAG loud Is Tagged 0.520000 1 / 9 "; 

9, "TAG easy Is Tagged 0.520000 1 / 10 "; 
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