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Numerical Modeling of 3.5 um Dual-Wavelength
Pumped Erbium Doped Mid-Infrared Fiber Lasers

Andrew Malouf, Ori Henderson-Sapir, Member, IEEE, Martin Gorjan, David J. Ottaway

Abstract—The performance of mid-infrared Er**-doped fiber
lasers has dramatically improved in the last few years. In this
paper we present a numerical model that provides valuable
insight into the dynamics of a dual-wavelength pumped fiber
laser that can operate on the 3.5 pm and 2.8 um bands. This
model is a much needed tool for optimizing and understanding
the performance of these laser systems. Comparisons between
simulation and experimental results for three different systems
are presented.

Index Terms—Laser, fiber, optics, optical, infrared, mid-
infrared, erbium, Er**, ZBLAN, numerical, model, simulation,
optimization, 3.5 um, 2.8 um, dual-wavelength.

I. INTRODUCTION

EW mid-infrared laser sources will enable significant
Nadvances in a wide range of applications including
spectroscopy [1], remote sensing [2], non-invasive medical
diagnosis [3], and defense countermeasure [4]. The mid-
infrared spectral range is of particular interest in molecular
spectroscopy [5], since strong absorption features of many
molecules (including hydrocarbons) are found there. The
fundamental absorption lines for molecules containing bonds
between hydrogen and carbon, nitrogen or oxygen are located
between 2.8 um and 4 um [5].

Dual-wavelength pumping (DWP) of an Er**-doped
ZBLAN fluoride glass fiber is an efficient method of enabling
a 3.5 um laser at room temperature. This method takes
advantage of long-lived excited states that cause bottlenecks
which normally limit laser performance [6]. Recent work has
demonstrated that emission between 3.3 um and 3.8 um can be
achieved on the *Fq /2 —4 1, /2 transition when DWP is used
[7].

A numerical model has been developed to provide valuable
insight into laser performance, the significance of competing
processes, and the interactions that occur at the atomic and
photonic level. The model can be used to analyze system
design and predict optimum fiber specifications.

Several numerical models have been developed to study
lasers that operate on the 2.8 um transition in Er**-doped fiber
lasers. Gorjan et al. [8] numerically investigated the signifi-
cance of interionic processes in Er**-doped ZBLAN while Li
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et al. [9] numerically optimized parameters such as doping
concentration. We present a model that has been developed
and experimentally validated against three published DWP
systems [6], [7], [10] operating on the 3.5 pum transition. We
discuss the factors that limit their performance and methods
of optimization. The model can be adapted to any fiber laser
system.

The paper is organized as follows: Section II introduces
the scientific and mathematical basis of the numerical model.
Section IIT describes the validation procedure for the model. In
Section IV we discuss the findings and potential optimizations.
Finally, conclusions are presented in Section V.

II. BASIS OF NUMERICAL MODEL

The energy level transitions in Er** that are associated with
the DWP system are illustrated in Fig. 1 [7], [11]. Most
decay processes are omitted for brevity but would simply be
represented by arrows connecting each excited state to each
level below it. A comparison of conventional pumping (CP)
[12] and DWP [6] techniques used to generate 3.5 um lasing
(L) are included in the left of Fig. 1. The CP technique pumps
ions from ground level 415 s2 (1) directly to the upper laser
level *Fy /2 (5) using one 655 nm pump source (Pgs5nm)-
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Fig. 1. The energy levels of erbium ions showing DWP transitions due to
pump absorption of the first (P1) and second (P2) pumps, 2.8 um lasing
(L1), 3.5 um lasing (L2), and energy transfer processes Wijk1. A comparison
between conventional pumping (CP) and dual-wavelength pumping (DWP)
techniques is illustrated on the left. Two important multi-phonon (MP) decay
processes are illustrated while other decay processes are omitted for brevity.

The DWP technique uses a pump source with a wavelength
of 966-985 nm [7], [10] (P1) to excite ions from the ground
level 4115/2 (1) to level 4111/2 (3), and a pump source with a
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wavelength of 1973-1976 nm [7], [10] (P5) to excite ions from
levels *I11 /5 (3) to *Fyg 5 (5). DWP takes advantage of the long
lifetime of level *I;; /2 (3) which acts as an elevated “virtual”
ground state and cycles ions between levels I 72 (3) and
1F, /2 (5). DWP significantly increases efficiency compared
with CP since less energy is wasted by decay from level *I;; /2
(3) back to the ground state. Low P, powers enable lasing at
2.8 um (Ly) on the Iy, /5 —* L1355 transition.

A numerical model, titled “Fiber Laser Atomic and Photonic
Populations” (FLAPP), was developed in MATLAB [13] to
solve the rate equations listed in Section II-E. This model is
mathematically similar to that described by Gorjan et al. [8].

This model solves the atomic and photonic populations at
discrete sections of the fiber. This is achieved by dividing the
fiber into a number of length elements n as illustrated in Fig. 2.
The rate equations are solved at each time step for each length
element using the fourth order Runge-Kutta (RK4) method.
Time and space are coupled such that the time step At is
defined as the time required for light to traverse a single fiber
element of length AL = % [8]. The photonic populations are
shifted one length element at each time step. At the fiber ends,
these populations are reflected from, or transmitted through,
the resonator mirrors.

L
AL ——
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- direct At = AL"ere 4+ directi
-’ direction o +' direction
—

Fig. 2. Numerical iteration of photon propagation in a fiber divided into n
length elements. Photons propagate in the ‘+’ or ‘—’ direction. ncore is the
refractive index of the fiber core and cq is the speed of light in a vacuum.
The time step At is defined as the time required for light to traverse a single
fiber element of length AL = &

The model FLAPP is an enhancement of that developed
by Gorjan et al. [8] because it solves the rate equations for
a single 2D population matrix that contains all populations
of all fiber elements. This results in a significant reduction
in computational time. The model also uses 3D parameter
matrices so that parameters may be varied for multiple parallel
simulations.

A. Pump absorption

The first pump has a wavelength between 966 nm [10] and
985 nm [6] depending on the experiment and is labeled P;.
This pump launches photons into either the core [6] or the
inner cladding [7], [10] at one end of the fiber. The ions
that absorb these pump photons are excited from energy level
4115/2 (1) to level 4111/2 (3) by ground state absorption (GSA).

The second pump, Py, has a wavelength between 1973 nm
[6] and 1976 nm [10] depending on the experiment and is
launched into the fiber core. The ions in level I, /2 (3) that
absorb photons from the second pump are excited to level
iFy /2 (5). The model allows for pumping from either end of
the fiber or from both ends simultaneously.

There are two excited state absorption (ESA) processes
associated with the first pump - one from level *I;; /2 (3) to
level “F7/5 (7) and one from level *Iy/5 (4) to level “Fj o
followed by fast multi-phonon decay to level “F s2 (7). The
latter excited state absorption is treated as a direct transition
from levels *Ig /5 (4) to *F7 /5 (7) due to the fast multi-phonon
decay.

B. Relaxation

Each excited energy level has an intrinsic lifetime, 7, and
relaxation rate, r = 7~ which includes radiative (fluores-
cence) and non-radiative multi-phonon (MP) decay. Relaxation
from an upper level ¢ to a lower level j has an associated
branching ratio /3;; where Z;;ll Bi; = 1. Then the relaxation
rate 7;; from an upper level i to lower level j is given by

-1
rij = Bijri = BijT;

C. Lasing

Pump absorption of P; and P, photons creates a population
inversion between the *Iy /2 (4) and 1R, /2 (5) energy levels.
Spontaneous emission (radiative decay) from level F 72 (5)
to level 41 /2 (4) initiates lasing at a wavelength of 3.5 um.
Similarly, radiative decay from level “I1;,5 (3) to level *I;3 /5
(2) can initiate lasing at a wavelength of 2.8 um.

The rate of spontaneous emission R, is proportional to
the population of the upper laser level N,,q,. The rate of
stimulated emission R is proportional to the laser photon
density Fj,sc, multiplied by Npp.,. Note that laser photons
may be reabsorbed by ions in the lower laser level Niyyers
reducing the effective gain of stimulated emission. The rate
of absorption is proportional to Fj,ser and Njgyer. The cross
sections of these transitions are elaborated in Section II-F.

D. Interionic processes

Energy transfer processes are non-radiative energy ex-
changes that occur between ions. The significance of these
interactions is often dependent on doping concentration [14],
[15] which determines the mean spacing between ions and
hence the probability of interactions.

The relevant energy transfer process Wj;; describes the
non-radiative energy exchange between two ions initially in
levels ¢ and j that transition to levels k& and [. The energy
transfer processes in Er’**-doped ZBLAN that have been
published in literature are Wag14, Wi317, We142, and Wisge
[11], [14]. The rate W;;; is expressed in units of volume per
unit time.

E. Rate equations

The atomic and photonic rate equations are stated below
with spatial and time dependence omitted for brevity. A
detailed explanation of each term follows.

The atomic rate equations are:
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where V; is the population density of ions in energy level i,
Neore 1s the doping density of ions in the fiber core, F' is the
photonic population number density, and r;; is the intrinsic
relaxation rate from level 7 to j. Rp, aps,; is the rate of pump
absorption of pump Py with transitions from level ¢ to j and
Rp,se;; is the rate of stimulated emission of laser Ly with
transition from level i to j. Wj;; is the rate of interionic
interactions resulting in transitions from levels ¢ and j to k
and [.

The absorption and stimulated emission rates include the
populations of the upper and lower laser energy levels and the
cross sections of transitions between them.

RPkabSij =v (UPkabSij N; — UPkemjiNj) (9)
gi

RLk'Sei,j = ’L)O'Lkseij <b7,NL — gij]) (10)
J

=0 (0L emi; Ni — OLabs; V) (11)

_Co

where v = is the speed of light inside the fiber,
approximated to be constant for pump and laser wavelengths.
O Pabs;; aNd 0 pem;; are the effective cross sections of absorp-
tion and emission of pump Py for the transition between levels
i and j. o, se,; is the cross section of stimulated emission

of laser Ly for the transition from level ¢ to j. 0p,em,;
and o, qps;; are the effective cross sections of emission and
absorption of laser Ly. b; and b; are the Boltzmann factors of
the upper and lower laser sublevels 7 and j. g; and g; are the
degeneracies of the upper and lower laser sublevels.

For Er’** ions, each energy level is split into (2J + 1) /2
Stark levels, where J is the total angular momentum quantum
number, leaving Kramers degeneracy [16]. Therefore, the
Stark levels in Er’** (having odd number of electrons) have
degeneracies g; = g; = 2 [15].

Photonic population densities are calculated for propagation
in each of the ‘+’ and ‘-’ directions illustrated in Fig. 2.
Note that we calculate the photonic populations inside the core
only since only these populations are available to interact with
the Er** ions. The mode fields extend outside the core for
wavelengths that have fiber V' parameters smaller than 2.4
(see Section II-G) such that only the single transverse mode
is guided. Therefore, we include a mode overlap factor I" to
correct for rates of change of population density within the
core [17].

The photonic rate equations are:

dF3
7t :Fpl [—Rplabsm - RPlabs:n - RP1abS47} FIZ:":I
+ RPllossF‘}J;r1 (12)
dFE
df2 :sz [_szabS::.sF;’é] + RP?IOSSF}% (13)
dFf
dfl =17, [RLlsengl:i + RL15P32] + RLllossFitl (14
dFfE
dth :FLz [RL25654 Fi + RL25p54] + RL2ZOSSF2:2 (15)

where F'* is the density of pump Py of laser Ly photons
propagating in the ‘+’ direction and I" is the mode overlap
factor of the photon field as defined in Section II-G. Ry, 10ss
and Rp,joss are the loss rates of laser and pump photons.
Ry, sp;; is the spontaneous emission rate of laser Li photons
from level ¢ to j.

The rate term for spontaneous emission is given by

Jaccept
Ry, spi; = ac2cep fraarijNi
where f,ccept 1S the probability of acceptance of a spon-
taneously emitted photon being trapped in the fiber in either
direction of propagation, and f,.,4 is the probability that the
relaxation is radiative.

(16)

F. Cross sections

For two nondegenerate states of manifold sublevels ¢ and j,
the emission and absorption cross sections will be equal, i.e.,
045 = 0j; [18]. In the case of rare earth ions doped into a host,
any ‘level’ is actually a manifold of sublevels and a transition
of energy separation hv can occur between multiple pairs of
sublevels. The energy of each sublevel is slightly dependent
on the host because variations in the local electric fields cause
Stark shifts. The inhomogeneous nature of glass hosts means
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that effective sublevel energy positions are blurred rather than
discrete.

The populations of each sublevel is dependent on thermal
distribution and can be estimated by multiplication of the
total level population by the Boltzmann factor of the sublevel.
Therefore, a cross section must be defined at a particular
frequency within the spectral bandwidth of the transition.
A cross section derived from experimental measurement of
absorption or emission spectra is an effective cross section,
i.e., inclusive of the sublevel Boltzmann factor, at a given
temperature.

Measured energy level positions and Stark splitting of Er**
at 13 K are provided by Huang et al. [16] in units of cm™.
We use this data and the McCumber relation [19] to calculate
effective emission cross sections from absorption cross sec-
tions and vice versa. The McCumber relation considers that the
population of each sublevel is determined by the Boltzmann
population distribution and is expressed as follows:

Oem (V) 74 E. —hv € — hv
_ = 7 = 17
Cars (V) 22T ( KT ) op ( KT > 4

where o, and o,,s are the cross sections of emission
and absorption at frequency v for the transition between a
lower energy level 1 and an upper energy level 2. Z;, =
> ; €Xp (;—?’) are the partition functions of the lower and
upper energy levels that each form manifolds of sublevel ener-
gies I}, k is the Boltzmann constant, and 7" is the temperature,
assumed to be 300 K. E; is the zero-line energy difference
between levels 1 and 2, defined to be the energy separation
between the lowest sublevels of the two manifolds, and Av is
the photon energy. Letting ZL exp (£3+) = exp (75) in Eqn.
17, where € is a constant, shows that o, and o4 are equal
at only one frequency v.

G. Mode overlap

A Gaussian intensity profile is a good approximation for a
single mode field inside a step index fiber [17]. The intensity
of each mode has a central peak and tends to zero away from
longitudinal axis of the fiber. We define the mode overlap I”
at any given wavelength as the fraction of the power in the
mode that overlaps the core. Only the overlapped portion of
the mode is available to interact with the Er** ions. The entire
mode, however, will be affected by gain or loss as a result of
these interactions.

To estimate the mode overlap I" of single mode operation,
we take the approach of calculating the fraction of power
transmitted through a circular aperture of radius equal to the
fiber core radius a. This applies to the case of a lowest order
mode only, which is well approximated by a Gaussian beam.

The intensity I of a Gaussian beam inside the fiber at a
distance r from the longitudinal axis may be derived from the
equation for the complex wave amplitude @ (z,y, z) given by
Siegman [18]. Intensity is given by I(r) = Iyexp (—2;—22
where w is the mode field radius. Then, using integration by
substitution, we can calculate the mode overlap factor " as

the ratio of power inside the core P, of radius a to total

power in the mode P, oqe-
2
1 —exp (_2a2>
w

(18)
The mode field radius (or spot size) w for step index, single-
mode fibers is estimated by the Marcuse empirical formula

[20]:
2.879
T e

where V' is a parameter for step-index fibers defined by
V =2%q(NA) and NA is the numerical aperture.

The mode overlap I' of a highly multi-mode beam, such
as the clad pumping of a double clad fiber, is estimated to be
the ratio Acore/Aciad, Where A.ore and Ag,q are the cross
sectional areas of the core and clad and A.,q includes the
area of the core.

The relation between the photon density inside the core F
to total power in the mode P,,,q. is given by

2T I(r)rdrdg B

_ PCOT‘e _
— 0 —
o fooo I(r)rdrdg

Pmode

1.61
w%a<0.65+69

e (19)

Leore (V) Neore (V) Prode (V) Neore (V)

Fv)= =1"(v
@) hveg @) Ahveg
(20)
where v is the photon frequency, A is the cross sectional
area of the core, and I, = % is the mean intensity inside

the core in the transverse plane, i.e., the transverse intensity
profile inside the core is assumed to be uniform.

Any change in photon population is distributed throughout
the mode which extends beyond the fiber core. The mode
overlap factor is implemented in the photonic rate equations
to convert from rates of change of photon population in the
mode F),,q4e to rates of change of photon population inside
the fiber core F.

dF _AF

AFmode
St

—Ar (21)

H. Loss rate

The loss rate is calculated from an internal loss coefficient
that arises from scatter and absorption of pump and laser
photons due to the glass host. This loss rate does not include
transmission losses through resonator mirrors. The loss of laser
photons is given by:

(¢ (2))10s5 = P0€xXD (—z) (22)

where ¢ (z) is the number of photons (proportional to
power) at distance z along the fiber propagating in either
direction, ¢ is the number of photons at z = 0, and « is
the measured internal loss coefficient, assumed to be constant
along the length of the fiber. Therefore, the loss over a single
fiber element length AL in time step At is

exp (—aAL) —1

A _
<At>loss - At ¢0 (23)
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The rates of internal loss R;,ss from the photonic rate Eqns.
14 and 15 at each wavelength \ are given by

dF exp (—aAL)—1
( ) ~ Ry SREADZL
loss

dt At

Two types of resonator mitror losses are also implemented
in the model. The first is a scattering loss that reduces
transmission without affecting reflection. The second is a
reflection efficiency that reduces the effective mirror reflectivity
without affecting transmission.

III. SIMULATION PARAMETERS

The model, FLAPP, was tested on three experiments pub-
lished in literature with their respective properties listed in Ta-
ble I. The first experiment (H2014) [6] used a single clad fiber
manufactured by IR-Photonics (IRP). The second (H2016)
[7] and third (F2016) [10] experiments used the same design
double clad fiber manufactured by Le Verre Fluoré (LVF) that
had a lower doping. The first pump was launched into the inner
cladding and the second pump was launched into the core.
This double clad fiber has a circular inner cladding (diameter
260 um) with two parallel flats (separated by 240 pm). The
second experiment used discrete highly reflective (HR) and
output coupler (OC) mirrors butt-coupled to the fiber whereas
the third experiment used an all fiber geometry including a
fiber Bragg grating (FBG), written directly into the fiber, as
the output coupler.

TABLE I
EXPERIMENTAL PROPERTIES

Property H2014 [6] H2016 [7] F2016 [10] Unit
Manufacturer IRP LVF LVF
Cladding single double double
Er** 1.7 1.0 1.0 mol.%
a 5.25 8.25 8.25 pum
NA(core) 0.150 0.125 0.125
L 0.18 2.80 4.30 m
Roc(3.5 ym) 90 80 55 %
OC type mirror mirror FBG
Ry r(3.5 um) 99 99 90 %
HR type mirror mirror mirror
P power 0.194 2.0 6.5, 3.5 W
P pumping core clad clad
Ap, 985 971 966-974 nm
AP, 1973 1973 1976 nm

Tables II, III, and IV list the simulation parameters that were
sourced and calculated from multiple references, including
Refs. [8], [15], [16], [21]-[26]. Parameters found to be in good
agreement with multiple independent sources were held fixed
in the simulations. Such parameters include the absorption
cross section of Py, stimulated emission cross section of L,
mirror reflectivities at each wavelength, and intrinsic lifetimes
of levels 4113/2 (2) and *Iy4 /2 (3). Parameters with larger
uncertainties were altered independently, within their stated
uncertainties, to test their significance. These parameters were
likely to affect final results significantly if varied by 25% or so
from measured or published values. Such parameters include
absorption cross section of pump P,, stimulated emission

cross section of the 3.5 um laser transition, the cross relaxation
parameter Ws3g2, and lifetimes of levels *Io /5 (4) and *Fg /o

(5).

TABLE II
SIMULATION PARAMETERS OF PUMPS AND LASERS

Property H2014 H2016 F2016 Unit Ref.
[6] [71 [10]
Ap, 985 977 968 nm
Ap, 1973 1973 1976 nm
OPyabsis 9.30 19.5 8.56 10726 m? [23]
TPy absgr 2.00 9.30 307 10726 m? [23]
OPyabsyr 25.5 13.5 210 10726 m? [23]
O Pyabsss 30.0 30.0 300 10726 m? [21]
OP ems: 115 16.1 445 10726 m?  [16], [23]
OP emas 6.75 21.1 440 10726 m?  [16], [23]
OPLemay 47.8 17.4 170 10726 m2  [16], [23]
O Pyemss 36.1 36.1 375 10726 m?  [16], [21]
ALy 2800 2800 2800 nm
AL, 3470 3470 3440 nm
OLyemas 45.0 45.0 450 10726 m? [26]
OlLyemsy 12.0 12.0 108 10726 m? [12], [21]
bo 0210 0210 0210 [16]
b3 0350 0350 0350 [16]
by 0.575 0575 0427 [16]
bs 0435 0435 0308 [16]
Roc(3.5 um) 87 58 55 %
Ry r(3.5 um) 99 99 86 %
(3.5 um) 0.060  0.035  0.035 m~?!

The emission cross sections, op,em and op,em, of the
first and second pumps were calculated from absorption
measurements [21] using McCumber theory. The effective
stimulated emission cross section or,,en, Of the 3.5 pm laser
was estimated using the 3.5 pm fluorescence spectrum given
by Tobben [12] and the Fiichtbauer-Ladenburg equation [21].
The 3.5 um laser transitions, predicted from measured Stark
split energy levels [16], is shown in Fig. 3. The Boltzmann
factors b; of the Stark split upper and lower energy levels
were calculated using the partition function Z of each level as
follows:

o — =2 Gr) _ _exp (57)

Z > exp ( _k]% )

where £ is the Boltzmann constant and 7 is the temperature,
assumed to be 300 K. The Boltzmann factors b; were then
summed for each predicted laser transition for each level.

The simulation reflectivities of the butt-coupled mirrors are
lower than their specified values since the light is incident
from a ZBLAN fiber (refractive index n.,.. = 1.48) rather
than from air. The dielectric coatings of the mirrors used in
experiments H2014 [6] and H2016 [7] is proprietary informa-
tion and, therefore, we had to make our own predictions about
their composition and number of layers. We also performed
0° reflectivity measurements on the 90% and 80% output
couplers that resulted in 90 & 1% and 75 £ 1% respectively.
The simulation reflectivities were calibrated to give good
agreement with the slope efficiencies of experimental data.

The intrinsic lifetimes 7; and branching ratios 3;; in Er’*-
doped ZBLAN that were used in each simulation are listed in
Table III.

(25)
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Fig. 3. Stark splitting in Er3*-doped ZBLAN and predicted laser transitions
of lasers developed by Henderson-Sapir et al. [6], [7] (3470 nm) and Fortin et
al. [10] (3440 nm). Each arrow connects a pair of Stark levels that correspond
to the predicted transitions of the associated wavelengths. The energy data was
sourced from Ref. [16] and the assignment order of Stark levels was sourced
from Ref. [27].

TABLE III
SPECTROSCOPIC PARAMETERS OF ER3*

Parameters Value Source
T2 9.9 ms [24]
T3 7.9 ms [24]
T4 8.0 us [24]
5 177 us [24]
T6 530 ps [24]
T7 5.0 us [28]
B21 1 [24]
B3z, B31 0.182, 0.818 [24]
Bas, Ba1 0.999, 0.001 [24]
Bs4, Bs3, Bs2, Bs51 0.808, 0.008, 0.009, 0.175 [24]
Bes, Boa, Bos, B2, Be1 0.285, 0.029, 0.014, 0.193, 0.479  [24]
Bre, Br1 0.990, 0.010 [28]

The interionic parameters used in the simulations are listed
in Table IV and are consistent with the weakly interacting
regime in recent literature [8], [11], [15]. Interionic processes
in Er**-doped ZBLAN fibers are currently not fully understood
and a future direct measurement of their strength in fibers
(compared with bulk glass) would be beneficial. There are
discrepancies in literature regarding the rate values of the
significant processes and their dependence on doping con-
centration, particularly between bulk glass and fiber [8], [14],
[15], [24]. ZBLAN composition and quality of fiber draw may
vary between suppliers and draws. This variation may result in
different distributions of Er3*-ions [29] which affect the rates
at which interionic processes occur.

TABLE IV
SIMULATION PARAMETERS OF INTERIONIC PROCESSES

Parameters ~ Value (107 24m3s™1) Ref.
Waz14 0.40 [11], [15]
Wiasir 0.08 [11], [15]
We142 0.10 [11], [15]
Wis362 17.0 [11]

The upper and lower energy levels of the 3.5 pum laser

transition are highly populated in the DWP system compared
with the more common singly pumped 2.8 um Er**-doped
ZBLAN fiber laser. The work of Bogdanov [24] shows that
further processes, including reverse processes, are possible.
These processes could have a greater affect on the 3.5 um
DWP system than the 2.8 pm fiber laser. One example of
such a process is W3a51 [24] that would transfer ions from the
virtual ground state 4I;; /2 (3) to the upper laser level 4F, /2
(5). This process was not included in the model since, to the
best of our knowledge, no direct measurement of its value has
been made.

IV. MODEL VALIDATION

We identified a list of parameters that were either measured
directly or published in literature and held those parameters
fixed in simulations. We then varied the remaining variable
parameters slightly, within their published uncertainties or
our estimate of their bounds, until we found a cohesive set
of parameters that gave good agreement with experimental
results. These values were therefore maintained for the three
systems H2014 [6], H2016 [7], and F2016 [10].

Steady state results gave excellent agreement between the
cases where both pumps were switched on simultaneously and
where P; was switched on 20 ms prior to Ps. Therefore,
we switched both pumps on simultaneously for all presented
simulations. The number of fiber elements n chosen for each
system was determined by finding the minimum 7 such that
the variation between successive simulations was negligible.
These were NH2014 = 10, NH2016 = 28, and NF2016 = 43.

A. Time domain - H2014 [6]

In this section, we study the time evolution of the atomic
populations and intracavity laser power. We also show that
20 ms is sufficient time to reach steady state. In each of the
following two examples, the power of pump P; is held fixed
at 194 mW.

In Fig. 4 the atomic populations in the middle fiber element
are shown (left axis) as these approximate the mean population
along the fiber. The intracavity 3.47 um laser power midway
along the fiber, propagating in the ‘+’ direction, is also shown
(right axis). Pump P5 operates at 2 W CW.

The threshold condition for lasing is reached at around
1 ms, after which the laser power increases rapidly over the
following 4 ms. When threshold is reached, the population
in level 4Fy /2 (5) remains fairly constant beyond 1 ms. A
large population is bottlenecked in level 414 /2 (2) due to its
relatively long intrinsic lifetime of 72 = 9.9 ms. Therefore
steady state for this system is reached at around 20 ms, making
20 ms duration simulations sufficient for steady state analysis.

Intracavity laser power immediately after threshold is illus-
trated in Fig. 5. For both laser transitions, the well known
relaxation oscillations [18] are observed. The relaxation os-
cillations are stronger on the 2.8 pum laser emission than the
3.5 pm emission due to the higher stimulated emission cross
section on the 2.8 um transition. This means that 3.5 um
transition relaxation oscillations have a lower frequency and
damp out prior to full power being reached. The figure also
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Fig. 4. Modeled atomic populations of experiment H2014 by Henderson-
Sapir et al. [6]. The populations are calculated midway along the fiber in the
case where pump P1 operates at 194 mW and P2 operates at 2 W CW. The
intracavity 3.47 um laser power propagating in the ‘4’ direction is plotted
against the right axis.

illustrates that the 2.8 um laser operates at low power (20 mW
intracavity power) and is gradually suppressed by the build-up
of ions in its lower lasing level Ty 72 (2).
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Fig. 5. Modeled intracavity laser power of experiment H2014 by Henderson-
Sapir et al. [6] immediately after threshold of the 2.8 um and 3.47 pum lasers.
The power is calculated midway along the fiber in the case where pump
Py operates at 194 mW and P2 operates at 2 W CW. The figure illustrates
oscillatory behavior at each laser wavelength immediately after threshold. The
powers plotted are for lasers propagating in the ‘+’ direction only.

Lasing occurs at 2.8 um on the *I;1/5 —* I;3/o transition
when pump P is fixed at 194 mW and the power of Ps is low.
An interesting experimental observation occurs whilst pulsing
Py at low power in which lasers pulse alternately between
wavelengths of 3.47 um and 2.8 pm. Our simulations have
reproduced this behavior as illustrated in Fig. 6. This figure
shows the modeled intracavity laser power when pump Py is
pulsed at low power (200 mW peak) with 300 ps pulses at a
repetition rate of 1 kHz. For this phenomenon to be observed,
the power of P, needs to be low enough to retain a sufficient

population in the *I;; /2 (3) level between pulses to enable
lasing at 2.8 um.
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Fig. 6. Modeled intracavity laser power of experiment H2014 by Henderson-
Sapir et al. [6], [30] in low power pulsed operation. The power is calculated
midway along the fiber over a 10 ms simulation. Pump P2 operates at 200 mW
with 300 ps pulses at a repetition rate of 1 kHz. Lasers pulse alternately
between wavelengths of 2.8 ym and 3.47 um.

B. Laser output power - H2014 [6]

The model calculates pump and laser transmission in both
the ‘+’ and ‘—’ directions since both resonator mirrors are par-
tially transmissive at each of the pump and laser wavelengths.
In all of our simulations, the pumps are launched into the ‘—’
end of the fiber and the output coupler is located at the ‘4’
end of the fiber. Therefore, all transmission results that follow
are transmissions in the ‘4’ direction.

Modeled 3.47 um laser output power of experiment H2014
as a function of incident Py power is presented in Fig. 7.
The plot shows reasonable agreement between modeled and
experimental data for both CW and pulsed operation [30].
The modeled threshold power matches experiment well at just
above 100 mW. Modeled slope efficiencies and the non-linear
power saturations are also closely matched to experiment.
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Fig. 7. Modeled 3.47 pym laser output power of experiment H2014 by
Henderson-Sapir et al. [6] for CW and pulsed operation.
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When pulsed, the 1973 nm pump operated at a frequency
of 1 kHz and a duty cycle of 30%. The experimental pulse
power was determined by dividing the average transmitted
power (detected by a slow thermopile) by the duty cycle of
the pulse (0.3 in this case).

The model predicts a higher saturation level than seen in
experiment. This may be explained by a slight misalignment
of the fiber that develops at the pump input end due to thermal
expansion against the butt-coupled HR mirror. The fiber tip,
initially heated by P; core pumping, expands further with
increasing Po power since scattered pump light that is not
launched into the core is absorbed by the fiber coating. The
misalignment results in saturation of laser power.

C. Pump transmission - H2014 [6]

Modeled CW pump transmission of experiment H2014 is
presented in Fig. 8. Transmission of both pumps P; and Po
are shown. The plot shows good agreement between modeled
and experimental data for both pumps. Nearly all of the P,
power is absorbed before reaching the output coupler. The
transmission of pump Ps is dependent upon populations in
levels 4111/2 (3) and 4F9/2 (5) as well as pump absorption
and emission cross sections (see Eqn. 9). The calculated
populations in levels *Iy; /o (3) and *Fg5 (5) are dependent
on parameters that have considerable uncertainties including
launch efficiency, the cross relaxation rate Wssge, and the
lifetimes of the 3.5 um laser levels 1T, /2 (5) and Iy /2 (4).
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Fig. 8. Modeled CW pump transmission of experiment H2014 by Henderson-
Sapir et al. [6] for the 985 nm (P1) and 1973 nm (P2) pumps. The incident
power of P was held fixed at 194 mW while the incident power of P2 was
varied.

D. Laser output power - H2016 [7] and F2016 [10]

Modeled 3.5 um laser output powers of experiments H2016
and F2016 are presented in Fig. 9. The plot shows good
agreement between modeled and experimental data for each
simulation. In each simulation, the power of P; is held fixed
and the power of P is incremented by 500 mW from 0 W to
near the maximum power used in experiment.

The H2016 experiment is plotted against incident pump
power. The modeled launch efficiencies of pumps P; and Po
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Fig. 9. Modeled 3.5 pm laser output powers of experiments H2016 by
Henderson-Sapir et al. [7] and F2016 by Fortin et al. [10]. ‘H2.0’ refers to
the experiment H2016 in which P operated at 2.0 W. ‘F6.5’ and ‘F3.5’ refer
to experiments F2016 in which P operated at 6.5 W and 3.5 W respectively.

were 90% and 86% respectively. The F2016 experiments are
plotted against launched pump power by setting the launch
efficiency of P; to 100%. However, the launch efficiency of P
was set to 72% to match the slope efficiency of experimental
data. The modeled wavelength of P in experiment F2016 was
968 nm which gave good agreement with the power saturation
of ‘F3.5°.

V. DISCUSSION
A. Experiment H2014 by Henderson-Sapir et al. [6]

Modeled populations as functions of incident P» power are
presented in Fig. 10. These populations are averaged over the
length of the fiber once steady state has been reached. The
3.47 um laser output power is also overplotted against the
right axis to show the relation between laser output power
and steady state populations.

Below threshold, the population of the 4I;; /2 (3) level
decreases significantly with increasing Py power as its popula-
tion is pumped to the upper laser level F /2 (5). This decrease
is closely followed by a decrease in the population of level
“I13/2 (2), as relaxation from the depleting “I17,5 (3) level is
reduced. The population of the ground state increases as ions
are effectively returned to the ground state. This is most likely
due to ions in the now populated upper laser level *F, /2 (5)
returning to the ground state by radiative decay r5; = 989 1.
Another likely path is cross relaxation Wssg2 up to level 1S, /2
(6) followed by decay to the ground state, either directly
(re1 = 904 s1) or via level *I;3/5 (2) (re2 = 364 s™'). This
cross relaxation process becomes significant as the population
of the 4Fy /2 (5) level increases.

Once threshold is achieved, the population of the *Fy /2
(5) level is almost clamped due to gain saturation. Perfect
clamping is not achieved due to the accumulation of ions in
the lower laser level 41 /2 (4). Further increases in the rate of
stimulated emission cause this lower lasing state population to
gradually increase. This forces the population in level *Fg /2
(5) to slightly increase so that threshold round trip gain is
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Fig. 10. Modeled populations of experiment H2014 by Henderson-Sapir et
al. [6] as a function of P2 pump power. The populations are averaged over
the length of the fiber at the end of a 20 ms simulation. The 3.47 pm laser
output power is plotted against the right axis to show the relation between
laser output power and steady state populations.

maintained. Lasing causes a significant increase in the transfer
rate of ions from the *Ig /2 (4) state to the 4y /2 (3) state,
thereby limiting the effect on depopulation of this level by P5
pumping.

The non-linear behavior seen in Figs. 7 and 10 at P2 powers
greater than 1 W can be explained by power saturation due
to the limited supply of ions in level *I;; /2 (3) available for
pumping to the upper laser level *Fg /2 (5). Further evidence
of this is the increase in relative Po transmission seen in Fig.
8 above 1 W.

The gain medium becomes transparent to the P, pump
when the population of level 1;; /2 (3) is 20% higher than the
population of level *Fy /2 (5). This is calculated based on the
effective Po emission cross section that was calculated from
the effective pump absorption cross section using McCumber
theory. In Fig. 10, the ratio of populations in levels *I;; /2 3)
to 4F9/2 (5) is 1.75 when the incident P, power is 2.8 W. This
occurs because the population of the *I;; /2 (3) level decreases
and the population of the 1Ry /2 (5) level increases due to
bottlenecking of population in the I /2 (4) as mentioned
earlier. The population of the *I;; /2 (3) level is reduced in two
ways. Firstly, more ions are stored in the two levels above it.
Secondly, the increase in level *Fg /2 (5) increases the number
of ions that escape the cycle between the virtual ground state
4111/2 (3) and upper laser level 4F9/2 (5). This is because
the spontaneous emission rate from the *F /2 (5) level to the
ground state is nine times higher than decay from the 4I; /2
(3) level. The cross relaxation process Wssge increases this
further.

B. Parameter significance

In this section we investigate the impact of changes in the
lower laser level 41 /2 (4) lifetime and the energy exchange
process Wigsga. The benchmark values are those listed in
Tables IIT and IV. The steady state 3.47 um output power as
a function of incident P; pump power is presented in Fig. 11

for a variety of lower laser state lifetimes and Wjsg2 values.
In each case, the fiber is pumped by CW pump sources.

The intrinsic lifetime of the lower laser level is reduced by
factors of two and ten from the benchmark value 74 = 8.0 ps.
The results clearly show that a dominant limitation on laser
performance is the bottlenecking of ions in the lower laser
level I /2 (4) since the power saturation is removed when
the lifetime of this state is reduced by a factor of 10. Ions
that accumulate in this lower laser level *I /2 (4) are delayed
in their return to the virtual ground state “I;; /2 (3) and limit
the potential rate of Py absorption. The population of ions in
level “I, /2 (4) are available to absorb photons of the 3.5 um
transition and reduce the net rate of laser photon generation.
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Fig. 11. Modeled CW 3.47 um laser output powers as functions of Po pump
power based on variations of experiment H2014 by Henderson-Sapir et al.
[6]. The intrinsic lifetime 74 of the lower laser level 419 /2 (4) and the cross
relaxation parameter Wi362 are reduced by factors of 2 and 10 separately.

The cross relaxation parameter W32 is reduced by fac-
tors of two and ten from the benchmark value Wissgo =
17.0 x 10724 m3s~! [11]. The rate at which these interionic
interactions occur is proportional to the populations in levels
T /2 (3) and iF, s2 (5). This interionic process limits the
laser performance by depleting ions from the virtual ground
level 111/, (3) as well as the upper laser level “Fg /5 (5)
which reduces stimulated emission and pump absorption. The
plot of the reduced Wssgo = 1.7 x 1072* m3s~! illustrates
the negative effect this parameter has on laser performance
by reducing slope efficiency and increasing power saturation.
It is worth noting that significantly reducing this parameter
does not remove the power saturation completely as this is
dominated by the lower lasing state lifetime. The effect of this
energy transfer also reduces significantly when double clad
fibers and lower doping densities are used as described below.

To understand what processes are important in governing the
performance of the DWP laser, we calculated the transition
rates as functions of incident P pump power. The most
significant transition rates are averaged over the length of the
fiber and plotted in Fig. 12. The most significant transition is
from levels 111 5 (3) to *Fy 5 (5) by P2 pump absorption. The
non-linearity of this pump absorption, as well as stimulated
emission, illustrates power saturation due to depletion of ions
in level *I;; /2 (3) as discussed earlier. The population of the
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lower laser level 41 /2 (4) is fed mainly by stimulated emission
and non-radiative transitions from the 4F9/2 (5) level and
hence the rate of decay from this state grows with the power
of the second pump.
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Fig. 12. Modeled transition rates of experiment H2014 by Henderson-Sapir et
al. [6]. Rates are averaged over the length of the fiber and plotted as functions
of incident P2 pump power. The transitions are pump absorption of P1 and
P5 (P1 GSA and P2 ESA), stimulated emission (SE) of the 3.5 um laser, the
cross relaxation process Wis3g2, and the decay rates from the lower (4) and
upper (5) laser levels.

The variations in the transition rates as functions of incident
P, pump power around threshold are plotted in Fig. 13.
Below threshold, approximately 18% of ions in the upper laser
level 4Fg /2 (5) decay to the ground state, exiting the second
pump cycle. Beyond threshold of the 3.47 um laser, stimulated
emission increases sharply and causes a faster return of ions
to the 4111/2 (3) level.

At Py power levels below 70 mW the rate of stimulated
emission due to the 2.8 pm laser transition is more significant
than Ws362. Above 70 mW, the 2.8 pum laser is suppressed by
absorption of the Po pump and its subsequent reduction of the
1412 (3) population. The rate in which ions leave level *Fg o
(5) by the energy transfer process Wis3g2 rises until threshold
is reached at which point it flattens considerably. The rate in
which ions are excited by Py shows signs of initial saturation
until the threshold of the 3.47 um laser is reached and then it
resumes its linear increase.

C. Experiments H2016 by Henderson-Sapir et al. [7] and
F2016 by Fortin et al. [10]

The simulations F6.5 and F3.5 presented in Fig. 9 are
particularly sensitive to the wavelength of P; due to steep
variation in ground state absorption between 965 nm and
972 nm [23]. The P; source used in these experiments was
a 974 nm laser diode, however the actual wavelength of
operation was stated to be “closer to 966 nm at the low power
range used in these experiments” [10]. The wavelength 968 nm
provided the best fit to experimental data. This wavelength also
corresponds to the peak of the excited state absorption for the
S /2 = iF, /2 transition. The rate of excited state absorption
in the H2.0 simulation is more sensitive to variations in
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Fig. 13. Modeled transition rates of experiment H2014 by Henderson-Sapir
et al. [6] around threshold. The rates are averaged over the length of the fiber
and plotted as functions of incident Po pump power. The transitions are pump
absorption P1 and P2 (P1 GSA and P2 ESA), stimulated emission (SE) of
the 2.8 pm and 3.5 pm lasers, the cross relaxation process Ws362, and the
decay rates of the lower (4) and upper (5) laser levels.

wavelength since at 977 nm the change in cross section with
wavelength is significant.

Modeled transition rates of experiment H2016 [7] as func-
tions of incident P, pump power is plotted in Fig. 14. The rates
of stimulated emission and P absorption are closer to linearity
compared with those of the shorter 18 cm core-pumped fiber
in experiment H2014 [6]. This is due to the longer interaction
length of this 2.8 m fiber and the lower power density of P
in the core which prevents bleaching of the *Iy; 72 (3) level.
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Fig. 14. Modeled transition rates of experiment H2016 by Henderson-Sapir
et al. [7]. The rates are averaged over the length of the fiber and plotted as
functions of incident P2 pump power. The transitions are pump absorption of
Py and P2 (P1 GSA and P2 ESA), stimulated emission (SE) of the 3.5 um
laser, the cross relaxation process Wis3g2, and the decay rates of the lower
(4) and upper (5) laser levels.

The modeled laser output power as a function of fiber length
for fixed powers of both P; and P, is presented in Fig. 15.
The model predicts an optimal fiber length of 3.4 m for the
H2016 [7] H2.0 system when the second pump operates at
4 W. Laser power decreases sharply below 2.6 m interaction
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lengths and decreases moderately above 3.6 m. An optimal
fiber length of 2.5 m is predicted for the F2016 [10] F6.5
system when the second pump operates at 9 W. This implies
a potential increase in laser power of 10% compared with the
experimental fiber length of 4.3 m.
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Fig. 15. Modeled laser output power as function of fiber length based on
parameters from experiments H2016 by Henderson-Sapir et al. [7] (H2.0)
and F2016 by Fortin et al. [10] (F6.5). The H2.0 simulation had P2 power
fixed at 4 W and the F6.5 simulation had P2 power fixed at 9 W.

Modeled laser output power as a function of output coupler
reflectivity for fixed powers of P is presented in Fig. 16. The
plot shows how optimum output coupler reflectivity decreases
with increasing power of the second pump. An optimal reflec-
tivity of 74% 1is predicted for the H2.0 [7] system when the
second pump operates at 4 W and 76% reflectivity at 2 W.
An optimal reflectivity of 24% is predicted for the F6.5 [10]
system when the second pump operates at 9 W. This implies
a potential increase in laser power of 22% compared with the
experimental output coupler reflectivity of 55%.
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Fig. 16. Modeled laser output power as a function of output coupler

reflectivity based on parameters from experiments H2016 by Henderson-Sapir
et al. [7] (H2.0) and Fortin et al. [10] (F6.5). The H2.0 simulation had the
power of Po fixed at 4, 3, and 2 W. The F6.5 simulation had the power of
P fixed at 9, 7, and 5 W.

VI. CONCLUSIONS

An extensive numerical model of DWP 3.5 um Er*-
doped fiber lasers has been presented and validated against
results from three published experiments. The model provides
valuable insight into atomic and photonic interactions in both
time and position along the fiber and enables the optimization
of parameters such as fiber length, output coupler reflectivity,
doping concentration, and pump wavelengths. The model may
be extended to other dopant ions and fibers.

The limitations on DWP laser performance include the accu-
mulation of ions in the lower laser level and the escape of ions
from the second pump cycle. The dominant escape processes
are the decay from the upper laser level to ground state and, in
high Er**-doping concentrations, the cross relaxation process
Wisea-

Future work includes FLAPP upgrade to account for laser
wavelength shifting with second pump power and investigation
into interionic processes by further modeling. Better under-
standing of interionic processes would enable us to improve
optimization of doping and potential co-doping concentrations.
We also intend to optimize the wavelength of the first pump
for laser power and slope efficiency to achieve the optimum
balance of ground and excited state absorptions.
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