
 

 

 

 

 

STUDIES OF SELF-ASSEMBLED SUBSTITUTED 

POLY(ACRYLATE) NETWORKS AS POTENTIAL 

SUSTAINED DRUG DELIVERY SYSTEMS AND 

OF FLUORESCENT CONJUGATED POLYMER 

NANOPARTICLES IN CELL IMAGING  
 

 

 

Liang Yan  

( ) 

 

 

Thesis submitted for the degree of  

Doctor of Philosophy  

in  

Department of Chemistry 

The Univeristy of Adelaide 

 

 

November, 2016 



 

i 

TABLE OF CONTENTS 
 

ABSTRACT .............................................................................................................................. vi 

DECLARATION........................................................................................................................ x 

ACKNOWLEDGEMENTS ...................................................................................................... xi 

ABBREVIATIONS ................................................................................................................ xiii 

 

CHAPTER 1. INTRODUCTION .............................................................................................. 1 

1.1. Cyclodextrins .............................................................................................................. 2 

1.1.1 General introduction to cyclodextrins ............................................................... 2 

1.1.2. Cyclodextrin host-guest complexation process ............................................... 5 

1.1.3. Modification of cyclodextrins .......................................................................... 8 

1.1.4. Cyclodextrins in pharmaceutics ..................................................................... 10 

1.1.5. Cyclodextrin-based drug delivery systems .................................................... 13 

1.2. Cyclodextrin-based hydrogels in drug delivery ........................................................ 21 

1.2.1. Covalently cross-linked Cyclodextrin-based hydrogels in drug delivery ...... 21 

1.2.1.1. Covalently cross-linked cyclodextrin networks as               

drug delivery systems ...................................................................................... 21 

1.2.1.2. Covalently cross-linked polymer networks containing     

cyclodextrin pendant groups as drug delivery systems.................................... 23 

1.2.2. Physically cross-linked cyclodextrin-based hydrogels in drug delivery ........ 24 

1.2.2.1. Polypseudorotaxane hydrogels as drug delivery systems ................... 25 

1.2.2.2. Hydrogels cross-linked by host-guest complexation as            

drug delivery systems ...................................................................................... 28 

1.3. Conjugated polymer nanoparticles in biological applications .................................. 31 

1.3.1. Preparation methods for conjugated polymer nanoparticles .......................... 32 

1.3.2. Conjugated polymer nanoparticles in biological applications ....................... 34 

1.4. Research aims ........................................................................................................... 39 

1.5. References ................................................................................................................. 42 

 

CHAPTER 2. DYE COMPLEXATION AND RELEASE IN -CYCLODEXTRIN- AND ......  

ADAMANTYL-SUBSTITUTED POLY(ACRYLATE) AQUEOUS NETWORKS .............. 59 

2.1. Introduction ............................................................................................................... 60 



 

ii 

2.2. Experimental section ................................................................................................. 62 

2.2.1. Materials ........................................................................................................ 62 

2.2.2. Characterization ............................................................................................. 63 

2.2.3. Isothermal titration calorimetric studies ........................................................ 64 

2.2.4. UV-Vis spectroscopic titration studies ........................................................... 65 

2.2.5. Dye release studies ......................................................................................... 70 

2.3. Synthesis of -cyclodextrin and adamantyl substituted poly(acrylate)s ................... 70 

2.4. ITC and NOESY 1H NMR characterization of poly(acrylate) network formation ... 72 

2.5. UV-Vis and 2D ROESY and NOESY 1H NMR characterization of dye ......................  

complexation .................................................................................................................... 81 

2.6. Rheological studies of aqueous substituted poly(acrylate) systems ......................... 91 

2.7. Dye release studies .................................................................................................... 94 

2.7.1. Qualitative investigation into dye release behavior ....................................... 94 

2.7.2. Theoretical investigation into dye release behavior ....................................... 98 

2.8. Conclusions ............................................................................................................. 101 

2.9. References ............................................................................................................... 104 

2.10. Appendix ............................................................................................................... 109 

2.10.1. Experimental setup and composition of solutions for dye release studies. 109 

2.10.2. ITC data and 2D NOESY 1H NMR spectra for substituted poly(acrylate) .....  

aqueous network formation characterization ......................................................... 111 

2.10.3. UV-Vis spectroscopic titration data and 2D ROESY and NOESY         
1H NMR spectra for dye complexation .................................................................. 114 

2.10.4. Rheological data of aqueous substituted poly(acrylate)s ........................... 144 

2.10.5. Dye release data ......................................................................................... 145 

 

CHAPTER 3. DYE COMPLEXATION AND RELEASE IN -CYCLODEXTRIN- AND ......  

OCTADECYL-SUBSTITUTED POLY(ACRYLATE) AQUEOUS NETWORK ................ 149 

3.1. Introduction ............................................................................................................. 150 

3.2. Experimental section ............................................................................................... 152 

3.2.1. Materials ...................................................................................................... 152 

3.2.2. Characterization ........................................................................................... 153 

3.2.3. Isothermal titration calorimetric studies ...................................................... 154 

3.2.4. UV-Vis and Fluorescence spectroscopic titration studies ............................ 155 



 

iii 

3.2.5. Dye release studies ....................................................................................... 158 

3.3. Synthesis of -cyclodextrin and octadecyl substituted poly(acrylate)s .................. 159 

3.4. ITC and 2D NOESY 1H NMR characterization of poly(acrylate)           

network formation .......................................................................................................... 160 

3.5. UV-Vis and 2D NOESY 1H NMR characterization of MR, MO and             

EO complexation ........................................................................................................... 165 

3.6. Fluorescence and 2D NOESY 1H NMR characterization of ANS, TNS          

and BNS complexation .................................................................................................. 169 

3.7. Rheological studies of aqueous substituted poly(acrylate) systems ....................... 178 

3.8. Dye release studies .................................................................................................. 181 

3.8.1. Qualitative investigation into dye release behavior ..................................... 181 

3.8.2. Theoretical investigation into dye release behavior ..................................... 184 

3.9. Conclusions ............................................................................................................. 186 

3.10. References ............................................................................................................. 187 

3.11. Appendix ............................................................................................................... 191 

3.11.1. UV-Vis spectroscopic titration data and 2D NOESY 1H NMR spectra         

of MR, MO and EO complexation ......................................................................... 191 

3.11.2. Fluorescence spectroscopic titration data and 2D NOESY 1H NMR          

spectra of ANS, TNS and BNS complexation ....................................................... 196 

 

CHAPTER 4. STABILIZING FLUORESCENT CONJUGATED POLYMER 

NANOPARTICLES USING HYDROPHOBICALLY MODIFIED POLY(ACRYLATE)S 

FOR BIOLOGICAL IMAGING APPLICATIONS ............................................................... 207 

4.1. Introduction ............................................................................................................. 208 

4.2. Experimental section ............................................................................................... 210 

4.2.1. Materials ...................................................................................................... 210 

4.2.2. Preparation of alkyl substituted poly(acrylate)s, PAACn ............................ 211 

4.2.3. Preparation of F8BT-PAACn nanoparticles ................................................. 212 

4.2.4. Characterization ........................................................................................... 213 

4.2.5. Fluorescence quantum yield measurements................................................. 213 

4.2.6. Morphology, size and zeta potential characterization .................................. 214 

4.2.7. Cell culture ................................................................................................... 214 

4.2.8. In vitro cytotoxicity studies ......................................................................... 214 



 

iv 

4.2.9. Cellular uptake of F8BT-PAACn nanoparticles ........................................... 215 

4.3. Synthesis of alkyl substituted poly(acrylate)s, PAACn .......................................... 216 

4.4. Preparation of F8BT-PAACn nanoparticles ............................................................ 217 

4.4.1. Optimization of length and substitution percentage of the               

alkyl substituents of PAACn .................................................................................. 217 

4.4.2. Dependence of yields of preparing F8BT-PAACn nanoparticles           

on the concentration of PAACn ............................................................................. 220 

4.5. Surface charge, size and colloidal stability of F8BT-PAACn nanoparticles ........... 222 

4.5.1 Surface charge of F8BT-PAACn nanoparticles ............................................ 222 

4.5.2. Size of F8BT-PAACn nanoparticles ............................................................ 223 

4.5.3. Long-term colloidal stability of F8BT-PAACn nanoparticles ..................... 225 

4.6. Fluorescence and cell imaging applications ........................................................... 226 

4.6.1. UV-Vis absorption and fluorescence spectra of                

F8BT-PAACn nanoparticles ................................................................................... 226 

4.6.2. Cytotoxicity of F8BT-PAACn nanoparticles ............................................... 228 

4.6.3. F8BT-PAACn nanoparticles in a cell imaging application .......................... 230 

4.7. Conclusions ............................................................................................................. 231 

4.8. References ............................................................................................................... 232 

4.9. Appendix ................................................................................................................. 236 

 

CHAPTER 5. STABILIZING FLUORESCENT CONJUGATED POLYMER 

NANOPARTICLES USING BOVINE SERUM ALBUMIN ................................................ 241 

5.1. Introduction ............................................................................................................. 242 

5.2. Experimental section ............................................................................................... 244 

5.2.1. Materials ...................................................................................................... 244 

5.2.2. Preparation of CP-BSA nanoparticles .......................................................... 245 

5.2.3. Size and zeta potential characterization ....................................................... 246 

5.2.4. Fluorescence quantum yield measurements................................................. 246 

5.3. Preparation of CP-BSA nanoparticles ..................................................................... 247 

5.4. Surface charge, size and colloidal stability of CP-BSA nanoparticles ................... 250 

5.4.1. Surface charge of CP-BSA nanoparticles .................................................... 250 

5.4.2. Size of CP-BSA nanoparticles ..................................................................... 251 

5.4.3 Colloidal stability of CP-BSA nanoparticles ................................................ 252 

5.5. UV-Vis absorption and fluorescence properties of CP-BSA nanoparticles ............ 254 



 

v 

5.6. Conclusions ............................................................................................................. 257 

5.7. References ............................................................................................................... 258 

5.8. Appendix ................................................................................................................. 262 

 

  



 

vi 

ABSTRACT 

Polymer networks are promising biomaterials for drug delivery as they have porous 

structures and are often biocompatible. The general aspects of the host-guest complexation 

capability of polymer networks containing cyclodextrins as well as their application in drug 

delivery are considered in Chapter 1. The introduction of cyclodextrins into polymer 

networks has the potential to improve drug loading capacity and modulate subsequent drug 

release behavior due to the host-guest complexation by cyclodextrins of drug molecules. 

Thus, Chapter 2 and Chapter 3 are concerned with new research on water soluble 

-cyclodextrin, adamantyl and octadecyl substituted poly(acrylate) networks, respectively, as 

potential sustained drug delivery systems.  

In Chapter 2, research into self-assembled poly(acrylate) networks cross-linked through 

host-guest complexation between -cyclodextrin, -CD, substituents and adamantyl, AD, 

substituents as potential sustained drug delivery systems is described. A poly(acrylate) (PAA) 

8.8% randomly substituted with -CD through an ethyl tether, PAA -CDen, is synthesized as 

a host poly(acrylate). Poly(acrylate)s 3.3%, 3.0% and 2.9% randomly substituted with AD 

substituents, respectively, through ethyl, hexyl and dodecyl tethers in the PAAADen, 

PAAADhn and PAAADddn are synthesized as guest polymers. The host-guest complexation 

of PAAADen, PAAADhn, and PAAADddn by PAA -CDen in aqueous solution produce 

three self-assembled poly(acrylate) networks. These complexations are characterized by 

isothermal titration calorimetry, ITC, 2D NOESY 1H NMR spectroscopy, and rheology. It is 

found that the length of the tether between the AD group and the poly(acrylate) backbone has 

a substantial influence on the complexation constants, KITC, as well as the associated enthalpy 

change, H, and entropy change, S. The smallest and largest KITC occur for PAAADen with 

the shortest tether and PAAADddn with the longest tether, which coincides with the lowest 
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and highest viscosities occurring for the aqueous PAA -CDen/PAAADen and 

PAA -CDen/PAAADddn networks. The complexation of three different dye molecules, 

acting as drug models, by the -CD substituents in these networks is characterized by UV-Vis 

spectroscopy and 2D NOESY 1H NMR studies. The results suggest that dye complexation by 

the -CD substituents in the three poly(acrylate) networks is weaker by comparison with the 

complexation by native -CD and PAA -CDen, as indicated by decreased complexation 

constants. The poly(acrylate) networks exhibit complexation-controlled dye release behavior, 

and thereby sustained dye release profiles. Thus, the three poly(acrylate) networks studied, 

which form hydrogels at higher concentrations, have substantial potential as sustained drug 

delivery systems. 

In Chapter 3, the complexation and release behavior of six dyes in a -CD- and 

octadecyl-substituted poly(acrylate) network is explored to further extend the understanding 

of the host-guest complexation between -CD substituents and guest molecules within a 

fourth polymer network system and its influence on the release of guest molecules from the 

polymer network. Thus, -CD substituents are 9.3% randomly substituted onto poly(acrylate) 

through an ethyl tether to give PAA -CDen and octadecyl, C18, substituents are 3.5% 

randomly substituted onto poly(acrylate) to give PAAC18. The network forms through the 

host-guest complexation between the -CD substituents and C18 substituents, and is 

characterized by a complexation constant of K = 1.13 × 104 dm3 mol-1, associated with H = 

−21.55 kJ mol-1 and T S = 1.59 kJ mol-1. The complexation of the dyes by the -CD 

substituents in the PAA -CDen/PAAC18 network is characterized by UV-Vis absorption and 

fluorescence spectroscopy and 2D NOESY 1H NMR studies. The results suggest that the 

complexation of dyes by the -CD substituents in the PAA -CDen/PAAC18 network is 

weaker by comparison with the complexation by native -CD and PAA -CDen, as indicated 
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by decreased complexation constants. The PAA -CDen/PAAC18 network exhibits 

complexation-controlled dye release behavior and thereby sustained dye release profiles. 

Thus, the PAA -CDen/PAAC18 network, or hydrogel at higher concentration, is a potential 

sustained drug delivery system. 

Conjugated polymer nanoparticles are promising fluorescent probes as a consequence of 

their high brightness and photostability. Chapter 1 introduces the general methods of 

preparing conjugated polymer nanoparticles and their wide ranges of biological applications. 

However, conjugated polymer nanoparticles exhibit large-scale aggregation and precipitation 

at the high ionic strengths encountered under physiological conditions, which presents an 

impediment to their biological applications. In seeking to address this issue, the research 

described in Chapter 4 and Chapter 5 addresses stabilization of conjugated polymer 

nanoparticles using hydrophobic linear alkyl group substituted poly(acrylate)s and bovine 

serum albumin and explores their deployment in cell imaging applications.  

In Chapter 4, the synthesis of hydrophobic linear alkyl group substituted poly(acrylate)s, 

PAACn, is described as is their employment as conjugated polymer nanoparticle stabilizers. 

(When n = 18, 16 and 10 the alkyl groups are octadecyl, hexadecyl and decyl, respectively.) 

The carboxylate groups of PAACn increase the surface charge of the conjugated polymer 

nanoparticles and thereby stabilize them in phosphate buffered saline, PBS. Nanoparticles of 

the green-yellow emitting conjugated polymer, F8BT, stabilized with PAACn, F8BT-PAACn, 

are prepared using a nano-precipitation method. In contrast to the significant aggregation 

with a negligible yield (~ 0%) of bare F8BT nanoparticles in PBS, high yields approaching 90% 

are observed for F8BT nanoparticles stabilized with PAAC18 at 1%, PAAC16 at 3%, and 

PAAC10 at 10% substitution. The F8BT-PAACn nanoparticles have small sizes ranging from 

50 to 70 nm in diameter, highly negative surface charge and high colloidal stability over 4 

weeks in PBS. These properties pave the way for the deployment of F8BT-PAACn 
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nanoparticles in biological applications. Spectroscopic results indicate the PAACn has no 

adverse effect on the UV-Vis absorptivity and fluorescence brightness of F8BT-PAACn 

nanoparticles relative to bare F8BT nanoparticles. In addition, F8BT-PAACn nanoparticles 

are internalized by HEK 293 cells and exhibit negligible cytotoxicity. Thus, PAACn are 

versatile and robust stabilizing materials that facilitate the application of F8BT-PAACn 

nanoparticles as fluorescent probes in cell imaging. 

The research described in Chapter 5 shows that bovine serum albumin, BSA, stabilizes 

conjugated polymer nanoparticles in phosphate buffered saline, PBS, evidently due to the 

combined effects of the negatively charged surfaces arising from the BSA carboxylate groups 

and the steric effect of the bulk 3D structure of BSA. Three multicolored conjugate polymers, 

PDOF, F8BT, and MEHPPV, are employed to prepare their corresponding nanoparticles using 

a nano-precipitation method. In contrast to the significant aggregation with negligible yields (~ 

0%) of bare conjugated polymer nanoparticles occurring in PBS, high yields approaching 100% 

are observed for conjugated polymer nanoparticles stabilized with BSA, CP-BSA 

nanoparticles, in PBS. These CP-BSA nanoparticles have small sizes ranging from 20 to 60 

nm, negative surface charges and high colloidal stability. Spectroscopic results indicate the 

BSA has no adverse effect on the UV-Vis absorptivity and fluorescence brightness of the 

CP-BSA nanoparticles relative to bare conjugated polymer nanoparticles. These properties 

potentially pave the way for the deployment of these CP-BSA nanoparticles in biological 

applications. 
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