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Abstract: There is a desperate need for novel antibiotic classes to combat the rise of drug resistant
pathogenic bacteria, such as Staphylococcus aureus. Inhibitors of the essential metabolic enzyme
biotin protein ligase (BPL) represent a promising drug target for new antibacterials. Structural and
biochemical studies on the BPL from S. aureus have paved the way for the design and development
of new antibacterial chemotherapeutics. BPL employs an ordered ligand binding mechanism for
the synthesis of the reaction intermediate biotinyl-51-AMP from substrates biotin and ATP. Here
we review the structure and catalytic mechanism of the target enzyme, along with an overview of
chemical analogues of biotin and biotinyl-51-AMP as BPL inhibitors reported to date. Of particular
promise are studies to replace the labile phosphoroanhydride linker present in biotinyl-51-AMP
with alternative bioisosteres. A novel in situ click approach using a mutant of S. aureus BPL as a
template for the synthesis of triazole-based inhibitors is also presented. These approaches can be
widely applied to BPLs from other bacteria, as well as other closely related metabolic enzymes and
antibacterial drug targets.

Keywords: antibiotic; biotin; biotin protein ligase; Staphylococcus aureus; inhibitor design;
X-ray crystallography; in situ click chemistry

1. Introduction

Infectious diseases caused by pathogenic bacteria, such as Staphylococcus aureus, are a major threat
to human health. The spread of antibiotic resistant strains, such as methicillin resistant S. aureus
(MRSA), is particularly problematic with resistance having been developed to most penicillin-based
antibiotics [1,2]. Antibiotic resistance arises in two major subsets of MRSA, hospital acquired MRSA
and community acquired MRSA. Both have been described over the past decade in the USA [3], UK [4]
and Australia amongst other countries [5]. The impact of MRSA is overwhelming, as these infections
are more difficult to treat with increased associated healthcare costs. In the USA alone, the cost to
treat hospital acquired-MRSA stands at $USD 9.7 billion annually [6], and community acquired-MRSA
accounts for 18% of all MRSA incidents [3]. Overall, these factors have contributed to an increase in the
mortality rate due to MRSA infections worldwide [7]. One critical strategy to combat drug resistant
S. aureus is to develop new classes of antibacterials that are not subject to pre-existing resistance
mechanisms [8]. This review presents biotin protein ligase (BPL) as a novel drug target, and discusses
the design of small molecule inhibitors for antibacterial discovery.
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2. Biotin Protein Ligase as a Novel Antibacterial Target

BPL, a vital enzyme present in all organisms, is responsible for the post-translational attachment of
biotin 1 onto a specific lysine residue present in the active site of biotin-dependent enzymes, as shown
in Scheme 1 [9,10]. S. aureus expresses two such enzymes, namely acetyl CoA carboxylase (ACC) [11]
and pyruvate carboxylase (PC) [12], which are known to catalyze key reactions in important metabolic
pathways. ACC is a critical enzyme for the carboxylation of acetyl-CoA to malonyl-CoA in fatty acid
biosynthesis that is essential for cell membrane biogenesis and maintenance [13]. Biotin-activated PC
is involved in the conversion of pyruvate to oxaloacetate required in the citric acid cycle that is central
to a number of key metabolic pathways, such as gluconeogenesis and amino acid biosynthesis [14].
These metabolic pathways are essential for the survival and virulence of S. aureus, and, as such, BPL
presents as an attractive drug target for new antibacterial drugs. Moreover, genetic knockout studies
on various bacteria, including S. aureus [15,16], abolished cell growth in the absence of the bpl gene,
highlighting that an alternative pathway for protein biotinylation does not exist in bacteria.

BPL acts as a transcriptional repressor [17–19] in addition to its pivotal role in the activation of
ACC and PC. In the absence of non-biotinylated biotin-dependent enzymes, S. aureus BPL (SaBPL) can
form a dimer that is responsive to DNA binding. The SaBPL dimer is a transcriptional repressor that
controls the uptake and biosynthesis of biotin by binding specific DNA sequences in the promoters of
the genes encoding these proteins. Therefore, BPL not only utilizes biotin, but it is also the key regulator
that co-ordinates the import and synthesis of biotin in response to cellular demand. This bifunctionality
makes BPL an attractive drug target as S. aureus is unlikely to readily develop target based resistance
through mutation due to the intimate role played by BPL in multiple metabolic pathways [19].
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3. Mechanism of Protein Biotinylation

BPL catalyzes protein biotinylation through a two-step reaction mechanism, as shown in
Scheme 1 [10,20]. In the first step, BPL catalyzes a condensation reaction between biotin 1 and
ATP 2 to form the reaction intermediate biotinyl-51-AMP 3, with the release of pyrophosphate (PPi).
During this first step, biotin 1 binds to the biotin-binding pocket in BPL, which induces ordering of a
biotin-binding loop within the enzyme (Figure 1). This disordered-to-ordered conformational change
positions a key tryptophan residue (Trp127) in the active site, thereby creating the nucleotide binding
pocket that facilitates binding of ATP 2. Reaction of biotin with the α-phosphate of ATP then produces
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the intermediate biotinyl-51-AMP 3 to complete the first partial reaction. The complex of BPL with
biotinyl-51-AMP 3 then forms a protein: protein interaction with the unliganded biotin-dependent
enzyme (i.e., the apo enzyme in Figure 1) to allow biotinyl transfer in the second partial reaction.
During this final step, biotin is attached to the ε-amino group of the target lysine residue present in
apo protein substrate to afford biotinylated ACC or PC (4, i.e., the holo enzyme in Figure 1), with
the release of AMP. This reaction mechanism is conserved in all species, suggesting a high degree of
homology amongst different BPL enzymes [21–23].
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4. BPL Structure

BPL can be divided into three distinct structural classes, as depicted in Figure 2. Classes I and
II include BPLs from Archaea, prokaryotes and plants. Class III contains BPLs from yeast, insects
and mammals. All three classes of BPLs contain a conserved catalytic domain and a C-terminal
cap domain that are essential for protein biotinylation [21]. Class I BPLs consists solely of the
conserved catalytic and C-terminal domains. Class II BPLs contain an additional N-terminal domain
that facilitates binding to DNA in the regulation of cellular uptake of biotin and biosynthesis of
biotin, as described above. Class III BPLs have a larger N-terminal extension that is distinct from
the DNA-binding domain of class II enzymes [24–27]. X-ray crystal structures of class I BPLs
from Mycobacteria tuberculosis [28], Aquifex aeolicus [29] and Pyrococcus horikoshii [10], and class II
BPL from S. aureus [30] and Escherichia coli [20] have been reported. An examination of these
structural data reveals that all BPLs adopt a highly conserved protein fold within the catalytic domain.
Of particular note are the biotin-binding loop (highlighted in green in Figure 1) and an ATP-binding
loop (highlighted by blue ribbons in Figure 1) that are responsible for the ordered binding mechanism
described above. A closer examination of these structural features is detailed below, with a view to
designing inhibitors that can occupy the BPL active site.
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Catalytic Domain

As mentioned above, the catalytic domain of BPL contains two major ligand-binding pockets, one
for biotin and the other ATP. The biotin-binding site consists of two distinct regions, a hydrophobic wall
to accommodate the valeric acid chain on biotin and a glycine rich hydrophilic pocket to accommodate
the heterocycle of biotin. Multiple hydrogen bonds are formed between the ureido ring of biotin and
amino acid residues in the hydrophilic region of SaBPL [31], namely Ser92, Thr93, Gln115 and Arg119,
as depicted in Figure 3. These residues are highly conserved in BPLs from all species [32]. Biotin forms
additional hydrophobic interactions with Trp127 and Gly209. The carbon chain on the valeric acid
tail of biotin is orientated to a hydrophobic tunnel consisting of Gly118, Gly209, Gly188, Leu191 and
Ile208 by induced fit binding of biotin in the first catalytic step of BPL [21,22]. The biotin-binding loop
is believed to enclose the active site, thereby preventing the dissociation of ligand from the active site.
Structural analysis with all the available crystal structures reveals a high degree of conservation in the
biotin-binding pocket, as highlighted in Figure 3.

A highly conserved phosphate-binding domain is located between the biotin and ATP binding
pockets of SaBPL. A number of hydrogen bonds are observed between the phosphoroanhydride linker
of biotinyl-51-AMP 3 and the side chains of Lys187 and Arg125, as well as the backbone of Arg122
(Figure 4) [31]. The conserved “Gly-Arg-Gly-Arg122-X” motif present in the biotin-binding loop is
critical in stabilizing binding of biotinyl-51-AMP 3 by shielding it from solvent [20]. Of particular note
is Arg122, which is central to a complex network of water-mediated hydrogen bonds with the side
chain of Asp180 (Figure 4) [31,32]. This observation is also supported by studies with E. coli BPL where
a point mutation of the equivalent residue (Arg118) results in dissociation rates enhanced by 100-fold
for biotin 1 and 400-fold for biotinyl-51-AMP 3 [32]. Mutation of Arg122 to glycine results in a “leaky
phenotype” that has been exploited using in situ click chemistry to develop BPL inhibitors (described
later) [33].

The previously mentioned, induced-fit binding of the biotin-binding loop (highlighted in green
as in Figure 4) orientates the side chain of Trp127 of SaBPL such that it creates a binding pocket
for nucleotide binding. This binding is stabilized by a displaced parallel π interaction between the
adenine ring of ATP and the indole ring of Trp127 [32,34]. It is noteworthy that this key binding
interaction does not occur in the absence of biotin [10]. A number of hydrogen bonds are also
observed between the adenine ring of ATP and Asn212 and Ser128 at the base of the ATP-binding
pocket (Figure 5). Following ATP binding, the previously discussed condensation reaction between
biotin and ATP occurs to give biotinyl-51-AMP 3 [31]. The reaction intermediate adopts a distinctive
“U-shaped” geometry so the biotinyl and adenyl moieties can bind in their respective binding pockets.
The ATP-binding loop (highlighted in blue in Figure 5) helps to stabilize the reaction intermediate
(3) via a disordered-to-ordered conformational change. Here, the ATP-binding loop folds over
the adenosine moiety of 3 with associated hydrophobic interactions with 3 through Ile224, Ala228
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and Phe220. This structural data provides a molecular explanation for the ordered ligand binding
mechanism that is critical for the design of inhibitors.
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5. BPL Inhibitors as New Antibacterials

SaBPL is an attractive novel target for antibacterial development for three main reasons.
Firstly, SaBPL is the sole enzyme responsible for the biotinylation, and subsequent activation, of
ACC and PC of S. aureus [35]. As these biotin-dependent enzymes play key roles in metabolic
pathways critical for survival and virulence, BPL is an essential enzyme. Secondly, SaBPL is the only
enzyme in S. aureus responsible for regulation of biotin biosynthesis and import on cellular demand.
Thus, targeting SaBPL targets both the source of biotin and its utilization [17,18]. Thirdly, SaBPL is not
the target of any antibacterial currently in clinical use, thereby providing a novel mechanism of action.
Recent structure-guided approaches to the design of small molecule inhibitors against SaBPL have
led to the discovery of BPL inhibitors that bind selectively to bacterial BPL over the human homolog.
These studies are described further below.

5.1. Biotin Analogues as Antibacterial Agents

An effective approach to disrupt protein biotinylation is to design small molecule inhibitors that
bind tightly and specifically to the active site of bacterial BPL, thereby blocking all protein biotinylation.
For example, modification to the ureido and thiophene ring of biotin gave rise to analogues 5 and 6 as
shown in Figure 6 [31]. The study revealed that BPLs were highly specific to the natural structure of
biotin 1 and did not utilize other biotin analogues as substrates [31]. In addition, amino acid sequence
alignments highlight that the biotin-binding pocket is highly conserved amongst BPLs from all species,
including human [30,31,36]. This presents a challenge for the design of selective inhibitors that target
bacterial BPLs over the human equivalent. Moreover, analysis of available X-ray structures reveals
a relatively small biotin-binding pocket for SaBPL, thereby restricting opportunities to chemically
modify the heterocycles of biotin 1.



Antibiotics 2016, 5, 26 7 of 15

Antibiotics 2016, 5, x 7 of 15 

Figure 6. 3D depiction of biotin 1 (highlighted in magenta) bound to SaBPL (PDB: 3V8K) with a side 
view of biotin binding pocket (left); Chemical structures of biotin 1 and its analogues 5 and 6 (right). 

Specific chemical modification of the carboxyl group of biotin 1 gave rise to a series of BPL 
inhibitors 7–13 as shown in Table 1 [31]. These compounds contain a hydroxyl, alkane and alkyne in 
place of the carboxyl group of biotin 1. The alcohol derivative 7 was found to be equally active 
against SaBPL and E. coli BPLs with a Ki between 3 and 4 μM. However, 7 displayed limited 
selectivity with only a 2.6-fold difference in Ki for H. sapiens BPL (HsBPL) versus SaBPL (Ki ≈ 9.0 μM) 
[31]. The more hydrophobic analogues 9–13 were more selective, e.g., 10 displayed approximately 
12-fold selectivity for SaBPL compared to HsBPL [31]. An X-ray structure of SaBPL in complex with 
biotin alkene 12 revealed a key hydrophobic interaction between the terminal carbon on the ligand 
and the side-chain of Trp127. Interestingly, increasing the length of the alkyl chain by a single carbon 
as in 13, resulted in reduced potency, presumably due to the disruption of this key bonding 
interaction [31]. Overall, this study suggests that biotin derivatives with chemical modifications at 
the biotin heterocycles and the valeric acid moiety are not ideal for achieving optimal potency and 
selectivity towards SaBPL. However, derivatives 11 and 12 do provide an important starting point 
for further inhibitor development as discussed in section 5.3 below. 

Table 1. Biotin analogue series [30]. 

 
n R 

SaBPL 
Ki (μM) 

EcBPL  
Ki (μM) 

HsBPL  
Ki (μM) 

7 2 OH 3.4 4.0 9.0 
8 3 OH >20 >20 >20 
9 1 CH3 0.05 1.1 0.1 

10 2 CH3 0.5 7.3 6.4 
11 1 C≡C 0.08 0.9 0.2 
12 2 C≡C 0.3 7.3 3.5 
13 3 C≡C 2.4 20 12 

5.2. BPL Reaction Intermediate Analogues as Antibacterial Agents 

As discussed earlier, the first step of the BPL reaction yields biotinyl-5′-AMP 3. The acyl 
phosphate group of 3 can be replaced with the non-hydrolysable and enzymatically stable 
phosphodiester bioisostere as in biotinol-5′-AMP 14 (Figure 7, below) [37]. Biotinol-5′-AMP 14 
proved to be a potent inhibitor of SaBPL (Ki = 0.03 μM) while critically also possessing anti-S. aureus 
activity with a minimal inhibitory concentration of 1–8 μg/mL [38]. However, progressing 
biotinol-5′-AMP 14 as drug candidate is limited by its activity against HsBPL with Ki = 0.42 μM and 
also difficulty of synthesis. Two other phosphonate-based isosteres, as in 15 and 16, respectively, 
were initially developed by Sittiwong et al. for investigation of HsBPL [39]. However, the 

Figure 6. 3D depiction of biotin 1 (highlighted in magenta) bound to SaBPL (PDB: 3V8K) with a side
view of biotin binding pocket (left); Chemical structures of biotin 1 and its analogues 5 and 6 (right).

Specific chemical modification of the carboxyl group of biotin 1 gave rise to a series of BPL
inhibitors 7–13 as shown in Table 1 [31]. These compounds contain a hydroxyl, alkane and alkyne
in place of the carboxyl group of biotin 1. The alcohol derivative 7 was found to be equally active
against SaBPL and E. coli BPLs with a Ki between 3 and 4 µM. However, 7 displayed limited selectivity
with only a 2.6-fold difference in Ki for H. sapiens BPL (HsBPL) versus SaBPL (Ki « 9.0 µM) [31].
The more hydrophobic analogues 9–13 were more selective, e.g., 10 displayed approximately 12-fold
selectivity for SaBPL compared to HsBPL [31]. An X-ray structure of SaBPL in complex with
biotin alkene 12 revealed a key hydrophobic interaction between the terminal carbon on the ligand
and the side-chain of Trp127. Interestingly, increasing the length of the alkyl chain by a single
carbon as in 13, resulted in reduced potency, presumably due to the disruption of this key bonding
interaction [31]. Overall, this study suggests that biotin derivatives with chemical modifications at
the biotin heterocycles and the valeric acid moiety are not ideal for achieving optimal potency and
selectivity towards SaBPL. However, derivatives 11 and 12 do provide an important starting point for
further inhibitor development as discussed in section 5.3 below.

Table 1. Biotin analogue series [30].
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SaBPL 
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EcBPL  
Ki (μM) 

HsBPL  
Ki (μM) 
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9 1 CH3 0.05 1.1 0.1 

10 2 CH3 0.5 7.3 6.4 
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n R SaBPL Ki (µM) EcBPL Ki (µM) HsBPL Ki (µM)

7 2 OH 3.4 4.0 9.0
8 3 OH >20 >20 >20
9 1 CH3 0.05 1.1 0.1
10 2 CH3 0.5 7.3 6.4
11 1 C”C 0.08 0.9 0.2
12 2 C”C 0.3 7.3 3.5
13 3 C”C 2.4 20 12

5.2. BPL Reaction Intermediate Analogues as Antibacterial Agents

As discussed earlier, the first step of the BPL reaction yields biotinyl-51-AMP 3. The acyl phosphate
group of 3 can be replaced with the non-hydrolysable and enzymatically stable phosphodiester
bioisostere as in biotinol-51-AMP 14 (Figure 7, below) [37]. Biotinol-51-AMP 14 proved to be a
potent inhibitor of SaBPL (Ki = 0.03 µM) while critically also possessing anti-S. aureus activity with
a minimal inhibitory concentration of 1–8 µg/mL [38]. However, progressing biotinol-51-AMP 14
as drug candidate is limited by its activity against HsBPL with Ki = 0.42 µM and also difficulty
of synthesis. Two other phosphonate-based isosteres, as in 15 and 16, respectively, were initially
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developed by Sittiwong et al. for investigation of HsBPL [39]. However, the β-ketophosphonate 15 and
β-hydroxyphosphonate 16 analogues both showed reduced activity (IC50 of 39.7 µM and 203.7 µM,
respectively) against HsBPL compared to biotinol-51-AMP 14 (IC50 = 7 µM against human BPL) [39].

Brown and co workers [37,40] described a sulfamoyl analogue 17 as a mimetic of the natural
reaction intermediate 3 (Figure 7). However, this analogue rapidly decomposes and was thus difficult
to assay [28,37]. A recent study identified sulfonamide analogue 18 as having improved stability
compared to the sulfamoyl analogue 17 [28]. Significantly, 18 is a competitive inhibitor against biotin
when assayed against M. tuberculosis BPL with an IC50 of 135 nM [28]. This analogue also displayed
anti-mycobacterial activity against the virulent M. tuberculosis strain H37Rv as well as a number of
multi-drug resistant M. tuberculosis strains, with a minimal inhibitory concentration ranging from
0.625 to 0.16 µM [28]. However, cytotoxicity was observed in the mammalian Vero cell line suggesting
potential issue with selectivity for the bacterial BPL over the human homolog.
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5.3. 1,2,3-Triazole Based Analogues

Soares da Costa et al. identified a 1,2,3-triazole as a new and effective bioisostere for the labile
phosphoroanhydride linker of biotinyl-51-AMP 3 [41]. A triazole offers a number of advantages over the
natural phosphate linker of 3. It is stable to acid/base hydrolysis, reductive and oxidative conditions,
as well as typical physiologically conditions. This makes it resistant to metabolic degradation [42].
In addition, the 1,2,3-triazole motif has potential sites for hydrogen bonding (Figure 8), an ability to
participate in π-π stacking interactions and it is easy to prepare.
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A series of 1,2,3-triazole based analogues of 20–23 (see Scheme 2 and Figure 9) was synthesized
by alkyne azide cycloaddition (CuAAC) and these were tested for inhibitory activity against S. aureus
and human BPLs [41]. In particular, reaction of biotin acetylene 12 and adenosine azide 19 gave
the 1,4 disubstituted triazole 20 which displayed modest activity against SaBPL (Ki = 1.8 µM) but
was effectively inactive against HsBPL (Ki > 33 µM) in vitro [41]. This was an important finding as
it represented the first example of a BPL inhibitor with high selectivity for S. aureus BPL over the
human equivalent. In addition, the 1,4-triazole 20 was not toxic against mammalian HepG2 cells in
culture. Importantly, the 1,5-triazole regioisomer 21 (Scheme 2) prepared via ruthenium alkyne azide
cycloaddition (RuAAC) proved to be inactive against SaBPL [41]. An X-ray crystallographic structure
of SaBPL in complex with 20 revealed that the 1,4-triazole provides the desired U-shape geometry on
binding to SaBPL, as observed for biotinyl-51-AMP 3.
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Based on the above assessment, a new generation of SaBPL inhibitors was designed to target the
ATP-binding site. A detailed analysis of the crystal structure of 20 bound to SaBPL revealed an absence
of hydrogen bonding between the ribose moiety of 20 and SaBPL (Figure 9) [33,41]. Gratifyingly, the
1,4-triazole analogue 23, which lacks the ribose group, proved to be more potent than 20 against SaBPL
with Ki of 0.7 µM [33] while retaining selectivity for the bacterial enzyme over the human homologue.
Furthermore, the study also identified a biotin 1,4-triazole analogue containing a 2-benzoxalone
group as a mimic of the adenine of 23 to target the ATP-binding pocket [41]. The 2-benzoxazolone
containing 1,4-triazole 24 proved to be the most potent SaBPL inhibitor with a Ki = 0.09 µM [41].
Significantly, 24 exhibited >1100 fold selectivity for SaBPL compared to human BPL. Thus, 24 represents
the most potent and selective inhibitor of SaBPL reported to date. Bacteriostatic activity was observed
for 1,4-triazole 24 against S. aureus ATCC strain 49775, with the compound effectively reducing S.
aureus cell growth by 80% at 8 µg/mL [41]. Both 1,4-triazoles 23 and 24 were not toxic in a cell culture
model using HepG2 cells, highlighting these biotin triazoles as exciting hits for further antibiotic
development [33,41].

6. In Situ Click Chemistry

In situ click chemistry has recently been reported as an alternative and more facile approach to
optimize the biotin triazole series as inhibitors of SaBPL [33,43–45]. Here, the target enzyme is used as a
template to identify and bind optimum azide and acetylene fragments from a library of such structures.
Once each azide and acetylene bind to their respective pockets, a cycloaddition reaction occurs in the
absence of external catalysts (i.e., copper or ruthenium) to assemble the triazole. Moreover, as the
biological target is actively involved in selecting its most potent inhibitor from a library of precursors,
in situ click chemistry is able to circumvent the need to individually synthesize and screen all possible
triazole combinations [46–48]. The BPL is only one of a select few examples of enzymes shown to
catalyse the alkene azide cycloaddition reaction, as exemplified with biotin acetylene 12 and adenosine
azide 19 in Scheme 3 [33]. This is possible because SaBPL contains two well defined binding pockets,
one capable of binding a biotin analogue and the other an adenine analogue, as revealed in the before
mentioned X-ray structures.
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An initial in situ click reaction was performed between biotin acetylene 12 (Ki = 0.3 µM) and
adenosine azide 19 using wild type SaBPL as a template in an attempt to form 20 (Scheme 3). Analysis
of the reaction mixture by HPLC and mass spectrometry revealed 1.07 ˘ 0.1 mol of triazole 20 was
formed per mol of SaBPL [33]. The triazole formed by SaBPL is presumed to be the 1,4-triazole 20
(Ki = 1.18 µM), given that the 1,5-triazole 21 (see Scheme 2) had earlier been shown to be inactive
against SaBPL [41]. An in situ experiment was then performed between biotin acetylene 12 and a small
library of azides (25–28), as shown in Scheme 3. The azide 19 was used as a reference, while 25–28
were designed to probe the importance of the furanose ring and also the length of the azide spacer
with regards to potency. However, in this case triazole products were not detected by HPLC. This
likely reflects a low turnover rate for the native BPL.

Attention was then focused upon improving the catalytic efficiency of the target enzyme, SaBPL.
The structural biology demonstrated that the before mentioned biotin-binding loop closes over the
active site to prevent diffusion of the synthesized triazole from the active site and thereby preventing
efficient turnover [33]. Of particular significance is Arg122, which is known to stabilize the “closed”
conformation through a complex network of interactions with amino acid residues in the SaBPL dimer
interface and the C-terminal domain, as well as a water-mediated hydrogen bond with Asp180 [23,41].
It was proposed that an engineered variant of SaBPL, with Arg122 substituted by glycine, would
improve production of triazole 20 by increasing the enzyme’s turnover rate. This proposal is supported
by studies with Escherichia coli BPL that have demonstrated that mutation of the equivalent residue
(Arg118) results in enhanced dissociation rates for both biotin and biotinyl-51-AMP [33].

A subsequent in situ click reaction of biotin alkyne 12 and azide 19 with SaBPL-Arg122Gly gave
vastly improved formation of triazole 20 (11.9 ˘ 0.7 moles per mol of enzyme) [33]. This clearly
demonstrated that the mutant enzyme provides a template for cycloaddition, with an increased
turnover rate compared to the wild-type enzyme. The “leaky mutant” thus provided much improved
efficiency of reaction and sensitivity of detection. The library experiment using biotin alkyne 12 and
azides 25–28 was repeated using the “leaky mutant”. Analysis of the product mixture by HPLC and
LC/MS revealed efficient formation of 1,4-triazole 23 with a smaller quantity of a second 1,4-triazole
20 detected by MS but not HPLC. This observation was consistent with other multi-component in situ
experiments where the higher affinity triazoles are formed to a greater extent. In our case, there is an
overwhelming bias towards the formation of the more potent triazole 23 (Ki = 0.66 ˘ 0.1 µM) over
triazole 20 (Ki = 1.83 ˘ 0.3 µM) [33,41]. None of the other possible triazole products were detected.
This methodology provides a powerful tool for the identification of new inhibitors that target the
BPL active site from libraries of precursor fragments. In addition, the study represents an important
advance in in situ inhibitor optimization, where it was shown for the first time that a target enzyme
can be engineered to improve efficiency and hence utility in such studies.

7. Future Directions

The emergence of bacteria resistant to chemotherapy is rendering our current arsenal of antibiotics
less effective and in certain cases totally ineffectual. An important approach to address drug resistance
is to develop new antibiotic classes that work through novel modes of action and that are not subject
to existing resistance mechanisms. BPL inhibitors presents one such promising example as it is not the
target of any chemotherapeutic currently in clinical use, thereby providing a novel mechanism of action.
Importantly, we have identified a novel class of 1,2,3-triazole based BPL inhibitor (23 and 24) that
(1) with a unique mode of antibacterial action; (2) unique selectivity for the bacterial BPL target over
the human isozyme; (3) have antimicrobial activity against S. aureus; and (4) does not show toxicity
either against a cultured human cell line or preliminary studies in rodent models. New analogues
with improved solubility and/or new formulations are required to continue the development of lead
compounds 23 and 24 towards pre-clinical antibacterial candidates.

The biotin triazole pharmacophore provides a valuable starting point for the chemical
optimization of improved BPL inhibitors. X-ray analysis of lead compounds 23 and 24 bound to
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SaBPL reveal that the adenosine and benzoxalone moieties bind into the nucleotide-binding pocket of
the drug target. However, these approaches yield compounds with molecular masses greater than the
500 limit proposed as being optimum by Lipinski for drug-like candidates. One current strategy is to
identify smaller structures that specifically bind into the ribose-binding pocket of SaBPL. This latter
approach with simplified structures is being pursued with the goal of optimizing simplified structures
with greater drug-like properties and improved solubility. Moreover, we are extending our “smart”
in situ click chemistry as an alternative approach to inhibitor optimization using our leaky mutant
of the target enzyme (BPL) and new chemically diverse libraries of acetylene and azide coupling
partners. These approaches provide valuable tools to aid in the development of new inhibitors against
the BPLs of other clinically important bacteria and fungi. Furthermore, other enzymes that are targets
for other diseases beyond antibacterial discovery can adopt the in situ guided approaches for inhibitor
discovery we describe here for BPL. Particularly amendable to these methods are other ligases that
synthesize an adenylated reaction intermediate from an organic acid and ATP, analogous to the
BPL reaction mechanism. Of importance are ligases such as amino-acyl tRNA synthethases [49–51],
bi-functional salicyl-AMP ligase [52,53], indole-3-acetic acid-amido synthetase [54] and pantothenate
synthetase [55,56].
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The following abbreviations are used in this manuscript:

ACC Acetyl CoA carboxylase
AMP Adenosine-51-monophosphate
ATP Adenosine-51-triphosphate
BPL Biotin protein ligase
CuAAC Copper mediated alkyne azide cycloaddition
HPLC High-performance liquid chromatography
HsBPL Homo sapiens biotin protein ligase
Ki Inhibition constant
MRSA Methicillin resistant S. aureus
PC Pyruvate carboxylase
RuAAC Ruthenium mediated Alkyne Azide cycloaddition
SaBPL Staphylococcus aureus biotin protein ligase
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