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SUMMARY

The Upper Eyre Peninsula of South Australia constitutes about 207o of the State's

wheat growing area and is characterised by alkaline, calcareous soils, a Mediterranean

climate and low annual rainfall (<350 mm). V/heat yields are often much lower than

would be expected from the growing season rainfall. This may be due, in part, to the

inability of wheat to utilise subsoil water since roots are rarely seen to proliferate below

0.5 m, even in the presence of apparently available water. Excessive soil strength and

soil chemical factors such as high extractable boron and high salinity were thought to be

implicated and experiments were conducted to examine the effects of these factors on the

growth of wheat. The boron and salt characteristics of some of the agronomically

important land units of Upper Eyre Peninsula were studied in a suwey in which samples

were taken from hve locations.

A freld experiment was conducted to test the hypothesis that wheat roots would

not grow into the subsoil in the presence of available water at the beginning of the

season. Before sowing the wheat, irrigation was used to bring the water content of the

soil close to field capacity in some plots, while other plots received rainfall only.

At sowing, the irrigated soil was weaker than the control soil. The soil at anthesis

was too strong to permit penetrometer resistance to be measured below 0.18 m in both

treatments. Water loss from the soil to anthesis was significantly greater from the

irrigated soil than from the control soil. For the 0.7-1.1 m depth interval, the irrigated

soil (EC" 1.9 dS --1¡ was less saline than the control soil (5.9 dS m-1). Soil boron

increased with'depth and was not significantly different between the two treatments.

CaCl2 extractable boron exceeded 15 mg kg-l soil below 0.5 m.

There were significantly more roots in the irrigated than the control soil.

Maximum rooting depth in the irrigated soil was 1.15 m and in the control soil 0.70 m

(P<0.05). Grain yields were not different between treaftnents. It is hypothesised that the

rapid early growth and withdrawal of water from the irrigated soil led to a critícal water

defrcit in the wheat between anthesis and maturity. Mean boron concentration in the grain

from irrigated plots (10.3 mg kg-1) was significantly higher than that from control plots

(5.8 mg kg-l). The data indicate a greater uptake of boron from the irrigated soit

coincident with higher water use and deeper rooting. While roots were able to penetrate

the subsoil in the presence of available water, the application of irrigation water modifled

the subsoil by leaching a large amount of salt.
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A survey was conducted with the principal objectives of studying the extent of the

potential hazard to cereals presented by boron and salt and the variability of their

distribution in some of the agronomically important land units of Upper Eyre Peninsula .

Samples were taken from five localities. Two of these, Nunjikompita and Cungena,

represented a single mapping unit because of its size. The other localities were Minnipa-
'Wudinna, Penong, and Buckleboo. A hierarchical sampling design was adopted, with
each land unit represented by two randomly located 10 km x 10 km areas, each

containing two 1 km x 1 km areas. Samples were taken from each of 32 pits in each 1

km x 1 km area, the closest of which were 5 m apart.

It was concluded that the mapping unit comprising Cungena and Nunjikompita

contained quantities of boron likeiy to present a low hazard to wheat production.

Conversely, the Minnipa-V/udinna and Buckleboo units contained consistently high

concentrations varying from the nutritionally adequate to >100 mg kg-l. The Penong unit
was very variable with respect to the distribution of boron. Salt was more variable than

boron, and only the Buckleboo unit contained uniformly saline subsoils. Otherwise,

saline and non-saline subsoils occurred to some extent in all units, with some very high
EC" s (>10 dS ¡-1; recorded at Nunjikompita, Minnipa-V/udinna and Penong. Estimates

of variance components from the survey data from each land unit are used to show how

more precise estimates of mean boron and salt values may be obtained by modified

survey designs, with greater survey effort concentrated at the sampling level where the

highest proportions of the total variance occurred.

V/ithin individual land units, some easily recognised subsoil features such as the

presence of Blanchetown Clay at Buckleboo or the reddish phase of the 'Wiabuna

Formation could be useful in indicating where high concentrations of boron are likely to
occur within a profile. In the Buckleboo, Minnipa - 'Wudinna and Penong land units,

high boron may be associated with elevated portions of the landscape.

The effects of salt and boron in the subsoil at high concentrations typical of the

subsoils of a large area of Upper Eyre Peninsula were examined in a glasshouse

experiment. Wheat was grown in deep pots of solonised brown soil comprising 0.2 m

sandy loam topsoil above 0.6 m treated calcareous sandy loam subsoil and a base layer of
light clay 0.26 m thick. The subsoil was treated with mixed salt (0, 13,39,75 mmol"

kg-l) and boron (0,20,38, and 73 mg tg-l) in factorial combination. The basic

hypothesis of this experiment was that the added salt and boron would not affect the root

growth, water use efficiency, dry matter production or grain yield of the wheat. The soil

was initially watered to field capacity and water use was determined by regularly
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weighing the pots. The soil was allowed to dry gradually during the season, but the

weights of the pots were not permitted to fall below that corresponding to lTVo of the

availabie water holding capacity of the soil.

Tillering, dry weight of shoots and grain, and root length density were

determined. Water-use efficiency was calculated with respect to total dry weight and

grain production.

Salt decreased tillering, dry matter production, grain yield, root length and water-

use efficiency (total dry weight): it increased sodium and decreased boron concentrations

in the plants. Boron decreased dry matter production (but not tillering), grain yield, root

length and water-use efficiency (total dry weight and grain yield): it increased the

concentrations of boron and decreased the concentration of sodium in the plants. At the

concentrations of salt and boron used, boron had more deleterious effects on wheat than

did salt. Yield was depressed by salt at concentrations of sodium in the tissue commonly

found in field-grown plants.

A penetrometer study was conducted to test the hypothesis that mechanised

agriculture could be implicated in increasing soil compaction on agricultural soils typical

of Upper Eyre Peninsula. Penetrometer resistance measured on virgin soil was

increased by wheel traffic and agricultural operations in all cases. The increase in soil

strength was signihcant down to 0.30 m, which is considerably greater than the normal

depth of tillage in the area (0.05 m). Reduction in the coefficient of variation of
penetrometer strengths after the passage of wheels was taken as evidence for associated

losses of soil structure. Virgin soils provide important reference states for assessing the

impact of agriculture in an area.

A study of the amounts and types of field traffic was done with the objective of
quantifying some of the factors causing soil compaction. Fields are cropped typically in

only 507o of years with the other 50Vo of years being self-sown pastures involving

negligible field traffic. In a cropping year, the total area of wheel tracks of farm vehicles

is equal to l65Vo of the area of the field,but only 47.5Vo of the actual area is covered by

wheels. The total amount of traffic is 62.6 t km ha-l. The mechanisms which are

important in maintaining a good soil structure in humid, temperate regions of the northem

hemisphere are either absent or of negligible effect in the semi-arid, Mediterranean-type

climatic region considered. Therefore, in spite of the relatively low levels of field traffic,

there is a perpetual, insidious increase in soil compaction and associated problems.
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Experiments were carried out to evaluate the efects of tillage in ameliorating a

perceived soil compaction problem at two sites (Minnipa and Cungena). The experiments

were done in 1987 and 1988 which unfortunately were both drought years. The

experimental hypothesis was that deeper than conventional tillage would reduce soil

strength, improve the root $orwth of wheat and alter the soil water regime in the root

zone in comparison with conventionally tilled soil, resulting in yield increases.

Tillage deeper than the conventional depth (0.05 m) with a chisel plough at

Minnipa had no measurable effect on water use or root growth in the period of
measurement, or on grain yield. Soil strength was reduced by tillage to 0.30 m, but

tillage to 0.15 m did not remove a hard pan below normal tillage depth. The loosening

effect of deeper tillage was not measurable in dry soils by anthesis.

At Cungena, tillage to 0.3 m resulted in some enhancement of root growth and

soil water extraction. Grain yields were increased by tillage to 0.3 m in both seasons.

Soil strength was considerably reduced by deeper than normal tillage.

At Cungena, a further series of (recompaction) experiments was conducted in

which tilled soil was recompacted by four passes of a large (11,800 kg) tractor before

sowing. It was hypothesised that soil tilled below normal tillage depth would, after

relatively few passes of a tractor, assume a soil strength equal to or greater than soil tilled

to normal depth. As a result, root growth, soil strength, soil water contents and grain

yields would not differ between treatments. Changes in soil water content at anthesis

similar to those produced by deeper tillage in the tillage experiment at Cungena occurred

in the recompaction experiment in 1987. Otherwise, differences evident in the tillage

experiments (e.g.in rooting density and grain yields) were not reproduced in the

recompaction experiments. Deeper tilled soil appeared to be more susceptible to the

effects of recompaction (in tenns of increasing soil strength) than control soil. The effect

of four passes of wheels of a large (11,800 kg) tractor was to remove in both years the

yield benefits induced by tillage to 0.3 m. The effects of deeper tillage in this

environment are not likely to be lasting under the current tillage systems operating.

The amount and intensity of wheel traffic on Eyre Peninsula is much lower than

in Europe, but there is evidence that cultivated soils in the area are more compact than

comparable virgin soils. Compaction is more likely to be due to the absence of
mechanisms which undo compaction than to high values of traffic intensity. While

deeper tillage had some beneficial effects at one site, other less expensive and more cost

effective methods of enhancing root growth in these strong soils need to be investigated.



It was concluded that the presence of high concentrations of salt and boron and a

steadily increasing soil compaction problem present serious impediments to the gowth
and penetration of the roots and ultimately the yield of wheat over much of Upper Eyre

Peninsula.
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SOUTH AUSTRALIAN DEPARTMENT OF AGRICULTURE
CLEVE RESEARCH LABORATORIES

MAP LEGEND

Soil units

Highly calca¡eous loamy sands and sandy loams.

Jumbled calcareous sand ridges with calca¡eous sandy loam soils over calcrete

(class tr and ItrC) in the inter-ridge flats.

Jumbled siliceous sands (sands up to 2 m deep) over clays and tertiary sediments.

Parallel sand ridges with shallow loamy soils in the swales.

Pa¡allel siliceous sand ridges wittr sandy lsams over class tr or ItrC calcrete in the

flats.

Shallow sandy loam and loamy soils over class II calcrete..

Loarny soils grading to clay loams and clays with bedrock (granite, schisS, etc.)

or alluvium.

Sandy loam soils over weak (class Itr) calcreæ in alluviaVaeolian material.

Calcareous sandy loams to light sandy clay over weak calcrete (class III A/B).

Highly calcareous sandy loams to light sandy clay loams over weak calcrete (class

trr A/B).

Calcareous light sandy clay loams and loams over weak calcrete (class trI AÆ) in

gently undulating topography.

Slightly calca¡eous sandy loam and loam soils over

weakcalcrete (class m A/B).

Light sandy clay loams and loams gading to clay loams over weak calcrete (class

m A/B) with clay at depth.

Siliceous parallel sand hitts superimposed over a rolling topography with sandy

loam to loam surface soils over bedrock.

Jumbled siliceous sandhills superimposed over a dissected topography with soils

varying from shallow sandy loams to loams over bedrock or clay.

Jumbled siliceous sandhills superimposed over a rolling topography which has

shallow sandy loam to loam soils grading to clay over bed¡ock.

Shallow light sandy clay loams to loams grading to clays over bedrock.

Siliceous sand spreads with depths of 10 to 100 cm over yellowish sodic clay.

Sandy loam to loam soils grading to clay loams and clays with weak calcrete

(class m AlB) over bedrock or alluvium.

6

7a-

7b-
8a-

8b-

9

10-
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15-
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18-

19a-

19b-

20-

2t-
22-
23-

24-

Non-calcareous sandy loams over yellowish clay. konstone gravel is

concentrated just above the clay.

Non-calcareoué lou*y sands over yellowish Coomunga Clay. Ironstone gravel

is concentratedjust above the clay.

Deep siliceous sands.

Sandy loam to loam grading to clay loam over yellow and red clays with areas of
gilgai soil.

Light sandy clay loams and loams with ironstone gravel over reddish clays.

Loamy soils grading to reddish clay over bedrock with some sand rises.

Loamy sand to sandy loam soils over yellowish and reddish clay. Calcrete (class

IIIC and II) is found in and below the clay.

Shallow sandy loam and loam over bedrock.

Compiled by: K.G. V/etherby from data of Crocker (1946a), Davies (1975), Elliot
(1965), Firman (1978), French (1958), King and Alston (I975), Northcote (1961),

Smith (1960) Stephens (1943), Wetherby (1980, 1984, 1985a,b,c,) 'Wetherby and

Hughes (1990), Wetherby and Kew (1990), V/etherby et aI. (1982, 1983) Wood (7974),

V/ood and Davies (1975) and Wright (1985).

Drawn by: Des R. Elliott PROFESSIONAL DRAFTING AND COMPUTER SERVICE,

ADELAIDE, SOUTT{ AUSTRALIA.

Coastline, Roads and grid data courtesy South Australian Department of Lands -
Mapping Branch

Hundreds and county boundaries courtesy South Australian Department of Environment

and Planning




