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Abstract

Bistability, the capacity for switch-like memory, is a fundamental building block for
robust behaviour in the noisy biochemical environment of a cell. Bistability has been ob-
served experimentally in gene networks that exhibit overall positive feedback in some
form; particular properties are endowed by variations on the basic network topology. The
Mixed Feedback Loop (MFL) is a two-protein network that can be configured for positive
feedback, and is notable since it has been observed to arise in nature more often than ex-
pected. The MFL includes an intervening protein-protein interaction to close a transcrip-
tional feedback loop. This network architecture has been predicted to support bistable
operation even without molecular cooperativity. To investigate the capabilities and fea-
tures of the MFL, a synthetic bistable MFL was designed for construction in Escherichia
coli (E. coli) using genetic components from bacteriophage 186. The design consists of
the phage CI repressor protein inhibiting the production of its corresponding Tum anti-
repressor. This Tum−CI MFL prototype was first validated using a deterministic model
expressly formulated for this instance of the MFL. It was then constructed in E. coli with
dual LacZ and fluorescent reporters to permit multiple modes of measurement. Hysteresis
assays — assays testing for history dependence or ‘memory’ of the system — were chosen
as the measure of bistability, both since the bistable MFL naturally lends itself to such an
assay, and since the assay simultaneously enables optimisation and setting of the switch.
Measured by LacZ assay, the bistable MFL showed limited hysteresis. A detailed exper-
imental characterisation of the network components and strains assisted in refining the
data and setting bounds on model parameters. However, whilst this served to increase
analytical accuracy, the deterministic model remained a poor fit of the data. When instead
measuring activities in single cells by flow cytometry using the fluorescent reporter, two
semi-stable sub-populations were discovered. Poor separation of the sub-populations ne-
cessitated the development of a system-specific mixture model for accurate identification
of their characteristics, but the sub-population dynamics found much better agreement
with the deterministic model. By building on this model with a hybrid stochastic/deter-
ministic model, the limited hysteresis seen by LacZ assay can be explained by variation
in switch robustness: the steady-state repressor concentration weights each cell’s ‘deci-
sion’ for either of the two stable states. These results further an understanding of the core
requirements for stable maintenance of epigenetic memory. The simplifications made by
isolating the MFL according to the ‘synthetic biology’ approach allowed key features of
this network motif to be determined. A deep knowledge of simple circuit structures like
the MFL contributes fundamentally towards the way we understand proteins and how
they fit into the complex networks that underpin the workings of life.
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1
Introduction

The cell stands at the heart of the living world as one of natures most versatile building
blocks. These packages of DNA, RNA and protein show a remarkably diverse range of
behaviours and functions, from the efficient and rapid replication of the bacterial cell to
the community of cells that make up the human body. Amazingly, this complexity is
encoded in each cell’s DNA using just a four-letter alphabet that prescribes the regulated
production of RNAs and proteins, the chief workhorses of the cell. Understanding how
these fundamental components can coordinate cellular behaviour is a key challenge facing
the life sciences, with central relevance in understanding issues like how normal cells turn
cancerous or how some pathogenic bacteria can alternate between dormant and aggressive
disease-causing states.

To learn the principles upon which such complex systems are founded, it is often effec-
tive to begin by studying simple examples. The relative simplicity of bacteria have made
them popular model organisms for the general study of cell behaviour. Though only small,
single-celled organisms, bacteria are highly capable, being able to process their environ-
ment and make decisions. Lacking a network of neuronal cells, the ‘brain’ of a bacterium
is instead the network of interactions between the many molecules inside the cell. The
network of protein-DNA interactions, that is, the transcription regulation network, has
traditionally been the best studied. However, interesting new patterns of network con-
nectivity are emerging that involve a combination of protein-DNA and protein-protein
interactions. One of the simplest examples, the MFL, involves a protein-DNA interaction
that feeds back on itself via a protein-protein interaction.

Bacteria can ‘remember’ past events and use these to inform future decisions. The
simplest example of this is digital memory — a bistable switch that can remember one of
two alternative states. Such bistability can be achieved in a number of ways, but a common
element is positive feedback in some form. There are many examples of positive feedback
in natural networks, but these are typically integrated as part of a much larger network.
To better understand memory in the cell, synthetic networks have been constructed in an
attempt to discover the requirements for bistability by building it ourselves. Such synthetic
systems have already proven to be quite informative, but they also present advances in the
field of synthetic biology, which makes use of the rich functionality of biological systems
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2 Chapter 1. Introduction

for the creation of new systems that can be applied in medicine and industry.

The MFL has the capacity to behave as a memory module, but has not yet been studied
in isolation as a synthetic circuit. This thesis seeks to construct a synthetic bistable MFL in
the bacterium Escherichia coli (E. coli) using parts obtained from bacteriophage.

1.1 Cellular networks drive cell behaviour

Just as the operation of an electronic circuit relies on the coordinated action of many inter-
connected components, the operation of a living cell relies on a vast and highly connected
network of interactions between proteins, DNA, RNA and metabolites [Hartwell et al.,
1999; Shen-Orr et al., 2002; Oltvai and Barabási, 2002; Joyce and Palsson, 2006]. This multi-
layered web drives the ‘intelligent’ behaviours exhibited by cells: from the way that a
single bacterial cell can sense and move towards food (chemotaxis), to the commitment
that human stem cells make towards a particular cell type (differentiation). The systems
responsible for such behaviours can involve large numbers of interacting partners form-
ing complex interaction networks. In spite of their complexity, however, cellular networks
have evolved to favour high-order organisation [Alon, 2003; Barabasi and Oltvai, 2004;
Alon, 2007; Mitra et al., 2013], and this has helped to direct research into the origins of
cellular intelligence.

Electronic circuits are modular by design, and in a similar fashion cellular networks
are punctuated by common ‘network motifs’: patterns of connectivity that are found more
frequently than would be expected from randomised networks. Examples of some of the
most common simple network motifs are depicted in Figure 1.1. Autoregulatory and feed
forward motifs (Figures 1.1(a) and 1.1(b)) are common in the gene regulatory networks
of both prokaryotes [Shen-Orr et al., 2002] and eukaryotes [Lee et al., 2002]. Motifs that
cross traditional network boundaries are also prevalent, and their importance is being in-
creasingly recognised [Ray et al., 2011; Mitra et al., 2013]. One of the simplest examples
of this type of motif is the MFL depicted in Figure 1.1(c), which involves both gene and

(a) Autoregulation (b) Feed forward motif (c) Mixed feedback loop (d) Transcriptional feed-
back loop

Figure 1.1: Common network motifs in cells. Motifs are depicted using network diagrams, where circles
(nodes) represent different genes in the network and connecting lines differ depending upon the type of
interaction. For simplicity, each node represents both a gene and its protein product. Transcriptional regu-
lation of one gene by the protein product of another is depicted using an arrow. Dashed lines represent a
protein-protein interaction between gene products.
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protein interactions. The MFL is known to be a significant motif in the yeast Saccharomyces
cerevisiae (S. cerevisiae) and is also found in many other cell types ranging from bacterial
to mammalian [Yeger-Lotem et al., 2004]. In contrast, the transcriptional feedback loop
in Figure 1.1(d) is not well-represented in the typically fast-response networks of bacte-
ria or yeast, but is a notable motif in the long-term developmental pathways of higher
organisms [Alon, 2007]. In their respective contexts, the over-abundance of each of these
motifs implies that they may capture some core processing functionality, and much atten-
tion has been given both to their discovery in other species and to their characterisation,
as reviewed by Alon [2007].

Such studies are of broad impact: network architecture is thought to be better con-
served between species than the constituent components are [Oltvai and Barabási, 2002],
with some structural similarities even being shared with unrelated networks like food
webs, social networks and the internet [Milo et al., 2002]. As such, many of the prin-
ciples learned by studying small networks are transferable, making it possible to study
larger networks from the bottom up [Guido et al., 2006]. Indeed, much of our current
understanding of cellular networks builds upon concepts developed last century using
the relatively simple networks of the model organism bacteriophage λ (phage λ) and its
host, the bacterium E. coli. An excellent overview of this body of research for phage λ
can be found in the book by Ptashne [2004], but a brief summary follows. λ is a temper-
ate phage — a virus that infects bacteria and that, upon infection, decides between two
alternative lifecycles. In one, the lytic pathway, it uses host machinery for aggressive repli-
cation and packaging of its DNA into phage particles, which are eventually released by
bursting (lysing) the host. In the other, the lysogenic pathway, the phage DNA reproduces
passively with replication of the host by integrating (inserting) its genome into the host
chromosome and keeping the genes responsible for lytic growth silent. The decision be-
tween these two pathways is controlled by a small network of transcription factors. The
core motif of this network is an example of the transcriptional feedback loop (Figure 1.1(d))
found in developmental pathways, and its study has been instrumental in building an un-
derstanding of how network architecture can translate into a committed decision between
two states. Furthermore, in spite of its relative simplicity, the transcriptional network of
phage λ continues to shed light on cell regulation and memory [Dodd et al., 2004; Zeng
et al., 2010; Zong et al., 2010; Cui et al., 2013].

Rigorous studies of the roles and functions of network motifs stand as pivotal steps
towards understanding cellular behaviour. Amongst the ways for studying network mo-
tifs, the methods of synthetic biology stand as some of the most promising, and are worth
developing in their own right.
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1.2 Synthetic biology as a tool for studying network motifs

Synthetic biology is an emerging field whose aim is the creation of new biological func-
tions and organisms. Living systems have evolved a plethora of elegant solutions to the
challenges posed by nature. By building upon this diverse and highly capable toolkit to
engineer solutions to humanity’s own challenges, synthetic biology holds the potential for
landmark applications in both industry and medicine. Though still a young field, promis-
ing applications have already come to fruition. The engineering and optimisation of a
metabolic pathway for biosynthesis of artemisinic acid in S. cerevisiae [Ro et al., 2006] has
paved the way for large-scale production of the antimalarial compound artemisinin [Pad-
don et al., 2013]. Bacteriophage have been engineered to break down bacterial biofilms
that would normally act as a protective barrier for pathogenic strains [Lu and Collins,
2007]; others have been engineered to enhance the efficiency of antibiotics at eliminating
infections [Lu and Collins, 2009]. Bacteria have been synthesised that can specifically tar-
get and deliver cytotoxic payloads to cancerous cells [Anderson et al., 2006; Huh et al.,
2013], or that can stimulate the immune system to eliminate human lymphomas [Massa
et al., 2013]. In response to the threat of global warming, much effort has also been spent
in engineering microbes for the sustainable production of biofuels as reviewed by Kung
et al. [2012]. Many other applications of synthetic biology are in development and covered
in more detail in the reviews by Khalil and Collins [2010] and Ruder et al. [2011]. Synthetic
biology holds many exciting applications, but important accompanying functions of these
endeavours are the lessons learned about nature’s design rules.

Much like synthetic chemistry helped to establish the principles of chemical reactiv-
ity and molecular structure, the process of building novel gene circuits tests and can help
to refine our understanding of network architecture [Yeh and Lim, 2007]. By rearrang-
ing existing components to test their presumed purpose, or by attempting to recreate ob-
served behaviours using unnatural components, synthetic biology can help to identify
core biological functions that are easily missed by observation and analysis alone [Ben-
ner and Sismour, 2005]. The simple motifs found in gene networks are prime candidates
for reconstruction as synthetic gene networks, and much has already been learned by this
approach [Sprinzak and Elowitz, 2005; Mukherji and van Oudenaarden, 2009]. The de-
velopment of key design standards has driven much of synthetic biology over the last
decade [Way et al., 2014]. These include the identification of modularity in biology [Aga-
pakis and Silver, 2009], the need for predictive mathematical models [Hasty et al., 2002],
and the need for a standardised library of decoupled parts [Endy, 2005]. These concepts
will be introduced in more detail in the coming sections.
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1.2.1 Defining modules for rational circuit design

In rationally designing new systems, it is important to recognise parts that are modular:
parts whose functions in a native context could be transferred intact into engineered en-
vironments. Modularity is present to varying degrees at almost all levels of operation of
the cell, from the triple base pair codons that are translated into amino acids, to protein
domains, genes and many of their control elements [Benner and Sismour, 2005]. Entire
sub-networks can even be classified into modules by associating network nodes that share
a common purpose [Mitra et al., 2013].

Modules are the synthetic biologist’s building blocks, and in gene network engineer-
ing, some of the most important are transcription factor genes and the promoters they
regulate. Well-characterised transcription factors, like the CI repressor protein from phage
λ, the TetR repressor protein that regulates resistance to the antibiotic tetracycline, and the
LacI repressor protein that regulates lactose metabolism in E. coli, have seen extensive use
in synthetic gene networks. The earliest synthetic gene networks were built from novel
rearrangements of just these three transcription factors and their respective promoters to
create small networks with a diverse range of behaviours and architectures, including a
switch [Gardner et al., 2000], an oscillator [Elowitz and Leibler, 2000], logic gates [Guet
et al., 2002] and autoregulatory motifs [Becskei and Serrano, 2000; Rosenfeld et al., 2002].
The reusability of these parts demonstrates their modularity, and indeed these regulatory
networks can be interfaced with other components to predictably alter sensory inputs and
phenotypic outputs [Kobayashi et al., 2004]. Furthermore, these parts were used to replace
functionally analagous ones in the phage λ lysis-lysogeny switch, and the synthetic net-
work shown to reproduce the salient behaviour of the natural system [Atsumi and Little,
2006].

The success of these early synthetic networks showed that transcription factor genes
and their promoters could be treated as modular and rewired by DNA recombination
to produce desired behaviours. These were, however, exploratory studies that produced
qualitative rather than quantitative agreement with the design specifications. It has since
become apparent that the point-blank abstraction of these parts as autonomous modules
with singular functions is, in many cases, too crude a simplification for the robust devel-
opment of new network architectures [Andrianantoandro et al., 2006; Nandagopal and
Elowitz, 2011]. This has prompted a more careful and detailed treatment of the modules
used in synthetic biology.

In their native contexts, most proteins and regulatory elements are tightly integrated
within the broader cell network, displaying multiple, often overlapping functions. Even
the CI repressor of phage λ, a frequent component of synthetic networks, has multiple
functions: depending on the genetic context, it can act either as a transcriptional repressor
or activator of promoter elements, and it is also linked to the host SOS response network, in
which it gets cleaved and thereby inactivated upon SOS signalling [Ptashne, 2004]. Avoid-
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ing such coupling in the design of new networks has until more recently been a common
theme in synthetic biology [Nandagopal and Elowitz, 2011]. Though it might be techni-
cally possible to create completely specified environments by rewriting the entire genome
of an organism [Gibson et al., 2008, 2010], or by constructing minimal synthetic systems
in vitro [Kim et al., 2006], the engineering and analysis of small synthetic gene circuits is
most easily achieved using an existing organism as the ‘host’. This means that global cell
regulatory factors are an important consideration in circuit design. For example, the in-
troduction of new genes can result in changes to growth rate, with global consequences
that can affect quantitative and qualitative behaviours of the gene circuit [Klumpp et al.,
2009]. Designs may even need to account for coupling between modules: wiring the out-
put of one module to the input of the next can have unintended effects on the dynamics
of the upstream module — a phenomenon known as retroactivity [Del Vecchio et al., 2008;
Jayanthi et al., 2013].

Instead of presenting a hindrance to circuit design, coupling between modules and
coupling with global host factors can present opportunities for novel regulatory mech-
anisms. Synthetic circuits can be constructed using factors known to modulate growth
rate, and this modulation then exploited for the production of a memory network [Tan
et al., 2009]. The generation of oxidative radicals by the fluorescent reporter proteins nor-
mally used to track cell state can be used to engineer long-distance quorum sensing be-
haviour [Prindle et al., 2012]. Different proteins that are actively degraded by the same
host protease can be coupled by saturation of that enzyme, and this coupling used to cre-
ate an oscillator [Prindle et al., 2014].

Nonetheless, many instances of coupling are unexpected in the early stages of network
design, making the process of synthetic biology naturally an iterative one [Sprinzak and
Elowitz, 2005]. Yet with the construction of each new synthetic network, the arsenal of
mitigation strategies in the synthetic biologist’s toolkit keeps expanding. These strategies
are reviewed in more detail by Brophy and Voigt [2014], but include an increasing variety
of methods for tuning module behaviour, such as the adjustment of promoter strengths,
ribosome binding site (RBS) strengths, rates of degradation or gene dosage (e.g., by adjust-
ing plasmid copy number). Even the effects of retroactivity can be overcome through the
judicious application of time scale separation [Mishra et al., 2014]. Ideally, these improve-
ments could all be made in the design process itself by refining the mathematical models
that are used to predict network behaviour.

1.2.2 Predictive models of cellular networks

Quantitative modelling provides a rigorous framework for developing and testing ideas
about the behaviour of gene networks. Indeed, a quantitative appreciation of a network’s
components is essential for accurately determining its dynamical behaviour [Ronen et al.,
2002]. Even the seemingly simple coupling of regulators with effectors in inducible and
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repressible circuits can see qualitative changes arising out of quantitative ones [Hlavacek
and Savageau, 1996; Wall et al., 2003]. As such, mathematical models are particularly
influential in synthetic biology, where they can benefit both the design and evaluation of
synthetic gene networks [Hasty et al., 2001, 2002]. Even in the very first synthetic gene net-
works, mathematical models were instrumental in the design process [Elowitz and Leibler,
2000; Gardner et al., 2000]. Though the models in these early studies were not quantita-
tively accurate, they could be used to identify possible classes of dynamic behaviour and
thereby inform the optimisation of experimental parameters. Since then, improvements in
the experimental quantitation of network components and in the models used to describe
them have resulted in circuit designs where the calibrated model can accurately predict
the quantitative output of the engineered network [Isaacs et al., 2003; Guido et al., 2006;
Rosenfeld et al., 2007; Ellis et al., 2009b].

Gene networks can be characterised using many different types of modelling depend-
ing on the desired level of detail [Karlebach and Shamir, 2008]. Of these, deterministic
rate equation models and a variety of stochastic models have seen regular use alongside
synthetic networks [Kaern et al., 2003]. Deterministic models track network components
like messenger RNA (mRNA) and proteins as continuously varying concentrations that
can be defined in terms of an Ordinary Differential Equation (ODE). Deterministic mod-
els are popular in formulating the initial network design, since their analytical tractability
helps to simplify the process of exploring suitable parameter regimes [Gardner et al., 2000;
Rosenfeld et al., 2002; Atkinson et al., 2003; Tigges et al., 2009; Palani and Sarkar, 2011].
Such models are kept deliberately simple to facilitate fast prototyping of designs, whilst
simulaneously avoiding the typically poorly-defined details of many biochemical reac-
tions. This loss of accuracy does not necessarily reduce their utility: simplified models
are quite likely to be valuable in summing up the behaviours of large networks from the
behaviours of their motifs [Sneppen et al., 2010].

In contrast, stochastic models provide a more accurate account of network dynamics
at the cost of simplicity. Cellular environments are noisy: at such small scales, the in-
trinsically random timing of biochemical reactions can become significant, prompting the
treatment of transcription and translation as stochastic reactions [Ozbudak et al., 2002;
Elowitz et al., 2002]. Stochastic models are frequently applied after characterisation of
a synthetic circuit to explain its noisy behaviour, or to investigate network mechanics
in more detail [Elowitz and Leibler, 2000; Becskei and Serrano, 2000; Isaacs et al., 2003;
Hooshangi et al., 2005; Stricker et al., 2008]. Methods for stochastic simulation continue
to be improved, and can in some cases be applied to accurately predict the behaviour of
synthetic networks [Guido et al., 2006]. Furthermore, our increased understanding of dif-
ferent stochastic mechanisms have led to advances in network analysis: distributions of
noise can provide additional information about regulatory activity, and by developing an
analytical framework through the use of simple synthetic circuits, the behaviour of natural
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gene networks can be better understood [Dunlop et al., 2008].

Irrespective of the choice of model, careful characterisation of the components is essen-
tial to a model’s predictive success. This highlights another fundamental goal of synthetic
biology: the collation of a library of well-characterised parts that can be rationally pieced
together with the assistance of both deterministic and stochastic models.

1.2.3 Bacteriophage 186: a source of new components for synthetic biology

The modular interpretation of the cell paved the way for many landmark synthetic gene
networks, whose success depended on a core collection of well-studied parts [Voigt, 2006].
However, the limited number of such parts and the absence of systematic methods for
their characterisation soon made it clear that standardised component libraries would be
required for continued growth in the field [Endy, 2005]. These observations prompted
the development of rigorous standards for the specification of parts [Canton et al., 2008],
and the development of a comprehensive and accessible repository of interchangeable
parts [Shetty et al., 2008]. Whilst these represented major steps forwards in bioengineer-
ing capacity, the next generation of synthetic networks are set to demand increasingly
large collections of orthogonal components [Lu et al., 2009]. Significant progress has al-
ready been made in generating large promoter and RBS libraries with a broad range of
strengths [Ellis et al., 2009b; Mutalik et al., 2013]. Such libraries can be used for predictable
tuning of expression levels when optimising synthetic networks, but do not contribute to
the diversity of network connectivity. Libraries of network components are most easily ob-
tained using the wealth of parts present already in nature. For example, it became possible
to synthesise a large network containing multiple logic gates by finding homologues of the
required components in different strains of bacteria, making use of directed evolution to
optimise these for dynamic range and orthogonality (i.e., reduced coupling) [Moon et al.,
2012].

Viruses, including bacteriophage, are one of the planet’s most abundant organisms,
and stand as an especially diverse source of genetic material [Rosario and Breitbart, 2011].
As was previously observed in the case of phage λ, the relative simplicity of bacteriophage
makes them useful model organisms, but it also makes them convenient sources of parts
for synthetic biology. Temperate phage, in particular, contain components that are valu-
able in network design, since they require a memory circuit to maintain the lysogenic state
of passive replication with the host. A temperate phage that has been studied in detail
over the last three decades is the bacteriophage 186 (phage 186) [Woods and Egan, 1974;
Kalionis et al., 1986; Dodd et al., 1990; Neufing et al., 2001; Dodd et al., 2007b]. This phage
displays many functional similarities with phage λ, but is remarkable for its distinct reg-
ulatory mechanisms [Trusina et al., 2005]. This has made phage 186 a useful counterpoint
to phage λ and makes it an exciting new source of synthetic parts, especially since many
of its components have already been well-characterised.
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Figure 1.2: A diagrammatic representation of the bacteriophage 186 genome. The entire genome consists
of only 30.6 kilobases of DNA, but encodes for all the functionality of the phage. The inset provides more
detail for the main control region. Points of CI binding are indicated by the red heavy dashed lines; the
binding sites flanking the pR promoter (F L and F R) are indicated by a black dot in the inset. See the text for
descriptions of the most relevant genes and proteins. (Adapted from a figure by Ian Dodd).

Two major distinguishing features of phage 186 are its switch control region and its
mechanism of induction in response to host SOS signals. To illustrate these differences
by reference to the gene network of phage 186, a schematic of the entire phage genome
is given in Figure 1.2, with additional details for the switch control region shown in the
inset. Like phage λ, a repressor protein called CI1 maintains the lysogenic state by keeping
the lytic promoter pR silent [Lamont et al., 1993; Dodd and Egan, 2002]. However, unlike
phage λ, the promoters that drive lysogenic and lytic development (pL and pR respec-
tively) are located in a face-to-face arrangement. This means that repression of the lytic
state is further enhanced by transcriptional interference — the repression of a promoter by
incident RNA polymerases [Callen et al., 2004; Dodd et al., 2007b].

The mechanism of phage induction in response to SOS signalling is another point of
contrast. The SOS network of E. coli gets activated in response to DNA damage [Little
and Mount, 1982], and under such conditions, lysogens of phage λ and phage 186 are
induced into lytic development by the inactivation of their repressor proteins. In the case
of phage λ, inactivation of the repressor occurs by stimulated autocatalytic cleavage of λCI
by the host RecA protein [Little, 1984]. In the case of phage 186, response to the host SOS
system is mediated by the p95 promoter that is normally held repressed by the host LexA
protein [Brumby et al., 1996]. Upon SOS signalling, LexA is inactivated and expression of
the tum gene produces the antirepressor Tum. Tum reversibly inactivates CI by preventing

1Note that unless otherwise indicated, references to cI or CI in this thesis will be used to refer to that gene
or protein respectively in phage 186, rather than to the identically named repressor protein in phage λ.
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its binding to the pR promoter and thereby allowing lytic transcription [Shearwin et al.,
1998]. The precise mechanism of CI inactivation by Tum is unknown, but it is known that
(1) the Tum protein acts on CI without the aid of any other factors, (2) the effect is Tum
concentration-dependent, and (3) the action of Tum on CI is reversible [Shearwin et al.,
1998]. So for the purposes of network design, CI can be thought of as a repressor protein
for the pR promoter, and Tum as an antirepressor that interacts with CI as if by a protein-
protein interaction. This makes these two components ideal candidates for studying the
intersection of transcriptional and protein-protein interaction networks.

1.3 The bistable MFL is an excellent candidate synthetic network

Cellular networks that can exhibit bistability — that is, an ability to stably maintain ei-
ther of two alternative states — have attracted much attention, since such a property can
give a cell the capacity to exhibit committed all-or-none responses. Natural examples of
bistable networks include the lysis-lysogeny decision of phage λ [Oppenheim et al., 2005],
the regulation of lactose metabolism in E. coli [Ozbudak et al., 2004], the persistence of
antibiotic-resistant bacteria in the treatment of infection [Balaban et al., 2004], the tran-
sient competence of Bacillus subtilis (B. subtilis) [Süel et al., 2006], the differentiation of
the photoreceptor cells responsible for colour vision in Drosophila [Mikeladze-Dvali et al.,
2005], and the epigenetic inheritance of nucleosome modifications [Dodd et al., 2007a]
and DNA methylation [Lim and van Oudenaarden, 2007]. This widespread incorporation
of bistability in natural networks underscores their importance in building complex net-
work behaviours, and real-world medical and industrial applications of bistable synthetic
networks are anticipated [Burrill and Silver, 2010]. Precedent for potential medical ap-
plications was recently set with the synthesis of a diagnostic bacterial strain: by making
use of the bistable phage λ switch, the synthetic strain could remember diagnostic signals
detected while passing through the mouse gut [Kotula et al., 2014].

Synthetic bistable networks have also played significant roles in advancing our under-
standing of bistable behaviour and the requirements for bistability. Bistability requires
both overall positive feedback, but also some form of nonlinearity [Ferrell, 2002]. Ex-
amples of gene regulatory networks with overall positive feedback are illustrated in Fig-
ure 1.3. The first synthetic bistable network was built using the toggle switch design (Fig-
ure 1.3(b)) [Gardner et al., 2000]. The toggle switch is very similar to the bistable motif of
phage λ, and derives nonlinearity from the cooperative binding of the repressor proteins to
their promoters. It is a mutually exclusive switch: in one state only A is expressed, since A
represses the expression of B ; in the other state only B is expressed. Toggle switches have
since been synthesised in mammalian cells [Kramer et al., 2004; Kramer and Fussenegger,
2005] and also in a minimal in vitro system [Kim et al., 2006]. An enhanced mammalian tog-
gle switch was also synthesised, in which the stability of each state was enhanced through
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(a) Autoregulatory switch
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(b) Toggle switch
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(c) Bistable mixed feedback loop

Figure 1.3: Gene regulatory networks that can exhibit bistability. Promoters are depicted as bent arrows,
genes as directed boxes and proteins as circles or squares. (a) Positive autoregulation where protein A
activates its own transcription. The switch can exist in high A or low A states. (b) The genetic toggle
switch where protein A represses transcription of protein B, and protein B similarly represses transcription
of protein A. The switch can exist in high A/low B or low A/high B states. (c) The bistable mixed feedback
loop where protein A represses transcription of protein B, whilst protein B interacts with protein A to prevent
its repression of the PB promoter. The switch can exist in high B or low B states.

an additional feedback mechanism involving mRNA silencing by siRNAs (short interfer-
ing RNA molecules) [Greber et al., 2008].

Shortly following construction of the original toggle switch, a bistable circuit based on
the positive autoregulation design (Figure 1.3(a)) was constructed in S. cerevisiae [Becskei
et al., 2001]. Such circuits also derive nonlinearity from cooperative binding. An autoreg-
ulatory switch was also synthesised in E. coli, which became a robust oscillator with the
addition of a linked negative feedback loop [Atkinson et al., 2003]. A particularly stable
switch was engineered by instead linking positive autoregulation with the bistable motif
of the lac operon [Chang et al., 2010]. In fact, more generally, the linking of fast and slow
positive feedback loops is believed to be an important means for increasing robustness in
bistable networks [Brandman et al., 2005].

In E. coli, the toggle switch is not a common motif [Shen-Orr et al., 2002], and positive
autoregulation is much less common than negative autoregulation [Thieffry et al., 1998].
Rather, composite feedback loops involving a transcriptional and post-transcriptional link
are thought to be more important [Shen-Orr et al., 2002], as they are in S. cerevisiae [Yeger-
Lotem and Margalit, 2003; Yeger-Lotem et al., 2004]. One of the most common composite
motifs is a feedback loop consisting of a protein-protein interaction and a protein-DNA in-
teraction [Yeger-Lotem et al., 2004; Alon, 2007]. This MFL motif, introduced earlier in Sec-
tion 1.1, has been shown in theory to support either bistability or oscillations depending
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on the overall sign of the feedback [François and Hakim, 2005]. With overall negative feed-
back, the MFL can behave as an oscillator. In human cells, the tumour supressor p53 and its
negative regulator Mdm2 form such a loop: p53 activates transcription of Mdm2 (positive
interaction), whilst the Mdm2-p53 protein-protein interaction targets p53 for degradation
(negative interaction) [Lahav et al., 2004]. The yeast galactose operon contains a MFL with
overall negative feedback comprising the Gal4p activator and the Gal80p protein, but two
additional positive feedback loops involving the sequestration of Gal80p by Gal3p and
Gal1p make this network a bistable one [Smidtas et al., 2006; Venturelli et al., 2012].

With overall positive feedback the MFL can behave as a bistable switch [François and
Hakim, 2005]. An example of the MFL motif in this regime is illustrated in Figure 1.1(c).
In B. subtilis, the decision between chained growth in biofilms and motility is governed by
such a bistable MFL. The SinR repressor controls production of SlrR, which in turn forms a
complex with SinR that prevents it from repressing SlrR production [Chai et al., 2010a,b].
Another bistable MFL is found in the genetic switch of temperate bacteriophage TP901,
where the CI repressor of that phage controls the production of MOR, an antirepressor
that inhibits repression by CI [Nakanishi et al., 2009; Alsing et al., 2011]. In S. cerevisiae,
the Swi4 and Swi6 proteins involved in cell cycle control also form an MFL with overall
positive feedback, though this example is embedded within a much larger network [Baetz
and Andrews, 1999].

Bistability in the MFL is possible without cooperativity in protein binding, since pro-
tein sequestration itself generates an ultrasensitive response [Buchler and Louis, 2008;
Buchler and Cross, 2009]. Stochastic modelling of a theoretical MFL with overall positive
feedback shows that both intrinsic and extrinsic sources of noise could be capable of caus-
ing switching between the two stable states, and, for certain parameter regimes, a noisy
MFL may even support oscillations [Li and Li, 2008]. Whilst there are natural examples
of the MFL embedded in larger networks and theoretical studies of the bistable MFL, a
systematic study of a synthetic bistable MFL has not, to the author’s knowledge, yet been
performed. As such, the primary aim of this thesis is the construction and detailed char-
acterisation of a synthetic bistable MFL using the repressor and antirepressor proteins of
phage 186.

1.4 Thesis overview

A MFL with overall positive feedback could be made by placing the expression of the
Tum antirepressor under the control of the pR promoter and supplying CI from another
promoter. A proof-of-principle deterministic model of this Tum−CI MFL is developed in
Chapter 2. By considering the deterministic model at steady-state, the capacity for bista-
bility in the Tum−CI MFL is demonstrated for a range of different model parameters. The
dynamical behaviour of the model is then used to propose an experimental design that
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could demonstrate bistability by the traversal of a hysteresis loop. The cloning of vari-
ous alternative Tum−CI MFL strains in E. coli is then described in Chapter 3. Traversal
of the hysteresis loop is enabled by placing the expression of CI under the control of an
inducible promoter. A dual reporting system is also devised so that the state of the switch
— the activity of the pR promoter — can be tracked either by fluorescence or by LacZ
assay. Preliminary experiments obtained by LacZ assay prompt better characterisation of
the switch components, including the nonlinearity present in the induction system, and
the production and degradation rates of Tum and CI.

Hysteresis of the experimental Tum−CI MFL is demonstrated in Chapter 4. The LacZ
assay enables efficient screening of the different strain designs, but also reveals that the
original hysteresis protocol does not allow enough time for equilibration of the network.
By using a protocol that produces a longer equilibration time, hysteresis is confirmed in
some strains but not in others. However, even in the successful strains, the observed hys-
teresis is weak. Neither the deterministic model nor the measured component properties
could be used to explain this weak hysteresis. Instead, an explanation in terms of noise-
induced instability is proposed. Measurements by LacZ assay give only the average pR
activity of a large population of cells, so LacZ assay results could mask a more complicated
underlying distribution of pR activities in individual cells. Thus in Chapter 5, measure-
ments by flow cytometry are used to measure the pR activities of single cells using the
fluorescent reporter. Evidence for a mixture of two cell populations in the middle of the
hysteresis loop prompts the development of a mixture modelling method that can resolve
these sub-populations. The mean activities of these sub-populations mark a much better
match to the hysteresis curves predicted by the deterministic model. To explain the split
into two sub-populations, however, a stochastic model is required. A basic hybrid deter-
ministic/stochastic model is derived in Chapter 6 that can reproduce the split-population
phenotype based on just the intrinsic noise in CI and Tum production. However, in order
to match the level of noisy switching observed experimentally, larger than expected fluc-
tuations in Tum expression are required, suggesting an explanation of switch instability
based on plasmid copy-number fluctuations.

In Chapter 7, the synthetic Tum−CI MFL is compared with other natural and synthetic
examples of bistability and future work on the Tum−CI MFL is proposed. Detailed ex-
perimental methods for the preparation and analysis of the Tum−CI MFL can be found
in Chapter 8. The thesis concludes with a draft paper describing further characterisation
of the Tum protein by mutation and structure prediction to better consolidate Tum as a
useful part for future synthetic circuits.





2
Directing design of a bistable genetic

circuit by mathematical modelling

The bistable Mixed Feedback Loop (MFL) as envisioned by François and Hakim [2005]
is a two-component network consisting of a positive feedback loop in which a protein
gene product indirectly regulates its own transcription via a protein-protein interaction.
This network is schematically represented in Figure 2.1 with an antirepressor factor B that
stimulates its own production from the promoter P B by relieving repression of that pro-
moter by the repressor A. François and Hakim developed a generalised dynamical model
of the MFL, showing that with this overall positive feedback, the MFL operates under a
bistable regime1. Such an antirepressor-repressor interaction is found between the Tum
antirepressor and CI repressor of phage 186 [Shearwin et al., 1998]. In the phage, expres-
sion of Tum is activated by the host SOS response; Tum then reversibly acts against the CI
repressor to relieve repression of phage lytic promoters such as pR . In principle, a bistable
MFL could be constructed using these phage components by placing Tum production un-
der control of the CI-repressible promoter pR . In this chapter, further design consider-
ations regarding the practical implementation of a synthetic Tum−CI MFL network are
explored. To this end, initial qualitative descriptions of this circuit and its behaviours are
developed into quantitative models that consolidate and extend our understanding of the
network.

1François and Hakim [2005] contrast the MFLs bistable regime with an oscillatory regime with overall
negative feedback in which the the protein B relieves activation of its own promoter.

Figure 2.1: The bistable Mixed Feedback Loop (MFL)
is a genetic network motif in which positive autoregu-
lation of gene B proceeds via an intervening protein-
protein interaction with A. The bistability of this genetic
circuit depends on overall positive feedback, generated
here by a double negative feedback loop where the
antirepressor B relieves repression of its own promoter
PB by the constitutive repressor A.
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2.1 Origin of bistability in the Tum−CI MFL

By definition, bistable systems are those for which there are two distinct stable states. A
light switch shows bistable behaviour since it ‘remembers’ whether it is on or off. The
switch can be flipped between the two states by outside interference (a finger), but once it
enters either state, it stays there indefinitely. Note how this contrasts with a doorbell — a
monostable system — which can be induced to an on state (by pressing the button), but
always returns to its stable off state when the inducing signal is removed. In biochemical
networks, these states are protein concentrations or promoter activities. In the bistable
MFL, the ‘on’ state has a high concentration of protein B and high expression from P B,
whilst the ‘off’ state has a low concentration of protein B and low expression from P B.

These two states are illustrated in Figure 2.2 for a MFL constructed from Tum and
CI. In the ‘on’ state, production of the antirepressor Tum from the pR promoter is high,
so cellular concentrations of Tum are high. This shifts the Tum−CI equilibrium towards
formation of an inactive complex. The available CI is sequestered (i.e., locked away) and
cannot act at the pR promoter so the ‘on’ state is maintained. In the ‘off’ state, transcription
from pR is low, so cellular concentrations of Tum are also low. This shifts the Tum−CI
equilibrium away from formation of the complex, and the available CI is then free to act
at the pR promoter and maintain the ‘off’ state. Notice that in both ‘on’ and ‘off’ states,
the level of CI is the same. This highlights the important point that in bistable networks,
identical external states (fixed CI expression levels) can give rise to two alternative internal
states (high or low Tum concentrations). Put another way, the equilibrium state of the
bistable MFL cannot be predicted without first knowing its history.

Simultaneously achieving the capacity for two stable states requires balanced produc-
tion rates. The ‘on’ state can only be stably maintained if high enough rates of Tum pro-
duction can be reached to overcome repression of pR by the fraction of unbound CI. Con-
versely, the ‘off’ state can only be stably maintained if low enough rates of Tum production
can be reached to prevent sequestration of the fraction of free CI.

TumTum-CI

CI
tum

pR

cI

Plac

tum

pR

cI

Plac

‘On’ state ‘Off’ state
pR active, ↑[Tum] pR repressed, ↓[Tum]

Figure 2.2: The two stable states of a bistable Tum−CI Mixed Feedback Loop. CI repressor produced from
P lac would normally repress the promoter pR that drives production of the antirepressor Tum. However, in
the ‘on’ state Tum relieves this repression by sequestering CI and sustaining its own production. In the ‘off’
state, the same level of CI produces an alternative stable state where there is not enough Tum present to
begin with to prevent repression of the pR promoter.
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A source of feedback is necessary but not sufficient to guarantee bistability. A further,
less obvious requirement, is ultrasensitivity [Ferrell, 2002], that is, feedback that proceeds
via a nonlinear response curve that is sigmoidal or S-shaped. The simplest type of ultra-
sensitivity arises as a result of the cooperative binding of oligomers to produce a Hill curve
response [Smolen et al., 2000; Qian, 2012]. This is sufficient to produce bistable circuits, but
other mechanisms have also been shown [Keller, 1995; Siegal-Gaskins et al., 2011]. In par-
ticular, ultrasensitivity can arise by sequestration of a species [Buchler and Louis, 2008],
like the way in which CI acts to sequester Tum in the MFL; as Tum levels increase, they are
buffered by the titrant (CI), and thus a corresponding ultrasensitive response is observed
to occur. The critical relation is the ultrasensitive decrease in free CI concentration as a
function of the increase in production of Tum. That is, a change in the production rate of
Tum results in an equivalently larger reduction in free CI in the ultrasensitive region.

With the complex requirements for balancing production rates and ultrasensitivity in
the MFL, a mathematical model of this system will become indispensible, as it does for
most projects in genetic network design [Kaern et al., 2003].

2.2 Developing a mathematical model of the Tum−CI MFL

The mathematical framework developed by François and Hakim [2005] to describe a MFL
provides a good starting point for understanding the basic requirements for bistable or os-
cillating MFLs. Their analysis is based on a generic model of deterministic rate equations
that characterise the time evolution of each species. In order to simultaneously model both
activators and repressors, François and Hakim included terms for production from P B (re-
fer to Figure 2.1) in both bound and unbound states of the transcription factor A. A major
conclusion of their work was that bistability was possible as long as the overall produc-
tion rate for the unbound form of promoter P B was higher than the rate of production from
P A and the overall production rate for the bound form of P B was lower than the rate of
production from P A. They further showed that in this configuration the circuit can show
history-dependent behaviour (hysteresis) as a function of the rate of production from P A, a
characteristic feature of bistable systems [Ferrell, 2002]. Here a similar model is employed,
albeit with some minor modifications given the specific application to a Tum−CI MFL. In
particular the Tum−CI and CI−pR interactions are both known to be highly cooperative,
so here a model is formulated accordingly to gauge the effects of additional cooperativity
on the bistability of the circuit.

The key network interactions of the Tum−CI MFL are the repression of pR by CI and
the sequestration of CI due to the formation of the Tum−CI complex. Both of these can be
thought of as equilibrium reactions that are characterised by the concentrations of free CI
(specified as C), free Tum (specified as T) and Tum−CI complex (specified as S). The level
of free CI determines the equilibrium between bound (specified as R for ‘repressed’) and
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Figure 2.3: Parameters used
for modelling the bistable
Tum−CI MFL. The state of the
system is defined by the con-
centrations of the three species
illustrated (free Tum, free CI
and Tum−CI complex). The
time evolution of these species
is defined by the production
(pC, pT) and degradation (δC,
δT , δS) rates and the network
interactions by equilibria, which
are approximately described
using Hill curves with EC50s
(εR, εS) and Hill coefficients
(HR, HS).
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unbound (specified as U for ‘unrepressed’) forms of the pR promoter, but is itself deter-
mined by the equilibrium with free Tum and Tum−CI complex. A summary diagram of
these reactions and the production and degradation reactions that constitute the Tum−CI
MFL is shown in Figure 2.3. Each reaction is labelled by the parameters used to describe it,
with subscripts chosen to reflect the species each parameter pertains to. The assumptions
made in choosing this model and the corresponding set of parameters will be discussed
and justified in the following sections, but put simply:

• the overall rate of production of CI is set by parameter pC, with the overall
rate of production of Tum from unbound pR set by pT,

• degradation/loss of each species is assumed to be first order in the
concentration of that species with degradation rates δC, δT and δS for free CI,
free Tum and Tum−CI respectively, and

• the network interactions are described using Hill approximations for the
equilibria with Hill coefficients HR and HS, and EC50s εR and εS for the
CI−pR and Tum−CI equilibria respectively.

It is worth noting here that a significant departure from the François and Hakim model
is to neglect modelling of the intermediate mRNA species in the production of Tum. The
delay introduced by the mRNA half-life was critical for getting oscillations in their model [François
and Hakim, 2005]. However, here only the bistable mode is of interest so such dynamics
are less relevant. This approximation simplifies the steady-state analysis and does not sig-
nificantly impact the relevant deterministic dynamics as long as the half-life of the mRNA
is much shorter than that of the protein [Sneppen et al., 2010]. This same assumption was
successfully applied in the simple mathematical model used to describe the first synthetic
bistable circuit [Gardner et al., 2000].
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2.2.1 Modelling the CI−pR interaction

Of the two equilibrium reactions, repression of pR by CI is better understood. The avail-
able experimental data suggests that CI forms dimers at very low concentrations — with a
dissociation constant of at most 1× 10−8 M [Shearwin and Egan, 1996] — and that these CI
dimers can bind cooperatively to form a heptamer (7-mer) of dimers [Pinkett et al., 2006].
There are a number of sites in the phage where CI is able to bind, including the opposing
promoters pR and pL and two distant flanking sites, F R and F L, that increase the level of
repression at pR and pL [Dodd and Egan, 2002]. Modelling of the in vivo repression data
shows that CI binds cooperatively to repress the pR promoter and further suggested that
the DNA wraps around the CI 14-mer, forming a CI wheel structure [Dodd et al., 2007b].
DNA wrapping of the 14-mer and DNA looping of the flanking sites have both been con-
firmed in vitro by atomic force microscopy and tethered particle motion [Wang et al., 2013].
For the Tum−CI MFL, the pR promoter without the flanking binding sites was chosen for
its balance between ultrasensitivity and dynamic range.

Here, a model for the CI−pR equilibrium similar to that used by Dodd et al. [2007b] is
employed to characterise the cooperative equilibrium between bound and unbound CI at
the pR promoter. In this model, the complex series of reactions leading from CI monomers
to the complete 14-mer are approximated (1) by presuming that the only CI species capable
of binding to and repressing the pR promoter is the complete CI wheel, and (2) by using
a Hill approximation to ignore all intermediate states (for which little data is available).
It is further assumed here that at physiologically relevant CI protein concentrations, CI
exists almost completely as dimers, like for the phage λ model [Ackers et al., 1982]. As
a result the action of CI at pR can be modelled by a single equilibrium reaction between
the unbound pR promoter and free CI dimers and the repressed promoter bound by a CI
wheel (CI14−pR):

7 CI2 + pR CI14−pR (2.1)

According to this formula, the concentration, R, of repressed pR and concentration, U, of
unrepressed pR are related by equilibrium considerations to the concentration, C, of free
CI as:

R = U
(

C
εR

)HR

(2.2)

with reaction order (Hill coefficient) HRand EC50 εR. According to this description of pro-
moter binding, the fraction of unbound pR , fU , can be written as a Hill equation:

fU =
U

U + R
=

U
U + U(C/εR)HR

=
1

1 + (C/εR)HR
(2.3)

and conversely the fraction of bound pR , fR, can be written:

fR =
R

U + R
=

1
1 + (C/εR)−HR

(2.4)
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To relate this CI–DNA binding data to a production rate from pR , it is assumed here that
production from the pR promoter is negligible when CI is bound, so that the promoter
firing rate is proportional to the fraction of unbound pR , as given in Equation (2.3). Note
that this is a gross oversimplification in comparison with the detailed model developed by
Dodd et al. [2007b], which additionally accounts for a number of other unproductive states
and also the effects of transcriptional interference at pR due to firing from pL . However,
the simple proportionality model results in a far more tractable analysis, whilst still cap-
turing the essential behaviour for the pR promoter 2, and has been successfully applied to
describe other bistable gene networks [Gardner et al., 2000; Ozbudak et al., 2004]. In effect,
the complexity is hidden within a fixed constant of proportionality, pT, which can be set
by measuring pR activity when C = 0, that is, in the absence of CI.

Using a DNA fragment containing the entire pR–pL region without flanking binding
sites, the fraction of bound DNA has been measured in vitro as a function of CI concentra-
tion by gel shift assay [Dodd and Egan, 1996]. Using that data, the parameters in Equa-
tion (2.4) were fit to give a Hill coefficient of HR = 1.7 and an EC50 of εR = 28 nM [Shear-
win et al., 1998]. This is in contrast with the parameters determined by Dodd et al. [2007b]
to fit the in vivo repression data, where the Hill coefficient was determined as HR = 2.2
and the EC50 as εR = 0.57 WLU (wild-type lysogenic units) [Dodd et al., 2007b], which is
equivalent to 630 nM using the quantitative Western blot measurements of Dodd and Egan
[2002]. Perhaps most surprising is the order of magnitude difference in EC50 between in
vitro and in vivo data sets. This seeming discrepancy can be partly rationalised on the basis
that there is a much higher abundance of non-specific DNA-binding sites in vivo, thus in-
creasing the effective concentration of CI required to repress pR . Note that for the models
presented here, where it is assumed that the atomic CI unit is the dimer, the EC50s reported
above should be halved to give 14 nM worth of dimers in vitro and 315 nM in vivo with
negligible changes to the Hill coefficients.

2.2.2 Modelling the Tum−CI interaction

The antirepressor Tum inactivates CI by suppressing its DNA-binding activity and is thus
presumed to involve a direct protein-protein interaction [Shearwin et al., 1998]. The equi-
librium has been characterised in vitro using a gel-shift assay to measure the decrease in
the fraction of DNA bound by CI as a function of increasing Tum concentration. For a total
CI concentration of Ctot = 150 nM, the response showed high cooperativity with a Hill
coefficient of 4.5 and half maximal inhibitory concentration (IC50) of 3.3 µM. The fraction
of DNA bound by CI is an indirect measure of Tum activity, but by using the in vitroCI−pR
binding data discussed in the previous section, the Tum−CI interaction can be more di-
rectly examined as a change in concentration of free CI as a function of increasing Tum.

2The effect of transcriptional interference on pL is far more pronounced, and further, the pR promoter has
three strong repressor binding sites, whilst the pL promoter has only one.
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Figure 2.4: The Tum−CI equi-
librium model derived in the text
(solid) provides a good fit for the
in vitro gel-shift data (points) of
Shearwin et al. [1998]. The gel-
shift assay was used to quantify
the decrease in the fraction of DNA
bound by CI for increasing con-
centrations of Tum, but the original
data has been transformed here to
the concentration of free CI using
a complementary gel shift mea-
surement that characterised the
CI−pR interaction alone. Listed
at top right with standard errors
in the fit, are the Hill coefficient,
HS, and EC50, εS, determined
for the Tum−CI equilibrium model
presented in the text.
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This is achieved by rearranging Equation (2.4) in terms of the fraction, fR, of bound DNA:

C = εR(
1
fR
− 1)−1/HR (2.5)

and applying that equation to the data using the in vitro Hill coefficient and EC50 discussed
in Section 2.2.1 (recall that εR = 14 nM worth of dimers). The data thus transformed is
displayed in Figure 2.4, and shows the highly cooperative nature of the interaction. Note
that ‘free CI’ here refers to the subset of CI that is neither bound by Tum nor bound to
DNA, but the subset bound to DNA can be ignored since the concentration of DNA was
presumed negligible in the experiment.

There are a number of alternative mechanisms by which Tum might prevent CI binding
to DNA, including direct binding of Tum to the DNA-binding region of CI or disruption
of CI multimerisation [Shearwin et al., 1998]. However, with relatively limited biochemi-
cal information available on the form of the Tum−CI interaction, a simple representative
reaction scheme has been chosen:

2 Tum + CI2 Tum2−CI2 (2.6)

The stoichiometry has been chosen to reflect the significant cooperativity observed in re-
sponse to changes in Tum concentration, and also to match what little is known about Tum
multimerisation. Sedimentation equilibrium experiments have indicated that at a concen-
tration of 9.5 µM, Tum acts like a single monomeric species with molecular weight twice
that of a Tum monomer [Shearwin et al., 1998]. That is, at a concentration of 9.5 µM, Tum is
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predominantly dimeric and, whilst unlikely, all ultrasensitivity in the present model of the
Tum−CI interaction is attributed to this dimerisation. This scheme results in the following
Tum−CI equilibrium equation relating the concentrations of free CI (C), free Tum (T), and
Tum−CI complex (S):

S = ε−a−b+1
S CaTb (2.7)

where the concentrations C and T obey yet-to-be-determined reaction orders, a and b, and
the coefficient εS is defined to be analagous to an EC50 with dimensions of unit concentra-
tion, hence the choice of the power for that term.

The in vitroTum−CI gel shift data shows the response of free CI to the total concentra-
tion of Tum. However, the level of free Tum can be obtained from the total concentrations
of Tum (Ttot) and CI (Ctot) using the mass-balance equations:

Ctot = C + S (2.8a)

Ttot = T + 2S (2.8b)

where it has been assumed that C + S� 7R, the concentration of CI bound to DNA, since
the concentration of DNA is presumed negligible. This greatly simplifies the analysis since
it means the Tum−CI and CI−pR equilibria operate independently of each other, and it
also eliminates the need for a constraint equation for the total concentration of DNA. For
known concentrations Ctot and Ttot and after substituting with Equation (2.7), the con-
straints in Equation (2.8) are a system of equations in two variables. By eliminating S
from Equations (2.8a) and (2.8b), solving for T, and substituting this expression into Equa-
tion (2.7), Equation (2.8a) can be specified completely in terms of C:

Ctot = C + ε−a−b+1
S Ca(Ttot − 2Ctot + 2C)b (2.9)

The only free variable in Equation (2.9) is C, which can be found using numerical root-
finding algorithms. The non-linear least squares fitting algorithm of the R application [R
Development Core Team, 2012] was used to fit the gel-shift data using this model with free
parameters εS, a and b and with Ctot set to 75 nM worth of dimers. With all parameters
left free the data was fitted well, but the parameter estimates were obtained with very low
confidence. This was mainly due to a high correlation between the two power parameters,
a and b. Hence, without any evidence to the contrary and since b > a for the general
fit, a was then fixed to 1 so that all cooperativity was attributed to Tum. This choice of
parameters produced a similarly good fit of the data (as judged by the residual sum of
squares), and is shown in Figure 2.4 on page 21. With this choice of reaction order, the
equilibrium equation can be simplified as:

S = C
(

T
εS

)HS

(2.10)

where HS = a has become the Hill coefficient for the Tum−CI equilibrium. Observe in the
figure that since Ctot is small compared with Ttot, the concentration of S is also necessarily
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small compared with Ttot to satisfy the mass balance equations. Hence, Ttot ≈ T and the
value of εS (2.35 µM) is close to the EC50 of the displayed curve.

2.2.3 Deterministic free species model

The CI−pR and Tum−CI equilibria set the concentrations of the free CI and Tum species
at steady state, but in the in vivo MFL these species additionally evolve over time accord-
ing to protein production and degradation rates. To describe the complete gene network,
then, the dynamics of the interaction equilibria need to be considered in the context of the
dynamic production and degradation reactions. Such a time-dependent deterministic de-
scription of the Tum−CI MFL model can be fully represented as a set of first order ODEs
in terms of the free species variables. To start with, the time evolution of the Tum−CI
complex is derived. The concentration of the Tum−CI complex, S, changes in response
to formation and dissociation of the complex according to the equilibrium established in
Section 2.2.2, and is also lost in vivo by degradation. The differential equation for evolution
of the complex reads:

dS
dt

= − (γ + δS + δSC + δST) S + kSCTHS − k−SS (2.11)

For complete generality, degradation of the complex as specified in the above equation
has been split into a number of terms: (1) a complex-specific degradation term, −δSS,
representing targeted degradation of the complex, (2) CI- and Tum-specific degradation
terms, −δSCS and −δSTS, representing targeted degradation (removal) of either CI or Tum
respectively from the complex, and (3) a general growth-rate dependent dilution term,
−γS, that represents loss in complex concentration as the cells grow in volume. These
terms sum together to give a bulk term for loss of the complex by degradation/dilution as
shown. The degradation rates δSC and δST reflect the level of protection that the complex
affords to each species compared with active degradation of the free species.

The final two terms in Equation (2.11) describe evolution due to the Tum−CI equi-
librium reaction. Here, however, the steady-state description derived in Section 2.2.2 has
been split into separate rate law terms for formation and dissociation of the complex. The
form of these terms is not immediately obvious and deserves some additional discussion.
Rate law descriptions of typical one-step two-species binding equilibria can be neatly split
between forwards and reverse reactions, with complex formation being a second-order
term in the two reactant concentrations and complex dissociation being a first-order term
in product concentration. That is, dS

dt = kSCT − k−SS, where the on rate, kS, and off rate,
k−S, are set such that at equilibrium ( dS

dt = 0) their ratio gives the association constant,
K, for the reaction (K = kS/k−S). With such a simple scheme, the association constant
is merely the inverse of the EC50, so that εS = 1/K. The off rate (with units of inverse
time) effectively sets the timescale of the reaction, that is, the time it takes to reach equilib-
rium. This is made more transparent when the differential equation (for one-step complex
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formation) is rewritten:
dS
dt

= k−S (KCT − S) (2.12)

Clearly, the association constant, K, simply sets the steady-state species concentrations
(consider the steady state, that is, when dS

dt = 0), and k−S scales the time taken to get there.
The model of the Tum−CI interaction in Section 2.2.2 accounts for a more compli-

cated multi-step reaction scheme by simplifying it to an effective one-step reaction using
a Hill approximation, where the simple one-step two-species intermediate reactions are
neglected. Such an approximation reduces the complexity and number of parameters re-
quired to describe the equilibrium, but makes it more difficult to interpret the meaning
of bulk on and off rates for what is in fact a multi-step reaction. Nonetheless, to retain
the simplicity of a one-step reaction in the deterministic model, the Tum−CI interaction
is split into reactant and product terms as given on either side of the equilibrium relation
in Equation (2.10) (Section 2.2.2), and the differential equation for time evolution of the
complex is rewritten:

dS
dt

= − (γ + δS + δSC + δST) S + k−SC
(

T
εS

)HS

− k−SS (2.13)

The off rate, k−S, is used as a multiplier for both directions of the binding reaction and
hence sets the timescale of the reaction as it would in the case of the two-species binding
equilibrium described by Equation (2.12). Furthermore, the EC50 for the Tum−CI reac-
tion is used instead of the association constant since it is easier to interpret within the Hill
approximation and hence serves as a more useful parameterisation. Observe that if degra-
dation of the complex is ignored in Equation (2.13), then at steady state the equilibrium
equation (Equation (2.10)) is obtained.

The time evolution of the free CI dimers is now considered. The pool of free CI dimers
with concentration C participate in both the Tum−CI and CI−pR equilibria and are fur-
ther subject to degradation and dilution that are complemented by production from the
P lac promoter. Hence, the time evolution of free CI dimers is modelled by the following
differential equation:

dC
dt

= pC − δCC + δSTS− k−SC
(

T
εS

)HS

+ k−SS (2.14)

The steps involved in production of CI from P lac have been rolled into a single zeroth
order production term pC. The first order terms for degradation and dilution have been
combined together as a single constant δC, which for convenience has been defined as the
sum of the general species dilution rate, γ, and the rate of active degradation, so that the
active degradation rate of CI is given by δC − γ. Degradation of Tum from the Tum−CI
complex leads to increased availability of free CI as given by the δSTS term. The Tum−CI
formation and dissociation terms are simply the reverse of those formulated for the rate
of change of S in Equation (2.13). Finally, whilst CI participates in the CI−pR equilibrium,
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here it is assumed that the concentration of pR binding sites in vivo will be negligible in
comparison with the concentrations of CI that occur within a functional bistable MFL, and
hence have little effect on the dynamics of free CI.

Finally, the time evolution of free Tum can be considered. The production rate of Tum
from pR can be assumed proportional to the concentration (availability) of unrepressed
pR promoters, U, providing a one step model of production is used. Production and
degradation typically occur on a much slower timescale than binding equilibria, so by
further assuming that the dynamics of CI binding to pR are always at equilibrium, then,
as discussed in Section 2.2.1, the production rate of Tum from pR can be written as a
function of free CI concentration, that is, production of Tum is proportional to the fraction
of unrepressed pR given by Equation (2.3) on page 19. Hence the following differential
equation for the evolution of free Tum:

dT
dt

=
pT

1 +
(

C
εR

)HR
− δTT + 2δSCS− 2k−SC

(
T
εS

)HS

+ 2k−SS (2.15)

As done for the free CI equation, degradation and dilution of Tum are combined into
a single degradation rate, δT. Degradation of CI in the complex leads to an increase in
free Tum, but the reaction stoichiometry suggested in Section 2.2.2 was that the Tum−CI
complex was formed from one CI dimer and two Tum monomers, hence one unit of CI
(dimers) and two units of Tum are returned for every unit of the complex (2δSCS). This
similarly applies for the Tum−CI equilibrium terms which are identical to those for the
free CI equation apart from the factor of two.

Putting these equations together, the system of first order ODEs governing the concen-
trations of CI (C), Tum (T) and Tum−CI complex (S) in the Tum−CI MFL are written as:

dC
dt

= pC − δCC + δSTS− k−SC
(

T
εS

)HS

+ k−SS (2.16a)

dT
dt

=
pT

1 +
(

C
εR

)HR
− δTT + 2δSCS− 2k−SC

(
T
εS

)HS

+ 2k−SS (2.16b)

dS
dt

= − (δS + γ + δSC + δST) S + k−SC
(

T
εS

)HS

− k−SS (2.16c)

Note that in contrast with the MFL model developed by François and Hakim [2005], here
the equilibrium between free and sequestered Tum and CI is explicitly modelled. François
and Hakim chose to ignore feedback resulting from dissociation of the complex, essen-
tially by employing a pseudo-equilibrium assumption for evolution of the complex. This
is equivalent to setting dS

dt = 0 in the above equations, which leads to substantial sim-
plifications. This assumption relies on the complex being a transient population that is
actively degraded. In the case of the Tum−CI interaction, on the basis that Tum can act
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reversibly against CI in vitro without the need for degradation [Shearwin et al., 1998], and
without any evidence for targeted degradation in vivo, it is likely that Tum acts as a molec-
ular ‘sink’ for CI, with sequestration being the primary mechanism of action. Hence the
effects of ‘retroactivity’ — where the consumption of an active species (either Tum or CI in
this case) feeds back on system dynamics [Del Vecchio et al., 2008] — cannot be ignored,
and the pseudo-equilibrium assumption is not valid in this case. Note that whilst pseudo
equilibrium was assumed for the CI−pR interaction, this can be justified on the basis that
the concentration of CI binding sites at pR are low compared with the relevant concentra-
tions of free CI. The same cannot be said of the Tum−CI interaction, since in that case the
concentration of the complex cannot be assumed small compared with the concentrations
of free CI and Tum.

The ODEs as written have a somewhat overcomplicated parameterisation of degrada-
tion. Without evidence for any protection from degradation of CI and Tum when part of
the Tum−CI complex, it seems reasonable at this stage to assume that degradation of CI
and Tum when in the complex simply occurs at the same rate as active degradation of the
free species, that is, δSC = δC − γ, and δST = δT − γ. This is the same as assuming that
neither species receives any protection from degradation when part of the complex. The
result of this minor modification is a reduced number of parameters in Equation (2.16) so
that the system of equations can be rewritten:

dC
dt

= pC − δCC− k−SC
(

T
εS

)HS

+ (δT − γ + k−S) S (2.17a)

dT
dt

=
pT

1 +
(

C
εR

)HR
− δTT − 2k−SC

(
T
εS

)HS

+ 2 (δC − γ + k−S) S (2.17b)

dS
dt

= k−SC
(

T
εS

)HS

− (δS + δC + δT − γ + k−S) S (2.17c)

2.2.4 Deterministic total species model

Whilst the model in terms of the free species and Tum−CI complex is sufficient to com-
pletely describe the system, the form of the equations is simplified and the origin of bista-
bility easier to understand when they are written in terms of the evolution of the total con-
centrations of Tum and CI. Nonetheless, the system of ODEs in terms of the free species is
still easier to solve numerically, so those equations will remain useful. A system of ODEs
in terms of the total concentrations of Tum and CI can be obtained by differentiating the
mass balance equations given in Equations (2.8a) and (2.8b) by time, and substituting from
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Equations (2.8) and (2.17) to give:

dCtot

dt
= pC − δCCtot − δSS (2.18a)

dTtot

dt
=

pT

1 +
(

C
εR

)HR
− δTTtot − 2δSS (2.18b)

This does not eliminate the dependence on the free species, but if it is assumed that the fast
binding reactions, that is, the Tum−CI and CI−pR equilibria, are always at equilibrium as
constrained by the time-varying total concentrations of CI and Tum, then the free species
variables can instead be considered as (somewhat complicated) functions of Ctot and Ttot.
With the mass balance equations as given (i.e., neglecting CI bound at pR ), then the con-
centration of free CI is simply found by solving for C in Equation (2.9) as was done for the
in vitroTum−CI equilibrium. For reference, the constraint equation reads:

Ctot = C + C
(

Ttot − 2Ctot + 2C
εS

)HS

(2.19)

which cannot be solved in terms of C analytically, but can be solved using numerical root-
finding procedures. The concentration of the complex, S, can then simply be deduced from
the mass balance equations as S = Ctot − C. Note that this equilibrium assumption is not
the same as the pseudo-equilibrium assumption used by François and Hakim [2005] and
discussed in the previous section, since time evolution of the complex is still accounted for
as part of the total species concentrations. Loss of the complex by dilution and by degra-
dation at the standard free species degradation rates is implicit in the total species ODEs.
The total species degradation terms become more complicated if either of the species are
protected from degradation when bound up in the Tum−CI complex. In that case, there
would be additional dependence in the degradation rate terms on the concentration of the
complex.

If targeted degradation of the complex is neglected, that is, δS = 0, then the form of
the equations becomes particularly simple and the origin of bistability in this model of the
Tum−CI MFL is made transparent. With a constant production rate of CI, Equation (2.18a)
tends towards a single steady-state concentration of total CI. So like with the in vitro gel
shift assay of the Tum−CI interaction discussed in Section 2.2.2, the total CI concentra-
tion essentially remains fixed regardless of Tum concentration. On the other hand, the
differential equation for total Tum, Equation (2.18b), does depend on the Tum−CI equilib-
rium. The steady states for that equation occur when the production rate is equal to the
degradation rate. These terms are shown plotted against the concentration of total Tum in
Figure 2.5. Bistability arises as a result of the sigmoidal shape of the production rate of Tum
from pR . The shape of that curve is a direct result of the combined CI−pR and Tum−CI
equilibria, and is in fact proportional to the curve expected for an in vitro measurement of
the unbound fraction of DNA in the Tum−CI gel shift experiment (see Section 2.2.2.
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Figure 2.5: Bistability in the Tum−CI MFL
arises as a result of the sigmoidal response
of Tum production as a function of total Tum
concentration. Shown plotted are the pro-
duction and degradation rate curves from
the differential rate equation for total Tum.
The production rate curve is equivalent to
the response of the unbound fraction of pR
DNA in the in vitroTum−CI gel shift as-
say as a function of total Tum concentration
(compare with Figure 2.4). For the sake
of example, parameters were chosen that
match the in vitro equilibria (εR = 14 nM,
HR = 1.7, εS = 2.35 µM, HS = 4.6)
where the steady-state concentration of to-
tal CI has also been set at Ctot = 75 nM
worth of dimers. To balance production and
degradation, pT was set to 6 µM/min and
δT to 1 min−1. The filled and unfilled cir-
cles mark the two stable and one unstable
equilibrium points respectively.
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When the total Tum concentration is zero, the level of pR repression is set by that level
expected when C = Ctot, the steady-state concentration of total CI, hence the non-zero
offset at Ttot = 0. At this end of the curve, production outweighs degradation, and Tum
concentration will tend to increase to the low Ttot stable equilibrium point. At the other
end of the curve, Ttotis high enough such that repression of the promoter is completely
relieved, and pR production reaches its maximum rate. However, at these concentrations,
degradation outweighs production, so total Tum concentration will tend to decrease to the
high Ttot equilibrium where production and degradation are balanced. Between these two
stable points, an unstable equilibrium point exists; any deviation from that point results in
the system tending towards one of the stable points.

As a final note, an important (and easily modified) parameter is the production rate
of CI, which sets the steady-state concentration of CI, Ctot. Variations in Ctot affect the
shape of the Tum−CI equilibrium curve, and hence the shape of the production rate of
Tum from pR . Observe that as pC → 0, then Ctot → 0, and hence by the mass balance
equations, C → 0. So in this case the system of ODEs becomes monostable with a single
high Ttot state. Conversely as pC → ∞, then Ctot → ∞, and when Ctot � Ttot then C → ∞,
and the term for Tum production vanishes so that the MFL becomes monostable with a low
Ttot state. Between these two extremes, however, a subset of steady-state CI concentratios
that are permissive for bistability can be anticipated.
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2.3 Steady-state analysis of the Tum−CI MFL model

For the Tum−CI MFL to exhibit bistability, the system of ODEs by which it is characterised
must produce two stable fixed points at steady state. An analysis of the steady-state equi-
librium points can thus reveal the parameter values that support bistability. In this section,
a general formula that can be solved to find the fixed points of the Tum−CI MFL is derived
from the free species ODEs, and is then applied to determine the regions of bistability as a
function of the model parameters.

2.3.1 Solving the free species model at steady-state

The steady-state fixed points, whether derived from the total or free species ODEs, should
be equivalent, but at this point it is easier to start the analysis with the system of ODEs in
terms of free species. At steady state, the rate of change of each species vanishes such that
production and degradation are balanced. Setting the rates of change to zero in the system
of ODEs derived in Section 2.2.3 produces three equations in terms of three variables, C,
T and S, which can be solved in terms of those variables to find the fixed points of the
Tum−CI MFL.

To begin with, just the equation for dS
dt is set to zero; this constitutes the case of a quasi-

equilibrium assumption and the formulation made in the François and Hakim model.
With this assumption, Equation (2.17) can be rewritten:

dC
dt

= pC − δCC− (δC + δS)C
(

T
εS

)HS

(2.20a)

dT
dt

=
pT

1 +
(

C
εR

)HR
− δTT − 2(δT + δS)C

(
T
εS

)HS

(2.20b)

In the above equations, the use of εS is an approximation. It is more precisely defined as
an effective EC50 for the Tum−CI equilibrium given by:(

1
εeff

S

)HS

=
k−S

δS + δC + δT − γ + k−S

(
1
εS

)HS

(2.21)

However, it is written as εS in the system of ODEs, since equilibration of the complex
is expected to occur on a much faster timescale than production and degradation of the
species. This means that k−S will be much larger than the combined rates of degradation
and dilution, so that, to a good approximation, the two EC50s are equal.

Note the similarity of the quasi-equilibrium equations with the formulation in terms
of total species (Equation (2.18)). Here, however, the free species T and C have to take
over the role of the complex. So whilst the quasi-equilibrium formulation is much simpler
than the formulations including modelling of the complex (that is, those based on either
Equation 2.17 or 2.18), it performs quite differently when far from equilibrium.
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Now setting dC
dt and dT

dt close to zero, the fixed points of Equation (2.20) can be deter-
mined. First take dT

dt − 2 δT+δS
δC+δS

dC
dt and rewrite in terms of T to obtain:

δTT =
pT

1 + (C/εR)HR
− 2

δT + δS

δC + δS
(pC − δCC)−

(
dT
dt
− 2

δT + δS

δC + δS

dC
dt

)
(2.22)

When close to steady state, the differentials in the above equation will be small and can be
ignored as long as the steady-state concentration of free Tum scaled by its degradation rate
is much larger than zero, that is, δTT � 0. With that approximation, the free Tum equation
can be substituted into Equation (2.20a) to obtain:

dC
dt
≈ pC − δCC− (δS + δC)C

εHS
S

(
pT/δT

1 + (C/εR)HR
− 2

δT + δS

δT

δC

δC + δS

(
pC

δC
− C

))HS

which becomes exact as the system approaches steady state ( dC
dt = 0). This approximates

the system of three ODEs as a one-dimensional differential equation, which can be plotted
against the concentration of free CI to judge the Jacobian by eye (the Jacobian here is just
the slope of the above equation in terms of its only free variable, C). A more practical
expression can be obtained using the following substitutions:

MC =
pC

δC
DC =

δC

δC + δS

MT =
pT

δT
DT =

δT

δT + δS

to write the steady-state equation in terms of maximal steady-state CI and Tum levels (MC

and MT) and fractional degradation adjustments (DC and DT):

dC
dt
≈ δC

(
MC − C− C

DCεHS
S

(
MT

1 + (C/εR)HR
− 2

DC

DT
(MC − C)

)HS
)

(2.23)

With the number of parameters thus reduced, then, aside from the parameters used to
describe the equilibria, the only parameters that remain to be estimated are the maximal
production rates and the fractional changes made to the degradation rates. To begin with,
rough estimates for these parameters are made here; the effects of parameter adjustments
starting from this first guess will be considered later.

Steady-state levels of CI produced from the P lac promoter on a single-copy plasmid
(pZC320) have been measured by Western blot for an IPTG-inducible system and ranged
from undetectable when uninduced to 2390 CI monomers per cell with 100 µM IPTG [Dodd
and Egan, 2002]. Using the concentration factor prescribed in the paper (1.27 nM) this
gives a maximum steady-state level of CI dimers as MC ≈ 1500 nM. Since the produc-
tion rate from P lac can be set in an inducible manner, it stands as the easiest parameter to
modify in the MFL. Hence, particular attention will be paid to variations in terms of this
parameter, that is, CI production rate (pC), or equivalently, the maximum concentration of
total CI (MC).
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The unrepressed production rate of Tum from the pR promoter has not previously
been measured, so an estimate will be made by extrapolation from that made for CI.
An integrated P lac–lacZ reporter construct was assayed in a strain with LacI supplied
from the pUHA-1 plasmid at various concentrations of IPTG and measured to be approx-
imately 250 LacZ units at 100 µM IPTG [Adam Palmer, unpublished data]. A similar
integrated pR–lacZ reporter construct with consistent auxiliary plasmids produced an av-
erage unrepressed activity of approximately 860 LacZ units over a range of IPTG concen-
trations [Crooks, 2006]. This makes the pR promoter around 3.4 times stronger than P lac

at that level of induction. If it is assumed that translation and degradation rates of Tum
match those of CI, and using the measured copy number of 1.4± 0.2 copies per chromo-
some for the pZC320 plasmid with mini-F origin [Shi and Biek, 1995], then the extrapolated
steady-state level of Tum becomes MT = (3.4 times stronger) × (1.4 fewer copies)−1 ×
(3035 nM of monomers) ≈ 7400 nM.

Without any reason to suspect a degradation-mediated Tum antirepressor activity, a
reasonable first assumption is that there is no additional degradation of the complex, that
is, δS = 0 and hence DC = DT = 1. Parameters describing the CI−pR and Tum−CI
equilibria were discussed in Sections 2.2.1 and 2.2.2, where specifically, the in vivoCI−pR
parameters are used (HR = 2.2 and εR = 315 nM worth of CI dimers), whereas the in
vitroTum−CI parameters are used (HS = 4.6, εS = 2350 nM worth of Tum monomers).
This should present a reasonable choice of parameters, since the increased occurrence of
non-specific DNA binding in vivo is anticipated to affect the CI−pR equilibrium, whilst
the Tum−CI interaction is anticipated to occur in solution and more closely match the in
vitro parameterisation.

With these parameter choices, Equation (2.23) can be plotted as a function of free CI, as
shown in Figure 2.6. Recall that the rate equation as plotted is only a valid approximation
for points close to equilibrium, however, the plots assist in finding the roots of the rate
equation and also in interpreting the stability of each root. The concentrations of free CI
at which the rate equation intersects the x-axis are the steady-state concentrations. When
the slope of the rate equation at the zero point is decreasing, that state is stable; if the
concentration C deviates from that steady-state value, the rate of change returns the system
to equilibrium. When the slope of the rate equation is increasing, however, that steady-
state is unstable; any increase/decrease in C results in a positive/negative rate of change,
taking the system away from equilibrium.

Since the maximum concentration of total CI can be set by changing the level of in-
duction of the P lac promoter, the rate equation curve is depicted in the figure for three
different choices of this parameter. This reveals that for certain choices of MC, the rate
equation is monostable with a single equilibrium point (MC = 0.5 or 1.46 µM), but for
MC = 1.0 µM, the rate equation is bistable with two stable states straddling a single unsta-
ble state. Shown overlaid on each plot is the concentration of free Tum that would occur
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Figure 2.6: The Tum−CI MFL model supports bistability as characterised by the steady-state values of the
system of ODEs in terms of free species concentrations. Shown plotted is the value of dC

dt , as given by a
one-dimensional approximation to the full model that is only accurate for values of C close to equilibrium
(as described in the text). The parameters used are those described in the text, though the existence of
two stable points (bistability) requires an alternative choice of parameter, MC, for maximum CI steady-state
concentration, which is listed at the top right of each plot. Steady-state points are indicated by closed (stable)
and open (unstable) circles and marked along the free CI, C, axis using dashed lines. Shown in blue is the
value of free Tum, T, at each concentration of free CI, and the respective steady-state values for T are marked
on the right axis.

for a given free CI concentration as calculated by Equation (2.22) (note this is still only
accurate for concentrations close to the equilibrium points). As can be seen in Figure 2.6,
the two stable points in the centre panel can be described alternatively as low C and high
C, or high T and low T states respectively.

The value of MC for which the system transitions from monostability to bistability is
termed a bifurcation point, which are more generally the points in model systems where
changes in parameter values cause a changes in stability. Observe that the rate equation
curve for MC = 1.46 µM is very close to the one of the bifurcation points in terms of the
parameter MC; the bifurcation occurs when the local minimum at low Cconcentrations
touches the x-axis. The range of MC concentrations that can support bistability must lie
between two such bifurcation points. To better define these points, a plot of the equilib-
rium points versus the parameter MC will be useful. Finding multiple roots of an equation
as complicated as the free CI rate equation is a difficult numerical task. As it turns out, a
far simpler approach is to find the root(s) of Equation (2.23) as a function of MC for given
values of C. If the variation of the rate equation as a function of MC is considered, that is:

d
dMC

(
dC
dt

)
= δC

(
1 + 2

HSC

DTεHS
S

(
MT

1 + (C/εR)HR
− 2

DC

DT
(MC − C)

)HS−1
)

then it can be seen that the slope of the rate equation as a function of MC will be positive
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Figure 2.7: Equilibrium solutions for the Tum−CI MFL as a function of the steady-state concentration of
total CI, which is set by parameter MC in the steady-state analysis of the free species rate equations defined
in the text. Solid lines mark the stable states of (a) free CI concentration, C, or (b) pR activity, whilst the
dotted lines mark unstable states of those variables.

for any choice of C. That is, the rate equation is strictly increasing as a function of MC,
which means that there can be at most one root in terms of MC.

The root in terms of MC was found for a range of C concentrations using numerical
root finding algorithms and optimisation routines in R, and this data then plotted, after
swapping the axes, in Figure 2.7(a). This shows the variation of the steady states of the
Tum−CI MFL as a function of the parameter setting the maximum level of CI. Recall that
this parameter is simply defined as the CI production rate from the P lac promoter divided
by the CI degradation rate, and as shown in Section 2.2.4, gives the steady-state concentra-
tion of total CI, Ctot. Hence, this parameter stands as a proxy for changes in CI production
rate, which can easily be implemented using inducible promoters such as P lac. This then
reveals a simple experimental mechanism for adjusting system parameters until a bistable
state is found. What can be seen in Figure 2.7(a) is that the level of free CI slowly increases
as CI production increases, but then abruptly splits into three states (two stable, one unsta-
ble) soon after MC increases above 0.5 µM. Then just before MC reaches 1.5 µM, bistability
abruptly disappears, but the steady-state concentration of free CI continues to increase
linearly as a function of MC as might be expected.

The proportion of total CI that is free is not easy to measure experimentally, whether in
vitro or in vivo, and the total concentration of CI shows no indication of bistability as dis-
cussed for the system of ODEs in terms of total species concentrations. A far easier variable
to measure would be the total concentration of Tum, though this would also necessitate a
modification of Tum to include a reporter. Instead, an in trans pR reporter gene construct
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will be used as a proxy for total Tum concentration to measure the state of the Tum−CI
MFL. Use of the lacZ gene as a reporter is well-precedented in quantitating promoter ac-
tivity for phage 186. So shown in Figure 2.7(b) are the pR promoter activities expected for
the steady-state concentrations of C shown in Figure 2.7(a). These have been calculated
using the Tum production term from the system of ODEs in terms of free species (Equa-
tion (2.17b)), but normalised instead to steady state LacZ units (recall that the pR promoter
produces 860 LacZ units of activity when unrepressed). This curve has exactly the same
bifurcation points but has an inverted form.

2.3.2 Varying the parameters

The points of bifurcation in terms of the maximum CI concentration, MC, occur at the
local minimum and maximum of the MC roots of the free CI rate equation (given in Equa-
tion (2.23)) calculated as a function of free CI concentration. That is, the points of bifurca-
tion occur at the local minimum and maximum of the graph in Figure 2.7(a) when the axes
are swapped. These points, which can be found using numerical optimisation (minimisa-
tion/maximisation) routines in R, mark the boundaries of the bistable region.

Since MC is one of the easiest parameters to adjust experimentally, it is instructive to
consider how the size of this bistable region is affected by the other parameters in the
steady-state formulation. These can influence where or even if the bistable region exists,
thus also indicating the feasibility of synthesising a bistable Tum−CI MFL if some of the
parameter estimates made in the previous section turn out to be far different than antici-
pated.

The parameters characterising the Tum−CI and CI−pR equilibria are considered first,
and plots of the MC bifurcation points versus each parameter in question are shown in
Figure 2.8. The EC50 for CI−pR repression, εR, primarily affects the location of the bistable
region, but for high enough values, the bistable region disappears so that only monostable
states are accessible (Figure 2.8(a). εR reflects the strength of the CI−pR interaction, so
that as εR increases, the strength of the interaction decreases, and higher levels of the CI
production (MC) are required to access the bistable region. Conversely, increasing the
EC50, εS, for the Tum−CI interaction leads to smaller required levels of CI production to
balance the weakened strength of the Tum−CI interaction (Figure 2.8(b)). This forces the
bifurcation points together until they converge and the capacity for bistability is lost.

Increasing either of the Hill coefficients, HR or HS, for the CI−pR or Tum−CI interac-
tions leads to an increased size of bistable region (Figures 2.8(c) and 2.8(d)). This amounts
to increasing the ultrasensitivity of either of those reactions; in the context of the system
of ODEs in terms of total species this amounts to (asymmetrical) enhancements of the sig-
moidal shape of the production rate term. In contrast, as the Hill coefficients are reduced,
the size of the bistable region decreases until it disappears. In fact, bistability can still be
obtained even if the CI−pR interaction is non-cooperative, that is, HR is reduced below
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Figure 2.8: Observing variation in bistable region location as a function of parameters describing the
Tum−CI and CI−pR equilibria. Plotted as a function of each indicated parameter are the bifurcation points
of the Tum−CI MFL in terms of values of MC(the maximum CI concentration); between these values the
system shows bistability. Above the blue (upper) line and below the red (lower) line, only single monostable
states exist. Initial parameters are set to those used for the steady-state curves in Figure 2.7 and are kept
fixed at these values aside from the parameter in question; the vertical dotted lines indicate the position of
the initial parameters before variation.
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1. Indeed, François and Hakim [2005] considered only the case of non-cooperative interac-
tions in their model of the MFL, but were still able to find parameter regimes supporting
bistability. For the Tum−CI MFL too, the capacity for bistability can be retained even in
the non-cooperative case (that is, HS = HR = 1), providing either εS is sufficiently de-
creased, or MT sufficiently increased. The existence of bistability without cooperativity
can be rationalised by the fact that sequestration of a species, such as the sequestration of
CI by Tum, can produce ultrasensitivity in and of itself [Buchler and Louis, 2008].

Plots of the MC bifurcation points versus the production and degradation rate param-
eters are shown in Figure 2.9. The parameters for maximum CI and Tum concentrations,
MC and MT, are related to both production and degradation rates of those species. Either
an increase in production rate or decrease in degradation rate lead to increases in those pa-
rameters. Since production rates are more easily modified experimentally it makes more
sense to refer to and think of these parameters as influencing the production rates. Increas-
ing the maximum Tum concentration parameter, MT, simply increases the size of bistable
region indefinitely (Figure 2.9(a)). This is primarily due to the increase in the production
rate (MC) of CI that is required to reach the high C bifurcation point.

Thus far it has been assumed that Tum does not target CI for degradation, that is, the
rate of targeted degradation of the complex δS = 0. In that case, the degradation rates of
either CI or Tum scale only the magnitudes of MC and MT, since if δS = 0, the fractional
degradation rate adjustment factors, DC and DT, are always one. However, if δS is non-
zero, then the steady-state equations are shaped by DC and DT, which give the fraction of
degradation attributable to the free species as a proportion of the combined degradation
for free and complex-bound forms. Hence at this point, for a practical consideration of
targeted degradation of the complex, additional estimates on the scales of both CI and Tum
degradation rates need to be made. Little has been determined in terms of the stability or
otherwise of the CI and Tum proteins, though the CI repressor is believed to be stable
(not targeted for degradation). Stable proteins are only lost by dilution as the cells grow
in volume and divide. For fast-growing E. coli a typical cell doubling time is 30 minutes,
which gives a rate of dilution γ = log(2)/30 ≈ 0.023 min−1. This sets a base rate of loss
of each species, and any significant contribution of targeted degradation must occur at
comparable or faster rates.

If both the degradation rate of CI, δC, and the degradation rate of Tum, δT, are set to the
dilution rate (such that targeted degradation of either free species is zero), then variation
of δS simply amounts to varying εS. This can be seen by noting that the ratio DC/DT in that
case would always be one, whilst the DC term appears elsewhere to scale the εS parameter
in Equation (2.23). In other words, an increase in δS results in a decrease in DC, which
then scales the magnitude of εS. A more interesting response occurs when the half-lives
differ. Protein half-lives resulting from targeted degradation may be as short as 2 minutes
as seen for the phage λ CII protein [Shotland et al., 1997]. To explore this possibility, the
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Figure 2.9: Observing variation in bistable region location as a function of parameters that characterise the
production and degradation rates of the Tum−CI MFL. Plotted as a function of each indicated parameter are
the bifurcation points of the Tum−CI MFL in terms of the maximum CI concentration, MC, between which
points the system shows bistability. Above the blue (upper) line and below the red (lower) line, only single
monostable states exist. Initial parameters are set to those used for the steady-state curves in Figure 2.7
and are kept fixed at these values aside from the parameter in question; the vertical dotted lines indicate
the position of the initial parameters before variation.
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half-life of Tum is set ten-fold shorter (to 3 minutes), that is, Tum degradation is set ten-fold
faster than that of CI (which is kept dilution limited). With these choices of degradation
rate, increasing the degradation rate of the complex from zero to a rate of degradation
equivalent to a half-life of 1 min, greatly increases the MC required to reach the upper
bifurcation point (Figure 2.9(b)). This trend can be attributed mainly to the faster decrease
of DC than DT as δS increases, which results from the choice of a slower rate of degradation,
δC, for CI. In effect, degradation of the complex acts to magnify sequestration by siphoning
off the complex as it is produced. If the half-lives of the free species are also unbalanced,
as for this case where Tum degradation is much faster, then the slower-degrading CI is
most affected, with much more of it required to outcompete the extra loss produced by
complexation.

For completeness, the variation of the bifurcation points in terms of the parameters DC

and DT are also shown (Figures 2.9(c) and 2.9(d)). Given their dependence on the degra-
dation rate of the complex, these factors are harder to interpret physiologically. However,
a decrease in DC can be thought of as decreasing the rate of free CI degradation below that
of the complex whilst keeping free Tum degradation much faster than that of the complex
so that DT remains at unity, and vice versa for a decrease in DC.

2.4 Hysteretic behaviour

The steady-state analysis of the Tum−CI MFL has shown that with a suitable choice of
parameters, the genetic network has the capacity to produce two stable states. However,
up until this point it has not been considered how each of those stable states might be
accessed, that is, how switching between these two stable states might be achieved experi-
mentally. The phenomenon of hysteresis — whereby a system ‘remembers’ its past state as
parameters are varied — is a feature expected of all bistable networks [Ferrell, 2002]. This
motivates an assay for bistability that exploits the hysteresis anticipated as the production
rate of CI is varied.

In Section 2.3.1, it was shown that by balancing the steady-state concentration of total
CI (MC) against the other parameters, a region of bistability flanked by two monostable
regions could be found. With CI production from an inducible P lac promoter, the steady-
state concentration of total CI is easily changed by modifying the concentration of inducer,
in this case IPTG. If the production rate is set such that the system operates in one of
the monostable regions, the state of the system is drawn to that monostable state. Once
at equilibrium, if the production rate is then adjusted to take the system into the bistable
region, the system should prefer the stable state that is closest to the monostable state it
started in. This concept is illustrated and explained for the Tum−CI MFL in Figure 2.10.
As alluded to earlier, the state of the switch will be monitored by the activity of the pR
promoter. This underpins the shape of the hysteresis curve as illustrated in the figure — it
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Figure 2.10: The Tum−CI MFL should exhibit hysteresis, a memory of state, which can be understood
qualitatively by considering the effect of varying the CI production rate. Starting from the top left panel
and proceeding clockwise, if production of CI is low enough, the MFL operates in a monostable regime
where the pR promoter is always left unrepressed resulting in high activity and production of Tum. As
CI production is increased from that level, the system follows the blue ‘on’ curve into the bistable region,
since the effect of an increased CI concentration is absorbed by sequestration due to the pre-existing
high level of Tum (top right panel). Eventually, a threshold is reached, after which point the concentration
of CI overcomes the pool of Tum, and the system enters the alternative monostable regime where pR is
always held repressed (bottom right panel). In contrast, if the production rate of CI is decreased to take
the system from this monostable region into the bistable region, the ‘off’ curve is followed, since without
sufficient Tum to relieve repression, CI continues to actively repress pR (bottom left panel). Again a
threshold is reached when CI repression is so low that it cannot outcompete the level of expression of
Tum from pR.

is based on the steady-state plot in terms of pR activity shown in Figure 2.7(b). In practical
terms, the assay can be described:

1. grow cultures overnight in either high or low IPTG to set the switch in one
of the monostable regions,

2. subculture into intermediate IPTG concentrations in the bistable region and
grow to log phase to allow the system to equilibrate,

3. measure the production rate from pR by reporter gene assay.

Depending on which monostable region the system starts in, whether the low IPTG, low
CI production state, or high IPTG, high CI production state, the Tum−CI MFL will follow
either the ‘on’ or ‘off’ curves respectively. Cultures that end in the bistable region with the
same final conditions (same IPTG), but alternative initial conditions are expected to result
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in different final pR activities. This hysteresis would not be expected for a similar assay of
a monostable system.

Assays of hysteresis have been used elsewhere to characterise bistability, including for
a bistable positive autoregulatory circuit synthesised in mammallian cells [Kramer and
Fussenegger, 2005], for a synthetic sequestration-based switch in E. coli [Chen and Arkin,
2012], for the natural lac operon [Ozbudak et al., 2004], and for a modified yeast galactose
network [Venturelli et al., 2012]. Characterising bistability in the Tum−CI MFL using hys-
teresis is thus well precedented, and will be the primary assay for bistability used in this
work.

2.4.1 Time course simulations of the Tum−CI MFL

To confirm that the present model of the Tum−CI MFL supports hysteresis as described,
the system of ODEs in the free species concentrations (Equation (2.17)) can be solved over
time, for given choices of initial conditions. A number of the necessary parameters were
derived in the context of the steady-state model (see Section 2.3.1), but to further model
dynamics these must be complemented by a number of additional parameters that set
timescales for each process.

Degradation rate parameters for CI, Tum and the Tum−CI complex have already been
discussed to a limited extent in Section 2.3.2. To start with here, both Tum and CI are
assumed dilution limited, that is, with a half-life equal to a typical cell doubling time of
30 minutes so that δC = δT = γ. However, the alternative choice with Tum degrada-
tion set 10 times faster will also be considered; additionally accounting for dilution Tum
degradation becomes δT = 10δC + γ = 11γ. These choices of degradation rate then also
set the production rates, since these must balance to produce the steady-state maximum
concentrations of CI and Tum, MC and MT. With the choices of MC and MT made earlier,
then:

pC = MCδC = (1500 nM)× (0.023 min−1) ≈ 35 nM.min−1

pT = MTδT = (7400 nM)× (0.023 min−1) ≈ 170 nM.min−1

However, note that in the hysteresis assay, pC is allowed to vary and the initial states must
be chosen well within the monostable regions. For this reason, the low pC state will be set
to 0 nM.min−1 and the high pC state to 50 nM.min−1, with final rates set between those
extremes. For the case where Tum degradation (δT) is set 11 times faster than dilution,
consistency with the steady-state model MT is maintained, so that pT must similarly be set
11 times faster to balance the faster degradation rate. Targeted degradation of the complex
is ignored, that is, δS = 0.

With a focus on the assay, another important consideration is the time evolution of the
in trans reporter product of the pR promoter. For a pR–lacZ reporter, the activity of the
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β-galactosidase (β-gal) enzyme product of the lacZ gene is measured and assumed propo-
tional to the concentration of enzyme in the cells. As with Tum production, the production
rate of lacZ is reduced by repression so that the evolution of β-gal, Z, is described by:

dZ
dt

=
pZ

1 +
(

C
εR

)HR
− δZZ (2.24)

where the maximum production rate, pZ, and degradation rate, δZ, need to be determined
for the β-gal enzyme. Since the enzyme activity (proxy for concentration) is reported in
LacZ units, these are the units chosen to represent β-gal concentration, Z. This means that
the maximum β-gal concentration from this promoter can be set using the β-gal activity
for unrepressed pR stated above, that is, MZ = 860 LacZ units. β-gal is assumed stable
so that its degradation rate is given by δZ = γ = 0.023 min−1, and hence the unrepressed
production rate pZ = MZδZ ≈ 20 LacZ units.min−1.

The only parameter that remains to be determined is the off-rate for the Tum−CI se-
questration reaction, which sets the timescale of the Tum−CI equilibrium reaction. Since
this parameter is only a representative off-rate for a multi-step reaction scheme, an esti-
mate is made by assuming the reaction simply follows second order kinetics with associa-
tion constant K = 1/εS, the EC50 for the cooperative process. Then by assuming diffusion-
limited dynamics for the representative two-species binding reaction, an on-rate, kS, can
be estimated using protein diffusion rates in E. coli, and a typical off-rate determined using
the relation k−S = kS/K = kSεS. Diffusion of proteins in E. coli is dependent on shape,
charge and size. However, for a small protein like Tum (approximately 40 kDa), diffu-
sion would be close to that measured for green fluorescent protein (GFP) (approximately
60 kDa) with a rate of diffusion in E. coli ranging from 4.6− 7.7 µm 2.s−1 depending upon
whether the protein is His6-tagged Elowitz et al. [1999]. Using a diffusion coefficient, D,
the steady-state flux of molecules into a spherical interaction area can be used to derive
on rates for diffusion-limited reactions [Sneppen and Zocchi, 2005]. For a single reaction
centre, the rate of molecules entering the reaction zone is given by 4πεDc, where ε is the
radius of the target binding region and c is the concentration of the diffusing species.

To generalise to a reaction rate for two diffusing species, the diffusion coefficient should
be doubled [Phillips et al., 2009]. Hence, choosing ε to be 6 nm (roughly the diameter of
the amino-terminal domain (NTD) of CI) the on-rate for an in vivo second order reaction
can be estimated at:

kS = 8πεD (µm3.molecule−1.s−1)

= 8πεD× (10−15 L.µm−3)× (NA × 109 molecules.nmol−1)× (60 s.min−1)

= 25–42 nM−1.min−1

where NA is Avogadro’s constant. Using this estimate and the estimate for εS determined
in Section 2.2.2, the timescale for the Tum−CI sequestration reaction will be around k−S =
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εSkS = 5.8–9.6× 104 min−1. This means that the Tum−CI equilibrium reaction should be
much faster than the species degradation rates, lending further credence to the total species
model (Equation (2.18)) where the Tum−CI reaction was assumed always at equilibrium.

With the parameters set, all that remains is to choose the initial conditions. In the hys-
teresis assay, growth overnight in the monostable regions is used to take the system close
to each monostable steady state. In the modelling, this can be equivalently represented
by first choosing concentrations C, T, S, and Z that are close to their equilibrium values
when pC is set to either 0 or 50 nM.min−1 and then simulating growth in the monostable
states for sufficient time to ensure that equilibrium is reached. The approximate equilib-
rium states are determined by first calculating the steady-state concentration of total CI,
Ctot, that is produced in each of the monostable regions. These concentrations are then
used as a first guess for free CI, C, so that an estimate of the steady-state concentration of
total Tum, Ttot, can be made. Using these values for Ctot and Ttot, the Tum−CI equilibrium
equation (Equation (2.19)) is solved for free CI and an improved guess for Ttot made using
this new estimate. Then the concentrations of the free species can be calculated from these
Ctot and Ttot estimates using the equilibrium and mass balance equations. The initial con-
centration of Z is simply set to the steady-state value calculated using the final estimate
for free CI concentration.

The system of ODEs was solved numerically in R using the package deSolve [Soetaert
et al., 2010], which provides interfaces to ODE solvers in R. Due to the vastly different
timescales of the Tum−CI equilibrium reactions versus the production and degradation
rates, the system of equations is expected to be stiff, requiring very small timesteps only
for the balanced complex formation and degradation terms. As a result, the lsoda function
was used, which provides an interface to the FORTRAN routine of the same name [Petzold,
1983; Hindmarsh, 1983] that automatically switches between stiff and non-stiff solvers.

To match the assay design, the system of ODEs is simulated from the initial conditions
described above at the overnight P lac promoter production rate (0 or 50 nM.min−1) for
100 minutes to ensure equilibrium in each monostable state. Then the production rate pC

is switched to an intermediate rate and simulation proceeds for another 6 hours (300 min-
utes). Simulations of the transition from one monostable state to the other and from each
monostable state to the same production rate within the bistable region are shown in Fig-
ure 2.11.

When starting from a CI production rate in the low monostable region, the concentra-
tion of Tum equilibrates close to its maximum value, but the absence of CI results in very
little complex being present. If the production rate of CI is increased into the high monos-
table region, to begin with all of the CI produced from P lac is immediately sequestered by
the high levels of Tum to become locked up in the complex. This reduces the concentration
of free Tum, and as CI levels continue to rise to their new equilibrium value, eventually
the concentrations of both free Tum and the complex are reduced to zero.



2.4 Hysteretic behaviour 43

0
2

4
6

8
C

on
ce

nt
ra

tio
n 

(m
M

)
C
T
S
pR

sim$time

if 
(la

cz
) s

im
$Z

 e
ls

e 
si

m
$p

R

0
20

0
60

0
pR

 a
ct

iv
ity

 (L
ac

Z 
un

its
)

P lac activity
0 nM/min

50 nM/min

0
2

4
6

8
C

on
ce

nt
ra

tio
n 

(m
M

)

sim$time

if 
(la

cz
) s

im
$Z

 e
ls

e 
si

m
$p

R

0
20

0
60

0
pR

 a
ct

iv
ity

 (L
ac

Z 
un

its
)

P lac activity50 nM/min
0 nM/min

0
2

4
6

8
C

on
ce

nt
ra

tio
n 

(m
M

)

sim$time

if 
(la

cz
) s

im
$Z

 e
ls

e 
si

m
$p

R

0
20

0
60

0
pR

 a
ct

iv
ity

 (L
ac

Z 
un

its
)

P lac activity
0 nM/min

20 nM/min

0
2

4
6

8
C

on
ce

nt
ra

tio
n 

(m
M

)

sim$time

if 
(la

cz
) s

im
$Z

 e
ls

e 
si

m
$p

R

0
20

0
60

0
pR

 a
ct

iv
ity

 (L
ac

Z 
un

its
)

-100 0 100 200 300
Time (min)

P lac activity50 nM/min 20 nM/min

Figure 2.11: Deterministic time course simulations of the Tum−CI MFL confirm the predictions of the
hysteresis assay. Shown are time course trajectories of the concentrations of free CI, C, free Tum, T, and
the Tum−CI complex, S, as determined by the system of ODEs in terms of those variables (Equation (2.17)).
Vertical dotted lines mark the point at which the rate of production of CI from P lac is changed from its initial
rate to final rate; the specific P lac activities are depicted beneath each simulation. The concentration of the
reporter, β-galactosidase, was also simulated to determine the pR activity that would be measured in the
assay (black curve). This was simulated in LacZ units so has been rescaled according to the right axis.
Shown from top to bottom are simulations from each monostable region to the other (low pC to high pC and
vice versa), and simulations from each monostable region to a single point in the bistable region.
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In contrast, starting in the high monostable region leaves the initial concentrations of
free Tum and the complex close to zero, with the concentration of free CI at its highest
value. If the production rate is decreased into the low monostable region, the concentration
of free CI decreases, and relief of repression at the pR promoter is observed. As free Tum
increases in consequence, slight acceleration of the loss of free CI is observed when a small
concentration of the Tum−CI complex appears. Past this point, free Tum continues to
equilibrate to its maximum value.

It is worth noting the time it takes for these two extreme switching cases to reach a
state close to equilibrium. Growth overnight takes upwards of 12 hours (720 minutes), so
this is a good guarantee that equilibrium in the monostable regions is reachable. However,
after subculturing 1/500 from an overnight (stationary phase) culture, a culture of E. coli
typically takes only around 3–4 hours to grow to log phase (an optimal point for mea-
surement by β-gal assay). If 3.5 hours (210 minutes) is chosen as a representative value, it
can be seen that the cells will get close to but not quite reach equilibrium. This will be an
important consideration if the cells reach log phase faster than expected, or dilution rates
of the proteins have been underestimated (recall that these rates of loss effectively set the
time it takes to reach equilibrium).

Also shown in Figure 2.11 are time course simulations from each of the monostable
states to an intermediate production rate within the bistable region. In these cases, hys-
teresis is clear: when starting in the low monostable region with high Tum production,
the high Tum production state is maintained into the bistable region; when starting in the
high monostable region with low Tum production, the low Tum production state is main-
tained. Note that the transition from a high Tum production state into the bistable region
produces no change in pR activity, since the increased concentration of CI is siphoned into
formation of the complex due to the high levels of Tum present. In contrast, the transition
from a low Tum production state into the bistable region is accompanied by an increase in
pR activity, since the reduction in CI concentration reduces the level of repression at pR ,
but not by enough to cause the switch to flip.

2.4.2 Simulating the hysteresis assay

The time course assays illustrated in Figure 2.11 can be repeated for a large range of fi-
nal P lac production rates to visualise the anticipated shape of the hysteresis assay curve.
Two alternative time courses are obtained for each final production rate — one for cul-
tures starting from the low monostable region, the other for cultures starting from the
high monostable region — and the activity of pR determined from these time courses at
the typical assay time of 3.5 hours gives each point of the hysteresis loop described earlier
(Figure 2.10).

For the parameters described in the previous section, the hysteresis loop shown in
Figure 2.12(a) is obtained. This is overlaid on top of the steady-state curve shown earlier
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Figure 2.12: Simulating the hysteresis loop of the Tum−CI MFL by time course deterministic modelling of
the free species ODEs. Two time courses are simulated, one starting from low P lac activity (pC=0 nM/min)
and the other starting from high P lac activity (pC=50 nM/min), which then switch to intermediate P lac activi-
ties (x-axis) for an equilibration time of 210 minutes. The pR activity obtained at that time is plotted against
the final rate of CI production, pC. Similar time course assays were performed for a model omitting Tum
production to produce the monostable Tum− control curves. For comparison, the steady-state pR curve
for the Tum−CI MFL is also shown, where the maximum CI production rate, MC, has been appropriately
scaled to a production rate, pC. (a) Setting the loss of Tum, δC, as dilution limited produces a slowly equi-
librating MFL. (b) If the Tum degradation rate is instead set 11 times faster to simulate active degradation,
equilibration occurs much more quickly.

in Figure 2.7(b) for comparison. The hysteresis assay curve matches well with the steady-
state predictions over the majority of the bistable region confirming that this assay is a
suitable way to characterise the stable states of the Tum−CI MFL. However, with this
standard time of equilibration at the new production rate (210 minutes), the trailing ends
of each curve (in the opposing monostable regions) do not make it to their steady-state
values. The divergence is most evident just past each of the bifurcation points.

As a control measure for equilibration and to demonstrate the result anticipated of a
monostable system, it is useful to consider the case where Tum is absent from the network,
thus removing the source of positive feedback. With Tum absent, no complex formation is
possible and the system of ODEs in terms of the free species reduces to the following two
differential equations:

dC
dt

= pC − δCC (2.25a)

dZ
dt

=
pZ

1 +
(

C
εR

)HR
− δZZ, (2.25b)

which involves no feedback and hence can only exhibit monostability. The steady-state
free CI concentration is simply given by MC = pC/δC and the steady-state reporter activity
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by MZ/(1 + (MC/εR)
HR) — a standard CI−pR repression curve. These equations can be

similarly simulated over time using the same hysteresis assay protocol to produce the
control curves shown in Figure 2.12(a). These curves do not overlap each other, but this is
not an indication of two alternative states, but simply that equilibrium is not yet reached
by this time point. They also reveal the similarity of the low pR activity stable state of the
Tum−CI MFL with the shape of the standard CI−pR repression curve.

The time to reach equilibrium is affected primarily by the slow time evolution of the
degradation and production reactions. Like for the case of complex formation and dis-
sociation discussed in Section 2.2.3, the timescale of these reactions is set by the rate of
degradation. The effect of an eleven-fold faster Tum degradation rate on the shape of the
hysteresis curve was also simulated and is shown in Figure 2.12(b). This change has no
effect on the shape of the control curves or the steady-state curve, but does produce a
hysteresis curve that is much closer to steady state when measured at the same assay time.

Nonetheless, the hysteresis curves still diverge from equilibrium near the points of bi-
furcation, so a relevant consideration is the time needed to produce overlapping curves.
Slightly increasing the equilibration time or choosing a faster CI degradation rate would
help to close the ends and the Tum− controls. More worrying is that the closer each curve
gets to its bifurcation threshold, the longer the system takes to equilibrate. This is exem-
plified in the time course simulations in Figure 2.13 which show the progression from the
low monostable region to production rates that are all within the high monostable region.
The bifurcation point between the bistable and high monostable regions occurs at approx-
imately 33.62 nM.min−1. Thus in reasonable time, the hysteresis curve can only ever be
expected to approach equilibrium.
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Figure 2.13: As the assayed production rate of CI nears the point of bifurcation, the time to reach
equilibrium lengthens. Shown are time course trajectories performed exactly as described in Figure 2.11.





3
Designing and characterising a bistable

MFL

The model of the Tum−CI MFL developed in the previous chapter showed that by placing
expression of the tum antirepressor gene under the control of the CI-repressible pR pro-
moter, it is possible to synthesize a MFL that is capable of bistability over a broad range of
parameter values. Whilst derived based on sound biochemical principles, the mathemat-
ical model is nonetheless idealised, and the experimental behaviour of such a synthetic
gene network is likely to deviate from its model when implemented in the complex and
noisy intracellular environment [Sprinzak and Elowitz, 2005]. By basing the design on
components from a bacteriophage, an independently functioning and predictable circuit
is favoured, but far from guaranteed; the synthesis of fully autonomous circuits continues
to remain an elusive possibility [Nandagopal and Elowitz, 2011]. In the MFL, the depen-
dence of each component on the host environment is manifest in the reliance on host pro-
duction machinery and possibly also on unrealised interactions with host proteases, since
such degradation of phage proteins has been observed elsewhere [Shotland et al., 1997].
Even the formation of the Tum−CI complex may be subject to unidentified in vivo interac-
tions. With these complications in mind, a good experimental design for the Tum−CI MFL
will need to be both modular and flexible to compensate for the likelihood of unpredicted
behaviours.

To this end, the Tum−CI MFL will be constructed from three modular systems, as illus-
trated in Figure 3.1, (1) the CI induction module that provides an IPTG-inducible level of
CI, (2) the MFL construct module that supplies Tum from the pR promoter, and (3) the re-
porter modules that report on the level of pR repression. By cloning each of these systems
as independent gene cassettes, the design is kept flexible and allows for easier rebalancing
of each component independently of the others. As alluded to in Chapter 2, the inducible
level of CI provides a way to balance the MFL and find the regions of bistability within
the experimental assay. In this way, the circuit design already has in-built flexibility. Dual
gfp and lacZ reporter constructs have been chosen to increase the available options for as-
saying pR activity, with the pR -lacZ cassette additionally chosen to facilitate comparisons
with previous assays of pR activity [Dodd and Egan, 2002].

49
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Escherichia coli

MFL construct

CI induction
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+
cIlacI

Plac
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Chromosome
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tum

HK022 att

pZC320-cIpUHA-1 pMTS-pR-tum

λ att
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Figure 3.1: Overall strain design for the bistable Tum−CI MFL. The components can be split into
three categories: (1) the MFL construct itself, with antirepressor tum expression from the CI-repressible
promoter pR, located on the pMTS-pR-tum+ plasmid, (2) the CI induction system, with cI supplied from
the P lac promoter on the pZC320-WR-cI plasmid and lac repressor (LacI) supplied from pUHA-1 to
provide IPTG-inducible expression of CI, and (3) the reporter constructs, which report on the level of
repression of the pR promoter. Dual reporter constructs mean that the activity of pR can be measured
either via an assay of the the activity of the β-gal enzyme expressed from pR–lacZ , or alternatively via the
fluorescence of GFP expressed from pR–gfp. The reporter constructs are integrated in the chromosome
at the phage attachment (att) sites indicated.

This chapter begins with a presentation of the technical details and considerations re-
quired for implementing and cloning the Tum−CI MFL in E. coli. This is followed with
an experimental description of the hysteretic assay of CI production rate, the primary as-
say used to test for bistability of the MFL. Formative results are presented, but these then
prompt a deeper investigation of each of the components, and the remainder of the chap-
ter is devoted to measurement and calibration of the modules. This process is necessar-
ily quantitative to complement the modelling and assist in refining both strain and assay
designs. Indeed, even a quantitative difference in gain through a feedback loop has the
potential to produce a qualitative difference in output response [Wall et al., 2004], making
a quantitative analysis highly relevant here. A quantitative analysis adds power to the
mathematical model for testing the model’s assumptions and concepts [Hasty et al., 2002],
and hence this analysis further satisfies a major goal of synthetic biology to increase an
understanding of design principles [Sprinzak and Elowitz, 2005; Yeh and Lim, 2007].

The quantitative characterisation of system components in this chapter is guided by
the deterministic model developed in Chapter 2, and is targeted towards refining and
constraining relevant model parameters. The hysteretic parameter in the model is the
production rate of CI from the P lac promoter, which is known to have an ultrasensitive
dependence on the IPTG inducer [Palmer et al., 2009]; this dependence is characterised
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here for the MFL strains. Cell doubling times and volumes are considered next to lay the
groundwork for characterising rates of loss and production. Finally, experimental mea-
surements of the rates of loss of CI, Tum and the Tum−CI complex and the rates of Tum
production from pR and CI production from P lac are presented.

3.1 Designing and cloning the MFL strains

The process of cloning a synthetic bistable Tum−CI MFL has been an iterative one, with
amendments to the genetic constructs made in response to deficiencies observed during
the course of assaying each construct. Much of the early strain preparation was car-
ried out by another student, Michael Pocock, who cloned some of the primary MFL con-
structs [Pocock, 2007]. This section starts by summarising the work done prior to the
present thesis in preparing the MFL strains, including a brief discussion of some of the
hurdles that were overcome. Motivated by the results of that work, the modifications
made to this preliminary system as part of this thesis are then described. These included
the addition of a fluorescent reporter gene and increasing the range of CI production rates
accessible by the P lac-cI induction system.

3.1.1 Development of the preliminary Tum−CI MFL strains

The cloning and results described in this section are presented in more detail else-
where [Pocock, 2007], but the brief summary here should be sufficient for understanding
the results of the present work. Being an exercise in synthetic biology, the Tum−CI MFL
was initially designed from a collection of well-studied components and genetic elements
of both phage 186 and its host E. coli [Brumby et al., 1996; Shearwin et al., 1998; Dodd and
Egan, 2002; Pinkett et al., 2006; Dodd et al., 2007b]. The strain chosen to host the MFL
was NK7049 [Simons et al., 1987], listed as E4300 in this thesis. E4300 is a derivative of
the widely used K-12 strain, and is useful as a reporter strain due to removal of the lac
operon, in particular, the lacI and lacZ genes. The history of E4300 is somewhat obscure,
but it has a reported genotype of ∆lacχ74 galOP308 rpsL su− [Simons et al., 1987; Maurer
et al., 1980]. Removal of the lac operon (∆lacχ74) is a complete deletion, but also removes
additional sequences flanking the operon. Our group has observed that, when grown on
L agar plates (L-plates), E4300 produces a bimodal population of small and large colonies.
There is no evidence that this has an effect on assays of β-gal activity [Ian Dodd, personal
communication], however, it is unknown what other effects this phenotype has on cell
morphology. E4300 also grows very slowly in minimal media without added amino acids
(presented in more detail later in Section 3.4.2).

To provide IPTG-inducible expression of 186 CI, the MFL design borrowed the induc-
tion system of a prior study of CI repression of pR in E4300 [Dodd and Egan, 2002]. Since
CI is the maintenance repressor of phage 186, keeping the pR promoter repressed dur-
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ing lysogeny when the phage is integrated in the chromosome, it is produced in single
copy and operates against a single-copy promoter. The repression assays of Dodd and
Egan [2002] were designed to be capable of replicating such expression levels. Hence, for
induction of CI, the pZC320-WR-cI plasmid (labelled pZC320-186cI in Dodd and Egan)
was used; the pZC320 backbone is based on a trimmed down version of the F plasmid,
which maintains close-to chromosomal copy-numbers [Shi and Biek, 1995]. In the induc-
tion plasmid, the wild-type cI gene with its RBS are cloned downstream of the wild-type
P lac promoter, and the plasmid can be selected for via its ampicillin resistance gene. In-
duction of P lac by IPTG occurs via inhibition of the lac repressor, which was supplied from
the pUHA-1 plasmid with p15a origin and kanamycin resistance. For the MFL, these two
plasmids were introduced as is.

Repression of pR was monitored by an integrated pR -lacZ reporter in Dodd and Egan
[2002]. Turning the repressor system into an MFL could be as simple as replacing the
lacZ gene with a tum gene, providing a single-copy pR -tum module is suitably balanced
against the range of production rates from pZC320-WR-cI. Arguably, this should be the
case, since upon SOS induction of the (chromosomally integrated) phage 186 lysogen, ex-
pression of the single-copy tum gene from the phage-borne p95 promoter acts against a
lysogenic level of CI. This level of CI has been quantified and approximately corresponds
to the steady-state level of CI produced from pZC320-WR-cI when induced at an inter-
mediate value of 40 µM IPTG [Dodd and Egan, 2002]. Given that the pR promoter is
moderately strong (thought to be greater than or at least comparable with the strength
of p95), this would suggest that even in single copy it should produce Tum in sufficient
quantities to overcome at least the lowest induction levels of CI produced from the close-
to single-copy pZC320-WR-cI.

With an integrated pR -tum construct in mind, and further seeking a reporter that is
integrated as in Dodd and Egan [2002], it remained to adapt the repressor system to a new
system with two genes expressed from pR at chromosomal copy-numbers. One possibil-
ity could have been a construct designed to express both the tum and lacZ genes from
the same pR transcript. However, given that the Tum−CI interaction had not been well-
characterised in vivo and also that the strength of the p95 promoter was largely unknown,
it was foreseen that some rebalancing may be required. Hence, a modular design was pre-
ferred with the reporter construct cloned in trans of the pR -tum construct. In that case,
the pR -lacZ module would act as a proxy reporter for the level of repression of pR in the
pR -tum module.

As a result, maintaining consistency between the constructs became an important con-
sideration. Having more than one such integrated module was beyond the capacity of
the system employed by Dodd and Egan [2002], where pR activity was assayed using
constructs recombined into the λRS45∆YA phage and lysogenised in single copy Dodd
et al. [2001]. However, the conditional replication, integration and modular (CRIM) sys-
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tem developed by Haldimann and Wanner [2001] takes advantage of phage integration
mechanics to allow for integration of plasmid constructs at up to five alternative attach-
ment (att) sites. The CRIM plasmids contain a copy of the phage att site (attP), and using
helper plasmids that contain the corresponding phage integrase gene, the whole plasmid
can be integrated in the host chromosome at the bacterial att site (attB). The plasmids have
a modular design using unique restriction sites to simplify the task of switching the partic-
ular attP site or the selection markers (antibiotic resistances), and thus were well-suited for
use in the MFL. For recombination work, the plasmids can be maintained in strains that
are pir+ since they contain the R6Kγ origin that is dependent on the Π replication factor.
By integrating the modules into pir− strains, any unintegrated plasmids will be lost.

Prior to the MFL project, an integratable lacZ reporter chassis had been constructed
similar to those used in Dodd and Egan [2002] and Neufing et al. [2001], but based in-
stead on the CRIM system [Ian Dodd, unpublished data]. A map of the important genetic
elements of the cloning plasmid, placatt1-∆lacY -lacZ , is shown in Figure 3.2(a). A partic-
ular feature of placatt1-∆lacY -lacZ is the inclusion of additional terminators surrounding
the expression cassette. These help to increase consistency in expression levels between
the constructs, by reducing impinging transcription resulting from integration in differ-
ent chromosomal contexts. Furthermore, placatt1-∆lacY -lacZ inherits the ribonuclease III
(RNaseIII) site from pTL61T, which helps to minimise context-dependent effects on mRNA
stability [Linn and St Pierre, 1990]. Finally, placatt1-∆lacY -lacZ has a deletion across the
lacY and lacA genes so that expression of the permease (LacY), in particular, does not
feedback on entry of IPTG into the cell.

The MFL constructs were made starting from the placatt1-∆lacY -lacZ plasmid, by first
cloning the pR promoter upstream of the reporter gene (lacZ ) and then replacing lacZ
with the tum gene. The short pR–pL fragment from the pBC2-MM-pR -pL plasmid was
chosen as the template for the promoter sequence, and is the same fragment as in the
equivalent pMRR9R-MM-pR -pL plasmid that is described in Dodd and Egan [2002]. It is
a minimal wild-type phage 186 sequence that includes the opposing pR and pL promot-
ers and the (mainly intervening) CI binding sites that effect repression at those promoters.
Since the promoters oppose each other, transcriptional interference complicates their ex-
pression patterns [Callen et al., 2004; Sneppen et al., 2005], but the pR promoter is much
stronger than pL so that transcriptional interference on pR due to transcription from pL
is low [Sneppen et al., 2005]. The short pR–pL sequence does not include the flanking
CI binding sites that enhance repression at pR by DNA looping [Dodd and Egan, 2002].
These flanking sites were excluded, since the pR promoter is still well-repressed without
such flanking sites, and accounting for the flanking sites would greatly complicate the
modelling [Dodd et al., 2007b] and consequently the synthetic design process.

As illustrated in Figure 3.2(b), the KpnI-pR–pL -SphI fragment from pBC2-MM-pR -pL
was cloned into the multiple cloning site of placatt1-∆lacY -lacZ to produce
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Figure 3.2: Sequence maps for the pR-lacZ and pR-tum MFL modules. The maps illustrate sequence
features (not to scale) for each of the plasmids as indicated, where the CRIM-based plasmids, (a)–(c), are
shown linearised at the respective phage attachment (attP) sites as they would appear when integrated
in the host chromosome, and the medium-copy plasmid, (d), is shown linearised at the NheI restriction
enzyme site; a low-copy variant of this plasmid with the SC101∗ origin was also prepared. Genes are
indicated by directed boxes; gene fragments have jagged ends. The lacZ gene is from the wild-type lac
operon; Y and A are lacY and lacA, also from that operon, but a deletion results in non-functional products
from those two genes. The tum gene has a His6 tag and contains silent mutations that prevent translation
of internal open reading frames 4 and 5. SpRand CmRare spectinomycin and chloramphenicol resistance
genes respectively. Plasmids have either the pir -dependent origin R6Kγ or the medium-copy SC101 origin.
Promoters are indicated by bent arrows, terminators by stem loops, ribonuclease III (RNaseIII) sites by
plain loops as labelled, and ribosome binding sites (RBSs) by offset boxes (RBS: wild-type RBS; pET RBS:
strong RBS obtained from the pET plasmids). Restriction enzyme sites are indicated by labelled vertical
lines. (a) β-gal reporter chassis and precursor to (b) the integrable pR-lacZ reporter module, which further
served as precursor to (c) the integrable version MFL module; (d) the medium-copy version of the MFL
module derived from (c).
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pIT-SL-pR -lacZ which could be integrated into the E. coli chromosome at the phage λ
attachment site. Strong promoters like pR can prove difficult to clone, especially upstream
of large reporter genes such as lacZ . For this reason, almost all DNA recombination
work involving the pR promoter was performed in strains containing the pZC320-WR-cI
plasmid (without pUHA-1), which provides unrepressed production of CI from the P lac

promoter.

The pR -tum module was created from the placatt1-∆lacY -lacZ plasmid, with the
pR–pL fragment introduced only in the last step, again, to avoid the complications of
cloning with a strong promoter. First the lacZ gene in placatt1-∆lacY -lacZ was replaced
with the tum4−5−his gene from pET-TumHis6 [Shearwin et al., 1998], via the AvrII and
XhoI restriction sites. This C-terminally His6-tagged variant of Tum was chosen since
it had been purified and characterised in vitro, and provided the most quantitative and
definitive data on the Tum−CI interaction at the time, making it most amenable to mod-
elling. The tum gene is unusual in that it has a number of active internal open reading
frames (ORFs) [Brumby et al., 1996], and a tum gene variant with silent mutations to in-
activate the fourth and fifth ORFs simplified analysis of the purified protein. However,
if anything, ORFs 4 and 5 appear to inhibit the ability of the Tum protein to induce the
phage [Brumby et al., 1996], so a construct with their removal was also preferred.

For compatability with the existing integrated pR -lacZ reporter, both the antibiotic re-
sistance gene and attachment site needed changing. The spectinomycin resistance gene
was swapped for one providing chloramphenicol resistance using the SpeI and AatII sites.
Then the attP site was exchanged from the λ attP to that of bacteriophage HK022 (phage
HK) via the NotI and AlwNI sites (refer to Figure 3.2(c)). As explained above, the pR pro-
moter was cloned in last, and used the same pR–pL fragment inserted between the KpnI
and SphI restriction sites as for the lacZ reporter. Again, this cloning step was performed
in a pir+ strain containing the pZC320-WR-cI plasmid to keep pR repressed.

With the pR -tum and pR -lacZ modules integrated at the λ attB and HK022 attB (HK attB)
sites respectively in E4300, the complete MFL strain became E4300 (pIT-SL-pR -lacZ )λ
(pIT-CH-pR -tum+)HK pUHA-1 pZC320-WR-cI. Assays of this strain showed no deviation
from the curve anticipated for repression of pR by CI alone [Pocock, 2007]; the presence of
the pR -tum cassette appeared to have no effect. This implied that the Tum−CI interaction
was not strong enough to relieve repression at pR . As already shown in Chapter 2, an ef-
fective way to increase the size of the bistable region and the efficacy of Tum is to increase
the rate of Tum production.

Having been derived from the high-expression pET plasmids, the tum gene already
had a strong RBS. So the easiest way to increase Tum production was to shift the pR -tum
module to a multicopy plasmid. This was done by replacing the region between the NotI
and NheI restriction sites, which contains the R6Kγ origin and HK022 attP (HK attP) site,
with either the SC101 or SC101∗ origins derived from the pSC101 plasmid [Xia et al., 1991],
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or the ColE1 origin, which have copy numbers of 3–4, 10–12 or 50–70 respectively [Lutz
and Bujard, 1997]. The resulting chloramphenicol-resistant plasmids (the variant with
SC101 is depicted in Figure 3.2(d)) were transformed into MFL strains as described above,
but without the integrated (pIT-CH-pR -tum+)HK cassette. Hysteresis assays for these
strains were also attempted, although strains containing the high-copy pR -tum plasmid
with the ColE1 origin grew too slowly to be reliable in a LacZ assay. However, when
the two other variants (with SC101 and SC101∗) were assayed, they did display a limited
degree of hysteresis. It was from this point that I took over work on the Tum−CI MFL.

3.1.2 Introducing a fluorescence-based reporter module

The hysteresis curves obtained from the early strains as described in the previous section,
were ill-defined and further showed unexpected discrepancies with the modelling predic-
tions that required further investigation. Though a number of explanations for the ob-
served discrepancies could have been posited, experimentally distinguishing those would
have been difficult in the MFL strains as detailed so far. Far more information could be
extracted, however, by adding a fluorescent reporter to expand the available assay op-
tions. Many of the synthetic gene circuits studied in E. coli have employed fluorescent
reporters for quantitation by flow cytometry [Gardner et al., 2000; Isaacs et al., 2003], or
microscopy [Elowitz and Leibler, 2000; Becskei and Serrano, 2000; Stricker et al., 2008],
though assay by β-gal has still been used in some cases [Atkinson et al., 2003]. It has also
become an essential tool in studying genetic circuits in the context of the in vivo intracel-
lular environment, since such circuits are well known to exhibit a substantial degree of
stochasticity, or ‘noisiness’ [Elowitz et al., 2002; Cai et al., 2006]. Two major advantages
of fluorescent proteins as reporters are the ability to easily make in vivo measurements in
growing cells so that time-course measurements can be made, and, more importantly here,
enabling single-cell measurements so that cell-to-cell heterogeneity can be resolved.

In contrast, a typical LacZ assay quantifies promoter activities as a population average,
losing information about cell to cell variation1. However, this does not make the LacZ
assay redundant: LacZ assay results in this system are comparable to a large body of exist-
ing data and hence more easily complement the modelling. It is also easier to obtain more
sensitive measurements of promoter activity by LacZ assay. So whilst single-molecule
sensitivity is indeed possible with fluorescent protein-based reporters by using total in-
ternal reflection fluorescence microscopy [Yu et al., 2006], this would require specialist
equipment and significant modifications of the standard assay protocols, including a shift
to minimal media, which would mean further deviating from current models of bacte-
riophage 186 that are optimised for protocols that have been performed in Lennox Luria
broth (LB) [Dodd and Egan, 2002; Dodd et al., 2007b]. For these reasons, and given the

1 With the aid of microfluidics and a fluorescence-based assay of β-gal activity, single-cell measurements
with single-molecule sensitivity are still possible, albeit technically more challenging [Cai et al., 2006].
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modular flexibility afforded by the CRIM system, the pR -lacZ reporter was retained and a
‘dual reporter’ strain cloned, which included an additional fluorescence reporter cassette.

Numerous different fluorescent reporter proteins are available with excitation and emis-
sion spectra that cover different regions of the spectrum [Shaner et al., 2005]. Choosing a
fluorescent reporter that maximises measurement sensitivity requires both choosing oper-
ating wavelengths that minimise background fluorescence from the growth medium and
cell constituents, and matching the spectra of each given fluorescent protein to the excita-
tion wavelengths and emission filters available for the target instrument. In this instance,
the target instrument was a flow cytometer fitted with argon and helium-neon lasers that
excite at wavelengths of 488 nm or 633 nm. The enhanced green fluorescent protein (GFP)
includes mutations from the wild-type GFP that move the excitation maximum closer to
488 nm and increase brightness [Patterson et al., 1997]. Another set of mutations of wild-
type GFP, the cycle 3 mutations, produce better folding of the protein in E. coli, keeping it
in the soluble fraction, since the chromophore does not become activated in the insoluble
fraction [Crameri et al., 1996]. The fluorescent protein chosen for the MFL was ‘folding re-
porter GFP’, which combines the cycle 3 mutations and enhanced GFP mutations [Waldo
et al., 1999], but was designed to be a fusion protein to report on protein folding of the
fusion.

To maintain consistency with the pR -tum module, the pR -gfp cassette was cloned by
replacing the tum gene of pIT-CH-pR -tum+ with folding reporter GFP between the NdeI
and BsiWI sites (see Figures 3.3(a) and 3.3(b)). Since the folding reporter GFP template was
designed for use as a fusion protein, an initiation codon and valine codon were prepended
as part of the cloning, so that the gene would be independently translated and match the
beginning of wild-type GFP (see Materials and Methods (Chapter 8) for specific cloning
details). As done for the single-copy pR -tum version of the MFL, this construct was in-
tegrated in single-copy at the phage HK attachment site, keeping the pR -lacZ reporter
in the phage λ attachment site. The base dual reporter strain is E4300 (pIT-SL-pR -lacZ )λ
(pIT-CH-pR -gfp)HK pUHA-1, but will be referred to as E4300DR for brevity. Note that
since the pUHA-1 plasmid (supplying lac repressor) is a component of all MFL strains us-
ing this induction system, the dual reporters were integrated into E4300 pUHA-1, so that
the dual reporter strain (E4300DR) also contains the pUHA-1 plasmid.

Even with just a single copy of the chloramphenicol selection marker gene (desig-
nated CmRin the figures), the dual reporter strains could compromise maintenance of the
chloramphenicol-resistant pMCS-pR -tum+ plasmid. So in addition to creating a new re-
porter construct, the two pR -tum plasmids (that is, both medium- and low-copy variants)
were revised by replacing the CmRgene in pMCS-pR -tum+ (see Figure 3.3(c)) with one
providing tetracycline resistance (TcR) between the SpeI and AatII sites to produce pMTS-
pR -tum+ (see Figure 3.3(d)). The presence of an additional SpeI site in both the SC101 and
SC101∗ origins meant that three-fragment ligations were necessary in both cases, and the
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Figure 3.3: Sequence maps of the plasmids used for adding a fluorescent reporter to the MFL. The maps
illustrate sequence features (not to scale) for each of the plasmids as indicated, where the CRIM-based
plasmids, (a)–(b), are shown linearised at the HK022 attP (HK attP) sites as they would appear when inte-
grated in the host chromosome, and the medium-copy plasmids, (c)–(e), are shown linearised at the NheI
restriction enzyme site; low-copy variants of these plasmids with the SC101∗ origin were also prepared.
Features are as described in Figure 3.2 with the additions that gfp is the gene for folding reporter green
fluorescent protein and TcRis a gene conferring tetracycline resistance. (a) Precursor to (b) the integrable
pR-gfp reporter module; (c) precursor to (d) the tetracycline resistant version of the MFL plasmid and pre-
cursor to (e) the tum− control plasmid.
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Figure 3.4: Sequence maps of the CI expression plasmids. The maps illustrate sequence features (not to
scale) around the multiple cloning site of the pZC320 plasmid; a majority of the plasmid is taken up by the
genes required for plasmid maintenance at close to chromosomal copy-numbers. Features are as described
in Figure 3.2 with the additions that cI is the wild-type 186 repressor gene, with either the wild-type RBS
(wRBS) or enhanced RBS (eRBS), and ApRis a gene conferring ampicillin resistance. The operators O1
and O3 are the sites where lac repressor binds to repress the P lac promoter; the CAP Binding Site (CBS)
enables CAP binding and activation of the P lac promoter.

difficulties faced in this step, including a thorough verification of the identity of each of
the final plasmids, are more completely addressed in Section 8.2.9.

Tum− controls were prepared from these plasmids by digesting with XhoI and SalI,
which have compatible ends, and religating in conditions favouring loss of the insert. This
results in complete loss of the tum gene, RNaseIII site and RBS as shown in Figure 3.3(e).

This final set of four tetracycline-resistant pR -tum plasmids, that is, tum+ and tum−

variants for both medium-copy (SC101) and low-copy (SC101∗) versions, were transformed
into the dual reporter strain along with the induction plasmid, pZC320-WR-cI.

3.1.3 Shifting the range of CI expression levels

To obtain a complete hysteresis loop like that described in Section 2.4.2, and illustrated
in Figure 2.10, both ends of the hysteresis curve should be located in monostable regions.
When measuring hysteresis of the MFL with the medium-copy pR -tum plasmid (pMCS-
pR -tum+) as a function of CI production rates, Pocock [2007] observed monostability for
the lowest levels of induction (i.e., lowest CI production rates), but for the highest levels
of induction, the system still appeared to be operating in a bistable region of the hysteresis
curve. With the low-copy pR -tum module (pMCS∗-pR -tum+), both ends of the hysteresis
curve appeared monostable, but the size of the bistable region was so reduced as to be
undetectable within experimental error.

Re-optimising the pR -tum module with a production rate between that of the low- and
medium-copy variants could have been tried. However, a simpler alternative was to in-
crease the range of CI production rates accessible to the induction system by replacing the
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Figure 3.5: Comparing repression of the pR pro-
moter by CI expression plasmids that utilise alterna-
tive cI RBSs. The activity of the pR promoter was
measured by LacZ assay for the (single reporter)
E4300 (pIT-SL-pR-lacZ )λ pUHA-1 strain with ei-
ther the pZC320 (CI−), pZC320-WR-cI (WRBS) or
pZC320-ER-cI (ERBS) plasmids, grown in media
with a range of IPTG concentrations to induce ex-
pression of the CI repressor protein. For the WRBS
and ERBS curves, 8 replicates were assayed at
each final IPTG concentration, whilst for the CI−

control, only 6 replicates were assayed.
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weaker wild-type RBS (wRBS) for cI with the stronger RBS of the pET vectors. A cI tem-
plate with this enhanced RBS (eRBS) was available from the pET3a-cI plasmid [Shearwin
and Egan, 1996], and this was used to replace the wRBS and cI gene between the HindIII
and BamHI sites (see Figure 3.4).

The increased rate of CI production due to the eRBS was confirmed by observing the in-
crease in repression of pR by LacZ assay in the single reporter strain, E4300 (pIT-SL-pR -lacZ )λ
pUHA-1 pZC320-ER-cI (see Figure 3.5). For the same levels of IPTG induction, the re-
porter strain with the pZC320-ER-cI plasmid produced lower LacZ units than the equiv-
alent strain with the pZC320-WR-cI plasmid, indicating increased repression at pR and
implicating increased expression of CI. A CI− control strain with an empty pZC320 plas-
mid instead, indicated the maximum production rate from pR without repression. This
showed that at minimum induction (0 µM IPTG), the wRBS and eRBS variants can both
reach levels of CI production low enough that pR production is close to that of the fully
unrepressed promoter.

With the addition of these two cI RBS variants, a total of eight different assay strains
were prepared: four MFL strains each with a respective tum− control strain. These strains
will be described using ‘WR’ and ‘ER’ to refer to wRBS and eRBS CI induction variants,
and ‘MC’ and ‘LC’ to refer to low-copy and medium-copy pR -tum module variants. Writ-
ten out in full, the final four MFL strains are:

WR-MC E4300DR pZC320-WR-cI pMTS-pR -tum+,
WR-LC E4300DR pZC320-WR-cI pMTS∗-pR -tum+ (pMTS∗-pR -tum+),
ER-MC E4300DR pZC320-ER-cI pMTS-pR -tum+, and
ER-LC E4300DR pZC320-ER-cI pMTS∗-pR -tum+.
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3.2 Assaying hysteresis in the Tum−CI Mixed Feedback Loop

As introduced in Chapter 2, the assay for studying bistability in the MFL strains is based on
the measurement of a hysteresis loop as the production rate of CI is varied. This is easily
achieved in the experimental system by suitably varying the concentration of the IPTG
inducer in the growth medium over time. By first growing in media with concentrations
of IPTG that put the MFL strains into one of the monostable states, and then growing in
media with a range of IPTG concentrations that cover the bistable region, different stable
states will be favoured depending on which monostable state the strains first occupied.
Ideally, for low enough concentrations of IPTG, the repressed P lac promoter with a low
production rate of CI sets the MFL in the low CI, high Tum monostable state (the ‘on’
state). Conversely, for high enough concentrations of IPTG, where repression of the P lac

promoter is relieved, the consequent high production rate of CI ideally sets the MFL in
the high CI, low Tum monostable state (the ‘off’ state). A crucial requirement of this assay
of hysteresis is the ability to ‘set the switch’ in both on and off states by changing the
concentration of IPTG.

Induction of the P lac promoter by IPTG is sigmoidal [Palmer et al., 2009]; depending
on the LacI repressor concentration, there will be leaky production from P lac even in the
absence of IPTG, but also saturation towards some maximum production rate where al-
most all LacI is bound (and inactivated) by IPTG. To maximise the chance of starting in a
monostable region, the lowest and highest possible production rates of CI should be cho-
sen. The lowest possible production rate is obtained with no IPTG, but some small rate
of production from the repressed promoter should be expected. The production rate of
CI saturates for increasing IPTG concentrations, which sets the upper limit for CI produc-
tion, and for very high concentrations of IPTG, increases in inducer concentration produce
minimal gains in production rate. Such high concentrations of IPTG are also more likely
to adversely affect cell health, so a moderately high choice for the maximum IPTG con-
centration is preferred. With these considerations in mind, the minimum and maximum
induction levels were set at 0 µM and 300 µM IPTG [Pocock, 2007].

A standard LacZ assay [Dodd et al., 2001; Palmer et al., 2009] involves: (1) growing
cultures overnight in LB, each innoculated from independent colonies on a streak plate,
(2) normalising these cultures to a common OD600 (diluting approximately 1/10 in the
process), (3) subculturing 1/50 into LB for growth to log phase (OD600 0.65–0.75 [Palmer
et al., 2009]), and (4) assaying the log phase cultures forβ-gal activity [Dodd et al., 2001]. To
tailor this protocol for measuring hysteresis, Pocock [2007] used overnight (O/N) growth
for setting the switch by preparing two cultures from each colony, one with 0 µM IPTG (the
low O/N) and the other with 300 µM IPTG (the high O/N). After overnight growth, these
cultures could each be independently normalised, and then subcultured into LB broth
with a range of IPTG concentrations to assay the effect of hysteresis in the bistable region.
With the assay as stated, Pocock found that the time taken for the cultures to reach log
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phase did not seem to be sufficient for reaching equilibrium conditions at the new IPTG
concentrations.

The importance of the time taken to reach equilibrium, the ‘equilibration time’, has
already been highlighted in this thesis in the deterministic modelling of Section 2.4.2. To
best judge the boundaries of the bistable region, a longer equilibration time is preferred,
though ‘perfect’ boundaries can never be obtained in finite time. It might at first seem that
just leaving the cultures growing longer would solve the problem. However, an important
consideration is the growth phase of the culture: when the cell density of the growing cul-
ture becomes too high, the growth rate slows down until the cells reach stationary phase
and stop dividing. The transition to stationary phase is highly complex, and includes the
increased expression of an alternative sigma factor for RNA polymerase (RNAP), which
radically alters the pattern of gene expression [Battesti et al., 2011]; such gross cellular
changes would obfuscate the results and analysis. In contrast, by including an additional
step of dilution before subculturing into LB, the cells start at a lower concentration and
hence take longer to reach the same cell densities. Pocock [2007] trialled such an approach,
and here an additional 1/10 culture dilution step between the normalisation and subcul-
turing steps is chosen as the standard for obtaining a ‘normal’ equilibration time (typically
around 6 hours). Without this additional 1/10 dilution, the assay will be referred to as
having a ‘short’ equilibration time (typically around 5 hours).

Hence, the primary assay of hysteresis used in this thesis can be summarised:

1. Grow cultures overnight in LB containing either 0 or 300 µM IPTG (low or
high O/Ns respectively) to set the switch in one of the monostable regions,

2. Normalise the cultures to a common OD600 of 0.15 (diluting approximately
1/10 in the process),

3. Further dilute these normalised cultures 1/10,
4. Subculture 1/50 into intermediate IPTG concentrations in the bistable

region and grow to log phase,
5. Measure the production rate from pR by LacZ assay or flow cytometry.

In this version of the assay, log phase growth is started from a culture with an overall di-
lution of approximately 1/5000 relative to the original overnight culture, compared with
a dilution of approximately 1/500 for the version with short equilibration time. For tech-
nical details of the protocol, see the Materials and Methods (Chapter 8).

The four dual reporter MFL strains and their respective tum− controls were each as-
sayed for hysteresis by LacZ assay using a normal equilibration time, and the resulting
curves are shown plotted in Figure 3.6. In all cases, there are points of significant sepa-
ration between the low O/N and high O/N MFL curves, though the magnitude of this
separation varies considerably between each case. This is evidence that all the strains are
exhibiting some level of hysteresis (history-dependent behaviour), and hence implies that
each strain contains a region of bistability at intermediate IPTG concentrations.
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Figure 3.6: The Tum−CI MFL displays hysteresis as the production rate of CI is varied. Hysteresis
assays were performed using a normal equilibration time (see text for details), and the activity of the
pR promoter was measured by LacZ assay. The assay was performed for four different MFL strains
as labelled; translation of CI was either from its wild-type RBS (WR) or enhanced RBS (ER), and the
pR-tum module was either located on a low-copy plasmid (LC) or medium-copy plasmid (MC). Assays
of the respective Tum− control strains are also shown. For each strain, LacZ assays were performed
on log phase cultures innoculated either with overnight (O/N) cultures grown in the presence of 0 µM
IPTG (low O/N curves), or in the presence of 300 µM IPTG (High O/N curves). Error bars show 95%
confidence limits in the mean; n = 6 for all data points except for the high overnight Tum+ curve of the
ER-LC strain, which has n = 4 for all data points.
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Further confirmation of hysteretic behaviour is found in the distinct behaviour of the
MFL strains compared with the Tum− controls, which should be incapable of supporting
bistability. However, in some cases, the controls also show significant separation between
low and high O/N curves. This could be mistaken for hysteresis, but is more likely an
indication that equilibrium is not yet reached (compare with the predicted separation be-
tween the control curves from the modelling in Section 2.4.2). This indicates that even with
the additional dilution step, there is still insufficient time for CI and β-gal concentrations
to reach their steady-state levels. This implies that the MFL curves have not yet reached
equilibrium either, and are probably further from equilibrium than the controls, since the
positive feedback loop due to Tum was predicted to slow equilibration in the deterministic
model. Modifications to the assay protocol to further extend the equilibration time will be
considered in Chapter 4.

The key differences between each of the MFL strains involve changes to the production
rates from pR and P lac. These bring about changes in the shape of the hysteresis curves
with the largest changes being observed between strains with low-copy versus medium-
copy pR -tum plasmids. As anticipated from the modelling, increasing the production rate
of Tum, in this case by increasing the copy number of the pR -tum plasmid, causes an in-
crease in the size of the bistable region, increasing the point of bifurcation for the low O/N
curve in particular (compare with the plot in Figure 2.9(a), Section 2.3.2, of the predicted
change in position of bifurcation points for changes to the effective Tum production rate).
The result is that the separation between low and high O/N curves is most obvious for the
WR-MC and ER-MC strains.

However, it is alarming that for these strains with medium-copy pR -tum plasmids,
a complete hysteresis loop is not observed, raising the question of how both halves of
the hysteresis loop are accessed. The loop is broken by the apparent absence of a single
monostable state with high CI and low Tum at the maximum induction level of 300 µM
IPTG. This could simply be a result of the curves remaining out of equilibrium at that
point, obscuring an underlying monostable regime. Early attempts at further extending
the equilibration time for the WR-MC strain, however, still did not see these two curves
brought together at the maximum induction level [Pocock, 2007]. So at least in the case
of the WR-MC strain, a more likely explanation could be drawn from the differences in
circuit parameters between cultures in log-phase (used to assay the switch) and those in
stationary phase (used to set the switch). In stationary phase, the slowing of cell division
may result in unbalanced levels of CI and Tum that disproportionately favour high levels
of CI. Alternatively, since stationary phase appears to result in much noisier gene expres-
sion [Guido et al., 2006], this additional noise may provide a pathway for O/N cultures
grown at 300 µM IPTG to reach the low Tum state even if the MFL is bistable at that point.
This last explanation presumes that the low Tum state is the more stable one at that level
of induction, which could be argued on the basis of how close it appears to be to the region
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of monostability.

The enhanced RBS for production of CI was designed to increase the overall production
rate of CI at all concentrations of IPTG in an attempt to reach the high CI monostable
state in log phase cultures. However, even with this increased production rate, the high
CI monostable state was still not apparent in the hysteresis assay shown in Figure 3.6.
Nonetheless, the separation was reduced by almost a half, demonstrating that the eRBS
had an effect. The effect of the eRBS is easier to see at lower concentrations of IPTG. At
0 µM IPTG, the eRBS strains show significantly lower activity compared with the wRBS
strains, indicating that leaky transcription from P lac in the absence of induction is also
amplified by the stronger RBS, resulting in more CI and hence additional repression of pR
at this level of induction.

Interestingly, the higher levels of CI production also appear to increase the time taken
to reach equilibrium, since the Tum− control curves show slightly more separation in the
eRBS strains compared with the wRBS strains. A potential explanation may be that it
takes longer to reach equilibrium when starting from the high levels of CI in the high O/N
curves. A deeper understanding of this observation will require better characterisation
of the induction module (Sections 3.3 and 3.5.4) and a quantitative comparison with the
model (Chapter 4).

In contrast with the hysteresis curves predicted by the modelling, with close to a rectan-
gular shape for the bistable region, the experimental hysteresis curves in Figure 3.6 appear
smoothed out or skewed, thereby obscuring the distinct thresholds expected at the points
of bifurcation (the IPTG concentrations near which the system transitions between bista-
bility and monostability). This poorly defined shape could indicate a major deficiency in
the model, but is more likely a product of inhomogeneity within the cell population. Ge-
netic circuits are inherently noisy [Elowitz et al., 2002] and this stochastic element is likely
to impact the results of the MFL assay in a number of ways. One source of inhomogene-
ity would be variation in the extent of equilibration between cells at the time of assay —
the cells in the starting population for the growth to log phase cannot be expected to be
synchronised or to each contain equal starting concentrations of CI and Tum. Variations
in growth rate between cells during the course of the assay would also decrease equili-
bration homogeneity. Another source of population inhomogeneity could well be a mixed
population of cells in the on state and cells in the off state. In the LacZ assay, this would
be measured as an average activity weighted by the number of cells in each population.
Distinguishing between these alternative sources of inhomogeneity, or ruling out inhomo-
geneity as an explanation for the results is beyond the capabilities of the LacZ assay, and
will be better addressed by fluorescence-based assays in subsequent chapters.

A number of deficiencies in interpreting these preliminary results within the current
framework have been highlighted in this section. Such an outcome is not entirely unde-
sirable, but motivates quantitative characterisation of the constituent circuit components
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and a rethinking of core design principles, which thus satisfies a major goal of synthetic
biology in better understanding gene network design [Sprinzak and Elowitz, 2005; Yeh
and Lim, 2007].

3.3 Characterising the CI induction module

The assay curves presented in the previous section showed the hysteretic response of
the Tum−CI MFL genetic circuit to changes in the concentration of IPTG in the growth
medium. In contrast, the hysteresis curves predicted by the MFL model derived in Chap-
ter 2 were presented in terms of the production rate of CI. The concentration of IPTG affects
the rate of production of CI repressor from the P lac promoter by relieving repression due
to LacI repressor. The assumption that this production rate from P lac is proportional to
the concentration of IPTG is often good enough for a qualitative analysis, like that of the
previous section, but such an assumption masks what is actually a nonlinear response.
LacI binds cooperatively to P lac as a tetramer [Oehler et al., 1990], and indeed, the produc-
tion of downstream genes has been observed to display an ultrasensitive dependence on
the concentration of IPTG [Palmer et al., 2009]. This nonlinear dependence also arises as
a result of the limited number of LacI repressor molecules per cell, such that the rate of
CI production saturates as IPTG reaches concentrations that can inactivate the available
pool of LacI. Since variations in the production rate of CI are fundamental to the hysteresis
assay, better quantifying the dependence of this production rate on the concentration of
IPTG would greatly improve comparability between the results and modelling.

The form of the nonlinearity is likely to be strain- and construct-dependent, since
changes to growth rate or copy number could affect both the concentration of LacI repressor
and the response at the promoter. This means that the dependence of production rate on
IPTG concentration should be determined in strains and assays that closely represent the
MFL hysteresis curves. One of the most direct measures, and that employed by Palmer
et al. [2009], is to quantitate the steady-state concentration of induced protein (that is, CI
in the case of the MFL) in the assay strains for a series of IPTG concentrations using a
technique such as Western blotting. The pZC320-WR-cI induction curve was previously
calibrated for assays of pR and pL activity by Western blot for induction levels between
10 and 100 µM [Dodd and Egan, 2002]. However, whilst direct, Western blotting tends
to afford limited sensitivity and less flexibility; ideally the production rate for each IPTG
concentration used in the hysteresis assay would be measured. So here instead, an alterna-
tive approach is taken, whereby a lacZ reporter gene is used to report on production from
P lac. In this approach, production of the β-gal enzyme acts as a proxy for production of
CI; this method is less direct, but a LacZ assay affords more sensitivity and enables closer
consistency with the hystersis assay.

In order for the production of β-gal to be valuable as a reporter for the production
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of CI, the steps in its production (and even degradation) must be related in a predictable
way (preferably by a proportionality) to that of CI in the MFL. Such differences will be
discussed in the course of describing the induction reporter strain design. However, more
generally there are still a number of potential drawbacks to this approach that are worth
bearing in mind. Firstly, since the lacZ gene is already employed in the MFL strains to re-
port on pR activity, an alternative strain design must be used. However, if all plasmids and
integrands are kept consistent between the strains, excepting removal of the pR -lacZ re-
porter and replacement of the cI gene with lacZ , then any differences in strain physiology
should be sufficiently minimal. A second drawback is that the use of a LacZ assay does
not provide an absolute measure of CI production rate — the desired quantity for com-
parison with the modelling. Nonetheless, the LacZ assay does provide a relative measure
of production rate, which can be used to normalise the IPTG concentrations to a quantity
that is proportional to the CI production rate. Then by measuring an absolute CI produc-
tion rate for one of the IPTG concentrations, the relation can be scaled to reproduce the
absolute values. Such a reference absolute production rate will be quantified later in this
chapter. Finally, by changing the gene downstream of the P lac promoter, changes to the
dynamics of target gene translation, and hence its production rate, are unavoidable. Even
the strength of the RBS is impacted by changes in the first 35 base pairs of the translated
gene [Kudla et al., 2009]. However, if it is assumed that the rate-limiting step in production
of the target gene(s) is transcription initiation, as assumed in the modelling in Section 2.2.3,
then the rate of transcription initiation becomes the most important factor in determining
the response of protein production to changes in repressor occupancy. This assumption
presumes that all intermediate steps of protein production that occur after transcription
initiation, whether for CI or β-gal, can be considered first order processes, operating at
maximal efficiency for every rate of transcription initiation considered.

The P lac-lacZ reporter construct was designed to minimise sequence differences with
the MFL induction plasmid, pZC320-WR-cI, but some modifications were necessary to
preserve plasmid integrity and reporter consistency. The pZC320 backbone (see the se-
quence map in Figure 3.7(b)) contains lacZα, a gene for the β-galα fragment of β-gal.
When expressed with its complement, the β-galω fragment, the β-galα fragment can
pair to produce a functional β-gal enzyme, making it useful as a cloning marker for dis-
tinguishing between clones with and without the fragment [Shi and Biek, 1995]. The CI
expression plasmid was cloned without replacement of this lacZα gene (see the sequence
map in Figure 3.7(a)). However, since lacZα is identical to the start of the lacZ gene, if it
was also retained in the induction reporter plasmid, then the reliability of the reporter con-
struct could be compromised by spurious homologous recombination within the plasmid.
To avoid such complications, the first cloning step involved removal of the lacZα fragment
from pZC320 before introducing the lacZ gene.

Removal of lacZα was achieved by replacing it with the tonB terminator between
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Figure 3.7: Sequence maps illustrating plasmid precursors to the IPTG induction reporter plasmid, in which
expression of the β-gal enzyme is used as a proxy for expression of CI, so that the ultrasensitivity of the
induction system can be quantitated by LacZ assay. The design attempts to replicate (a) the CI expression
plasmid of the MFL as far as possible. However, to avoid the potential loss of the lacZ reporter gene by
recombination with the lacZα fragment, this fragment was first replaced in (b) the backbone vector with a
terminator to create (c) the pZC320-tonBterm plasmid. (d) The lacZO2− gene, which has a silent mutation
to inactivate the internal lac repressor O2 binding site, was then cloned into the multiple cloning site (MCS)
to create the induction reporter plasmid pZC320t-lacZ . The maps illustrate sequence features (not to scale)
in and around the multiple cloning site of the pZC320 plasmid; a majority of the plasmid is taken up by
the genes required for plasmid maintenance at close to chromosomal copy-numbers. Features are as
described in Figure 3.2 with the additions that cI is the wild-type 186 repressor gene with its wild-type RBS
(wRBS), and ApRis a gene conferring ampicillin resistance. The operators O1 and O3 are the sites where
lac repressor binds to repress the P lac promoter; the CAP Binding Site (CBS) enables CAP binding and
activation of the P lac promoter.
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the BamHI and XcmI restriction sites to create the pZC320-tonBterm plasmid (see Fig-
ure 3.7(c)). The pZC320 plasmid contains no obvious transcriptional terminators down-
stream of the lacZα promoter, whilst the reporter constructs used elsewhere do typically
include a downstream terminator [Simons et al., 1987; Linn and St Pierre, 1990; Dodd
and Egan, 2002, and Section 3.1]. Its inclusion should reduce context-dependent effects
on mRNA stability resulting from the 3′ end of the transcript [Belasco, 2010], thereby
increasing consistency in LacZ units between different reporter constructs. However, it
also introduces an additional level of discrepancy with the pZC320-WR-cI plasmid; strong
promoters have been known to affect plasmid copy number when incident over the ori-
gin [Stueber and Bujard, 1982]. With such a large fraction of the plasmid responsible for
copy-number maintenance, and a downstream ampicillin resistance gene in any case, this
potentiality was neglected. The transcriptional terminator was introduced in this step to
allow for greater freedom in choosing restriction sites to clone lacZ upstream.

The wild-type lacZ gene contains an internal LacI repressor binding site, O2, which
contributes to repressor cooperativity at the P lac promoter [Oehler et al., 1990]. Since such
a distal LacI binding site is not present in the CI induction module, it was important to
choose a lacZ reporter gene in which this site had been silently inactivated. The lacZ
gene in the pIT3-CL-lacZflip plasmid2 contains the O2− mutation of Oehler et al. [1990]
and was cloned into pZC320-tonBterm between the XhoI and BamHI restriction sites to
make the induction reporter plasmid, pZC320t-lacZ (see Figure 3.7(d)). To further increase
consistency of this reporter construct with other measurements of promoter strength, the
chosen lacZ fragment also contained an RNaseIII site to ensure that upstream sequences
would not contribute to differences in stability of the lacZ mRNA or translation of the
gene [Linn and St Pierre, 1990].

In order to match the MFL strains as closely as possible, the induction reporter strains
were kept as similar as possible to the dual reporter MFL strains. So that the only source of
β-gal was from the induction plasmid, the pR -lacZ reporter of the MFL, (pIT-SL-pR -lacZ )λ,
was replaced with (pIT-SL)λ. pIT-SL was created from placatt1-∆lacY -lacZ (for the se-
quence map, refer back to Figure 3.2(a)) by digesting with XhoI and SalI, which have
compatible ends, and religating under conditions favouring loss of the insert. With this
modification of the base strain, two alternative induction reporter strains were cloned:

• E4300 (pIT-SL)λ (pIT-CH-pR -gfp)HK pUHA-1 pZC320t-lacZ pMTS-pR -tum+,
and

• E4300 (pIT-SL)λ (pIT-CH-pR -gfp)HK pUHA-1 pZC320t-lacZ pMTS-pR -tum−.

These induction strains were assayed for β-gal activity using the same hysteresis pro-
tocol as for the MFL strains (described in Section 3.2). Briefly, cultures were started from

2pIT3-CL-lacZflip [Ian Dodd, unpublished data] is similar to the pIT3-HFCL plasmid described in Cui
et al. [2013].
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Figure 3.8: Induction of the P lac promoter has an ultrasensitive dependence on the concentration of IPTG
inducer in an MFL-like strain. P lac promoter activity was measured by LacZ assay in the induction reporter
strains (a) E4300 (pIT-SL)λ (pIT-CH-pR-gfp)HK pUHA-1 pZC320t-lacZ pMTS-pR-tum+, or (b) E4300 (pIT-SL)λ
(pIT-CH-pR-gfp)HK pUHA-1 pZC320t-lacZ pMTS-pR-tum−. The assay was based on the hysteresis assay
used for the MFL strains, so alternative curves were obtained for low or high O/Ns (as described in Figure 3.6).
The IPTG concentration of each data point has been corrected for the different contributions made when
subculturing from each respective O/N broth (see text for details). Repeats are plotted as separate data
points; n = 8 for each condition in (a), whilst n = 4 for each condition in (b). The response of each data set
was fit using a four-parameter log-logistic function (solid lines); parameters for the fits are given in Table 3.1.
The data was fit after Box-Cox transformation with parameter λ = 1/3.

either low or high IPTG overnights and the additional 1/10 dilution step required for a
normal equilibration time was also employed. The resulting two data sets for the tum+

and tum− strains can be seen plotted in Figure 3.8.
An incidental consequence of following the hysteresis protocol was that the final con-

centration of IPTG in the log phase cultures was notably different depending upon whether
they had been innoculated with low or high O/Ns. The discrepancy arises since the
overnight cultures are diluted into broth with the same IPTG concentration, so that 2 µL
out of the 100 µL of broth for growth to log phase contains IPTG at the concentrations of
the overnight cultures. Thus the final IPTG concentration in terms of the intended assay
concentration, x, depends upon whether the overnight culture had low (IL) or high (IH)
IPTG, and can be calculated as:

IL(x) =
2

100
× (0 µM) +

98
100
× (x µM)

IH(x) =
2

100
× (300 µM) +

98
100
× (x µM)

(3.1)

The greatest percentage deviation occurs for the cultures from high IPTG, subcultured
into low IPTGs. For example, subculturing into 0 or 10 µM IPTG gives IH(0) = 6 µM
and IH(10) = 15.8 µM. In contrast, subculturing from low IPTG overnight cultures has a
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maximum deviation at IL(500) = 490 µM, which is a much smaller percentage difference.
These functions were used in Figure 3.8 to correct the IPTG concentration for each data
point and will also be applied for presentation of all subsequent data derived from the
hysteresis assay.

With this correction in place, it can be seen from the moderate overlap of the low O/N
and high O/N data in Figure 3.8, that production of β-gal has essentially reached its equi-
librium point by the time of the assay. β-gal is expected to follow dilution-limited time
evolution, thus representing the longest time it would take to reach equilibrium in rapidly
dividing cells. So by inference the concentrations of CI in the hysteresis assays of the tum−

MFL strains would be expected to have reached equilibrium at least some time during the
course of the assay with normal equilibrium time. Thus the disequilibrium of the MFL
tum− curves in Figure 3.6 (Section 3.2) likely reflect the additional time it takes for a sec-
ond dilution limited process (production of β-gal from pR ) to reach equilibrium.

Curiously, whilst the data from low and high O/Ns present a similar shape, in Fig-
ure 3.8(a) in particular, the spread in data points is markedly different for each of the start-
ing conditions. The low O/N data shows far less variation in LacZ units at 0 µM IPTG
compared with the high O/N data, and vice-versa for the high O/N data at 300 µM IPTG.
This indicates that the further from its initial equilibrium state that the circuit has to travel,
the noisier the resulting output, perhaps suggesting substantial variation in equilibrium
times, or growth rates between different repeats.

For easier comparison and extrapolation to intermediate values, the data was fit using
four-parameter log-logistic curves, also known as Hill curves, given by

f (x) = B +
M− B

1 + exp
{
−H

(
log(x)− log(ε)

)} = B +
M− B

1 +
(

ε
x

)H (3.2)

where B is the basal value that occurs at x = 0, M is the saturation maximum, H is the Hill
coefficient and ε is the EC50. The drc package [Ritz and Streibig, 2005], written for the R

statistical computing environment [R Development Core Team, 2012], includes non-linear
least squares regression algorithms for fitting such curves, and was used to fit the data.

An assumption of regression by non-linear least squares is that all observations are nor-
mally distributed and have equal variance. For the induction data, this assumption does
not hold: a simple visual inspection of the points reveals that the variance for each exper-
imental condition generally tends to increase for points with higher mean values. Such
heteroscedasticity is not unsurprising in this kind of experiment given that a major source
of error is expected to arise from variations in gene expression, errors that are expected
to accumulate over time as the cells divide and grow. Multiplicative errors like that will
result in proportional changes which are often better compared after a log transformation
of the data.

However, instead of using a log transformation to minimise heteroscedasticity, a more
general Box-Cox transformation of the response was considered. The Box-Cox transfor-
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Figure 3.9: Heteroscedasticity is reduced by using a Box-Cox transformation prior to fitting the P lac induc-
tion reporter assay data with Hill curves. (a) The choice of Box-Cox parameter λ for the transformation was
optimised by profiling the log-likelihood for Hill fits of all data sets that P lac activity satisfies a normal error
distribution with constant variance over each value of IPTG concentration. The analysis presented here is
for the case where the low and high O/N data was treated as an aggregated set in each case. All three
relevant data sets can be seen plotted in Figure 3.10. (b) The reduction in heteroscedasticity can be seen
by comparing plots of residuals versus fitted values taken from each of the fits for different choices of λ.
The upper plot with λ = 1 shows the case where the data is essentially untransformed, and the lower plot
with λ = 1/3 shows the case the data is essentially transformed by a cube root.

mation is:

y(λ) =


yλ − 1

λ
, if λ 6= 0,

log(y), if λ = 0.
(3.3)

and the choice of the parameter λ can be optimised for least squares regression by pro-
filing the log-likelihood that the dependent variable (P lac activity) satisfies a normal error
distribution with constant variance for each value of the independent variable (IPTG con-
centration) [Box and Cox, 1964]. Such a transformation can normalise the variance in a
response-dependent manner, and is only useful if there is an underlying trend in the vari-
ance with the magnitude of the measurement. Thus a single value for λ should be chosen
to transform all data that can be expected to have the same sources of measurement error.
In this case, it is assumed that the measurement error arising from LacZ assays of either of
the induction strains will exhibit a similar dependence on measurement magnitude.

The log-likelihood of a normal error distribution with constant variance for Box-Cox
transformed Hill fits of all the induction data, including that shown in Figure 3.8 and also
that shown later in Figures 3.10(a) and 3.10(b), was determined for a range of choices of
λ. This was done alternately for the case where the data from high and low O/Ns were
fit independently, or where data from high and low O/Ns was aggregated for each fit.
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Figure 3.10: Comparing P lac promoter induction under different assay conditions in MFL-like strains. P lac
promoter activity was measured as described in Figure 3.8. The Tum+ data from that figure is replicated
here in grey for reference, but the high and low O/N data sets have been aggregated. This reference assay,
with normal equilibration time (equil.) and the (pR-tum+) induction reporter strain, is plotted with (a) the
pR-tum+ induction reporter strain with short equil., or (b) the equivalent pR-tum− induction reporter strain
with normal equil. Repeats are plotted as separate data points; n = 4 for each condition in the short equil.
and Tum− data sets. The data was fit after Box-Cox transformation with parameter λ = 1/3.

A log-likelihood profile for the latter case (fitting on the aggregated O/N data) is shown
in Figure 3.9(a). The maximum occurs at around λ = 0.35, and from this maximum, the
likelihood-ratio test can be used to estimate the 95% confidence limits as 0.26 and 0.43.
When the high and low O/N data are fit separately, the estimated maximum becomes
instead λ = 0.25 with 95% confidence limits of 0.15 and 0.33. Taking both λ estimates into
consideration, a common optimum λ was chosen to be 1/3; with λ = 1/3, the Box-Cox
transformation is essentially a cube root transformation.

The effect of this transformation on all the data sets can be gauged from the residuals
of the fits which can be plotted against the fitted values to visualise any trends in variance
about the fit curves. This is shown in Figure 3.9(b) for the case where the O/N data was
aggregated for each fit. Where λ = 1, essentially the case where there is no transformation,
then the data clearly shows a clear trend of larger spread in the residuals for larger fitted
values. Where λ = 1/3, this trend is reduced and the spread in the residuals is more
consistent.

The Box-Cox transformation with λ = 1/3 was applied for producing the fitted curves
shown in Figures 3.8 and 3.10(a) and also for determining all of the fitted Hill curve param-
eters listed in Table 3.1. Application of the Box-Cox transformation makes little difference
to these fitted parameter values; the differences are primarily manifest in the error esti-
mates on those parameters, with the largest changes occuring for the basal parameters.
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Table 3.1: Parameters determined from Hill fits of the P lac-lacZ induction data in MFL-like strains. All
data was fit after Box-Cox transformation with λ = 1/3. The parameter estimates are indicated with
95% confidence limits from the fit.

Straina Equilibration
timeb Historyc Hill coef-

ficient EC50
d Basale Maximume

tum+ Normal Low O/N 1.8± 0.3 124± 24 24± 6 635± 82
tum+ Normal High O/N 2.1± 0.4 104± 15 50± 12 625± 65
tum+ Short Low O/N 1.7± 0.4 120± 34 30± 11 679± 123
tum+ Short High O/N 2.0± 0.6 99± 23 69± 21 634± 96
tum− Normal Low O/N 1.6± 0.4 184± 67 18± 8 787± 199
tum− Normal High O/N 1.8± 0.4 153± 46 27± 12 728± 154

tum+ Normal Mixed 1.8± 0.3 116± 17 32± 7 642± 62
tum+ Short Mixed 1.7± 0.4 113± 26 41± 12 678± 98
tum− Normal Mixed 1.6± 0.3 170± 46 21± 7 766± 141
aInduction reporter strains were either E4300 (pIT-SL)λ (pIT-CH-pR -gfp)HK pUHA-1 pZC320t-lacZ

pMTS-pR -tum+, or the tum− equivalent with the pMTS-pR -tum− plasmid instead.
bRelative to the short equilibration time assay, the normal equilibration time assay involved an addi-

tional 1/10 dilution of the overnight cultures so that the time taken to reach log phase would be longer.
cCultures were initially grown overnight (O/N) in broth with either 0 µM (Low) or 300 µM (High)

IPTG; these curves were either fit separately, as indicated, or the fit was for the aggregated dataset (Mixed).
dHalf-maximal effective concentration; listed in µM.
eListed in LacZ units.

Without the Box-Cox transformation, the 95% confidence estimates on the basal parame-
ters were typically on the order of or, in a number of cases, larger than the values of the
parameters themselves.

The Hill fits help to make comparisons between the data sets more objective. The high
and low O/N curves shown in Figure 3.8 confirm the similar shapes of the two data sets.
Furthermore, from the parameter estimates in Table 3.1 it can be seen that, within 95%
confidence limits, all parameters but the basal level of production overlap when compar-
ing high and low O/N curves. This applied even when the equilibration time of the assay
was short (that is, omitting the extra 1/10 dilution step of the overnight cultures). The sig-
nificant difference in the basal levels of production between high and low O/Ns for both
short and normal equilibration times presumably arises as a result of the effect mentioned
earlier that the further from equilibrium that the system has to travel, the noisier the as-
say seems to become. In particular, the high O/N data shows much more variation at its
lowest level of IPTG than the low O/N data does. This also raises the question of why
such a discrepancy between high and low O/N curves does not arise as prominently for
the value of the maximum parameter, which should apply for the opposing case where
higher variance might be expected in the low O/N data at the highest concentrations of
IPTG. However, this may merely be a result of such divergent variances being lost amidst
increased levels of assay error associated with higher assay units. Another explanation
may also be that a small subset of cells from the high O/N divide much more slowly than
the others, thus biasing the results towards higher units overall for that curve.
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A comparison between the induction assay with normal equilibration time (here av-
eraging at 6.9 hours) and an induction assay with short equilibration time (5.4 hours) can
be found in Figure 3.10(a). High and low O/N data has been aggregated in this case,
but clearly the two data sets overlap well. Perhaps surprisingly, even the magnitudes of
variance at the lowest concentrations of IPTG appear to be similar, suggesting that the
additional variance observed for the high O/N is not just an artefact of limited equilibra-
tion. The time difference between the two assays is at least twice as long as the typical
doubling time for E. coli (30 minutes), so should have been sufficient additional time to
at least reduce such discrepancies. So since the differences in variances between low and
high O/Ns appeared to have low association with equilibration, it was assumed that such
asymmetries in assay error could potentially lead to overestimates of the ‘true’ mean for a
hypothetical ideal assay. For this reason, the aggregated data set including data from both
high and low O/Ns was preferred for application in the modelling and in normalising the
hysteresis curves.

The induction reporter strain with the pMTS-pR -tum− plasmid was also assayed using
the hysteresis assay with normal equilibration time, and that data is shown plotted in
Figure 3.10(b). On first glance, the Hill fit of that data appears to have quite a different
shape compared with that for the pMTS-pR -tum+ plasmid. However, the parameters
determined for each fit, as listed in Table 3.1, reveal that, within the 95% confidence limits,
there is no significant difference between the two curves. Nonetheless, the range of P lac

activities covered by the Tum− curve is larger, with a noticeably lower basal parameter and
higher maximum parameter than the other fits. Furthermore, its EC50 is also noticeably
larger than those for the other fits. By visual inspection of the data, it could be argued that
this may result from the Tum− data showing a somewhat reduced level of the asymmetric
variances observed to result from the history of each data set in the Tum+ strains. An
explanation for this is unclear at this stage, and more repeats would be required to show
that it is a real difference in any case. However, if it were the case, the Tum− data would
likely serve as the best representative for the steady-state concentrations of CI in the MFL
strains.

The Hill curve fits indicate that the nominal choice of 300 µM IPTG as the maximum
induction level in the hysteresis assay is a reasonable choice. The fits most closely repre-
senting the conditions in the MFL strains, that is, those shown in Figure 3.10(a), reveal that
little additional P lac promoter activity is to be gained by almost doubling the inducer con-
centration to 500 µM. By 300 µM, the curves have well started approaching saturation. The
MFL hysteresis curves in Figure 3.6 of the previous section, appeared to indicate that the
maximum level of induction was not high enough to reach the high CI monostable state,
even with an enhanced RBS for CI production. In this latter case, there is a chance that the
slight additional activity afforded by 500 µM could help to tip this end of the MFL into
monostability. However, the apparent bistability at that maximum induction level will be



76 Chapter 3. Designing and characterising a bistable MFL

0 500 1000 1500 2000 2500

0
50

10
0

15
0

20
0

25
0

CI monomers per cell

P
la

c a
ct

iv
ity

 (L
ac

Z 
un

its
)

(a)

0 50 100 150 200 250 300

0
10

00
30

00
50

00
IPTG concentration (µM)

C
I m

on
om

er
s 

pe
r c

el
l

(b)

Figure 3.11: Scaling the P lac induction curves measured by LacZ assay to the equivalent steady-state
CI concentrations. (a) The mean activity of the P lac promoter from the low O/N assay of the Tum− strain
(Figure 3.8(b)) is plot versus measurements of CI concentration per cell [Dodd and Egan, 2002] for induction
of P lac from pZC320-WR-cI using 10, 20, 40, 60 and 100 µM IPTG. The data was fit by linear regression
either including (black solid line) or excluding (grey dashed line) the maximum point. Dotted lines indicate
95% confidence limits on the regression line including all points. (b) The linear fit can be used to scale the
Hill curve fits of the P lac-lacZ induction data to the number of CI monomers per cell. Shown is the scaled
low O/N Tum− Hill curve from Figure 3.8(b) plotted with the measurements of CI concentration per cell from
Dodd and Egan [2002]. Dotted lines indicate 95% confidence limits for the fitted Hill curve.

reconciled in other ways later.

The P lac-lacZ induction curves have been measured in LacZ units, but for comparison
with the modelling, relating these curves to a measure of CI concentration would be more
useful. Steady-state CI concentrations had been measured by Western blotting for this
induction system previously [Dodd and Egan, 2002], though for a more limited selection
of IPTG concentrations. Furthermore, those results were also obtained for a strain (E4300
(λRS45∆YA -pMRR9-HS-F L

+pL+pR+F R
+) pUHA-1 pZC320-WR-cI) whose accompany-

ing reporters and plasmids were somewhat different to those of the MFL. Nonetheless, a
comparison of this data with the LacZ assay data would provide a good estimate for the
scaling necessary to convert between the two measurements.

Out of the induction reporter strains presented here, the one most closely matching
that from Dodd and Egan [2002] would be the tum− variant, since there is no tum gene
present in that strain. Further, the assay protocol in that paper more closely matches that
done for the low O/N. A plot of the low O/N induction Tum− induction data versus
the number of CI monomers per cell as reported in Dodd and Egan [2002], matched up
according to IPTG concentration, is shown in Figure 3.11(a). The units of CI concentration
are kept as monomers per cell since this avoids the introduction of cell volume estimates,
which will be dicussed in Section 3.4.4. The two alternative measurements of induction
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from the P lac promoter are well matched by a linear model with R2 = 0.98. The fit has
a nonzero y-intercept indicating that there is likely to be some background level of β-gal
production that is present irrespective of the level of repression of the P lac promoter. That
may indicate that there is an unidentified but weak promoter somewhere downstream of
P lac that was introduced along with the lacZ gene.

As a brief aside to be returned to later, an alternative fit of the two different sets of in-
duction measurements excluding the maximum data point (for induction at 100 µM IPTG)
produces an R2 > 0.99. Blindly excluding such a point without further experimental vali-
dation would be highly questionable, but data obtained later in Section 3.5.4 makes use of
the extra flexibility such an exclusion affords. The alternative fit lies within the 95% confi-
dence limits of the original in any case. If it were an outlier, the deviation could possibly
be explained by a saturation of sensitivity in the Western blotting measurements for its
comparatively high level of induction.

The linear model shown in Figure 3.11(a) can be used to scale any of the induction
curves measured by LacZ assay to the number of CI monomers per cell. As an example
and basic test of this conversion, the model has been used to scale the low O/N Tum−

Hill curve fit from the P lac-lacZ data of Figure 3.8(b) to CI monomers per cell. This is dis-
played along with the measurements of CI from Dodd and Egan [2002] in Figure 3.11(b).
The Western blotting measurements of CI concentration all fall within the 95% confidence
limits of the Hill curve derived from LacZ assay data. This correspondence of the LacZ
assay and Western blotting data will be returned to in Section 3.5.4, where direct measure-
ments in the MFL strains of steady-state CI concentrations are presented.

3.4 Host strain characteristics

The host organism for all the gene networks in this thesis is the well-studied bacterium
E. coli, and much of the modelling and its predictions relies on the reproducibility and
consistency that typically characterise growing cultures of E. coli. However, factors such as
strain genotype, growth medium and growth temperature can all affect the ‘standard’ be-
haviour of E. coli. The growth rate is an important indicator for such broad scale changes;
changes to the growth rate implicate wide-ranging effects including changes to the rates
of loss of dilution limited proteins and even promoter strengths. This section is primarily
concerned with the measurement of growth rates for the strains used in this thesis and
the consequences that these growth rates have on the modelling, in particular, in setting
dilution limited rates of loss and also in determining cell volumes.

3.4.1 Optical density measurements

For measurements of growth rate and also derivations of per cell parameters from bulk
culture measurements, a measure of cell concentration is required. The turbidity of a cul-
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Figure 3.12: Calibrating absorbance measure-
ments at 620 nm, for cultures grown in M9 minimal
media in 96-well plates, to standard optical den-
sities at 600 nm (OD600). The OD600 was mea-
sured for cultures of various densities using an
Ultrospec 10 Cell Density Meter, and a concurrent
measurement made in 96-well plates using a Mul-
tiskan Ascent plate reader. See text for further ex-
perimental details. Grey dotted lines mark 99%
confidence intervals on the fit. Also indicated are
the slope and intercept of the fit with 95% confi-
dence limits.
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ture, as measured by the absorbance, varies with the cell mass of the culture, and whilst
the relationship is non-linear [Bipatnath et al., 1998], for sufficiently low absorbances a lin-
ear approximation is valid. This measure of cell mass, known as the OD600, is typically
reported as absorbance at 600 nm using a path length of 1 cm. The cell mass is in turn
proportional to the concentration of cells in the culture, but it is important to bear in mind
that the constant of proportionality depends on the average mass of each cell in the cul-
ture, which may vary between strains and even has a power law dependence on growth
rate [Donachie and Robinson, 1987]. Thus where absolute (as opposed to relative) concen-
trations of cells are required, these need to be calibrated to the OD600 by cell counts for
each particular assay.

Most of the assays in this thesis are performed with cultures grown in 96-well plates,
and measurements of their OD600 made using Multiskan Ascent plate readers produced
by the Thermo electron corporation3. The readers do not have a filter for measuring ab-
sorbance at 600 nm, the closest being a filter for 620 nm. The different wavelength affects
the effective extinction coefficient, but not the proportionality to cell mass. So with this
difference in mind and given that the path length of the measurement is dependent on
culture volume in 96-well plates, an empircally-determined linear correction for relating
absorbance measurements (absorbance at 620 nm (A620)) to OD600s was opted for.

For cells grown in LB this linear correction has already been characterised for 100 µL of
culture per well as OD600 = (A620 − 0.0394875) /0.155 [Ian Dodd, unpublished data]. For
cells grown in M9 minimal media the linear correction was characterised using cultures
of E4643 (pITM-pR -gfp)Flp

186 (pIT3-SH-lacI )HK (pITM-CT-P LL5-lacZ )ϕ21 with either pMTS-
pR -tum+ or pMTS-pR -tum− plasmids (for the details of these strains, see Chapter 7).
Three independent colonies of each strain were grown to stationary-phase in M9 minimal

3One of the readers is in fact an older version produced by Labsystems.



3.4 Host strain characteristics 79

media with 20 mM glucose and 4 µg/mL tetracycline, subcultured into the same media
and then grown to log-phase. OD600s of the cultures were measured in triplicate using
the Ultrospec 10 Cell Density Meter produced by Amersham Biosciences as a standard
reference. In particular, measurements were made for the log-phase cultures at an OD600

around 0.6, but also for one in five dilutions of the stationary- and log-phase cultures. All
these samples were synchronously measured in 96-well plates by pipetting 4 × 100 µL
aliquots of each culture into the wells of the plates.

The resulting data was fit using linear regression (see Figure 3.12) to give OD600 =

(A620 − 0.0358) /0.147 for 100 µL aliquots of cultures grown in M9 minimal media. It was
also noted that any systematic error observed between the two readers was insignificant
in comparison with the random errors introduced elsewhere (like those introduced by
pipetting, which affects the path length). Likewise, systematic errors arising between 96-
well plates were found to be insignificant.

3.4.2 Growth rate

The growth rate of the cells in a culture has a broad impact on cell morphology and pheno-
type, affecting properties such as the average cell volume [Donachie and Robinson, 1987],
promoter strengths [Liang et al., 1999] and gene copy numbers [Bipatnath et al., 1998]. The
effects of growth rate on gene expression in the context of synthetic networks, in particu-
lar bistable networks, is considered by Klumpp et al. [2009]. Growth rate modulation by
circuit components themselves can even be the cause of bistability in networks with non-
cooperative feedback [Tan et al., 2009]. Nonetheless, the impact of growth rate on gene
networks and the factors impacting growth rate are still not well understood. Hence, the
primary concern here is to control for changes to the growth rate. This can be challenging
since the growth rate itself is modulated by cell stresses like the maintenance of high copy
or strong promoters (of particular relevance here is the impact of the plasmid-bound pR
promoter), or additional stresses imposed by antibiotics used for plasmid maintenance.
As a result, for the parameter measurements in this chapter, great care is taken to replicate
the genotypes and experimental conditions of the assays as closely as possible.

Basic growth rate measurements can be used to track consistency between assays, but
an accurate measure of the growth rate also helps to define certain parameters of interest
in the modelling. For example, the rate of loss of stable proteins is ‘dilution limited’, that
is, loss occurs primarily as a function of dilution arising from the increase in cell mass/vol-
ume of growing cultures. Growth of E. coli in LB proceeds exponentially until an OD600

of around 0.3 [Sezonov et al., 2007], after which, the rate of growth gradually asymptotes
towards a maximum OD600 that is characteristic for the given strain and media. However,
providing assays are restricted to log-phase (i.e., exponential) growth with growth rate
γ, the rate of loss of a dilution limted protein A can be modelled simply as dA

dt = −γA.
Since growth of a culture represents the process of many dividing cells, this parameter is
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reported as the time it takes for the cell mass to double in size — the doubling time. This
is inversely related to the growth rate as determined for exponential growth with base 2
(i.e., doubling time = log(2)/γ).

Measurements of growth rate can be made by following the increase in OD600 over time
of growing cultures using the instruments outlined in Section 3.4.1 and then the growth
rate extracted by fitting the resulting curves. Exponential growth is most easily charac-
terised as the rate of fold change of the OD600, so that the slope of the log-transformed
OD600 versus time gives the growth rate at any instant. Where this rate stays constant
(i.e., during purely exponential growth), linear regression of the log-transformed data can
provide a complete description of the growth rate. However, as mentioned above for cul-
tures growing in LB medium, the rate of growth starts to asymptote above OD600 0.3 and
is also normally preceded by a lag time, during which the sensitivity of the instrument is
too low to detect the growing cells. Accurately accounting for such effects will require a
more sophisticated model of growth.

Zwietering et al. [1990] found that one of the most reliable models for bacterial growth
is the Gompertz model and re-formulated this model in terms of parameters with a bi-
ological meaning. A detailed description of this model and how it is applied to fit the
growth curves in this thesis can be found in Appendix A, but for the purposes here, it
is enough to know that the Gompertz model contains a term to account for saturation
and another to account for some lag time before growth is observed. The growth rate in
the Gompertz model represents the maximum rate of growth, which can be determined
as the largest slope occurring within the time course of log-transformed OD600s. Three-
and four-parameter variants of the Gompertz model are available. With fewer parame-
ters, the three-parameter version is typically preferred, but depending on the number of
data points measured inside the lag period, the data may be more accurately modelled
by the four-parameter description, which can additionally account for errors in setting
background levels of optical density (see Appendix A for a more detailed description).

An example set of time course measurements, in which the optical densities of grow-
ing cultures of E4300DR pZC320-ER-cI pMTS-pR -tum+ were followed, can be found in
Figure 3.13. The cultures were grown in 96-well plates, so as mentioned previously in Sec-
tion 3.4.1, they were first measured as A620s and have been converted to OD600s for the
figure. However, since the well-to-well variation measured at the zero time point4 typi-
cally persists over time (see Appendix A), the A620 measurement taken at the zero time
point has been used as a per-well background reading for the duration of the experiment.
This is used instead of the generic background A620 reading listed in Section 3.4.1 since
it produces a more reliable measure of the relative increases in cell density at low OD600s,
but the slope from the empirically-derived correlation between A620 and OD600 is still used
to scale the offset data into an OD600. Such per-well systematic errors are presumably pri-

4The zero time point measurement is that taken directly after subculturing for log-phase growth.
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Figure 3.13: Growth curves can be fit (a) with a log-linear model by truncating the data using an upper
threshold, or (b) with a 3 parameter Gompertz model that also accounts for saturation of exponential growth.
The A620 was followed over time for cultures of E4300DR pZC320-ER-cI pMTS-pR-tum+ grown in LB with
0 µM IPTG in 96-well plates, but has been converted to an OD600 using the empirically derived scaling
factor specified in Section 3.4.1. These cultures were started from either low overnight (Low O/N) or high
overnight (High O/N) cultures as indicated.

marily a consequence of path length variations arising from pipetting errors.

Another consequence of pipetting errors would be small differences in the absolute
number of cells added to each well of the plate at the zero time point. Whilst such differ-
ences are amplified exponentially over the course of the assay, they will not affect growth
rate determinations since it is the rate of relative change that is important and such dif-
ferences are expected to be correlated over time in each well. However, this makes it
necessary to fit growth curves for each well separately; statistical aggregation can then be
performed on these derived growth rates.

To compare the different models of growth, the same example set of growth curves has
been fit alternatively using log-linear (Figure 3.13(a)) or Gompertz (Figure 3.13(b)) models.
Each of the fits have been transformed back to the original scale and are shown overlaid on
the untransformed data. Since the rate of growth slows from purely exponential growth
to some saturation point and since the sensitivity of the instrument sets a lower bound on
detecting growth, only those data points with OD600s between 0.005 and 0.3 were used in
the log-linear fit (the use of these particular thresholds is further discussed and validated
in Appendix A). With these bounds in place, it can be seen in Figure 3.13(a) that growth of
the cultures deviates quite obviously from the model of pure exponential growth for points
with OD600s above 0.4. In contrast, the Gompertz model can well match the slowing rate
of growth as seen in Figure 3.13(b). In spite of the significant differences between the two
models, the two methods result in very similar doubling time estimates for the curves
shown of 30± 3 min for the log-linear model and 29± 2 min for the Gompertz model.
However, growth rates determined using the Gompertz model tend to be more consistent,
with reduced variance (see Appendix A). On the whole, log-linear models tend to produce
overestimates of the doubling time, since any slowing of growth for OD600s below 0.3 will
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Table 3.2: Doubling times measured for notable strains within the present thesis. Growth was followed
by monitoring the A620 and the resulting curves were fit mainly with 3 parameter Gompertz models as
described in the text.

Strain Antibioticsa Doubling timeb nc

Basic strainsd

E4300 pUHA-1 Kn50 28 ± 2 4

E4300DRe Kn50 26 ± 1 8

E4300 (pIT-SL-pR -lacZ )λ pUHA-1 pZC320-ER-cI Kn50Ap30 28 ± 4 4

E4300DR pZC320-ER-cI Kn50Ap30 27 ± 4 4

Induction reporter strainsf

E4300 (pIT-SL)λ (pIT-CH-pR -gfp)HK pUHA-1
pZC320t-lacZ pMTS-pR -tum+ Kn50Ap30Tc4 28.2± 0.3 95

E4300 (pIT-SL)λ (pIT-CH-pR -gfp)HK pUHA-1
pZC320t-lacZ pMTS-pR -tum− Kn50Ap30Tc4 28.9± 0.5 96

MFL strainsg

E4300DR pZC320-ER-cI pMTS-pR -tum+ Kn50Ap30Tc4 28.1± 0.6 96

E4300DR pZC320-ER-cI pMTS-pR -tum− Kn50Ap30Tc4 28.2± 0.5 96

E4300DR pZC320-ER-cI pMTS∗-pR -tum+ Kn50Ap30Tc4 29.5± 0.5 96

E4300DR pZC320-ER-cI pMTS∗-pR -tum− Kn50Ap30Tc4 27.9± 0.3 96

E4300DR pZC320-WR-cI pMTS-pR -tum+ Kn50Ap30Tc4 28.3± 0.2 96

E4300DR pZC320-WR-cI pMTS-pR -tum− Kn50Ap30Tc4 28.2± 0.3 95

E4300DR pZC320-WR-cI pMTS∗-pR -tum+ Kn50Ap30Tc4 29.0± 0.4 96

E4300DR pZC320-WR-cI pMTS∗-pR -tum− Kn50Ap30Tc4 29.6± 0.4 96

aKn50: 50 µg/mL kanamycin; Ap30: 30 µg/mL ampicillin; Tc4: 4 µg/mL tetracycline.
bMean doubling time listed in minutes with 95% confidence limits estimated from the set of repeats.
cThe number of growth curves that were independently measured and fit.
dIn this group, each growth curve consisted of 7 time points.
eE4300 (pIT-SL-pR -lacZ )λ (pIT-CH-pR -gfp)HK pUHA-1.
fIn this group, each growth curve consisted of 10 time points.
gIn this group, each growth curve consisted of 7–10 time points.

bias the linear fitting towards a reduced slope (reduced growth rate) and hence increased
doubling time.

Growth curves were measured for a number of important strains in this thesis, and
each curve fit using one of the Gompertz models. The resulting doubling times are listed
in Table 3.2. Given the small number of data points in the growth curves (7–10 time points
as indicated in the table), growth rates were determined, with one exception5, from fits

5 The exception was for one of the two 96-well plate growth rate assays of the WR-MC MFL strains,
where a 4 parameter Gompertz model was preferred. The Gompertz models are fit to relative OD600s that
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using the 3 parameter Gompertz model.

The list of basic strains in Table 3.2 includes a selection of precursor strains used to
build the final MFL strains. Growth of those strains was followed in LB without added
IPTG, but with different antibiotics depending on the plasmids contained in each strain.
This was designed for measuring the extra burden on cell growth that was imparted by
each additional plasmid and antibiotic. With such a small number of growth curves mea-
sured for each of those strains, the confidence limits are quite wide and there were no
significant differences observed between these strains.

Growth curves for the induction reporter and MFL strains were obtained during the
course of the hysteresis assay. As shown in Appendix A.4, the rate of growth of the MFL
strains did not show any clear dependence on the concentration of IPTG or the assay con-
ditions used. Hence, those results were aggregated for each strain and the confidence
limits shown in Table 3.2 are based on the aggregated data sets. This revealed a signifi-
cant difference in doubling times between the base dual reporter strain (E4300DR) and all
of the induction reporter and MFL strains; presumably the faster growth of E4300DR can
be accounted for by the reduced number of plasmids and antibiotics required to maintain
them.

There was no significant difference in doubling time between the two induction re-
porter strains, and indeed, for all but one of the MFL strains, no significant difference in
doubling time was observed between matching pairs of tum+ and tum− strains. This val-
idates a direct comparison between experimental and control strains. Curiously, the MFL
strains with the low-copy variant of the pR -tum plasmid, that is, those with the SC101∗

origin, generally appeared to grow slower than those with the medium-copy SC101 ori-
gin. With one exception, direct comparisons between matching strains (i.e., when match-
ing tum± and cI RBS strength) all show a significant difference between the SC101 and
SC101∗ variants. This is further reflected in the fact that the doubling time of the tum+

induction reporter strain most closely matches the doubling times of the SC101 strains.
These results appear to indicate that, given the same concentration of tetracycline, the
cells with a higher copy-number of the resistance gene can more effectively cope with the
stress placed on cells by the antibiotic and are hence able to grow marginally quicker.

The one exception in both the cases mentioned above was due to the ER-LC tum−

strain, which had the lowest doubling time out of all those grown with tetracycline. It is
unknown why this strain behaved so differently, or whether the result is biased by a poor
selection of time points. To validate or rule out this exception, additional growth curves
with a larger number of time points would need to be measured for this strain.

are calculated by normalising to the earliest (non-zero) measurement taken after time t = 0. For the plate
in question, that early measurement was taken later than for the other plates and resulted in a statistically
significant bias in the estimation of growth rate. Thus in spite of the low number (7) of data points in that
assay, the 4 parameter model was used since the additional term specifically compensates for deviation of this
early time point from its normalised value of 1. The resulting growth rates and fitted growth curves for this
plate were more consistent with those obtained for the other plates as shown in Appendix A.3.
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In spite of the significant differences observed, it is also important to realise that for
all of the strains grown in media with tetracycline, the observed standard deviation was
in the range of 1.1-2.7 minutes. It is impossible to say whether the standard deviation re-
flects errors in fitting, in measurement or in the growth rates of the cells themselves, but
in any case, it means that the estimated doubling times are highly variable and a guide to
the underlying rate of cell growth at best. With this in mind and for the sake of simplic-
ity, two common doubling times were chosen to represent the MFL strains for subsequent
modelling and analysis: the mean of all of the SC101 strains, 28.2± 0.2 minutes (95% con-
fidence), and the mean of all of the SC101∗ strains, 29.0± 0.2 minutes.

Recall that in assays with a ‘normal’ equilibration time, late log phase cultures (i.e.,
those used in LacZ assays) are reached 5.9± 0.4 hours (standard deviation) after subcul-
turing on average, whilst with a ‘short’ equilibration time, late log phase is reached af-
ter approximately 4.8 hours. Using either of the MFL doubling times, this means that
12± 2 doublings (standard deviation) can occur before reaching late log phase for a nor-
mal equilibration time, or about 10 doublings can occur for a short equilibration time.

Note that no correlation was observed between the growth rates of given wells and the
final OD600s reached at the time of assay. The variation in final OD600s is probably due in
large part to variations in the absolute number of cells added to each well in the subcultur-
ing step for growth to log phase. Any deviation at that step would then be exponentially
amplified with each cell doubling; with each additional doubling the final OD600s become
more and more inhomogeneous. Minimising pipetting errors in that initial subculturing
step would help to improve consistency of the final OD600s. This also means that con-
comitant with increases to equilibration times will be increases in the variance of the final
OD600s; given the use of the final OD600s in calculating LacZ units, measurements of pR
activity in the MFL are also implicated.

3.4.3 Growth rates in alternative media

Since the growth rate impacts parameters that are relevant to the behaviour of the MFL
(see the introduction to the previous section), this raises the possibility of optimising the
MFL by modifying the growth rate. A particularly important factor in setting growth
rates is the choice of growth medium, and the impacts on growth rate resulting from a
selection of alternative liquid media formulations were measured for the WR-LC MFL
strain. The growth curves can be found in Figure 3.14 and the doubling times derived
from 4-parameter Gompertz fits of that data are listed in Table 3.3. The utility of the Gom-
pertz model over and above the log-linear model becomes particularly evident in these
curves, since measurements of cell density clearly reached saturation in a number of cases.
Furthermore, with a much greater number of points in each time course, use of the 4-
parameter Gompertz model is more easily justified and helps to reduce fitting biases at
the earliest time points.
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Figure 3.14: Growth curves for the MFL
strain E4300DR pZC320-WR-cI pMTS∗-
pR-tum+ grown in alternative growth me-
dia. The A620 was followed over time and
has been converted to an OD600 using em-
pirical calibration curves, which differed de-
pending on whether the medium was based
on rich (LB) or minimal (M9) broth. These
media were variously supplemented with
0.2% glucose (gluc.), 0.2% glycerol (glyc.),
0.2% casamino acids (CAA), or 1 µg/mL
thiamine (B1) as indicated. Growth trajec-
tories were followed in triplicate for each
medium; individual trajectories are differ-
entiated by alternative shading. Each tra-
jectory was fit by a 4-parameter Gompertz
model (dotted lines). Time (hours)
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Table 3.3: Growth rates determined for E4300DR pZC320-WR-cI pMTS∗-pR-tum+ in alternative growth
media. All media were supplemented with 50 µg/mL kanamycin, 30 µg/mL ampicillin and 4 µg/mL tetracy-
cline.

Media Doubling timea

M9 minimal, 0.2% glycerol, 0.2% CAAb, 1 µg/mL thiamine 83 ± 17

M9 minimal, 0.2% glucose 77 ± 1

M9 minimal, 0.2% glucose, 0.2% CAAb 45 ± 6

M9 minimal, 0.2% glucose, 0.2% CAAb, 1 µg/mL thiamine 44 ± 2

LB 29 ± 3

LB, 0.2% glucose 29.4± 0.4

aMean doubling time listed in minutes with 95% confidence limits estimated from each set of repeats
(n = 3); each repeat was derived from a 4-parameter Gompertz fit of a 21 point time course assay.

bCAA: Casamino Acids.

The medium used for the measuring hysteresis in the MFL strains was based on the
rich broth, LB. In spite of the large confidence limits, the mean doubling time measured in
this assay matched well with the equivalent measurement listed in Table 3.2. Surprisingly,
the addition of extra glucose to the broth did not further increase the rate of growth; if
anything, the doubling time was increased over that of the original formulation. Evidently
there was already an overabundance of nutrients and sugars in plain LB.

In contrast, when grown in M9 minimal medium [Miller et al., 1972, and the Materials
and Methods (Chapter 8) ], the doubling time for this MFL strain was significantly slowed.
The most basic medium (M9 minimal with 0.2% glucose) produced especially slow growth
with a doubling time of over an hour. Suspecting some metabolic deficiency for the base
E4300 strain, minimal media supplemented with casamino acids (hydrolysed casein pro-
tein containing almost all the essential amino acids) and additionally the vitamin thiamine
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were also trialled. The presence or absence of thiamine, initially thought to be a neces-
sary for the E4300 strain, made no apparent difference to the rate of growth. However,
supplementing the base M9 medium with amino acids resulted in a doubling time almost
half that of the original. Growth in minimal media also showed sensitivity to the choice
of carbon source. Changing from glucose to glycerol, even with all the additional supple-
ments, reduced the rate of growth essentially to that of the base minimal medium without
casamino acids.

3.4.4 Cell volume

The cell volume is an important factor used to convert between numbers of molecules per
cell and intracellular molecular concentrations. Such conversions are highly relevant since
binding constants for equilibrium reactions, such as the Tum−CI or CI−pR interactions,
are typically derived in units of molar concentration, whilst steady-state quantitation of in-
tracellular moieties is most easily derived in terms of a number of molecules per cell. Here
formulæ are presented for estimating cell volumes from growth rates and useful conver-
sion factors are derived. These conversion factors will be useful both for quantitation of
steady-state protein levels, but also later in Chapter 6, where a stochastic model of the MFL
is considered.

Following the analysis in the supplementary material of Palmer et al. [2009], the most
relevant volume to consider is that of the cytoplasm (i.e. the volume of the cell minus the
volume due to membranes and periplasm). The lengths, widths and volumes of E. coli
cells can be related to the growth rate [Donachie and Robinson, 1987], with the length of
K-12 given by:

Mean cell length = 2.0× 2(µ/3) µm, (3.4)

where µ is the number of doublings per hour. Donachie and Robinson [1987] report that
the same cells have a length to width ratio of around 4.9, so for a doubling time of 28.2 min-
utes, the average cell length would be ∼3.3 µm with a width (diameter) of ∼0.67 µm. The
periplasmic space6 has a width of around 13 nm for K-12 E. coli [Graham et al., 1991],
the outer membrane a width of around 13 nm [Bayer, 1991], and the inner membrane a
slightly smaller width (set to 8 nm here). Hence, the width of the shell encapsulating
the cytoplasmic volume sums to ∼34 nm, implying that the cytoplasm (using the dimen-
sions listed above) would have a length of ∼3.2 µm with radius ∼0.30 µm. Assuming a
cylindrical volume, this leaves a cytoplasmic volume of 0.90 µm3. Using that cytoplasmic
volume and Avogadro’s constant, the effective concentration of one molecule per cell can
be calculated as 1.8 nM.

6The periplasmic space is the space between inner and outer membranes in gram-negative bacteria.
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3.5 Balancing the MFL module

Rates of production and loss of regulatory proteins are of fundamental importance in mod-
elling the dynamics of genetic circuits. Determining the nature and rate of each of these
two processes for Tum and CI in the MFL will provide a grounding first step into under-
standing the behaviour of this synthetic switch. This section starts with a description of
the techniques used to quantify specific proteins of interest in vivo, and then moves on to
consider the degradation rates of Tum and CI. The estimates for rates of loss are then used
to estimate promoter production rates from in vivo steady-state measurements of Tum and
CI concentrations.

3.5.1 Quantitating intracellular proteins

A measure of in vivo protein concentrations for specific targets is necessary for determining
both degradation and production rates of that target. Here we use Western blots of cell
extracts in combination with Tum- or CI-specific antibodies to quantify each of the proteins
by comparison with known concentrations of purified protein.

Purified stocks of both TumHis6 [Shearwin et al., 1998] and CI [Shearwin and Egan,
1996] have been obtained and quantified previously, and rabbit polyclonal antibodies
have been raised against both of these stocks. For Western blotting, whole cell extracts
of defined OD600 and volume are separated by sodium dodecyl sulphate polyacrylamide
gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene fluoride (PVDF) mem-
branes; the primary α-TumHis6 or α-CI antibodies and fluorescently tagged secondary
antibodies then allow relative quantification of TumHis6 or CI respectively from the inten-
sities of the protein-specific bands. Further details on the α-TumHis6 and α-CI antibod-
ies and detailed protocols for preparation of cell extracts and for Western blotting can be
found in the Materials and Methods (Chapter 8).

By including reference concentrations of TumHis6 or CI on each blot using the purified
stocks, per-blot calibration curves can be derived; an example of a TumHis6 calibration
curve is shown in Figure 3.15. The response of band intensity to mass of protein loaded
in the lane is sigmoidal, indicating that sensitivity is lowered at the extrema. The curve
is well-fit by a three parameter log-logistic (i.e., Hill) curve as shown. Background noise
reduces sensitivity at low concentrations, whilst reduced capacity for transfer at high Tum
concentrations is the most likely cause for loss of sensitivity at the highest intensities. As
will be seen in Sections 3.5.3 and 3.5.4, the protein gels used to preparing the Western blots
have limited lane space, reducing the number of calibration samples per blot to four. As
such, the basal parameter in the four parameter log-logistic fit is fixed to zero to reduce the
number of regression parameters.

Ideally such calibration samples would be included on each Western blot, and a calibra-
tion curve calculated to represent each blot individually. This would account for blot-to-
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Figure 3.15: Fitting the sigmoidal response of
band intensity to TumHis6 mass. Band intensities
measured for Western blots of known quantities of
TumHis6 reveal a sigmoidal response on TumHis6
mass that is well fit by a four parameter log-logistic
function with basal parameter fixed to zero. TumHis6
mass is shown on a log-axis for easier visualisa-
tion of the smaller masses. The dashed lines illus-
trate quantitation of TumHis6 from a base two di-
lution series of an in vivo extract of a strain with
the tum4−5−his gene; given the log scaling, equal
spacing between the serial dilutions is anticipated.
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Figure 3.16: Using Box-Cox transformation of
Western blot band intensities to derive a quantity
with linear dependence on Tum mass. The TumHis6
calibration curves taken from Western blots in Sec-
tion 3.5.3 were first normalised against the minimum
intensity band for a more convenient scale, subject
to Box-Cox transformation with λ = 1.5 and then
plotted versus the known Tum mass.

blot variation resulting, for example, from differences in transfer efficiency and incubation
times with primary and secondary antibodies. However, it was not always possible to fit
such extracts on all blots, so a more generic transformation of band intensities was sought.
The Box-Cox transformation introduced in Section 3.3 can again be applied here to find a
transformation of all the calibration data sets that maximises the likelihood of a linear fit
of the data. When such a transformation is applied to raw band intensities, it should pro-
duce a quantity that has a linear dependence on the mass of protein present in that band.
This was needed for the TumHis6 blots only, so for all of the available TumHis6 calibration
data (shown in Section 3.5.3) the log-likelihood of a linear model incorporating Box-Cox
transformation of the data was profiled to give an optimum λ = 1.5. The application of
this transformation to the calibration curves is shown in Figure 3.16 to demonstrate the
(limited) efficacy of this linearisation scheme.

In summary, for quantitation of TumHis6 levels by Western blot, Hill curve fits of cal-
ibration samples will be used to calibrate blots where available, otherwise the raw band
intensities will be normalised using the Box-Cox method.
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3.5.2 Degradation rates of Tum and CI

The in vivo half-lives of regulatory proteins are essential for determining the dynamics of
gene networks. At steady-state, the rate of loss of a protein, either by dilution or active
degradation, balances the rate of production and together these rates determine steady-
state concentrations. Indeed, proteolysis plays important roles in gene regulation with
significant numbers of key regulatory genes having very short half-lives [Gottesman and
Maurizi, 1992]. These fast degradation rates enable quicker responses to changes in pro-
duction rate. In contrast, slow degradation rates result in increased time-averaging of the
input signal, where the undegraded protein essentially acts as a buffer for fluctuations in
the production rate.

In E. coli, most proteins are quite stable, with the dominant mechanism for protein
loss occuring through the dilution that results from cell division; the growth rate is an
important measure of half-life for such proteins. We have previously observed that the
CI protein of phage 186 is stable in vivo [Keith Shearwin (KS), unpublished data], but had
little a priori reason to suspect that Tum would be actively degraded. Nonetheless, for
completeness the half-lives of both Tum and CI in strains resembling those of the MFL
were determined.

To enable optimisation of Tum concentration for the degradation assay, a strain
with an inducible level of Tum was chosen. The Tum activity assay strain, E4300
(λRS45 pR -lacZ∆YA ) (pAH144-P bla-cI)HK pUHA-1 pZE15-tum4−5−his , can be used to re-
port on Tum relief of CI repression of pR by LacZ assay, and such assays along with further
strain details can be found in Chapter 9. However, for the purposes here, the Tum activity
strain is merely a convenient (and decoupled) source of both Tum and CI. Importantly,
unlike the MFL strains, it does not have any chloramphenicol resistance, which is likely
to bias the assay itself given the use of chloramphenicol to halt protein production (dis-
cussed below). The strain also has a source of CI, which is produced constitutively from
the medium-strength P bla promoter in single copy. Whilst the level of CI thus produced
would be low, it should still be possible to observe the putative absence of degradation.

Degradation of CI or Tum may be influenced by the presence or absence of the bind-
ing partner. As such, sibling strains without a source of CI were cloned with the inte-
grated but empty (pAH144)HK module replacing (pAH144-P bla-cI)HK, and tum− strains
were prepared by using the empty pZE15 plasmid instead of pZE15-tum4−5−his . This
produced four alternative assay strains with all combinations of tum± and cI±. In order
to maximise comparability with the MFL strains, the pMTS-pR -tum− plasmid was addi-
tionally transformed into each of the assay strains. This meant that the antibiotics used
during growth could be the same as in the MFL strains, with the exception that a higher
concentration of ampicillin was required (Ap100) due to the high copy origin (ColE1) of the
pZE15 backbone.

To measure protein half-lives, protein production in log-phase cultures was stopped
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by the addition of chloramphenicol, and a time course series of extracts then prepared
from these cultures. In theory, given the absence of protein production and the consequent
halting of cell growth, changes to protein concentration should only occur as a result of the
existing host degradation machinery. Chloramphenicol is an antibiotic that targets the 50S
ribosomal subunit of elongating ribosomes in E. coli and is considered to be bacteriostatic.
Unfortunately, it does in fact decrease cell viability and cause limited cell lysis within about
30 minutes. However, with the addition of 50 mM MgSO4, cell wall integrity is seemingly
stabilised and this effect is abated [Gupta, 1975]. It has also been observed that addition
of just MgSO4 to the medium slows growth [David Priest, unpublished data], and this
would only serve to aid the bacteriostatic effect. Given the time-sensitive nature of the
assay and that protein half-lives can be on the order of minutes, culture samples were first
aliquoted into much larger volumes of ice-cold Phosphate-Buffered Saline (PBS) to quickly
‘freeze’ the cell states prior to extract preparation. Further details on the preparation of
degradation extracts can be found in the Materials and Methods (Chapter 8).

Western blots of such extracts are presented in Figure 3.17 for two different inducer
concentrations. These blots demonstrate that TumHis6 is indeed degraded in E4300, but
the extent of degradation is vastly reduced in the presence of even the small amount of
CI produced from single-copy P bla. Furthermore, loss of Tum appears to have stopped by
about 20 minutes, but relative to the equivalent Tum− extracts, a fixed level of Tum protein
appears to persist for at least 60 minutes.

α-Tum blots of the degradation extracts in Figure 3.17, and equivalent α-CI blots of
time-course extracts for both of the CI+ strains (data not shown), were quantitated as per
Section 3.5.1 and the Materials and Methods (Chapter 8). The resulting time course curves
are shown plotted in Figure 3.18 on the next page. There was little to no active degradation
of CI in either of the CI+ strains over the course of the assay, as can be seen in Figure 3.18(a).
Thus, as anticipated, CI appears stable for at least a typical generation time. This confirms

Tum degradation combined α-Tum Ab

IPTG
Time

CI—

0 5 10 15 20 25 30 45 60 Tu
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Figure 3.17: Tum is degradaded as observed by Western blot with an
α-Tum antibodya. Protein production in cultures of E4300 (λRS45 pR-lacZ∆YA)
(pAH144-Pbla-cI)HK pUHA-1 pMTS-pR-tum− pZE15-tum4−5−his, with either 10 or
20 µM IPTG, were stopped at time 0 by addition of chloramphenicol and samples taken
over the following hour. CI− strains have (pAH144)HK instead of (pAH144-Pbla-cI)HK
and Tum− strains (sampled only at time 0) contain the empty pZE15 plasmid.

aNote that for optimised printing, the grayscale levels of all of the blot images in
this and the following figures have been adjusted; analysis is always performed on the
unaltered images, however.
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CI+, IPTG20, half life: 2 ± 2 mins

CI—, IPTG20, half life: 2.3 ± 0.6 mins

CI+, IPTG10, half life: 3 ± 2 mins

CI—, IPTG10, half life: 2.7 ± 0.2 mins

(b)

Figure 3.18: Measuring degradation of Tum and CI in E4300 (λRS45 pR-lacZ∆YA) (pAH144-Pbla-cI)HK
pUHA-1 pMTS-pR-tum− pZE15-tum4−5−his. (a) Within a typical cell generation time, there is no evidence
for active degradation of CI whether in the presence of Tum or not. Plotted are the quantitated CI-specific
bands of degradation extracts of cultures grown with 20 µM IPTG. In the Tum− strain, pZE15-tum4−5−his
is substituted with empty pZE15. (b) Measuring Tum degradation for cultures grown with 10 or 20 µM IPTG.
Plotted are the quantitated Tum-specific bands of Figure 3.17, which were additionally normalised using the
Box-Cox transformation (see Figure 3.16), and fit using a non-linear model of exponential decay using a
offset term to account for the non-zero asymptote. Half-lives from the fits are indicated with 95% confidence
limits. In the CI− strain (pAH144-Pbla-cI)HK is substituted with (pAH144)HK.

that the dominant mechanism for loss of CI is via the dilution that results from cell growth,
and the parameter for loss of CI is best calculated from the growth rate as described in
Section 3.4.2. Given that this result is the same whether Tum is present or not, it is clear
that inactivation of CI by Tum does not occur by targetting CI for degradation.

Whilst Tum is certainly degraded, the degradation appears to be limited to a subset
of the total Tum mass. Possible reasons for the unexpected non-zero asymptote will be
discussed below, but by including an offset term in the fitting procedure, estimates for
Tum half lives in the different strains can still be made. Due to the additional offset, non-



92 Chapter 3. Designing and characterising a bistable MFL

S I S I

1/6/2010 SIfrac-t0-B α-Tum Ab; CI—

Tum calib.
S I

10 μM 20 μM 40 μMIPTG:
Fraction:

(a) CI− at time 0

4/6/2010 SIfrac-t60-A α-Tum Ab

CI–

S S I I S S I I S I

0 60 0 60 0 60 0 60 60 60

10 μM 40 μM
CI+ CI–

IPTG:
Strain:

Fraction:

Time:

(c)

S I S I

1/6/2010 SIfrac-t0-A α-Tum Ab; CI+

Tum calib.
S I

10 μM 20 μM 40 μMIPTG:
Fraction:

(b) CI+ at time 0

CI–

S S I I S S I I S I

0 60 0 60 0 60 0 60 60 60

20 μM 40 μM
CI+ CI+

IPTG:
Strain:

Fraction:

Time:
(d)

Figure 3.19: Comparing soluble (S) and insoluble (I) fractions of Tum at initial and final time points of the
degradation assays. Samples of E4300 (λRS45 pR-lacZ∆YA) (Pbla-cI)HK pUHA-1 pMTS-pR-tum− pZE15-
tum4−5−his (CI+; CI− strains have (pAH144)HK instead of (Pbla-cI)HK) were analysed by Western blot
and further divided by the concentration of IPTG inducer used during growth to log phase. Extracts were
prepared from cultures with an OD600 around 0.6 and the equivalent of 120 µL of each culture was loaded
per well. (a) and (b) Comparison of insoluble and soluble fractions at the initial time point in the CI− and
CI+ strains. The wedges indicate increasing dilutions of a Tum calibration (calib.) stock made up in Tum−

cell extracts (purified TumHis6 at 32 ng/12 µL was serially diluted to 1, 2, 8 and 32 times). (c) and (d) Direct
comparison of insoluble and soluble Tum fractions at initial and final time points.

linear regression of the intensity (I) against time (t) was performed using the following
model of exponential decay:

I = Ae
log(2)

h t + B, (3.5)

where B is the offset, A + B is the intensity at t = 0 and h is the half life. The half-life
is consistent across all the assays; degradation seems especially quick with half lives of
around 2–3 minutes. Given the low number of samples taken in the time interval of great-
est change (around 0–10 minutes), some of the estimates have low confidence, especially
in the CI+ strains where the amount of Tum available for degradation seems reduced rel-
ative to the CI− strains. The lower intensity seen at time zero for the degradation extract
at 20 µM versus 10 µM IPTG induction, is likely a result of some small delay in taking
the sample after addition of chloramphenicol; given the short half-life, even small delays
could mean large differences in intensity. Further work needs to be done to take additional
samples at the early time points so that confidence in the shapes of the degradation curves
and derived rates can be increased.

The fraction of Tum still left at the end of the time courses could conceivably be ex-
plained either by short half lives of the proteases involved in Tum degradation, or by a
subset of Tum that is protease-inaccesible. In attempts at purifying Tum, it was found that
over-expression causes some fraction of Tum to become insoluble. Thus to assess whether
this insoluble fraction may somehow be protected from degradation, trial degradation as-
says were run as before, except that samples were only collected at the t = 0′ and t = 60′

time points and cell extracts from those samples were split into insoluble and soluble frac-
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Figure 3.20: The degradation-resistant fraction of Tum appears to be a subset of the insoluble fraction.
Cultures of E4300 (λRS45 pR-lacZ∆YA) (Pbla-cI)HK pUHA-1 pMTS-pR-tum− pZE15-tum4−5−his were
grown with induction at 10, 20 or 40 µM IPTG to log phase. Protein production was stopped by the
addition of chloramphenicol and cell extracts of samples taken at 0 and 60 minutes after addition of
chloramphenicol were split into soluble (S) and insoluble (I) fractions and quantitated by Western blot.
Shown are the Tum-specific band intensities after Box-Cox transformation, as described in Figure 3.16,
and normalisation by the OD600s measured just prior to addition of MgSO4 (i.e., 10 minutes before
addition of chloramphenicol). The CI− strains had (pAH144)HK instead of (Pbla-cI)HK.

tions. To also gauge the levels of Tum present at each of the different levels of induc-
tion, calibration extracts were also prepared by adding known concentrations of purified
TumHis6 to extracts prepared from Tum− cultures (E4300DR pZC320 pMTS-pR -tum−).
Western blots of these extracts are shown in Figure 3.19. Like for the previous observa-
tions made from Tum expression vectors, a substantial portion of Tum was observed to lie
in the insoluble fraction even at low induction levels. From the side-by-side comparisons
in Figures 3.19(c) and 3.19(d), in particular, it can also be seen that, whilst almost all of the
soluble fraction appears lost by t = 60, the levels of Tum in each of the insoluble fractions
at the same time point are still clearly visible.

For a more objective analysis, the band intensities from all of the blots in Figure 3.19
were quantified and the Box-Cox transformation described in Section 3.5.1 applied to in-
crease comparability. These estimates were also normalised using the OD600 measurement
made just prior7 to addition of MgSO4 to account for differences in the densities of cells
loaded into each lane. The resulting normalised intensities are depicted in Figure 3.20 to re-
veal that the soluble fractions do indeed all start with non-zero levels of Tum at time t = 0,
but which are all then reduced close to zero by time t = 60′. In contrast, whilst substan-
tially reduced, the insoluble fractions are all still clearly non-zero by t = 60′. This would

7It was noted that the addition of MgSO4 appeared to reduce the OD600 more than would be anticipated
simply by dilution due to the additional volume. As such, the prior OD600 was assumed to better com-
pare with OD600s measured elsewhere in spite of the additional growth that may have occurred during the
10 minute incubation.
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Figure 3.21: The fraction of solu-
ble Tum present at steady state ap-
pears to saturate as the production
rate is increased. Time t = 0 ex-
tracts from degradation assays of
strains including an IPTG-inducible
level of Tum were split into sol-
uble and insoluble fractions and
probed by Western blot alongside
known quantities of purified Tum
(see Figures 3.19(a) and 3.19(b)).
The masses of Tum in each ex-
tract could then be calculated via
fits of these calibration samples as
described in Section 3.5.1. The
mass estimates were normalised
to the mass expected for 135 µL of
culture at OD600 0.6 by using the
OD600s measured just prior to ad-
dition of MgSO4 in the degradation
assays. For comparison, plotted in
the background in grey are the re-
sults of a LacZ assay measuring
pR activity of the CI+ strain (as de-
scribed in Figure 3.19 but without
pMTS-pR-tum−); in that strain, pR
activity acts as a proxy to report on
Tum antirepressor activity.

0
10

0
20

0
30

0
40

0
50

0
pR

 a
ct

iv
ity

 (L
ac

Z 
un

its
)

IPTG (µM)

Tu
m

 m
as

s 
(n

g)

0 10 20 30 40 50

0
20

40
60

80

CI−; insoluble
CI−; soluble
CI+; insoluble
CI+; soluble

suggest that at least a portion of the insoluble fraction of Tum is protease-inaccessible. Fur-
ther, if the insoluble fraction is in slow equilibrium with the soluble fraction, the entire in-
soluble fraction could be considered degradation resistant; as soluble Tum is degradaded,
the equilibrium may shift to release insoluble Tum into the soluble fraction.

Interestingly, the proportion of Tum in the insoluble fraction relative to that in the solu-
ble fraction appeared to increase with the level of induction. This is made more apparent in
Figure 3.21 where the extracts blotted alongside calibration samples are shown quantified
as mass estimates. These estimates were also normalised using the OD600 measurement
made just prior to addition of MgSO4, but for comparison with subsequent measurements
of steady-state Tum concentrations (Section 3.5.3), the normalisation was also designed to
represent the mass in 135 µL of culture with OD600 0.6 (note that in the present samples,
the equivalent of 120 µL of culture was loaded per well). Only the t = 0 samples were
analysed in this way, since these approximate the distribution between soluble and insol-
uble fractions at steady state. With such a limited data set it is hard to draw conclusions
about the two fractions, and certainly more experiments will be required to understand
the roles of each Tum fraction and their impact on Tum activity. However, the trends in
the data do seem to indicate that as the production rate of Tum is increased, the level of
Tum in the insoluble fraction continues to increase, whilst the level of Tum in the soluble
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fraction reaches a saturation point. Curiously, this saturation point appears to correspond
with the saturation in Tum activity observed in LacZ assays of the original Tum activity
assay strain (i.e., without the pMTS-pR -tum− plasmid). Here this is tentatively taken as
an indication that the soluble fraction is the active fraction.

From the degradation curves in Figure 3.18, it is clear that a fraction of Tum is degraded
with a very short half life (around 2–3 minutes), with a degradation-resistant fraction that
is lost by cell division. Then from the analysis of the soluble and insoluble fractions in
Figure 3.20, it also seems that the degradation-resistant fraction is at least a subset of the
insoluble fraction. Furthermore, the trends of each fraction shown in Figure 3.21 suggest
that the equilibrium between the two fractions reaches a saturation point in terms of the
soluble fraction. To add to the complexity, it can also be seen that on the whole, the CI−

strains seem to have more soluble Tum than the CI+ strains do at t = 0′, though, at this
point it is too difficult to say what role CI may play in disrupting the balance between the
two fractions. Taken together these results present a rather complicated model for the state
of Tum, its degradation and its activity. So to keep the model as simple as possible given
the limited data, it is presumed that only the soluble fraction of Tum is active and that this
fraction is produced from pR at a rate that is directly proportional to the repression of pR .
This means that only the evolution of soluble Tum need be considered, with a degradation
rate as determined from the degradation curves and a production rate chosen to match
the steady-state level of soluble Tum. This would clearly be a poor approximation for large
production rates, but as will be seen later, the unrepressed pR promoter produces Tum
at a rate less than that seen here for production from P lac induced using 20 µM IPTG.
For production rates below 20 µM saturation of the soluble fraction does not appear to
have been reached, so the linear approximation as described may well be good enough for
modelling the MFL.

3.5.3 Production rate from pR

Protein production in E. coli involves a complex series of steps, from binding of the closed
RNAP complex at the promoter site and isomerisation to its transcriptionally active open
complex, through transcription of the operon into mRNA and subsequent translation by
bound ribosomes, to folding of the nascent peptide into an active protein. Matters are
further complicated by a cohort of regulatory mechanisms that have been found to occur
at each step along the pathway. In spite of this complexity, simple models for the entire
production process can still capture behaviours that are relevant on the time-scales of gene-
networks [Sneppen et al., 2010].

For the phage λ switch, the rate-limiting step in the production of repressor and Cro
proteins was found to be the transition of RNAP from the closed to the open complex [Shea
and Ackers, 1985]. This motivated a one-step model of production, where the protein
production rate was simply the rate of isomerisation weighted by the statistical thermo-
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dynamic occupancy of the promoter by RNAP. Elsewhere, models of gene networks often
employ a two-step description of protein production, where the mRNA transcript becomes
an intermediate in the model [Hlavacek and Savageau, 1996]. This additional level of
complexity is primarily used for timing-sensitive circuits such as oscillators [Elowitz and
Leibler, 2000], or in stochastic models that account for the additional noise generated at
this step [McAdams and Arkin, 1997]. The MFL model employed in François and Hakim
[2005] emphasised the importance of the mRNA intermediate in the dynamics of an oscil-
lating MFL.

Here mRNA dynamics are ignored and the one-step model is employed, which gives a
rate equation for the evolution of protein A in the absence of transcriptional regulation as
dA
dt = p+ δA, where p is the representative rate of production, and δ is the rate of degrada-

tion of the protein. Note that the short Tum half-life (2–3 minutes) found in the previous
section could be cause for concern given that the mean mRNA half-life in E. coli is 5.2 min-
utes [Bernstein et al., 2002]. However, in the absence of any data regarding specific in vivo
mRNA half-lives for any of the MFL transcripts, mRNA dynamics are ignored regardless.
This assumption may be justified in part by the anticipated steady-state behaviour of the
bistable circuit; the primary error in making the assumption would be an overestimate of
the time taken for Tum to reach steady state. This has no direct consequence for a purely
steady-state description, and given that loss of CI and the two reporters (GFP and β-gal)
is dilution limited with half-lives on the order of the cell doubling time (much longer
than 5.2 minutes), the evolution of those products remains the primary delay for reaching
steady state.

At steady state, production rates are exactly balanced by degradation rates: in the one-
step model, dA

dt = 0, so A = p/δ. Hence, by using the degration rates determined in
the previous section, production rates for the two MFL promoters, pR and P lac, can be
determined by measuring the steady-state levels of their gene products, Tum and CI re-
spectively. To best inform the modelling some care should be taken to ensure that mea-
surements are indeed made at steady state, and that the states of each promoter are well
defined and unchanging. For these reasons, the MFL interactions are decoupled by mak-
ing minor simplifications of the strains before taking steady-state measurements.

In the MFL, the rate of production from pR is further weighted by the proportion of
CI bound at the promoter, but the extent of this repression can easily be described by a
Hill curve that scales production relative to some maximum rate as described mathemat-
ically in Section 2.2.1. As a result, here the activity of unrepressed pR is calculated by
measuring the steady-state TumHis6 levels that are produced in an MFL-equivalent strain
without a source of CI. This parameter is measured only for the pMTS-pR -tum+ plasmid
with an SC101 origin, and not for the low-copy version with an SC101∗ origin, but by scal-
ing according to the difference in copy numbers a value for the low-copy plasmid can be
derived.



3.5 Balancing the MFL module 97

Tum combined α-Tum Ab; CI—

Blot A

Blot B

Blot C

Blot D

Blot E

Tum calib. 5 6 Extract ID

Tum calib. 4 3 Extract ID

Tum calib. 3 4 Extract ID

Tum calib. 2 1 Extract ID

Tum calib. 1 2 Extract ID

Tum calib. 6 5 Extract ID

4x 2x 1x 1x 2x 4x Dilution

Blot F

Figure 3.22: Western blots for quantitating steady-
state production of Tum from pR in E4300DR
pZC320 pMTS-pR-tum+. The wedge indicates in-
creasing dilution factors for the calibration samples;
these were all prepared from master stocks of either
16 ng/12 µL (blots A and B) or 32 ng/12 µL (blots
C–F) of purified TumHis6 made up in Tum− cell ex-
tracts. The (serial) dilutions made from these cal-
ibration samples included 1, 2, and 8 times for all
blots, but added 32 times dilution for blots A and B,
16 times for blots C and D, and 4 times for blots E
and F.
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Figure 3.23: Calibrating Tum-specific band inten-
sities on Western blots with Tum mass. The data
shown is derived from blots A and B in Figure 3.22,
and the solid lines are four-parameter log-logistic fits
of the calibration data (with the basal parameter fixed
at zero). The dotted lines indicate the Tum-specific
band intensities of the dilution series of extract 2 and
the corresponding estimates of mass as determined
by the calibration fit.

Quantitative extracts of log-phase cultures grown from six independent colonies of
E4300DR pZC320 pMTS-pR -tum+ were prepared for subsequent analysis. Since Tum pro-
tein production and the state of the pR promoter are decoupled from the MFL circuit in
this strain, there was no reason to anticipate a lengthy time to reach steady state from
the stationary-phase O/N cultures. As such, O/N cultures were diluted for growth to
log phase according to the short equilibration time protocol. Once grown to an OD600 of
approximately 0.6, the volumes used for preparing the extracts were normalised so that
each sample contained the equivalent of 900 µL of culture with OD600 0.6. For preparing
the calibration extracts and diluting the tum+ extracts, an extract of the equivalent pMTS-
pR -tum− strain was also prepared using the large scale protocol; see the Materials and
Methods (Chapter 8) for further technical details.

Western blots of the resultant cell extracts probed with the α-Tum antibody are shown
in Figure 3.22. As alluded to earlier, four of the ten lanes were reserved for a dilution
series of the calibration sample (purified and quantified TumHis6 made up in the Tum−

extract), with the other six lanes reserved for a dilution series of the Tum+ experimental
extracts (also diluting in Tum− extract). As shown in Figure 3.23, calibration curves were
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Figure 3.24: Quantifying Tum mass in an MFL-equivalent strain with the pMTS-pR-tum+ plasmid but with-
out the cI gene. Plotted are estimates of Tum mass in 135 µL samples of log-phase cultures with OD600 0.6.
The points are individual estimates taken from each sample band in the blots in Figure 3.22. (a) Whilst the
estimates are highly variable, the means of these estimates are independent of the dilution factor used,
giving greater confidence in the form of the calibration curve. (b) Mean estimates of Tum mass grouped by
extract ID. These means are then averaged to give the final estimate listed in Table 3.4.

fit for each blot and the mass of each extract quantified. After scaling the estimates to
their undiluted values, they then represent the mass of TumHis6 in 135 µL of log-phase
culture8 with OD600 0.6. Bar graphs summarising these scaled estimates are presented in
Figure 3.24.

The non-linear form of the calibration curves appears to be a good choice judging by a
few cross-checks. The curves generally match up the estimated masses of identical samples
run on different blots very well (Figure 3.23). Further, similar mean values are observed
for estimates of Tum mass when the estimates are split according to their dilution factor
(Figure 3.24(a)). The main source of variation thus appears to originate from that occur-
ring between the extracts themselves (Figure 3.24(b)), and for this reason, the combined
estimate of Tum mass with 95% confidence limits (listed in Table 3.4 on the next page) was
derived from these correlated means.

To generalise the mass estimate to a value per cell, the concentration of cells in log-
phase cultures of E4300DR pZC320 pMTS-pR -tum+ was quantified. This was performed
by counting colonies on plates spread with dilution series (chosen to obtain approxi-
mately 20, 100 and 200 colonies per plate) of triplicate log-phase cultures all normalised to

8As per the Materials and Methods (Chapter 8), the 900 µL culture samples are resuspended in 80 µL
of lysis solution/loading buffer, and 12 µL of that preparation is loaded per lane, resulting in the volume as
reported.
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Table 3.4: Tabulating the strengths of the pR and P lac promoters in the MFL strains as calculated from
steady-state measurements of the gene products (TumHis6 and CI respectively). Measurement of pR
activity was for expression from the medium-copy pMTS-pR-tum+ plasmid in a strain matching the
MFL strains but without the cI gene; measurement of P lac activity was for expression from the single-
copy plasmids pZC320-WR-cI or pZC320-ER-cI in strains matching the MFL but without the tum gene,
and induced using 300 µM IPTG. For generality, the measurements are converted to molecules (mol.)
per cell. Reported errors are 95% confidence limits on the mean.

Promoter RBSa Steady-state mass (ng)b Cell count (c.f.u./mL)c Mol. per cell

pR – 17± 3 (1.7± 0.2)× 108 (2.5± 0.7)× 104

P lac
W 13± 3 (2.2± 0.3)× 108 (1.3± 0.5)× 104

E 33± 10 (2.0± 0.3)× 108 (3.5± 1.6)× 104

Promoter RBS Half-life (min) Production rate (mol./min)d

pR – 2.7± 0.2 (2.1± 0.8)× 103

P lac
W 28.2± 0.2 (3.3± 1.2)× 102

E 28.2± 0.2 (8.6± 3.9)× 102

aRibosome binding sites differed for the P lac measurements only and are either wild-type (W) or
enhanced (E).

bThe steady-state mass was measured for 135 µL of log-phase culture with OD600 0.6.
cCounts of colony forming units (c.f.u.) are derived from colony counts of diluted cultures calibrated

to be equivalent to 1 mL of culture with OD600 0.6.
dThe estimate for pR production rate assumes that only 33% of the steady-state Tum is in the soluble

(presumed active) fraction.

OD600 0.6. The colony forming units (c.f.u.) were counted and linear regression of these
counts versus the relative concentration factors was used to estimate the concentration of
cells in the undiluted cultures. The resulting estimate of cell concentration is again listed
in Table 3.4. This concentration of cells was used to normalise the estimated mass of Tum
to a measurement per cell. By using the known molecular weight of TumHis6 (17958 Da),
the steady-state concentration of Tum produced from pMTS-pR -tum+ can be calculated
in molecules per cell, and this value is also listed in Table 3.4. A steady-state concentra-
tion of 25000 proteins per cell is well within the range of steady-state levels observed in a
large-scale assessment of absolute protein concentrations in E. coli [Lu et al., 2007].

In theory, the production rate of Tum from pR could be estimated directly from its
steady-state concentration using p = A log(2)/h, where h is the half-life and A the concen-
tration of Tum. However, given the observed presence of both degradation-resistant and
degradation-sensitive fractions of Tum, the model of Tum evolution needs to be treated
more carefully. The simple model suggested in Section 3.5.2 was to assume that the sol-
uble fraction is both the degradation-sensitive and the active fraction and is produced
directly in proportion to the promoter firing rate. This means that the time evolution of
the soluble and insoluble fractions can be treated independently. By this model, the pro-
duction rate of soluble Tum could be estimated using the proportion of Tum that is soluble
in the steady-state measurement of Tum. To settle on a number, an estimate of the ratio
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of soluble to insoluble Tum at a similar production rate to pR was made using the data
presented previously in Figure 3.21. By extrapolating linearly, it was possible to calculate
the required level of IPTG such that the total mass of Tum in the CI− degradation assay
strain would match the 17 ng observed for the steady-state pR measurement. At that level
of IPTG (∼12 µM), the proportion of soluble Tum was about 33% of the total amount of
Tum. By this estimate, then, the steady-state level of soluble Tum produced from unre-
pressed pR in the MFL strains becomes 8.3× 103 molecules per cell. Then, using the short
half-life of just the degradation-sensitive fraction, the production rate of the soluble frac-
tion can be calculated as 2.1× 103 molecules per minute, as listed in Table 3.4. Applying
the converse analysis for the insoluble fraction would result in an effective production rate
for that fraction of 403.6 molecules per minute.

For reference, a rate of production of Tum is also derived for the low-copy variant,
pMTS∗-pR -tum+, based on the measurement for the medium-copy version. Plasmids de-
rived from pSC101 have been variously reported with 6 [Xia et al., 1991], or 10–12 copies
per chromosome unit [Lutz and Bujard, 1997]. For a doubling time of around 30 minutes,
locus copy numbers per cell of between 1.5 for genes near the chromosomal termini, and
4.7 for genes near the origin are anticipated [Bremer and Dennis, 1996; Bipatnath et al.,
1998]. With this consideration in mind, 20 copies per cell is taken as a representative
figure for the copy number of pMTS-pR -tum+, which then also represents the number
of pR -tum modules per cell. For the pMTS∗-pR -tum+ plasmid with the SC101∗ origin,
the literature reports copy numbers of around 25–40% of that of plasmids derived from
pSC101 [Manen et al., 1994; Lutz and Bujard, 1997]; 30% is taken as a representative value
giving 6 copies per cell for the SC101∗ origin. Using that estimate the unrepressed rate
of production of soluble Tum from the pMCS∗-pR -tum+ plasmid can be estimated as
630 molecules per minute.

To judge the feasibility of the estimated production rates, the values given here in Ta-
ble 3.4 are compared with the estimated firing rate of pR of 0.055 transcripts.s−1 Dodd
et al. [2007b]. For the medium-copy plasmid there are around 20 copies of pR per cell, im-
plying a combined pR firing rate of 66 transcripts.min−1. Without any measurement of the
half-life for these pR transcripts, the mean mRNA half-life of 5.2 minutes for E. coli [Bern-
stein et al., 2002] is assumed here so that there are an estimated 8.8 transcripts at steady
state. Using the predicted steady-state concentration of soluble Tum, this means that ap-
proximately 900 proteins are present per transcript. This is greater than the median level
of proteins per transcript observed by Lu et al. [2007] for E. coli, but still fits well within
the log-normal distribution of such levels.

In the previous chapter (Chapter 2), a crude estimate of 7400 nM was assumed for
steady-state production of Tum from from unrepressed pR ; using the conversion factor
derived in Section 3.4.4, that becomes ∼4100 monomers per cell. That estimate was de-
rived assuming a chromosomal copy number for the pR -tum cassette and also a degra-
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dation rate similar to that of CI. The medium-copy pMTS-pR -tum+ plasmid has a copy
number about 10–12 times that of the chromosome, but since the degradation rate of Tum
is also 10 times faster than that of CI, the crude estimate can be compared ‘as is’ with the
medium-copy measurement made here. The measurement of total Tum at steady-state
(2.5× 104 monomers per cell) is within ballpark range of the crude estimate. However, a
fairer comparison may indeed be with the estimated 8300 monomers of soluble Tum, since
that is the fraction thought to be degraded at the faster rate. That value compares much
more favourably with the initial crude estimate of the production rate; given the mod-
erate match between the modelling and experimental curves this lends some additional
credence to the assumption of an active soluble fraction.

3.5.4 Production rate from P lac

The P lac promoter in the MFL serves to provide an IPTG inducible source of CI. To char-
acterise steady-state concentrations of CI produced at each inducer concentration, the
steady-state concentration for a single fixed concentration of IPTG is measured, and then
this value is extrapolated to alternative concentrations of IPTG using the Hill curve fits of
the induction reporter strains described in Section 3.3.

Since two alternative RBSs were used to access different ranges of CI concentration
in the MFL strains, that is, the wild-type RBS (wRBS) in the pZC320-WR-cI plasmid, or
the stronger pET plasmid-derived enhanced RBS (eRBS) in the pZC320-ER-cI plasmid, the
steady-state level of CI for both of these plasmids needed to be measured. In both cases,
the maximum level of induction used in the hysteresis assays (300 µM IPTG) was chosen
as the reference concentration. Measuring the highest relevant in vivo CI concentration
provided scope for optimising Western blot band intensities by diluting extracts into the
most sensitive parts of the calibration curves. Without a clear understanding of the impact
of the Tum−CI interaction on steady-state levels of CI, measurements of CI production
were only made in the Tum− control strains.

Western blots of CI in cell extracts of the WR-MC and ER-MC Tum− MFL control
strains were prepared alongside calibration extracts and are shown in Figure 3.25 along
with example calibration curves. As described for pR production in Section 3.5.3, esti-
mates of CI mass were made for each band using the calibration curves. Hill fits of the cal-
ibration curves generally fit quite well, but in two of the blots (blots A and B for the wRBS
strain) there appeared to be an outlier in the calibration samples. In those cases, robust re-
gression was used to objectively account for the possibility of outliers, and this resulted in
better calibration as judged by improvements in internal consistency between each of the
serial dilutions. The collection of mass estimates is shown plotted in Figure 3.26. Again,
the greatest source of variation appeared to occur between cell extracts, so the confidence
limits and values reported in Table 3.4 were derived from the mean estimates obtained for
each extract.
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Figure 3.25: Quantitating steady-state CI production from P lac by Western blot for induction at 300 µM
IPTG. Cell extracts of log-phase cultures, diluted as indicated in equivalent CI− extracts, and known
amounts of purified CI were separated by SDS-PAGE, and transferred by Western for probing with α-CI
antibodies (shown in (a) and (c)). 12 µL of each sample was loaded per lane. The blots were quantitated
and steady-state CI mass in the cell extracts determined from a four parameter log-logistic fit (with basal
parameter fixed to zero) of the calibration samples (examples shown in (b) and (d)). (a) & (b) Quantitating CI
in cultures of E4300DR pZC320-WR-cI pMTS-pR-tum−. (c) & (d) Quantitating CI in cultures of E4300DR
pZC320-ER-cI pMTS-pR-tum−. In (a) and (c), wedges indicate increasing dilution factors of the calibration
samples, which were prepared from a master stock of 32 ng/12 µL of purified CI (made up in CI− cell
extracts), which was serially diluted to 1, 2, 8 or 32 times. In the example calibration curve fits, the dotted
lines indicate the CI-specific band intensities of the dilution series of extract 3 (b) or extract 6 (d), and their
corresponding mass estimates as determined by the fits.
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Figure 3.26: Estimates of the mass of CI in the wild-type RBS (WR) and enhanced RBS (ER) extracts using
the calibration curves. The points show the individual estimates from each band of the blots. (a) Whilst the
estimates are highly variable, the means of these estimates at each dilution indicate little trend in the data,
giving greater confidence in the form of the calibration curve. (b) The mean estimates calculated for each
extract. These values seem to cluster in pairs according to the groupings on the blots (see Figures 3.25(a)
and 3.25(c)).

Cell concentrations at OD600 0.6 were also measured for each of the strains, as was
done for determining the Tum production rate (Section 3.5.3), and these are also listed in
Table 3.4. Using these measurements and the known molecular weight of CI (21160 Da),
the steady-state level of CI per cell for both the wRBS and eRBS variants could be derived.
This revealed that with the eRBS, production of CI must be about 2.7 times stronger than
for the wRBS. Since in Section 3.5.2 CI was not seen to be actively degraded, it is assumed
to be lost only with cell division and growth. As determined in Section 3.4.2, this occurs
with a doubling time (half-life) of 28.2 minutes for the tum− strains. Then in this case, by
directly applying the steady-state formula for the production rate (p = A log(2)/h), the
production rates as listed in Table 3.4 can also be calculated.

For pZC320-WR-cI, steady-state levels of CI had also been previously measured by
Western blot for induction levels ranging between 10 and 100 µM [Dodd and Egan, 2002].
At an induction level of 100 µM IPTG, 2390 monomers per cell were measured; the value
measured here for production from pZC320-WR-cI, induced using only three times as
much inducer (300 µM IPTG), is over five times higher than that. Even more alarmingly,
production from P lac has an ultrasensitive dependence on IPTG concentration and as seen
in Section 3.3 has already started to saturate by 300 µM IPTG. Nonetheless, recall that the
measurements made by Dodd and Egan [2002] were used earlier in Figure 3.11 to scale the
P lac-lacZ induction reporter curves to units of CI monomers per cell. By similar extrapola-
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Figure 3.27: Comparing steady-state estimates
of CI concentration for the MFL strains with those
previously obtained for the same induction system.
Shown plotted versus the concentration of IPTG in-
ducer are steady-state measurements of CI concen-
tration in cells with the pZC320-WR-cI and pUHA-1
plasmid induction system [Dodd and Egan, 2002]
(filled black circles); plotted alongside is the es-
timate obtained here for the WR-MC tum− MFL
strain induced using 300 µM IPTG with 95% con-
fidence limits (open square). Overlaid on this data
is the Hill curve fit obtained for the low O/N Tum−

induction reporter assay from Figure 3.8(b). Dotted
lines indicate 95% confidence limits for the fitted Hill
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tion using the induction reporter Hill curve fits, a comparison can be drawn between the
estimates of CI levels obtained by Dodd and Egan [2002] and those obtained here. Using
the correlation between the Western and LacZ assay data which ignored the maximum
data point (see Figure 3.11(a)) and taking 95% confidence limits into account, it can be
seen in Figure 3.27 that the apparently large discrepancy between the two assays may not
be significant. Furthermore, the strain used by Dodd and Egan [2002] did not contain the
additional tetracycline resistant MFL plasmid that the MFL strains have. So, as discussed
in Section 3.4.2, the rate of growth would be likely to be slower in the MFL strains. Then
since loss of CI is dilution limited, the relative increase in the observed steady-state level
of CI would come as less of a surprise.

3.6 Chapter summary

By cloning the Tum−CI MFL regulatory network in E. coli using a modular design, an
iterative optimisation of the synthetic circuit was possible. Then using a process of elim-
ination, a set of four candidate strains was obtained and assays of those strains revealed
that the system can exhibit the predicted bistability. However, the degree of hysteresis
seemed small in comparison with the modelling predictions, and in some cases was an
incomplete loop. The divergence prompted a closer look at the behaviour of some of the
components involved in the circuit, including the form of dependence of the P lac promoter
on the concentration of its inducer, the growth rates of the strains and the production and
degradation rates of Tum and CI. By making use of the greater understanding such anal-
ysis brings, the behaviour of the MFL can be reassessed and optimised. In the coming
chapters, this data will become invaluable in better matching the experimental observa-
tions of the Tum−CI MFL to an evolving mathematical model that describes this bistable
circuit.
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The MFL displays only weak bistability

when measured over a whole population

Using a modular and flexible circuit design, four synthetic Tum−CI MFL gene circuits that
were promising candidates of bistable behaviour were cloned in E. coli. A hysteresis assay
of these circuits was chosen as the primary test for bistability, since it would enable both
analysis of stability and efficient optimisation of a critical parameter to expedite the search
for a parameter regime supporting bistability. However, unlike the hysteresis curves pre-
dicted from the model developed in Chapter 2, the experimental hysteresis curves did
not show any clear boundaries between monostable and bistable regions, thus limiting
the power of the assay to definitively assess bistability. In this chapter, by making use of
the additional conceptual and quantitative constraints provided by the characterisation of
system components in Chapter 3, the whole-population assays of hysteresis are analysed
and extended so that a reliable assessment of bistability can be made by direct comparison
between the experiment and model.

Since the hysteresis assay is used here as the key indicator of bistability, the first part
of the chapter is devoted to a discussion of the experimental factors that affect the accu-
racy and resolving power of the assay itself. Then, whilst the control curves are expected
to display some hysteretic behaviour (refer back to Sections 2.4.1 and 2.4.2), the separa-
tion of both the controls and MFL curves at high CI production rates prompts a deeper
investigation into the persistence of hysteresis: a bistable system should exhibit hystere-
sis that persists over time. The chapter concludes by exploring the extent to which the
deterministic model can describe the data observed.

4.1 Experimental limitations of the hysteretic LacZ assay

Although the preliminary experimental results revealed significant separation between the
hysteresis curves of the MFL strains, there were two factors, in particular, that obscured
clear judgement of bistability in the MFL: (1) a larger than normal variance in the measured
LacZ units, and (2) a poorly defined shape of the hysteresis curves. This section explores
the extent to which these obscuring factors can be explained as technical artefacts of the
assay. The first of the points will be addressed by analysing the data obtained from the

105
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hysteresis assays to show that LacZ units have a nontrivial dependence on the final OD600.
For the hysteresis assays, there is an increased variability in cell densities measured at the
time of assay that makes this effect more significant. The dependence of LacZ units on
OD600 can be corrected for by approximating the trend and these corrections explain much
of the increased assay variability.

The second point is addressed by drawing upon the efforts made in Chapter 3 to char-
acterise the P lac induction circuit and the corresponding production and degradation rates
of CI. By expressing the hysteretic variable in terms of the calibrated production rate of
CI, the added nonlinearity due to the induction circuit is removed. This makes for a much
fairer comparison with the models introduced in Chapter 2, and results in a clearer picture
of the region of bistability.

4.1.1 Variations in optical density bias LacZ assay measurements

To be confident in the separation between two curves, the assay used to measure such
curves needs to have sufficient discrimination power. In the hysteresis assays of the MFL
strains, excessive experimental noise could obscure an underlying hysteresis cycle if the
variance in measurement of pR activity becomes too large. Larger than expected varia-
tion of LacZ units was found for the MFL strains measured at the normal equilibration
time and, as the limits of this assay are pushed to optimise the time for equilibration, the
resolving power of the LacZ assay could (and does) become an issue. Identifying and re-
ducing sources of experimental noise will increase the value and usability of the assay for
judging bistability.

As a population assay, the LacZ assay relies on an accurate measurement of cell density
to ensure consistency of results. For practicality, the OD600 of the assay cultures is used
as the measure of cell density and, in calculating LacZ units, the β-gal enzyme activity
measured for the culture is divided by the OD600. For moderate variations in final culture
OD600s this has proven to be a suitable correction, but in the hysteresis assay, variation
in final OD600 was found to be larger than typical. This is presumed to arise as a result
of accumulated pipetting errors due to the additional dilution step required to get the
normal (as opposed to the short) equilibration time. This increased variability in final
OD600 revealed an unanticipated trend for samples with a low OD600 to produce higher
LacZ units on average than samples with a high OD600. This trend may well be due in part
to the nonlinear relationship of cell mass density with the OD600 Bipatnath et al. [1998].

To characterise and confirm the result, the LacZ units measured within each experi-
mental factor of the MFL hysteresis assays were plotted against the OD600. The depen-
dence of LacZ units on OD600 was approximately linear, but the slope of each model
seemed to have a nontrivial dependence on the magnitude of the activities. The trend
is described in more detail in Box 4.1 along with a method for correcting for the deviation.
By correcting for this effect, the LacZ units are made more consistent, both within each
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Box 4.1: Correcting for the dependence of LacZ units on OD600 reduces variability and increases separation between
the hysteresis curves. By examining the relationship between LacZ units and OD600 for each factor of the hysteresis
assays, higher OD600s are found to produce lower LacZ units, as exemplified in Panel A. The dependence on OD600 is
a nontrivial function of the intrinsic reporter activity, but generally shows a stronger effect at higher activities (Panel B).
A linear approximation of this trend allows estimation of the typical dependence on OD600 for each LacZ measurement,
enabling transformation of the raw data to values predicted for an OD600 of 0.6, as shown applied in Panel C.
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black line marks a slope of zero.

0 50 100 150 200 250 300

0
20

0
40

0
60

0
80

0

IPTG (µM)

pR
 a

ct
iv

ity
 (L

ac
Z 

un
its

)

Low O/N; Tum+

High O/N; Tum+

Low O/N; Tum−

High O/N; Tum−

C The raw hysteresis data obtained for the ER-MC strains
(dotted lines and error bars) is shown compared with the
same data after correction for the dependence of LacZ
units on OD600 (solid lines and error bars). The correction
slope for each LacZ measurement was estimated from the
regression line in Panel B and that slope used with the re-
spective final OD600 reading to estimate the LacZ value at
OD600 0.6. Error bars indicate 95% confidence limits.



108 Chapter 4. The MFL displays only weak bistability when measured over a whole population

experimental condition, but also across different experimental conditions, as judged by
stabilisation of the mean values with respect to general data trends1. The correction also
increases the separation between the hysteresis curves in two ways: firstly by decreasing
sample variance, hence increasing significance, secondly, and unexpectedly, by shifting the
mean values further apart. The trend of LacZ units with the OD600 will be corrected for in
a number of assays in this thesis; where the correction is applied, the resulting data will be
referred as having ‘Corrected LacZ units’.

4.1.2 Normalising P lac induction levels to production rates improves but does not

complete the picture of hysteresis

The concentration of IPTG in the culture controls the rate of production of CI in the MFL
strains, and the hysteresis assay described in Section 3.2 is based on controlling this pro-
duction rate by adjusting the IPTG concentrations over time. However, whilst IPTG con-
centration is a quantitative measure, it does not translate directly into a parameter of the
deterministic MFL model described in Chapter 2. As seen using P lac-lacZ assays in Sec-
tion 3.3, intracellular concentrations of the P lac promoter’s gene product have an ultrasen-
sitive dependence on IPTG, attributed to cooperative binding of the LacI repressor. This
nonlinear relationship is likely to directly affect the interpreted locations of the bifurca-
tion boundaries by introducing complex changes in curve shape. By utilising the induc-
tion curves and other parameter determination experiments of Chapter 3, these shape-
changing effects can be corrected for and the data expressed in terms of a variable that
relates directly to the modelling: the CI production rate.

The conversion from each experimental condition (i.e., idealised final IPTG) to CI
production rate is calculated in a number of steps, making use of many of the
measurements reported in Chapter 3:

1. The final concentration of IPTG is corrected using Equation (3.1) (Section 3.3)
to account for the IPTG concentrations contributed by the subcultured O/Ns.

2. The Hill fits of the P lac-lacZ induction curves are used to normalise these
concentrations to LacZ activity (a linear measure of the rate of production
from P lac), taking the Hill parameters from Table 3.1 for the ‘Mixed’ data sets
(i.e., those for which low and high O/N data sets were aggregated).

3. These relative production rates are scaled to absolute CI production rates in
dimers per minute using the experimentally determined CI production rates
listed in Table 3.4 for growth in media with 300 µM IPTG2.

1 This latter improvement was less obvious for the example given in Box 4.1, Panel C than it was for the
long equilibration time assays to be introduced later in Section 4.2.2.

2Note that in this case, the final IPTG concentration is exact since log growth cultures were subcultured
from high O/Ns in the steady-state measurements of CI concentration. As such, the induction curves are
scaled to give the listed production rates at exactly 300 µM IPTG.
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Note that the above process results in a different normalisation depending on the strain,
since the Hill parameters differ between tum+ and tum− strains and the CI production
rates differ between wRBS and eRBS strains.

Applying this induction normalisation to each of the normal equilibration time hys-
teresis curves (previously shown in Figure 3.6), results in curves whose shapes now better
emphasise the putative regions of bistability (see Figure 4.1). This is made manifest in a
couple of ways. Firstly, the separation between the MFL curves and the control curves
is greater, making the putative monostable region at low CI production rates more evi-
dent. Secondly, the regions with the greatest separation between high and low O/N MFL
curves now occupy a greater fraction of the hysteretic variable domain. This is especially
obvious for the strains with medium-copy pR -tum plasmids. In the strains with low-copy
pR -tum plasmids this effect is far less pronounced, highlighting instead the collapse of
those curves towards an average value. This makes it hard to propose a region of bista-
bility for the low-copy MFL circuits, casting in doubt whether they are in fact bistable.
Relative to the deterministic model curves, the medium-copy MFL assays also show some
collapsing towards the mean, but are far more likely to contain a region of bistability. The
remaining discussion will focus on these curves.

For the medium-copy MFL, a significant separation was observed between the high
and low O/N hysteresis curves at high production rates, and normalising to a CI produc-
tion rate does not change this. However, the normalised curves do appear to compare
more favourably with the deterministic MFL model. In the model, the low O/N curve
asymptotes towards the high O/N curve at high CI production rates to form the high
monostable state (see Figure 2.12). The raw IPTG response curves were at odds with this,
seemingly asymptoting towards the significantly different value occuring at maximum in-
duction. After normalisation to the CI production rate, these curves instead appear more
as if truncated within the bistable region, leaving scope for a return to the high O/N curve
if higher CI production rates were reached. Nonetheless, even if such a trend were to be
found, it remains an anomaly that the high CI monostable state seems to be missing from
these hysteresis curves. Without that monostable state, the model is incapable of explain-
ing how the ‘off’ curve (i.e., high O/N curve) can be accessed. Instead, an explanation in
terms of the physiological differences between stationary phase (O/N) and log phase cul-
tures must be resorted to. An alternative explanation may be that at maximum induction,
the medium-copy MFL is actually in a monostable region, but slow equilibration at that
end has prevented the curves from coinciding; such an explanation is more likely for the
ER-MC strain.

The Tum− control curves are useful in providing a sense of how far from equilibrium
each system is, and it was noted for the IPTG response curves that these controls showed
hysteretic behaviour by not yet reaching equilibrium. Normalisation reveals that these
Tum− curves overlap better than previously realised, particularly for the wRBS strains
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where it appears as if equilibrium has been reached. The slower equilibration of the eRBS
strains is not unexpected since the larger concentrations of CI result in longer times for
reaching steady state. Perhaps more curiously, the control strains with low-copy MFL plas-
mids appeared further from equilibrium than those with the medium-copy MFL plasmids.
The low-copy strains generally showed longer doubling times (see Table 3.2), so perhaps
in these strains equilibration takes longer for the dilution-limited CI and β-gal proteins.
Nonetheless, the significant separation of the ER-MC control curves suggests that in the
MFL strains, more equilibration time may be necessary to see closure to a monostable state
at high CI.
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Figure 4.1: Expressing the normal equilibration time hysteresis curves in terms of CI production rate
reveals a wider putative region of bistability. The raw data from Figure 3.6 is reproduced here with
corrections to the LacZ units for trends with OD600 as described in Box 4.1 and calibration of IPTG
concentrations to CI production rates as described in the text. Normal equilibration time hysteresis
assays were performed for four different MFL strains as labelled; translation of CI was either from its
wild-type RBS (WR) or an enhanced RBS (ER), and the pR-tum module was either located on a low-
copy plasmid (LC) or medium-copy plasmid (MC). Assays of the respective Tum− control strains are
also shown. In the hysteresis assay, assay cultures are innoculated either from overnight (O/N) cultures
grown in the presence of 0 µM IPTG (low O/N curves), or 300 µM IPTG (High O/N curves). Error bars
show 95% confidence limits in the mean; n = 6 for all data points except for the high overnight Tum+

curve of the ER-LC strain, which has n = 4 for all data points.
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4.2 Extending the hysteresis assay equilibration time

After setting the MFL in either of its two initial states, a certain amount of equilibration
time must be allowed for the system to settle towards its steady state. The importance of
such equilibration time is clear from the predicted and observed behaviour of the monos-
table controls: hysteresis assays of these Tum− controls do show history-dependent be-
haviour. However, when sufficient time is allowed, a monostable system should get close
enough to steady state that the two hysteresis curves become indistinguishable. So to
show bistability for the MFL strains, enough time should be allowed to be confident that
separation of the hysteresis curves is persistent.

Ultimately the choice of how much equilibration time to allow is somewhat arbitrary,
especially considering that the time taken to reach steady state near the bifurcation bound-
aries is predicted to extend indefinitely (see Section 2.4.2). However, in a more practical
sense, the equilibration time should at least be long enough to distinguish between hys-
teretic behaviour within the bistable region and the anticipated non-hysteretic behaviour
in the monostable regions located to either side. Such a contrast was not obvious for the
normal equilibration time curves shown in Figure 4.1, where it was unclear if the strains
with the low-copy pR -tum plasmid showed a bistable region, or if the strains with the
medium-copy pR -tum plasmid showed a high CI monostable state. By further increasing
the time for equilibration such uncertainties can be tested.

Since the Tum− control strains provide some measure of the time it takes for an equiv-
alent monostable system to resolve to steady state, this section starts by exploring different
equilibration times for hysteresis assays of the control strains. The long equilibration time
from those trials is chosen as a good balance between overlapping monostable control
curves and a practical time frame. When applied to the MFL strains, a different picture
of hysteresis and its persistence emerges. The low-copy MFL strains no longer show a re-
gion of bistability and this region all but disappears for the medium-copy strains. Whilst
this result might imply that none of the circuits show bistable behaviour, some unresolved
discrepancies provoke an explanation favouring some limited level of bistability.

4.2.1 Extending the time for equilibration brings the control strains to steady

state

The Tum− control strains include no means for positive feedback and are thus monostable
systems representative of each respective MFL variant. As monostable circuits, these con-
trol strains are not expected to show persistent hysteresis. Instead their hysteresis curves
should tend towards a single steady state. However, in the experimental hysteresis curves
shown in Figure 4.1, the controls still show significant separation in some cases. In par-
ticular, the control strains using the eRBS for CI production showed more separation than
their wRBS counterparts. Since the MFL strains with medium-copy pR -tum plasmids
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Figure 4.2: Extending the time for equilibration allows the control curves to reach equilibrium. Hysteresis
assays were performed for cultures of E4300DR pZC320-ER-cI pMTS-pR-tum− with either short (no
additional dilution), normal (with additional 1/10 dilution), long (no additional dilution but subcultured
twice), or very long (with additional 1/10 dilution and subcultured twice) equilibration times. The normal
equilibration time data is taken from Figure 4.1. The time of measurement is listed at the top right of each
panel. Each point represents an individual measurement; lines follow the averages. The LacZ units have
been corrected as per Box 4.1 and the final IPTG concentrations normalised to production rates of CI as
per Section 4.1.2.

were more promising candidates for bistability, the ER-MC Tum− control strain was thus
chosen as a model system to test how much equilibration time would be necessary to reach
an equilibrium result in a monostable circuit similar to the MFL.

As previously introduced in Section 3.2, the equilibration time for the standard LacZ
assay can be extended by increasing the time taken for the cultures to reach the target
OD600 0.6 for the LacZ assay. The normal equilibration time assay adds an extra 1/10
dilution of the O/N cultures before the final subculturing step to increase the number of
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cell doublings required to reach log phase. To further extend the equilibration time, larger
dilutions were trialled (1/20 and 1/40), but this approach was rejected on the basis of much
noisier assay results, presumably by amplified pipetting errors and culture inhomogeneity.
Instead, an alternative approach was trialled on the model ER-MC Tum− control strain,
whereby subculturing of the hysteresis assay cultures was repeated midway through the
growth to log phase. This additional subculture step involved a 1/50 dilution of all log
growth cultures into a duplicate log growth plate once an average OD600 of approximately
0.06 was reached. This approach was trialled alternately to log growth cultures started
with or without the extra 1/10 dilution of the O/N cultures, with these new protocols
being named ‘very long’ or ‘long’ equilibration time assays respectively.

Short, normal, long and very long equilibration time hysteresis assays were carried
out for the ER-MC Tum− control strain and the results are shown in Figure 4.2. As an-
ticipated, the time taken for cultures to reach the target OD600 increased with increasing
dilution factors. The additional subculturing step of the long equilibration time assay ex-
tended the time of assay by almost 2 hours3 compared with the normal equilibration time
assay; in both normal and very long equilibration time assays, the additional dilution of
the overnight cultures extended the time of assay by over an hour.

With longer equilibration times, the control curves get closer to their expected steady
state values. The short equilibration time assay leaves the control curves clearly separated,
and whilst this separation is greatly reduced for the normal equilibration time curves, sig-
nificant separation between the two curves still remains. The deterministic model pre-
dicted that the greatest separation would be observed for the lowest CI production rates,
but curiously separation in these curves appears greatest at intermediate CI production
rates. Possible explanations may be the increased experimental error at high pR activities,
or the closer proximity of CI production rates at this point4. In any case, by the measure-
ment time of the long equilibration time assay, the two curves are overlapping, and by the
measurement time of the very long assay the high O/N curve is above the low O/N curve.
This seeming overshoot of equilibration could just be experimental error, but may also
suggest that corrections in the normalisation to CI production rates could more accurately
portray that assay5. The very long equilibration time assay is still taken to be the most
equilibrated.

The time to equilibration of the control strains is limited primarily by the degradation
rates of CI and β-gal, whereas equilibration of the MFL strains is additionally limited by
the degradation rate of Tum (refer back to Section 2.4.2 for details). This means that the
minimum equilibration time needed for the controls is only a lower bound on the time

3With only one replicate for each assay type, the indicated timings are only rough estimates since there is
some variation in the average final OD600 of each experimental set.

4Another explanation may be some nonlinear dependence of LacZ units on activity for high LacZ unitss.
5In the assays with an additional subculturing step, the absolute concentration of IPTG changes slightly

during the course of the assay, since subculturing the log growth cultures into fresh assay media further dilutes
the relative offsets produced by the IPTG concentrations of the O/N cultures.
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required to demonstrate bistability of the MFL. Nonetheless, since the long equilibration
time assay produced control curves that are indistinguishable, that assay was chosen as
the most practical and appropriate next candidate.

4.2.2 Complete hysteresis is observed with a long equilibration time

The MFL strains exhibited a degree of hysteresis when assayed using a normal equili-
bration time, but the existence of a bistable region was left in question by a number of
disequilibrium artefacts. By assaying these strains at a longer equilibration time, the per-
sistence of hysteresis can be assessed which should further enable a better rationalisa-
tion of the steady states and regions of bistability and monostability. As discussed in the
previous section, the long equilibration time was sufficient to show monostability for the
ER-MC Tum− control curves, so this time point should also be a good reference point for
a qualitative assessment of separation between the MFL hysteresis curves. Based on the
long equilibration assay trial, hysteresis assays of the MFL strains were performed which
also incorporated an extra subculturing step partway through growth to log phase. For
improved consistency, this second subculture step was always performed 4 hours after
subculturing from the overnight cultures; by 4 hours cultures had an average OD600 0.2.
The results of those assays for the four candidate MFL strains are shown in Figure 4.3.

As previously observed in Section 4.2.1, the long equilibration time is sufficient to bring
all of the Tum− control curves in Figure 4.3 to a single monostable steady state. More im-
portantly, the longer equilibration reveals that at the highest CI production rates for the
ER-MC MFL strain, the low O/N curve does close to the high O/N curve. Thus assays
of the ER-MC MFL include both the low CI and high CI monostable regions, so that com-
plete traversal of the hysteresis loop can be observed in that strain. In contrast, and as
predicted for even longer equilibration times found from preliminary hysteresis assays of
a similar MFL strain [Pocock, 2007], the WR-MC MFL strain continues to show signifi-
cant separation at its highest CI production rate. The most likely explanation is that the
WR-MC MFL strain is indeed still bistable at the highest levels of CI that can be accessed
in log phase growth. However, the change to stationary phase in the O/N cultures must
enable still higher concentrations of CI that are then able to set the switch in the putative
high CI monostable state. Nonetheless, all hysteresis loops do show signs of better equili-
bration and the only unclosed loop is that of the WR-MC strain. In spite of this, the more
striking (and alarming) result from the long equilibration time assays is a greatly reduced
separation between low and high O/N curves in all MFL strains.

Separation of the hysteresis curves is somewhat more favourable for the MFL strains
with medium-copy pR -tum plasmids than for those with low-copy ones, but the clear sep-
aration previously seen for the normal equilibration time point is no longer apparent. A
visual inspection of error in the WR-MC hysteresis curves indicates significant separation
of the high and low O/N curves, but a similar inspection of the ER-MC curves indicates
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Figure 4.3: Complete hysteresis is observed when using the long equilibration time assay at the cost of
loop collapse. Hysteresis assays were performed with a long equilibration time as described in Figure 4.2
for the candidate MFL strains described in Figure 4.1. Data normalisation is also as described in those
figures. Error bars show 95% confidence limits in the mean; n = 6 for all data points.

separation is statistically nonsignificant. To consequently draw the conclusion that the
WR-MC MFL has a region of bistability, where the ER-MC MFL does not, would, how-
ever, conflict with the assumptions of the deterministic model. In terms of the steady-state
model, the only differences expected from a change in CI RBS strength are rescaled CI pro-
duction rates. Such a change should only affect which portion of the steady-state curve is
visible to the assay; the absolute CI production rates at which the system is in bistable or
monostable regimes should not change. When out of steady state, the system will be head
over time towards the nearest steady state. Hence, after assuming that the initial states for
all strains are situated in opposing monostable regions (an assumption supported by the
experiments), then the CI production rates at which the WR-MC MFL is bistable should
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show similarly persistent bistable behaviour in the ER-MC MFL6. The preferred conclu-
sion is thus that the ER-MC MFL is capable of bistability, but that experimental errors or
unidentified sources of additional intrinsic noise mask the bistable region of this strain.

The strains with low-copy pR -tum plasmids no longer show any identifiable separa-
tion. In fact, the high and low O/N curves for the WR-LC MFL appear flipped with respect
to their expected locations. This shows that cultures of the low-copy pR -tum MFLs can-
not, as an entire population at least, stably maintain the initial state — there is no region
of bistability apparent in these strains. The trajectory towards this effective monostable
steady state in these MFL strains is still slower than for the Tum− controls, but the appar-
ent hysteresis loop does not persist that much longer than the time taken for the controls
to reach equilibrium. Nonetheless, an unusually large concomitant increase in culture-to-
culture variation for the low-copy pR -tum MFL strains gives reason for further investiga-
tion before bistability is conclusively rejected in these cases. The increase in error does not
seem to be experimental in origin since assays are performed as a complete set in 96-well
plates, and the control curves do not show the same increase. However, if not experimen-
tal then the additional noise must be heritable over a number of generations since it must
be apparent at a whole population level. One explanation may be an unstable inheritance
or copy-number of the low-copy pR -tum plasmid. In any case, persistent hysteresis for
the low-copy MFL strains does not occur over this time scale; in these strains, the rate of
production of Tum from pR is presumed insufficiently strong to outcompete the levels of
CI.

The results of the long equilibration time hysteresis assay reveal that persistence of
hysteresis in the four MFL strains is much weaker than realised from the normal equi-
libration time hysteresis assays. The strains with low-copy pR -tum plasmids no longer
show any hysteresis, whilst the strains with medium-copy pR -tum plasmids show lim-
ited hysteresis, though it seems that noise or error obscures this for the ER-MC MFL. The
collapsed shapes of these latter hysteresis curves are, however, distinct from the simple
deterministic model curves seen in Section 2.4.2 for assumed parameters. An important
next step towards understanding the nature of bistability in the medium-copy strains will
be to update the model and its parameters to better reflect the experimental curves.

6 Clearly when judging CI production rate by the axis labels in Figure 4.3, there are significant discrep-
ancies in curve shape and value between WR-MC and ER-MC strains. However, since the mismatch also
pertains to the Tum− controls, the more likely deficit is the significant error in the experimental estimates
of CI production rates. Corrections to the relative scaling of these production rates will be considered when
modelling the curves in Section 4.3.



118 Chapter 4. The MFL displays only weak bistability when measured over a whole population

4.3 The deterministic model does not capture the behaviour of the

MFL

The experimental curves seen in Figure 4.1 for the normal equilibration time and in Fig-
ure 4.3 for the long equilibration time do not bear an obvious relationship to the model
curves characterised in Chapter 2. This seeming deviation from the model makes it hard
to draw definitive conclusions about the existence and/or locations of the putative regions
of bistability in the experimental MFLs. The model curves were generated using a set of
parameters, many of which had to be estimated or were determined with considerable
measurement error. These uncertainties leave scope for parameter variability and permit
a degree of flexibility in the shape and form of the resulting model curves. In this section,
the capacity of the current deterministic model to explain the available experimental data
through such parameter variation is assessed. The section begins by developing methods
for exploring parameter variability in the deterministic Tum−CI MFL model and assess-
ing the model against the available data. These methods are then applied to find optimum
parameters that best fit the deterministic model to the data obtained for the WR-MC MFL
and control strains. By making use of that preliminary fit, the data obtained for both the
WR-MC and ER-MC strains can then be reconciled and an optimum parameter set found
that best fits the model to this combined data set. This extensive analysis reveals that pa-
rameter variation in and of itself is insufficient to accurately describe the behaviour of the
Tum−CI MFL, and calls for a rethinking of the model itself.

4.3.1 Searching the parameter space of the deterministic MFL model

Obtaining reliable estimates for model parameters is a common challenge faced in the
quantitative modelling of gene networks [Karlebach and Shamir, 2008]. In the case of the
deterministic Tum−CI MFL model, a simple substitution of the parameters estimated from
the literature in Chapter 2 with the more realistic experimental measurements of param-
eters that were reported in Chapter 3 does not improve the match between experiment
and model. This does not come as a great surprise: large uncertainties of 30–50% were
found for a number of parameters, whilst other parameters (those for the Tum−CI equi-
librium) still needed to be derived from in vitro measurements, which could well differ
in vivo. An attractive alternative is to infer the parameters by fitting the model to suitable
data. Such model-driven parameter estimation has been used for studying many gene net-
works, from the regulation of lysis and lysogeny in phage λ [Shea and Ackers, 1985; Dodd
et al., 2004] and phage 186 [Dodd et al., 2007b], through synthetic networks constructed
in E. coli [Guido et al., 2006] and yeast [Ellis et al., 2009b], to receptor-mediated apopto-
sis in human cells [Eydgahi et al., 2013]. Fitting the deterministic Tum−CI MFL model to
the LacZ assay hysteresis data will provide refined parameter estimates and, more impor-
tantly, a thorough test of model suitability. The parameter estimates of Chapter 3 remain
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useful as ‘sign posts’ for setting initial guesses and reasonable parameter bounds.

With the additional goal here of also testing the suitability of the model, a reasonably
thorough search of the parameter space is desirable to ensure that good fits of the data are
not missed. However, even for the simple steady-state model of the Tum−CI MFL with
only 7 parameters, it is a nontrivial exercise to search the resulting 7-dimensional parame-
ter space for values that might produce fits of the experimental data. Separately analysing
the effect of each parameter (as was done for the steady-state bifurcation boundaries in
Section 2.3.2) will leave a majority of the parameter space out of the analysis, whereas
checking all possible parameter combinations is impractical and even computationally un-
feasible. To make the problem more tractable, the divergence of the model from the data is
described by a ‘cost function’ — a function that scores how well the model fits the data for
any given parameter set, typically a sum of squared residuals — and then well-established
optimisation routines can be employed to intelligently navigate this function’s landscape
to find the global minimum. The set of parameters producing this global minimum would
mark the best match of the model to the data; better matches should in theory only be
possible by modifying the model.

Unfortunately, cost functions typically have very complicated landscapes with numer-
ous local minima that make it hard to find the global minimum. To maximise the extent of
the search without exceeding manageable computation times, a pseudo-random search of
the parameter space is used to search the cost function landscape. The analysis here is facil-
itated by the R package FME [Soetaert and Petzoldt, 2010], which provides a framework for
constructing the cost function and implementing the search algorithm. The package makes
a number of parameter optimisation routines available, but the pseudo-random search al-
gorithm of Price, as described in Soetaert and Herman [2009], is the favoured method for
good sampling of the parameter space. The algorithm requires specification of upper and
lower limits for each parameter, and starts by randomly generating a population of around
50 candidate sets of model parameters between these limits. It then takes a biased random
walk in the ‘vicinity’ of this population, iteratively updating the population as parameters
that reduce the residuals are found. The algorithm terminates either when variation in the
cost function amongst the population is reduced below some threshold, or when it reaches
10000 iterations.

For the Tum−CI MFL hysteresis data, a weighted least-squares cost function was cho-
sen, since larger LacZ units tend to be accompanied by increased standard deviations. In
other words, the results with higher activities should have less influence on the fit, that
is, they should be weighted less heavily. Often the weight of each residual is set to the
inverse of the standard deviation. However, with only 6 data points per experimental
factor in the Tum−CI assays, the sample standard deviations (SDs) are a biased choice.
Instead, a log-log regression of SD versus sample mean was found to serve as a better in-



120 Chapter 4. The MFL displays only weak bistability when measured over a whole population

Figure 4.4: The steady-state model of bistability
does not compare well with the long equilibration
time assays. The low and high O/N Tum+ LacZ as-
say curves from the WR-MC panel in Figure 4.3 are
reproduced here overlaid with a steady-state curve
derived from the Tum−CI MFL model. The model
curve is essentially as previously depicted in Fig-
ure 2.7(b), but the model parameters were manually
adjusted to improve consistency with the data.
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dicator of the true SD, as judged by normal probability plots7 of the weighted residuals
from the sample means. This analysis was limited to the MFL strains with medium-copy
pR -tum plasmids, since those with low-copy plasmids did not show persistent hysteresis,
were hence less informative, and so will not be considered in the context of fitting parame-
ters. As will be described below, alternative cost functions were employed to suit different
purposes, but all functions involved collation of residuals across multiple data sets. In
particular, the complete hysteresis assay — both Tum+ and Tum− variants, each having
low and high O/N data sets — was always scored as a unit, thus requiring calls to both
repressor and MFL models in order to calculate the cost. In this way, the best parameters
would maximise the fit to all relevant data sets simultaneously.

Ideally, the steady-state model of the Tum−CI MFL would be used for fitting the data
since it has the least number of parameters. The data of choice would then be confined
to the long equilibration time hysteresis assays, since the normal equilibration time assays
are clearly further from steady state. A comparison of the WR-MC long equilibration time
hysteresis assay data with a typical steady-state curve is shown in Figure 4.4. Whilst the
model parameters in the figure were manually chosen, so do not represent an optimised
fit of the data, the qualitative differences between the steady-state model and data are
still apparent. The long equilibration time WR-MC MFL hysteresis assay (and also the
ER-MC assay), bears a shape that appears ‘collapsed’ relative to that of the steady-state
model. It is difficult to see how the bistable region of the steady-state model might fit
inside the experimental hysteresis curves. Even reducing the vertical span of the unstable
states (dotted line) to zero would not allow the steady-state model to encompass all of the
apparently stabilised data points (recall that the low and high O/N curves of the WR-MC
MFL strain remain separated at the highest rate of production for longer equilibration

7An assumption of the least-squares approach to regression is that residuals share the same variance
(standard deviation) and fit a normal distribution, hence the use of normal probability plots.
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times still).

So if the deterministic model as described is indeed suitable for describing the Tum−CI
MFL hysteresis assays, the additional flexibility in curve shape afforded by time course
simulations of the deterministic free species model may well be necessary to explain the
observed collapsed hysteresis loops. Unfortunately, shifting to such a model necessitates
additional parameters, specification of initial species concentrations, and choice of sim-
ulation times for each assay. However, in spite of the increased size of the parameter
space, this model does still offer a couple of important advantages: (1) non-equilibrium
behaviour can be captured, which means that both normal and long equilibration time
data sets can be simultaneously fit; and (2) solutions calculated using this model are more
robust to parameter variation than those of the steady-state model. One major disadvan-
tage is the additional computation time such simulations require. With both normal and
long equilibration time assays and also assays of the Tum− controls, each of the ER-MC
and WR-MC data sets contain 64 experimental factors for which residuals must be calcu-
lated. Since each of these experimental factors requires its own deterministic simulation to
calculate the cost, and this cost may need to be recalculated up to 10000 times in the search
algorithm, a number of code optimisations were incorporated into the model simulation
routines to minimise computation time. The model implementation, fitting routines and
optimisations are further described in Appendix C.

In order to limit the size of the parameter space, a few assumptions will be made to fix
some parameters. However, since the aim here is to test whether the model can fit the data,
the number of fixed parameters will be kept to a minimum to maximise model flexibility.
The free species MFL ODEs (refer back to Equation (2.17) in Section 2.2.3) are defined in
terms of 11 parameters, with an additional 2 parameters required to describe the evolution
of the reporter gene product, β-gal. Of these 13 parameters, 5 can be eliminated since
(1) the CI production rate (pC) is set in the assay according to the normalisation described
in Section 4.1.2, (2) the degradation rates of CI and β-gal (δC and δZ) are assumed dilution
limited, so can be set equal to the dilution rate (γ), (3) the dissociation constant for the
Tum−CI equilibrium (k−S) only needs to be large enough that the Tum−CI reaction can
occur on a different timescale, making the estimate from Chapter 2 sufficient, and (4) the
degradation rate of the Tum−CI complex (δS) is left set to zero, since there is no evidence
for such degradation and the parameter plays a similar role to εS in affecting curve shape.
The remaining 8 parameters are the EC50s and Hill coefficients of the Tum−CI and CI−pR
equilibria, the production rates of Tum and β-gal from pR , the degradation rate of Tum
and the dilution rate. To maximise the flexibility of the model all of these parameters will
be allowed to vary, though some minor changes to the parameterisation will prove useful.

Since a biased random walk is employed to search the parameter space, the implicit
correlation of production and degradation terms may result in futile cycles of variation in
which these parameters change at cross purposes to each other. To minimise such redun-
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dancy in the sampling, the maximum steady-state values of Tum and β-gal (MT and MZ

respectively) are varied instead, and then for simulation, the respective production rates
are derived from these steady-state values and the given degradation terms. Analogously,
since the measurements of CI production rate as used in Section 4.1.2 were derived via
the measured dilution rate, which is here allowed to vary, the level of induction of P lac is
fixed instead using the steady-state CI concentrations (MC). Then for the simulation, all
relevant CI production rates are derived from these steady-state concentrations. Finally,
in order to limit the degradation rate of Tum so that it cannot be slower than the dilution
rate, a parameter that specifies the ratio of Tum degradation to dilution is instead varied.
Setting a lower limit of 1 on this scaling factor will prevent the Tum degradation rate from
becoming slower than the dilution rate. This modified set of 8 parameters are the core de-
terminants of MFL circuit behaviour, but there are still a number of additional parameters
that are needed to describe the hysteresis assay.

When modelling hysteresis by a time-course simulation, the initial species concentra-
tions and timing of the simulation can also impact the shape of the resulting curves. For
the hysteresis assay described here, it is assumed that overnight growth of the cultures
brings the circuit to steady-state at each end of the hysteresis curve. With that assumption,
initial species concentrations can be derived using steady-state considerations. However,
as highlighted in Section 4.2.2 to explain the stable separation of the WR-MC MFL curves
at the highest CI production rate, the simulation parameters of a stationary phase culture
are likely to differ from those of log phase cultures. To capture such a discrepancy with-
out introducing too many additional parameters, two scaling factors are introduced that
independently adjust the assumed CI production rates of the low and high O/N cultures.
Initial species concentrations are then determined by equilibrating the circuit to steady-
state according to the log phase parameters, but at these scaled CI production rates. With
the initial effective CI production rates no longer restricted to those at the boundaries of the
log phase assay, the simulation is able (with a suitable choice of parameters) to reproduce
the observation of stable separation at the maximum level of induction that was seen for
the WR-MC MFL. The use of these two initial scaling factors partly obviates the need for
optimisation of the simulation times, since the scaling factors also affect how far the initial
states are from their final equilibrium points. As such, simulation times for modelling of
the normal and long equilibration data will be left set to the experimental averages.

4.3.2 Fitting the WR-MC data set alone

The deterministic model was tested first against the data of the WR-MC MFL. The fit to
both normal and long equilibration time data sets was optimised simultaneously, since
such time-dependent data would help to better constrain the kinetic parameters, notably
the degradation and dilution rates. All 10 parameters as described were allowed to vary
during the pseudo-random search, with parameter bounds set according to the confidence
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Figure 4.5: The deterministic Tum−CI
MFL model cannot match all features of
the experimental WR-MC MFL hystere-
sis assays. The model curves as shown
were found via an extensive search of the
parameter space using a pseudo-random
search algorithm, and represent the best
combined fit of the normal and long equili-
bration time hysteresis assay data for the
WR-MC MFL strains (the original data is
shown in Figures 4.1 and 4.3). Colour
is used to distinguish Tum+ and Tum−

strains and the initial O/N cultures (low
or high) according to the previous figures.
The error bars indicate standard devia-
tions (SDs) used for weighting the sums of
squared residuals during fitting; these are
not the individual sample SDs, but were
derived from a log-log regression of SD
versus sample mean.
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in the experimental parameter estimates. These bounds were iteratively enlarged accord-
ing to some initial trials in which the parameters of best fit were close to the provided
limits. The curves of best fit are shown overlaid on the data in Figure 4.5.

Whilst the long and normal equilibration time data sets do bear some notable incon-
sistencies with each other, the ‘optimal’ model fit clearly misses a number of important
experimental data points. It captures the skewed shape of the collapsed experimental hys-
teresis loop to some extent, especially at the normal equilibration time point, but it fails to
match the degree of skew seen experimentally. The most obvious deviation from the data
is evident at high CI production rates, where the experimental data continues to show sig-
nificant separation between low and high O/N curves, whilst the model curves quickly
equilibrate to a single low pR activity monostable state. Hence, in spite of the introduc-
tion of stationary phase CI production scaling factors that can enable bistable separation
at the highest CI production rate, the best fit of the data is obtained when the region of
bistability sits within the region of largest separation between high and low O/N curves
(around 50–80 CI dimers/min). The model cannot simultaneously capture both the sepa-
ration of hysteresis at high CI production rates and the significant skew of the hysteresis
data. It cannot even match the rapid change of the high CI, low O/N Tum+ data between
the normal and long equilibration time points. There are certainly discrepancies between
these data sets, and this could be partly to blame for such insufficiencies, but with the ob-
vious discrepancies being located around the lowest CI production rates with the highest
pR activities, this cannot be the primary source of deviation from the model. So, as was
also expected of the steady-state model, the deterministic model does not explain the un-
usual ‘collapsed’ shape of the hysteresis curves or the apparent existence of bistability at
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the highest CI production rate.

The Tum− control data shows fewer discrepancies between normal and long equilibra-
tion time data, and supports the earlier statement that the biggest discrepancies between
the two data sets are at the lowest CI production rates. This data describes a much simpler
gene network primarily consisting of the effect of CI repression at pR , but even so, the fit
of the model control curves to this data set were not as good as expected. Firstly, about the
half maximal activity point, the model curves overestimate the activity at lower CI pro-
duction rates and underestimate it at higher CI production rates. Secondly, maximum pR
activity should occur in the absence of CI, but the model curve seems to approach a maxi-
mum that is well below the mean activities of the (non-zero) minimum CI production rate
data points. These deviations are reflected in the optimised parameters: the Hill coefficient
for CI repression (HR) is estimated unusually high at around 3, and the maximum pR ac-
tivity (MZ) is grossly underestimated at around 715 LacZ units. Fits of the control curves
by themselves produced more plausible models of CI repression of pR (data not shown),
so the apparently poor fit shown in Figure 4.5 is presumed to be a consequence of the addi-
tional constraints imposed by simultaneously fitting the MFL data. This further highlights
the deficits in the MFL model, since the poorly fitting MFL data also compromises the fit
of the control curves.

4.3.3 Fitting the combined data sets

Whilst the WR-MC MFL strain produced the best separation between high and low O/N
hysteresis curves, modelling of that strain was complicated by the fact that the hysteresis
loop was incomplete. In contrast, the ER-MC MFL strain, which has the same theoretical
steady-state behaviour as the WR-MC strain, produced a complete hysteresis loop since
it can access higher CI production rates during log phase growth. With the additional
information provided by the ER-MC strain, it may be possible to better constrain the search
of the parameter space and find more likely fits of the data. However, to make use of this
additional data it becomes necessary to draw a more quantitative comparison between the
ER-MC and WR-MC data sets.

When close to steady-state, the ER-MC and WR-MC Tum− control strains should give
similar pR activities at points where the production rate of CI is induced to the same level.
However, by comparing the x-axes of the experimental curves in Figure 4.3, it can clearly
be seen that the CI production rates assigned to the eRBS strains conflict with those as-
signed to the wRBS strains. This was not an unexpected discrepancy since the scaling of
CI production rates was based on experimental measurements of steady-state CI concen-
trations, as described in Section 4.1.2, and those measurements were associated with high
levels of uncertainty. Whilst such production rate measurements could be introduced as
additional variable model parameters, it is preferable that they remain fixed when search-
ing the parameter space, since these steady-state CI concentrations set the positions of the
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Figure 4.6: The whole-population WR-MC and ER-MC data sets can be matched up, but the additional
data does not improve the model fit. The upper panels show the combined data of all hysteresis assays
for the WR-MC and ER-MC strains at both normal and long equilibration (equil.) time points after scaling
the CI production rates ER-MC data set to align that data with the WR-MC data set. The alignment was
determined by optimising a single parameter, effectively the relative increase in strength of the enhanced
RBS (ER) over the wild-type RBS (WR), to fit a reference model (defined by parameters optimised to fit
the WR-MC data) to the ER-MC data set. The lower panels show the same data as the upper panel,
but overlaid instead with model curves that were obtained by optimising 10 parameters (as described
in Section 4.3.1) using a pseudo-random search algorithm to explore the parameter space. Error bars
indicate the SDs used for weighting the sums of squared residuals as described in Figure 4.5.
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data points and thus serve as key reference measures. By leaving them fixed, any errors
in the scale of such parameters are instead compensated for during fitting by correlated
adjustments to other parameters such as the EC50 of CI−pR binding (εR), or the dilution
rate (γ). Since the measurements of CI production rate appear to be substantially different
for each RBS, a single parameter set could not simultaneously describe both the WR-MC
and ER-MC data. A way to reconcile the ER-MC data set to the WR-MC data set is needed.

To obtain a consistent combined data set, the CI production rates of the ER-MC data
set were scaled to align that data with the WR-MC data. This was achieved by optimising
a scaling factor for CI production rates to fit the ER-MC data set with a reference model,
derived from the optimised parameters of the WR-MC data set. Since only this scaling
factor was optimised, a shorter non-random optimisation algorithm was employed. Ap-
plication of this optimised scaling factor (with a final value of 0.57) to the ER-MC data set
produces a remarkably good overlap between the ER-MC and WR-MC data sets, as shown
in the upper panels of Figure 4.6. This is particularly evident for the Tum− control curves,
but considering the sizes of the confidence limits on the MFL data points shown in Fig-
ures 4.1 and 4.3, there also seems to be good agreement between the ER-MC and WR-MC
MFL curves. In spite of the scaling, the adjusted eRBS CI steady-state concentrations still
fall within the experimental limits. The measurements of CI steady-state concentration
reported in Section 3.5.4 are listed in Table 4.1 along with the corresponding scaled CI
steady-state concentration for the eRBS. Whilst close to the lower limit, the scaled value
does lie within the confidence limits of the experimental measurement. Thus, it is likely
that the eRBS makes a smaller difference to the CI production rate than initially thought.

With the data sets aligned in this way, the 8 core model parameters and 2 O/N scal-
ing factors were optimised using the pseudo-random search algorithm as described pre-
viously for the WR-MC data set, but now for a combined cost function that would si-
multaneously fit both the WR-MC and ER-MC data sets. As seen in the lower panels of
Figure 4.6, the optimum set of parameters produced model curves not unlike those found
by fitting the WR-MC data set alone. The gentle descent of the low O/N MFL curve re-
mains poorly fit, so like before, the bistable region defined by the model curves is not large
enough to include the seemingly stable separation seen at the highest CI production rates
of the WR-MC strain. It is now quite clear that the deterministic model cannot account for
the collapse of the hysteresis curves.

The inadequacy of this model for describing the whole-population data sets is further
compounded by some of the extreme parameter values that were needed to produce even
poorly-fitting model curves. The optimised set of parameters is listed in Table 4.1, and
whilst some of the parameters fall near the estimates obtained experimentally or derived
from the literature, notably the unrepressed steady-state level of Tum (MT), the majority
did not. Of particular concern were the high Hill coefficient for the CI−pR equilibrium, the
low Hill coefficient for the Tum−CI equilibrium and the long cell doubling time and Tum
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Table 4.1: Comparing parameters measured experimentally or obtained from the literature with those
determined by fitting the deterministic model to the normal and long equilibration time ER-MC and WR-MC
hysteresis assays. The upper section lists the parameters used to set CI production rates; the lower section
lists the 10 parameters that were optimised to obtain the curves in Figure 4.6. Unless otherwise indicated,
limits specify 95% confidence intervals.

Parameter Experimental* Literature Model fit**

CwRBS
tot (CI dimers/cell)† (7± 2)× 103 (3± 1)× 103 ‡ –

CeRBS
tot (CI dimers/cell)† (1.7± 0.8)× 104 – (9.9± 0.2)× 103

Low O/N scaling parameter – – 0.16± 0.02

High O/N scaling
parameter – – 4.9± 0.1

εR (CI dimers/cell) – (2.5± 0.8)× 102 § (1.43± 0.09)× 103

HR – 2.2± 0.2 § 3.0± 0.1

εS (Tum monomers/cell) – (1.28± 0.04)× 103 ¶ (7± 3)× 103

HS – 4.6± 0.6 ¶ 1.00± 0.02

MZ (LacZ units) – 800–1200 # 714± 61

Doubling time (min.) 28.2± 0.2 †† – 40± 3

Tum half life (min.) 2.7± 0.2 – 39± 4

MT (Tum monomers/cell) (2.5± 0.7)× 104 – (3± 1)× 104

* Parameters determined experimentally in this thesis.
** Parameters determined by fitting hysteresis data with the deterministic model.
† Steady-state levels of total CI dimers measured for the wild-type RBS (wRBS) or enhanced RBS (eRBS)

with induction by 300 µM IPTG.
‡ Extrapolated from Western blotting data of Dodd and Egan [2002] as described in Figure 3.11, Section 3.3.
§ Parameters as fit by Dodd et al. [2007b]; limits indicate ‘acceptable ranges’.
¶ Obtained by fitting in vitro gel shift data of Shearwin et al. [1998] to the model described in Section 2.2.2;

εS was further converted to a number of monomers per cell using the scaling factor from Section 3.4.4.
# Range estimated from LacZ assays of various MFL-like CI− control strains in Pocock [2007].

†† The mean doubling time of all MFL strains (Tum+ and Tum−) with a medium copy pR -tum plasmid.

half life. All of those parameters encroached on the chosen boundaries for the parameter
space, so marked significant departures from the expected values. The high Hill coefficient
of the CI−pR equilibrium is again responsible for the poor fit of the control curves. So,
considering that the fitted model also argues for no Tum−CI cooperativity, the indication
is that a fundamentally different mechanism would be required to explain the action of
Tum on CI in vivo. Alternatively, some other perturbation of the data may have forced
these parameters into explaining an unrelated phenomenon.

Though deterministic models have often been successfully employed to describe the
behaviour of genetic circuits [Gardner et al., 2000; Elowitz and Leibler, 2000; Karlebach
and Shamir, 2008], gene networks are intrinsically noisy [Raj and van Oudenaarden, 2008]
and can exhibit phenotypes that are products of such stochasticity [Cağatay et al., 2009;
To and Maheshri, 2010]. The ‘collapse’ of hysteresis in the MFL strain could well be ex-



128 Chapter 4. The MFL displays only weak bistability when measured over a whole population

plained as a stochastic and not a deterministic phenomenon: if the pR activity recorded
at each IPTG concentration is the average over a population of cells with heterogeneous
final CI concentrations, the sharp bifurcation boundaries of the deterministic model could
be significantly blurred. Conceivably, this source of noise alone could be the origin of the
skewed hysteresis curves if the stochastic expression of CI were noisy enough. However,
it is likely that other sources of intrinsic noise also arise in this gene network. Such expla-
nations for the collapse of hysteresis will be explored in subsequent chapters.

4.4 Chapter summary

The experimental hysteresis assays of the Tum−CI MFL strains that were first reported in
Chapter 3 did not compare well with the predictions of the deterministic model. Correct-
ing for the dependence of LacZ units on OD600 and normalising the culture IPTG concen-
trations to corresponding CI production rates, helped to allay concerns that this could have
had an experimental origin. Nonetheless, these corrections did still increase the apparent
separation between the hysteresis curves and also facilitated cursory comparisons with
the model. These considerations brought into attention the possibility for non-equilibrium
behaviour to obscure such comparisons. This motivated modifications of the hysteresis as-
say that extended the time of equilibration, and a set of long equilibration time hysteresis
curves were measured. These new curves revealed a collapsing hysteresis loop, show-
ing no bistability for the MFL strains with low-copy pR -tum plasmids, and only weak
bistability for the MFL strains with medium-copy pR -tum plasmids. The shapes of the
hysteresis curves were unexpected, so attempts were made to fit the deterministic model
to the combined data set of all medium-copy pR -tum strains. After an extensive search of
parameter space, it was decided that whilst the deterministic model could approximate the
data sets, it was unable to account for a number of important features. These unexplained
perturbations will be addressed in the following chapters.



5
Hysteresis of the Tum−CI MFL is obscured

by stochastic switching between two
semi-stable states

Hysteresis assays of the Tum−CI MFL by LacZ assay provided evidence for bistability
that was based on the observation of history-dependent curves. The limited persistence
of these hysteresis curves, however, left in question the value of the assay for assessing re-
gions of bistability in the MFL. Parameter variation in the model alone could not account
for the observed skew of the hysteresis cycle, and it was instead hypothesised that the an-
ticipated boundaries had been blurred by sources of noise that were invisible to the pop-
ulation averages obtained by LacZ assay. With sufficient cell-to-cell variation, averaging
of the MFL reporter activity could result in a biased measure relative to the determinis-
tic model. Cell-to-cell variation is not without precedent: noise in protein abundance is
generated both intrinsically through gene expression and extrinsically through variation
in other cellular factors [Elowitz et al., 2002]. Stochastic variation in protein abundance
can give rise to alternative phenotypes that are dependent on noise characteristics [Maa-
mar et al., 2007; Cağatay et al., 2009], can extend effective bifurcation boundaries relative
to deterministic predictions [Kepler and Elston, 2001], or can even produce bimodal be-
haviour in networks without deterministic bistability [To and Maheshri, 2010]. In order to
determine whether such stochastic effects might result in the limited bistability observed
by LacZ assay, a measurement technique is required that can record reporter gene levels
in individual cells. Whilst single-cell gene activity measurements can indeed be made us-
ing a lacZ reporter gene [Cai et al., 2006], it is far simpler and more common to make use
of fluorescent reporters, measuring cell fluorescence by microscopy [Becskei and Serrano,
2000; Elowitz et al., 2002; Yu et al., 2006] or flow cytometry [Gardner et al., 2000; Isaacs
et al., 2003].

In this chapter, robust automated protocols are developed for measuring and analysing
Tum−CI MFL cell samples from hysteresis assays by flow cytometry. The chapter begins
with a description of the flow cytometric method and details data preparation methods
that improve the relationship between fluorescence data and internal cell state. A pre-
liminary look at the resulting curated fluorescence distributions suggests that samples in
the putative regions of bistability are in fact mixtures of two fluorescence populations. A
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definitive analysis is unfortunately obscured by poor separation between the populations,
which then prompts a more rigorous quantitation of the reporter distributions. An em-
pirically constrained mixture model analysis provides high-confidence confirmation for
the presence of two cell sub-populations in many of the samples. Using summary statis-
tics to describe each fitted sub-population, a new picture of hysteresis emerges. The long
equilibration time assays of each of the Tum−CI MFL strains now clearly reveal a region
supporting two semi-stable states that compares favourably with the steady-state model of
the MFL. A similar analysis for single-cell measurements of the ER-MC MFL for different
equilibration shows that switching between these semi-stable states occurs on a timescale
similar to the length of the hysteresis assay.

5.1 Relating single-cell and whole-population measures of

promoter activity

Given the typical magnitudes of gene expression noise seen in E. coli [Taniguchi et al.,
2010], single-cell measurements need to be obtained for relatively large populations of
cells in order to accurately sample the distribution of activities. Using flow cytometry, the
fluorescence of many thousands of cells can be measured for a single culture; this set of flu-
orescence measurements is a representative sample of the ‘true’ fluorescence distribution.
In the hysteresis assay, such distributions will be sampled over multiple experimental con-
ditions, and reliable automated protocols that maximise the relationship of fluorescence
intensity to protein levels form an important part of the analysis. This section describes
methods for filtering and normalising single-cell measurements made by flow cytometry.
The average intensities of the curated data sets are used to confirm that these methods
produce results that are consistent with those obtained by LacZ assay.

5.1.1 Assaying gene circuit hysteresis by flow cytometry

To maximise consistency with the previous assays, methods for growing and preparing
cells for measurement by flow cytometry were kept as close as possible to those devel-
oped for the LacZ assay. As described in Section 3.1.2, all of the Tum−CI MFL strains
used in this thesis were designed with a dual reporting system in which separate pR -lacZ
and pR -gfp reporter modules allow for measurement of the same culture by either LacZ
assay or flow cytometry. Hence, the protocols for hysteretic growth of the MFL and tum−

control strains remain unchanged except for the final assay step. Whereas in the LacZ
assay, cells in the culture are lysed once the chosen OD600 is reached, in the flow cytomet-
ric assay, cells at the chosen OD600 are instead resuspended in Phosphate-Buffered Saline
(PBS) prior to measurement in the flow cytometer. This means that the different assay
types mentioned in Chapter 4 (i.e., short, normal and long equilibration time assays) are
all still applicable in the single-cell experiments. By taking single-cell measurements, flow
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cytometry removes the direct dependence on the OD600 that was needed for calculating
LacZ units. Nonetheless, similar OD600s are maintained to ensure that cells are measured
at comparable growth phases and equilibration times.

Measurements obtained using the flow cytometer provide a much more comprehen-
sive picture of the state of the culture than the LacZ assay. Most importantly, the flow
cytometer can record a large number of single-cell measurements. By making use of a spe-
cialised fluidics system, a flow cytometer can focus a flowing cell suspension so that cells
pass through a laser beam one at a time. The laser beam excites any fluorophores present
in a given cell, which then fluoresce at wavelengths longer than that of the laser. Different
fluorophores emit at different wavelengths, and an array of detectors and optical filters
located at 90◦ to the beam can be used to quantitate the fluorescence emitted by different
fluorophores simultaneously. As described in Section 3.1.2, the folding reporter GFP was
chosen since its fluorophore maximises overlap of the excitation and emission spectra with
the laser light wavelength and filters of the available flow cytometer.

The flow cytometer also measures laser light that gets scattered by the cells. The for-
ward scatter (FSC) detector (in the path of the beam) measures small-angle scattering of
the laser beam due to a given cell, and is related to cell volume [Koch et al., 1996]. The side
scatter (SSC) is a measure of the laser light that is scattered 90◦ to the beam, and is affected
by the internal complexity/granularity of each given cell. As a cell traverses the beam,
each of these detectors sees a pulse of light, and the intensity is measured as both a pulse
area and peak height. So, in a configuration with just one fluorescence detector active (i.e.,
the configuration for the Tum−CI MFL), the flow cytometer returns 7 different channels of
data (including the relative measurement time of each event). However, unless otherwise
specified, standard practice is followed throughout this thesis by using only the FSC peak
height channel (FSC-H), the SSC pulse area channel (SSC-A), and fluorescence pulse area
channel.

In a manageable time frame (considering the number of cultures involved in a typical
hysteresis assay), such measurements can be obtained for between 30,000 and 100,000 cells
for each culture1. Sources of experimental variation that are extrinsic to a given culture,
such as technical variation, are not captured in the cell-to-cell variation of a single culture.
However, given the size of the hysteresis assay and the extra time required for flow cyto-
metric measurements, such technical repeats were not made. In the LacZ assay, technical
repeats were especially helpful, given the close dependence of the measurement on culture
OD600; this source of variation is less influential on the flow cytometry results, improving
consistency between technical repeats, but ideally such technical repeats would be made.
In their raw form, these large data sets contain factors that obscure an accurate analysis, so
some curation must be performed before interpreting the results. This includes data trans-
formation, filtering out non-cellular debris, and normalising the fluorescence according to

1Note that LacZ assay measurements capture the average activity of around 2× 106 cells.
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cell morphology; each of these factors will be addressed in the coming sections.

5.1.2 Choosing an appropriate data transformation

Flow cytometry data has commonly been visualised on a logarithmic scale, since this tends
to produce intensity distributions that are more normally distributed, and facilitates the
visualisation of data that can be spread over several orders of magnitude. For samples
with low or no fluorescence, instrumental background correction can result in measure-
ments that are less than or equal to zero, and these cannot, therefore, be displayed on
a logarithmic scale. The ‘Logicle’ display method [Herzenberg et al., 2006; Parks et al.,
2006] overcomes this deficiency by taking a biexponential transformation of the data that
is close to logarithmic for large intensities, but approximately linear for measurements
around zero. Using this method, zero and negative measurements can still be displayed
and analysed. Parameters for the logicle transformation function are chosen according to
the protocol specified in Parks et al. [2006] for a 4.5 decade display, and the transforma-
tion implemented using the flow cytometry packages from the Bioconductor collection of
R packages for the biosciences [Gentleman et al., 2004; Ellis et al., 2009a]. As described
in Parks et al. [2006], the fifth percentile of the negative values is chosen as the negative
range reference value for determining the width parameter. To maintain a consistent trans-
formation over an entire assay (to within each dimension/channel), these parameters are
derived using the aggregated negative values of all samples in that assay, and determine
an assay-specific Logicle transformation. A number of subsequent analyses make use of
the Logicle-transformed fluorescence intensities since this simplifies the choice of statisti-
cal distributions; where transformed data is specified, the assay-specific Logicle transfor-
mation is assumed. Whilst FSC and SSC channels typically contain no negative values,
where these are more appropriately treated using a logarithmic scale, the Logicle transfor-
mation is still applied for consistency and also so that no quantitative information is lost
in transformation.

5.1.3 An automated filter for selecting cell populations

An unavoidable component of any cell suspension is a level of contamination resulting
from dust particles, dead cells, and other non-cellular debris. The FSC and SSC channels
can be used to filter out most of these unwanted data points, since healthy cells tend to
cluster according to size and subcellular composition. In order to automate this process,
the clustering functions of the flowClust package [Lo et al., 2009] were used to select the
primary population of cells using an elliptical gating strategy. The ellipse is chosen so
that 95% of the data points are included. Whilst such a liberal inclusion rate is not typ-
ical, a morphology normalisation strategy will be later applied in order to maximise cell
homogeneity, removing the disadvantages of retaining such heterogeneity. An example
application of a 95% elliptical filter is shown in Figure 5.1, where it can be seen that the
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Figure 5.1: The main bacterial cell population is
easily identified using the forward scatter (FSC)
and side scatter (SSC) intensities. Shown plot-
ted are the SSC intensities (recorded as peak
area) versus the FSC intensities (recorded as
peak height) as measured by flow cytometry for
a sample of ER-MC MFL cells grown according
to the normal equilibration time assay with 60 µM
IPTG, starting from a low O/N culture. The inten-
sities are shown plotted using a Logicle display,
which is effectively logarithmic at these high inten-
sities. To assist visualisation, points are coloured
by density. The black ellipse shows the 95% cutoff
as determined by a clustering algorithm for a sin-
gle cell population. Out of 31,770 events, 30,619
lie within the ellipse and are kept for further anal-
ysis.

majority of events recorded by the flow cytometer cluster close to the primary cell popula-
tion. This is highly representative of all FSC/SSC plots regardless of strain or assay. After
filtering, the remaining events are presumed to be the cells of interest.

The efficacy of such filtering can be verified in part by comparing how the resulting
fluorescence distributions compare with the activity expected for the pR promoter. The
upper panels of Figure 5.2 show histograms of the recorded fluorescence intensity for se-
lected cell samples of a hysteresis assay. At the highest induction level (300 µM IPTG),
the pR promoter is expected to be close to fully repressed, and the cell population reflects
this with a relatively low fluorescence that represents the background fluorescence (or aut-
ofluorescence) of the cells. In contrast, at the lowest induction level (0 µM IPTG), the pR
promoter is expected to be close to fully active, and the significantly higher fluorescence of
that population reflects this. Very few events lie outside this high fluorescence population
(less than 0.5% of the events have intensities outside 2× 103–2.5× 104), indicating that the
vast majority are behaving as expected for the bacterial cell population.

The histogram for the intermediate induction level (60 µM IPTG) reveals that popula-
tions in the putative region of bistability have a more complicated probability structure.
Nonetheless, by comparing this sample with the others, it seems feasible to suggest that
this sample might be a mixture of low and high fluorescence populations.

5.1.4 Morphology normalisation refines the distribution of fluorescence

The apparent mixing of high and low fluorescence populations in the intermediate induc-
tion sample of Figure 5.2 highlights the poor separation between the minimum (300 µM
IPTG) and maximum (0 µM IPTG) fluorescence populations. Whilst the peaks in the in-
termediate sample do not precisely overlap with the minimum and maximum peaks, an
inspection of the peak widths (using the axis labels as a reference) makes it clear that a mix-
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Figure 5.2: The resolution between low and high fluorescence populations is poor. Shown are his-
tograms of fluorescence intensity for cell populations of the ER-MC MFL strain grown according to the
normal equilibration time hysteresis assays for the initial and final IPTG concentrations as indicated.
Included in the histograms are only those events which passed the filter as described in Figure 5.1. The
histograms are displayed on a Logicle scale (see Section 5.1.2); the approximate limits of the linear re-
gion about 0 are indicated. Histograms in the upper panels are of the raw fluorescence intensity, whilst
those in the lower panels are of the fluorescence intensity after normalisation according to morphology.
The solid black line in each histogram is the kernel density estimate.

ture of low and high fluorescent populations would nevertheless suffer a significant level
of overlap. This poor resolution prompts a closer look at variables which may obscure an
accurate measure of pR activity. Such deficiencies in resolution may merely reflect the in-
trinsic level of noise produced by the genetic network, but other sources of variation/error
are also likely. These could include instrumental measurement errors, poor fluorescence
sensitivity over the cellular autofluorescence background, or variations in protein number
resulting from cell cycle-dependent differences.

Without resorting to changes in the strain or experimental procedure, the simplest
source of additional variation to address is the latter. That is, the natural correlation of
protein number with cell size: a cell that has just undergone division is expected to have
roughly half the number of proteins (and hence half the fluorescence) of a cell just before
division. Correcting for such an effect makes sense in terms of the deterministic model
as well, since state variables are most easily treated as constant-volume concentrations,
where the concentration of each species relative to the genome copy-number is the rele-
vant quantity. For data obtained by flow cytometry, normalisation by cell morphology is
a real possibility since the FSC and SSC intensities are indicators of cell size and complex-
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ity. Such normalisation has seen successful application in S. cerevisiae [Knijnenburg et al.,
2011], and is likely to have a similar, but perhaps less pronounced effect in E. coli.

Here, morphology normalisation is applied essentially as described by Knijnenburg
et al. [2011], though using custom R scripts instead of Matlab scripts to perform the anal-
ysis (see Appendix B). Briefly, the normalisation protocol estimates for each sample the
general trend of fluorescence intensity with both FSC and SSC, makes relative corrections
for this trend within the sample, and finally restores absolute fluorescence intensities ac-
cording to a model FSC/SSC density. The general trend of fluorescence intensity is char-
acterised as a strictly increasing regression surface, defined over FSC and SSC space (with
terms as specified in the paper), that is fit to the (filtered) data for each sample2. The
residuals from this regression surface are kept as the corrected deviation of the population
from the fluorescence mean. The mean fluorescence is then calculated from the surface
as the expected fluorescence over a representative FSC/SSC density. The choice of this
representative density will be returned to later.

Application of the morphology normalisation to Tum−CI MFL cell samples provides
a marginal improvement in resolution between high and low fluorescence populations.
Referring back to Figure 5.2, the effect of morphology normalisation can be seen by com-
paring selected samples before (upper panels) and after (lower panels) normalisation3.
There is a small but definite increase in resolution that is especially evident as a deeper
trough between the putative high and low fluorescence peaks of the intermediate induc-
tion sample, but is also evident as a sharpening of the peaks in the other two samples.
Whilst these differences may appear inconsequential at this point, the normalisation de-
convolutes hidden variables from the samples and hence better reveals the underlying
model-related probability distributions, as will be confirmed later.

As a validation of the normalisation method, it is useful to consider the mean fluores-
cence intensity of each sample. The mean fluorescence intensity should in theory show a
linear relationship with the equivalent results obtained by LacZ assay. Note that it is the
untransformed fluorescence intensity that is proportional to the level of fluorescent protein
(promoter activity), and not the Logicle-transformed intensity. Morphology normalisation
is calculated using the Logicle-transformed data, so whenever population statistics are
calculated in this thesis, the inverse Logicle transformation is always applied to the nor-
malised data prior to deriving that statistic. In Figure 5.3(a), the mean fluorescence of mor-
phology normalised data for a long equilibration time assay of the ER-MC strain is shown
overlaid with LacZ assay results for comparison4. Since the units of each measurement

2 To best match the method of Knijnenburg et al. [2011], the regressors are the untransformed FSC and
SSC channels, whilst the response variable (fluorescence intensity) is treated logarithmically; here, though,
the Logicle transformation is used in preference to the log transformation.

3 Note that the normalisation applied in Figure 5.2 makes use of a minor conditional amendment to the
protocol that will be introduced later.

4 Note that to maximise comparability, the cell suspensions for these flow cytometry measurements were
sampled directly from the same cultures as one of the repeats of the long equilibration time ER-MC LacZ
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Figure 5.3: The mean fluorescence of the cell populations overlaps well with the mean pR activity measured
by LacZ assay to within an offset and scaling factor. The population mean fluorescence intensities calculated
for ER-MC MFL strains grown according to the long equilibration time hysteresis assay and measured using
flow cytometry, are shown plotted against the normalised CI production rate, and are displayed with the
equivalent results obtained by LacZ assay for comparison. Data from the LacZ assay is plotted according
to the left axis; data from the flow cytometry assay is plotted according to the right axis, which has been
scaled to maximise overlap between the two different data sets. The flow cytometry data is displayed for
two variations on the morphology normalisation protocol: (a) normalisation where the average cell density
is uniformly applied to determine the expected fluorescence for each sample, or (b) normalisation where
the expected fluorescence for each sample is determined using a sample-specific cell density.

technique have different scales, and since fluorescence measurements have a non-zero off-
set due to cellular autofluorescence, linear regression was applied to maximise overlap of
the two data sets by a scaling of the axes. On the whole, the LacZ assay sample means
and flow cytometry population means of Figure 5.3(a) show surprisingly good overlap,
especially considering that the mean activities obtained by flow cytometry do not factor in
any technical (i.e., sample-to-sample) variation.

The representative cell density in FSC/SSC space specified by Knijnenburg et al. [2011]
worked well for morphology normalisation of most samples. This is evident from the
overlap of the mean fluorescence activities with LacZ activities as shown in Figure 5.3(a).
However, the high intensity samples showed some biases that were found to be due to
the choice of representative cell density. By modifying the protocol to use sample-specific
cell densities, overlap for the high intensity samples was improved, as can be seen in Fig-
ure 5.3(b). This revised protocol was used instead of the original for these flow cytometry
samples. A set of high quality assays that will be introduced later in Section 5.4 did not

assays reported in Section 4.2.2 and, as such, the LacZ assay data is taken directly from the ER-MC panel of
Figure 4.3.
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Figure 5.4: Viewed as cell populations, hysteresis in the Tum−CI MFL is manifest as a history-dependent
broadening of fluorescence. Scatter plots of fluorescence versus FSC are plotted (using a Logicle display) for
cell samples from a normal equilibration time hysteresis assay of the ER-MC MFL strain. The FSC has been
offset and scaled to centre each plot at the rate of CI production that it was measured for. Cell populations
starting from the low O/N are shown in blue and those from the high O/N are in red; points are shaded
according to density.

suffer such errors, and in those cases the original protocol was preferred. More details of
these two methods and the rationale for revising the protocol can be found in Appendix B.

5.1.5 The curated data is suggestive of population mixing

In spite of transformation, filtering and normalisation, the curated fluorescence data re-
mains difficult to interpret due to the low resolution between the maximum and minimum
intensity distributions. A comparison of the curated fluorescence distributions across an
entire assay is shown in Figure 5.4 for a normal equilibration time hysteresis assay of the
ER-MC MFL Tum+ strain. To aid visualisation, the data for each sample has been sepa-
rated according to FSC and shaded according to density. The low resolution limits inter-
pretability, but a couple of interesting features are nonetheless apparent in the data without
further analysis.

Firstly, asymmetry between the two alternative hysteresis curves is most obviously
seen as a difference in distribution spread. The greatest spread in fluorescence intensity
for the low O/N samples occurs at a higher production rate (around 130 CI dimers/min)
than for the high O/N samples (somewhere between 50–100 CI dimers/min). This history-
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dependent spreading of the fluorescence distributions cannot be seen using population
averages alone (i.e., by LacZ assay), but represents a likely origin for the lack of sharp
boundaries in the whole-population results.

Secondly, the presence of two sub-populations, as was suggested for the intermedi-
ate induction sample in Figure 5.2, appears to be consistently reproduced for a number
of samples in the assay. By focussing on the regions of highest intensity (darkest shad-
ing), there appear to be two alternative populations of cells that share common average
intensities, independent of initial condition or CI production rate, but that vary in relative
abundance from sample to sample. The centres of these putative sub-populations line up
with the centres of the minimum and maximum intensity distributions that bookend the
hysteresis assay.

For a strongly bistable system, one would expect that cell populations set in monos-
table regions of the hysteresis curve would produce unimodal populations in the bistable
region until the bifurcation threshold is reached. However, if the system were only weakly
bistable, so that noise in the circuit could cause stochastic transitions between the two
zones of stability, one might instead expect a mixture of two populations — a bimodal
population — with some number of cells potentially ‘in transition’ from one state to the
next.

5.2 MFL samples within the bistable region are a mixture of two cell

populations

By inspecting the histograms and density maps of cell population fluorescence shown in
the previous section, it seems likely that samples within the putative bistable region consist
of two sub-populations. However, especially given the poor resolution between the two
populations, a suitable statistical description of such populations will allow quantitative
assessment and treatment of the sub-populations, facilitating interpretation of the data in
light of the model. In this section, the skew-t distribution is demonstrated to fit the uni-
modal control populations very well. Then, using the fits of the controls as training sets, it
becomes possible to define a sub-family of skew-t distributions that match the unimodal
control samples. By fitting two-component mixtures of these constrained skew-t distri-
butions to hysteresis samples of the MFL strains, two sub-populations can be identified
for many of the intermediate induction samples. Such a description of the data enables
calculation of informative population statistics that can accurately summarise the data for
visualisation and modelling.

A major application of flow cytometry is in the identification of sub-populations of
cells from biological samples, and in recent years, much effort has gone into automating
this process [Bashashati and Brinkman, 2009; Robinson et al., 2012; Ho et al., 2012; Le Meur,
2013]. Such samples can potentially contain dozens of different cell phenotypes and are
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typically probed using a large cohort of fluorophores; the challenge in such instances is in
correctly classifying and interpreting a large, high-dimensional data set [Qiu et al., 2011].
The prevalence of such methods provides a strong foundation for analysing the far simpler
Tum−CI MFL data. However, the contrasting challenge for the Tum−CI data set is in its
low dimensionality: the data suffers from poor resolution. Whereas standard algorithms
for studying sub-populations, like k-means clustering, work well for samples with well
separated sub-populations, here a little more care is required.

The issue of resolving overlapping sub-populations in flow cytometry data was con-
sidered some time ago by Lampariello and Aiello [1998]. By characterising the form of
a negative control population, Lampariello and Aiello were able to improve the identi-
fiability of a positive control population in spite of significant overlap. Here, a similar
approach is followed but with a few modifications and additions that make the analysis
more suitable in a quantitative context. These include updating the choice of distribution
for describing the data, treating the problem within the more general mixture modelling
framework, and generalising the fixed negative control to a family of control distributions
whose shape is parameterised as a function of median fluorescence.

Even after Logicle transformation and normalisation, data obtained by flow cytome-
try tends to have an asymmetric and heavy-tailed distribution that is not well fit by the
standard Gaussian (normal) distribution. Whilst the transformation of the data could be
further optimised to maximise ‘normality’ [Finak et al., 2010], an indiscriminate transfor-
mation of the data would be unable to account for sample-dependent asymmetries. For
example, in E. coli the noise in protein expression is typically Gamma distributed [Fried-
man et al., 2006; Taniguchi et al., 2010] and a Logicle or power transformation of such
distributions are not in general well fit by a Gaussian. A more flexible approach is to
model the data using a distribution that can account for asymmetry. The Gamma dis-
tribution is unlikely to have sufficient flexibility to model all of the Tum−CI MFL data,
since instrumental noise and circuit ultrasensitivity would both distort this ideal distribu-
tion. The Johnson SU family of distributions, as chosen by Lampariello and Aiello [1998],
includes parameters to introduce asymmetry and fits flow cytometry data well, but its
moments (mean, variance, skew, etc.) have a complicated dependence on the parameters.
More recently, the skew-t distribution has also been identified as particularly suitable for
modelling flow cytometry data [Pyne et al., 2009], and is of particular interest here since
it introduces skew into the heavy-tailed t distribution in a natural way, giving rise to well
behaved statistical properties [Azzalini and Capitanio, 2003]. Like the t distribution, the
skew-t distribution has parameters for location (akin to the mean), scale (akin to the vari-
ance) and the degrees of freedom, but it additionally includes a shape parameter that can
be used to adjust the skew in a positive or negative direction. More information on the
skew-t distribution can be found in Box 5.1.

An important test of the suitability of the skew-t distribution for modelling the Tum−CI
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Box 5.1: The skew-t distribution. Instructive examples of the skew-t distribution shown in Panel A illustrate how the
skewness parameter causes the skew-t distribution to deviate from the heavy-tailed t-distribution (the case where
λ = 0). A definition of the skew-t distribution is provided in Panel B.
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A Examples of the skew-t distribution for different shape
parameters (λ). The other parameters are not varied,
setting the location parameter µ = 4, scale parameter
σ2 = 1 and degrees of freedom ν = 3.

A random variable X follows the skew-t distribution
if

X = µ + σ
Y√

τ

where Y is a random variable from the standard
skew normal distribution with skewness parameter
λ and τ is a random variable from the gamma
distribution with shape parameter ν/2 and rate
parameter ν/2.
The standard skew normal distribution has a
probability distribution function given by
f (y) = 2φ(y)Φ(λy), where φ(y) and Φ(y) are
respectively the probability density function and
cumulative distribution function of the standard
normal distribution.

B Defining the skew-t distribution with location param-
eter µ, scale parameter σ2, skewness parameter λ and
degrees of freedom ν. This (non-rigorous) formulation is
adapted from the rigorous definition in Lin et al. [2007].
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Figure 5.5: The skew-t distribution provides a good fit of population fluorescence for the MFL control
strains. Shown are histograms of fluorescence intensity measured for ER-MC Tum− cells grown ac-
cording to the normal hysteresis assay for a range of initial and final induction conditions as indicated
by concentration of IPTG. Fluorescence intensities were normalised according to cell morphology (Sec-
tion 5.1.4) and are visualised using a Logicle display. The solid black lines are skew-t curves that were fit
to the Logicle transformed data by Expectation-Maximisation, using the routine provided in the mixsmsn
R package [Prates et al., 2013].

MFL fluorescence data is how well it fits the MFL control data. Since the control strains
lack Tum, they are monostable and hence serve as a useful prototype of the unimodal dis-
tribution of fluorescence produced from the pR promoter. To this end, skew-t distributions
were fit to all the control populations measured by flow cytometry using an expectation-
maximisation routine from the mixsmsn R package [Prates et al., 2013]. The skew-t dis-
tribution fit all the data remarkably well, and a representative selection of these fits are
shown in Figure 5.5 for a range of induction levels. The examples include both minimum
and maximum possible expression levels from pR , but also intermediate examples starting
from both low and high O/N cultures, and together demonstrate the utility of the distri-
bution over the full spectrum of potential pR activities. To emphasise the need for a good
model of the unimodal populations, it is worth highlighting again that mixtures of the
pictured distributions would show significant overlap. In particular, even a mixture of the
minimum (300 → 300 µM IPTG) and maximum (0 → 0 µM IPTG) intensity distributions
would overlap.

The skew-t distribution provides a good fit of the unimodal data, but without addi-
tional constraints, it unfortunately still proves to be too flexible for reliably resolving the
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Figure 5.6: The interquartile range (IQR) of inten-
sity for the MFL control distributions varies as a func-
tion of the median intensity. Shown plotted against
each other are the IQR and median of the nor-
malised and transformed fluorescence for cell sam-
ples taken from the normal equilibration hysteresis
assay of the ER-MC Tum− control strain. The solid
black line was determined by quadratic regression.
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overlapping peaks in the bimodal data sets. An unconstrained fit of the bimodal data can
be made using a mixture model of skew-t distributions. In statistics, mixture models are
used to describe data that has been sampled from a mixture of component distributions,
but for which the identity of the component distribution for each observation is unknown.
For the Tum−CI MFL, a two-component mixture model of skew-t distributions is thus
a natural choice. Whilst methods for modelling mixtures of Gaussian distributions have
been known for some time, methods for modelling mixtures of skew-t distributions have
only been developed more recently [Lin et al., 2007]. Mixture modelling is also imple-
mented using the mixsmsn R package [Basso et al., 2010; Prates et al., 2013], which treats
the skew-t distribution as a member of the family of scale mixtures of skew normal distri-
butions, fitting the data using an expectation-maximisation algorithm as in the unimodal
case. When applied to the fluorescence data of the Tum−CI MFL, this method of fitting
worked well in obvious cases, such as the intermediate case depicted back in Figure 5.2.
However, in less obvious cases, to be seen later, it was difficult to determine whether fits
represented true bimodality, or if the data was non-identifiable and had merely been over-
fitted. In some cases, overfitting was clear: samples at the extremes of the hysteresis curve
and even control curves often had an improved fit using a two-component mixture. In
other cases, non-identifiability was clear: some samples produced markedly different re-
sults depending on the initial parameter values chosen. In both cases, the component
distributions tended to assume shapes deviating from those seen in the unimodal con-
trols and in cases with obvious bimodality, thus prompting a closer look at the form of the
component distributions.

By inspection of the MFL control distributions in Figure 5.5, it can be seen that (in this
scale) the spread of intensities tends to be wider for samples with overall low intensity
and narrower for samples with overall high intensity. To robustly assess this trend, the
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interquartile range (IQR)5 and median fluorescence of Tum− control samples were plotted
against each other. The result for the normal equilibration time hysteresis assay of the
ER-MC Tum− strain is shown in Figure 5.6. Though nonlinear, the trend is quite striking,
particularly for samples with higher intensities; the more abundant low intensity samples
are likely to be adversely affected by background instrumental noise. Controls from all
other strains and assays showed similarly predictable trends, suggesting that the shapes
of the fluorescence distributions might be well-defined functions of promoter activity.

Using median fluorescence as a robust indicator of relative promoter activity, the pa-
rameters from skew-t fits of the MFL control distributions were indeed found to vary in
a predictable way. As exemplified in Figure 5.7, the location parameter showed a lin-
ear dependence on median fluorescence, whilst the scale and shape parameters showed
quadratic dependences on the IQR of fluorescence, which, as seen previously in Figure 5.6,
is in turn quadratically dependent on median fluorescence. The degrees of freedom6 pa-
rameter (ν) was much more variable: it did not show any obvious trends in terms of either
median fluorescence or the IQR of fluorescence. When plotted versus the estimated value
of the scale parameter, weak associations were observed and the gross trend approximated
by a quadratic. This poor result for ν was not entirely unexpected, since ν primarily affects
how heavy-tailed the skew-t distributions are, and is thus mostly constrained by data in
the tails — a considerably smaller fraction of the data set. However, the converse to this
poor result is that ν has only a minor impact on distribution shape. In spite of the weak
trend observed for the nu parameter, skew-t distributions that are defined according to
parameters estimated from the regression curves in Figures 5.6 and 5.7 describe the data
essentially as well as the original distributions with freely-optimised parameters.

So by using the controls as a training set, a family of assay-specific skew-t distribu-
tions could be defined in terms of a single parameter, the median fluorescence. With such
a constraint, the two-component skew-t mixture model would be greatly simplified. In-
stead of 9 parameters, only three would be required: the relative abundance of each sub-
population and two location parameters (i.e., the effective median fluorescence values of
each sub-population). This amounts to the re-parameterisation of a two-component skew-t
mixture model according to five assay-specific regression models (based on those shown
in Figures 5.6 and 5.7) as derived from unimodal skew-t fits of the Tum− control sam-
ples. Such two-component constrained skew-t mixture models (and also an analagous
one-component model) were implemented using custom R code that could automate the
process of deriving parameter regression models from control data, and then calculate the
requisite skew-t parameters from these regression models. These mixture models were de-

5The IQR is the difference between the values of the first and third quartiles (i.e., the 25% and 75% per-
centiles) of a sample. Unlike the mean and SD, which are sensitive to outliers, the median and IQR are robust
measures of location and scale, respectively.

6Fractional degrees of freedom (ν) are atypical, but still defined for the skew-t distribution. In this context,
where the distribution is simply used as a suitably flexible model for data with unknown degrees of freedom,
it is left to freely vary.
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Figure 5.7: The fitted skew-t parameters of the MFL controls vary as functions of the median and
the interquartile range (IQR) of the intensity. The normalised and transformed fluorescence intensities
of cell samples taken from hysteresis assays of the ER-MC Tum− control strain were fit with skew-t
distributions. From the resulting set of fits, the four parameters defining the skew-t distribution (location
(µ), scale (σ2), shape/skew (λ) and degrees of freedom (ν)) are shown plotted versus either the median
or IQR of the samples’ fluorescence intensities. In the case of the degrees of freedom parameter (ν), a
somewhat more visible trend was observed with the predicted value of the scale parameter (σ2), so that
is shown instead. Regression lines are shown for each plot: the location parameter was fit using linear
regression; all other parameters were fit with an additional quadratic term.
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Figure 5.8: MFL distributions in the bistable region are a bimodal mixture of control-like sub-
populations. Shown using a Logicle display are histograms of the normalised fluorescence obtained
for samples with a range of initial conditions and IPTG induction levels (as indicated) from the normal
equilibration time hysteresis assay of the ER-MC Tum+ MFL strain. The fluorescence distributions were
fit by two-component mixture models made up of constrained skew-t distributions; constraints were im-
posed using a set of regression models, as described in the text, to restrict the skew-t distribution to
shapes matching the same assay’s Tum− control distributions. The density for each fitted mixture model
is shown overlaid on its respective histogram as a solid black line; the dotted red and blue lines indicate
the low- and high-intensity component distributions respectively.

fined according to the controls for each flow cytometry hysteresis assay, and then one- and
two-component models were fit to all the Tum+ MFL sample data using maximum likeli-
hood estimation. To further control the parameter space, the median for the high intensity
component distribution was written as a fold ratio of the lower. Constrained maximisation
of the likelihood could then be employed to restrict this ratio to a value greater than one
and also restrict the relative proportion of the components to a value between 0 and 1. In
spite of the reduced number of parameters and the additional constraints, this new mix-
ture model still matched all of the Tum−CI MFL fluorescence distributions surprisingly
well.

The constrained skew-t mixture model offers sufficient flexibility to accurately describe
all of the Tum−CI MFL distributions. Examples of two-component mixture model fits of
fluorescence data obtained for normal equilibration time hysteresis assays of the ER-MC
MFL strain are shown in Figure 5.8. For some samples, bimodality is clear (e.g., 0 →
60 µM IPTG and 300→ 40 µM IPTG) and the locations of the two component distributions
appear well-defined. Conversely, for samples where a unimodal distribution would seem
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more appropriate (e.g., 0 → 20 µM IPTG and 300 → 60 µM IPTG), the two-component
model is only able to fit the data using essentially overlapping component distributions.
In these cases, the component distributions have reduced identifiability, indicating that
the one-component model would be preferred. These extreme cases illustrate how the
constrained mixture model might be used to robustly assess the number and location of
component sub-populations.

Fringe cases, however, are better handled using a formal analysis of goodness of fit.
Such cases are exemplified in Figure 5.8 by the 0 → 40 µM IPTG and 300 → 20 µM
IPTG samples. It is instructive to start by considering how the two-component and one-
component models compare. Since adjusting the median location is the only way to adjust
peak shape in the constrained skew-t distributions, the optimal fit for a one-component
model will be very similar to whichever component is dominant. In the stated exam-
ples, this dominant component distribution is the high intensity one (dotted blue lines
in the figure), and this component accounts for most of the fluorescence. However, the
less abundant distribution clearly makes a small but significant difference in each case. A
more rigorous evaluation of peak fit can be made using a log-likelihood ratio test between
the one- and two-component models. For this test, the null model is the one-component
model, since it is a subset of the two-component model. A useful result on the corre-
sponding test statistic (the log-likelihood ratio) is that its null distribution tends to a χ2

distribution in the limit of large sample sizes (see Rice [2007, sect. 9.4]). By assuming this
result for the mixture models here, p-values were calculated to compare the significance of
one- and two-component models for the maximum likelihood estimates of the Tum+ MFL
fluorescence distributions.

The constrained skew-t mixture model provides high-confidence confirmation for the
presence of two sub-populations in the bistable region of the MFL strains. Most of the
known and presumed unimodal populations (i.e., controls and ends of the hysteresis
loop) presented with p-values greater than 0.001 (in fact, with p-values often indistin-
guishable from 1), indicating non-significance for the two-component model. In contrast,
populations displaying bimodality, including the fringe cases, all presented with very low
p-values (less than 1× 10−16), indicating high significance for the two-component model
in these cases. However, direct use of the p-value as a threshold would result in more
type II errors than desired (i.e., where the one-component model would be rejected when it
should not be), as judged by the test results for the (unimodal) control distributions. Much
better discrimination was achieved by setting a more conservative threshold directly on
the computed log-likelihood ratio7. This threshold was set to a value that would avoid

7 This approach to assessing goodness of fit is very similar to the use of the Akaike Information Criterion
(AIC) or Bayesian Information Criterion (BIC), except that no penalty is applied for overfitting as the number
of parameters is increased. Here the penalties of the AIC or BIC are not applied, since (1) the number of pa-
rameters is very small in comparison with the size of the data set, so the corrections are minor (particularly for
the AIC), and (2) the distributions under consideration (skew-t) are not from the exponential family (breaking
an assumption of the BIC).
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any type II errors for the control distributions; taking the 0.0001 quantile for a Gaussian
fit of the control ratios was generally sufficient. The need for such a conservative thresh-
old was due to both the large number of events sampled for each experimental condition
(tens of thousands), and a handfull of distributions (mostly at the extremes of the fluores-
cence intensity spectrum) that were not fit by the constrained skew-t distribution quite as
well. However, since these anomalous outliers were avoided by using a stricter thresh-
old, the constrained skew-t mixture model was nonetheless a high-confidence predictor
for bimodality.

As a brief aside, the morphology normalisation procedure introduced in Section 5.1.4
was essential to the robust behaviour of the constrained skew-t mixture models. Without
normalisation, the trends of fitted skew-t parameters with median fluorescence and IQR
(i.e., from the equivalent plots to those in Figure 5.7) became much more variable. This
greatly decreased the efficacy of the subsequent two-component model, which could no
longer replicate the close match of this model to the bimodal distributions that was seen
for the normalised data. Accuracy and confidence in the fits were much reduced, empha-
sising the importance of the normalisation for rendering the data amenable to predictable
statistical analysis in terms of the well-defined skew-t distribution.

Given that location is the only parameter required to specify the constrained skew-t
distribution, fits of bimodal data sets using the two-component model produce a highly
sensitive quantitative measure of the location of each sub-population. Since these con-
strained skew-t densities are also characteristic of a monostable distribution, the close
match of such models to the data strongly indicates that the two sub-populations are dis-
tinct. That is, each sub-population arises in a separate zone of stability of the gene network,
and only a small number of cells are ‘in transition’ between these two zones. How might
such a mixture of populations arise? The deterministic model would predict a unimodal
population of cells with a history-dependent location, so clearly there must also be some
level of stochasticity that enables transitions between the two stable zones. That is, the
synthetic Tum−CI MFL is not strictly bistable, but is instead comprised of two semi-stable
sub-populations.

5.3 The mixed population model reveals the stable states predicted

for the MFL strains

Assays of the Tum−CI MFL strains by flow cytometry have now revealed that many of the
hysteresis cultures were in fact made up of a mixture of two sub-populations. Systematic
variation in the presence and size of these sub-populations as a function of CI production
rate was already evident in the curated flow cytometry data presented in Section 5.1.5,
but without quantitative tools for describing the sub-populations, it was difficult to draw
concrete conclusions. This prompted the development of the constrained skew-t mixture
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model in Section 5.2, which was fitted to the data to enable both robust identification of
sample modality (i.e., unimodal or bimodal), and precise, high-confidence estimates of the
locations and relative proportions of each sub-population. In this section, the quantitative
insights made possible through such a detailed statistical model are exploited to search
for identifiable trends in the sub-populations across the hysteresis loop. With a view to-
wards reconciling the data with the already established deterministic model of hysteresis,
the section begins by briefly considering the conditions under which it is suitable to make
a deterministic approximatation to a stochastic process. This lays the groundwork for in-
terpreting the constrained skew-t mixture model as the projection of stochastic data onto
deterministic components, thus motivating a natural experimental state descriptor: the
expected fluorescence intensity of each component distribution. When applied to the long
equilibration time hysteresis assays of each of the Tum−CI MFL strains, this determinis-
tic projection helps to paint a much more informative picture of stability in the hysteresis
assay than the whole-population average results could. The mixed population long equili-
bration time hysteresis curves expose the stable states in the Tum−CI MFL strains, making
it possible to interpret their behaviour in terms of the steady-state MFL model developed
in Section 2.3.

Deterministic models approximate a full stochastic process by considering only the
time evolution of the expected or ‘average’ values of that process [Kaern et al., 2005;
Wilkinson, 2006]. Such an approximation forms the basis for comparing deterministic
models directly with LacZ assay measurements, which are implicitly whole-population
average activities. In flow cytometry, however, promoter activities are measured for each
cell in a culture, and each measurement can be considered (roughly speaking) to be an
independent realisation of a ‘noisy’ or stochastic process. Stochastic processes cannot in
general be described by a purely deterministic model, but when considered near macro-
scopic (i.e., deterministic) stable states, valid approximations for the shape of the stochas-
tic distribution can be made by series expansion around the deterministic solution [Thattai
and van Oudenaarden, 2001; Elf and Ehrenberg, 2003; van Kampen, 2007]. In this way, a
deterministic model can remain useful for local analyses of behaviour and noise, provided
the system under consideration has well-behaved8 steady-state solutions and is close to
equilibrium.

The Tum− control strains have a single steady-state solution and are well suited to
deterministic modelling. Indeed, deterministic models of CI−pR repression have proven
effective in the past [Shearwin and Egan, 1996; Dodd et al., 2007b] and even the behaviour
outside steady state is relatively well explained by the deterministic model (see Section 4.3).
As such, the fluorescence distributions of the Tum− control strains could be considered a
prototype for the stochastic spread of an otherwise ‘deterministic’ population. By charac-

8A well-behaved steady-state solution means that it must be stable in all dimensions, excluding saddle
point solutions for example.
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terising the MFL samples in terms of mixtures of this prototype distribution, samples are
effectively split into putative deterministic components. Since two stable states are pre-
dicted for the Tum−CI MFL according to the steady-state deterministic model, it stands
to reason that this gene network is suited to such a localised analysis. The goodness of
fit of the bimodal mixture models to the Tum−CI MFL samples further validates a local
deterministic interpretation of each sub-population, even if stochastic mechanisms must
describe the presence of a second population.

For the long equilibration time MFL samples, each component of the fitted mixture
model of constrained skew-t distributions can be treated as a local estimate of the noise
distribution near each deterministic steady state. The expected value (weighted average)
of each component distribution then provides a good approximation for its respective de-
terministic steady-state solution. This expected fluorescence intensity can be calculated
directly for each sub-population from the fitted constrained skew-t distributions. The con-
strained skew-t distributions are specified in terms of a single parameter representing the
expected median fluorescence for each sub-population. The median fluorescence is a use-
ful measure of location for sampled data since it is robust to outliers, but for the fitted
distributions, the expected fluorescence is calculated since it is more in keeping with a
deterministic approximation of the stochastic data set. Since cellular fluorescence is mea-
sured on an untransformed scale, whilst the distributions are fitted on a Logicle scale, the
expected fluorescence should be calculated as the expected value of the Logicle function
over the skew-t distribution of interest. The Logicle function (L : X → I) gives the fluo-
rescence intensity (I) as a function of the transformed data9 (X). So if the sub-population
is described by a skew-t distribution with probability density function ρ(x), then the ex-
pected fluorescence intensity is given by:

E[I] =
∫ ∞

−∞
L(x)ρ(x)dx (5.1)

The skew-t probability density, ρ(x), is population-specific and specified using parame-
ters drawn from the control curve regression models (see Section 5.2). The Logicle func-
tion is assay-specific, and defined according to an optimised width parameter (see Sec-
tion 5.1.2). The mathematical expressions for the skew-t probability density and Logicle
function make analytical integration of Equation (5.1) nontrivial, so numerical integration
(implemented in R; see Appendix B) is used for calculating the expected fluorescence in-
tensity. The resulting expected fluorescence value is a natural deterministic representation
of each sub-population, comparable with the pR activities that might be reported by LacZ
assay.

9 This declaration of the Logicle function (i.e., a function giving the dependence of data units on display
units) is as defined by Parks et al. [2006]. Note, however, that it is the inverse of the Logicle function that is
used to perform a ‘Logicle transform’. This misnomer is in common usage since the inverse of the Logicle
function cannot be expressed analytically.
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A given hysteresis sample can now be completely specified from its fitted mixture
model as an optimal number of mixing components (i.e., one or two), the fractional oc-
cupancy of each sub-population relative to the whole, and the expected fluorescence (pR
activity) of each component. As described in Section 5.2, the log-likelihood ratio is used
to decide whether a sample is unimodal or bimodal. For unimodal samples, there is only
one component with an occupancy fraction of 1; in this case, the expected fluorescence of
the underlying skew-t distribution represents that of the whole population. For bimodal
samples, there are two components, each present as a fitted fraction of the whole popula-
tion, and each with a distinct location given by the expected fluorescence intensity of the
respective skew-t distribution.

These state descriptors are shown plotted against the hysteretic variable (CI produc-
tion rate) in Figure 5.9 for samples coming from long equilibration time hysteresis as-
says of each of the candidate Tum−CI MFL strains (i.e., the WR-LC, WR-MC, ER-LC and
ER-MC strains). Dotted lines are used to approximately indicate the CI production rates
over which samples are expected to transition from a bimodal to a unimodal structure. Be-
cause of day-to-day variation in flow cytometer performance, the units of fluorescence are
consistent within each assay, but are not comparable across different assays. Furthermore,
the fluorescence measurements introduce a nonzero offset resulting from cellular autoflu-
orescence and, to a lesser degree, from the background noise of the optics. However, as
was shown previously in Figure 5.3, the fluorescence units match the LacZ assay units to
within an offset and scaling factor.

The high intensity populations appear to show greater variability in intensity, which
is presumably compounded by the way in which the constrained skew-t distributions are
constructed and transformed. Since the constrained skew-t distributions are defined in
terms of the controls, the lower abundance of high intensity control samples means that the
regression models provide lower confidence estimates of the skew-t parameters at those
intensities. Furthermore, since the distributions are fit to data in the Logicle scale, any
errors in the fitted population locations will be amplified by the transformation back to
the original scale. Confidence in the expected intensity of a sub-population is also lower
for those occupying a smaller fraction of the sample. In spite of all these potential sources
of error, the Tum− control data are remarkably well-formed for a single replicate, and the
MFL data display convincing trends on the whole.

Each of the MFL strains exhibits a region of CI production rates in which bimodal cell
populations can be found. As can be seen in Figure 5.9, these bimodal regions are (for
the most part) flanked to either side by unimodal samples. For the bimodal samples, the
separation in activity between low and high fluorescence sub-populations is comparable
to the separation in activity between the flanking unimodal populations. This is a striking
contrast with the separation seen previously between the low and high O/N long equili-
bration time LacZ assay curves in Figure 4.3 of the previous chapter. A cursory inspection
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Figure 5.9: Bimodal cell populations are found in each of the Tum−CI MFL strains. Long equilibra-
tion time hysteresis assays were performed for each of the MFL strains (WR-LC, WR-MC, ER-LC and
ER-MC) and the pR activity of these samples measured by flow cytometry for 10,000–30,000 cells.
These population fluorescence measurements were curated as described in Chapter 5 and fit with
mixture models of constrained skew-t distributions. Shown plotted are the expected values of the com-
ponent distributions versus the final CI production rates (normalised from the final IPTGs as per Sec-
tion 3.3). Values for samples originating from high or low overnights (O/Ns), and experimental (Tum+)
or control (Tum−) strains can be distinguished by colour according to the legend. Samples were cat-
egorised as unimodal or bimodal using a threshold on the log-likelihood ratio between the alternative
models; for each CI production rate, unimodal samples are plotted as a single expected fluorescence
value, whilst bimodal samples are plotted with two. Dotted lines mark the transitions between unimodal
and bimodal descriptions of the samples. The area of each point is proportional to the fraction of that
sample that belongs to the respective component distribution. Note: for reasons described in the text,
the identity of the ER-LC strain used for this assay came into question so the results shown here for that
strain should be treated accordingly.
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Figure 5.10: The results obtained by flow cytometry can be interpreted in terms of the steady-state de-
terministic model. The low and high O/N Tum+ sub-population location data from long equilibration time
ER-MC hysteresis assays are reproduced here overlaid with a steady-state curve derived from the Tum−CI
MFL model. The model curve is essentially as previously depicted in Figure 2.7(b), but the model parame-
ters were manually adjusted to improve consistency with the data (εR = 1.2× 103 dimers/cell; HR = 2.0;
εS = 1.1× 104 monomers/cell; HS = 1.8; MT = 7.5× 104 monomers/cell). Due to day-to-day variation
and nonzero autofluorescence, the model curves have assay-specific maximum fluorescence parameters
and assay-specific offset parameters. (a) Data obtained from ER-MC panel in Figure 5.9 (MZ = 3.6× 103;
Offset = 1.5× 103). (b) Higher quality data to be presented later in Figure 5.11 (MZ = 8.0× 103; Offset =
2.0× 103).

of the shapes outlined by the sub-populations also suggests much more favourable com-
parison with the hysteresis curves modelled deterministically in Section 2.4.2.

The deterministic model cannot explain how bimodal populations arise in the hys-
teresis assay, but it can still serve as a useful framework for interpreting the behaviour
of each sub-population separately. A steady-state analysis of the Tum−CI MFL network
(Section 2.3.1) revealed how it could support two stable states in the bistable region. When
out of equilibrium in the region of bistability, whether by an extrinsic change to CI pro-
duction rate or by the effects of intrinsic noise, the positive feedback loop acts to bring the
system towards the ‘nearest’ stable state. This reveals how the Tum−CI MFL circuit might
maintain a bimodal population, since even with the presence of noisy gene expression,
the stable states would act as competing basins of attraction that increase the probability
of cells occupying states near the stable ones. A comparison of the steady-state model
and two independent long equilibration time hysteresis assays of the ER-MC strain are
shown in Figure 5.10, demonstrating how the two sub-populations might co-locate with
each stable state in the bimodal region. The data shown in Figure 5.10(a) is from Figure 5.9,
whilst the data in Figure 5.10(b) is from a higher quality assay that will be introduced later
in Section 5.4 and includes measurements at more CI production rates and with higher
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cell counts per sample. For the figure, the parameters chosen for the original steady-state
model in Section 2.3.1 were manually adjusted to improve the match between model and
data. Apart from scaling (via the MZ parameter) and offset parameters, the model curves
are identical for each assay. Though not a fitted model, the good match between the model
and data shows that the steady-state structure of the MFL is now better revealed after
projection of the stochastic results onto prototypical deterministic components.

When the rate of stochastic switching between the two zones of stability is equal,
the sizes of the sub-populations are an indication of the relative stability of each sta-
ble state [van Kampen, 2007]. For both low and high O/N cultures, the high intensity
sub-populations consistently become smaller as they near and extend beyond the right-
most bifurcation boundary, whilst the low intensity sub-populations consistently become
smaller as they approach the left-most bifurcation boundary. By referring back to the
steady-state analogy depicted in Figure 5.10, feasible explanations for these observed de-
creases in stability near the bifurcation boundaries include (1) a decreased vertical distance
to the unstable state (dotted line), making it easier to cross into the alternative basin of at-
traction, or (2) horizontal proximity to the monostable region, making it easier to cross into
the alternative monostable state. Both mechanisms are likely to contribute to the observed
behaviour to varying degrees. A stochastic model of the MFL circuit will be introduced in
the following chapter to assess how noise in the vertical (Tum production) or horizontal
(CI production) directions might affect stability in the Tum−CI MFL.

Differences between the hysteresis assays for each of the strains can also be rationalised
in terms of the steady-state model. As previously realised for the LacZ assay results, the
difference between the wRBS and eRBS strains is primarily a different scale of CI produc-
tion rates on the x-axis10. Where the wRBS should reveal more detail for lower production
rates, the eRBS should extend the hysteresis curve to higher production rates. This can be
seen when comparing the WR-MC and ER-MC strains: the WR-MC hysteresis curve is a
‘magnified’ version of the ER-MC hysteresis curve. Doubts over the identity of the ER-LC
strain11 preclude a similar comparison with the WR-LC strain. The effect of pR -tum plas-
mid copy-number can be seen by comparing the WR-LC and WR-MC assays: the low-
copy pR -tum plasmid produces a much smaller region of bimodality. This corresponds
well with the predictions of the steady-state model where a reduction in the unrepressed
level of Tum (MT) was shown to decrease the size of the bistable region in the model (Fig-
ure 2.9(a)). The region of bistability was also predicted to shift to lower CI production
rates, and this is consistent with the data. These results further highlight how the projec-

10 Note that since the CI production rates in the figure have been scaled according to low confidence results
obtained by western blot, it is not surprising that the eRBS and wRBS production rates appear inconsistent.

11 The surprising similarity between the ER-LC and ER-MC results, and the larger bimodal region of the
ER-LC strain compared with the WR-LC strain, brought into question its identity in this assay. Further in-
vestigation suggested that whether by contamination or experimenter error, it is likely that the strain being
assayed was the ER-MC strain. The ER-LC assay will be ignored in the discussion; it is left in the figure for
completeness.
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tion of stochastic data onto deterministic components can facilitate analysis in terms of a
steady-state deterministic model.

The semi-deterministic interpretation of Tum−CI MFL bistability corresponds well
with the basic trends of the hysteresis data shown in Figure 5.9, but the treatment of the
samples as pure two-component mixture models is limited. The two-component model is
clearly a simplification of the full stochastic model, which must further account for some
level of cells that are stochastically ‘switching’ between the sub-populations. Though the
bimodal distributions present as remarkably good fits of the data, the close overlap of the
peaks could easily obscure an intermediate population of cells. If the size of this inter-
mediate population was comparable with the sizes of the steady-state populations, the
mixture model components would be forced to compensate for the intermediate popula-
tion. In that case, the expected intensity of each population would tend to become more
centralised. There is evidence that such compensation may have occured for certain sam-
ples in the hysteresis assays. This is particularly obvious for the high fluorescence sub-
populations in the WR-MC low O/N samples of Figure 5.9, where the sub-populations in
the middle of the bimodal region appear to ‘pinch’ together. It would be difficult to cor-
rect for this centralising bias12, but it is important to keep it in mind when interpreting the
results.

Before moving on to a more involved stochastic treatment of the data, it is worth ex-
ploring an additional dimension of the deterministic model that has not yet been con-
sidered: the equilibration time. In the following section, the different equilibration time
assays will be used to study the dynamic evolution of the Tum−CI MFL. For this more de-
tailed analysis only one strain will be considered. The WR-LC and (presumably) the ER-LC
strains both have smaller regions of bimodality, making them harder to study quantita-
tively. In contrast, the bimodal region of the WR-MC strain is so large that the hysteresis
curve is truncated at the highest CI production rate; the fitted components of this strain
also showed particularly pronounced pinching. As such, the ER-MC strain stands as the
most suitable for further investigation and time course measurements of that strain will be
analysed and discussed in the coming section.

5.4 Noisy switching between sub-populations occurs throughout

the hysteresis assay

Flow cytometry measurements of the Tum−CI MFL at the long equilibration time point
revealed a bimodal population structure for hysteresis samples in the bistable region. Un-
der the equilibrium assumption, the long equilibration time assays could be interpreted

12 In theory, the bias could be corrected for by adding a third component to the mixture model to account
for these intermediate cells. However, its shape would be unlikely to conform to the constrained skew-t
model, and, being located between two closely overlapping fluorescence distributions, it would also be hard
to resolve with satisfactory confidence.
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in terms of the steady-state deterministic model to show how the sub-populations might
co-locate with the stable states. However, without measurements at other time points, it is
not possible to judge how close the MFL samples are to equilibrium, so the quality of the
steady-state comparison remains in doubt. In this section, flow cytometry measurements
of the short, medium and long equilibration time hysteresis assays of the ER-MC Tum−CI
MFL are used to investigate the approach to equilibrium. The mixture model components
reveal a much slower rate of change in pR activity than seen using the LacZ assay. The
sub-population sizes further indicate that active stochastic switching between the stable
states occurs throughout the time course, which augments the apparent rate of equilibra-
tion. A majority of the state switching in the low O/N samples appears to occur before
the short equilibration time, whereas the high O/N samples show substantial switching
between the times assayed.

Different equilibration time points of the hysteresis assay were previously measured by
LacZ assay by modifying the protocol for log-phase growth. Whilst measurement by flow
cytometry removes the need to maintain consistent culture OD600s, the same approach
was employed here to maximise comparability with the original whole-population assays.
For simplicity, only the ER-MC strain was considered in this more extensive analysis. Us-
ing the data analysis methods developed earlier in the chapter, the measured populations
are projected onto deterministic components to reveal bimodal populations at all equili-
bration time points. The data further reveals that switching between the constituent sub-
populations occurs throughout the observed time period, particularly for the high O/N
samples.

Two independent sets of equilibration time assays were measured by flow cytometry.
In the first set, short and normal equilibration time hysteresis assays were performed for
the ER-MC strain to complement the long equilibration time assay shown in Figure 5.9.
These assays were analysed as described in Section 5.3 and are shown in the upper panels
of Figure 5.11. For the second assay set, two minor modifications were made to the pro-
tocol to improve data quality. Firstly, to obtain greater detail in the bimodal region of the
MFL curves, additional intermediate induction levels were included for the Tum+ sam-
ples at the expense of fewer induction levels for the Tum− controls. Secondly, to improve
the quality of the morphology normalisation, the number of cells recorded per sample
was substantially increased and greater care taken to ensure FSC/SSC stability during
the course of measurement. These changes meant that the average cell density could be
reliably applied in the normalisation protocol (as previously noted in Section 5.1.4; also
see Appendix B), which both increased consistency for the expected intensities of the nor-
malised samples and, perhaps more importantly, increased the quality of the regression
models used to define the constrained skew-t mixture model. The analysed data from the
resulting second set of short, medium and long equilibration time assays is shown in the
lower panels of Figure 5.11. Whilst the high cell count assay set (lower panels) is of higher
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quality, it is still complemented by the low cell count assay set (upper panels), and both
sets will be analysed together.

From a deterministic perspective, equilibration of the samples is judged by changes
in mean activity over time. Crudely speaking, the mean activities of the sub-populations
might be expected to follow something akin to a deterministic trajectory, and, to a limited
degree, such equilibration behaviour appears to occur for the ER-MC MFL. Clearly, the
unimodal Tum− controls equilibrate quickly, being already quite close to equilibrium at
the normal equilibration time point. The dynamic trajectories of the MFL sub-populations
are harder to interpret, but starting from relatively flat lines at the short equilibration time,
they do progressively fold towards the presumptive steady-state curve by the long equili-
bration time. The rate of collapse of these sub-populations is slower than was observed by
whole population assay, and it seems likely that some additional equilibration time might
help to further tighten the shape. If so, then the example steady-state curve overlaid on the
long equilibration time assays back in Figure 5.10 may be slightly too broad. In any case,
with stochastic mechanisms clearly contributing to MFL behaviour, it is unlikely that the
dynamic deterministic trajectory can be accurately matched to the sub-population means13

and it becomes equally important to consider the rate of stochastic switching between the
zones of stability.

As is evident from Figure 5.11, bimodal populations are found at all equilibration time
points measured for the ER-MC MFL. At the short equilibration time point, the low O/N
samples are bimodal at all but the lowest CI production rates, indicating that much of the
split into two populations must occur before this time. In contrast, the high O/N sam-
ples at this time point only show bimodality at the lowest CI production rates. The CI
production rates at which bimodality is observed then change gradually at subsequent
equilibration times. For the low O/N samples, bimodal populations are lost at the high-
est CI production rates, with no obvious changes at lower CI production rates. For the
high O/N samples, the location of the bimodal populations shifts to higher CI production
rates over time. This sets a clear contrast between the alternative O/Ns: whereas most
of the low intensity sub-populations of the low O/N samples are already present by the
short equilibration time point, most of the high intensity sub-populations of the high O/N
samples are only observed after the short equilibration time. The implication is that, in
general, the high intensity sub-populations are less stable than the low intensity ones.

With regards to relative sub-population size, comparisons between the low and high
cell count assay sets are inconsistent, presumably since smaller populations are more eas-
ily resolved in the high cell count assay set. However, by considering the trends within
each assay set, it can be seen that changes in sub-population size over time are generally
less pronounced for the low O/N samples than they are for the high O/N samples. This
is evident, in particular, from the low O/N samples in the centre of the bimodal region

13This will be explained in more detail in the following chapter.
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Figure 5.11 (Continued): Two sets of short, normal and long equilibration time hysteresis assays of the
ER-MC strain were measured by flow cytometry: the first set (upper panels) were measured for lower cell
counts (10,000–35,000), and the second set (lower panels) were measured for higher cell counts (78,000–
92,000). Indicated in italic text for each assay is the equilibration type (short, normal or long) and the
recorded number of hours of equilibration time. The fluorescence distributions were curated as described
in Figure 5.9 and the sub-populations are also plotted as described in that figure. The area of each point
is proportional to the fraction of that sample that belongs to the respective component distribution. As in
previous figures, colour is used to distinguish history (low/high overnight (O/N)) and presence or absence
of Tum (Tum+/Tum−). Dotted lines mark the transitions between unimodal and bimodal descriptions of the
samples.

where changes in sub-population size are comparatively static. For these samples, stochas-
tic switching is likely to be close to equilibrium at the long equilibration time point, which
further implicates sub-population size in those samples as a measure of the relative stabil-
ity of each semi-stable state. In contrast, changes in sub-population sizes for the bimodal
high O/N samples are much larger over time, and it is unlikely that stochastic switching in
those samples has reached equilibrium by the long equilibration time point. As expected,
the largest changes in population size (for both low and high O/Ns) are found for samples
with CI production rates furthest from their initial states, indicating that those samples are
located well outside the region of bistability.

5.5 Chapter Summary

Measurements of the Tum−CI MFL strains by flow cytometry provided a richer picture of
its bistable behaviour than was obtained by LacZ assay. After filtering and normalisation
for morphological differences, single-cell measurements of pR activity clearly revealed a
bimodal population structure for samples in the presumptive bistable region of the MFL.
In spite of substantial overlap of the sub-populations, a rigorous method for fitting a two-
component mixture model to the data was devised to enable a quantitative analysis. The
approach made use of the Tum− control distributions to construct a family of prototypical
unimodal distributions based on empirically constrained skew-t distributions. These con-
strained skew-t distributions fitted the data extremely well and provided robust discrim-
ination between unimodal and bimodal samples. The expected activity of each mixture
model component compared favourably with the steady-state deterministic model for the
long equilibration time hysteresis curves, and a semi-deterministic interpretation could be
invoked to explain some basic trends in the data. Flow cytometry measurements made
at multiple equilibration times further revealed that stochastic switching between the two
stable states is an active process throughout the assay. In the coming chapter, a stochastic
model of the MFL will be developed to enable a deeper investigation into the origins of
this stochastic switching.



6
Investigating noisy switching in the Tum−CI

MFL by stochastic modelling

The deterministic model of the Tum−CI MFL provided a simple analytical framework that
indicated the potential for bistability in this gene circuit and motivated the hysteresis assay
as an informative experimental test of its stability. Initial results obtained by LacZ assay
presented only limited evidence for hysteresis of a whole population of cells. However,
single-cell measurements by flow cytometry revealed that hysteresis had been obscured by
noisy switching between two alternative stable states. Cell populations were in fact com-
posed of two sub-populations, each with mean fluorescence intensities that appeared con-
sistent with the steady-state deterministic model. Moreover, time-course measurements
provided evidence for active switching between the two stable states over the course of
the hysteresis assay. These results argued strongly for the generation of a significant level
of noise at the single-cell level.

An important source of noise in bacterial gene networks is the stochasticity intrinsic
to gene expression [McAdams and Arkin, 1997; Elowitz et al., 2002; Golding et al., 2005;
Cai et al., 2006]. Such intrinsic noise arises in consequence of the random timing of bio-
chemical reactions at the molecular scale and the finite, low copy numbers of network
components such as promoter elements and mRNA [Ozbudak et al., 2002; Golding et al.,
2005; Cai et al., 2006]. This results in ‘noisy’ protein production with significant cell-to-
cell variation, which can cause average cell behaviour to deviate significantly from the
equivalent deterministic trajectory. Indeed, gene networks that are analogous from a de-
terministic standpoint can exhibit distinct phenotypes dependent on their noise charac-
teristics [Cağatay et al., 2009]. Far from being a hindrance, noise in gene networks has
been observed to enable complex emergent behaviours like probabilistic sampling of al-
ternative states [Losick and Desplan, 2008; Kittisopikul and Süel, 2010], adaptation on
non-evolutionary timescales [Tsuru et al., 2011], and even bimodal cell populations [To
and Maheshri, 2010]. A quantitative understanding of such behaviours requires stochastic
modelling. Stochastic models recognise that molecules are most accurately represented as
discrete quantities, not continuous concentrations, and that the seemingly random diffu-
sion of molecules according to Brownian motion results in the random timing of molecular
collisions and reactions [Gillespie, 1977]. As such, stochastic models of biochemical reac-
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tion networks are necessarily probabilistic [McAdams and Arkin, 1997], characterising the
time evolution of the probability distributions of each discrete species [Gillespie, 1992; Ke-
pler and Elston, 2001].

This chapter begins with a brief introduction to these and other basic concepts of
stochastic modelling and simulation. By considering the conditions under which a deter-
ministic model is an appropriate approximation for a stochastic model, a hybrid stochas-
tic/deterministic model is proposed for the Tum−CI MFL that is designed to capture the
most important sources of noise. The model is deliberately kept simple to restrict focus
to critical mechanisms and minimise the number of parameters. The hybrid model bears
a number of parallels with the original deterministic model, and this is used to facilitate
parameter estimation from the sub-population location data of the previous chapter. Pa-
rameters specific to the stochastic model are, however, chosen heuristically. The resulting
model enables an exploratory analysis into the origins and roles of the noise generated
in the Tum−CI MFL. Model simulations suggest that noise in CI production has a simi-
lar effect on the stability of low and high fluorescence populations, whilst noise in Tum
production affects only the high fluorescence state. In order to reproduce the broad semi-
stable region observed for the low O/N, the stochastic model requires large fluctuations in
Tum production. These fluctuations are larger than would be expected simply from tran-
scription and translation, implying that an important slow stochastic reaction, such as the
partitioning of plasmids at cell division, is missing in the model.

6.1 Stochastic modelling of gene networks

Whilst more complex than their deterministic counterparts, stochastic models provide a
more realistic description of gene network behaviour. Whereas a deterministic approach
treats each species using continuous concentration variables whose time evolution is wholly
predictable, the stochastic approach recognises that molecules and reactions are discrete
and that the timing of reaction events is effectively random at the molecular scale. As
such, stochastic models demand a probabilistic description: the time evolution of a species
is modelled not as a representative average concentration, but as a time-dependent prob-
ability distribution that specifies probabilities for observing every possible state (i.e., ev-
ery possible number of molecules). Like the ODEs that are specified for a deterministic
model, a system of stochastic differential equations could, in theory, be specified for the
time evolution of a joint probability distribution that simultaneously describes the prob-
abilities for all possible states of all species in the network under consideration. Such a
Chemical Master Equation (CME) can be rigorously derived using the fundamental prin-
ciples of molecular kinetics [Gillespie, 1992], but its complexity prohibits exact solutions
for any but the simplest cases. Instead, stochastic gene networks are typically studied by
simulating trajectories that are consistent with the CME [Rao et al., 2002]. Inferences about
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the probability distributions of the state variables are then derived by calculating statistics
over multiple trajectories (typically 1000s).

The theoretical framework for simulating systems of stochastic reactions has been stud-
ied for many decades. However, on the back of experiments confirming and characterising
the generation of noise in gene expression [Elowitz et al., 2002; Golding et al., 2005; Cai
et al., 2006; Taniguchi et al., 2010], interest in stochastic modelling of gene networks has
exploded over the last 15 years [Rao et al., 2002; Kaern et al., 2005; Paulsson, 2005; Wilkin-
son, 2009]. Many alternative stochastic simulation algorithms have been formulated to
deal with the peculiarities of modelling gene networks; the most relevant are introduced
and compared in the text by Wilkinson [2006]. However, by and large, these algorithms are
all adaptations of the algorithm formulated by Gillespie [1977] and a basic understanding
of Gillespie’s algorithm is a useful prelude to the hybrid deterministic/stochastic model
that is later introduced for modelling the Tum−CI MFL.

Gillespie’s algorithm [Gillespie, 1977] is the canonical algorithm for simulating stochas-
tic trajectories. The algorithm prescribes a Monte Carlo simulation method that generates
exact realisations of the Markov process defined by the CME [Gillespie, 1992]. The foun-
dation for the algorithm is a statistical mechanical argument (made precise in Gillespie
[1992]) that, in a well mixed and thermally equilibrated container, the probability per unit
time for a reaction between two freely diffusing molecules is constant in time. Put math-
ematically, the probability for that reaction to occur in some infinitessimal time interval
dt can be written as λdt, where critically, the reaction ‘hazard’ λ has no probabilistic time
dependence. Such a property is symptomatic of a homogeneous Poisson process — a
memoryless process where the number of events counted over a time interval t follows a
Poisson distribution Pois(λt). However, the occurrence of the reaction events themselves
make the overall stochastic process non-Poisson in general, since most reactions consume
reagents or effect changes in reagent numbers for downstream reactions. Such events in-
troduce a conditional (probabilistic) time dependence into the hazards. Gillespie’s method
circumvents this complexity by instead framing the problem step-wise in terms of times
between events, which for a Poisson process are exponentially distributed. The algorithm
proceeds iteratively over three steps: (1) randomly sampling a time to the first event using
the combined hazard for all possible reactions, (2) randomly choosing which particular
reaction will next occur as weighted by the individual reaction hazards, and (3) updating
the state according to that reaction’s stoichiometry and recalculating the hazards for the
new state. In this way, the algorithm ensures that each probabilistic step involves no time-
varying hazards by simply stepping forwards one reaction at a time, only updating the
reaction hazards step-by-step. By repeatedly sampling the next reaction and stepping the
system forwards, the desired simulation time can be reached.

To make the Gillespie algorithm more concrete, consider the hypothetical reaction
A + B C. An example trajectory for this reaction is shown in Figure 6.1. Given NA
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Figure 6.1: Illustrating the Gillespie algorithm. An example trajectory for the hypothetical reaction A+B
C is shown in the upper panel. The times between reactions are chosen by mapping random numbers from
the unit uniform distribution (U(0, 1)) the cumulative distribution function (CDF) of the exponential distribu-
tions shown in the lower panels. As each reaction occurs, the hazards change to reflect the new numbers
of molecules, and this affects the shape of the CDF. In this case, A and B are consumed until one of them
reaches zero. At that point the hazard becomes zero and there is no chance for the reaction to occur.

molecules of A and NB molecules of B, the probability of any reaction occuring can be cal-
culated by summing up the probability for a reaction between each A-B pair. Using basic
combinatorics, the combined hazard can be derived, giving λ = cNANB, where c is some
reaction-specific rate constant that encapsulates both the probability for two molecules
colliding and also the likelihood of that reaction given a collision. If this were a Pois-
son process, λ would be the average number of reactions occurring per unit time and
times between events could be simulated by sampling from the exponential distribution,
Exp(λ). An exponentially distributed random variable T, written T ∼ Exp(λ), has cu-
mulative distribution function (CDF) FT(t) = 1− e−λt. The CDFs for different hazards,
λ, are shown in the lower panels of Figure 6.1. Times are sampled from these CDFs by
mapping random numbers drawn from X ∼ U(0, 1) — the unit uniform distribution — to
the inverse of the CDF, T ∼ F−1

T (X). That is, the time to the next reaction can be calculated
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as1 t = − log(u)/λ, where u is randomly sampled from U(0, 1) so that the distribution of
u is equivalent to 1− u. Since by design, no other reactions can occur in this time step, the
time is sampled exactly. After the reaction, however, the number of A and B molecules has
decreased by one, and the new hazard becomes λ = c(NA − 1)(NB − 1). With this new
hazard, the time to the next event can now be generated randomly and the simulation
again stepped forwards. Where there is more than one type of reaction, the time to the
next event needs to be generated using the combined hazard for any reaction to occur.

Gillespie’s algorithm, whilst exact, still demands too much detail to make for practi-
cal simulation of gene networks. The algorithm calls for the simulation of all fundamen-
tal diffusion-limited reactions, which would be a formidable task if each of the base pair
transcription reactions, amino acid translation reactions or protein multimerisation steps
were included. Such detailed models can be formulated, and have been for systems as
complex as the phage lambda lysis-lysogeny decision [Arkin et al., 1998], but numerous
parameter estimates are required and simulations consume significant compute time. It
is more valuable in this context to keep the model simple and efficient. By capturing just
the primary stochastic sources and approximating the details, parameter identifiability is
maximised and simulation times greatly reduced. Though model integrity is lost, as long
as the assumptions behind a simple model are well-understood, informative predictions
and insights can still be made. To this end, the coming paragraphs discuss various ap-
proximations that can be made for stochastic models of gene networks. Firstly, conditions
under which the discrete process can be treated as continuous are considered. Reactions
best suited to the discrete regime should be maintained as such in the Gillespie algorithm,
whereas a continuous process can, in many cases, be approximated deterministically. The
processes of transcription and translation are identified as important sources of noise, and
a simplified model of stochastic protein production is then introduced. Finally, an accu-
rate way for incorporating deterministic reactions in the stochastic simulation algorithm
is introduced.

A notable assumption of the deterministic model is that species can be treated as con-
tinuous concentrations. This greatly simplifies the mathematics, and motivates approxi-
mating the discrete stochastic process by a continuous one. The CME, or equivalently the
Gillespie algorithm, requires a discrete formulation, but it can be shown that under certain
conditions it can be approximated as a Chemical Langevin Equation (CLE)— a system of
stochastic differential equations involving linear combinations of deterministic terms and
(Gaussian) white noise terms [Gillespie, 2000; Rao et al., 2002; Wilkinson, 2009]. The CLE
evolves as a continuous stochastic process, so that instead of jumping discretely, molecule
numbers effectively diffuse over time. The CLE is a valid approximation when both (1) the
rates of each reaction change slowly enough, and (2) the number of all stochastic reactions
is sufficiently large on that time scale [Gillespie, 2000; Kaern et al., 2005]. These conditions

1Here, log is the natural logarithm; the base 10 logarithm is notated in this thesis as log10.
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are typically satisfied when the counts of all involved molecules are high, though the CLE
can provide accurate results for counts as low as tens of molecules [Grima et al., 2011].
Importantly, these conditions are satisfied for many of the high frequency reactions that
might otherwise consume much simulation time.

Even more simplifications can be made where the mean behaviour of the CLE can be
approximated as a deterministic trajectory. The CLE reduces exactly to a deterministic
ODE when the variance of the noise terms is set to zero. However, if the variance relative
to the mean is small but nonzero, the average behaviour of the system will often follow the
deterministic trajectory. A well-known result is that the relative size of downstream fluc-
tuations scales approximately as the inverse square root of the reactant populations [Gille-
spie, 2000], so deterministic behaviour is again favoured when population numbers are
high. If the CLE contains only linear terms, it will follow the deterministic trajectory ex-
actly [Wilkinson, 2006]. Since the noise terms are embedded in the CLE, however, for
highly nonlinear systems the mean behaviour of the continuous stochastic process can di-
verge significantly from the deterministic trajectory, even for low levels of noise. This is
most obviously the case when there are multiple stable states in the deterministic equa-
tions, since the system may with some (though perhaps low) probability switch into an
alternative stable state [Gillespie, 2000]. In other cases, nonlinearity results in only minor
deviations, and the simplicity brought by the deterministic equilibrium formulation makes
it an attractive option even where some accuracy is lost. The high frequency and relatively
fast dynamics of protein-DNA and protein-protein binding mean that such reactions can
often be approximated as deterministic using equilibrium statistical mechanics [McAdams
and Arkin, 1997]. Note that high molecule numbers alone do not guarantee the suitabil-
ity of the approximation: slow rates of transcription factor unbinding could give rise to
stochastic bimodality [Kaern et al., 2005].

Reactions dependent on species with low counts (e.g., promoters or mRNA) are likely
to generate large relative fluctuations, so reactions like transcription and translation are
typically best modelled stochastically [Thattai and van Oudenaarden, 2001; Ozbudak et al.,
2002; Kaern et al., 2005]. Whilst there are many steps in the transcription and translation of
a gene, it is the low-frequency rate-limiting steps that are the most influential in a stochas-
tic model. A two-stage model of protein production has proven successful and popular in
prokaryotes [Ozbudak et al., 2002; Swain et al., 2002; Friedman et al., 2006]. This simple
model treats the transcription of mRNA as a single effective reaction, and the translation
of protein as a first order reaction in the number of transcripts. Both mRNA and protein
are also degraded in first order, so that the production of protein is dependent on the life-
time of the mRNA. If the half-life of the mRNA is shorter than the half-life of the proteins,
stochastic gene expression can be further approximated as a single effective reaction in
which proteins are produced in stochastic bursts that are exponentially distributed in time
and geometrically distributed in size [Friedman et al., 2006; Shahrezaei and Swain, 2008].
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The one-step protein production approximation relies on time-averaging over the fluc-
tuations of the short-lived intermediate mRNA species, so that mRNA dynamics can be
subsumed into an effective overall reaction. In spite of its simplicity, this one-step model
has been shown to capture much of the essential variability intrinsic to gene expression in
prokaryotes [Cai et al., 2006; Yu et al., 2006; Taniguchi et al., 2010]. By ignoring mRNA
dynamics, this simple model produces simulations marked by instantaneous bursts of
protein production. The size of the burst is geometrically distributed as a result of the
exponentially distributed lifetime of an mRNA: assuming a constant rate of translation,
the number of proteins produced from each transcript will be proportional to its lifetime,
and the exponential distribution is the continuous equivalent of the discrete geometric
distribution.

The one-step protein production reaction can be parameterised by a hazard, λ, that
characterises the average rate of promoter firing, and a burst size, b, that gives the av-
erage number proteins produced per transcript. In relation to an overall rate of protein
production, p, the hazard can be expressed as λ = p/b. This hazard can be used as per the
Gillespie algorithm to simulate a time, ∆t, to the next promoter firing event. Unlike in the
Gillespie algorithm, however, the stoichiometry of the reaction is determined by randomly
sampling a burst size from a geometric distribution. The total number of proteins, N(t),
then gets updated according to this sampled burst size:

N(t + ∆t) = N(t) + ∆N (6.1)

where ∆N is sampled from Geom(1/b), the geometric distribution with average burst size
of b. This parameterisation has the added benefit that the burst size parameter, b, sets the
magnitude of noise [Paulsson and Ehrenberg, 2000; Thattai and van Oudenaarden, 2001;
Friedman et al., 2006]. This means that the burst size, b, can be chosen to produce the ex-
pected level of intrinsic noise for the production of a given protein. The rate of promoter
firing, λ, is then determined using this burst size and the overall rate of production, p,
which is closely related to deterministic production rates. Since transcription factor dy-
namics at the promoter are typically fast, it is possible to link the fractional occupancy
of a transcription factor at its promoter to the rate of transcription, simply by scaling the
hazard in the one-step protein production reaction. Note that even if transcription factor
dynamics operate on the same timescale as mRNA, providing that the transcription factor
off-rate is faster than protein decay, time-averaging can again be invoked to show that the
one-step model continues to be appropriate2 [Shahrezaei and Swain, 2008].

It can now be seen that most gene networks will consist of a number of important
stochastic reactions, but also many reactions that could be treated more effectively as de-
terministic. This motivates a hybrid modelling approach where stochastic simulation is

2 Note, however, that if one were instead following the distribution of mRNA, it would still be necessary to
explicitly model the promoter state, as in Zong et al. [2010], since the timescale of transcription factor binding
can be similar to the mRNA lifetime.
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performed for selected reactions, with the others simulated by concurrently solving the
(time-evolving) determininstic equations [Kiehl et al., 2004]. More accurate hybrid models
can also simulate the additional noise that is produced from the high frequency equa-
tions by numerically simulating from their CLE [Salis and Kaznessis, 2005]. However, the
simpler hybrid stochastic/deterministic model can still be used to accurately model the ly-
sis/lysogeny decision in phage lambda [Kiehl et al., 2004], and is likely to remain suitable
for studying stability in other bistable gene networks.

Two important extensions to the Gillespie algorithm are required for the hybrid stochas-
tic/deterministic model: (1) maintaining well-synchronised discrete and continuous ver-
sions of each state variable, and (2) numerically integrating the deterministic equations
between each stochastic event. The former can be addressed through a careful numerical
implementation. The latter, however, deserves additional attention since the evolving de-
terministic equations can result in time dependent hazards [Haseltine and Rawlings, 2002;
Alfonsi et al., 2005]. The introduction of a (deterministic) time-dependence into the haz-
ards means that the stochastic reactions must be modelled according to an inhomogeneous
Poisson process. To illustrate this in terms of the example reaction A + B C, consider
the case where that reaction occurs inside a cell in an exponentially dividing culture. Cells
in such a culture grow in volume, and this increase in volume can essentially be treated as
continuous (see Wilkinson [2006] for a more thorough discussion of this example). In this
case, the hazard λ(t) now has a (deterministic) time dependence: λ(t) = cNANB/V(t) for
some time-varying volume V(t). By treating the hazard as constant over each infinitessi-
mal increment dt, then the number of events in that interval is approximately Pois(λ(t)dt).
Since the sum of Poisson distributions is also Poisson, this can be integrated to obtain a cu-
mulative hazard Λ(t):

Λ(t) =
∫ t

0
λ(s)ds (6.2)

where s is an integration variable. The number of events Nt occuring in time t is then given
by the inhomogeneous Poisson process Nt ∼ Po(Λ(t)). The time to the next reaction can
be randomly sampled, by analogy with the sampling method for Exp(λ), as:

t = Λ−1(− log(u)) (6.3)

where u is randomly generated from U(0, 1). Where a convenient analytical expression
for the cumulative hazard Λ(t) can be formed, the inverse can be directly calculated to
obtain the above expression exactly. However, in more complex cases the integral must
be numerically approximated to determine the time between steps. In that case, it is more
convenient to calculate Λ(t) directly and numerically integrate until it has a value match-
ing − log(u). This method of numerical integration will be used for the stochastic model
of the Tum−CI MFL that is introduced next.
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6.2 A hybrid stochastic/deterministic model of the Tum−CI MFL

In order to investigate noisy switching between stable states in the Tum−CI MFL, a stochas-
tic model must be derived. For the bistable lac operon, noisy switching during hysteresis
has also been observed experimentally [Ozbudak et al., 2004], and in that case, a model
based on the well-established deterministic equations, but including additional stochastic
terms was sufficient to explain how the reporter distributions evolved over time [Mettetal
et al., 2006]. By maintaining strong parallels with the deterministic model, Mettetal et al.
were able to construct a simple but effective model where many of the required parame-
ters were already known or could be easily derived from steady-state distributions. Given
that the behaviour of CI−pR repression and much of the behaviour of the Tum−CI MFL
can also be identified with the deterministic model, a similar approach to developing a
stochastic model of the Tum−CI MFL is taken here. By identifying likely sources of in-
ternal noise in the Tum−CI MFL, a hybrid stochastic/deterministic model of the Tum−CI
MFL is developed based on the deterministic model of Chapter 2. However, unlike the
lac operon model, the hybrid model of the Tum−CI MFL used here includes time-varying
hazards that require a more rigorous hybrid modelling approach. This section concludes
with some example simulation time courses illustrating the main features of the model.

Like for the deterministic model, separation of reaction timescales can be exploited to
reduce the stochastic model. As was mentioned back in Section 2.2.3, the rate of loss of
a species effectively sets its timescale. The rates of loss of CI and GFP are likely to be
amongst the slowest, and these are also particularly influential in setting the state of the
switch. Loss of both these species is dilution limited, making these rates on the order of the
cell generation time (around 30 minutes). In contrast, the rates of loss of mRNA and the
dissociation rates of transcription factors are typically at least an order of magnitude faster.
The rate of loss of mRNAs in the Tum−CI MFL is unknown, but in E. coli, mRNA half-lives
are typically 3–8 minutes [Bernstein et al., 2002]. The lac repressor controls expression from
the P lac promoter with an average dissociation time of around 5 minutes [Hammar et al.,
2014]. The CI repressor controls expression from the pR promoter, and since the in vitro
binding strength of CI to its promoter (28 nM) [Dodd and Egan, 1996; Shearwin et al., 1998]
is approximately three orders of magnitude weaker than that for the lac repressor [Bintu
et al., 2005], dynamics of CI at the pR promoter are likely to be faster still. This means
that fluctuations in promoter state and mRNA are fast relative to the dilution rate, and
will make only time-averaged contributions to the distributions of CI and GFP. Such fast
reactions can be treated under a quasi-steady-state approximation [Rao and Arkin, 2003]
and subsumed into effective reactions [Shahrezaei and Swain, 2008]. This means that pro-
duction of CI from P lac and of GFP from pR can be simulated according to the one-step
model introduced in the previous section, with equilibrium models used to scale the rates
of promoter firing as in the deterministic model. The distributions of fluorescence activ-
ities in the Tum− control strains support such approximations, since they are unimodal
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and their mean activities compare well with the determininistic model.

The rate of loss of Tum is less well defined, making it more difficult to choose an ap-
propriate model for Tum production. Recall from the degradation rate measurements in
Section 3.5.2 that a fraction of the available Tum protein is lost quickly with a half-life of
2–3 minutes, with the remainder seemingly lost only by dilution. Depending on whether
the degradation-sensitive or degradation-resistant fraction is considered the active frac-
tion, the timescale for Tum evolution could be close to that of mRNA/repressor binding,
or alternatively dilution limited, as it is for CI and GFP. Interestingly, deterministic fits
of the time-course LacZ assay data (Section 4.3.3) and also of the sub-populations deter-
mined by flow cytometry (to be introduced in Section 6.3.1) prefer a long half-life for Tum.
Though this may be an artefact of fitting stochastic data with a deterministic model, it is
tempting to assume in the first instance that Tum is lost only by dilution since it greatly
simplifies the model. If active Tum does in fact equilibrate quickly, then both transcrip-
tion factor binding dynamics and mRNA dynamics may need to be explicitly modelled,
especially since stochastic reactions could be amplified through the feedback loop. On
the other hand, since the pR -tum module is located on a multi-copy plasmid, averaging
over the promoter states may, to some degree, compensate for such effects [Loinger and
Biham, 2009]. To avoid these complexities at this stage, active Tum is assumed to be lost
by dilution.

By making the assumption that Tum is dilution limited, the number of discrete species
simulated in the stochastic model of the Tum−CI MFL can be limited to just the total
levels of CI, Tum and GFP proteins. Transcription factor binding and mRNA levels can be
treated under the quasi-steady-state approximation, as can formation and dissociation of
the Tum−CI complex (recall from Section 2.4.1 that dissociation of the Tum−CI complex
is likely to be fast). As such, the stochastic model should closely parallel a deterministic
ODE specified in terms of total CI (Ctot), total Tum (Ttot), and total GFP (Z) concentrations,
like that first introduced in Section 2.2.4:

dCtot

dt
= pC − γCtot (6.4a)

dTtot

dt
=

pT

1 +
(

C
εR

)HR
− γTtot (6.4b)

dZ
dt

=
pZ

1 +
(

C
εR

)HR
− γZ (6.4c)

Here targeted degradation of the complex has been neglected, and the rates of loss of
all species have been set to the dilution rate. The analogous stochastic model has just
three stochastic reactions corresponding to each of the production rate terms. Recall that
the Tum−CI and CI−pR equilibria are encapsulated within the Tum and GFP production
terms, which depend on both Ctot and Ttot via the concentration of free CI according to the
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constraint equation:

Ctot = C + C
(

Ttot − 2Ctot + 2C
εS

)HS

(6.5)

This equation can be solved for C using numerical root finding routines.
The dilution terms in Equation (6.4) will be modelled both continuously, with species

concentrations reduced according to the expanding volume of the cell, but also stochasti-
cally, with species partitioned binomially upon cell division. Continuous volume expan-
sion affects only species concentrations; discrete molecule numbers continue to increase
until cell division. Species concentrations can be calculated at any given instant from the
number of molecules of that species and the cell volume. Since volume expansion due
to cell growth is linear [Kubitschek, 1990], it is treated as a continuous function of time
relative to division and given by V(t) = t/τdbl + 1, where τdbl is the cell doubling time
and volumes are normalised to the cell volume just after division. When the relative time
reaches τdbl, molecule numbers are randomly reduced according to a binomial distribution
and the relative time is reset to 0.

Since the deterministic model was defined according to a constant-volume process,
the time-averaged production rates specified in that model do not correspond directly to
the hazards of the variable-volume stochastic model. Take, for example, a standard pro-
duction/dilution process specified as dC

dt = p − γC in the constant-volume formulation.
The equivalent variable-volume rate equation can be split into an equation specifying the
rate of increase in the average number of molecules, dN

dt = λb, and an equation specifying
how the concentration decreases with increasing volume, C(t) = N(t)/V(t). Using the
quotient rule, the rate of change of the concentration can be expanded:

dC
dt

=
V dN

dt − N dV
dt

V2 =
λb
V
− N

τdblV2 =
λb
V
− C

τdblV

In order to reconcile the two formulations, the coefficients of C in the constant-volume
equation must match to those in the variable-volume equation. Since cell volume changes
periodically according to cell division, it is sufficient to ensure that the coefficients match
over the period of one doubling time. For the production term:

p =

〈
λb
V

〉
t
=

λb
τdbl

∫ τdbl

0

1
V

dt = λb
∫ 2

1

1
V

dV = λb log(2)

where the angular brackets denote a time average over the doubling period. The factor
of log(2) gives the correct scaling between the two formulations. This means that in the
stochastic model, the hazard for CI production can be expressed as λC = pC/bC log(2),
where pC is the rate of CI production in the deterministic model, and bC is the average
number of proteins produced per mRNA transcript. A notable omission in this formula-
tion is gene replication, which may well stand as another important source of stochasticity.
It would be relatively straightforwards to add replication events for each of the genes in
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Table 6.1: Stochastic reactions in the Tum−CI MFL model. The cumulative hazards are used to simulate
the time to the next reaction. The stoichiometries specify how species counts change as a result of that
reaction. Here, each reaction produces a randomly-sized burst of protein.

Reaction Cumulative Hazard Stoichiometry

∅ CI2
pCt

bC log(2) ∆Ctot ∼ Geom(1/bC)

∅ GFP
pZ

bZ log(2)

∫ t

0

1

1 +
(

C
εR

)HR
dt ∆Z ∼ Geom(1/bZ)

∅ Tum
pT

bT log(2)

∫ t

0

1

1 +
(

C
εR

)HR
dt ∆Ttot ∼ Geom(1/bT)

the hybrid model, since the model already incorporates the cell cycle. However, in the in-
terests of limiting the number of parameters in this exploratory model, such an extension
will be left for future study.

The cumulative hazards for one-step stochastic production of each species can now be
completely specified and are given in Table 6.1. These reactions are specified in terms of
burst sizes, bC, bT and bZ, and deterministic protein production rates, pC, pT and pZ, for
CI, Tum and GFP respectively. Since the hazard for production of CI includes no time de-
pendence, it is a standard Gillespie reaction and the cumulative hazard (as specified in the
table) increases linearly with time. The hazards for production of Tum and GFP, however,
need to be treated according to an inhomogeneous Poisson process, since the level of re-
pression changes over time according to the continuous loss of CI and Tum by dilution.
Those cumulative hazards must be numerically integrated since the shared repression fac-
tor is dependent on the level of free CI, which is itself determined by numerical solutions
to the constraint equation, Equation (6.5). As per the one-step model of production, the
result of any of these stochastic reactions is to increase protein levels according to a geo-
metric distribution with mean given by the respective burst size parameters.

Custom software was written in C++ to implement the hybrid stochastic/deterministic
model of the Tum−CI MFL (and similarly a model of the Tum− controls). The hybrid sim-
ulator uses the Next Reaction variant [Gibson and Bruck, 2000] of the Gillespie algorithm
and is based on algorithms described elsewhere [Kiehl et al., 2004; Alfonsi et al., 2005],
with hazards integrated according to an Euler time step. The state of the system can be
completely characterised from the current time, t, the current volume, V, and three contin-
uous state variables giving the total concentrations of Tum, CI and GFP. Protein numbers
can be calculated using the product of concentration and volume and are made discrete
by rounding down to the nearest integer. Only the three burst size parameters are spe-
cific to the stochastic model; the remaining parameters relate directly to the deterministic
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model. Further details of the stochastic model and excerpts of the code are provided in
Appendix D.

To illustrate key features of the stochastic model and simulation method, some sam-
ple time courses from the Tum− control model are shown in Figure 6.2. The Tum− model
is identical to that of the Tum+ strain except that all Tum evolution terms are omitted.
The activity of the P lac promoter (pC), shown in the lowermost plots, is set to mimic the
hysteresis assay. Time courses start from either a simulated low O/N (left) or high O/N
(right) culture, and then at time t = 0 the activity of P lac is set to an intermediate level of
induction and simulation continued for the desired equilibration time. In the figure, the
final induction levels were chosen to be far from initial levels to show the effect of a large
change in induction conditions. Since the stochastic model produces Monte Carlo simula-
tions, five samples of each trajectory are shown. An additional random time of simulation
in O/N conditions is performed prior to collecting data to ensure that the timing of cell
division is different for each trajectory. Species concentrations are favoured over protein
numbers, because concentrations are measured in the pR activity assays3 and concentra-
tion measurements are easier to relate to the deterministic model. For reference, deter-
ministic trajectories are shown overlaid on the stochastic ones. Since the Tum− controls
have a single stable state, and since large relative changes in protein levels require many
promoter firing events, it is not surprising that the average behaviour of the stochastic
trajectories tends to follow the deterministic curves. Individual stochastic trajectories can,
however, diverge significantly from the deterministic one, and this indicates the level of
noise around the average trajectory.

The combined effects of stochastic one-step protein production and continuous dilu-
tion can be seen in the individual stochastic trajectories. The one-step model of production
results in instantaneous bursts of protein production, which is particularly obvious for the
large bursts. These randomly-sized bursts are immediately followed by hyperbolic loss
in species concentrations according to the rate of increase in cell volume. This bursting is
symptomatic of the one-step model of production, since it is assumed that mRNA is very
short-lived — effectively lost as soon as it is produced — so that the dynamics of protein
concentrations are dominated by promoter firing and dilution. The hyperbolic decrease
in protein concentrations due to dilution becomes exponential as a result of cell division.
This effect can be seen particularly in the decay of GFP protein from the high activity state
(left panel), and to a lesser degree in the decay of CI protein from the high induction state
(right panel).

The behaviour of the stochastic model is better resolved when considering many thou-
sands of trajectories. The histograms in the upper panels of Figure 6.2 show the distri-
bution of pR activities at time t = 200 minutes for 5000 sample trajectories. Consistent

3 Normalisation by morphology (Section 5.1.4) in the flow cytometry assays effectively turns the measured
absolute level of fluorescence into a level of fluorescence per the average cell.
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Figure 6.2: Noisiness in the hybrid stochastic/deterministic model of the Tum− control strain. Two
conditions are tested: the left panels show simulations of the transition from a low O/N culture to a
high CI production rate; the right panels show instead the transition from a high O/N culture to a low
CI production rate. The variation over time of P lac promoter activity (pC), total CI concentration (Ctot)
and pR activity are shown in the lower plots: five individual stochastic trajectories are shown for each
initial condition and are distinguished by shading; thick solid lines show the average of 5000 stochastic
trajectories; thin black lines show the corresponding deterministic trajectory. In the plot of P lac, thick
black dashed lines indicate the activities ascribed to low and high O/N cultures. The upper plots show
histograms for the distribution of simulated pR activities of 5000 trajectories measured at time t = 200;
insets show the same distribution on a logarithmic scale to facilitate comparisons with the flow cytometry
results; vertical dotted lines show the value predicted deterministically. Parameters for the models are
as listed in the ‘Simple fit’ column of Table 6.2, with the burst sizes of CI and GFP defined to be 300
dimers and 20 arbitrary units (a.u.) respectively.
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with theory [Gillespie, 2000], noise levels (the widths of the distributions) increase with
increasing protein levels (activity). For the burst-size parameters used in this example,
the distribution with high activity (right panel) has a width that is comparable with those
of the flow cytometry samples (compare the logarithmic inset with the histograms in Fig-
ure 5.5, for example). The activity predicted according to the deterministic model does not
necessarily overlap with the average behaviour. In the low activity state, the line marking
the deterministic activity is close to the centre of the distribution, whereas it is off-centre
for the high activity state. This likely reflects how the propagation of noise through the
nonlinear CI−pR equilibrium distorts the macroscopic trajectory relative to the determin-
istic model.

6.3 Establishing a parameter regime for the hybrid

stochastic/deterministic model

The hybrid stochastic/deterministic model of the Tum−CI MFL introduces only three ad-
ditional parameters compared with the deterministic model. These additional parameters
are the burst sizes for production of each of the MFL proteins (CI, Tum and GFP), and
can be used to tune the level of intrinsic noise generated in the circuit. Direct measure-
ments of these parameters are unavailable at this time so suitable estimates will need to
be made. Estimates for the deterministic parameters also need to be revised. Though
many of these were measured experimentally as reported in Chapter 3, the measurements
were weakly constrained and result in model curves giving a poor match to the flow cy-
tometry data sets. Additionally, the parameters determined in Section 4.3 by fitting the
deterministic model to LacZ assay data are unlikely to be accurate, since the flow cytome-
try results show that the average trajectory of pR activity is biased by stochastic switching
between the stable states. Ideally, the deterministic and stochastic parameters would now
be determined by fitting the hybrid stochastic/deterministic model to the flow cytometry
data. Unfortunately, stochastic models pose additional analytical challenges: not only do
they involve more parameters, but solutions are substantially more difficult and time con-
suming to obtain, putting model-based statistical inference out of reach in many cases4.
Instead, the task of parameter estimation is split into an improved method for statistical
inference of the deterministic parameters using the deterministic model, and a heuristic
search for suitable stochastic parameters using the stochastic model.

6.3.1 Fitting the dynamic deterministic model to a stochastic data set

In spite of the inherent stochasticity of the Tum−CI MFL, it was previously maintained
in Section 5.3 that a mixture model analysis of the flow cytometry data provided a means

4 The necessary groundwork for fitting stochastic models to data is, however, in active development. See
Wilkinson [2009]; Henderson et al. [2009]; Munsky et al. [2012]; Neuert et al. [2013].
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for recovering deterministic behaviours. Fitted sub-populations were interpreted as the
projection of a bimodal population onto deterministic components, and these were found
to compare more favourably with the steady-state deterministic model. Such a deconvo-
lution of the data opens the possibility for estimating the deterministic parameters from
the data independently of the stochastic model. The manual choice of parameters for the
steadystate model seen previously in Figure 5.10 stands as a promising starting point.
However, with time-course data also available, an extension to the dynamic regime and an
automated method for fitting the parameters would be preferable. In this section, by first
revisiting the conditions under which deterministic approximations to stochastic models
are accurate, a rudimentary method is proposed for reducing the time-course data to a pre-
sumptive deterministic trajectory. The deterministic model can fit this trajectory very well,
but only if unrealistic parameters are allowed. By appealing to a stochastic explanation for
that concession, a revision of the trajectory is proposed. More realistic parameters are then
obtained by using a simplified parameterisation and favouring the long equilibration time
assay.

The Tum− strains show monostable behaviour that is reasonably well-described by the
determininistic model. As became evident from the sample trajectories in Figure 6.2, the
stochastic trajectories of the Tum− controls by and large follow the deterministic one. This
makes sense from a theoretical point of view: the Tum− control circuit stands as good
candidate for modelling by the CLE (a continuous stochastic process), bringing it closer
to the deterministic trajectory. Recall that a CLE approximation to the discrete stochastic
process requires that the least frequent reactions remain frequent enough that apprecia-
ble changes in reaction propensities require many reactions. Here, where the dilution rate
sets the speed of equilibration of both CI and GFP, the P lac and pR promoters only need
to fire many times each cell division. This is likely to be the case except where either of
the promoters are close to fully repressed. Discrete production of GFP from a repressed pR
promoter can be ignored, since it has no downstream effects and produces fluorescence in-
distinguishable from the background. Discrete production of CI, however, deserves some
attention.

The ultrasensitive CI−pR equilibrium partially protects against discrete effects due to
low molecule numbers, but concomitantly reduces the efficacy of the deterministic ap-
proximation. When CI numbers are low, that is, in uninduced cultures where P lac is fully
repressed, the CLE approximation would typically fall short. However, in this case, a
crude argument can still be made for the approximation: low numbers of CI are buffered
by the CI−pR equilibrium, such that appreciable changes in downstream reaction propen-
sities (i.e., in the rate of pR firing) only occur for higher levels of CI. Unfortunately, the
nonlinearity also means that a further approximation of the continuous stochastic process
as a deterministic one suffers reduced accuracy. Nonlinear propagation of noise through
the CI−pR equilibrium will asymmetrically bias the average behaviour. This means that a



6.3 Establishing a parameter regime for the hybrid stochastic/deterministic model 175

fitted Hill coefficient will be a biased estimate that does not relate directly to the noise-free
Hill parameter that is shared between the controls and the MFL. This effect is evident in
the right panel of Figure 6.2, where the mean stochastic trajectory and deterministic trajec-
tory are seen to diverge. Here this discrepancy is assumed to be sufficiently negligible that
core behaviour is nonetheless retained.

In the full Tum−CI MFL gene circuit, the Tum−CI and CI−pR equilibria present com-
plementary ultrasensitive hurdles to low levels of Tum or CI, respectively. A rough argu-
ment can be used to again validate use of the CLE approximation: in order to overcome
the ultrasensitive barrier between the two zones of stability, numerous firings from either
the P lac or pR promoters are likely to be required. In other words, ‘appreciable’ changes
in system state are likely to require many stochastic reactions. However, a deterministic
approximation to such a CLE would be less apt: switching between the two stable regions
of the CLE cannot be captured in the deterministic model [Gillespie, 2000]. Nonetheless,
if the timescale of switching between the two basins of stability is slower than the rate of
equilibration local to each basin, then a local treatment of the CLE (a diffusion process)
can be applied within each basin [van Kampen, 2007] and the rate of switching between
the two treated as a first exit problem [Aurell and Sneppen, 2002]. The behaviour local to
each stable basin can then be followed using the mixture model fitted to each fluorescence
distribution. The fact that the Tum− controls at each time point provide apt templates
for the local fluorescence distributions can be attributed to the difference between the two
circuits being essentially just the addition of high frequency reactions from the Tum−CI
equilibrium5. Such high frequency reactions contribute relatively little additional noise,
so that the shapes of the local distributions are still largely determined by the noise char-
acteristics of production from P lac and pR . This means that, like in Section 5.3, it can be
assumed that the family of skew-t distributions defined by the Tum− control distributions
give the prototypical stochastic spread of the regulated pR promoter around some de-
terministic trajectory. The fitted mixture model components of the Tum+ MFL samples
can then be interpreted as independent sub-populations with a locally valid deterministic
average value.

It is well established that stochastic gene network models can extend effective bifur-
cation boundaries beyond those of their deterministic counterparts [Kepler and Elston,
2001]. In terms of the low O/N MFL samples, this effect might be understood as identify-
ing the high intensity sub-populations at high levels of induction as stochastic — trapped
in the high intensity stable state according to some stochastic trajectory. In that case, the
point of bifurcation for the equivalent deterministic model would occur at some point in

5 It is assumed that the production of Tum from the pMTS-pR -tum+ plasmid has noise characteristics that
satisfy the conditions of a continuous stochastic process like the output of the (pIT-CH-pR -gfp)HK module
seemed to. With more copies of the pR -tum module, more frequent firing of the pR promoter is expected; the
unknown is how the stochastic copy-number of the plasmids might affect the resulting distribution. This will
be further discussed alongside the results of the stochastic model presented later in the chapter.
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Table 6.2: A comparison of experimental parameter estimates and the deterministic parameters fitted to
the time-course flow cytometry data measured for the ER-MCTum−CI MFL. The upper block contains the
core MFL parameters; the middle block contains the initial condition scaling parameters; the lower block
contains the timing parameters. Unless otherwise indicated, limits specify 95% confidence intervals.

Parameter Experimental* Full fit** Simple fit†

εR (CI dimers/cell) (2.5± 0.8)× 102 ‡ 9.39× 102 9.74× 102

HR 2.2± 0.2 ‡ 3.05 3.01

εS (Tum monomers/cell) (1.28± 0.04)× 103 § 7.98× 103 2.67× 103

HS 4.6± 0.6 § 1.19 1.04

MT (Tum monomers/cell) (2.5± 0.7)× 104 3.19× 104 3.18× 104

Doubling time (min.) 28.2± 0.2 ¶ 27.1 32.4

Tum half life (min.) 2.7± 0.2 153.5 32.4

Low O/N scaling – 4.49 –

High O/N scaling – 1.67 –

Initial Tum scaling – 7.86 –

Assay time (hours)#

LCC, short equil. 4.9 2.4 –

LCC, normal equil. 6.2 3.7 –

LCC, long equil. 7.2 4.7 –

HCC, short equil. 4.1 3.0 –

HCC, normal equil. 5.6 4.5 –

HCC, long equil. 6.6 5.6 5.0

* Parameters determined experimentally in this thesis or derived from the literature.
** Parameters from the model shown in Figure 5.11 fitting all available parameters to match the time-course

data.
† Parameters from the model shown in Figure 6.3 fitted to match a single long equilibration time assay

with a simplified parameter scheme.
‡ Parameters as fit by Dodd et al. [2007b]; limits indicate ‘acceptable ranges’.
§ Obtained by fitting in vitro gel shift data of Shearwin et al. [1998] to the model described in Section 2.2.2;

εS was further converted to a number of monomers per cell using the scaling factor from Section 3.4.4.
¶ The mean doubling time of all MFL strains (Tum+ and Tum−) with a medium copy pR -tum plasmid.
# The period of log phase growth attributed to each of the Low Cell Count (LCC) and High Cell Count

(HCC) short, normal and long equilibration time (equil.) assays.
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Figure 6.3: The deterministic model matches the
long equilibration time data in spite of a simplified
parameter set. The high cell count long equilibration
time data was fit using a conservative set of parame-
ters as described in the text. The data is the same as
that in the lower rightmost panel of Figure 5.11, but,
prompted by concerns that sub-populations near the
bimodal/unimodal boundaries represented stochas-
tic trapping in the initial state, two high intensity sub-
populations in the low O/N Tum+ samples were addi-
tionally excluded. Shown overlaid are the simulated
deterministic time-course hysteresis curves for both
strains. The equivalent steady-state curve for the
Tum+ strain is also shown; solid lines indicate stable
states and dotted lines indicate the unstable states. 0 50 100 150 200
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the middle of the bimodal samples, as would the turning point for the dynamic determin-
istic trajectory. The deterministic model does not account for such a stochastic effect, so in
fitting the bimodal data with a deterministic model, there remains a source of uncertainty
in identifying which of the sub-populations is more closely linked with the deterministic
trajectory versus those better linked to stochastic switching. To this end, an a priori as-
signment of presumed deterministic sub-populations was trialled. This trial is presented
in more detail in Appendix C.3, and though surprisingly good matches to the data could
be found, attempts to simultaneously fit the complete data collection (i.e., all equilibration
times and both low and high cell count data sets) consistently produced parameters that
were unphysical. The best set of fitted parameters from this trial are shown in the ‘Full
fit’ column of Table 6.2. As can be seen from the table, the good match of the data came
at the cost of permitting the Tum half-life to be over five times longer than the fitted cell
doubling time. It was found that this unphysical value was necessary to accommodate
the slow decline of the low O/N hysteresis curve. One remedy would be to revise the
assignments of the sub-populations. However, given the ambiguity in this decision, an
alternative approach was pursued.

The limitations of the deterministic model are more apparent at earlier time points,
when the system is further from equilibrium. The long equilibration time assays are the
closest to steady-state, which also makes a deterministic description of these assays more
likely to be reliable. As such, the model parameters from the ‘Full fit’ column of Table 6.2
were further optimised to fit just the high cell count long equilibration time assay, which
is shown with the fitted model in Figure 6.3. Given that populations near the switching
boundaries were likely to be stochastically trapped near the initial state and not actually
deterministic populations, a few additional data points at the outer boundaries of the bi-
modal region were excluded; points excluded from the fit are indicated by open circles
in the figure. Though the starting parameters for this final optimisation run were those
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from the ‘Full fit’ column of Table 6.2, a number of additional parameter constraints were
imposed to simplify the model. These simplifications were made under the premise that
any extensions to the model that had been made to improve fits to the data were likely
compensating for what were in fact stochastic effects. So the three O/N scaling param-
eters that were introduced to account for some perceived lag time were all set to one in
favour of a slightly reduced equilibration time (5 hours), and the rate of loss of Tum was
constrained to match the dilution rate like for CI and GFP. The optimised parameters can
be found in the ‘Simple fit’ column of Table 6.2. Most of the core parameters are very
similar to the starting parameters, with the notable exceptions being the doubling time,
Tum half life and EC50 for the Tum−CI equilibrium (εS). With the deterministic model
still fitting most of the sub-population data very well, and with all parameters now within
realistic ranges, the ‘Simple fit’ parameters stand as the most suitable candidates to define
the deterministic component of the hybrid stochastic model.

6.3.2 Optimising the magnitude of noise to reproduce observed rates of

stochastic switching

With the deterministic parameters now constrained through fits of the sub-population
means, it remains to estimate values for the stochastic parameters of the hybrid stochas-
tic/deterministic model. These parameters are the average burst sizes for production of CI,
Tum and GFP. The average burst size derives from the rate of protein translation and the
average lifetime of the mRNA. None of these parameters have been measured for tran-
scripts in the Tum−CI MFL, and extrapolation from measurements obtained elsewhere
would give rough agreement with the experimental results at best. However, with only
three parameters, a limited heuristic search of the parameter space is feasible. In this sec-
tion, simulations using a range of burst sizes are presented and compared, and the final
parameters chosen to optimise rates of stochastic switching and to give qualitative agree-
ment with the distribution shapes observed by flow cytometry.

The choice of average burst size for protein production has a direct effect on the vari-
ance of the resulting protein distribution. A burst size parameter, b, sets the variance in
protein numbers, σ2, according to

σ2 ' µ(b + 1) (6.6)

where µ is the mean number of proteins at steady state [Paulsson and Ehrenberg, 2000;
Thattai and van Oudenaarden, 2001]. In this way, the average burst size scales the mag-
nitude of intrinsic noise for some given µ as determined by the rate of production. The
widths of the unimodal Tum− control distributions measured by flow cytometry give
some indication of the intrinsic noise of GFP production. Preliminary simulations of the
Tum− control circuit revealed that the burst size of CI had only a small effect on the re-
sulting downstream variance in the GFP distribution. So the burst size for production of



6.3 Establishing a parameter regime for the hybrid stochastic/deterministic model 179

GFP could be independently optimised to match observed distribution widths. Relative
to the nominal maximum reporter activity of MZ = 1000 arbitrary units, a burst size of
20 units per transcript was found to produce simulated distributions that would compare
well with the experimental distributions across a range of activity levels.

The burst sizes for production of CI and Tum were chosen based on how each param-
eter affected rates of stochastic switching. Average burst sizes in E. coli can range from
one protein to many hundreds of proteins per mRNA transcript [Taniguchi et al., 2010]. A
selection of burst sizes chosen from within this range were trialled in simulations of the
Tum−CI MFL. The resulting distributions of reporter activities at 220 minutes of simula-
tion time were examined for two alternative points in the hysteresis curve and are shown
in Figure 6.4. These alternative simulation points were chosen to be at P lac induction levels
where stochastic switching was likely to occur, but to still be located within the region of
deterministic bistability. Since protein distribution widths, i.e., their standard deviations,
have a square root dependence on the burst size, the selection of burst sizes was varied by
order of magnitude (i.e., 30, 300, or 3000 dimers or monomers per mRNA).

As can be seen in Figure 6.4(a), increasing the magnitude of noise in CI production
reduces stability of both low and high fluorescence stable states. The upper plot shows
that simulations starting near the low fluorescence stable state produce a unimodal peak
centered over the initial state when the burst size is small (bC = 30 dimers). However,
when the burst size increases to bC = 300 dimers, a bimodal distribution is observed,
indicating that many of the stochastic trajectories have switched to a high intensity stable
state. The upper plot shows the converse case: simulations starting near the high intensity
stable state produce a sharp unimodal peak when bC = 30 dimers, but as burst sizes
increase to bC = 3000 dimers, a lower intensity sub-population starts to appear. At least
for the two hysteresis conditions shown, the burst size of CI production seems to have a
much greater effect on the relative stability of the low intensity stable state.

As can be seen in Figure 6.4(b), increasing the magnitude of noise in Tum production
reduces stability of the Tum−CI MFL only for the high fluorescence state. In the upper
plot, the effects of Tum burst size on the high intensity stable state are shown. An increase
in the number of low-fluorescence trajectories is only evident with the (overly) high burst
size of bT = 3000 monomers. However, this increase in switching was larger than that
observed for the equivalent increase in CI burst size. In contrast, the lower plot shows
that, regardless of Tum burst size, essentially no change in the extent of switching from
low- to high-fluorescence states occurs.

These simulations reveal that the relative stabilities of each stable state can be indepen-
dently optimised using the CI and Tum burst size parameters. The CI burst size can be
increased to favour switching primarily out of the low fluorescence stable state, whereas
the Tum burst size can be increased to favour switching out of only the high fluorescence
stable state.
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Figure 6.4: The level of noise in CI production affects rates of stochastic switching differently to that for
Tum production. (a) Increasing the burst size for CI production decreases stability of both the low and high
fluorescence sub-populations. (b) Increasing the burst size for Tum production decreases stability of only
the high fluorescence sub-populations. Shown are kernel density estimates of the population statistics for
10000 trajectories of the Tum−CI MFL stochastic model at 220 minutes. Insets indicate history and final CI
production rates (68.48 dimers/s for the low O/N cultures; 98.5 dimers/s for the high O/N cultures) on the
deterministic time-course and steady-state curves from Figure 6.3. Deterministic parameters are as listed in
the ‘Simple fit’ column of Table 6.2. Stochastic parameters default to bC = 300 dimers, bT = 300 monomers
and bZ = 20 units for CI, Tum and GFP burst sizes respectively; variations from the default are annotated
for each curve.
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Burst sizes of 3000 proteins per mRNA are outside of the range of measured burst
sizes [Taniguchi et al., 2010], but these were included because the smaller burst sizes were
unable to replicate the switching observed experimentally. In particular, the low O/N
simulations (upper panels of Figure 6.4) did not produce a noticeable low intensity sub-
population until the burst sizes were very large. In contrast, the experimental data shown
back in Figure 5.8 for a low O/N measured at 60 µM IPTG distinctly shows two sub-
populations. Furthermore, that sample is for a CI production rate lower than that simulated
in Figure 6.4; that is, switching to the low intensity sub-population in the simulation shown
here should be more frequent than that in the given experimental example. In order to
replicate this rate of switching and since Tum burst size affects only the stability of the high
intensity sub-population, the burst size parameters for CI and Tum were fixed to bC =

300 dimers and bT = 3000 monomers respectively for subsequent simulations. Though
this would be an unphysical choice for bT if it was interpreted literally as an mRNA burst
size, it is still used here under the assumption that this parameter also encapsulates some
other source of significant stochastic variation. Alternative sources of noise that might
explain this requirement will be discussed towards the end of the chapter in Section 6.5.

6.4 A simple stochastic model is sufficient to reproduce salient

features of the Tum−CI MFL

Using the parameters determined in Section 6.3, the hybrid stochastic/deterministic model
of the Tum−CI MFL can be interrogated both to confirm that it reproduces the salient ex-
perimental results, but also to infer mechanism from details not captured in the exper-
iments. In this section, model simulations are used to show that the simple stochastic
Tum−CI MFL model that has been described produces bimodal populations at the ex-
pected points in the hysteresis curve. By then considering sample time-course trajectories,
the stochastic events leading to switching between the states are examined. Finally, sim-
ulations ending at different equilibration times are analysed using the mixture modelling
methods of Section 5.2. Whilst some discrepancies are clear, most of the qualitative be-
haviours observed experimentally can also be seen in the modelling results. A comparison
of these results with the determistic model highlights the minor quantitative differences
seen between the stochastic model and the interpretation of the sub-populations as deter-
ministic.

To examine the behaviour of the stochastic model around the hysteresis loop, hystere-
sis simulations were performed using the Tum−CI MFL model for a range of final P lac

induction levels. These Monte Carlo simulations were repeated 5000 times for each final
level of induction, and the distribution of pR activities recorded at time t = 220 minutes
after the switch from O/N to final levels of induction. Two examples of these distributions
are presented as histograms in the upper panels of Figure 6.5. The examples are for final
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Figure 6.5: The hybrid stochastic/deterministic model reproduces the broad regions of bimodality observed
experimentally. The distribution of pR activities at time t = 220 minutes was recorded for 5000 simulated
hysteresis trajectories of the Tum−CI MFL model at a range of final P lac induction levels. The panels on the
left show results for simulations starting from a low O/N; those on the right for a high O/N. In the lower panels,
the density of trajectories (number of simulated cells) producing given pR activities at final P lac induction
levels are displayed as a heat map. Deterministic trajectories are overlaid on each heatmap; the arrow
indicates which of the hysteresis curves was simulated in the stochastic model. The upper panels show
histograms for two sample conditions as indicated by the vertical lines in the lower panels; insets show the
same distributions on a logarithmic scale to facilitate comparisons with the flow cytometry results. Parameters
for the models are as listed in the ‘Simple fit’ column of Table 6.2, with the burst sizes of CI, Tum and GFP
defined to be bC = 300 dimers, bT = 3000 monomers and bZ = 20 arbitrary units (a.u.) respectively.
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P lac induction levels that are outside the region of bistability predicted by the determinis-
tic model. However, in both cases (i.e., in both low and high O/N simulations) bimodal
distributions are observed. When plotted on a logarithmic axis (see insets), these bimodal
histograms are more comparable with those obtained by flow cytometry, and reveal that
even without instrumental noise, the low intensity and high intensity sub-populations still
overlap.

The complete sets of low and high O/N simulated distributions are summarised using
heat maps in the lower panels of Figure 6.5. The example histograms in the upper pan-
els make up a single slice in each heatmap as indicated. These also mark the regions of
the hysteresis curve where bimodal populations are found. For reference, both low and
high O/N deterministic curves are plotted overlaid on each heatmap. There are broad re-
gions of bimodality around each turning point of the deterministic curve, reflecting how
stochastic switching occurs more readily near the deterministic bifurcation boundaries.
The region of bimodality for the low O/N curve is much broader than that for the high
O/N curve. This is consistent with the experimental results, though the bimodal low O/N
distributions seen experimentally seemed to cover a broader range of induction levels still.

In order to investigate how switching from one stable state to the other occurs, the be-
haviour of individual stochastic trajectories over time was considered. Five sample time-
course simulations each of low O/N and high O/N hysteresis trajectories are shown in
Figure 6.6. The hysteresis conditions (i.e., the variations in P lac) match those of the dis-
tributions shown in Figure 6.4, since they are located within the region of deterministic
bistability. This means that reference lines showing the locations of the stable steady-states
and also the unstable steady-state can be put in each plot. Trajectories ending near the low
intensity stable state and others ending near the high intensity stable state can both be
found. Importantly, in both the low O/N and high O/N simulations, a number of trajec-
tories deviate significantly from the deterministic trajectory (thin black lines).

Switching from the high to the low intensity stable state, Figure 6.6(a), primarily relies
on bursty production in Tum. With such a large burst size for Tum production (bT =

3000 monomers), the time between bursts of Tum can be quite long even when production
rates are high. If these times are long enough that the total Tum concentration drops below
the unstable steady state, the system is able to switch to the lower stable state. Without this
large Tum burst size, much less switching occurs. This can be seen by comparing the bT =

300 and bT = 3000 density curves in the upper panel of Figure 6.4(b). In contrast, switching
from the low to the high intensity stable state, Figure 6.6(b), primarily relies on bursty
production in CI. Even if bursty Tum production takes total Tum levels over the unstable
state, there need to be sufficient delays in CI production such that the concentration of free
CI (C) drops below its unstable state. Larger Tum burst sizes make no difference in this
case as can be seen in the lower panel of Figure 6.4(b).

The averages of 5000 stochastic trajectories are also shown in Figure 6.6. These species
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Figure 6.6: The timing of stochastic switching in the hybrid stochastic/deterministic model of the Tum−CI
MFL. Two conditions are tested: the left panels show simulations of the transition from a low O/N culture to
an intermediate CI production rate near the right bifurcation boundary; the right panels show the transition
from a high O/N culture to an intermediate CI production rate near the left bifurcation boundary. The variation
over time of P lac promoter activity (pC), free CI concentration (C), total Tum concentration (Ttot) and pR
activity are shown. Five stochastic trajectories distinguished by shading are shown in each case; thick solid
lines show the average of 5000 stochastic trajectories; thin black lines show the corresponding deterministic
trajectory. In the plot of P lac, thick black dashed lines indicate the activities ascribed to low and high O/N
cultures. In the other plots, horizontal dotted lines indicate the stable steady-state values of that variable at
the final level of induction, whilst the dot-dash lines indicate the unstable steady-state value. Parameters
for the model are as listed in the ‘Simple fit’ column of Table 6.2, with the burst sizes of CI, Tum and GFP
defined to be bC = 300 dimers, bT = 3000 monomers and bZ = 20 arbitrary units (a.u.) respectively.
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averages give an indication of the proportion of trajectories that have switched to the alter-
native stable state. Interestingly, whilst the deterministic trajectories are seen to approach
their equilibrium points, the average stochastic trajectories show no sign of slowing to
some equilibrium point. In other words, stochastic equilibration between the two stable
states occurs much more slowly than deterministic equilibration. This may partly explain
why the high intensity sub-populations in the low O/N flow cytometry measurements
appeared to equilibrate so slowly.

The simulated results can also be examined for sub-populations, which would reveal
if slow equilibration of the high intensity states is also a feature of the model. Further-
more, such an analysis could be used to validate the treatment of the sub-populations
as semi-deterministic descriptors of the data, as has been assumed in Section 5.3 for the
steady-state model and in Section 6.3.1 for the dynamic deterministic model. Recall that in
analysing the flow cytometry measurements, the Tum− control distributions were used to
formulate an empirical description of noise as a function of median fluorescence (i.e., the
constrained skew-t distributions). These constrained skew-t distributions were remark-
ably robust emulators of the fluorescence probability distribution, providing a simple way
to approximate multiple underlying sources of noise, including instrumental noise, ex-
trinsic sources of cellular noise, and, of course, the noise intrinsic to the gene network
itself. The empirical description meant that complex models of noise propagation could
be avoided when fitting the bimodal populations of the MFL strains. By similarly fitting
the simulated stochastic data, a direct comparison of the fitted components can be made
with the equivalent deterministic model to discern the effectiveness of such an empirical
analysis.

Hysteresis was simulated for three alternative equilibration times, and the simulated
fluorescence distributions fitted with mixture models of constrained skew-t distributions.
The means of the fitted mixture model components are shown in Figure 6.7 with de-
terministic curves overlaid for comparison. For this analysis, minor amendments were
made to the protocols that are briefly summarised below; technical details can be found
in Appendix D. In order to reproduce experimental conditions more realistically, simu-
lated cellular autofluorescence was added to the model data before mixture modelling.
Autofluorescence predominates when reporter levels are low, so an ER-MC Tum− con-
trol flow cytometry distribution at maximum induction levels was used to estimate the
magnitude of the background fluorescence. The normalised flow cytometry data in the
untransformed scale was well fit by a normal distribution, so the mean and SD of that data
were scaled to equivalent model units to define a theoretical distribution of background
noise. Autofluorescence was presumed to be an additive source of noise, so simulated pR
activities were offset by a random number drawn from the background noise distribution.
The estimated burst size for GFP production was also revised to ensure that simulated pR
activities were of the same order as the autofluorescence. After correcting for background
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fluorescence, the variance and mean fluorescence of an uninduced ER-MC Tum− control
strain were calculated, and a suitable GFP burst size calculated using Equation (6.6). Sim-
ulated fluorescence distributions were generated for both Tum− control and Tum+ MFL
models and a Logicle transformation applied for consistency with the experimental analy-
sis. The Tum− control simulations were used to calibrate constrained skew-t distributions
for mixture modelling of the Tum+ MFL simulations in the manner previously described
in Section 5.2.

Though not a perfect match, the fitted sub-populations shown in Figure 6.7 do repro-
duce many features of the deterministic model. Clearly there is substantial ambiguity in
the location of the deterministic turning points, but elsewhere many sub-populations are
observed to lie directly on the deterministic curves, even equilibrating at the same rate.
The most noticeable deviation is for the high intensity sub-populations of the low O/N.
This deviation is likely to arise through deficiencies in both the mixture model and the de-
terministic model. The mixture models assume that no population of cells are in transition
between the two stable states, whereas the deterministic model does not account for the
distorted propagation of population means through nonlinear reaction pathways (i.e., the
Tum−CI and CI−pR equilibria). The latter effect can be observed more directly for the
simulated control distributions, where the ultrasensitive CI−pR equilibrium causes the
stochastic means to diverge from the equivalent deterministic curves. In any case, the sub-
population means were useful guides for calibrating the deterministic parameters to the
data: the simulated results do compare relatively well to the exerimental sub-populations
shown in Figure 5.11. Indeed, the slow rate of loss of high intensity populations at high
induction levels is also apparent in the simulated results.

6.5 Improving and interpreting the stochastic model

The extent to which parameter variation could be exploited to obtain a better match be-
tween model and experiment is an open question. Statistical inference using the present
stochastic model would take considerable compute time, since many thousands of sim-
ulated trajectories are required to obtain well-formed distributions. Future work in this
area could focus on reformulating the hybrid stochastic/deterministic model as a CLE
(continuous stochastic model). Solutions to the CLE might then be formulated as mixtures
of Gaussian sub-populations to mimic the mixture model analysis. The CLE is an exam-
ple of a Fokker-Planck equation, and mixture model solutions to that equation have been
successfully calculated in other fields [Terejanu et al., 2008; Giza et al., 2009]. To the au-
thor’s knowledge, such approaches have not yet been applied in the study of stochastic
gene networks. Bayesian estimation of parameters using such solutions to the CLE should
prove much more accurate than the deterministic methods of inference presented here and
would also enable optimisation of stochastic parameters.
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Parameter variation alone is unlikely to provide a satisfactory description of the ex-
perimental results. To obtain the degree of stochastic switching seen in this section, an
unrealistic burst size for Tum production was required. The largest burst sizes seen in
E. coli tend to range in the hundreds of proteins [Taniguchi et al., 2010], and at such sizes
mRNA half-lives would be so long that the assumption of instaneous bursts of protein
would also be invalid. Indeed, the difference in bursting dynamics between Tum and GFP
in Figure 6.6 is enough cause for concern, since both proteins are produced from the same
promoter. In fact, the rate of firing of the Tum promoter is expected to be more frequent
than that of GFP, since Tum is located on a multi-copy plasmid. Instead, the requirement
for such a large burst size suggests that this parameter is acting as a proxy for some other
stochastic reaction that operates on a timescale slower than mRNA production (translation
bursts).

Likely candidates for such slow stochastic reactions are the replication and partition-
ing by cell division of the Tum plasmid. Small changes in plasmid copy number can lead
to large relative changes in gene output [Mileyko et al., 2008], and changes in plasmid
copy number have even been observed to produce qualitative changes in gene circuit be-
haviour [Anand et al., 2011]. With only 10–12 copies per genome, small changes in the
copy number of the pMTS-pR -tum+ MFL plasmid could lead to large relative changes in
promoter output, which would then be amplified by translation. To investigate this possi-
bility, the stochastic model would need to be extended to simulate both the replication of
promoter elements and binomial partitioning of the plasmid components. Stable plasmid
propagation requires regulated replication, and a simple negative feedback mechanism is
sufficient to account for this in stochastic models [Paulsson and Ehrenberg, 2001]. Such
extensions to the model will be investigated in future work.
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The MFL now and going forwards

The MFL is over-represented in natural networks [Yeger-Lotem et al., 2004], and is a
paradigm for regulatory motifs that cross between transcriptional and protein-protein in-
teraction networks. In this thesis, a synthetic MFL that displays bistability was constructed
in E. coli from the Tum and CI proteins of phage 186. These proteins are well-studied [La-
mont et al., 1989; Shearwin and Egan, 1996; Shearwin et al., 1998; Dodd and Egan, 2002;
Pinkett et al., 2006] and show few interactions with the host E. coli network, so presented
an ideal choice for testing the functions of the MFL network in isolation.

A deterministic model of the Tum−CI MFL was developed in Chapter 2 using the in-
formation available from the literature on the regulatory capacities of Tum and CI. This
model showed that a MFL constructed from these proteins was theoretically capable of
producing a network that would display bistability. This model also inspired a hysteresis
assay that could be implemented experimentally to efficiently balance parameters and lo-
cate a bistable configuration. In contrast with the generalised deterministic model of the
bistable MFL developed by François and Hakim [2005], the deterministic model developed
in Chapter 2 was a more accurate representative of the Tum−CI MFL design. Furthermore,
it highlighted a hysteretic variable not considered by François and Hakim: whereas they
used the production rate of the transcriptional regulator as a normalisation factor, here
that production rate is varied to achieve hysteresis. This hysteresis variable was easily
varied by way of a LacI induction system controlling expression of the CI repressor. It also
motivated a strain lacking the tum gene as a useful control for comparing the hysteresis of
the bistable system with a monostable one.

The use of a deterministic model to aid the design of a synthetic circuit is a common
pattern in synthetic biology. The first synthetic circuits — the oscillator of Elowitz and
Leibler [2000] and the toggle switch of Gardner et al. [2000] — both made use of simple
models of gene networks to guide the construction process. Though deterministic models
are not as accurate as a complete stochastic model of a network, their simplicity and an-
alytical tractability makes them integral conceptual tools. The deterministic model of the
Tum−CI MFL was used throughout this thesis as a standard against which to measure the
performance of the MFL. In this way, it guided the experiments towards a more complete
understanding of the synthetic circuits. Firstly, the deterministic model helped to identify
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a set of core parameters that could set bounds on how the results could be interpreted. Ex-
perimental measurements of these parameters were reported in Chapter 3. Then, based on
the performance of the controls, it was found that longer equilibration times were needed,
and the hysteresis protocol was modified to accommodate this as reported in Chapter 4.
Direct comparison of the deterministic model with the results of whole-population hys-
teresis measured by LacZ assay prompted measurements of the distribution of reporter
activities in single cells. These distributions were measured by flow cytometry in Chap-
ter 5, and a method was devised for splitting the observed bimodal populations into ef-
fective deterministic components. These components compared favourably with the de-
terministic model, underscoring how such models can still be relevant in a stochastic sys-
tem. Finally, by comparing the deterministic model with a hybrid stochastic/deterministic
model of the Tum−CI MFL developed in Chapter 6, the limits of the deterministic model
could be assessed. Though it failed to capture minor deviations due to noise propagation
through a nonlinear network, the deterministic model matched the general trends of the
data surprisingly well.

Another common theme found throughout the thesis was the normalisation of experi-
mental data in order to better capture the underlying behaviour of the MFL. Prime exam-
ples of this included normalisation of the ultrasensitivity present in the induction system,
morphology normalisation of the flow cytometry data sets and the constrained skew-t mix-
ture modelling. By measuring the ultrasensitivity present in the relief of LacI repression
of P lac by IPTG in Section 3.3, all future measurements of hysteresis could be normalised
to a linear scale in the hysteresis variable. Such a normalisation method was previously
used to more accurately measure downstream ultrasensitivity of an activator [Palmer et al.,
2009], and in this thesis it made for better alignment of the data with both deterministic
and stochastic models. A wealth of data is captured in processing cell cultures by flow
cytometry, and this makes it possible to correct for noise due to variation in cell morphol-
ogy [Knijnenburg et al., 2011]. By applying morphology normalisation to the Tum−CI
MFL data sets, the distribution of fluorescence activities became distributions for an ‘av-
erage’ cell. This improved resolution of the bimodal samples, and facilitated the inter-
pretation of these distributions in terms of deterministic components, since deterministic
models reduce complexity by assuming a constant cell volume. The constrained skew-t
mixture model developed in Section 5.2 then provided the means for precise determi-
nation of sub-population locations and proportions. By building on the pR distribution
template provided by the tum− control strains, the constrained skew-t distributions were
apt proxies for the unimodal distributions that would be expected of a deterministic trajec-
tory. This ultimately enabled direct comparison of an obfuscated mixed distribution with
the simple deterministic model.

Regulatory networks bearing similarities with the bistable MFL have been studied in
recent years. The regulatory network for galactose metabolism in S. cerevisiae contains a
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MFL with overall negative feedback involving the Gal4p activator which gets inactivated
by the Gal80p protein by a protein-protein interaction [Smidtas et al., 2006]. This would
normally imply a MFL in the oscillatory regime, but two additional positive feedback
loops make the overall network behave as a bistable system. These positive feedback loops
involve the sequestration of Gal80p by Gal3p and Gal1p, which makes each of these three-
component feedback loops similar to the MFL motif, but with an additional intervening
protein-protein interaction. The bistable configuration of these three-component circuits
has been shown to produce hysteresis as a function of galactose concentration [Venturelli
et al., 2012], and, like for the Tum−CI MFL, bimodal populations were observed through-
out the bistable region of the hysteresis curve.

A simple synthetic switch involving the sequestration of a sigma factor by its anti-
sigma factor has also been constructed in E. coli [Chen and Arkin, 2012]. In this case, the
sigma factor itself forms an overall positive feedback loop by activating its own produc-
tion; the anti-sigma factor acts to adjust the strength of positive feedback by sequestration
of the sigma factor. Chen and Arkin observe hysteresis in this synthetic bistable switch,
but again a bimodal population structure is found in the bistable region. Importantly, this
synthetic circuit is not an example of the MFL, in which the transcriptional regulator acts
to control expression of the protein interaction partner. Instead the sigma/anti-sigma cir-
cuit constitutes an overall transcription-based positive feedback loop that is modulated by
sequestration.

These examples and the Tum−CI MFL all produce bimodal populations in cycling the
hysteresis loop. The Tum−CI MFL, in particular, has very closely overlapping populations
that are difficult to resolve with basic mixture modelling. Is such noisy switching a feature
of these sequestration-based circuits, or is it possible to construct a robust bistable circuit
with the MFL motif? To begin addressing this question, some modifications to the design
of the Tum−CI MFL were proposed. As found previously in Section 6.3.2, noise in CI
production plays a prominent role in stochastic switching near the bifurcation boundaries,
and even a moderate reduction of noise in this parameter could have a significant impact
on switch robustness. On this basis, an improved P lac-cI induction module was designed
using the Lac repressor looping constructs described by Priest et al. [2014]. By maintaining
both the source of Lac repressor and also the P lac induction module in the chromosome,
the copy-number of these elements should be better linked to cell growth, rather than to
the stochastic copy-number variation typical of plasmids [Paulsson and Ehrenberg, 2001].
Furthermore, in order to enable estimation of the intrinsic stochasticity of the integrated
P lac module, a P lac-gfp reporter construct was designed. The other pR promoter reporter
modules were also redesigned to make use of an improved integration chassis, the OSIP
(One-Step Integration Plasmid) system [St-Pierre et al., 2013], and to replace the folding
reporter GFP with the brighter superfolder GFP [Pédelacq et al., 2006] to increase the sen-
sitivity of the fluorescence assays. I have cloned and integrated most of these new con-
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structs into an improved induction and reporter strain. However, a complete MFL strain
has not yet been constructed, so the details of these strains and the pending assays will be
reported elsewhere.

These proposed improvements to the Tum−CI MFL still do not address what could be
the most important source of noise: copy-number variation of the pR -tum plasmid. In-
tegration of this module would limit such variation, but recall that an integrated pR -tum
module is not strong enough to produce discernable hysteresis [Pocock, 2007]. Even if the
strength of the P lac promoter could be lowered to the point where CI and Tum production
were balanced, it is likely that the lower rate of promoter firing would give rise to larger
relative fluctuations that would increase stochastic switching in any case. Solutions may
instead include either increasing the degradation rate of CI by appending a degradation
tag to the C-terminal end of the protein [McGinness et al., 2006], or increasing the degrada-
tion rate of the mRNA using small RNAs [Shimoni et al., 2007]. In these cases, high rates of
promoter firing could be maintained for reduced steady-state levels of CI repressor. This
may allow integration of the pR -tum module without concomitantly increasing noise in
CI expression.

There remains much to learn about the MFL. Though robust bistability from this motif
has not yet been observed, this may not be its primary function. Indeed, having a bimodal
phenotype in a bacterial population may improve the chances of survival, as exemplified
by bacterial persister cells [Balaban et al., 2004]. In Drosophila, random segregation into
bimodal populations is responsible for the differentiation of photoreceptor cells into two
different types [Mikeladze-Dvali et al., 2005]. Though the choice is random for any given
cell, the relative fraction of each cell type is well defined. Alternatively, the MFL motif
may be important in some as-yet-unidentified signal processing role. Such features are
unlikely to be visible from the relatively static picture of the MFL obtained here by LacZ
assay or flow cytometry. Instead, full time-course measurements of single cells and their
responses to transient signals would be required. A microfluidics platform in combination
with fluorescence-based reporting, like the systems used to monitor synthetic oscillator
circuits [Stricker et al., 2008; Prindle et al., 2012], could provide such experimental flexibil-
ity, opening the way to studying dynamic signal propagation and triggering of the switch.
Given these open questions, the construction of a functional synthetic Tum−CI MFL, as
reported in this thesis, stands as an important first step towards understanding the impor-
tance of the MFL motif.
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Materials and Methods

8.1 Reagents

All reagents used in this thesis were of analytical grade or the highest purity available.
Standard chemicals are listed in Table 8.1. Standard buffers and media prepared from
these chemicals are listed in Table 8.2.

Table 8.1: Standard chemicals used in this thesis.

Name Abbrev. Company Notes

General salts, acids and bases

Calcium chloride CaCl2 Sigma (Sigma
Chemical Co.)

Di-sodium hydrogen
orthophosphate

Na2HPO4 B.D.H. (B.D.H. Labs,
Australia)

Hydrochloric acid HCl B.D.H.

Magnesium Chloride MgCl2 Ajax

Magnesium sulphate MgSO4 Ajax

Milli-Q water H2O Water purified using Millipore
Corporation filters

Potassium chloride KCl B.D.H.

Monopotassium
phosphate

KH2PO4 Sigma

Sodium acetate B.D.H.

Sodium chloride NaCl B.D.H.

Sodium hydroxide NaOH Ajax

Tris acetate B.D.H.

Biochemicals

Continued on next page
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Table 8.1: Continued from previous page

Name Abbrev. Company Notes

2-Log DNA molecular
markers

2-log
ladder

NEB (New England
Biolabs)

Agarose Sigma

Bacto-agar Difco (Difco
Laboratories Inc.)

Bacto-tryptone Difco

Bovine Serum Albumin BSA

Casamino acids Difco

Deoxyribonucleoside
triphosphates

dNTPs NEB

Glucose Ajax

Glycerol B.D.H.

Yeast extract Difco

Antibiotics

Ampicillin Amp Sigma Stock solutions (100 mg/mL in
H2O) were Millipore filtered and
stored at −20◦C.

Chloramphenicol Chlor Sigma Stock solutions (30 mg/mL in
ethanol) were stored at −20◦C.

Kanamycin Kan Sigma Stock solutions (50 mg/mL in
H2O) were Millipore filtered and
stored at −20◦C.

Spectinomycin Spec Sigma Stock solutions (50 mg/mL in
H2O) were Millipore filtered and
stored at −20◦C.

Tetracyclin Tet Upjohn Pty. Ltd. Stock solutions (20 mg/mL in
ethanol) were stored at −20◦C.

Other chemicals and solvents

B-PERr Reagent Thermo Scientific
(Thermo Fisher
Scientific Inc.)

Ethanol Crown Scientific RNase-free

Continued on next page
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Table 8.1: Continued from previous page

Name Abbrev. Company Notes

Ethylenediaminetetraacetic
acid (disodium salt)

EDTA Sigma

Isopropanol May and Baker Ltd.

GelRed Biotium

5-bromo-4-chloro-indolyl-
β-D-galactopyranoside

X-gal Sigma Stock solutions (30 mg/mL in
dimethyl formamide) were stored
at −20◦C.

Isopropyl-β-D-1-
thiogalactopyranoside

IPTG Sigma Stock solutions (100 mM in H2O)
were Millipore filtered and stored
at −20◦C.

2-mercaptoethanol β-ME Sigma Stored at −20◦C.

ortho-nitrophenyl-
β-galactosidase

ONPG Diagnostic
Chemicals Ltd.

Stored as a powder at −20◦C.
Solutions always made fresh.

polymixin B sulphate PMB Sigma Stock solutions (20 mg/mL in
H2O) were stored at −20◦C.

Sodium dodecyl sulphate SDS Sigma

Enzymes

Antarctic Phosphatase NEB

Benzonase Novagen Stock concentration is 25 U/µL.

BigDye Version 3.1 Ready
Mix

Life Technologies

Lysozyme Sigma

T4 DNA ligase NEB

Taq DNA polymerase NEB

Phusion High-Fidelity
DNA polymerase

Finnzymes

Restriction endonucleases NEB

Table 8.2: Standard buffers and growth media used in this thesis. Buffers were prepared in H2O unless

otherwise specified.

Name Abbrev. Formulation

BigDye Dilution buffer 200 mM Tris-HCl pH 9.0, 5 mM MgCl2.

Continued on next page
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Table 8.2: Continued from previous page

Name Abbrev. Formulation

10× Glycerol Loading
Buffer

GLB 50% (v/v) glycerol, 0.4% (w/v) Bromophenol Blue,
0.2% (w/v) Xylene Cyanol, 10 mM EDTA.

L agar 1.5% Bacto-agar in LB. Autoclaved.

Lennox Luria broth LB 1% bacto-tryptone, 1% NaCl, 0.5% yeast extract,
pH 7.0. Autoclaved.

10×M9 salts 128 g/L Na2HPO4, 30 g/L KH2PO4, 10 g/L NH4Cl,
5 g/L NaCl. Autoclaved.

M9 minimal media 1×M9 salts, 0.1 mM CaCl2, 1 mM MgSO4, 0.2% (w/v)
glucose or glycerol, and optionally 0.2% (w/v)
casamino acids and/or 1 µg/mL thiamine.

1× Phosphate Buffered
Saline

PBS 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM
KH2PO4, pH 7.4. Filtered to remove debris.

SOC media 20 g/L tryptone, 5 g/L yeast extract, 10 mM NaCl,
2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4.
Autoclaved.

10× TAE 0.4 M Tris-acetate, 0.2 M sodium acetate, 10 mM
EDTA, pH 8.2

TSS 10% (w/v) polyethylene glycol (M.W. 8000), 5% (v/v)
dimethyl sulfoxide, 50 mM MgCl2 made up in LB at
pH 6.5; either autoclaved or filter sterilised using a
0.2 µm filter. Stored at 4◦C in the short term, or −20◦C
for the long term.

TZ8 100 mM Tris-HCl pH 8.0, 10 mM KCl, 1 mM MgSO4 in
H2O.

TZ8+ 50 µg/mL polymixin B (PMB) and 0.27% (v/v)
2-mercaptoethanol (β-ME) made up in TZ8. Always
made fresh.

8.2 General cloning methods

8.2.1 Growth of bacteria

Unless otherwise specified, bacterial cultures and colonies were grown at 37◦C. Strains
containing the CRIM helper plasmids were grown at 30◦C due to the temperature-sensitive
replication origin.

Liquid cultures were routinely prepared in sterile Lennox Luria broth (LB) with added
antibiotics unless otherwise specified. Single colonies were obtained by streaking or spread-
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Table 8.3: Concentrations of antibiotics used in this thesis. Concentrations are specified in µg/mL.
The concentration used depended on plasmid copy number; for integration of the CRIM plasmids
alternative concentrations were also required. High-copy plasmids were those with either the ColE1,
R6Kγ, oriR101 or p15a replication origins. Low-copy plasmids were those with the mini-F, SC101
or SC101∗ replication origins.

Antibiotic High copy Low copy Integration

Ampicillin 100 30 –
Chloramphenicol 30 15 4
Kanamycin 50 40 20
Spectinomycin 50 25 10
Tetracyclin 20 4 2

ing onto L-plates. L-plates were prepared by adding the required antibiotics to molten
1.5% L agar at 50◦C, pouring into petri dishes, and drying O/N at 37◦C. For plasmid
maintenance and integration of the CRIM plasmids, antibiotics were added to the required
growth medium at the concentrations listed in Table 8.3. After successful integration of
CRIM plasmids, strains were routinely grown without selection for the integrated plas-
mid’s antibiotic resistance.

Stationary phase cultures were prepared by innoculating liquid growth medium with a
freshly-streaked colony and incubating overnight (O/N) with shaking. Log phase cultures
were prepared from stationary phase cultures by diluting 1/200 in liquid growth medium
and incubating with shaking until the culture reached an optical density (absorbance at
600 nm) of 0.6 (OD600 0.6).

Optical densities were routinely measured using a Cary 3-Bio UV-Vis Spectrophotome-
ter (cultures diluted 1/10 in water before measurement). Where more accuracy was re-
quired, 100 µL samples of the culture were pipetted into the wells of a flat-bottomed 96-
well plate and the absorbance at 620 nm (A620) was measured using a Multiskan Ascent
plate reader (Labsystems). The A620s were converted to OD600s using an empirically de-
termined relationship [Dodd et al., 2001].

8.2.2 Storage of bacterial strains

For long-term storage of bacterial strains, 500 µL of an O/N culture was mixed with 500 µL
of 80% glycerol and stored at −80◦C in sterile 1.5 mL screw-capped tubes. Strains were re-
trieved by streaking directly from the frozen stocks onto L-plates with relevant antibiotics
for growth O/N.

8.2.3 Preparation and purification of DNA

Plasmid DNA was usually obtained using a small-scale preparation. Plasmid DNA was
extracted and purified from pelleted 4 mL O/N cultures (4000 rpm, 10′) using the QIAprep
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Spin Miniprep Kit (Qiagen), following the protocol as specified. Plasmids were eluted in
50 µL of the provided buffer (10 mM Tris-HCL, pH 8.5) and stored at −20◦C.

For cloning into plasmids with the mini-F origin (i.e., those based on pZC320), large-
scale preparation of plasmids was performed using the NucleoBond Xtra Midi Plus kit
(Macherey-Nagel). The kit’s Low-copy Plasmid Purification protocol was followed for
O/N cultures of 400 mL. Plasmids were concentrated with the NucleoBond Finalizer,
eluted in 300 µL of 5 mM Tris-HCl, pH 8.5, and stored at −20◦C.

8.2.4 Polymerase Chain Reactions

For amplification of DNA for cloning, polymerase chain reactions (PCRs) with the Phu-
sion High-Fidelity DNA polymerase (Finnzymes) were used. Reactions were made up to
20 µL in H2O with 0.5–20 ng of template DNA, 0.2 mM of each dNTP, 1× HF Phusion
Buffer, 40 ng of each primer and 0.4 U of polymerase. Temperature cycling was performed
using a DNAEngine Thermal Cycler (BioRad) with the cycling protocol set to match the
manufacturer’s recommendations for the Phusion polymerase.

For cloning work, products from PCR reactions were purified using either the MoBio
UltraClean PCR Cleanup Kit, typically eluting in 50 µL 10 mM Tris-HCl, or the DNA Clean
& Concentrator-5 kit (Zymo Research), typically eluting products in 10 µL H2O.

For amplification of DNA to prepare sequencing templates or to screen for clones, PCRs
with the Taq DNA polymerase (NEB) were used. Templates for these reactions included
both genomic DNA and plasmids, which were included in the reaction either by pipetting
from a plasmid prep (to obtain 0.5–20 ng total in the reaction), picking from colonies on
L-plates using a sterile wire and stirring into the reaction mix, or by adding 2 µL of a cell
suspension prepared by picking colonies on L-plates using yellow tips and resuspending
in 100 µL of H2O. Reactions were prepared in thin-walled 0.2 mL PCR tubes and made up
to 10 µL (screening) or 20 µL (sequencing) in H2O with template, 0.2 mM of each dNTP,
1× ThermoPol buffer (NEB), 2 ng/µL of each primer, and 0.05 U/µL of Taq polymerase.
Temperature cycling was performed using a Rapid Cycler from Idaho Technology. For
amplification of products with lengths smaller than 1 k.b., the cycling protocol was set to
hold 98◦C for 10 seconds, then 30 cycles of (98◦C for 10 seconds, 46◦C for 10 seconds and
74◦C for 15 seconds). For amplification of products with lengths greater than 1 k.b., the
extension time at 74◦C was increased to 1 minute.

For screening of CRIM plasmid integrants, the protocol for screening colonies was fol-
lowed, but the four primers were instead combined to be equimolar with final concentra-
tions of 0.5 µM each.

8.2.5 Analysis of DNA

DNA preparations (including plasmid and PCR) were routinely analysed by agarose gel
electrophoresis. Gels were prepared by dissolving 1–2% agarose in boiling 1×TAE buffer
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and casting this into horizontal minigels. Gels were run at 110 V in a Mini Sub Cell GT
(BioRad) electrophoresis device using 1×TAE as running buffer. Typically, 2–4 µL of a mix-
ture of DNA sample and GLB (1×) were loaded into each well; at least one lane contained
500 ng of 2-log DNA molecular markers (NEB) made up in GLB.

DNA gels were visualised by staining with GelRed (Biotium) according to the manu-
facturers instructions, and photographing under short wavelength UV light. The molecu-
lar markers were used to estimate both lengths and concentrations (by comparison of band
intensities) of the DNA samples.

8.2.6 DNA recombination work

Restriction endonucleases were obtained from New England Biolabs (NEB) and DNA di-
gests were performed as per the manufacturer’s recommendations in 50 µL reaction vol-
umes with incubation times ranging from 1 hour to overnight. Digestion was confirmed
using agarose gel electrophoresis.

To avoid self religation, the ends of linearised plasmid backbones were routinely de-
phosphorylated using Antarctic Phosphatase (NEB). 5 U of phosphatase and sufficient
Antarctic Phosphatase buffer were added to restriction digests with incubation at 37◦C for
30 minutes. The enzyme was heat inactivated by incubating at 65◦C for 5 minutes.

Prior to ligation, linearised DNA was usually gel extracted to isolate just the intended
fragment. Digestion reactions were separated by agarose gel electrophoresis using 1% agarose
minigels cast with larger wells. Gels were stained with 50 mL of 1× SYBR Safe DNA gel
stain (Life Technologies) made up in TAE for 30 minutes with gentle shaking. Excision of
the desired bands was assisted by visualisation using a Safe Imager Blue-Light Transillu-
minator (Life Technologies). DNA was extracted from gel slices using either the QIAquick
Gel Extraction Kit (Qiagen), eluting in 30 µL of 10 mM Tris-HCl, or the Zymoclean Gel
DNA recovery Kit (Zymo Research), eluting in 10 µL of H2O.

For ligation of DNA, 10 µL reactions were prepared using 200 U of T4 DNA ligase
(NEB), 1 µL ligase buffer (10× stock), with the remaining volume split between insert and
vector DNA solutions to achieve an approximate 3:1 ratio of insert to vector. Controls
without the insert and without ligase were also prepared to determine the background.
Ligation reactions were desalted by pipetting onto MF-Millipore Membrane Filter disks
with a 0.025 µm pore size that were floating in H2O. Reactions were removed after 15 min-
utes and pipetted into clean microcentrifuge tubes.

8.2.7 Competent cells

Electrocompetent transformation. For cloning work, electrocompetent transformation of
desalted ligation reactions was used due to the higher transformation efficiency of this
method.
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Electrocompetent cells were prepared from a 500 mL log phase culture (OD600 0.4–0.6).
The culture was divided into four equal volumes, the cells pelleted (2500× g, 10 minutes,
4◦C) and the supernatant removed. Each pellet was resuspended in 125 mL of ice-cold
H2O before pelleting again (2500 × g, 10 minutes, 4◦C). The supernatant was removed,
and each pellet resuspended in 1 mL of ice-cold 10% glycerol and transferred to 1.5 mL
microcentrifuge tubes. Cells were again pelleted (6000× g, 3 minutes, 4◦C) and the super-
natant removed. Cells were consolidated into two portions by resuspending in 2 aliquots
of 1 mL 10% glycerol. Cells were pelleted a final time (6000× g, 3 minutes, 4◦C), resus-
pended in ice-cold 10% glycerol, aliquoted into 250 µL portions and stored at −80◦C.

For transformation, cells were thawed on ice and a 40 µL aliquot mixed with 2 µL of
ligation mix using chilled pipette tips. This mix was transferred into a chilled electropora-
tion cuvette (1 mm gap) and an electric pulse applied using the Ec1 setting (1.8 kV pulse)
of a Bio-Rad Micropulser. 1 mL of SOC with 20 mM glucose was immediately added into
the cuvette and used to pipette the cells into 1.5 mL microcentrifuge tubes. Cells were
allowed to recover by incubating at 37◦C for 1 hour in a rotating drum. Cells were pel-
leted (6000× g) and 850 µL of the supernatant discarded. Cells were resuspended in the
remaining supernatant, spread onto L-plates with appropriate antibiotics and left to grow
overnight at 37◦C.

TSS competent transformation. For transformation of plasmids, including integration of
the CRIM plasmids, TSS competent cells were prepared [Chung et al., 1989]. A 10 mL early
log phase culture (OD600 0.3–0.4) was chilled on ice for 30 minutes, and cells then pelleted
(4000 rpm, 10 minutes, 4◦C, Eppendorf Centrifuge 5810R). Cells were resuspended in 1 mL
of TSS buffer, aliquoted into microcentrifuge tubes and stored at −80◦C.

For transformation, the competent cells were thawed on ice and 100 µL mixed with
typically 4 µL of plasmid mini prep using chilled pipette tips. After 20 minutes on ice,
900 µL of LB with 20 mM glucose was added and cells allowed to recover by incubating at
37◦C for 1 hour in a rotating drum. Cells were pelleted, resuspended in a smaller volume
and spread onto L-plates as for the electrocompetent transformation.

8.2.8 Sequencing

Sequencing was routinely used to check for the integrity of recombinant DNA constructs
that had been prepared using a PCR product. Sanger sequencing reactions were prepared
from templates that had first been PCR amplified. Reactions were prepared with 5 µL of
cleaned PCR template, 7 µL of BigDye Dilution buffer, 2 µL of the primer (from a 20 ng/µL
stock) and 1 µL of BigDye Version 3.1 Ready Mix, made up to 20 µL with H2O. Thermal
cycling was applied using an Idaho Technology Rapid Cycler (98◦C for 20 seconds, then
30 times (96◦C for 10 seconds, 47◦C for 20 seconds, 57◦C for 1 minute)).
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Reactions were then cleaned using isopropanol precipitation. Reactions were trans-
ferred to microcentrifuge tubes and 80 µL of 75% isopropanol added. This was vortexed
and then left to precipitate for 15′ at room temperature. Samples were spun in a marked
orientation at 13.2 krpm for 10 minutes at room temperature in an Eppendorf Centrifuge
5415R. The supernatant was removed, the pellet washed in 250 µL 75% isopropanol and
the tube vortexed. Samples were spun in same orientation for another 5 minutes and the
supernatant again removed. This was repeated for another 2 minutes and any residual
supernatant removed. Samples were then dried on a heating block with lids open for 3′

at 75◦C before delivering to the Institute of Medical and Veterinary Sciences, South Aus-
tralia (IMVS) for sequencing. Sequencing chromatographs were visualised using the ApE
plasmid editor (http://biologylabs.utah.edu/jorgensen/wayned/ape/).

8.2.9 Changing resistance genes for the pR-tum plasmid

The pR -tum plasmids of the original Tum−CI MFL strain prepared by Pocock [2007] had
a chloramphenicol resistance gene. This conflicted with the (single copy) chloramphenicol
resistance of the integrated pIT-CH-pR -gfp construct. To avoid this conflict, the resistance
gene on the pMCS-pR -tum+ and pMCS∗-pR -tum+ constructs was changed to a gene con-
ferring tetracycline resistance. Unfortunately, this step required a three fragment ligation
reaction due to the presence of an extra SpeI site in the SC101 replication origin. This
additional challenge meant that this cloning step required more care than usual, so it is
described here in more detail.

The tetracycline resistance was derived from pZE55-λ cI, which was digested with
AatII and SpeI and the tetracycline fragment gel extracted. The pMCS-pR -tum+ and
pMCS∗-pR -tum+ constructs were also digested with AatII and SpeI and combined with
the tetracycline resistance fragment in the ligation reaction in roughly equimolar amounts.
The most successful ligation reactions omitted gel extraction of the two fragments from
the pMCS-pR -tum+ and pMCS∗-pR -tum+ digests, that is, after heat inactivation of the
restriction enzymes, the digests were used directly in the ligation reaction. Ligation reac-
tions were transformed into electrocompetent E2878 pZC320-WR-cI, which has a source
of CI protein to reduce the chance of promoter or gene mutations due to the strong pR
promoter.

Since the secondary SpeI site was in the middle of the replication origin, it was unlikely
that plasmids with a flipped SpeI-SpeI fragment could successfully propagate. Nonethe-
less, a number of diagnostic tests were run to ensure that the plasmids were correct. Mini
preps of a selection of pMTS-pR -tum+ and pMTS∗-pR -tum+ were prepared for diagnostic
digests1. An NdeI/XhoI restriction digest reaction was chosen since it produced diagnos-

1NB: the same procedure was also trialled for changing the resistance genes of the original pMCS-
pR -tum− and pMCS∗-pR -tum− plasmids, so diagnostic digests of these plasmids were also performed.
However, these clones were later discarded in favour of a more complete deletion of the tum gene from
the completed pMTS-pR -tum+ and pMTS∗-pR -tum+ plasmids as described in Section 8.3.3.

http://biologylabs.utah.edu/jorgensen/wayned/ape/
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2. 3 µL pMTS-pR -tum+ C1

AatII/XhoI/NdeI digest

Figure 8.1: 1.5% agarose gel of diagnostic digest of
pMTS-pR-tum+ plasmid with AatII, XhoI and NdeI.

tic fragment lengths that tested how the fragments had ligated together. This digest was
performed for all but one of the pMTS-pR -tum+ clones, which was subject to digestion
with AatII, XhoI & NdeI, which would produce the following fragments:

Ligation Variants Expected Fragments

pMTS-pR -tum+ 3.6 k.b., 1.5 k.b., 0.5 k.b., 0.35 k.b.

pMTS-pR -tum+ (reversed tum fragment) 3.9 k.b., 1.2 k.b., 0.5 k.b., 0.35 k.b.

A gel showing this digestion for Clone 1 (C1) from the pMTS-pR -tum+ three fragment
ligation reaction is shown in Figure 8.1.

For the clones digested only with NdeI and XhoI, the expected fragment sizes depend-
ing on how the ligation proceeded would be:
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 1. 500 ng 2-log ladder
2–5. 3 µL pMTS∗-pR -tum+ C1–4

NdeI/XhoI digests
6–9. 3 µL pMTS∗-pR -tum− C1–4

NdeI/XhoI digests
10. 500 ng 2-log ladder
11. 500 ng 2-log ladder

12–14. 3 µL pMTS-pR -tum+ C3–5
NdeI/XhoI digests

Figure 8.2: 1.5% agarose gel of diagnostic digest of
pR-tum plasmids with NdeI/XhoI.

Ligation Variants Expected Fragments

pMTS-pR -tum+/ pMTS∗-pR -tum+ 3.6 k.b., 1.9 k.b., 0.5 k.b.

pMTS-pR -tum+/ pMTS∗-pR -tum+

(reversed tum fragment)
4.2 k.b., 1.2 k.b., 0.5 k.b.

pMCS-pR -tum+/ pMCS∗-pR -tum+ 3.6 k.b., 1.3 k.b., 0.5 k.b.

pMTS-pR -tum+/ pMTS∗-pR -tum+ (double
tum fragment)

3.6 k.b., 2.5 k.b., 1.9 k.b., 0.5 k.b.

pMTS (no tum/tum− fragment) 2.9 k.b.

pZC320-WR-cI 5.6 k.b., 2.5 k.b.

A gel showing these digestions for clones from the pMTS-pR -tum+ and pMTS∗-pR -tum+

three fragment ligation reactions is shown in Figure 8.2. The gel revealed that pMTS-
pR -tum+ clones 3 and 4 had a reversed tum fragment. So the clones consistent with
the correct order and orientation of the fragments were pMTS-pR -tum+ clones 1&5, and
pMTS∗-pR -tum+ clones 1&3.

The SC101∗ contains a BglII site that the SC101 does not contain. This was used as
a diagnostic marker for the correct origin on PCRs between primers 189 and 190. A gel
showing this reaction for the consistent pMTS-pR -tum+ and pMTS∗-pR -tum+ clones is
shown in Figure 8.3. All consistent clones had the expected origins.

Sequencing was performed over the pR -tum section of all plasmids (between primers
329 and 457). All final plasmids also had the correct sequence over this region.
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1 2 3 4 5 6 7 8 9
1–2. 3 µL digested origin PCRs of

pMTS-pR -tum+ C1&5 (expect
703 b.p.)

3–4. 3 µL digested ori PCRs of
pMTS-pR -tum− C1&2 (expect
703 b.p.)

5. 500 ng 2-log ladder
6–9. 3 µL digested ori PCRs of

pMTS∗-pR -tum+ C1,2,3&4
(expect 475 b.p. & 228 b.p.)

Figure 8.3: 2.0% agarose gel of diagnostic digests
to check for the correct origin in the pR-tum plasmids.

8.3 Strains and DNA

8.3.1 Bacterial strains

Table 8.4: Bacterial strains used in this thesis.

Stock
No.

Name Genotype Description

E2878 BW23473 ∆(lacIZYA-argF )U169 rph-1
rpoS396 (Am) robA1 creC510
hsdR514 ∆endA9 recA1
uidA (∆MluI)::pir(wt)

A pir+ strain used for propagating and
cloning plasmids with the pir-dependent
R6Kγ origin. Obtained from
B. Wanner [Haldimann and Wanner, 2001].

E2879 BW23474 ∆(lacIZYA-argF )U169 rph-1
rpoS396 (Am) robA1 creC510
hsdR514 ∆endA9 recA1
uidA (∆MluI)::pir-116

A pir+ strain used for propagating and
cloning plasmids with the pir-dependent
R6Kγ origin. The pir-116 mutation permits
higher copy numbers. Obtained from
B. Wanner [Haldimann and Wanner, 2001].

E4241 DH5α endA1 glnV44 thi -1 recA1
relA1 gyrA96(NalR) deoR
nupG ∆(lacIZYA-argF )U169
hsdR17(r−K m+

K ), λ−, F−

General cloning strain (Bethesda Research
Laboratories).

E4300 NK7049 ∆lacχ74 galOP308 rpsL su− A K-12 E. coli strain used as the host for all
reporter assays. Obtained from
R. Simons [Simons et al., 1987].
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8.3.2 Primers

Primers were reconstituted to 1 µg/µL in Tris-EDTA buffer and stored at −20 ◦C.

Table 8.5: Primers used in the course of this thesis. Sequences are written 5′ to 3′. Capitalisation indicates

the intended priming region. Shaded boxes indicate locations of restriction enzyme sites.

No. Sequence Description

164 1 cggaag cttaag TTTAAC TTTAAG
25 AAGGAG A

Primes the RBS in pET3a plasmids (HindIII).

315 1 GCTAGT TATTGC TCAGCG GTGG Reverse primer over the T7 terminator. It is
located downstream of genes in, for
example, the pET3a plasmid.

466 1 GGCATC ACGGCA ATATAC Used with primers 469, 467 & 468 to check
for single integrants at the λ attB site.

467 1 ACTTAA CGGCTG ACATGG Internal primer for the CRIM plasmids.
Used to check for single integrants at various
attB sites.

468 1 ACGAGT ATCGAG ATGGCA Internal primer for the CRIM plasmids.
Used to check for single integrants at various
attB sites.

469 1 TCTGGT CTGGTA GCAATG Used with primers 466, 467 & 468 to check
for single integrants at the λ attB site.

585 1 GGAATC AATGCC TGAGTG Used with primers 586, 467 & 468 to check
for single integrants at the HK attB site.

586 1 GGCATC AACAGC ACATTC Used with primers 585, 467 & 468 to check
for single integrants at the HK attB site.

706 1 gggggc ggccgc CTATTT CTTCCA
25 GAATTG C

Primes upstream of the SC101 or SC101∗

origins (NotI site).

707 1 gggggc tagcGA GAATCC AAGCAC
25 TAGG

Primes downstream of the SC101 or SC101∗

origins (NheI site).

754 1 gctcag tcatat ggtgAG CAAAGG
25 AGAAGA ACTTTT CACTGG

Primes N-terminal of folding reporter GFP
(NdeI site).

755 1 gctcac gtacgT TATTTG TAGAGC
25 TCATCC ATGCC

Primes C-terminal of folding reporter GFP
(BsiWI site).

813 1 gagttg gatccG GTTAAT TAACGG
25 CACCAC C

Primes upstream of the tonB terminator in
pIT3-CL-lacZflip (BamHI site).

814 1 gaggta cacggt gtgcca gcttct
25 gtatgg AAACCT CGCGCC TTACC

Primes downstream of the tonB terminator
in pIT3-CL-lacZflip (XcmI site).
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8.3.3 Plasmids

Table 8.6: Plasmids referred to and cloned in the course of this thesis.

Name Origin Resist. Description

pET3a-cI ColE1 Amp Source of cI gene with enhanced RBS for
pZC320-ER-cI. Obtained from K. Shearwin.
Construction is specified in Shearwin and Egan
[1996].

pET-TumHis6 ColE1 Amp Original source of tum4−5−his gene for all MFL
constructs. Obtained from K. Shearwin. Construction
is specified in Shearwin et al. [1998]

pIT3-CL-lacZflip R6Kγ Chlor Source of tonB terminator for pZC320-tonBterm and
lacZO2− for pZC320t-lacZ . Obtained from I. Dodd.
The tonB terminator and lacZO2− gene in this
plasmid are the same as in the pIT3-HFCL plasmid
described in Cui et al. [2013], except that the reporter
fragment between the two SphI sites has been flipped.

pET28-gfp ColE1 Kan Source of folding reporter GFP, which includes both
the cycle 3 and enhanced GFP mutations, but was
designed as a fusion protein to report on protein
folding [Waldo et al., 1999]. Obtained from G. Waldo.

pSC101 SC101 Chlor A medium-copy plasmid (10–12 copies) [Lutz and
Bujard, 1997] and source of SC101 for
pMCS-pR -tum+. Obtained from H. Bujard.

pSC101∗ SC101∗ Chlor A low-copy plasmid (3–4 copies) [Lutz and Bujard,
1997] and source of SC101∗ for pMCS∗-pR -tum+.
Obtained from H. Bujard.

pZE55-λ cI ColE1 Tet Source of Tetracyclin (Tet) resistance gene for
pMTS-pR -tum+ plasmid. Obtained from I. Dodd.

pUHA-1 p15a Kan Supplies LacI repressor. Obtained from H. Bujard.

pZC320 mini-F Amp A low-copy plasmid backbone derived from the F
plasmid that maintains close to chromosomal
copy-numbers [Shi and Biek, 1995].

pZC320-WR-cI mini-F Amp Supplies CI from the P lac promoter with a wild-type
RBS. Obtained from I. Dodd. This plasmid is identical
to pZC320-186cI as specified in Dodd and Egan
[2002].

Continued on next page
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Table 8.6: Continued from previous page

Name Origin Resist. Description

pZC320-ER-cI mini-F Amp Supplies CI from the P lac promoter with an enhanced
RBS from the pET3a plasmid. Created by PCR
amplifying the pET3a RBS and cI gene from pET3a-cI
using primers 164 (adds HindIII site) and 315, and
cloning between the HindIII and BamHI sites in
pZC320.

pZC320-tonBterm mini-F Amp Precursor to pZC320t-lacZ . Created by PCR
amplifying the tonB terminator from
pIT3-CL-lacZflip using primers 813 and 814 and
cloning between the BamHI and XcmI sites of
pZC320, replacing the lacZα fragment.

pZC320t-lacZ mini-F Amp Induction system reporter used to quantify the
ultrasensitivity in relieving LacI repression of P lac.
Created by cloning the lacZO2− fragment between
the XhoI and BamHI sites of pIT3-CL-lacZflip into the
same sites of the pZC320-tonBterm plasmid.

pINT-ts oriR101 Amp CRIM helper plasmid for integration at the λ attB
site [Haldimann and Wanner, 2001]. Obtained from
B. Wanner. Strains with this plasmid must be grown
at 30◦C due to the temperature-sensitive origin.

pAH69 oriR101 Amp CRIM helper plasmid for integration at the HK attB
site [Haldimann and Wanner, 2001]. Obtained from
B. Wanner. Strains with this plasmid must be grown
at 30◦C due to the temperature-sensitive origin.

placatt1-∆lacY -lacZ R6Kγ Spec β-gal reporter chassis that can be integrated at the
λ attB site using the CRIM system. Obtained from
I. Dodd. Details of its genetic features are given in
Section 3.1.1 and Figure 3.2(a).

pIT-SL-pR -lacZ R6Kγ Spec Contains the short pR–pL fragment of phage 186
reading from pR into lacZ . Used to generate pR -lacZ
reporter strains by integrating into the λ attB site.
Derived from placatt1-∆lacY -lacZ . Obtained from
M. Pocock. Details of its genetic features are given in
Section 3.1.1 and Figure 3.2(a).

Continued on next page
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Table 8.6: Continued from previous page

Name Origin Resist. Description

pIT-CH-pR -tum+ R6Kγ Chlor Contains the short pR–pL fragment of phage 186
reading from pR into tum4−5−his . Used for cloning
pIT-CH-pR -gfp . Obtained from M. Pocock, who
derived pIT-CH-pR -tum+ from placatt1-∆lacY -lacZ
by first replacing lacZ with tum4−5−his from
pET-TumHis6, then replacing the Spec resistance gene
with a Chlor resistance gene, and finally replacing
λ attP with the HK attP from the pAH144 CRIM
plasmid.

pIT-CH-pR -gfp R6Kγ Chlor Contains the pR promoter reading into gfp . Used to
generate pR -gfp reporter strains by integrating into
the HK attB site. Created from pIT-CH-pR -tum+ by
amplifying the folding reporter gfp gene from
pET28-gfp using primers 754 and 755, and cloning
between the NdeI and BsiWI sites of
pIT-CH-pR -tum+ to replace the tum4−5−his gene.
Primer 754 adds an initiation codon and a valine
codon to the fusion protein gfp template.

pMCS-pR -tum+ SC101 Chlor A medium-copy plasmid with the pR promoter
reading into tum4−5−his . Precursor to
pMTS-pR -tum+. Obtained from M. Pocock, who
derived pMCS-pR -tum+ from pIT-CH-pR -tum+ by
cloning the fragment between the NotI and NheI sites
of pSC101 into pIT-CH-pR -gfp , replacing the R6Kγ

origin.

pMCS∗-pR -tum+ SC101∗ Chlor A low-copy plasmid with the pR promoter reading
into tum4−5−his . Precursor to pMTS∗-pR -tum+.
Obtained from M. Pocock, who derived
pMCS∗-pR -tum+ from pIT-CH-pR -tum+ by cloning
the fragment between the NotI and NheI sites of
pSC101∗ into pIT-CH-pR -gfp , replacing the R6Kγ

origin.

pMTS-pR -tum+ SC101 Tet The medium-copy MFL plasmid with pR reading
into tum4−5−his . Created by three fragment ligation
of SpeI/AatII digests of the pMCS-pR -tum+ plasmid
and the pZE55-λ cI plasmid. Gel extraction of the
required fragments was used to maximise success.
Additional details for preparing this clone are given
in Section 8.2.9.

Continued on next page
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Table 8.6: Continued from previous page

Name Origin Resist. Description

pMTS∗-pR -tum+ SC101∗ Tet The low-copy MFL plasmid with pR reading into
tum4−5−his . Created by three fragment ligation of
SpeI/AatII digests of the pMCS∗-pR -tum+ plasmid
and the pZE55-λ cI plasmid. Gel extraction of the
required fragments was used to maximise success.
Additional details for preparing this clone are given
in Section 8.2.9.

pMTS-pR -tum− SC101 Tet The medium-copy tum− MFL control plasmid.
Created by digesting pMTS-pR -tum+ with XhoI and
SalI, which have compatible ends, and religating a
dilute solution of the digest to favour intramolecular
ligation.

pMTS∗-pR -tum− SC101∗ Tet The low-copy tum− MFL control plasmid. Created by
digesting pMTS∗-pR -tum+ with XhoI and SalI, which
have compatible ends, and religating a dilute solution
of the digest to favour intramolecular ligation.

pIT-SL R6Kγ Spec Empty integration chassis. Created by digesting
placatt1-∆lacY -lacZ with XhoI and SalI, which have
compatible ends, and religating a dilute solution of
the digest to favour intramolecular ligation.

8.4 Assays

8.4.1 Preparation of cell extracts

For analysis of cell protein content by Western blot, cell extracts first need to be prepared.
The base protocol starts from 2 mL O/N cultures of the required strain, which are subcul-
tured 1/200 into 4 mL of pre-warmed LB and grown to log phase with shaking at 37◦C.
During growth to log phase, the OD600 of the cultures was monitored by taking 100 µL
samples into the wells of a 96-well plate, determining optical densities using the plate
reader as previously described (Section 8.2.1). Upon reaching OD600 0.6, cultures were
placed on ice for 30 minutes. After resuspension, a final reading of OD600 was made and
used to normalise aliquots of the cultures into 1.5 mL screw-capped microcentrifuge tubes
to obtain the equivalent of 900 µL of culture with OD600 0.6. These samples were pelleted
(10 minutes, 13000 rpm, 4◦C, Eppendorf Microcentrifuge 5418R) and the supernatant care-
fully removed using a drawn-out Pasteur pipette connected to a vacuum source. After
re-pelleting (1 minute, 13000 rpm, 4◦C) and removing remaining supernatant, pellets were
resuspended in 40 µL of Lysis Solution (200 ng/mL lysozyme and 250 U/mL benzonase
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made up fresh in B-PER Reagent and kept on ice). Lysis proceeded on ice for 30 minutes,
after which 40 µL of 2× Extract Loading Buffer (2× NuPAGE LDS sample buffer (Invit-
rogen) and 2× NuPAGE sample reducing agent (Invitrogen) made up fresh in H2O) were
added. Finally, samples were heated at 70◦C for 10 minutes to denature the protein and
pulse spun to recover condensation. These samples were stored at −20◦C until required.

The base protocol was used to prepare 1× extracts for quantitation of steady-state pro-
tein levels. Variations on the base protocol were used to prepare extracts for serial di-
lutions, or quantitation of protein degradation or protein solubility. For quantitation of
steady-state protein levels, extracts of cells not containing the target protein were used for
serial dilutions of the samples and the protein standard. This was done to ensure that
any background bands in the Western blots would be consistent between samples. These
extracts were prepared in large scale.

Large scale protocol. This is essentially a scaled version of the base protocol. Log phase
cultures were instead 50 mL. Final aliquots were normalised to obtain the equivalent of
9 mL of culture with OD600 0.6. Cells were pelleted in 10 mL yellow-capped tubes using
an Eppendorf Centrifuge 5810R (15 minutes, 4000 rpm, 4◦C in the first spin; 5 minutes
in the second). Cells were resuspended in 400 µL of 2× Lysis Solution in the yellow-
capped tubes, and were only aliquotted into 1.5 mL screw-capped tubes after mixing with
400 µL of 2× Extract Loading Buffer. Protein denaturation and storage were as for the base
protocol.

Degradation extracts. The preparation of extracts to measure protein degradation pro-
ceeded similarly to the large scale protocol. Log phase cultures were again 50 mL, how-
ever, about 10 minutes before reaching OD600 0.6, MgSO4 was added to 50 mM from a stock
of 1 M to reduce loss of macromolecules and cell lysis when inhibting translation [Gupta,
1975]. After 10 minutes, protein production was stopped by adding chloramphenicol to
200 µg/mL (from a 100 mg/mL stock made up fresh in ethanol); cultures continued to be
maintained at 37◦C with shaking. At regular intervals, 1 mL samples of the culture were
taken into 5 mL of ice-cold 1× PBS and left on ice for 30 minutes. The chilled samples were
pelleted as for the large scale protocol, but after removal of all supernatant, a freeze/thaw
step (10 minutes at −80◦C) was applied to enhance lysis. Resuspension in Lysis Solution
and mixing of Extract Loading Buffer were again performed in the yellow-capped tubes,
though for volumes of 40 µL each.

Soluble and insoluble fraction extracts. The preparation of soluble and insoluble fraction
extracts proceeded similarly to the base protocol. After pelleting of cells and removal of
all supernatant, a freeze/thaw step (10 minutes at −80◦C) was applied to enhance lysis.
Pellets were resuspended in 100 µL of ice-cold Lysis Solution and left on ice for 30 minutes.
40 µL and 50 µL aliquots were taken into 1.5 mL screw-capped microcentrifuge tubes, the
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former being kept aside as the ‘total protein’ sample. The latter was spun for 10 minutes at
13000 rpm and 4◦C in an Eppendorf Microcentrifuge 5418R, and 40 µL of the supernatant
aliquotted into another tube (the ‘soluble fraction’). The remaining supernatant (S/N)
was carefully removed using a drawn-out Pasteur pipette connected to a vacuum source,
and the pellet resuspended in another 50 µL of Lysis Solution (the ‘insoluble fraction’).
Addition of Extract Loading Buffer, protein denaturation and storage of all samples (total
protein and soluble and insoluble fractions) were as for the base protocol.

Pre-adsorption extracts. Pre-adsorption extracts were used to quench any non-specific
antibodies present in the primary antibody preparations. These were prepared from 500 mL
log phase cultures (OD600 0.6) of cells not containing the target proteins of interest. Af-
ter pelleting by centrifugation, the culture was resuspended in 5 mL of 10 mM Tris-HCL
pH 8.5 and 1 mM MgCl2. The resuspension was sonicated with 2–4 10 second pulses,
treated with 5 µL of benzonase (25 U/µL) and left on ice for 30 minutes, then dispensed
into 1.5 mL screw-capped tubes for storage at −20◦C.

8.4.2 Polyacrylamide gel electrophoresis of proteins and Western blotting

The protein content of cellular extracts was quantified by first separating on the basis of
molecular weight by SDS-PAGE, then transferring by Western blot and probing for the
protein of interest by antibody staining.

SDS-PAGE was performed using the Xcell Surelock Mini-Cell system with precast Nu-
PAGE Novex 12% Bis-Tris 12-well minigels (Invitrogen). Gels were run according to the
manufacturer’s specifications at 200 V with the NuPAGE MOPS SDS Running Buffer, load-
ing 12 µL of sample cell extract per well. When needed, ECL Plex Fluorescent Rainbow
Markers (Amersham) were added in one or more of the wells to act as a molecular weight
standard.

Proteins were transferred from completed gels to Amersham Hybond-LFP membranes
(low fluorescence PVDF membranes with a 0.2 µm pore size) using the XCell II Blot Mod-
ule for the Surelock Mini-Cell system. Transfers were run according to the manufacturers
instructions using NuPAGE Transfer Buffer and constant 30 V for 1 hour.

Membranes were blocked overnight in 5% BSA in PBS with shaking at 4◦C. Mem-
branes were then rinsed twice in PBS-T (1× PBS with 0.1% tween), and washed twice in
PBS-T for 5 minutes with shaking at room temperature. The membrane is then incubated
with 20 mL of pre-adsorbed primary antibody (a 1/500 or 1/1000 dilution of primary an-
tibody in PBS-T incubated with 300 µL of pre-adsorption extract for 30 minutes) for 1.5
hours at room temperature. It is again washed several times with PBS-T before incubating
with secondary antibody (20 mL of a 1/5000 dilution of ECL Plex Goat-α-Rabbit IgG-Cy5
(Amersham) in PBS-T) for 1 hour. Finally, membranes were washed several times in PBS-
T, then several times in PBS, before being dried between blotting paper for 1 hour at 37◦C.
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Membranes were scanned on a Typhoon Imager (GE Healthcare) using the 633 nm laser
and 670/30 bandpass filter using a low to moderate Photomultiplier Tube (PMT) voltage
(∼500 V).

Quantitation of band intensity from the scanned images was performed using the
ImageJ application [Rasband, 2011]. After ‘rolling ball’ background subtraction (a method
that accounts for local variations in background intensity) the intensity of bands was mea-
sured as the total intensity within a rectangular selection encompassing each band.

8.4.3 Quantitating concentrations of cells in culture

To normalise the quantitated levels of protein in cell extracts to a value per cell, the concen-
tration of cells in cultures of OD600 0.6 were measured. To match the cell extract protocol
as closely as possible, log phase cultures were grown to around OD600 0.6 and the OD600

of 100 µL samples then more precisely measured using the plate reader as previously de-
scribed (Section 8.2.1). Using these measured OD600s, a normalising culture volume was
derived to obtain the equivalent of 10 µL of culture with OD600 0.6. This calibrated vol-
ume of culture was added to 990 µL of LB and then further serially diluted (by steps no
greater than a 1/100 dilution) to obtain countable numbers of cells (final dilution factors
were in the range 1× 106 to 1× 107). 100 µL of this final dilution was very gently spread
onto L-plates with appropriate antibiotics until most of the liquid had been absorbed; the
remaining liquid was allowed to absorb without spreading to avoid killing any cells. After
growth overnight at 37◦C, colonies were manually counted on each plate.

8.4.4 Growth of bacteria for 96-well plate assays

Bacteria grown to log phase in 96-well plates were used for LacZ assays and flow cytom-
etry assays. The methods detailed here are based on ones described in Dodd et al. [2001]
and Palmer et al. [2009] for the growth of bacteria for LacZ assays.

Basic assay. Growth was started from colonies on plates freshly streaked from glycerol
stocks. Yellow pipette tips were used to pick colonies and suspend them in 98 µL of growth
medium in the wells of a 96-well plate. 2 µL of this suspension was then pipetted into
new wells containing 98 µL of growth medium for growth overnight at 37◦C. To minimise
evaporation of the growth medium, ethanol-swabbed rubber-padded lids were used and
plates were also sealed with sticky tape.

The following day, log phase cultures were established from the overnight cultures. All
dilution steps were performed at 37◦C. First, the overnight cultures were diluted 1/5 into
100 µL of growth medium in new wells and the A620s measured using a Multiskan Ascent
Plate Reader (Labsystems). The A620s were converted to OD600s using an empirically de-
termined relationship [Dodd et al., 2001]. These values were used to calculate normalising
volumes of growth media for each culture, to which 50 µL of the diluted overnight culture
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could be added to reach an effective final OD600 of 0.15 (typically giving an overall 1/10
dilution relative to the original overnight culture). These normalised cultures were then
diluted 1/50 into 100 µL of growth medium in the wells of a new 96-well plate. Typically
at this point, each normalised culture was used to innoculate multiple wells that differed
only by the concentration of IPTG in the growth medium. These cultures were grown
to late log phase (A620 of 0.13–0.17) in a custom-made rotating drum for 96-well plates.
Growth was followed using the plate reader, and for growth assays, these measurements
were made at regular intervals. Upon reaching late log phase, cells were ready for assay.

For a given type of assay, stocks of growth media with appropriate antibiotics and a
range of IPTG concentrations were prepared in advance and stored in aliquots at −20◦C.
These were thawed and pre-warmed to 37◦C when needed. After thawing, any unused
media was disposed of. Unless otherwise specified, the overnight cultures and dilutions
thereof were performed in growth media without IPTG. Growth media with a range of
IPTG concentrations was typically used only in the final log phase plate.

Hysteresis assays. The short equilibration time hysteresis assay proceeded similarly to
the basic assay, however, each colony suspension was used to innoculate two alternative
overnight cultures: one with 0 µM IPTG, the ‘low O/N’, and one with 300 µM IPTG, the
‘high O/N’. These were diluted and normalised the following day using media containing
consistent IPTG concentrations. After normalisation, 2 µL aliquots of each culture were
added to wells of the final log phase plate containing 98 µL of growth medium with a
range of different IPTG concentrations.

The normal equilibration time hysteresis assay introduced an additional 1/10 dilution
of the overnight cultures (both low and high) in 100 µL of growth media with consistent
IPTG concentrations. This step was performed directly after the normalisation step, so the
further-diluted cultures were the source of aliquots for the log phase plate.

The long equilibration time hysteresis assay proceeded as for the short equilibration
time hysteresis assay, except that once the cultures had reached an OD600 0.3 during growth
to log phase, the entire plate was subcultured 1/50 into a new log phase plate with an
identical arrangement of growth media.

The very long equilibration time hysteresis assay combined both normal and long equi-
libration time variations on the short equilibration time assay.

8.4.5 LacZ assay

The LacZ assay protocol was based on that described in Dodd et al. [2001] and Palmer
et al. [2009]. Cells were grown to late log phase in 96-well plates as described in Sec-
tion 8.4.4. Growth was quickly stopped by setting the plate on a pre-chilled metal block
in ice for 15 minutes. 20 µL of each culture was then transferred to another 96-well plate,
pre-heated to 30◦C, and containing 150 µL of TZ8+ buffer and 30 µL of LB per well. After
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a 15 minute incubation at 30◦C to permit lysis, 40 µL of ONPG solution (4 mg/mL ONPG
in TZ8 buffer) was added to each well to start the assay. The rate of cleavage of ONPG by
β-gal was followed by measuring the increase in absorption of each well at 414 nm in a
Multiskan Ascent plate reader (Labsystems) set to hold the temperature at 28◦C. Measure-
ments were made every 2 minutes for 1 hour. LacZ units are calculated from the slope (M,
per minute) of this line and the final OD600 (O) of the log phase culture using the formula:

U = 1000× M×Vr

O×Vc
(8.1)

where Vr and Vc are respectively the reaction volume before addition of ONPG (200 µL)
and the volume of culture used (20 µL). Due to a short lag time at the beginning of the
assay and saturation in absorption for wells with very high activity, some points are sys-
tematically omitted before calculating the slope to capture only the window where the
increase in absorption is linear.

Calculation of LacZ units and statistical analysis of the data was performed using R [R
Development Core Team, 2012].

8.4.6 Flow cytometry

For assay by flow cytometry, cells grown to late log phase as described in Section 8.4.4
were first stopped by setting the plate on a pre-chilled metal block in ice for 15 minutes.
40 µL of each culture was then transferred into the empty wells of a new 96-well plate and
the cells pelleted in that plate by centrifugation (1300× g for 5 minutes at 4◦C in an Eppen-
dorf Centrifuge 5810R). The supernatant was removed from each well using a drawn-out
Pasteur pipette connected to a vacuum source, and the cells then resuspended in 80 µL
of ice-cold 1× PBS using a 30 second shake protocol in the Multiskan Ascent plate reader
to facilitate resuspension. The cells were again pelleted (1300× g for 5 minutes at 4◦C),
the supernatant was removed and the cells resuspended in 40 µL of ice-cold 1× PBS with
shaking. 1/20 dilutions of this cell suspension were made to 300 µL in ice-cold 1× PBS in
round-bottom 12× 75 mm tubes.

These samples were run through a FACSCanto Flow Cytometer (Becton Dickson) ac-
cording to the manufacturer’s specifications. The cytometer was configured with a Coherentr
SapphireTM Solid State laser for excitation at 488 nm and a 530/30 bandpass filter to record
fluorescence emission due to GFP.

For the low cell count assays, around 1× 104 to 3× 104 cells were measured at a medium
flow rate, giving 500–3000 events per second. PMT voltages were set at 600 V, 600 V and
800 V for FSC, SSC and fluorescence channels respectively. The threshold for recorded
events was set so that both FSC and SSC needed to be larger than 2× 104, which ensured
exclusion of debris whilst retaining events from the main bacterial population. Peak area,
peak height and peak width were recorded for each channel.
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For the high cell count assays, around 8× 104 to 1× 105 cells were measured at a
medium flow rate, giving 1000–6000 events per second in this case. PMT voltages were
set at 350 V, 450 V and 750 V for FSC, SSC and fluorescence channels respectively. The
threshold for recorded events was set so that both FSC and SSC needed to be larger than
300. Peak area, peak height and peak width were recorded for each channel.

Basic filtering and analysis was done in R using the flowCore [Ellis et al., 2009a] and
flowClust [Lo et al., 2009] packages from BioConductor [Gentleman et al., 2004]. Custom
scripts were used for final analysis as described in Appendix B.
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Structure-function studies for Tum

With the aim of increasing the utility of the Tum protein as a new module for synthetic
biology, a draft manuscript was prepared that presents new work on characterising Tum
through a collection of Tum mutants. It was written to be submitted into the journal PLoS
Genetics.

I cloned some of the truncation mutants and performed LacZ assays for all of the
truncation mutants. I performed the data analysis (including the Hill curve fits of the
data, the alignment of Tum homologs, and the structure prediction efforts) and wrote the
manuscript.

This draft manuscript has not yet been submitted to any journal.
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Abstract

In an apparent effort to maximise host success and fast colonisation, temperate bacteriophages choose
between two modes of development: lytic growth where the host is coerced into mass production of
infectious phage particles, or lysogenic growth where the phage chromosome is integrated within its
host’s. During lysogeny, a repressor protein keeps lytic genes silent and the transition from lysogeny to
lytic development requires relief of this repression. In many cases, this occurs in response to stress signals
such as the host SOS pathway, invoked under conditions of DNA damage. An emerging mechanism
of phage sensitivity to this pathway is the upregulation of a phage-borne antirepressor protein that
directly inactivates the lytic repressor. Here we develop assays to quantitatively characterise the in vivo
antirepressor function of the Tum protein from coliphage 186. We generate libraries of Tum mutants using
complementary approaches and screens designed to favour functionally relevant mutations. By combining
a detailed analysis of these mutants with sequence features identified for Tum and its homologs, we show
that the Tum protein consists of two domains: an amino-terminal domain (NTD) that is responsible
for antirepressor activity and is representative of a broad family of little-studied small phage proteins,
and a carboxy-terminal domain showing strong homology with DinI-like genes seen in many other phage.
The highly ultrasensitive antirepressor activity can be further mapped to two extended α-helices in the
NTD. Efforts at experimental structure determination have been unsuccessful so we instead used our
mutational data set to assist the ab initio prediction of valuable structural models. These models in turn
complement the analysis of the mutation data and provide functional insights into the activity of the
antirepressor domain.

Author Summary

As highly mobile vectors for DNA transport, bacteriophage play a significant part in the fast evolution
and adaptation of bacterial populations to new environments. In temperate bacteriophage, this spread
of genetic information is modulated by the well-studied lysis-lysogeny decision, where the phage choose
between two growth modes by a complex integration of host and environmental signals. In lysogeny,
the phage genome is integrated within the host’s and a repressor protein typically plays an essential role
in keeping the lytic genes silent. Relief of this repression results in lytic development, and numerous
pathways exist to effect such development. Small antirepressor proteins are emerging as an widely-used
mechanism for such phage induction, often also implicated in trans-phage activation. Here we report on
a collection of mutations obtained for the Tum antirepressor of phage 186, and make use of this data and
the increasing wealth of bioinformatic data to dissect the function of these powerful but small proteins.
By combining the different data sets we have been able to build predictive structural models.

Introduction

Microbial ecosystems thrive on sharing genetic information. Driven by a need for fast evolution and
adaptation, numerous mechanisms are employed to modulate and enhance this process [1]. Within this
dynamic world, viruses and bacteriophage play a major role as highlighted by the abundant occurrence
of genes in the viral metagenome that enhance host fitness [2]. Temperate bacteriophage, in particular,
are well suited to mediating genetic transactions given their two distinct life cycles: during lysogeny the
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phage genome is integrated as part of the host chromosome, silently replicating with the host, whilst
in lytic growth, the phage turns its host towards mass production of phage, inducing cell lysis and the
consequent release and spread of more infectious particles. In this part-symbiotic role, temperate phage
are often observed to harbour ‘morons’ — genes that have no function in phage development, but are co-
transported and often confer competitive advantages to the host [3]. An especially consequential subset
are morons that increase host pathogenicity, well-known examples including the phage-derived genes for
the cholera [4] and Shiga [5] toxins.

The balance between lysis and lysogeny bears on the proliferation potential of temperate phage, and in
consequence the decision between the two growth modes is highly regulated. A classic example is induction
of the λ coliphage as a function of the host SOS response, a well-conserved DNA repair pathway. Genes
involved in the SOS response are normally held silent by the host LexA repressor, but are derepressed
when autocatalytic cleavage of LexA is stimulated by the formation of RecA protein filaments along single-
stranded DNA [6]. By utilising a similar RecA-dependent self-cleavage mechanism, the CI repressor that
maintains lysogeny in phage λ is also inactivated upon SOS induction [7]. In contrast, a number of other
phage respond to this same pathway by harbouring LexA-repressible promoters in their genomes. These
promoters may directly control lytic transcripts, as in the phage responsible for cholera [4], or promote
lytic development via the induction of intermediates known as ‘antirepressors’: phage proteins which can
inactivate the repressors responsible for maintaining lysogeny. This latter mechanism also provides the
capacity for target promiscuity, enabling the coordinated induction of disparate prophage by the evolution
of repressors that respond to the same antirepressor [8]. Ironically though, this mechanism has also seen
the phage themselves exploited: Staphyloccocal Pathology Islands (SaPIs) respond to phage induction
by employing repressors that respond to antirepressors of helper phage. The SaPIs then hijack phage
capsid production for the transport of their own large islands of pathogenic genes [9]. These findings
have revealed an important new layer in phage interaction and cooperation that is mediated by these
antirepressor proteins.

The P2-related bacteriophage 186 stands as one of the first studied examples of phage induction via
an antirepressor [10]. In this phage, the CI repressor maintains lysogeny by holding the lytic promoter
pR off (see Figure 1), but unlike λ CI, the 186 repressor is not sensitive to RecA-facilitated cleavage [11].
Instead, the phage harbours an ‘SOS operon’ that is transcribed from the LexA-repressible promoter p95

and consists of two genes: the antirepressor tum, which is responsible for derepression of the lytic pR
promoter and induction of the phage, and orf97, which is less well-characterised but whose overexpression
grants immunity to further infection by 186 virions [12]. The Tum antirepressor acts reversibly against
the CI repressor by preventing it from binding to DNA, thereby promoting lytic development [13]. The
carboxy-terminal (C-terminal) region of Tum shows homology with dinI-like genes found in many other
prophage [14], but in these cases, it is an independently translated gene product. Homologs of the
amino-terminal (N-terminal) region are similarly found as independently translated genes [15].

Here we define and characterise the region of Tum that is responsible for its antirepressor activity.
A bioinfomatic assessment of Tum and its homologs strongly suggests a two-domain protein and reveals
a family of little-studied homologs with the putative N-terminal domain. Using a quantitative in vivo
assay for antirepressor activity to characterise a broad assortment of Tum mutants, we confirm that
the Tum protein has two domains with the N-terminal domain being responsible for its antirepressor
activity. Truncation mutations reveal that the first 44 amino acids are sufficient for activity and this small
modelling region forms the basis for building structural models of Tum that refine our understanding of
this class of antirepressor.
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Results

Sequence analysis

Bacteriophage 186 is classed as a member of the P2 family, and is most closely related to the PSP3,
Fels-2 and SopEΦ phages of Salmonella [16]. Each of these phages have 186 tum homologs [15–17],
but strikingly, the region of tum homology in each of the homologs is split into two separately translated
genes (see Figure 2). A search of the NCBI’s non-redundant protein sequence database (‘nr’) for homologs
spanning the full length of Tum resulted in only 10 hits using the PSI-BLAST program [18], all showing
high sequence similarity with Tum (ranging from 60%–97% identity) and found variously in prophages
occupying Salmonella, Klebsiella, or Enterobacter strains. More than 200 other hits were identified that
were homologous to subregions of Tum, and these were clearly split into two groups, one aligning within
the first 70 amino acids, and the other aligning with amino acids 71–146. The latter formed the vast
majority and were ascribed to the DinI superfamily.

Independently translated DinI-like genes are frequently found within the SOS operons of many
phages [14], including the downstream Tum-like genes in the PSP3, Fels-2 and SopEΦ phages. In-
triguingly, in addition to its full length product, the tum gene also produces three alternative translation
products from internal translation start sites [12], and the shortest of these, open reading frame 5 (ORF5),
exactly matches the C-terminal homology region (see Figure 2). However, none but the full-length ORF
are capable of phage induction, suggesting that the antirepressor activity of Tum is a function of the
N-terminal region. This is supported by preliminary evidence suggesting that the antirepressor activity
is associated with the upstream and not the downstream gene in the PSP3 phage [15].

To better characterise the smaller family of N-terminal sequence homologs, a seed alignment of residues
1–70 of Tum with its respective PSP3, Fels-2 and SopEΦ homologs was submitted to the HHsenser
server [19], searching again over the ‘nr’ database. HHsenser is designed to find diverse homologs by per-
forming a recursive PSI-BLAST search from ‘seed’ sequences outside the standard PSI-BLAST threshold,
so that each seed represents a homology group. 56 seed sequences were identified apart from the query se-
quences, this set of sequences standing representative for a group of about 240 N-terminal Tum homologs
in the ‘nr’ database. The resulting alignment of those sequences is depicted in Figure 2 for the query
sequences only, with the degree of conservation across the entire set summarised by alignment quality.

The regions of high conservation are limited to the two extended N-terminal α-helices as predicted
from the HHsenser search. Most of the well-conserved residues are hydrophobic and likely to form the
stable hydrophobic core for a putative Tum amino-terminal domain (NTD). Of particular note, the
negatively charged residues at positions 30 and 40 are highly conserved throughout the family and are
indicative of the overall negative charge of this region. Curiously, a cysteine in a putative loop between
the two helices was also present in 52 of the 58 seed sequences, an especially high identity compared with
the neighbouring residues. For comparison and reference, a search for homologs to the C-terminal region
of Tum was similarly performed and the resulting alignment with Escherichia coli (E. coli) DinI and the
phage homologs is shown in Figure 2.

Assaying Tum activity in vivo

The antirepressor activity of Tum was previously characterised in vitro in a gel shift assay that measured
the reduction in CI–DNA binding with increasing Tum concentration [13]. We designed an analagous in
vivo antirepressor activity assay that reports on relief of CI repression at the pR promoter by an inducible
level of Tum (see Figure 3A). Thus antirepressor activity is indirectly measured as the fraction of CI that
remains free to repress pR. UV-induction of the prophage normally requires Tum to operate against
a lysogenic level of CI, and this guided our design. A single-copy Pbla promoter was used to provide
lysogen-like levels of CI, giving 75-fold repression of pR compared with 400-fold repression seen with a
186 prophage [20]. In trans constitutive production of CI avoids the natural feedback on CI expression
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present in the phage [21]. To measure the fraction of free CI, a relatively large fragment of the phage
186 pR–pL switch region that includes the flanking FL and FR CI binding sites was cloned upstream of a
lacZ reporter gene. This was chosen to better reproduce the extent of repression found in the prophage,
since these flanking sites enhance CI repression of pR [20].

The response of this assay strain to increasing levels of wild-type Tum is shown in Figure 3B. The
Tum− control (a parental induction plasmid) shows the repression by production of CI from Pbla. The
CI− control shows the maximum rate of production possible from unrepressed pR, and also confirms that
Tum by itself is unable to modulate pR activity [13]. With sufficient Tum antirepressor, close to complete
relief of pR repression can be achieved. A Hill fit of the wild-type response reveals that it is highly
ultrasensitive with an apparent Hill coefficient of 8 ± 2 — much higher than that observed in vitro [13].

The in vivo assay system also enabled direct comparison of the antirepressor activities of some tum
variants. Silent mutations to the tum gene can be made to inactivate both the ORF4 and ORF5 internal
ribosome binding sites [13]. This tum4−5− gene produces overlapping antirepressor activity with wild-
type tum, showing that products from these alternative ORFs do not interfere with antirepressor activity.
Addition of a C-terminal His6 tag makes no discernible difference to activity either, validating the use of
tum4−5−his in the in vitro gel shift assay system [13].

Point mutants are found exclusively in the NTD

Many point mutations that result in complete loss of function are diagnostic for functional regions and
critical active site residues of a protein. These are typically hidden amongst a milieu of less informative
mutations that effect gross changes to protein stability or translation (for example, mutations to prema-
ture stop codons). Here we used a screening strain to select for point mutants of tum that are specifically
unable to relieve CI repression, but which are not misfolded, frameshifted or truncated.

We selected for antirepression-deficient Tum mutants by screening a point mutant library (generated
by error-prone PCR over the entire tum gene) in trans using a Prophage of Death (POD) strain that
contains a 186 lysogen with a non-functional integrase (see Figure 4A). Without an integrase, the prophage
cannot excise or produce functional progeny, so induction of the lytic pathway results in cell death [22].
Cells expressing Tum mutants will only survive if they have lost the ability to induce the phage. To
exclude mutants that are inactive due to poor folding, frameshifts or truncations, we used a tum4−5−

template with a C-terminal fusion to the α-fragment of the lacZ gene (LacZα). In strains containing the
complementary LacZω, only those mutants that successfully translate the full length of tum4−5−α and
are not grossly misfolding [23] will produce a functional LacZ enzyme and hence the characteristic dark
blue on plates containing X-gal.

A total of 50 blue colonies were selected for sequencing over the tum4−5−α gene. All contained point
mutations at one of 18 distinct positions in the N-terminal region of Tum between residues 12–22 and
residues 30–41, fitting within the two predicted N-terminal α-helices (see Figure 4B).

Four of the point mutants resulted in early stop codons, which were all located upstream of the ORF4
start codon. These truncation mutants will be presented later.

Quantitation of the mutants was done as for the wild-type tum constructs. To simplify comparison,
we report antirepressor activity for the mutants as the summed area under each assay curve, shown
normalised to the Tumα control in Figure 4B.

All of the point mutants obtained in the screen showed less than 25% the activity of the Tumα
control, with most resulting in activities indistinguishable from the Tum− control (note that the two
mutations, D2N and T21S, showing full activity were recreated from double mutants with the R19H and
D30G mutations respectively). The majority of the mutations occurred at hydrophobic residues with
three charge reversal mutations among those at charged and polar residues. The high density of strongly
inactivating mutations in such a small region of the protein is good evidence for a structurally-isolated
antirepressor function.
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The collection of point mutants obtained in this study is complemented by the E12K, A34V and E40K
mutations obtained in an earlier study using phage-based screens for loss of UV-inducibility [12]. Point
mutations at these residues were also represented in the present screen, though the specific A34V and
E40K mutations did not arise.

Mapping structured regions by insertion mutagenesis

Insertions of short stretches of amino acids throughout a protein can be used to map the tolerance of each
region to structural disruption. Insertions in highly-structured regions, or buried inside a fold are more
likely to disrupt protein function, whilst insertions in linker regions and surface-exposed loops are less
likely to disrupt function. We prepared a library of insertions of 15 base pairs throughout tum using an in
vitro transposase reaction on PCR-amplified tum4−5−his DNA. With an aim to obtaining a collection of
insertions in both structured and unstructured regions of the protein we screened this library for mutants
with a broad range of activities using an antirepressor activity reporter strain plated on X-gal. Clones
within the library were not guaranteed independent insertion events, since an intermediate step involved
pooling colonies to remove the antibiotic resistance cassette used for selecting the insertions. As a result,
many of the clones were found multiple times.

The insertion event can occur in 6 different frames of the protein (counting forward and reverse
orientations of the transposon), and results in insertion of 5 codons, with two of the six frames giving
rise to stop codons. This was reflected in the library, where roughly one third of the tum4−5−his
insertion mutants were found with introduced stop codons. The results of these truncation mutants will
be presented in the following section.

As done for the point mutants, antirepressor activity assays were performed for each of the insertion
mutants and the normalised areas calculated for these curves are shown in Figure 5 along with the
insertion location and residues inserted. Consistent with the point mutations, insertions in either of the
first two α-helices caused complete loss of activity. However, all other insertions retained at least 40%
of wild-type activity, including three located between the first two α-helices, suggesting a flexible loop
between these helices.

Truncation mutations confine the region sufficient for antirepressor activity

A collection of Tum mutants with premature stop codons arose in the point and insertion mutant screens.
We also manually constructed a number of truncation mutants. Antirepressor activity reporter assays
of these mutants were performed as before, but since the C-terminal gets truncated in the mutants, the
calculated activities were normalised instead to the untagged tum4−5− control (see Figure 6A).

Tum activity matched the Tum− control for truncations terminating at or before residue 40. A low
level of Tum activity was detectable for the Tum44V* mutant (the V is inserted after residue 44 in this
insertion mutant), after which activity increases with increasing Tum length up to Tum73V. The full
activity of Tum71V shows that Tum’s antirepressor activity is wholly contained within the N-terminal
domain. The super-activity of the Tum73V mutant indicates that, if anything, the DinI-like domain of
Tum limits the antirepressor function of the NTD.

It was shown in an earlier study [12] that the translation product from ORF2 is inactive. We confirmed
this result using an N-terminal 9 amino acid truncation of tum4−5− to the ORF2 start site (Tum1−4−5−

in Figure 6A), but did not pursue any other N-terminal truncations.
It was originally thought that a minimal active Tum truncation would provide a useful starting

point for structural studies. So with a view towards protein purification, a high-resolution series of
targetted truncation mutants was made from an N-terminally His6-tagged Tum template (his-tum4−5−).
The complete set of these truncation mutants is summarised in Supplementary Figure S2, but the most
notable ones were selected for a more detailed analysis shown in Figure 6B. More sensitive comparisons of
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antirepressor activity can be drawn from the half maximal effective concentration (EC50) values obtained
by fitting Hill curves to the assay data.

The most active truncation of the N-terminally His6-tagged Tum mutants was the His6Tum51* con-
struct, which showed even more activity than the His6Tum72* mutant (the closest in length to the most
active untagged truncation mutant). Quite in contrast with the untagged truncation mutants, the min-
imal active truncation, His6Tum44*, was just as active as the His6Tum control. This surprising result
suggested that, in this instance, the His6 tag cannot be considered independent of the target structure
as it appears to assist in stabilising folding of this short truncation. Activity is nonetheless sharply lost
over the next couple of residues: His6Tum43* has an EC50 approximately twice that of His6Tum44*, and
His6Tum42* showed no activity in our assay.

Directing structure prediction using the results of the mutagenesis studies

In spite of the high activity of some of the short truncation mutants, our attempts at purifying these
Tum constructs for structural studies were unsuccessful. None of the Tum variants could be concentrated
higher than 0.2 mg/mL before precipitating out of solution. So to make structural sense of the conserved
residues of Tum and the various mutants, we turned to a structure prediction/modelling approach.

Given the two domain model for Tum and the independence of these domains, we pursued structural
modelling on each domain separately. To begin with, the N- and C-terminal domains of Tum (residues
1–70 and 71–146) were submitted to the I-TASSER server [24], essentially a multi-template homology
modelling approach. A single but high confidence candidate for the carboxy-terminal domain (CTD)
(C-score of 1.27 and estimated RMSD from native of 1.1 ± 1.1) was returned, and primarily modelled
on the solution structure for E. coli DinI (PDB accession 1GHH) [25]. As anticipated, the candidate
structure showed significant overlap with the DinI template (see Supplementary Figure 4), but overlap
in the C-terminal helix was especially good. A series of negatively charged residues in this helix in DinI
have been implicated in mimicking single-stranded DNA [26]. Whilst overlap is good, two of the seven
negatively charged residues appear to be absent in Tum.

For the NTD, the performance of I-TASSER was much poorer, with the five alternative candidates
all giving low confidence scores. This was not unprecedented since none of the sequence homologs of
the Tum NTD have a determined structure at present. Hence for the NTD, we turned to the Rosetta
structure prediction suite [27], a more ab initio method based on physically-derived molecular energetics.
A Monte Carlo search of the fold space for the global energy minimum produces of thousands of ‘decoy’
structures that map the energy landscape; good candidate structures are typified by deep energy wells.
Since Tum truncations to 50/51 residues still displayed good activity, we proceeded by characterising this
core fold. Decoys were generated for the first 51 residues of Tum, and a high-confidence consensus fold,
depicted in Figure 7, was evidenced by obvious funnelling of the energy landscape towards the lowest
energy decoy (see Supplementary Figure S5).

This consensus structure contains two extended α-helices packed side-by-side, but offset at a charac-
teristic angle with respect to each other. A set of core hydrophobic residues pin the two helices in this
orientation, and those making the largest contributions to the overall low score of this decoy are labelled
in Figure 7A. The hydrogen bonds predicted using the Rosetta scoring function are also shown in the
figure, and a particularly high-scoring contact was found between the aspartate at residue 30 and the
peptide backbone in the loop between the helices.

All of the residues that made the biggest contributions to the low score of the predicted structures also
displayed inactivating mutations in the point mutant screen; this both validated the predicted importance
of those residues by Rosetta, but also assisted in functionally classing those point mutants apart from
the others (see Figure 7C).
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Discussion

Our bioinfomatics show that 186 Tum is representative of a wide family of antirepressors that is likely
to be much larger than presently realised. This family includes previously identified antirepressor genes
from the PSP3 and Fels-2 phages, the latter also known to be similarly LexA-sensitive via its tum
homolog [15]. In those cases, the region of Tum homology is split into two independently translanted
genes. Here we have shown that 186 Tum is a fusion of these gene products that can instead be split
into two functional domains: an N-terminal domain that is exclusively responsible for the antirepressor
activity and a C-terminal domain, which is already known to show strong homology with the E. coli DinI
protein (DNA-damage inducible protein I) [14]. There is no obvious value in such a fusion or separation,
but independent production of the DinI homolog is conserved due to internal translation start sites in
the 186 tum gene.

The CTD appears to play no role in derepression of pR; if anything, it reduces the activity of the NTD.
This is further supported by the fact that removal of ORFs 4 and 5 had no impact on antirepressor activity.
Its purpose would appear to be associated with that of the many other such DinI-like proteins found in
bacteriophage [14]. These often belong to SOS operons produced from LexA-repressible promoters,
revealing a tight integration of such proteins within the SOS response. Nonetheless, the purpose of these
DinI-like factors is still unknown, and made more complicated by the fact that the exact role of DinI is
still in question. The DinI protein is known to be involved in stabilising RecA filaments as part of the
prokaryotic SOS response [28,29], and is, like 186 Tum, expressed from a LexA-repressible promoter [30].
Given that multiple binding modes have been reported for the E. coli DinI protein in regulating the
formation of RecA-DNA filaments [31], it seems likely that some of these DinI-like proteins found in
phage might favour one operating mode over another to manipulate the SOS response in favour of virion
production. Indeed, the structure predicted for the Tum CTD showed especially good overlap with DinI
over the most C-terminal helix, the negatively charged residues of which are implicated in mimicking
single-stranded DNA [26]. Whilst the nearest matching residues in Tum do not replicate this string of
negative charges quite as well, it seems likely that this domain mimics some function of DinI, and may
even play an inhibitory role in 186 induction.

The antirepressor activity of Tum is associated with its NTD. This was most clearly evidenced by a
number of Tum truncation mutants shorter than 70 amino acids that still retained full (or in some cases
greater-than wild-type) antirepressor activity. Some activity was lost through truncation from 60 to 50
residues, removing the predicted β-strand region as a result, but most of the activity was lost between
residues 50 to 46 as the truncation moved into the second predicted α-helix. The antirepressor activity
of Tum is captured within these two α-helices, and comparison with the predicted structure showed that
the helix boundaries closely matched those predicted directly from the sequence.

The predicted fold of the NTD is well-supported by antirepressor-specific point mutants. Early mu-
tants of Tum were obtained by mutagenising the whole phage genome and screening for those that
rendered phage 186 insensitive to SOS induction by DNA-damaging agents like mitomycin C or UV ir-
radiation [10,11]. Here, to focus on just the antirepressor activity of Tum, we decoupled tum expression
from the SOS response and designed an assay strain that reports only on relief of repression at pR. All
the point mutants obtained from this targetted screen were located within the first two α-helices of the
protein, strong evidence for a small, independently-folding antirepressor domain. The restricted loca-
tion of these mutants also overlapped well with the region of greatest sequence homology found for this
domain. The point mutants were found centred about the loop between the helices, though no point
mutations were found within the loop. Thus the co-location of these two clusters of mutants in the pre-
dicted structure via a 180◦ turn at the intervening loop was unsurprising. The co-locating hydrophobic
point mutants also showed high sequence conservation, confirming their involvement in core hydrophobic
packing of the domain. The insertion mutants found within the loop were only mildly-disruptive, further
confirming the importance of the surrounding residues in holding the two helices together. The likely
shape-changing T21P and A22P mutations provide evidence that straining the formation of the loop
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is deleterious. The aspartate at residue 30 was particularly sensitive to moderate point mutations, the
D30E mutation being a case in point, and further noted for its high sequence conservation. This residue
may well be critical to folding and positioning of the helices, as evidenced by the high-scoring hydrogen
bond it forms with the loop.

The fact that no point mutants were found after the first two α-helices, and that truncation of this
region did not effect any substantial loss in activity, left the function of the residues between the end of
the second α-helix and the start of the DinI-like domain in question. One possibility is that these residues
provide (limited) structural support, and that the stringency of the screening method may have filtered
out some mild but structurally-relevant mutations in that region. Indeed, the hydrophobic residues L35
and I38 were both exposed in the Tum51* decoy, but scored highly in the Tum72* decoy, with similar
trends observed for the predicted structures of the homologs. Alternatively, these residues might represent
an extended flexible linker, and the difficulty in obtaining a predicted structure for those residues supports
that hypothesis. Nonetheless, the core Tum51* structure is well-supported by the available experimental
data and forms the basis for an understanding of its mode of CI antirepression.

Antirepressors can act by numerous mechanisms, including by disruption of repressor multimerisa-
tion [32], by targeting the protein for degradation [33], by inducing non-functional protein conforma-
tions [34], or by acting as DNA mimics to mask the DNA-binding site of the repressor protein [35]. With
so many available modes of repressor inactivation, the antirepressor-repressor paradigm becomes a likely
platform for promiscuous binding and hence interaction between phage and phage-like elements; the ex-
tent of such cross-talk is only just being realised [8,9,36]. As for the mechanism of Tum, it was previously
noted that mutants of CI resistant to Tum but still able to repress pR were not able to be found [13].
This favoured a mode of operation at function-critical regions, like by disruption of multimerisation or
binding at the DNA-binding region of CI. Given the highly cooperative nature of CI binding at pR and
the ultrasensitive antirepression curves, disruption of multimerisation previously seemed more likely [13].
Whilst this mechanism still cannot be excluded, here our preferred mechanism is for Tum operating as
a DNA mimic. This was prompted by the overall negative charge of the antirepressor domain, the high
abundance of negatively charged residues sensitive to point mutation (5 negatively charged residues were
found mutated versus one positively charged residue), and a strong hydrophobic core, all common fea-
tures of DNA mimics [37]. A number of the negatively charged residues were less well-conserved amongst
the N-terminal homologs, suggesting a role in providing repressor specificity. The four identified sites
of charge reversal (E12K, E15K, E32K & E40K) will be particularly interesting candidates for future
complementation studies with CI. The close structural homology with the fourth domain of UvrB added
extra support for a model of DNA mimicry, since there is some evidence that this domain acts to partially
suppress the DNA-binding capacity of the three much larger catalytic domains of the protein [38]. The
UvrB domain crystallised as a dimer with a binding interface across the loop remarkably similar to that
of the predicted Tum dimer (the two are shown overlaid in Supplementary Figure S7). We have noted
that this mode of dimerisation brings the highly-conserved cysteine residues in the Tum NTD into close
proximity, possibly implicating a functional role for this contact.

The in vivo antirepressor activity measured using the assay strain displayed a highly ultrasensitive
response, which matches well with previous in vitro results [13]. This sharp threshold occurred at levels
of induction that were higher than anticipated; complete derepression was only observed when tum was
cloned in a plasmid with the high-copy ColE1 origin [39], with the most sensitive region of the derepression
curve occurring at levels of induction that are on par with the strength of the single-copy pR promoter
(see Figure 3). The implication is that in order to overcome lysogenic levels of CI, the p95 promoter in
the single copy 186 prophage must be quite strong, or alternatively, that Tum’s antirepressor activity
may be enhanced by the SOS response.
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Materials and Methods

Strains and media

All reporter strains were derived from the K-12 E. coli strain NK7049 (∆lacχ74 galOP308 rpsL su−) from
R. Simons [40]. Propagation and cloning of plasmids with the pir -dependent R6Kγ origin (those derived
from pAH144) was done in BW23473 [41], which is pir-116 to permit higher copy numbers. XL1-Blue
(Stratagene) was the host for point mutant screening.

Strains were grown in Luria-Bertani broth (LB) with the addition of antibiotics at the following
concentrations: either 100 µg/mL carbenicillin or 100 µg/mL ampicillin (for maintaining pZE15-based
plasmids), 50 µg/mL kanamycin (for maintaining pUHA-1), 5 µg/mL tetracycline (for maintaining the
F′ plasmid in XL1-Blue), and 25 µg/mL spectinomycin (to select for colonies with an integrated pAH144
cassette; omitted during the assays). Strains were grown at 37◦C, except where otherwise indicated.

Tum activity reporter strains

The in vivo activity of Tum was assayed indirectly by its ability to relieve repression at the pR promoter
by CI. The reporter phage pBC2−HS−F+

L pRpLF
+
R from [20] was integrated at the λ attachment site of

NK7049. This reporter contains both flanking CI binding sites for enhanced repression, and is oriented
with pR reading into lacZ (with a ∆YA deletion). The fragment truncates the cI gene and has an amber
mutation in apl. Constant production of CI was from a constitutive Pbla promoter. Base pairs −171 to
+9 of Pbla (chosen to match [42]) were polymerase chain reaction (PCR) amplified from pTL61T [43]
with XbaI and KpnI tails and cloned into the CRIM plasmid pAH144 [44]. The 186 cI gene, including
its wild-type ribosome binding site (RBS), was PCR amplified and cloned downstream in the EcoRI site
to form pAH144-Pbla-cI. This CI expression module was integrated into the HK022 attachment site in
NK7049; for cI− controls an empty pAH144 module was integrated. The final antirepressor activity
reporter strain () was NK7049 (λRS45-pBC2 − HS − F+

L pRpLF
+
R ) (pAH144-Pbla-cI)HK ((Pbla-cI)HK)

pUHA-1, where pUHA-1 is a p15a origin plasmid with kanamycin resistance that supplies Lac repressor
(obtained from H. Bujard).

Inducible levels of the various tum constructs were supplied by cloning each one downstream of Plac in
pZE15 [45]. pZE15-tum4−5−his was made by PCR amplifying the tum4−5−his template from pET-Tum
His6 [13], including the pET RBS and with a HindIII tail on the upstream primer, digesting with HindIII
and partially digesting with BamHI (there is a BamHI site within the tum gene), and cloning into the same
sites in pZE15. Plasmid pZE15-tum+ his was made in the same way with a pET3a-tum+ intermediate.
The His6 tags were removed from pZE15-tum4−5−his and pZE15-tum+ his by PCR amplifying the tum
templates without the His6 tag and introducing a stop codon and AvrII site on the downstream primer
tail. These were reintroduced into a pZE15-tum4−5−his backbone digested with NdeI and AvrII to
replace the entire tum4−5−his sequence. The tum constructs in pZE15 were all transformed into ; empty
pZE15 was used as a tum− control.

Generating point mutants of Tum

The screening strain (KES1033) was a 186(cItsp int−) lysogen of XL1-Blue [22], which provides LacZω
from an F′ plasmid. Due to the temperature sensitive mutation in the CI repressor (cItsp), when screening
for Tum mutants, cells must be grown at the permissive temperature of 30◦C. However this also provides
an effective control to test for continued lethality of the lysogen, since growth at 41◦C induces the
prophage.

Plasmid pZE15-tum4−5−α was made by using a PCR-amplified lacZα fragment (lacZ codons 3–42
) from pMRR9 [20], with SacII and AvrII tails on the upstream and downstream primers respectively
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and cloned into a SacII/AvrII digest of pZE15-tum4−5−his, thence replacing the histidine tag with the
α-fragment.

Point mutations were generated from the pZE15-tum4−5−α template using error-prone PCR between
primer 215 and the zalpha AvrII primer. The DNA was first amplified using the proof-reading Pfu poly-
merase (Stratagene). 1 µL of this reaction was then used as the template for 6 cycles of an error prone PCR
with Taq DNA polymerase in the presence of 6 mM MgCl2. The reaction was transformed into KES1033
and spread on plates with carbenicillin, tetracycline, 5-bromo-4-chloro-indolyl-β-D-galactopyranoside (X-
gal) (40 µg/mL) and Isopropyl-β-D-1-thiogalactopyranoside (IPTG) (50 µM) producing colonies of varied
size and blueness at 30◦C. Plasmids from all mutants were isolated and transformed into for quantitative
assays.

A number of the mutants incorporated errors at two different sites. Where these were not silent muta-
tions or represented elsewhere, the mutations were separated by re-introducing each one into tum4−5−α
using the QuikChange Site-Directed Mutagenesis Kit (Stratagene).

Generating insertion mutants of Tum

Linker insertion mutagenesis across the tum4−5−his gene was performed using the Genome Priming
System-Linker Scanning (GPS-LS) system (New England BioLabs), which produces 5 codon insertions
(6 versions). The insertion library was prepared in three steps: (1) the gel-extracted small fragment of a
pZE15-tum4−5−his HindIII/BtgI digest was subject to GPS reaction with the Transprimer-5 donor plas-
mid (with kanamycin resistance), (2) the reaction was cleaned, religated into the HindIII/BtgI digested
backbone and transformed into the screening strain with selection for ampicillin and kanamycin, (3) the
resulting colonies were pooled for isolation of the plasmid DNA and removal of the kanamycin resistance
cassette by digestion with PmeI and then recircularisation. This library was transformed into the screen-
ing strain and plated onto media containing carbenicillin and X-gal (30 µg/µL). The screening strain was
NK7049 (λRS45pMRR9−FspI− cI+pRpLaplam− lacZY A), a λRS45 recombinant [40] of pMRR9 with a
blunt ended FspI digest of phage 186(apl am) ligated into the SmaI site. The 186 fragment encompasses
the switch region from the beginning of int to the beginning of cII and clones with pR reading into lacZ
were chosen for this assay. This construct provides both lysogen-like levels of CI and a pR-lacZ reporter,
giving blue/white screening for active/inactive Tum.

Clones from the library with a range of LacZ activities were selected, sequenced over the tum4−5−his
gene and plasmids isolated for those with distinct insertion events. These plasmids were transformed into
for quantitative assays. Note that a point mutation (F56L) was discovered in all of the non-truncating
insertion mutants except Tum3(CLNNR) and Tum83(CLNKI), and in Tum74V* of the truncating inser-
tion mutants, implying that an error arose during an early cycle of PCR amplification of the tum4−5−his
template. This mutation had little impact on activity as judged by the insertion mutants containing this
point mutation that matched wild-type activity and for this reason was disregarded.

Cloning the truncation mutants of Tum

Primers designed to add a stop codon and AvrII restriction site after residues 37, 46, 50 and 60 were
used to amplify a tum4−5− template, and the products were cloned into an NdeI/AvrII digest of pZE15-
tum4−5−α. The N-terminally His6-tagged tum4−5− truncation series was generated from a pZE15-his-
tum4−5− template, prepared by PCR amplifying the N-terminal His6 tag from pET15b (Novagen), with a
HindIII site in the tail of the upstream primer (the same used for amplifying tum4−5−his from pET3a),
and cloning into the pZE15-tum4−5− backbone digested with HindIII and NdeI. Truncation mutants
were prepared from this template using primers designed to add a stop codon and BamHI site directly
following residues 34, 39, 42, 44, 47, 49, 51, 55, 56, 57, 58, 61 and 62, and cloned back into the template
backbone digested with NdeI and BamHI. Truncation mutants terminating at residues 63, 67, 68, 69, 70,
72 and 74 were similarly prepared by PCR amplification, but cloned first into pET15b between the NdeI
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and XhoI sites, before being transferred into the pZE15-his-tum4−5− template by digestion with NcoI
and BamHI.

LacZ assays

LacZ assays were performed essentially as described [45] with some minor amendments. Briefly, Luria-
Bertani broth with appropriate antibiotics was innoculated from freshly streaked colonies for overnight
growth in 96-well plates with a sealed lid. The following day these were adjusted to an optical density at
600 nm (OD600) of 0.3, sub-cultured 1 in 50 into equivalent broth, but with added IPTG to 0, 2, 5, 10, 15,
20, 25, 35, 50, 70, 100 and 200 µM (or a subset thereof), and grown to late log phase (OD600 0.6 − 0.8).
Cells were chilled, then incubated in Lysis Buffer [45] for 15′ at 30◦C before addition of o-nitrophenyl-β-D
galactose (ONPG) and assayed over time at 28◦C for increasing absorption at 414 nm in a Multiskan
Ascent plate reader. All data analysis was performed in R [46] with four-parameter log-logistic regression
(Hill fits) calculated using the ‘drc’ package [47].

Structural modelling

Tum was modelled as two separate domains with domain boundaries chosen as described in the text.
Ab initio modelling of the NTD was performed using Rosetta version 3.2.1, essentially as described [48].
Briefly, a library of 3- and 9-residue fragments was generated for each protein sequence using the Robetta
server. These were supplied to the ‘abrelax’ protocol that follows the initial coarse-grained fragment-
based search with an all-atom energy minimisation ‘relax’ step. The protocol was run with the optional
flags as recommended in the Rosetta manual. 20000–30000 decoys were generated for each sequence and
the 1000 lowest-scoring decoys submitted to the ‘cluster’ application, which clusters decoys into groups by
RMSD. The cut-off was typically set to 2 Å, and additional decoys generated if no sizeable clusters were
found. Funneling towards the lowest-energy structure and distinction between multiple local minima was
made by plotting the score of the decoys versus their RMSD from the candidate decoy. Hydrogen bonds
and per-residue score terms were identified with the aid of PyRosetta [49].
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Figure 1. Genome organisation of bacteriophage 186 and the SOS operon. The CI repressor
maintains lysogeny by repressing the pR promoter and indirectly activates its own production by
limiting transcriptional interference at pL; the flanking CI binding sites, FL and FR, further enhance
repression at pR. Under normal conditions, the host LexA repressor keeps the p95 promoter of the
prophage silent, but upon DNA damage, autocatalytic cleavage of the LexA repressor is stimulated,
resulting in expression of host SOS genes but also the antirepressor Tum. Tum reversibly sequesters the
CI repressor, and hence induces lytic development, during which the excisionase apl with the help of the
integrase int, excises the phage genome for replication and packaging into phage particles. Upon
infection of a host, lysogeny is established by CII which activates the pE promoter causing integration of
the phage via the attachment site attP. In this and the following figures, promoters are depicted by
right angled arrows, genes by directed boxes and transcriptional terminators by stem loops. Wavy lines
indicate the major transcripts; the frequency is indicative of the basal production rate.
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aligned with homologs identified in the literature (see the text). Unlike Tum, these presumptive
antirepressors are split into two genes by an intervening stop codon. Shown aligned are the upstream
genes from these phage. The downstream genes and C-terminal region of Tum are homologs within a
superfamily of DinI-like proteins, so the alignment with the well-studied E. coli DinI protein is shown.
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Residues conserved throughout the master alignments are shown coloured according to residue type.
The tum gene is translated from four alternative open reading frames (ORFs), which are marked by
black triangles; ORF5 emphasises the independence of the C-terminal region. This figure was produced
with the aid of JalView [50].



17

A B

tum (wild-type)

tum4–5–his

1 2 4 5

tum4–5–

His6Antirepression reporter

pZE15

cI

apl –

pR

pL pE

FL FR

Pbla

lacZ

(HK022 att)
E. coli

(λ att)

400 600 800 1000 1200 1400 1600

0
20

0
40

0
60

0
80

0
10

00

P lac activity (LacZ units)

p R
 a

ct
iv

ity
 (L

ac
Z 

un
its

)

CI  Tum+

CI+ Tum

tum
Plac

CI

Tum

Figure 3. Relief of pR repression by CI due to the antirepressor Tum is highly
ultrasensitive in vivo. A. Antirepressor activity is measured in vivo by the extent to which an
IPTG-inducible level of Tum can alleviate repression of the pR promoter by CI. A consistent
steady-state level of CI is supplied from a single-copy Pbla promoter. This pool of CI is sufficient to
keep a single-copy pR-lacZ reporter construct silent. tum constructs are cloned downstream of the Plac

promoter in the high-copy pZE15 vector. B. Increasing levels of wild-type Tum reduce the available
pool of active CI and increase expression from the pR promoter. The points joined by dashed lines are
the mean results of LacZ assays of pR activity over a range of induction levels of various Tum
constructs; error bars represent 95% confidence limits. In the absence of Tum (red line; empty pZE15
vector) pR stays repressed at all levels of induction. In the absence of CI (grey line; empty cI expression
cassette), expression from pR stays high. Removal of translation from ORFs 4 and 5, or addition of a
C-terminal His6 tag makes little difference to Tum activity. Since the nonlinear response of Plac activity
to inducer concentration can bias Hill fits, the level of Tum induction has been measured for each IPTG
concentration as the equivalent LacZ activity produced from a Plac-lacZ construct in pZE15 (see
Supplementary Figure S1 for details). The solid line is a Hill fit of the wild-type data.
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Figure 4. The antirepressor activity of Tum is located in the N-terminal domain. A. A library of
point mutations across the entire tum4−5−α gene was generated by error-prone PCR and screened using a
Prophage of Death (POD) strain in which mutations retaining antirepressor activity would successfully induce
an int− prophage. Induction of the int− prophage, being unable to excise from the chromosome, results in cell
death. Only mutants that are inactivating for antirepressor activity survive, and these can be further filtered for
mutants causing minimal disruptions to folding using the C-terminal α-fragment fusion: successful
complementation with the ω-fragment present in XL1-Blue strain produces a functional LacZ enzyme and
produces blue colonies on plates with X-gal. This screening step allows for selection against mutants that result
in misfolding, frame shifts or truncations. B. The resulting mutants were all contained within the first 41
residues. Activity curves for all the mutants were assayed as described in Figure 3. A summary value for each
assay was calculated from the area under each curve using basic trapezoidal numerical integration between the
(necessarily consistent) minimum and maximum induction levels. Mutants with reduced activity (high EC50)
give smaller areas, since the inflection point shifts closer to the maximum induction level. This summed area is
displayed as a percentage of the mean area calculated for the fully-active control (tum4−5−α). Each point is
derived from the curve measured for a single colony; most mutants were assayed on four independent repeats. A
nominal 25% cutoff (horizontal dotted line) distinguishes active from inactive mutations. Note that both D2N
and T21S were originally isolated as double mutants with R19H and D30G respectively. The location of each
mutation is further illustrated by triangles that mark a map (to scale) of the N-terminal domain of tum. For
reference, the predicted secondary structure (see Figure 2) is also shown.
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Figure 5. All regions of Tum but the first two α-helices are tolerant of amino acid
insertions. Five amino acid insertions were introduced into an inducible tum4−5−his gene using a
transposon mutagenesis approach as described in the text. They are labelled here by the sequence of
residues inserted following each indicated position. The insertion mutants were assayed as for the point
mutants (see Figure 4), each point representing the summed area under an activity assay curve for a
given replicate. Here the area measurement is normalised to the mean area of the tum4−5−his control.
A nominal 25% cutoff (horizontal dotted line) distinguishes active from inactive mutations. The
location of each mutation is further illustrated by triangles that mark a scale map of the full-length tum
gene. For reference, the predicted secondary structure (see Figure 2) is also shown.
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Figure 6. The Tum protein can be truncated to 44 residues and still retain function. A.
Truncation mutants arising in the point and insertion mutant screens and a selection of targetted
truncation mutants all based on the tum4−5− template were assayed in the antirepressor reporter
strain. They are labelled here according to the number of residues matching the wild-type sequence;
those from the insertion mutant screen only arose mid-insertion, so the non-native residue(s) are
appended. Tum1−4−5− is the ORF2 product, an N-terminal truncation. The area under each assay
curve was calculated as for the point mutants (see Figure 4), and each replicate was normalised to the
mean area of the tum4−5− control. A nominal 25% cutoff (horizontal dotted line) distinguishes active
from inactive mutations. Locations of the terminating residues are further illustrated by triangles that
mark a scale map of the full-length tum gene. For reference, the predicted secondary structure (see
Figure 2) is also shown. B. A systematic series of C-terminal truncation mutants were prepared from an
N-terminal his-tum4−5− fusion template and assayed in the antirepressor reporter strain. A selection of
these curves measured for the most notable truncation mutants are shown in the lower panel; dotted
lines follow the means of the data points. All but the flat response curve of His6Tum42* (dark red) were
fit with Hill curves (solid lines) using robust regression and fixed basal and maximum parameters. The
mean activity of the Tum− control was used for basal activity and the maximum parameter was set to
that obtained for the tum4−5− control. In the panel above the curves are plotted the fitted
half-maximal effective concentrations (EC50s) for each fit; dot-dash lines match each bar graph to the
respective assay curve. Error bars represent the standard error in the fit.
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Tables

Supporting Information

Supplementary Method S1

Structural homologs of this candidate structure were retrieved using the Protein structure comparison
service Fold (PDBeFold) at the European Bioinformatics Institute (EBI) [51]. Around 120 distinct
structural homologs were identified, with the best matches as judged by the root-mean-square deviation
(RMSD) being synthetic four-helix bundle proteins. Given the small size of the fold, it is likely that
many of these are false positive hits. However, a match with the NMR structure of the fourth domain of
UvrB, stood out as being derived from E. coli and involved in the SOS response as part of the nucleotide
excision repair pathway [52].

With a well-defined core 51-residue structure, we turned to exploring the likely conformations of the
remaining residues in the NTD, using this core structure as a starting point. Truncation mutants to 72
residues produced high activities for both His6-tagged and untagged variants, so decoys were generated
from a 72-residue sequence with residues 12 to 41 held fixed to the structure of the lowest-scoring 51-
residue decoy to reduce the search space. Only moderate funnelling towards the lowest-scoring decoy
was observed, possibly indicating that these residues are not as structurally constrained. Decoys were
also generated for a selection of the Tum sequence homologs identified in the HHsenser search and the
best candidate decoys from these homologs are shown in Supplementary Figure S4 along with the best
72-residue decoy. The homologs were chosen specifically for their divergent homologies, but in spite of
the obvious variations, these structures do provide some validation for the Tum72* decoy. The structure
of the identified core functional region was similar amongst all the homologs, with a number of the well-
conserved residues showing similar positioning. The homolog from Pantoea (Supplementary Figure S4D)
showed particularly good clustering, and provides validation for the positioning of the putative β-strand
in the Tum72* structure.

We previously found that Tum is predominantly dimeric at a concentration of 9.5 µM [13], and also
that the ORF5 product is monomeric (unpublished data). From this we inferred that dimerisation is
likely to be a function of the NTD, and explored this possibility using the Tum51* structure as the input
for the Rosetta protein-protein docking protocol [53]. The lowest-scoring decoy produced an unusual
elongated structure with the dimerisation interface located at the loop between the α-helices, as shown
in Supplementary Figure S5.

Supplementary Table S8

Primers used in the course of this paper.
Amplifying the cI gene with wild-type RBS and EcoRI ends:

• ggaattcTGAATAGGTTTTATCG (108),

• ggtgaattcTCATTAGTTAACCTCGCT (295)

Amplifying the Pbla promoter from base pairs -171 to +9 (chosen according to [42, 54]) with XbaI
and KpnI ends:

• tatctagaCAATTCTTGAAGACGAAAGGG (684),

• taggtaccGCATTTATCAGGGTTATTGTCTC (685); the template was pTL61T [43].

Amplifying tum4−5−his/tum+ his genes from pET3a using ‘B-PET HindIII’ (164) and ‘T7-rev/terminator’
(315) primers; digested with HindIII and BamHI to clone into pZE15:
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• cggaagcttaagTTTAACTTTAAGAAGGAGA (164),

• GCTAGTTATTGCTCAGCGGTGG (315)

Remove pET3a-derived His6 tags using primers 215 (T7) and 686 (below), digesting with NdeI
and AvrII to replace tum4−5−his in the pZE15-tum4−5−his vector: tacctaggTTAACGCCAGCTCT-
CATCTTCCCAC (686)

Rachel Schubert’s (RS) zalpha AvrII and zalpha SacII primers: add downstream lacZα fusion to
tum4−5− by cloning into pZE15-tum4−5−his cut with SacII/AvrII, replacing His6 tag starting from
inside the thrombin cleavage tag. (NB: removes rgnB terminator by using the AvrII site)

• ttccccgcggATGATTACGGATTCACTGG (Upstream lacZα SacII)

• gcgcctaggttaTTCGCTATTACGCCAGCT (Downstream lacZα AvrII)

Generate tum4−5− truncation mutants using the following primers, which append a stop codon and
AvrII site, in combination with primer 215 for cloning into NdeI/AvrII digested pZE15-tum4−5−α:

• Tum37: atcctaggttaTAGATTCAATGCGATTTCACG (680)

• Tum46: atcctaggttaTAGGTTGCCGCGTGCTATTTC (681)

• Tum50: atcctaggttaATTATTTTTCATTAGGTTGCCGC (682)

• Tum60: atcctaggttaAGGCGGTGCGGAAAAAACAAC (683)

To generate the N-terminal truncation, pZE15-tum1−4−5−, use the following primer with the tum4−5−

primer (686) and clone into NdeI/AvrII digest of pZE15-tum4−5−α:

• 687 Tum2 5’ NdeI: tggtggcatatgATTGAGCGGGTCGAAATG
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Figure 1: Measuring the production rate from P lac in pZE15 as a function of inducer concentration.
A lacZO2− gene (which includes a silent mutation to inactivate the internal lac repressor binding site
and is ∆YA) with an upstream RNaseIII site [Linn and St Pierre, 1990] was cloned downstream of P lac in
the pZE15 plasmid, transformed into NK7049 with pUHA-1, and the β-gal activity measured at selected
concentrations of IPTG [E. Cutts and K. E. Shearwin, manuscript in preparation]. A Hill curve (or log-
logistic) fit was used to extrapolate to the IPTG concentrations used in this work and the fit parameters
(Hill coef.: Hill coefficient; Max: maximum; EC50: half-maximal effective concentration) are indicated on
the plot with 95% confidence limits. For pZE15, very little induction ultrasensitivity was observed compared
with previous observations for pZS45 [Palmer et al., 2009], though given the high basal production rate
it would appear that the curve lies well outside the normal region of ultrasensitivity in any case. The
high basal production rate is not unexpected for such a high-copy plasmid (around 50–70 copies per
cell [Lutz and Bujard, 1997]) when compared with the basal P lac-lacZ production rates we have observed
for comparable single-copy plasmids.
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Figure 2: With an N-terminal His-tag, Tum can be truncated to 44 amino acids without losing
its antirepressor activity. A series of N-terminally His-tagged Tum truncation constructs were cloned
into pZE15 and assayed in the antirepressor assay strain. The area under each Tum assay curve was
calculated as described in the main text and is shown normalised to the value obtained for the His6Tum
control measured on the same day. The unexpectedly low area seen for His6Tum70*, His6Tum72* and
His6Tum74* is partially a result of the observed suppression of antirepressor function as induction of the
mutant becomes saturated.
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Supplementary Figures 4
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Figure 4: A homology model of the tum ORF5 product
— the CTD of Tum— shows that it overlaps well with the
experimental E. coli DinI structure. The structural model of
the Tum CTD obtained using I-TASSER Roy et al. [2010]
is shown in black, and the closest matching DinI conformer
from the NMR ensemble (PDB ID: 1GHH Ramirez et al.
[2000]) is shown overlaid in orange. The side chains of the
seven negatively charged residues thought to be involved
in mimicking single-stranded DNA Voloshin et al. [2001];
Casjens et al. [2004] are displayed on the DinI structure in
orange and the corresponding best matches from the Tum
CTD are shown highlighted in green.
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Figure 5: The validity of the predicted Tum51* structure is confirmed by funnelling of
the energy landscape. The Rosetta score for each of the top 1000 Tum51* decoys is
plotted versus the RMSD of that decoy from the lowest scoring decoy.



Supplementary Figures 6
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Figure 6: The ubiquitous presence of two helices separated by a loop in Tum and its homologs validates
that core structure. Shown are the best scoring decoys predicted for some selected homologs of the 186 Tum
N-terminal domain (NTD). A. the Tum72* truncation (NTD of 186 Tum). B. Fels-2 TumA (NCBI accession:
YP_001718752). C. PSP3 TumA (NCBI accession: NP_958094). D. a Tum homolog found in Pantoea (NCBI
accession: ZP_09512655). E. a hypothetical protein from Dickeya (NCBI accession: YP_002987696). A,
B, and C are confirmed antirepressors; D and E are putative antirepressors. The Pantoea homolog gave
the best clustering of low-scoring decoys. The Dickeya homolog was the most distant of those chosen.
Highlighted in green are some of the best-conserved hydrophilic residues (see Figure 2 in the main text) and
also the highly conserved cysteine in the loop between the two primary α-helices.



Supplementary Figures 7

Figure 7: A close structural homolog of the predicted structure for Tum51* was the fourth domain of UvrB
(PDB ID: 1QOJ) which crystallised as a dimer via the loop. This structure, depicted here in orange, is
shown overlaid on the best candidate dimer obtained using the Rosetta docking protocol (run essentially as
described [Wang et al., 2007]) for two monomers of the Tum51* structure (in grey).
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A
Fitting growth curves

During growth to log phase in 96-well plates, the A620s of growing cultures can be recorded
using a Multiskan Ascent plate reader at a number of time points during the course of
any given assay. Such data can then be used to determine a growth rate for each strain.
Numerous methods for estimating the ‘ideal’ (exponential) growth rate were trialled, in-
cluding linear regression of the log-transformed OD600s, weighted non-linear regression
with an exponential model on the untransformed OD600s, regression using generalised
linear models (GLMs) with alternative link functions, and nonlinear regression using a
Gompertz model on the log-transformed OD600s.

Before considering the different models, general improvements can be made by em-
ploying some preliminary formatting of the data. It was found that substantial statistical
improvements could be made by taking a per-well offset using the A620 reading of the
plate at time t = 0. This relies on the fact that the signal due to the cells is hidden relative
to experimental noise at that time point, and also that the systematic error between wells
(due to, e.g., small differences in volume or the background absorbance of the plate) is
sufficient to warrant such a correction. By comparing the absorbances measured for the
first time point with the absorbances measured at another time point early enough that

Figure A.1: Well-to-well variations in 96-well
plates are correlated over time. The variation in
A620 per well is a systematic error that persists
over time. This is demonstrated in a growing cul-
ture where in the first two hours, the measure-
ments (both with OD600 close to zero) are well-
correlated. Hence growth curves may take the
reading at time zero as the background reading
for the extent of the assay.
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252 Appendix A. Fitting growth curves

the cells are still not evident above background noise, it can be seen that the readings are
correlated (see Figure A.1), which supports the relevance of such a systematic error. To
correct for this error, the reading at t = 0 is used as a per-well background measurement
to offset the readings from all subsequent measurements made over the duration of the
assay; this first data point is also then discarded.

A.1 Log-linear fits

Here we start by running some trial fits of growth data for E4300 (pIT-SL)λ (pIT-CH-pR -gfp)HK

pUHA-1 pZC320t-lacZ pMTS-pR -tum+ (glycerol Julian Pietsch (JP)#157.1) in LB with 50 µg/mL
Kanamycin (Kan), 30 µg/mL Ampicillin (Amp) and 4 µg/mL Tet. An upper threshold on
exponential growth was derived by aiming for some desired maximum fold-reduction in
the residual of the nth point, using a fit of the first n − 1 points. Both a log-linear GLM
assuming normally distributed errors and a GLM of the untransformed data, similarly as-
suming normally distributed errors but using a log link, were trialled. Note that while
both methods use iteratively reweighted least squares (IRLS) to estimate weights, only the
log link produces weights that diverge from unity.

As can be seen in Figure A.2 on the facing page, the log link model appears to fit the
data reasonably well on a cursory inspection, and it is desirable that the threshold includes
many more data points. However, the residuals in Figure A.2(f) reveal strong trends in the
data that are divergent from this model (note that residuals are calculated on a log scale
in Figure A.2(e); the residuals are actually not too different in magnitude between the two
models). This is primarily a result of the log link model heavily weighting against the low
magnitude measurements (as evidenced by the IRLS weights; data not shown), which are
already of reduced significance since residuals are calculated prior to log transformation of
the data. When using the log link with a GLM in the previous analysis in minimal media,
it was noted that it produced almost the same result as a non-linear exponential fit of the
data, confirming the effect of calculating residuals in the untransformed scaling.

Since the fit is made per well such that successive measurements are correlated, the
residual error will not necessarily increase with OD600 as it might for a regular assay. For
the growth curve assays, the primary source of error is presumably that of the reader or
artifacts like bubbles or dust.
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Figure A.2: Fitting the ‘lacz2’ data using alternative GLMs. The panels on the left are of a GLM with
identity link and normally distributed errors, whilst the panels on the right are of a GLM with log link and
normally distributed errors. (a) & (b) Determining an upper threshold based on the fold divergence from
ideal exponential growth. Plotted are the residuals for the nth points in the growth series relative to the
model fit for the previous n− 1 points. This was performed for all incremental subsets of the growth data.
The divergence was observed to occur exponentially, so the residuals have been translated up by 1 and
plotted and fit on a log scale. Note also that for all steps the data set has been truncated for all A620s less
than 0.001. (c) & (d) After specifying a cutoff, the data is fit using this cutoff and example fits are shown. The
red curves originate from a high O/N, whilst the blue curves originate from a low O/N. (e) & (f) Residuals for
fits using the upper threshold. Overlaid data from all wells on the plate is shown.
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A.2 Gompertz fits

Given the observed divergence from pure exponential growth seen in Appendix A.1, an
alternative model might be a more appropriate descriptor. Choosing a model for fitting
growth curves is discussed in Zwietering et al. [1990], and they posit the Gompertz model
as a balanced, general purpose fit. Their analysis assumes that the data input into each
model is the logarithm of the relative population size. They also re-formulate the model
in terms of parameters that are relevant to modelling microbial growth — in particular
they specify the growth rate as the maximal slope of the log-transformed data. For the
Gompertz model, this occurs at the inflection point. Their formulation is:

y = A exp
[
− exp

(µe
A
(λ− t) + 1

)]
, (A.1)

where A is the asymptote that the growth curve tends towards, µ is the maximum specific
growth rate and λ is the lag time (e is simply exp(1)). We choose to fit this model using
the drc package, which has both three- and four-parameter implementations:

y = C + (D− C) exp [− exp (B(t− E))] (A.2a)

y = D exp [− exp (B(t− E))] . (A.2b)

By comparing coeffecients inside the exponentials in Equation (A.1) with those in Equa-
tions (A.2a) and (A.2b), the growth rate (µ) can be determined from the drc fits using
µ = −B(D−C)

e , with the lag time given by λ = E + 1
B . The three parameter model is just the

case where C = 0. Observe that as t→ ∞, y→ D− C and as t→ −∞, y→ C.
After choosing some initial reference absorbance to calculate the relative population

sizes, and then taking the logarithm of the data so that the slope of this transformed growth
curve specifies the growth rate at each instant (see Figure A.3), we can observe that the off-
set coefficient C in the four-parameter Gompertz model would allow correction for errors

Figure A.3: The Gompertz fit is
designed to match data that has a
lag period before entering a linear-
like region that then asymptotes to-
wards a maximum. As applied to
log-transformed growth curves, this
matches the masking of growth be-
low instrumental sensitivity during
the lag time, an approximately linear
slope during the exponential growth
phase, followed by a gradual slow-
ing of growth as nutrients are con-
sumed.
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in determining the reference absorbance. That is, we have:

log
(

A(t)
A0

)
= log (A(t))− log (A0) = y− C, (A.3)

where A(t) is the time varying absorbance, and A0 is the absorbance measured at time
t = 0, so that the parameter C = log(A0). Given these observations, it may make the most
sense to simply use the initial reading as the per well reference (A0) instead of using it as
an offset.

The Gompertz fitting protocol:

1. Start with a data set using a per-well offset from the zero time point.
2. Choose starting parameters from an intial GLM fit of the data (the GLM fit

ignores points with an OD600 less than 0.005 or greater than 0.3).
3. Calculate the relative growth using the next positive OD600 as the reference.
4. Refine the start parameters using a non-linear least squares Gompertz fit of

the data in which the growth rate is set from the GLM fit.
5. Perform a robust Gompertz fit by median estimation.

A.3 Comparing the models

Of the Gompertz models, the three parameter Gompertz model is generally preferred since
it has fewer parameters. However, where the reference point is clearly after the lag time
point, the extra flexibility of the four parameter model becomes relevant.

Both of the Gompertz models can benefit from an initial estimate of the growth rate by
the thresholded log-linear fit. Otherwise, the high-valued points are often over-weighted.

On the whole, for the time courses used for the MFL strains, the three parameter Gom-
pertz model performs the best, producing the smallest standard deviations overall. This
is presumably due to the small number of data points in the time course for these exper-
iments, and few readings at early time points, reducing the need for the offset correction
introduced by the four parameter Gompertz model. This can be seen in the direct compar-
ison in Figure A.4.

The differences between plates observed across different days were somewhat alarm-
ing, especially those observed for the WR-MC and ER-MC strains. The difference in mean
in those cases was significantly different (95% confidence limits in the means did not over-
lap for different days).

The largest differences were observed for the WR-MC strains, but these can apparently
be accounted for by the difference in choice of time points. Plate ‘wrmc2’ has particu-
larly late time points and hence suffers from a poor estimate of the base level reading (see
Figure A.5).
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Figure A.4: Comparing determinations of doubling time between the various models of growth for
each of the MFL strains. Growth curves measured for the MFL strains were measured over time in 96-
well plates during the hysteresis assay, and were fit using either a log-linear model with upper threshold
(GLM), a three parameter Gompertz model (G.3), or four parameter Gompartz model (G.4). The doubling
times drawn from each of these fits were calculated for each well and the mean value is shown for each
plate, with error bars indicating the standard deviation.
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Figure A.5: The ‘wrmc2’ plate deviates significantly due to fitting biases introduced by the selection of
time points. Shown are growth curves and respective Gompertz fits for selected wells of two different
hysteresis assay plates, ‘wrmc1’ and ‘wrmc2’, showing growth of the WR-MC MFL strain under assay
conditions. Three-parameter Gompertz fits (G.3) or four-parameter Gompertz fits (G.4) are shown as
indicated.
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A.4 Growth rate measurements

The rate of growth of the strains shows little dependence on assay conditions as can be
seen for growth rate measurements of the MFL strains shown in Figure A.6 and growth
rate measurements of the induction reporter strains shown in Figure A.7.
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Figure A.6: MFL strain doubling times show little dependence on IPTG or assay conditions. Growth
of MFL strains under the hysteresis assay was monitored in 96-well plates by following the A620 over
time and doubling times derived by fitting those curves with Gompertz models. These are shown plotted
versus IPTG and separated by strain and level of induction of the overnight (O/N). Error bars indicate
95% confidence limits on the estimated mean doubling times; n = 6 for all data points.



258 Appendix A. Fitting growth curves

0 100 200 300 400 500

20
25

30
35

IPTG (µM)

D
ou

bl
in

g 
tim

e 
(m

in
)

Tum+
Tum−

Figure A.7: Induction reporter strain doubling times
show little dependence on IPTG or assay conditions.
Growth of the induction reporter strains was followed
as described in Figure A.6, but the data from the two
different O/Ns was aggregated since there were no
significant differences between those data sets. Error
bars indicate 95% confidence limits on the estimated
mean doubling times; n = 8 for all data points.



B
Scripts for analysis of flow cytometry data

Flow cytometry data obtained in this thesis was loaded and analysed in R, making use of a
number of packages from Bioconductor [Gentleman et al., 2004], including the flowCore [El-
lis et al., 2009a], and flowClust [Lo et al., 2009] packages.

The basic normalisation and curation of each set of data set typically proceeded as
listed in the following code excerpt:

1 # Load the data sets , t rans fo rm ing only the FSC /SSC channels f o r c e l l

2 # popu la t ion s e l e c t i o n :

3 f s . ermc <− f s l oad ( ’ data ’ , l o g i c l e =c ( ’FSC.H ’ , ’SSC.A ’ ) )

4 fsm . ermc <− SelectCel lPop ( f s . ermc , savep lo t=TRUE)

5
6 # With the main popu la t ion selected , c a l c u l a t e the Log ic le t rans fo rma t i on

7 # f o r the f luorescence channel :

8 fsm . ermc <− MakeLogicle ( fsm . ermc , ’ FITC .A ’ )

9
10 # Ca lcu la te kerne l dens i t y est imates f o r the e n t i r e f low set :

11 ( fsm . ermc . range <− fsRange ( fsm . ermc ) )

12 fsm . ermc . dmaps <− fsDensityMaps ( fsm . ermc , f s r =fsm . ermc . range )

13
14 # Apply the morphology regress ion and norma l i sa t i on :

15 fsn . ermc <− fsApply ( fsm . ermc , morphNormalise , densitymaps=fsm . ermc . dmaps ,

16 f l uo rchanne l = ’ FITC .A .LOG ’ )

17
18 # Annotate and order the f low set :

19 maskdict <− MaskDict ionary ( )

20 fsna . ermc <− fsParseNames ( fsn . ermc , t rans la te2009 , ordering2009 , maskdict )

21 pData ( fsna . ermc ) # check the annota t ion

22
23 # Ca lcu la te unimodal Skew . t f i t s o f a l l the c o n t r o l curves as a t r a i n i n g set

24 f i t s . ermc . c t r l <− skewt . u n i f i t ( fsna . ermc [ pData ( fsna . ermc ) $ c t r l == ’TM ’ ] )

25
26 # Store a l i s t o f models t h a t can be used to p r e d i c t skew t parameters from

27 # a median :

28 skewt . p r e d i c t o r . ermc <− skewt . p r e d i c t o r ( f i t s . ermc . c t r l )

259
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29
30 m o d a l f i t s . ermc <− Moda l i t yAna lys is ( fsna . ermc , skewt . p r e d i c t o r . ermc )

31
32 f i tsummary . ermc <−
33 cbind ( pData ( fsna . ermc ) , c ip rod=normER( pData ( fsna . ermc ) ) ,

34 f s S t a t s ( fsna . ermc , channels= ’ FITC .A .LOG.M ’ ) ,

35 summary ( m o d a l f i t s . ermc , W=getWparam ( fsna . ermc ) ,

36 p r e d i c t o r =skewt . p r e d i c t o r . ermc ) )

The most important methods from that excerpt will be described in more detail in the
remainder of this appendix. These include automated selection of the main cell population
(Appendix B.2), Logicle transformation of the data (Appendix B.3), morphology normali-
sation of the data (Appendix B.4), and constrained skew-t regression of the MFL samples
(Appendix B.5).

B.1 General utility functions

Some general utility functions were used in many of the following protocols. These func-
tions are listed here for reference.

1 ######################################################################

2 ### U t i l i t y f un c t i on s and d i s t r i b u t i o n s f o r the f c a n a l y s i s l i b r a r y ###

3 ######################################################################

4
5 # Skew−t d i s t r i b u t i o n

6 dskewt <− function ( x , params , n =1) {

7 i f ( ! require ( sn , q u i e t l y =TRUE) )

8 stop ( " the sn package must be i n s t a l l e d to c a l c u l a t e skew−t f un c t i on s " )

9 params$ p i i [ n ] * dst ( x ,

10 x i =params$mu[ n ] ,

11 omega=sqrt ( params$sigma2 [ n ] ) ,

12 alpha=params$shape [ n ] ,

13 nu=params$nu [ n ] )

14 }

15
16 # Bimodal skew−t d i s t r i b u t i o n

17 dskewt . mix <− function ( x , params ) {

18 nmix <− length ( params$mu)

19 y <− numeric ( length ( x ) )

20 for ( i i n 1 : nmix )

21 y <− y+dskewt ( x , params=params , n= i )

22 return ( y )

23 }

24
25 # Log ic le f un c t i on s { { {
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26
27 calcWfromP <− function (P) 2 *P* log10 (P) / (P+1)

28
29 Log ic le <− function ( x , W, M=4.5 , T=262144, P=NA) {

30 i f ( is . na (P ) )

31 P <− uniroot ( function ( p ) {W−calcWfromP ( p ) } , c ( 0 . 1 , 100 ) ) $ r oo t

32 l t .W <− x<W

33 x [ l t .W]<− −T* 10^(−(M−W) ) * (10^(−x [ l t .W]+W)−P^2 *10^(−(−x [ l t .W]+W) /P)+P^2−1)

34 x [ ! l t .W]<− T* 10^(−(M−W) ) * (10^ ( x [ ! l t .W]−W)−P^2 * 10^(−(x [ ! l t .W]−W) /P)+P^2−1)

35 x

36 }

37
38 i n v L o g i c l e <− function (S , W, M=4.5 , T=262144, P=NA) {

39 i f ( is . na (P ) )

40 P <− uniroot ( function ( p ) {W−calcWfromP ( p ) } , c ( 0 . 1 , 100 ) ) $ r oo t

41
42 l o g l i m <− Log ic le (2 *W, W=W, M=M, T=T , P=P)

43
44 sapply (S , function ( s ) {

45 i f ( s> l o g l i m ) l ims <− c (2 *W, log10 ( s * 10^(M−W) / T)+W)

46 else i f ( s >0) l ims <− c (W, 2 . 1 *W)

47 else i f ( s>− l o g l i m ) l ims <− c (0 , 1.1 *W)

48 else l ims <− c(−log10(−s * 10^(M−W) / T)+W, 0 .1 )

49
50 uniroot ( function ( x ) { s−Log ic le ( x , W=W, M=M, T=T , P=P) } ,

51 l ims ) $ r oo t

52 } )

53 }

54
55 Logic leWidth <− function ( NegRef , M=4.5 , T=262144)

56 (M−log10 (T / abs ( NegRef ) ) ) / 2

57
58 LogicleNegRef <− function (W, M=4.5 , T=262144)

59 −T* 10^(2 *W−M)

60
61 # } } }

62
63 # Curve F i t t i n g Funct ions { { {

64
65 RChiS <− function ( Func , p , datax , datay ) {

66 return (sum(

67 ( datay−Func ( datax , p ) ) ^ 2 / Func ( datax , p )

68 ) / ( length ( datax)− length ( p ) ) )

69 }
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70
71 LeastSquare <− function ( p , Func , datax , datay ) {

72 return (sum ( ( datay−Func ( datax , p ) ) ^ 2 ) )

73 }

74
75 # } } }

B.2 Automated selection of the main cell population

The main cell population was selected with the aid of the flowClust package and the
following functions:

1 Se lec tCe l l s <− function ( f f , l e v e l =0.8 , channels=c ( ’FSC.H.LOG ’ , ’SSC.A .LOG ’ ) ) {

2 c l u s t e r <− f l owC lus t ( f f , varNames=channels , K=1 , B=100)

3 r u l e O u t l i e r s ( c l u s t e r ) <− l i s t ( l e v e l = l e v e l )

4 return ( l i s t ( f fC= f f [ f f %i n% c lus te r , ] , c l u s t e r = c l u s t e r ) )

5 }

6
7 # Selec t the main c e l l popu la t ion using a generous thresho ld , s ince the

8 # FSC /SSC data can l a t e r be used to normal ise the f luorescence data according

9 # to morphology . SelectCel lPop can also o p t i o n a l l y save a p l o t o f the chosen

10 # reg ion .

11 SelectCel lPop <− function ( x , . . . ) UseMethod ( ’ SelectCel lPop ’ )

12 SelectCel lPop . defaul t <− function ( x , . . . )

13 stop ( ’ " SelectCel lPop " not implemented f o r t h i s c lass . ’ )

14
15 SelectCel lPop . flowFrame <− function ( x , l e v e l =0.95 , . . . ) {

16 f f c l u s t e r <− Se lec tCe l l s ( x , l e v e l = l e v e l )

17 return ( f f c l u s t e r $ f fC )

18 }

19
20 SelectCel lPop . f lowSet <− function ( x , channels=c ( ’FSC.H.LOG ’ , ’SSC.A .LOG ’ ) ,

21 savep lo t=FALSE, x l im=NULL, y l im=NULL, . . . ) {

22 i f ( savep lo t ) {

23 ranges <− apply ( fsApply ( x [ , channels ] , each_col , quantile ,

24 probs=c ( 0 . 0 0 5 , 0 . 9 9 ) ) , 2 , range )

25
26 i f ( is . nul l ( x l im ) ) {

27 Wparam. x <− getWparam ( x , channels [ [ 1 ] ] )

28 i f ( ! is . nul l (Wparam. x ) )

29 x l im <− Log ic le ( ranges [ , channels [ [ 1 ] ] ] , Wparam. x )

30 else x l im <− ranges [ , channels [ [ 1 ] ] ]

31 }

32
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33 i f ( is . nul l ( y l im ) ) {

34 Wparam. y <− getWparam ( x , channels [ [ 2 ] ] )

35 i f ( ! is . nul l (Wparam. y ) )

36 y l im <− Log ic le ( ranges [ , channels [ [ 2 ] ] ] , Wparam. y )

37 else y l im <− ranges [ , channels [ [ 2 ] ] ]

38 }

39 }

40
41 fsApply ( x , SelectCel lPop . flowFrame , channels=channels , . . . )

42 }

B.3 Logicle transformation

For Logicle transformation, a common W parameter was chosen according to the method
specified by Parks et al. [2006], and this parameter was stored as an attribute for each
flowFrame (ff). The transformation with this parameter was then applied to a specified
flow cytometry channel using the logicleTransform function of the flowCore package.
The following functions were used to automate this process.

1 setWparam <− function ( f f , channel , W) {

2 i f ( ! a l l ( g rep l ( ’ \ \ . LOG [ . ] ? . *$ ’ , channel ) ) )

3 stop ( ’ Channel name has i n c o r r e c t format : i t should inc lude " .LOG" ’ )

4 eval ( parse ( text=paste0 ( ’ keyword ( f f )<− l i s t ( ’ , channel , ’ .W=W) ’ ) ) )

5 return ( f f )

6 }

7
8 getWparam <− function ( f f , channel= ’ FITC .A .LOG ’ ) {

9 keyname <− sub ( ’ \ \ . LOG [ . ] ? . *$ ’ , ’ .LOG.W’ , channel )

10 i f ( inher i ts ( f f , ’ flowFrame ’ ) )

11 return ( keyword ( f f , keyname ) [ [ 1 ] ] )

12 i f ( inher i ts ( f f , ’ f lowSet ’ ) )

13 return ( unique ( fsApply ( f f , function ( f f i ) keyword ( f f i , keyname ) [ [ 1 ] ] ) [ , 1 ] ) )

14 return (NULL)

15 }

16
17 MakeLogicle <− function ( fs , channel= "FSC.A" ) {

18 # To c a l c u l a t e the width parameter , choose the f i f t h p e r c e n t i l e o f a l l

19 # negat ive values i n the data set as suggested i n parks2006nld

20 fsNegRef <−
21 quanti le ( as . vector ( fsApply ( fs , function ( f f )

22 exprs ( f f [ , channel ] [ f f [ , channel ] <0 ] ) ) ) ,

23 probs = 0 . 0 5 ) [ [ 1 ] ]

24 i f ( is . na ( fsNegRef ) | | fsNegRef>−10) fsNegRef <− −10

25 cat ( paste ( ’ Choosing ’ , fsNegRef , ’ as negat ive re ference f o r ’ , channel , ’ \ n ’ ) )
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26
27 srcname <− channel

28 newname <− paste ( srcname , "LOG" , sep=" . " )

29
30 fsW <− (4.5− log10 (262144 / abs ( fsNegRef ) ) ) / 2

31 # Parameters f o r the t rans fo rma t i on f u n c t i o n are most ly the de fau l t s , but

32 # set s p e c i f i c a l l y j u s t i n case the d e f a u l t s change :

33 assign ( ’ f c a n a l y s i s . l og i c leFunc ’ ,

34 l og i c leT rans fo rm ( t r a n s f o rm a t i o n Id = ’ f cana lys i sLog ic leTrans fo rm ’ ,

35 w=fsW , t =262144, m=4.5 , a=0) ,

36 globalenv ( ) ) # t ransform f u n c t i o n needs to be i n g loba l name space

37
38 # Set up the t rans fo rma t i on wi th c o r r e c t channel names and c a l l i t

39 f s <−
40 eval ( parse ( text=paste0 ( ’ t rans form ( fs , ‘ ’ , newname,

41 ’ ‘= f c a n a l y s i s . l og i c leFunc ( ‘ ’ , srcname , ’ ‘ ) ) ’ ) ) )

42
43 fsApply ( fs , setWparam , channel=newname, W=fsW )

44 }

B.4 Morphology normalisation

Two alternative protocols for morphology normalisation were used in this thesis: normal-
isation using an average cell density (as per the protocol specified by [Knijnenburg et al.,
2011]), or normalisation using a sample-specific cell density. Morphology normalisation
using an average cell density works well for the majority of the Tum−CI MFL data, but
substantial biases in absolute intensities were introduced for many of the high intensity
samples. An example is the deviation of the high fluorescence data points (particularly in
the controls) from the respective LacZ assay points back in Figure 5.3(a). Though it may
seem minor, the accuracy of the normalisation protocol for a majority of the assays became
suspect since the raw fluorescence means better matched the LacZ assay results. The errors
were found to be associated with the conversion from relative to absolute intensities in the
last step of the normalisation protocol, where an ‘average’ cell density in FSC/SSC space is
used to estimate the true fluorescence mean from the fitted regression surface. Whilst the
‘average’ cell density worked well for a few high quality data sets, for the majority, the low
representation of high fluorescence samples in the average density map amplified errors
in poorly constrained regions of their regression surfaces. Since the absolute mean fluores-
cence of the raw data was a more reliable indicator of true mean activity, for most assays,
the sample-specific FSC/SSC density (derived from the two-dimensional kernel density
estimate of the FSC/SSC for that particular sample) was instead used to calculate the ex-
pected fluorescence for each regression surface. The effect of morphology normalisation
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by the sample-specific density can be seen back in Figure 5.3(b). Whilst discrepancies with
the LacZ assay remain, they are smaller in comparison with normalisation by average cell
density and better reflect the expected trends.

Knijnenburg et al. developed the method for deriving the representative cell density
by analogy with standard flow cytometry analyses, where fair inter-sample fluorescence
comparisons are obtained by maximising population homogeneity using a stringent but
consistent filter (gate) over the FSC and SSC channels. Knijnenburg et al. [2011] calculate
a FSC/SSC density map that represents the ‘average’ cell morphology for an entire com-
parison group, and use this to weight the calculation of expected (mean) fluorescence for
each regression surface.

The largest deviations tended to arise for samples whose FSC/SSC density map was
poorly represented in the average density map. Poor representation resulted in incorrect
calculation of the expected fluorescence for such regression surfaces, since low-confidence
regions of the extrapolated surface were more heavily weighted, amplifying any inaccu-
racies in those regions. In other words, the average cell morphology had high densities in
regions of the FSC/SSC space where the most problematic samples had few data points
and thus where the regression surface was poorly constrained. That is, the errors were
associated with poor inter-sample FSC/SSC overlap that did not appear to be correlated
with fluorescence.

For the three high quality assays, the original normalisation using average cell den-
sity did not introduce errors and, in fact, improved the results. This was attributed both
to higher cell counts (around 80,000 — at least twice as many as previously measured)
and to greater care taken to ensure stability of FSC and SSC distributions during collec-
tion of the measurements. These experimental changes were prompted by observations
of FSC/SSC drift occurring over the course of an experiment, presumably caused by oc-
casional instabilities in the flow rate. Monitoring for such drift and increasing the overlap
of FSC/SSC density using higher cell counts is recommended for future assays where the
intent is to apply morphology normalisation. In this thesis, these three high quality assays
are left normalised using the average cell density. For all other assays, normalisation of the
fluorescence intensity was performed using the morphology normalisation protocol with
sample-specific densities.

The protocol used by [Knijnenburg et al., 2011] was written in Matlab. For convenience,
the protocol was rewritten in R for this thesis as listed in the following code block.

1 # Ca lcu la te c e l l dens i t y maps f o r each f low frame

2 fsDensityMaps <− function ( fs , channels=c ( "FSC.H" , "SSC.A" ) ,

3 f s r =fsRange ( fs , channels ) , n=2^8){

4
5 i f ( ! require (MASS, q u i e t l y =TRUE) )

6 stop ( " the MASS package must be i n s t a l l e d to c a l c u l a t e kerne l dens i t y est imates " )

7



266 Appendix B. Scripts for analysis of flow cytometry data

8 # Obtain the necessary f low set l i m i t s

9 l ims <− l i s t ( )

10 for ( i i n channels )

11 l ims [ [ i ] ] <− range ( f s r [ , paste ( i , c ( "MIN" , "MAX" ) , sep=" . " ) ] )

12
13 # Ca lcu la te a dens i t y map f o r each f low frame

14 densitymaps <−
15 fsApply ( fs , function ( f f ) {

16 cat ( ’ . ’ ) # t rack progress − t h i s c a l c u l a t i o n can take a whi le

17 return ( kde2d ( exprs ( f f [ , channels [ 1 ] ] ) , exprs ( f f [ , channels [ 2 ] ] ) ,

18 n=n , l ims= un l is t ( l ims ) ) )

19 } )

20 # NB: The kde2d f u n c t i o n comes from the MASS package .

21 cat ( ’ \ n ’ )

22
23 # Normalise the d e n s i t i e s

24 lapply ( densitymaps , function ( dens ) {

25 dens$z <− dens$z /sum( dens$z )

26 return ( dens ) } )

27 }

28
29 # Ca lcu la te the average c e l l dens i t y f o r the e n t i r e f low set

30 fsAverageDensi ty <− function ( densitymaps ) {

31 # Sum a l l the d e n s i t i e s toge ther

32 t o t a l d e n s i t y <−
33 Reduce ( function ( t o t a l , addmap) w i t h i n ( t o t a l , z <− z + addmap$z ) ,

34 densitymaps [−1] , densitymaps [ [ 1 ] ] )

35 t o t a l d e n s i t y $z <− t o t a l d e n s i t y $z / length ( densitymaps )

36 return ( t o t a l d e n s i t y )

37 }

38
39 # Make a g r i d o f c o n s t r a i n t s to fo rce the regress ion model to remain

40 # monotonic . This f u n c t i o n i s c a l l e d by ’ f fRegressConstra ined ’ and requ i res a

41 # model t h a t i s o f c lass ’gam ’ .

42 makeConstraintGrid <− function ( model , l ims , channels=c ( "FSC.H" , "SSC.A" ) , n=2^3){

43 # Create two o f f s e t coord ina te g r i d s w i th the s p e c i f i e d dimensions :

44 fscrow <− seq ( l ims [ [ channels [ 1 ] ] ] [ 1 ] , l ims [ [ channels [ 1 ] ] ] [ 2 ] , length . out=n )

45 sscco l <− seq ( l ims [ [ channels [ 2 ] ] ] [ 1 ] , l ims [ [ channels [ 2 ] ] ] [ 2 ] , length . out=n )

46 l owgr id<−data . frame (

47 f sc=c ( rep ( fscrow[−n ] , t imes=n ) , rep ( fscrow , t imes=n−1)) ,

48 ssc=c ( rep ( ssccol , each=n−1) ,rep ( sscco l [−n ] , each=n ) )

49 )

50 h ighg r i d<−data . frame (

51 f sc=c ( rep ( fscrow [−1] , t imes=n ) , rep ( fscrow , t imes=n−1)) ,
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52 ssc=c ( rep ( ssccol , each=n−1) ,rep ( sscco l [−1] ,each=n ) )

53 )

54
55 # At these g r i d loca t i ons , determine a l i n e a r p r e d i c t o r f o r the s p e c i f i e d

56 # model . The l i n e a r p r e d i c t o r i s a mat r i x t h a t can be used to c a l c u l a t e the

57 # value o f the regress ion model a t these l o c a t i o n s by post−m u l t i p l y i n g wi th

58 # the parameter vec to r .

59 X0 <− predict ( model , newdata= lowgr id , type=" l p m a t r i x " )

60 X1 <− predict ( model , newdata=h ighgr id , type=" l p m a t r i x " )

61 c o n s t r g r i d <− X1−X0

62 # At tach the g r i d p o s i t i o n s t h a t were used to f a c i l i t a t e p l o t t i n g :

63 a t t r ( cons t rg r i d , " fscrow " ) <− fscrow

64 a t t r ( cons t rg r i d , " sscco l " ) <− sscco l

65 return ( c o n s t r g r i d )

66 }

67
68 # This f u n c t i o n f i t s f luorescence data to c e l l morphology data (FSC /SSC) using

69 # the const ra ined regress ion model suggested by knijnenburg2011rma . The

70 # monotonic c o n s t r a i n t i s app l ied using a coarse g r i d ( cons t ruc ted by

71 # ’ makeConstraintGrid ’ ) and const ra ined l e a s t squares f i t t i n g i s performed by

72 # the ’ pcls ’ f u n c t i o n o f the ’mgcv ’ package . The f u n c t i o n i s based on the

73 # example o f monotonic regress ion given i n the ’ pcls ’ documentation .

74 f fRegressConst ra ined <− function ( f f , l ims , sca t te rchanne ls=c ( "FSC.H" , "SSC.A" ) ,

75 f l uo rchanne l = " FITC .A" ) {

76 i f ( ! require (mgcv , q u i e t l y =TRUE) )

77 stop ( ’ the "mgcv" package must be i n s t a l l e d to perform const ra ined regress ion ’ )

78
79 f f . df<−data . frame (

80 f sc=exprs ( f f [ , sca t te rchanne ls [ 1 ] ] ) [ , 1 ] ,

81 ssc=exprs ( f f [ , sca t te rchanne ls [ 2 ] ] ) [ , 1 ] ,

82 f l =exprs ( f f [ , f l uo rchanne l ] ) [ , 1 ]

83 )

84
85 # Use ’gam’ from the ’mgcv ’ package to set up the design mat r i x f o r the GLM

86 # t h a t can be inpu t i n t o the ’ pcls ’ f u n c t i o n a f t e r adding the c o n s t r a i n t s .

87 G <− gam( f l ~ ( f sc+ssc )^2+( sqrt ( f sc )+ sqrt ( ssc ) )^2+ I ( f sc ^2)+ I ( ssc ^2) ,

88 data= f f . df , f i t =FALSE)

89 # Perform a p r e l i m i n a r y unconstra ined f i t :

90 p r e l i m f i t <− gam(G=G)

91
92 # Enforce monoton ic i t y by f i r s t c a l c u l a t i n g the f i n i t e d i f f e r e n c e between

93 # two g r i ds and co ns t r a i n i ng these to a l l be g rea te r than zero by d e f i n i n g

94 # the i n e q u a l i t y mat r i x ( Ain ) .

95 G$Ain <− makeConstraintGrid ( p r e l i m f i t , l ims=l ims , channels=sca t te rchanne ls )
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96 G$bin <− rep (0 ,nrow (G$Ain ) )

97
98 # Force i n i t i a l parameters to match the c o n s t r a i n t :

99 G$p <− coef ( p r e l i m f i t )

100 G$p [G$p<0] <− 0

101
102 # F i t the c o e f f i c i e n t s using the ’ penal ised const ra ined l e a s t squares

103 # f i t t i n g ’ f u n c t i o n ’ pcls ’ :

104 f i n a l f i t <− p r e l i m f i t

105 f i n a l f i t $ coef f ic ients <− pc ls (G)

106 i f ( any ( is . na ( f i n a l f i t $ coef f ic ients ) ) ) {

107 warning ( ’ some c o e f f i c i e n t s f o r ’ , keyword ( f f , ’TUBE NAME ’ ) [ [ 1 ] ] ,

108 ’ are NA; rea t tempt ing wi th a l t e r n a t i v e i n i t i a l parameters ’ )

109
110 # S t a r t the i n i t i a l f i t again w i th a smal le r subset o f the parameters

111 # i n i t G <− gam( f l ~ f sc+ssc+ s q r t ( f sc )+ s q r t ( ssc )+ I ( f sc ^2)+ I ( ssc ^2 ) ,

112 # data= f f . df , f i t =FALSE)

113 i n i t G <− gam( f l ~ f sc+ssc+sqrt ( f sc )+ sqrt ( ssc ) ,

114 data= f f . df , f i t =FALSE)

115 i n i t f i t <− gam(G= i n i t G )

116
117 G$p <− rep (0 , length (G$ term .names ) )

118 names (G$p ) <− G$ term .names

119 G$p [names ( coef ( i n i t f i t ) ) ] <− coef ( i n i t f i t )

120 G$p [G$p<0] <− 0

121
122 f i n a l f i t $ coef f ic ients <− pc ls (G)

123 i f ( any ( is . na ( f i n a l f i t $ coef f ic ients ) ) )

124 warning ( ’ regress ion f o r ’ , keyword ( f f , ’TUBE NAME ’ ) [ [ 1 ] ] , ’ f a i l e d ’ )

125 }

126
127 # Check t h a t a l l c o n s t r a i n t s are s a t i s f i e d :

128 c o n s t r a i n t s <− G$Ain %*% f i n a l f i t $ coef f ic ients

129 i f ( any ( c o n s t r a i n t s <= 0 ) )

130 warning ( ’ Regression f o r ’ , keyword ( f f , ’TUBE NAME ’ ) ,

131 ’ breaks ’ , sum( c o n s t r a i n t s <= 0) , ’ o f ’ ,

132 length ( c o n s t r a i n t s ) , ’ c o n s t r a i n t s w i th a t o t a l d e v i a t i o n o f ’ ,

133 format (sum( c o n s t r a i n t s [ c o n s t r a i n t s <= 0 ] ) ) )

134
135 # Update use fu l a d d i t i o n a l p r o p e r t i e s o f the f i t :

136 names ( f i n a l f i t $ coef f ic ients ) <− names (G$p )

137 f i n a l f i t $ f i t t e d . values <− predict ( f i n a l f i t )

138 f i n a l f i t $residuals <− f i n a l f i t $y− f i n a l f i t $ f i t t e d . values

139
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140 return ( f i n a l f i t )

141 }

142
143 # Normalise the f luorescence channel o f a f low frame according to i t s

144 # ’ morphology ’ ( i . e . , FSC and SSC) . The a lgo r i t hm prescr ibed i n

145 # knijnenburg2011rma i s fo l l owed .

146 morphNormalise <− function ( f f , densitymaps , sca t te rchanne ls=c ( "FSC.H" , "SSC.A" ) ,

147 f l uo rchanne l = " FITC .A" , dmap . index=NULL ) {

148 i f ( ! require (mgcv , q u i e t l y =TRUE) )

149 stop ( ’ the "mgcv" package must be i n s t a l l e d to perform const ra ined regress ion ’ )

150
151 i f ( is . nul l (dmap . index ) ) {

152 # E i t h e r the f u n c t i o n i s a l ready supp l ied wi th the c o r r e c t c e l l dens i t y :

153 i f ( length ( densitymaps )==3L && a l l (names ( densitymaps ) [ 1 : 3 ] = = c ( ’ x ’ , ’ y ’ , ’ z ’ ) ) )

154 c e l l d e n s i t y <− densitymaps

155 # Or e lse i t i s supp l ied wi th a l i s t o f dens i t y maps to c a l c u l a t e the

156 # average from :

157 else

158 c e l l d e n s i t y <− fsAverageDensi ty ( densitymaps )

159 } else {

160 # Use the ’dmap . index ’ to spec i f y a dmap :

161 c e l l d e n s i t y <− densitymaps [ [ keyword ( f f , dmap . index ) [ [ 1 ] ] ] ]

162 }

163
164 l ims <− l i s t ( )

165 l ims [ [ sca t te rchanne ls [ 1 ] ] ] <− range ( c e l l d e n s i t y $x )

166 l ims [ [ sca t te rchanne ls [ 2 ] ] ] <− range ( c e l l d e n s i t y $y )

167
168 c o n s t r f i t <−
169 f fRegressConst ra ined ( f f , l ims=l ims , sca t te rchanne ls=scat te rchanne ls ,

170 f l uo rchanne l = f l uo rchanne l )

171
172 d e n s i t y g r i d <− data . frame (

173 f sc=rep ( c e l l d e n s i t y $x , t imes= length ( c e l l d e n s i t y $y ) ) ,

174 ssc=rep ( c e l l d e n s i t y $y , each= length ( c e l l d e n s i t y $x ) )

175 )

176 d e n s i t y g r i d $ f l <− predict ( c o n s t r f i t , newdata= d e n s i t y g r i d )

177 c e l l d e n s i t y $z . f l a t <− as . numeric ( c e l l d e n s i t y $z )

178 a v g f l <− sum( c e l l d e n s i t y $z . f l a t * d e n s i t y g r i d $ f l )

179
180 normf l <− a v g f l +residuals ( c o n s t r f i t )

181 normf l <− matrix ( normf l , nrow= length ( normf l ) , ncol =1 ,

182 dimnames= l i s t (NULL, paste ( f l uo rchanne l , "M" , sep=" . " ) ) )

183
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184 return ( cbind2 ( f f , normf l ) )

185 }

B.5 Constrained skew-t regression

Unimodal skew-t distributions were initially fit to the control samples in an unconstrained
manner using the mixsmsn package [Prates et al., 2013]. This was applied to a flowSet

using the following function

1 # Generate unimodal Skew . t f i t s over a f lowSet as t r a i n i n g data { { {

2 # NB: i n order to save some time , the f o l l o w i n g f u n c t i o n does not c a l c u l a t e

3 # the in fo rma t i on mat r i x .

4 skewt . u n i f i t <− function ( fs , channel= ’ FITC .A .LOG.M ’ ) {

5 i f ( ! require ( mixsmsn , q u i e t l y =TRUE) )

6 stop ( " the mixsmsn package must be i n s t a l l e d to f i t skew−t mix ture models " )

7
8 f i t s <−
9 fsApply ( fs , function ( f f ) {

10 cat ( ’ . ’ ) # Progress counter s ince t h i s can be slow

11 # Ca lcu la te some s t a t i s t i c s

12 f f d a t a <− as . vector ( exprs ( f f [ , channel ] ) )

13 f f q u a n t <− quanti le ( f f da ta , probs=c ( 0 . 2 5 , 0 . 5 , 0 . 7 5 ) , na . rm=TRUE)

14 ffmean <− mean( f f da ta , na . rm=TRUE)

15 f f v a r <− sd ( f f da ta , na . rm=TRUE)^2

16
17 u n i f i t <−
18 smsn . mix ( f f da ta , g=1 , family= ’Skew . t ’ , p i i =1 ,

19 nu=5 , mu= f f q u a n t [ [ 2 ] ] , sigma2= f f v a r , shape=−1,

20 get . i n i t =FALSE, ca lc . im=FALSE)

21
22 l i s t ( u n i f i t = u n i f i t ,

23 s t a t s = l i s t ( quant= f fquan t ,mean=ffmean , var= f f v a r ) )

24 } )

25 cat ( ’ \ n ’ )

26 structure ( f i t s , class=c ( ’ skewt . u n i f i t ’ , ’ l i s t ’ ) )

27 }

28
29 pr in t . skewt . u n i f i t <− function ( x , . . . )

30 cat ( paste0 ( ’A l i s t o f unimodal Skew . t f i t s o f leng th ’ ,

31 length ( x ) , ’ \ n ’ ) )

32
33 summary . skewt . u n i f i t <− function ( x , . . . ) {

34 f i tsummary <−
35 sapply ( x , function ( f i t )
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36 c (mu= f i t $uni$mu, sigma2= f i t $uni$sigma2 , nu= f i t $un i$nu ,

37 shape= f i t $uni$shape , quant25= f i t $ s t a t s $quant [ [ 1 ] ] ,

38 quant50= f i t $ s t a t s $quant [ [ 2 ] ] , quant75= f i t $ s t a t s $quant [ [ 3 ] ] ,

39 mean= f i t $ s t a t s $mean , var= f i t $ s t a t s $var ) )

40 f i tsummary <− as . data . frame ( t ( f i tsummary ) )

41 w i t h i n ( f i tsummary , q u a n t d i f f <− quant75−quant25 )

42 }

43
44 # } } }

A ‘predictor’ object was constructed from these fitted skew-t distributions by calcu-
lating a series of regression models that described the data. These regression models are
saved and enable the prediction of all other skew-t parameters from just a supplied median
fluorescence. The following code shows how this was implemented.

1 # Generate a ‘ skewt . p red i c t o r ‘ ob jec t from unimodal Skew . t f i t s by

2 # con s t r uc t i ng a ca ta log o f regress ion models f o r each Skew . t parameter

3 # aga ins t the median value determined from the t r a i n i n g set . This ob jec t can

4 # then l a t e r be used to p r e d i c t skew t parameters from a median :

5 skewt . p r e d i c t o r <− function ( u n i f i t ) {

6 i f ( ! inher i ts ( u n i f i t , ’ skewt . u n i f i t ’ ) )

7 stop ( ’ " u n i f i t " must be a " skewt . u n i f i t " ob jec t ’ )

8
9 uni f i tsummary <− summary ( u n i f i t )

10
11 p r e d i c t o r <−
12 l i s t (mu. median=lm (mu~quant50 , data=uni f i tsummary ) ,

13 width . median=lm ( q u a n t d i f f ~quant50+ I ( quant50 ^2) , data=uni f i tsummary ) ,

14 sigma2 . width=lm ( sigma2~ q u a n t d i f f + I ( q u a n t d i f f ^2 ) , data=uni f i tsummary ) ,

15 shape . width=lm ( shape~ q u a n t d i f f + I ( q u a n t d i f f ^2 ) , data=uni f i tsummary ) ,

16 nu . sigma2=lm ( nu~sigma2+ I ( sigma2 ^2) , data=uni f i tsummary ) )

17 structure ( p red i c t o r , class=c ( ’ skewt . p r e d i c t o r ’ , ’ l i s t ’ ) )

18 }

19
20 # The f o l l o w i n g f u n c t i o n est imates skew t parameters f o r a s p e c i f i e d median

21 # f luorescence , and o p t i o n a l l y a d d i t i o n a l l y a peak width , which i s here

22 # def ined as the d i f f e r e n c e between the 25 th and 75 th p e r c e n t i l e s . I t r e tu rns

23 # a ’Skew . t ’ ob jec t desc r ib ing a mix ture o f skew t models .

24 predict . skewt . p r e d i c t o r <− function ( ob jec t , median , w id th=NULL, p i i =1 ,

25 checks=TRUE) {

26 i f ( missing ( median ) )

27 stop ( ’ At l e a s t one " median " value must be supp l ied f o r p r e d i c t i o n ’ )

28
29 i f ( is . nul l ( width ) )

30 width <− predict ( ob jec t $width . median , newdata=data . frame ( quant50=median ) )
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31
32 i f ( checks ) {

33 i f ( length ( median ) ! = length ( width ) | | length ( median ) ! = length ( p i i ) )

34 stop ( ’ The s p e c i f i e d medians , widths and p r o b a b i l i t i e s must a l l have ’ ,

35 ’ the same lengths ’ )

36
37 i f (sum( p i i ) ! = 1 .0 )

38 stop ( ’ Mix ture component p r o b a b i l i t i e s " p i i " must sum to 1 ’ )

39 }

40
41 sigma2 <− predict ( ob jec t $sigma2 . width , newdata=data . frame ( q u a n t d i f f =width ) )

42
43 pred <−
44 l i s t ( p i i = p i i ,

45 mu=predict ( ob jec t $mu. median , newdata=data . frame ( quant50=median ) ) ,

46 sigma2=sigma2 ,

47 shape=predict ( ob jec t $shape . width , newdata=data . frame ( q u a n t d i f f =width ) ) ,

48 nu=predict ( ob jec t $nu . sigma2 , newdata=data . frame ( sigma2=sigma2 ) ) )

49
50 # For p red ic ted values o f ’ nu ’ less than 1 , take an average value ins tead to avoid

51 # smal l / negat ive degrees o f freedom

52 i f ( any ( pred$nu < 1 ) )

53 pred$nu [ pred$nu <1] <− mean( ob jec t $nu . sigma2$model$nu )

54
55 structure ( as . data . frame ( pred ) , class=c ( ’Skew . t ’ , ’ data . frame ’ ) )

56 }

Maximum likelihood estimation could then be used to optimise the median fluores-
cence to fit the MFL distributions with either a unimodal or bimodal mixture model. This
was implemented using the following code.

1 # Perform maximum−l i k e l i h o o d es t ima t ion to f i t a unimodal skew t d i s t r i b u t i o n

2 # t h a t i s r e s t r i c t e d to the f a m i l y def ined by a skewt . p r e d i c t o r ob jec t .

3 unimodal . skewt .em <− function ( f f , p red i c t o r , channel= ’ FITC .A .LOG.M ’ ) {

4 i f ( ! inher i ts ( f f , ’ flowFrame ’ ) ) stop ( ’ " f f " must be a " flowFrame " ’ )

5 i f ( ! inher i ts ( p red i c t o r , ’ skewt . p r e d i c t o r ’ ) )

6 stop ( ’ " p r e d i c t o r " must be a " skewt . p r e d i c t o r " ’ )

7
8 f f d a t a <− exprs ( f f [ , channel ] )

9 medrange <− c ( 0 . 7 , 1 . 3 ) * range ( p r e d i c t o r $mu. median$model$quant50 )

10
11 f i t <−
12 optim ( c (med=median ( f f d a t a ) ) ,

13 function ( pars ) {

14 probs <− wi th ( as . l i s t ( pars ) ,
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15 dskewt ( f f da ta , predict ( p red i c t o r , median=med ) ) )

16 # Avoid an NaN l i k e l i h o o d by s e t t i n g a l l i l l −behaved p r o b a b i l i t i e s

17 # to be s u i t a b l y improbable :

18 i f ( any ( is . na ( probs ) | probs <=0))

19 probs [ is . na ( probs ) | probs <=0] <− 1e−8

20 # Return the log l i k e l i h o o d ; NB: optim minimises by d e f a u l t

21 return(−sum( log ( probs ) ) )

22 } , method= ’ L−BFGS−B ’ , hessian=TRUE,

23 lower=medrange [ [ 1 ] ] , upper=medrange [ [ 2 ] ] )

24
25 structure ( c ( l i s t ( skewt . pars=predict ( p red i c t o r , median= f i t $par [ [ ’med ’ ] ] ) ) ,

26 f i t ) , class= ’ unimodal . f i t ’ )

27 }

28
29 # Perform maximum−l i k e l i h o o d es t ima t ion to f i t a bimodal mix ture o f skew t

30 # d i s t r i b u t i o n s t h a t have been r e s t r i c t e d to the f a m i l y def ined by a

31 # skewt . p r e d i c t o r ob jec t .

32 bimodal . skewt .em <− function ( f f , p red i c t o r , channel= ’ FITC .A .LOG.M ’ ) {

33 i f ( ! inher i ts ( f f , ’ flowFrame ’ ) ) stop ( ’ " f f " must be a " flowFrame " ’ )

34 i f ( ! inher i ts ( p red i c t o r , ’ skewt . p r e d i c t o r ’ ) )

35 stop ( ’ " p r e d i c t o r " must be a " skewt . p r e d i c t o r " ’ )

36
37 f f d a t a <− exprs ( f f [ , channel ] )

38 f f q u a n t <− quanti le ( f f da ta , probs=c (0 .25 , 0 . 7 5 ) )

39 medrange <− c ( 0 . 7 , 1 . 3 ) * range ( p r e d i c t o r $mu. median$model$quant50 )

40
41 # Optimise the expec ta t ion over the f o l l o w i n g v a r i a b l e s :

42 # − p . l o ( the p ropo r t i on o f the low f luorescence popu la t ion )

43 # − m. l o ( the median of the low f luorescence popu la t ion )

44 # − m. h i . fac ( a m u l t i p l i c a t i o n f a c t o r g i v i n g the median of the high

45 # f luorescence popu la t ion r e l a t i v e to ’med. low ’ )

46
47 f i t <−
48 optim ( c ( p . l o =0.5 , m. l o = f f q u a n t [ [ 1 ] ] , m. h i . fac= f f q u a n t [ [ 2 ] ] / f f q u a n t [ [ 1 ] ] ) ,

49 function ( pars ) {

50 # Don ’ t check parameters i n p r e d i c t f u n c t i o n dur ing o p t i m i s a t i o n

51 predpars <− wi th ( as . l i s t ( pars ) ,

52 predict ( p red i c t o r , median=c (m. lo , m. h i . fac *m. l o ) ,

53 p i i =c ( p . lo , 1−p . l o ) , checks=FALSE ) )

54 probs <− dskewt . mix ( f f da ta , predpars )

55 # Avoid an NaN l i k e l i h o o d by s e t t i n g a l l i l l −behaved p r o b a b i l i t i e s

56 # to be s u i t a b l y improbable :

57 i f ( any ( is . na ( probs ) | probs <=0))

58 probs [ is . na ( probs ) | probs <=0] <− 1e−8
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59 # Return the log l i k e l i h o o d ; NB: optim minimises by d e f a u l t

60 return(−sum( log ( probs ) ) )

61 } , method= ’ L−BFGS−B ’ , hessian=TRUE,

62 lower=c (0 , medrange [ [ 1 ] ] , 1 .05 ) ,

63 upper=c (1 , medrange [ [ 2 ] ] , medrange [ [ 2 ] ] / medrange [ [ 1 ] ] ) )

64
65 predpars <− wi th ( as . l i s t ( f i t $par ) ,

66 predict ( p red i c t o r , median=c (m. lo , m. h i . fac *m. l o ) ,

67 p i i =c ( p . lo , 1−p . l o ) ) )

68 structure ( c ( l i s t ( skewt . pars=predpars ) , f i t ) , class= ’ bimodal . f i t ’ )

69 }

Finally, the constrained mixture modelling analysis was performed over a flowSet

using the ModalityAnalysis function, and the integrated mean values and parameter er-
rors calculated using the summary function for a modality.fits object. The errors in the
fit parameters were calculated from the Hessian output of the optim function and were
transformed into the appropriate derived parameters (i.e., the distribution means) using
the Jacobian.

1 Moda l i t yAna lys is <− function ( fs , p red i c t o r , channel= ’ FITC .A .LOG.M ’ ) {

2 i f ( save ) {

3 x l im <− range ( fsApply ( fs , function ( f f ) range ( exprs ( f f ) [ , channel ] ) ) )

4 W <− getWparam ( fs , channel )

5 i f ( ! is . nul l (W) )

6 x l im <− Log ic le ( x l im , W)

7 }

8
9 f i t s <−

10 fsApply ( fs , function ( f f ) {

11 cat ( ’ . ’ )

12 unimodal <−
13 unimodal . skewt .em( f f , p r e d i c t o r = p red i c t o r , channel=channel )

14 bimodal <−
15 bimodal . skewt .em( f f , p r e d i c t o r = p red i c t o r , channel=channel )

16 l i s t ( unimodal=unimodal , bimodal=bimodal )

17 } )

18 cat ( ’ \ n ’ )

19 structure ( f i t s , class= ’ moda l i t y . f i t s ’ , channel=channel )

20 }

21
22 summary . moda l i t y . f i t s <− function ( x , W=NULL, p r e d i c t o r =NULL, . . . ) {

23 summarise . moda l i t y <− function ( f i t s ) {

24 u n i s k t <− f i t s $unimodal$skewt . pars

25 b i s k t <− f i t s $bimodal$skewt . pars

26
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27 # Find the mean value o f each skew t p r o b a b i l i t y d i s t r i b u t i o n :

28 i n t s k t <− function ( pars , n )

29 i n t e g r a t e ( function ( x ) x * dskewt ( x , pars , n=n ) , −I n f , I n f ) $value

30
31 # For c a l c u l a t i n g means , set p r o b a b i l i t y o f each d i s t r i b u t i o n to u n i t y :

32 b i s k t $ p i i <− rep (1 ,nrow ( b i s k t ) )

33
34 u n i s k t .mean <− c (mean . un i= i n t s k t ( un isk t , n =1) )

35 l owskt .mean <− c (mean . low= i n t s k t ( b i sk t , n =1) )

36 h ighsk t .mean <− c (mean . h igh= i n t s k t ( b i sk t , n =2) )

37
38 i f ( ! is . nul l (W) ) {

39 # I f W parameter i s given , a lso c a l c u l a t e the d i s t r i b u t i o n means i n the

40 # unlogged scale . This requ i res a change of va r iab les , and hence the

41 # Jacobian ( g rad ien t ) o f the i n v L o g i c l e f u n c t i o n . The ’ grad ’ f u n c t i o n

42 # comes from package ’ numDeriv ’ :

43 i f ( ! require ( numDeriv , q u i e t l y =TRUE) )

44 stop ( " the numDeriv package must be i n s t a l l e d to c a l c u l a t e " ,

45 " skew t d i s t r i b u t i o n means i n the untransformed scale " )

46
47 # Can ’ t perform Log ic le t rans fo rma t i on a t i n f i n i t y , so choose s u i t a b l y

48 # la rge bounds ins tead :

49 intBounds <− c (−2.5 ,4.5)

50
51 cat ( ’ . ’ ) # This can be slow so t rac k progress

52
53 P <− uniroot ( function ( p ) W− calcWfromP ( p ) , c ( 0 . 1 , 100))$ r oo t

54
55 i n t s k t . unlog <− function ( pars , n )

56 t ryCatch ( i n t e g r a t e ( function ( x ) Log ic le ( x ,W=W,P=P) * dskewt ( x , pars , n=n ) ,

57 intBounds [ [ 1 ] ] , intBounds [ [ 2 ] ] ) $value ,

58 e r r o r = function ( e ) { warning ( e ) ; return (NA) } )

59
60 u n i s k t .mean <− c ( u n i s k t .mean , rawmean . un i= i n t s k t . unlog ( un isk t , n =1) )

61 l owskt .mean <− c ( lowskt .mean , rawmean . low= i n t s k t . unlog ( b i sk t , n =1) )

62 h ighsk t .mean <− c ( h ighsk t .mean , rawmean . high= i n t s k t . unlog ( b i sk t , n =2) )

63
64 # I f the p r e d i c t o r i s suppl ied , c a l c u l a t e standard dev ia t i ons on the

65 # est imated raw means :

66 i f ( ! is . nul l ( p r e d i c t o r ) ) {

67 # Def ine f un c t i o ns to a l low parameter v a r i a t i o n :

68 calcRawMeanUni <− function ( pars ) {

69 skewtpars <− predict ( p red i c t o r , median=pars [ [ ’med ’ ] ] )

70 i n t s k t . unlog ( skewtpars , n=1)
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71 }

72 calcRawMeanLow <− function ( pars ) {

73 skewtpars <− predict ( p red i c t o r , median=pars [ [ ’m. l o ’ ] ] )

74 i n t s k t . unlog ( skewtpars , n=1)

75 }

76 calcRawMeanHigh <− function ( pars ) {

77 skewtpars <−
78 predict ( p red i c t o r , median=pars [ [ ’m. l o ’ ] ] * pars [ [ ’m. h i . fac ’ ] ] )

79 i n t s k t . unlog ( skewtpars , n=1)

80 }

81
82 uni . par <− f i t s $unimodal$par

83 uni . vcov <− solve ( f i t s $unimodal$hessian )

84 b i . par <− f i t s $bimodal$par

85 b i . vcov <− solve ( f i t s $bimodal$hessian )

86 b i . p i i s d <− drop ( sqrt ( b i . vcov [ ’ p . l o ’ , ’ p . l o ’ ] ) )

87
88 # Accuracy i s not as impor tan t f o r the e r r o r s so use the ’ simple ’

89 # method f o r the g rad ien t :

90 uni . j ac <−
91 grad ( calcRawMeanUni , un i . par [ ’med ’ ] , method= ’ s imple ’ )

92 b i . lowjac <−
93 grad ( calcRawMeanLow , b i . par [ ’m. l o ’ ] , method= ’ s imple ’ )

94 b i . h igh jac <−
95 grad ( calcRawMeanHigh , b i . par [ c ( ’m. l o ’ , ’m. h i . fac ’ ) ] , method= ’ s imple ’ )

96
97 un i . sd <− drop ( sqrt ( un i . j ac %*% un i . vcov [ ’med ’ , ’med ’ ] %*% uni . j ac ) )

98 b i . lowsd <− sqrt ( b i . lowjac %*% b i . vcov [ ’m. l o ’ , ’m. l o ’ ] %*% b i . lowjac )

99 b i . highsd <− sqrt ( b i . h igh jac %*% b i . vcov [ c ( ’m. l o ’ , ’m. h i . fac ’ ) ,

100 c ( ’m. l o ’ , ’m. h i . fac ’ ) ] %*% b i . h igh jac )

101
102 u n i s k t .mean <− c ( u n i s k t .mean , rawmean . un i . sd=drop ( un i . sd ) )

103 l owskt .mean <− c ( p i i . low . sd= b i . p i i sd , lowskt .mean , rawmean . low . sd=drop ( b i . lowsd ) )

104 h ighsk t .mean <− c ( h ighsk t .mean , rawmean . high . sd=drop ( b i . highsd ) )

105 }

106 }

107
108 # Reset the p r o b a b i l i t y parameters o f each bimodal d i s t r i b u t i o n :

109 b i s k t <− f i t s $bimodal$skewt . pars

110
111 structure ( c ( un l is t ( u n i s k t ) , u n i s k t .mean , f i t s $unimodal$value ,

112 un l is t ( b i s k t [ 1 , ] ) , lowskt .mean ,

113 un l is t ( b i s k t [ 2 , ] ) , h ighsk t .mean , f i t s $bimodal$value ) ,

114 names=c ( paste0 (names ( u n i s k t ) , ’ . un i ’ ) , names ( u n i s k t .mean ) ,
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115 ’ value . un i ’ ,

116 paste0 ( colnames ( b i s k t ) , ’ . low ’ ) , names ( lowskt .mean ) ,

117 paste0 ( colnames ( b i s k t ) , ’ . h igh ’ ) , names ( h ighsk t .mean ) ,

118 ’ value . b i ’ ) )

119 }

120
121 f i t sum <− sapply ( x , summarise . moda l i t y )

122 cat ( ’ \ n ’ ) # F in i sh poss ib le progress t r a c k e r

123 w i t h i n ( as . data . frame ( t ( f i t sum ) ) , v a l u e d i f f <− value . b i−value . un i )

124 }





C
Fitting deterministic time-course models to

the Tum−CI MFL data

This appendix describes how deterministic simulations of the MFL were implemented in
R (Appendix C.1) and how they were then used to fit the model parameters to match either
the LacZ assay (Appendix C.2) or flow cytometry (Appendix C.3 data sets.

C.1 Deterministic simulation of the MFL in R

All code presented in this appendix made extensive use of the rootSolve, deSolve [Soetaert
et al., 2010] and FME [Soetaert and Petzoldt, 2010] R packages which provide general rou-
tines for finding steady-state roots of differential equations, simulating differential equa-
tions and optimising model parameters respectively. These libraries are loaded first.

1 ###################################################################

2 # F i t the ODE models o f the MFL and c o n t r o l s to exper imenta l data #

3 ###################################################################

4
5 l i b r a r y ( roo tSo lve )

6 l i b r a r y ( deSolve )

7 l i b r a r y (FME)

8
9 # Enable c a l c u l a t i o n o f conf idence i n t e r v a l s on modFit ob jec ts from the FME

10 # package :

11 vcov . modFit <− function ( x , . . . ) summary ( x ) $cov . scaled

With these libraries loaded, efficient routines for solving the MFL (MFLderivs) and
Tum− control (RepressDerivs) ODEs were defined. These routines perform calculations
in parallel for multiple values of the final level of P lac induction (PcFinal). Routines are
defined for finding both steady-state and time-course solutions to the ODEs, the latter
further benefitting (in terms of speed) from an explicit definition of the Jacobian.

13
14 ### Def ine MFL ODEs and so lve rs f o r processing m u l t i p l e Pc values i n p a r a l l e l ###

15 # { { {

279
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16
17 ## t u m c i E q u i l i b r a t e ( Ct , Tt , params=MFLparams ) ##

18 # Tum−CI e q u i l i b r i u m so l ve r f o r i n i t i a l values #

19 # { { {

20 t u m c i E q u i l i b r a t e <− function ( Ct , Tt , params=MFLparams ) {

21 RootEquation <− function (S, params )

22 wi th ( params , S* ( Es / ( Tt−2*S) ) ^ Hs − Ct + S)

23 S <− uniroot ( RootEquation , c (0 ,min ( Ct , Tt / 2 ) ) , params=params ) $ r oo t

24 Cf <− Ct − S

25 Tf <− Tt − 2 *S

26 l i s t (S=S, Cf=Cf , Tf=Tf )

27 }

28 # } } }

29
30 ## steadyRepress ( Pc In i t , PcFinal , params ) ##

31 # Solve the Repressor ODEs at steady−s ta te ; safe f o r m u l t i p l e PcFinal ’ s

32 # { { {

33 steadyRepress <− function ( Pc In i t , PcFinal , params )

34 {

35 i n i t C f <− PcFinal / params [ [ ’Dc ’ ] ]

36
37 # In t h i s case , the i n i t i a l values are exact :

38 return ( data . frame ( Pc=PcFinal , Cf= i n i t C f ,

39 Z=wi th ( as . l i s t ( params ) , Pz / Dz / (1+( i n i t C f / Er ) ^ Hr ) ) ) )

40
41 # The number o f i n d u c t i o n l e v e l s to so lve f o r :

42 N <− length ( PcFinal )

43
44 # Approximate the steady−s ta te values o f i n i t i a l parameters

45 i n i t C f <− P c I n i t / params [ [ ’Dc ’ ] ]

46 i n i t Z <− wi th ( as . l i s t ( params ) , Pz / Dz / (1+( i n i t C f / Er ) ^ Hr ) )

47
48 # I n i t i a l i s e s t a r t values

49 i n i t <− c ( rep ( i n i t C f ,N) , rep ( i n i t Z ,N) )

50
51 de r i vs <− function ( t , y , params , Pc , N) {

52 # [ Cf ] = y [ 1 ] , [ Z ] = y [N+ 1 : ]

53 Cf <− y [ 1 :N]

54 Z <− y [ (N+1 ) : ( 2 *N) ]

55 wi th ( as . l i s t ( params ) ,

56 l i s t ( c ( Pc − Dc* Cf ,

57 Pz / (1+( Cf / Er ) ^ Hr ) − Dz*Z ) ) )

58 }

59
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60 ss <− stode ( i n i t , parms=params , func=der ivs , Pc=PcFinal , N=N)

61 wi th ( ss , data . frame ( Pc=PcFinal , Cf=y [ 1 :N] , Z=y [ (N+1 ) : ( 2 *N ) ] ) )

62 }

63 # } } }

64
65 ## steadyMFL ( Pc In i t , PcFinal , params ) ##

66 # Solve the MFL ODEs at steady−s ta te ; safe f o r m u l t i p l e PcFinal ’ s

67 # { { {

68 steadyMFL <− function ( Pc In i t , PcFinal , params )

69 {

70 # The number o f i n d u c t i o n l e v e l s to so lve f o r :

71 N= length ( PcFinal )

72
73 l i s t p a r m s <− as . l i s t ( params )

74
75 # Approximate the steady−s ta te values o f i n i t i a l parameters

76 i n i t C t <− P c I n i t / l i s t p a r m s $Dc

77 # Assume Tt = ’ p roduc t ion due to repress ion by Ct ’

78 steady <− t u m c i E q u i l i b r a t e ( i n i t C t , w i th ( l i s tpa rms , Pt / Dt / (1+( i n i t C t / Er ) ^ Hr ) ) ,

79 params= l i s t p a r m s )

80 # Improve the guess on Tt by one i t e r a t i o n :

81 steady <− t u m c i E q u i l i b r a t e ( i n i t C t , w i th ( c ( l i s tpa rms , steady ) , Pt / Dt / (1+( Cf / Er ) ^ Hr ) ) ,

82 params= l i s t p a r m s )

83 i n i t Z <− wi th ( c ( l i s tpa rms , steady ) , Pz / Dz / (1+( Cf / Er ) ^ Hr ) )

84
85 # I n i t i a l i s e s t a r t values

86 i n i t <− wi th ( steady , c ( rep ( Cf ,N) , rep ( Tf ,N) , rep (S,N) , rep ( i n i t Z ,N ) ) )

87
88 de r i vs <− function ( t , y , params , Pc , N) {

89 # [C] = y [ 1 ] , [ T ] = y [ 2 ] , [S ] = y [ 3 ] , [ Z ]

90 Cf <− y [ ( 0 *N+1) : ( 1 *N) ]

91 Tf <− y [ ( 1 *N+1) : ( 2 *N) ]

92 S <− y [ ( 2 *N+1) : ( 3 *N) ]

93 Z <− y [ ( 3 *N+1) : ( 4 *N) ]

94 wi th ( as . l i s t ( params ) ,

95 l i s t ( c ( Pc − Dc* Cf + k s o f f *(−Cf * ( Tf / Es )^Hs + S) + ( Dt−D i l ) *S,

96 Pt / (1+( Cf / Er ) ^ Hr ) − Dt * Tf + 2 * k s o f f *(−Cf * ( Tf / Es )^Hs + S)

97 + (Dc−D i l ) *S,

98 −(Ds+Dc+Dt−D i l ) *S + k s o f f * ( Cf * ( Tf / Es )^Hs − S) ,

99 Pz / (1+( Cf / Er ) ^ Hr ) − Dz*Z

100 ) ) )

101 }

102
103 ss <− stode ( i n i t , parms=params , func=der ivs , Pc=PcFinal , N=N,
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104 p o s i t i v e =TRUE)

105 # jac type = ’ bandint ’ , bandup=3 ,banddown=3)

106 wi th ( ss , data . frame ( Pc=PcFinal , Cf=y [ ( 0 *N+1) : ( 1 *N) ] , Tf=y [ ( 1 *N+1) : ( 2 *N) ] ,

107 S=y [ ( 2 *N+1) : ( 3 *N) ] , Z=y [ ( 3 *N+1) : ( 4 *N ) ] ) )

108 }

109 # } } }

110
111 ## RepressDerivs ( t , y , params , Pc , N) ##

112 # Def ine the Repressor ODEs to process m u l t i p l e Pc values i n p a r a l l e l . The

113 # v a r i ab l e s f o r each Pc are grouped toge ther i n y so t h a t the Jacobian i s

114 # banded .

115 # { { {

116 RepressDerivs <− function ( t , y , params , Pc , N) {

117 # [C] = y [ 1 ] , [ Z ] = y [ 2 ]

118 ymat <− matrix ( y , nrow=2)

119 Cf <− ymat [ 1 , ]

120 Z <− ymat [ 2 , ]

121
122 Rpow <− wi th ( as . l i s t ( params ) , 1 / (1+( Cf / Er ) ^ Hr ) )

123
124 wi th ( as . l i s t ( params ) ,

125 l i s t ( as . vector ( matrix ( c (

126 Pc − Dc* Cf ,

127 Pz*Rpow − Dz*Z

128 ) , nrow=2 ,byrow=TRUE ) ) ) )

129 }

130 # } } }

131
132 ## MFLderivs ( t , y , params , Pc , N, f u l l =FALSE) ##

133 # Def ine the MFL ODEs to process m u l t i p l e Pc values i n p a r a l l e l . The v a r i a b l e s

134 # f o r each Pc are grouped toge ther i n y so t h a t the Jacobian i s banded .

135 # { { {

136 MFLderivs <− function ( t , y , params , Pc , N, f u l l =FALSE ) {

137 # [C] = y [ 1 ] , [ T ] = y [ 2 ] , [S ] = y [ 3 ] , [ Z ] = y [ 4 ]

138 ymat <− matrix ( y , nrow=4)

139 Cf <− ymat [ 1 , ]

140 Tf <− ymat [ 2 , ]

141 S <− ymat [ 3 , ]

142 Z <− ymat [ 4 , ]

143
144 Rpow <− wi th ( as . l i s t ( params ) , 1 / (1+( Cf / Er ) ^ Hr ) )

145 Spow <− wi th ( as . l i s t ( params ) , k s o f f * Cf * ( Tf / Es )^Hs)

146
147 wi th ( as . l i s t ( params ) ,
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148 l i s t ( as . vector ( matrix ( c (

149 Pc − Dc* Cf − Spow + ( k s o f f +Dt−D i l ) *S,

150 Pt *Rpow − Dt * Tf − 2 *Spow + 2 * ( k s o f f +Dc−D i l ) *S,

151 −( k s o f f +Ds+Dc+Dt−D i l ) *S + Spow,

152 Pz*Rpow − Dz*Z

153 ) , nrow=4 ,byrow=TRUE ) ) ) )

154 }

155 # } } }

156
157 ## MFLjacob ( t , y , params , Pc , N, f u l l =FALSE) ##

158 # For improved accuracy , de f ine a Jacobian f o r the above mu l t i−Pc MFL ODEs. I t

159 # can be re turned e i t h e r as a f u l l or banded mat r i x . Note t h a t i f N=1 , the

160 # banded vers ion i s l a r g e r than the f u l l matr ix , and the ODE so lve r no longer

161 # works w i th the banded vers ion .

162 # { { {

163 MFLjacob <− function ( t , y , params , Pc , N, f u l l =FALSE ) {

164 # [C] = y [ 1 ] , [ T ] = y [ 2 ] , [S ] = y [ 3 ] , [ Z ] = y [ 4 ]

165 ymat <− matrix ( y , nrow=4)

166 Cf <− ymat [ 1 , ]

167 Tf <− ymat [ 2 , ]

168 S <− ymat [ 3 , ]

169 Z <− ymat [ 4 , ]

170
171 # Jacobian layou t :

172 # dC [ 1 ] dot /dC [ 1 ] , dC [ 1 ] dot / dT [ 1 ] , dC [ 1 ] dot / dS [ 1 ] , dC [ 1 ] dot / dZ [ 1 ] , dC [ 1 ] dot /dC [ 2 ] , . . .

173 # dT [ 1 ] dot /dC [ 1 ] , dT [ 1 ] dot / dT [ 1 ] , dT [ 1 ] dot / dS [ 1 ] , dT [ 1 ] dot / dZ [ 1 ] , . . .

174 # dS [ 1 ] dot /dC [ 1 ] , dS [ 1 ] dot / dT [ 1 ] , dS [ 1 ] dot / dS [ 1 ] , dS [ 1 ] dot / dZ [ 1 ] , . . .

175 # dZ [ 1 ] dot /dC [ 1 ] , dZ [ 1 ] dot / dT [ 1 ] , dZ [ 1 ] dot / dS [ 1 ] , dZ [ 1 ] dot / dZ [ 1 ] , . . .

176 # dC [ 2 ] dot /dC [ 1 ] , dC [ 2 ] dot / dT [ 1 ] , dC [ 2 ] dot / dS [ 1 ] , dC [ 2 ] dot / dZ [ 1 ] , . . .

177 #

178 # Banded Jacobian layou t :

179 # 0 , 0 , 0 , dC [ 1 ] dot / dZ [ 1 ] , 0

, . . .

180 # 0 , 0 , dC [ 1 ] dot / dS [ 1 ] , dT [ 1 ] dot / dZ [ 1 ] , 0

, . . .

181 # 0 , dC [ 1 ] dot / dT [ 1 ] , dT [ 1 ] dot / dS [ 1 ] , dS [ 1 ] dot / dZ [ 1 ] , 0

, . . .

182 # dC [ 1 ] dot /dC [ 1 ] , dT [ 1 ] dot / dT [ 1 ] , dS [ 1 ] dot / dS [ 1 ] , dZ [ 1 ] dot / dZ [ 1 ] , dC [ 2 ] dot /dC [ 2 ] , . . .

183 # dT [ 1 ] dot /dC [ 1 ] , dS [ 1 ] dot / dT [ 1 ] , dZ [ 1 ] dot / dS [ 1 ] , 0 , dT [ 2 ] dot /dC [ 2 ] , . . .

184 # dS [ 1 ] dot /dC [ 1 ] , dZ [ 1 ] dot / dT [ 1 ] , 0 , 0 , dS [ 2 ] dot /dC [ 2 ] , . . .

185 # dZ [ 1 ] dot /dC [ 1 ] , 0 , 0 , 0 , dZ [ 2 ] dot /dC [ 2 ] , . . .

186
187 zeros <− rep (0 , ncol ( ymat ) )

188 zerorow <− matrix ( zeros , nrow=1)
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189
190 # Use the ‘ zeros ‘ vec to r to ensure c o r r e c t vec to r leng ths when c ons t r u c t i ng

191 # the Jacobian matr ices w i th zero and constant terms :

192 wi th ( as . l i s t ( params ) , {

193 Rpow <− 1 / (1+( Cf / Er ) ^ Hr )

194 dRpow .dC <− −Rpow*Rpow* ( Hr / Er ) * ( Cf / Er ) ^ ( Hr−1)

195 dSpow .dC <− k s o f f * ( Tf / Es )^Hs

196 dSpow . dT <− (Hs / Es ) * k s o f f * Cf * ( Tf / Es ) ^ ( Hs−1)

197 ddC <− matrix ( c(−Dc−dSpow . dC, # dCdt

198 Pt *dRpow .dC − 2 *dSpow . dC, # dTdt

199 dSpow . dC, # dSdt

200 Pz*dRpow .dC) , # dZdt

201 nrow=4 , byrow=TRUE)

202 ddT <− matrix ( c(−dSpow . dT , # dCdt

203 −Dt − 2 *dSpow . dT , # dTdt

204 dSpow . dT , # dSdt

205 zeros ) , # dZdt

206 nrow=4 , byrow=TRUE)

207 ddS <− matrix ( c ( k s o f f +Dt−D i l + zeros , # dCdt

208 2 * ( k s o f f +Dc−D i l ) + zeros , # dTdt

209 −( k s o f f +Ds+Dc+Dt−D i l ) + zeros , # dSdt

210 zeros ) , # dZdt

211 nrow=4 , byrow=TRUE)

212 ddZ <− matrix ( c ( zeros , # dCdt

213 zeros , # dTdt

214 zeros , # dSdt

215 −Dz + zeros ) , # dZdt

216 nrow=4 , byrow=TRUE)

217
218 i f ( ncol ( ymat )==1)

219 return ( cbind ( as . vector (ddC) , as . vector ( ddT ) , as . vector ( ddS ) , as . vector ( ddZ ) ) )

220
221 i f ( f u l l ) {

222 f u l l m a t <− cbind ( as . vector (ddC) , as . vector ( ddT ) , as . vector ( ddS ) , as . vector ( ddZ ) )

223 f u l l m a t <− cbind ( f u l l ma t , matrix (0 , nrow= length ( y ) , ncol= length ( y )−4))

224 f u l l m a t <− matrix ( t ( f u l l m a t ) , nrow=4 * length ( y ) , ncol=ncol ( ymat ) )

225 f u l l m a t <− rbind ( f u l l ma t , matrix (0 , nrow=4 , ncol=ncol ( ymat ) ) )

226 f u l l m a t <− matrix ( as . vector ( f u l l m a t ) [ 1 : ( length ( f u l l m a t )− length ( y ) ) ] ,

227 nrow= length ( y ) , ncol= length ( y ) , byrow=TRUE)

228 return ( f u l l m a t )

229 }

230 else {

231 bandmat <−
232 rbind ( zerorow , zerorow , zerorow , ddC ,
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233 zerorow , zerorow , ddT , zerorow ,

234 zerorow , ddS , zerorow , zerorow ,

235 ddZ , zerorow , zerorow , zerorow )

236 return ( matrix ( bandmat , nrow=7) )

237 }

238 } )

239 }

240 # } } }

241
242 ## detRepress ( Pc In i t , PcFinal , params , assaytimes ) ##

243 # Run a mul t i−Pc d e t e r m i n i s t i c Repressor s imu la t i on s t a r t i n g from a s i n g l e

244 # i n i t i a l c on d i t i o n ( P c I n i t ) . The s imu la t i on s t a r t s from the steady−s ta te a t

245 # P c I n i t ( t r i v i a l i n the case of the Repressor ODEs ) .

246 # { { {

247 detRepress <− function ( Pc In i t , PcFinal , params , assaytimes )

248 {

249 # The number o f i n d u c t i o n l e v e l s to so lve f o r :

250 N= length ( PcFinal )

251
252 l i s t p a r m s <− as . l i s t ( params )

253
254 # Ca lcu la te the steady−s ta te values o f i n i t i a l parameters

255 i n i t C f <− P c I n i t / l i s t p a r m s $Dc

256 i n i t Z <− wi th ( l i s tpa rms , Pz / Dz / (1+( i n i t C f / Er ) ^ Hr ) )

257 i n i t <− rep ( c ( i n i t C f , i n i t Z ) , N)

258 # Above i s exact , so no need to e q u i l i b r a t e

259
260 Ntimesteps <− 10

261
262 # Scale t imesteps to the equ iva len t step s ize f o r ‘ assaytimes ‘

263 i f ( length ( assaytimes ) >1) {

264 assaytimes <− assaytimes [ order ( assaytimes ) ]

265 assayt imeindex <− ( round ( assaytimes /max( assaytimes ) * Ntimesteps )

266 + 1 : ( length ( assaytimes ) ) )

267 Ntimesteps <− c ( assayt imeindex [1]−1 , d i f f ( assayt imeindex ) )

268 t imesteps <− mapply ( function ( x , y , z ) seq ( x , y , length . out=z ) ,

269 c (0 , assaytimes[− length ( assaytimes ) ] ) ,

270 assaytimes , Ntimesteps +1)

271 t imesteps <− Reduce ( function ( x , y ) c ( x , y [−1]) , t imesteps , i n i t =0)

272 } else {

273 t imesteps <−
274 seq (0 , assaytimes , length . out=Ntimesteps )

275 }

276
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277 a t o l <− 1e−6

278 r t o l <− 1e−6

279
280 # Simulate over the assay t ime s t a r t i n g from e q u i l i b r a t i o n cond i t i ons :

281 repeat {

282 sim <− lsoda ( i n i t , t imes=t imesteps , parms=params ,

283 func=RepressDerivs , a t o l =a to l , r t o l = r t o l ,

284 Pc=PcFinal , N=N)

285
286 # Stop loop ing i f a l l values are ok :

287 i f ( ! any ( is . na ( sim ) ) ) break

288
289 i f ( length ( assaytimes ) >1) {

290 assayt imeindex <− assayt imeindex *5

291 Ntimesteps <− c ( assayt imeindex [1]−1 , d i f f ( assayt imeindex ) )

292 t imesteps <− mapply ( function ( x , y , z ) seq ( x , y , length . out=z ) ,

293 c (0 , assaytimes[− length ( assaytimes ) ] ) ,

294 assaytimes , Ntimesteps +1)

295 t imesteps <− Reduce ( function ( x , y ) c ( x , y [−1]) , t imesteps , i n i t =0)

296 } else {

297 Ntimesteps <− 5 * Ntimesteps

298 t imesteps <−
299 seq (0 , assaytimes , length . out=Ntimesteps )

300 }

301
302 a t o l <− a t o l *1e−2

303 r t o l <− r t o l *1e−2

304 i f ( a to l <1e−10 | | r t o l <1e−10){

305 warning ( ’NA values i n repressor s imu la t i on w i th params : \ n ’ )

306 # p r i n t ( as . l i s t ( params ) )

307 browser ( )

308 # Simu la t ion f a i l e d , r e t u r n zero ins tead of NA:

309 sim <− matrix (0 ,nrow=1 , ncol=2 *N+1)

310 break

311 }

312 }

313
314 i f ( length ( assaytimes ) >1) {

315 f i n a l d a t a <− data . frame ( Pc=PcFinal )

316 for ( i i n 1 : length ( assayt imeindex ) ) {

317 imat <− matrix ( sim [ assayt imeindex [ i ] ,−1] , nrow=2)

318 i da ta <− data . frame ( Cf= imat [ 1 , ] , Z=imat [ 2 , ] )

319 colnames ( i da ta ) <− paste0 ( ’ t ’ , i , colnames ( i da ta ) )

320 f i n a l d a t a <− cbind ( f i n a l d a t a , i da ta )
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321 }

322 return ( f i n a l d a t a )

323 } else {

324 f i n a l m a t <− matrix ( sim [ nrow ( sim ) ,−1] , nrow=2)

325 return ( data . frame ( Pc=PcFinal , Cf= f i n a l m a t [ 1 , ] , Z= f i n a l m a t [ 2 , ] ) )

326 }

327 }

328 # } } }

329
330 ## detMFL ( Pc In i t , PcFinal , params , assaytimes , ontime =60) ##

331 # Run a mul t i−Pc d e t e r m i n i s t i c MFL s imu la t i on s t a r t i n g from a s i n g l e i n i t i a l

332 # c on d i t i o n ( P c I n i t ) . The s imu la t i on s t a r t s by approximat ing steady−s ta te

333 # values a t P c I n i t and then e q u i l i b r a t i n g a t the i n i t i a l c o n d i t i o n f o r

334 # ‘ ontime ‘ minutes . I t then solves the MFL ODEs f o r each ‘ PcFinal ‘ value to

335 # the maximum time i n ‘ assaytimes ‘ , saving the s ta te a t each t ime s p e c i f i e d i n

336 # ‘ assaytimes ‘

337 # { { {

338 detMFL <− function ( Pc In i t , PcFinal , params , assaytimes , ontime =60)

339 {

340 # The number o f i n d u c t i o n l e v e l s to so lve f o r :

341 N <− length ( PcFinal )

342
343 l i s t p a r m s <− as . l i s t ( params )

344
345 # Al low the use of an o p t i o n a l sca l i ng parameter f o r Tum produc t ion i n the

346 # O/N c u l t u r e s :

347 i f ( is . nul l ( l i s t p a r m s [ [ ’ P t I n i t S c a l e ’ ] ] ) )

348 l i s t p a r m s [ [ ’ P t I n i t S c a l e ’ ] ] <− 1

349
350 # Approximate the steady−s ta te values o f i n i t i a l parameters

351 i n i t C t <− P c I n i t / l i s t p a r m s $Dc

352 # Assume Tt = ’ p roduc t ion due to repress ion by Ct ’

353 steady <−
354 t u m c i E q u i l i b r a t e ( i n i t C t , w i th ( l i s tpa rms ,

355 P t I n i t S c a l e * Pt / Dt / (1+( i n i t C t / Er ) ^ Hr ) ) ,

356 params= l i s t p a r m s )

357 # Improve the guess on Tt by one i t e r a t i o n :

358 steady <−
359 t u m c i E q u i l i b r a t e ( i n i t C t , w i th ( c ( l i s tpa rms , steady ) ,

360 P t I n i t S c a l e * Pt / Dt / (1+( Cf / Er ) ^ Hr ) ) ,

361 params= l i s t p a r m s )

362 i n i t Z <− wi th ( c ( l i s tpa rms , steady ) , Pz / Dz / (1+( Cf / Er ) ^ Hr ) )

363
364 # E q u i l i b r a t e a t i n i t i a l c o nd i t i on :



288 Appendix C. Fitting deterministic time-course models to the Tum−CI MFL data

365 i n i t <− wi th ( steady , c ( Cf=Cf , Tf=Tf , S=S, Z= i n i t Z ) )

366
367 i f ( any ( is . na ( i n i t ) ) ) {

368 warning ( ’ Approximated i n i t i a l s teadys ta te values conta in NA ’ )

369 browser ( ) # I f the e q u i l i b r a t i o n f a i l e d swi tch to a l low user i np u t

370 }

371
372 i n i tpa rams <− params

373 i n i tpa rams [ [ ’ Pt ’ ] ] <− wi th ( l i s tpa rms , P t I n i t S c a l e * Pt )

374
375 Ntimesteps <− 10

376 maxatol <− 1e−6

377 maxr to l <− 1e−6

378 r t o l <− c ( rep ( maxrto l , 3 ) , 1e−6)

379 a t o l <− c ( rep ( maxatol , 3 ) , 1e−6)

380
381 repeat {

382 sim <− lsoda ( i n i t , t imes=seq (0 , ontime , length . out=Ntimesteps ) , parms= in i tparams ,

383 j ac func=MFLjacob , jac type= ’ f u l l u s r ’ ,

384 func=MFLderivs , a t o l =a to l , r t o l = r t o l ,

385 Pc= Pc In i t , N=1 , f u l l =TRUE)

386
387 # Stop loop ing i f a l l values are ok :

388 i f ( ! any ( is . na ( sim ) ) ) break

389
390 Ntimesteps <− Ntimesteps *5

391 maxatol <− maxatol *1e−2

392 maxr to l <− maxr to l *1e−2

393 i f ( maxatol <1e−10 | | maxrto l <1e−10){

394 warning ( ’NA values i n s imulated i n i t i a l cond i t i ons w i th params : \ n ’ )

395 # p r i n t ( as . l i s t ( params ) )

396 bes tco l <− 1

397 # browser ( ) # d isab le browser . . .

398 # Use the best guess we have :

399 sim <− t ( sim [ bestco l , ] ) # Defau l t s to i n i t i a l values

400 break

401 }

402 r t o l <− c ( rep ( maxrto l , 3 ) , 1e−6)

403 a t o l <− c ( rep ( maxatol , 3 ) , 1e−6)

404 }

405
406 ### NB: A banded Jacobian can only be s p e c i f i e d f o r N>1 ! ! ! ! ###

407 ### Otherwise a * f u l l * mat r i x must be used .

408
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409 # I n i t i a l i s e s t a r t values from e q u i l i b r a t e d values

410 i n i t <− wi th ( as . l i s t ( sim [ nrow ( sim ) , ] ) , rep ( c ( Cf , Tf , S , Z ) , N) )

411
412 # Scale t imesteps to the equ iva len t step s ize f o r ‘ assaytimes ‘

413 i f ( length ( assaytimes ) >1) {

414 assaytimes <− assaytimes [ order ( assaytimes ) ]

415 assayt imeindex <− ( round ( assaytimes /max( assaytimes ) * Ntimesteps )

416 + 1 : ( length ( assaytimes ) ) )

417 Ntimesteps <− c ( assayt imeindex [1]−1 , d i f f ( assayt imeindex ) )

418 t imesteps <− mapply ( function ( x , y , z ) seq ( x , y , length . out=z ) ,

419 c (0 , assaytimes[− length ( assaytimes ) ] ) ,

420 assaytimes , Ntimesteps +1)

421 t imesteps <− Reduce ( function ( x , y ) c ( x , y [−1]) , t imesteps , i n i t =0)

422 } else {

423 t imesteps <−
424 seq (0 , assaytimes , length . out=ce i l ing ( assaytimes / ontime * Ntimesteps ) )

425 }

426
427 r t o l <− rep ( c ( rep ( maxrto l , 3 ) , 1e−6) , N)

428 a t o l <− rep ( c ( rep ( maxatol , 3 ) , 1e−6) , N)

429
430 # Simulate over the assay t ime s t a r t i n g from e q u i l i b r a t i o n cond i t i ons :

431 ### NB: A banded Jacobian can only be s p e c i f i e d f o r N>1 ! ! ! ! ###

432 ### Otherwise a * f u l l * mat r i x must be used .

433 repeat {

434 i f (N>1)

435 sim <− lsoda ( i n i t , t imes=t imesteps , parms=params ,

436 j ac func=MFLjacob , jac type= ’ bandusr ’ , bandup=3 , banddown=3 ,

437 func=MFLderivs , a t o l =a to l , r t o l = r t o l ,

438 Pc=PcFinal , N=N, f u l l =FALSE)

439 else

440 sim <− lsoda ( i n i t , t imes=t imesteps , parms=params ,

441 j ac func=MFLjacob , jac type= ’ f u l l u s r ’ ,

442 func=MFLderivs , a t o l =a to l , r t o l = r t o l ,

443 Pc=PcFinal , N=N, f u l l =TRUE)

444
445 # Stop loop ing i f a l l values are ok :

446 i f ( ! any ( is . na ( sim ) ) ) break

447
448 i f ( length ( assaytimes ) >1) {

449 assayt imeindex <− assayt imeindex *5

450 Ntimesteps <− c ( assayt imeindex [1]−1 , d i f f ( assayt imeindex ) )

451 t imesteps <− mapply ( function ( x , y , z ) seq ( x , y , length . out=z ) ,

452 c (0 , assaytimes[− length ( assaytimes ) ] ) ,
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453 assaytimes , Ntimesteps +1)

454 t imesteps <− Reduce ( function ( x , y ) c ( x , y [−1]) , t imesteps , i n i t =0)

455 } else {

456 Ntimesteps <− 5 * Ntimesteps

457 t imesteps <−
458 seq (0 , assaytimes , length . out=ce i l ing ( assaytimes / ontime * Ntimesteps ) )

459 }

460
461 maxatol <− maxatol *1e−2

462 maxr to l <− maxr to l *1e−2

463 i f ( maxatol <1e−10 | | maxrto l <1e−10){

464 warning ( ’NA values i n s imu la t i on wi th params : \ n ’ )

465 # p r i n t ( as . l i s t ( params ) )

466 # Simu la t ion f a i l e d , r e t u r n zero ins tead of NA:

467 sim <− matrix (0 ,nrow=1 , ncol=4 *N+1)

468 break

469 }

470 r t o l <− rep ( c ( rep ( maxrto l , 3 ) , 1e−6) , N)

471 a t o l <− rep ( c ( rep ( maxatol , 3 ) , 1e−6) , N)

472 }

473
474 i f ( length ( assaytimes ) >1) {

475 f i n a l d a t a <− data . frame ( Pc=PcFinal )

476 # I f any rows conta in NA values , or the s imu la t i on was terminated ear ly ,

477 # then simply r e p o r t the l a s t a v a i l a b l e non−NA value :

478 f i r s t N A <− match (TRUE, apply ( sim , 1 , function ( x ) any ( is . na ( x ) ) ) ,

479 nomatch=nrow ( sim )+1)

480 assayt imeindex [ assayt imeindex >= f i r s t N A | assayt imeindex >nrow ( sim ) ] <− f i r s tNA−1

481 for ( i i n 1 : length ( assayt imeindex ) ) {

482 imat <− matrix ( sim [ assayt imeindex [ i ] ,−1] , nrow=4)

483 i da ta <− data . frame ( Cf= imat [ 1 , ] , Tf= imat [ 2 , ] , S=imat [ 3 , ] , Z=imat [ 4 , ] )

484 colnames ( i da ta ) <− paste0 ( ’ t ’ , i , colnames ( i da ta ) )

485 f i n a l d a t a <− cbind ( f i n a l d a t a , i da ta )

486 }

487 return ( f i n a l d a t a )

488 } else {

489 f i n a l m a t <− matrix ( sim [ nrow ( sim ) ,−1] , nrow=4)

490 return ( data . frame ( Pc=PcFinal , Cf= f i n a l m a t [ 1 , ] , Tf= f i n a l m a t [ 2 , ] ,

491 S= f i n a l m a t [ 3 , ] , Z= f i n a l m a t [ 4 , ] ) )

492 }

493 }

494 # } } }

495
496 # } } }
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C.2 Fitting the model to the LacZ assays

The LacZ assay data required a number of steps including curation of the data set (Ap-
pendix C.2.1), setting up the model output (Appendix C.2.2), and defining the cost func-
tion for the optimisation routines (Appendix C.2.3).

C.2.1 Loading and curating the data set

The first step in fitting the LacZ assay data was to load and curate the data into a form
that could be used with the FME package. The following code excerpt shows how this was
done.

499 ### Load and process the data sets f o r f i t t i n g ###

500 # { { {

501 load ( ’~ / Documents / Biochemis t ry / Assays /pZCMFL / DRassays / CombinedAnalysis / MFLdata . Rdata ’ )

502
503 sum( is . na ( MFLdata$values ) ) # 19 NA values

504 sum( na . omit ( MFLdata$values +1) <0) # 23 negat ive values

505
506 # AddValueMeans adds i n the respec t i ve means and SDs to the data ar ray a f t e r

507 # t rans fo rma t i on by the ‘ t ransform ‘ f u n c t i o n

508 AddValueMeans <− function ( df , name= ’ i d ’ , transform= i d e n t i t y , . . . ) {

509 va l t rans fo rm <− transform ( as . numeric ( df$values ) , . . . )

510 means <− wi th ( df , tapply ( va l t rans fo rm , e q u i l . s t r a i n . assay . on . i p tg ,

511 mean , na . rm=TRUE) )

512 sds <− wi th ( df , tapply ( va l t rans fo rm , e q u i l . s t r a i n . assay . on . i p tg ,

513 sd , na . rm=TRUE) )

514 Ns <− wi th ( df , tapply ( va l t rans fo rm , e q u i l . s t r a i n . assay . on . i p tg ,

515 function ( x ) sum( ! is . na ( x ) ) ) )

516 newcols <− paste0 (name, c ( ’ . mean ’ , ’ . sd ’ , ’ . n ’ , ’ . r es i d ’ , ’ . sc res id ’ ,

517 ’ . sqscres id ’ , ’ . se res id ’ ) )

518 df [ [ newcols [ 1 ] ] ] <− as . numeric ( df$values )

519 df [ [ newcols [ 2 ] ] ] <− as . numeric ( df$values )

520 for ( i i n names (means ) )

521 df [ i ==df$ e q u i l . s t r a i n . assay . on . i p tg , newcols [ 1 ] ] <− means [ [ i ] ]

522 for ( i i n names ( sds ) )

523 df [ i ==df$ e q u i l . s t r a i n . assay . on . i p tg , newcols [ 2 ] ] <− sds [ [ i ] ]

524 for ( i i n names (Ns ) )

525 df [ i ==df$ e q u i l . s t r a i n . assay . on . i p tg , newcols [ 3 ] ] <− Ns [ [ i ] ]

526 # t rans form . re s i d ( r e s i du a l s ) :

527 df [ , newcols [ 4 ] ] <− va l t rans fo rm − df [ , newcols [ 1 ] ]

528 # t rans form . sc res id ( r e s i d ua l s d i v ided by standard d e v i a t i on ) :

529 df [ , newcols [ 5 ] ] <− df [ , newcols [ 4 ] ] / df [ , newcols [ 2 ] ]

530 # t rans form . sqscres id ( r e s i d ua l s d i v ided by s q r t o f standard d e v ia t i o n ) :

531 df [ , newcols [ 6 ] ] <− df [ , newcols [ 4 ] ] / sqrt ( df [ , newcols [ 2 ] ] )
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532 # t ransform . seres id ( r e s i d ua l s d i v ided by standard e r r o r ) :

533 df [ , newcols [ 7 ] ] <− df [ , newcols [ 4 ] ] * sqrt ( df [ , newcols [ 3 ] ] ) / df [ , newcols [ 2 ] ]

534 df

535 }

536
537 # L i m i t the ana lys i s j u s t to the ermc and wrmc s t r a i n s

538 MFLdata .mc <− wi th ( MFLdata , MFLdata [ s t r a i n%i n%c ( ’ ermc ’ , ’wrmc ’ ) , ] )

539 # Reset the columns :

540 MFLdata .mc <− MFLdata .mc[ , c ( " values " , " assay " , " on " , " i p t g " , " s t r a i n " , " day " ,

541 " assay . on . i p t g . s t r a i n " , " e q u i l " , " e q u i l . s t r a i n . on " ,

542 " assay . on " , " s t r a i n . assay . on " ,

543 " e q u i l . s t r a i n . assay . on . i p t g " , " normiptg " ) ]

544 defaul t ( MFLdata .mc$values ) <− ’ e q u i l . s t r a i n . assay . on . i p t g ’

545
546 # S p l i t the data i n t o assay type :

547 MFLdata . summaries <−
548 s p l i t ( MFLdata .mc$values , factor ( getmask ( MFLdata$values , ’ #assay+on ’ ) ) )

549 MFLdata . summaries <− lapply ( MFLdata . summaries , summary )

550
551 # There don ’ t seem to be any p a r t i c u l a r t rends wi th assay type :

552 wi th ( MFLdata . summaries ,

553 matplot ( log ( matrix ( c (TM.LO$mean ,TM.HO$mean , TP .LO$mean , TP .HO$mean ) , ncol =4) ) ,

554 log ( matrix ( c (TM.LO$sd ,TM.HO$sd , TP .LO$sd , TP .HO$sd ) , ncol =4) ) ,

555 type= ’ p ’ , pch=19 , cex =0.5 , col=c ( ’ b lack ’ , ’ grey ’ , ’ b lue ’ , ’ red ’ ) ,

556 x lab= ’Mean values ’ , y lab= ’ Standard d ev i a t i o n ’ ) )

557
558 ## Ca lcu la te data set s t a t i s t i c s ##

559 MFLdata .mc <− AddValueMeans ( MFLdata .mc)

560
561 MFLdata .mc <−
562 w i t h i n ( MFLdata .mc , {

563 slope <− coef ( MFLdata .mc. s d f i t ) [ [ 2 ] ]

564 i n t e r c e p t <− coef ( MFLdata .mc. s d f i t ) [ [ 1 ] ]

565 sd . es t <− ( ( i d .mean+1)^ slope ) *exp ( i n t e r c e p t )

566 sdtrend . sc <− i d . resid / sd . es t

567 } )

568
569 #########################################################################

570 ## Normal isa t ion Transformat ion Summary ##

571 # No a d d i t i o n a l t r ans fo rma t i on o f the data i s necessary , but sample means

572 # should be weighted by the f i t t e d standard d e v i a t i on and not i n d i v i d u a l

573 # sample SDs .

574 #########################################################################

575
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576 ## Bu i ld the set o f Pc values used i n the experiments ##

577 # { { {

578 # To use the same s imu la t i on data f o r assays from both e q u i l i b r a t i o n times ,

579 # a few c l a s s i f i c a t i o n a ids need to be used . F i r s t l y , s ince

580 # the normal and long e q u i l i b r a t i o n t ime assays used s l i g h t l y d i f f e r e n t sets

581 # of f i n a l IPTG concent ra t ions , to avoid repeat ing the same s imu la t i ons f o r

582 # the same IPTG concent ra t ions , we i d e n t i f y Pc values by a unique ID

583 I v a l <− wi th ( MFLdata , s p l i t ( as . numeric ( as . character ( i p t g ) ) , e q u i l ) )

584 I v a l <− lapply ( I v a l , unique )

585 I v a l <− lapply ( I v a l , function ( x ) x [ order ( x ) ] )

586 wi th ( I v a l , in tersect ( normal , long ) ) # 0 20 40 80 120 300

587 wi th ( I v a l , s e t d i f f ( normal , long ) ) # 160 220

588 I v a l S e t <− wi th ( I v a l , union ( normal , long ) )

589 I v a l S e t <− I v a l S e t [ order ( I v a l S e t ) ]

590 wi th ( I v a l , which ( I v a l S e t %i n% in tersect ( normal , long ) ) ) # 1 2 3 5 6 10

591 which ( I v a l S e t %i n% I v a l $normal ) # 1 2 3 5 6 7 9 10

592 which ( I v a l S e t %i n% I v a l $ long ) # 1 2 3 4 5 6 8 10

593
594 # Use the f o l l o w i n g masks on ordered ’ I va lSe ts ’ to index Pc values f o r

595 # normal or long e q u i l i b r a t i o n experiments :

596 normalPcMask <− c ( 1 : 3 , 5 : 7 , 9 : 1 0 ) # Copied from set ana lys i s above

597 longPcMask <− c (1 :6 ,8 ,10 ) # Copied from set ana lys i s above

598
599 # Const ruct l i s t s o f a l l the d i f f e r e n t poss ib le Pc values depending on

600 # s t r a i n ( ermc , . . . ) , assay (Tum+ /−) and overn igh t ( high / low ) :

601 ExptPcValues <− wi th ( MFLdata , s p l i t ( normiptg , paste0 ( s t r a i n , assay , on ) ) )

602 ExptPcValues <− lapply ( ExptPcValues , unique )

603 ExptPcValues <− lapply ( ExptPcValues , function ( x ) x [ order ( x ) ] )

604
605 # Each i tem i n ExptPcValues can be indexed by normal or long PcMask v a r i a n t s

606 # to ob ta in the values f o r e i t h e r o f those experiments .

607 # } } }

608
609 # Obtain the i n i t i a l cond i t i ons f o r each assay v a r i a n t :

610 i n i t P c <− wi th ( MFLdata ,

611 l i s t ( Pc .WPL=min ( normiptg [ assay . on== ’TP .LO ’&s t r a i n == ’wrmc ’ ] ) ,

612 Pc .WPH=max( normiptg [ assay . on== ’TP .HO ’&s t r a i n == ’wrmc ’ ] ) ,

613 Pc .WML=min ( normiptg [ assay . on== ’TM.LO ’&s t r a i n == ’wrmc ’ ] ) ,

614 Pc .WMH=max( normiptg [ assay . on== ’TM.HO ’&s t r a i n == ’wrmc ’ ] ) ,

615 Pc .EPL=min ( normiptg [ assay . on== ’TP .LO ’&s t r a i n == ’ ermc ’ ] ) ,

616 Pc .EPH=max( normiptg [ assay . on== ’TP .HO ’&s t r a i n == ’ ermc ’ ] ) ,

617 Pc .EML=min ( normiptg [ assay . on== ’TM.LO ’&s t r a i n == ’ ermc ’ ] ) ,

618 Pc .EMH=max( normiptg [ assay . on== ’TM.HO ’&s t r a i n == ’ ermc ’ ] ) ) )

619
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620 # Create a summary data ar ray f o r f i t t i n g { { {

621 MFLsummary <−
622 wi th ( w i t h i n ( MFLdata , {

623 values <− as . numeric ( values )

624 grouping <− e q u i l . s t r a i n . assay . on . i p t g

625 i p t g <− as . numeric ( as . character ( i p t g ) ) } ) ,

626 data . frame (name= ’name ’ , # Temporary p laceho lder to be f i l l e d l a t e r

627 PcID=1 , # Temporary p laceho lder to be f i l l e d l a t e r

628 Zmean= tapply ( values , grouping , mean , na . rm=TRUE) ,

629 Zsd= tapply ( values , grouping , sd , na . rm=TRUE) ,

630 i p t g = tapply ( i p tg , grouping , head , n=1) ,

631 Pc= tapply ( normiptg , grouping , head , n=1) ,

632 e q u i l = tapply ( as . character ( e q u i l ) , grouping , head , n=1) ,

633 s t r a i n = tapply ( as . character ( s t r a i n ) , grouping , head , n=1) ,

634 assay= tapply ( as . character ( assay ) , grouping , head , n=1) ,

635 on= tapply ( as . character (on ) , grouping , head , n=1)

636 ) )

637
638 # Replace sample SDs wi th f i t t e d SDs :

639 MFLsummary$Zsd <−
640 wi th ( l i s t ( sd . s lope=coef ( MFLdata .mc. s d f i t ) [ [ 2 ] ] ,

641 sd . i n t e r c e p t =coef ( MFLdata .mc. s d f i t ) [ [ 1 ] ] ) ,

642 ( ( MFLsummary$Zmean+1)^sd . s lope ) *exp ( sd . i n t e r c e p t ) )

643
644 # Def ine a name i d e n t i f i e r to be used when comparing wi th model l ing output

645 MFLsummary <−
646 w i t h i n (MFLsummary , {

647 name <− paste ( s t r a i n , assay , on , sep= ’ . ’ )

648 # Name as t1Z f o r normal or t2Z f o r long e q u i l i b r a t i o n t imes . The

649 # ’Z ’ se lec t s t h a t s imu la t i on v a r i a b l e i n p a r t i c u l a r .

650 name [ e q u i l == ’ normal ’ ] <− paste0 (name [ e q u i l == ’ normal ’ ] , ’ . t1Z ’ )

651 name [ e q u i l == ’ long ’ ] <− paste0 (name [ e q u i l == ’ long ’ ] , ’ . t2Z ’ )

652 } )

653
654 # Order elements f i r s t by group name, then by IPTG . This needs to be done

655 # before a l l o c a t i n g a PcID so t h a t the order ing i s c o r r e c t .

656 MFLsummary <− MFLsummary [ w i th (MFLsummary , order ( as . character (name) , i p t g ) ) , ]

657 # Use PcIDs to i d e n t i f y each IPTG f a c t o r based on the Pc value set i d e n t i t y

658 # a l l o c a te d above :

659 MFLsummary <−
660 w i t h i n (MFLsummary , {

661 PcID [ e q u i l == ’ normal ’ ] <−
662 rep ( normalPcMask , length . out= length ( PcID [ e q u i l == ’ normal ’ ] ) )

663 PcID [ e q u i l == ’ long ’ ] <−
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664 rep ( longPcMask , length . out= length ( PcID [ e q u i l == ’ long ’ ] ) )

665 } )

666 # } } }

667
668 # } } }

C.2.2 Setting up the model output

Once the data was loaded, simulations of the deterministic model needed to be configured
to output simulations only for the experimental induction levels. The output of these
simulations also needed to be in a form that would be recognised by the FME package.

670 ### Set up the model l ing environment ###

671 # { { {

672 ## Create a new parameter set f o r MFL f i t t i n g ##

673 # S t a r t w i th :

674 # − rbsScale=1 ( i . e . , assuming c o r r e c t exper imenta l parameters )

675 # − LOscale=HOscale=1 ( assuming c o r r e c t i n i t i a l Pc values )

676 # − Take a l l o ther requ i red parameters from the exper imen ta l l y der ived set

677 assaytimes . expt <− c ( 5 . 9 , 7 . 5 ) *60 # not s p e c i f i e d i n paramsExpt

678 F i tPa rs . i n i t <− c ( un l is t ( paramsExpt [ c ( ’Es ’ , ’Hs ’ , ’ Pt ’ , ’ Dt ’ , ’Ds ’ , ’ D i l ’ , ’ k s o f f ’ ,

679 ’ Er ’ , ’ Hr ’ , ’Pz ’ , ’Dz ’ , ’Dc ’ ) ] ) ,

680 rbsScale =1 , LOscale =1 , HOscale=1 , t o f f =assaytimes . expt [ [ 1 ] ] )

681
682 ### Def ine models as f u n c t i o ns o f Ct ###

683 # { { {

684
685 # Def ine i n i t i a l and exper imenta l Pc values as Ct values :

686 ExptCtValues . ermc <− lapply ( ExptPcValues [ grep ( ’ ^ermc ’ ,names ( ExptPcValues ) ) ] ,

687 function ( x ) x / paramsExpt$Dc)

688 ExptCtValues . wrmc <− lapply ( ExptPcValues [ grep ( ’ ^wrmc ’ ,names ( ExptPcValues ) ) ] ,

689 function ( x ) x / paramsExpt$Dc)

690 E x p t C t I n i t . ermc <− lapply ( i n i t P c [ grep ( ’ ^Pc \ \ . E ’ ,names ( i n i t P c ) ) ] ,

691 function ( x ) x / paramsExpt$Dc)

692 E x p t C t I n i t . wrmc <− lapply ( i n i t P c [ grep ( ’ ^Pc \ \ .W’ ,names ( i n i t P c ) ) ] ,

693 function ( x ) x / paramsExpt$Dc)

694 LOermc . mask <− grep l ( ’ L$ ’ , names ( E x p t C t I n i t . ermc ) )

695 HOermc . mask <− grep l ( ’H$ ’ , names ( E x p t C t I n i t . ermc ) )

696 LOwrmc . mask <− grep l ( ’ L$ ’ , names ( E x p t C t I n i t . wrmc ) )

697 HOwrmc. mask <− grep l ( ’H$ ’ , names ( E x p t C t I n i t . wrmc ) )

698
699 ## Separate model f un c t i o ns ##

700 MFLmodel . Ct . wrmc <− function ( params , assaytimes=c ( 5 .9 * 60 , 7.5 * 6 0 ) ) {

701 i n i t P c . wrmc <− wi th ( as . l i s t ( params ) , un l is t ( E x p t C t I n i t . wrmc ) *Dc)

702 i n i t P c . wrmc [ LOwrmc . mask ] <− i n i t P c . wrmc [ LOwrmc . mask ] * params [ [ ’ LOscale ’ ] ]
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703 i n i t P c . wrmc [HOwrmc. mask ] <− i n i t P c . wrmc [HOwrmc. mask ] * params [ [ ’ HOscale ’ ] ]

704 PcValues . wrmc <−
705 wi th ( as . l i s t ( params ) , lapply ( ExptCtValues . wrmc , function ( x ) x *Dc ) )

706 wi th ( c ( as . l i s t ( i n i t P c . wrmc ) , PcValues . wrmc ) ,

707 data . frame ( PcID =1:10 ,

708 wrmc .TP .LO=detMFL ( Pc .WPL, wrmcTPLO, params , assaytimes ) ,

709 wrmc .TP .HO=detMFL ( Pc .WPH,wrmcTPHO, params , assaytimes ) ,

710 wrmc .TM.LO=detRepress ( Pc .WML,wrmcTMLO, params , assaytimes ) ,

711 wrmc .TM.HO=detRepress ( Pc .WMH,wrmcTMHO, params , assaytimes ) ) )

712 }

713
714 MFLmodel . Ct . ermc <− function ( params , assaytimes=c ( 5 .9 * 60 , 7.5 * 6 0 ) ) {

715 i n i t P c . ermc <− wi th ( as . l i s t ( params ) , un l is t ( E x p t C t I n i t . ermc ) * rbsScale *Dc)

716 i n i t P c . ermc [ LOermc . mask ] <− i n i t P c . ermc [ LOermc . mask ] * params [ [ ’ LOscale ’ ] ]

717 i n i t P c . ermc [ HOermc . mask ] <− i n i t P c . ermc [ HOermc . mask ] * params [ [ ’ HOscale ’ ] ]

718 PcValues . ermc <−
719 wi th ( as . l i s t ( params ) , lapply ( ExptCtValues . ermc , function ( x ) x * rbsScale *Dc ) )

720 wi th ( c ( as . l i s t ( i n i t P c . ermc ) , PcValues . ermc ) ,

721 data . frame ( PcID =1:10 ,

722 ermc .TP .LO=detMFL ( Pc . EPL, ermcTPLO , params , assaytimes ) ,

723 ermc .TP .HO=detMFL ( Pc .EPH, ermcTPHO, params , assaytimes ) ,

724 ermc .TM.LO=detRepress ( Pc .EML, ermcTMLO, params , assaytimes ) ,

725 ermc .TM.HO=detRepress ( Pc .EMH,ermcTMHO, params , assaytimes ) ) )

726 }

727
728 ## Combined model f u n c t i o n ##

729 MFLmodel . Ct <− function ( params , assaytimes=c ( 5 .9 * 60 , 7.5 * 6 0 ) ) {

730 i n i t P c . wrmc <− wi th ( as . l i s t ( params ) , un l is t ( E x p t C t I n i t . wrmc ) *Dc)

731 i n i t P c . wrmc [ LOwrmc . mask ] <− i n i t P c . wrmc [ LOwrmc . mask ] * params [ [ ’ LOscale ’ ] ]

732 i n i t P c . wrmc [HOwrmc. mask ] <− i n i t P c . wrmc [HOwrmc. mask ] * params [ [ ’ HOscale ’ ] ]

733 PcValues . wrmc <−
734 wi th ( as . l i s t ( params ) , lapply ( ExptCtValues . wrmc , function ( x ) x *Dc ) )

735
736 i n i t P c . ermc <− wi th ( as . l i s t ( params ) , un l is t ( E x p t C t I n i t . ermc ) * rbsScale *Dc)

737 i n i t P c . ermc [ LOermc . mask ] <− i n i t P c . ermc [ LOermc . mask ] * params [ [ ’ LOscale ’ ] ]

738 i n i t P c . ermc [ HOermc . mask ] <− i n i t P c . ermc [ HOermc . mask ] * params [ [ ’ HOscale ’ ] ]

739 PcValues . ermc <−
740 wi th ( as . l i s t ( params ) , lapply ( ExptCtValues . ermc , function ( x ) x * rbsScale *Dc ) )

741
742 wi th ( c ( as . l i s t ( i n i t P c . wrmc ) , as . l i s t ( i n i t P c . ermc ) , PcValues . wrmc , PcValues . ermc ) ,

743 data . frame ( PcID =1:10 ,

744 wrmc .TP .LO=detMFL ( Pc .WPL, wrmcTPLO, params , assaytimes ) ,

745 wrmc .TP .HO=detMFL ( Pc .WPH,wrmcTPHO, params , assaytimes ) ,

746 wrmc .TM.LO=detRepress ( Pc .WML,wrmcTMLO, params , assaytimes ) ,
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747 wrmc .TM.HO=detRepress ( Pc .WMH,wrmcTMHO, params , assaytimes ) ,

748 ermc .TP .LO=detMFL ( Pc . EPL, ermcTPLO , params , assaytimes ) ,

749 ermc .TP .HO=detMFL ( Pc .EPH, ermcTPHO, params , assaytimes ) ,

750 ermc .TM.LO=detRepress ( Pc .EML, ermcTMLO, params , assaytimes ) ,

751 ermc .TM.HO=detRepress ( Pc .EMH,ermcTMHO, params , assaytimes ) ) )

752 }

753
754 ## Test the new f un c t i on s ##

755 MFLmodel . Ct ( F i tPa rs . i n i t )

756 MFLmodel . Ct . wrmc ( F i tPa rs . i n i t )

757 MFLmodel . Ct . ermc ( F i tPa rs . i n i t )

758
759 ## Funct ion f o r p l o t t i n g curve d e t a i l s r a t h e r than j u s t data po in t s ##

760 MFLmodel . Ct . curves <− function ( params , assaytime =7.5 * 60 , n=200){

761 # Obtain the assay l i m i t s f o r determin ing curve po in t s :

762 i n i t P c . wrmc <− wi th ( as . l i s t ( params ) , un l is t ( E x p t C t I n i t . wrmc ) *Dc)

763 i n i t P c . ermc <− wi th ( as . l i s t ( params ) , un l is t ( E x p t C t I n i t . ermc ) * rbsScale *Dc)

764
765 # Ca lcu la te the s imu la t i on Pc ’ s :

766 simPc <− wi th ( as . l i s t ( c ( i n i t P c . wrmc , i n i t P c . ermc ) ) ,

767 l i s t ( ermcTP=seq ( Pc . EPL, Pc .EPH, length . out=n ) ,

768 ermcTM=seq ( Pc .EML, Pc .EMH, length . out=n ) ,

769 wrmcTP=seq ( Pc .WPL, Pc .WPH, length . out=n ) ,

770 wrmcTM=seq ( Pc .WML, Pc .WMH, length . out=n ) ) )

771
772 # Now scale the i n i t i a l Pc s ta tes :

773 i n i t P c . wrmc [ LOwrmc . mask ] <− i n i t P c . wrmc [ LOwrmc . mask ] * params [ [ ’ LOscale ’ ] ]

774 i n i t P c . wrmc [HOwrmc. mask ] <− i n i t P c . wrmc [HOwrmc. mask ] * params [ [ ’ HOscale ’ ] ]

775 i n i t P c . ermc [ LOermc . mask ] <− i n i t P c . ermc [ LOermc . mask ] * params [ [ ’ LOscale ’ ] ]

776 i n i t P c . ermc [ HOermc . mask ] <− i n i t P c . ermc [ HOermc . mask ] * params [ [ ’ HOscale ’ ] ]

777
778 # F i n a l l y s imu la te :

779 wi th ( c ( as . l i s t ( i n i t P c . wrmc ) , as . l i s t ( i n i t P c . ermc ) , simPc ) ,

780 data . frame ( ermc .TP .LO=detMFL ( Pc . EPL, ermcTP , params , assaytime ) ,

781 ermc .TP .HO=detMFL ( Pc .EPH, ermcTP , params , assaytime ) ,

782 ermc .TM.LO=detRepress ( Pc .EML, ermcTM , params , assaytime ) ,

783 ermc .TM.HO=detRepress ( Pc .EMH, ermcTM , params , assaytime ) ,

784 wrmc .TP .LO=detMFL ( Pc .WPL, wrmcTP , params , assaytime ) ,

785 wrmc .TP .HO=detMFL ( Pc .WPH, wrmcTP , params , assaytime ) ,

786 wrmc .TM.LO=detRepress ( Pc .WML,wrmcTM, params , assaytime ) ,

787 wrmc .TM.HO=detRepress ( Pc .WMH,wrmcTM, params , assaytime ) ) )

788 }

789 # } } }

790
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791 # } } }

C.2.3 Defining the cost function and optimising parameters

Finally, a cost function is defined by making use of the modCost function of the FME pack-
age. A selection of parameters are chosen to be free to vary, whilst others are set fixed. The
model can then be fit to the data using the ‘Pseudo’ algorithm of the modFit function.

1560 ### F i t normal and long WR−MC and ER−MC data together , a d j us t i n g i n i t i a l values ###

1561 # Vary a l l parameters i n c l u d i n g the ra te o f d i l u t i o n ’ D i l ’ ( hence also ’Dc ’

1562 # and ’Dz ’ ) and the sca l i ng on i n i t i a l low & high O/N values , but exc lud ing

1563 # the t ime o f f s e t ’ t o f f ’ , ’ kso f f ’ , ’Ds ’ , and ’ rbsScale ’ . The pseudo−random

1564 # o p t i m i s a t i o n i s s t a r t e d from the best f i t o f the normal and long WR−MC

1565 # data .

1566 # { { {

1567 # Ca lcu la te i n i t i a l parameters :

1568 erwr I . i n i t p a r s <− wrmcI . optpars

1569 # Add i n opt imised ’ rbsScale ’ value :

1570 erwr I . i n i t p a r s [ [ ’ rbsScale ’ ] ] <− rbsScale . opt

1571
1572 erwr I . vary <−
1573 c ( ’ Er ’ , ’ Hr ’ , ’Es ’ , ’Hs ’ , ’ Mt ’ , ’Mz ’ , ’ D i l ’ , ’ DtScale ’ , ’ LOscale ’ , ’ HOscale ’ )

1574 erwr I . der ived <− c ( ’Dc ’ , ’ Pt ’ , ’ Dt ’ , ’Pz ’ , ’Dz ’ )

1575 erwr I . f i x e d <−
1576 names ( e rwr I . i n i t p a r s ) [ !names ( e rwr I . i n i t p a r s )% i n%c ( e rwr I . vary , e rwr I . der ived ) ]

1577 erwr I . varpars <− erwr I . i n i t p a r s [ e rwr I . vary ]

1578 erwr I . f i x p a r s <− erwr I . i n i t p a r s [ e rwr I . f i x e d ]

1579 erwr I . l pa r s <− log ( e rwr I . varpars )

1580
1581 erwr I . cos t l og <− function ( lparams ) {

1582 # Update the parameters

1583 params <− c ( exp ( lparams ) , e rwr I . f i x p a r s )

1584 assaytimes <− params [ [ ’ t o f f ’ ] ] + c (0 ,96) # Fixed t ime i n t e r v a l

1585 params [ c ( ’Dc ’ , ’Dz ’ ) ] <− params [ [ ’ D i l ’ ] ]

1586 params [ [ ’ Dt ’ ] ] <− wi th ( as . l i s t ( params ) , D i l * DtScale )

1587 params [ [ ’ Pt ’ ] ] <− wi th ( as . l i s t ( params ) , Mt * Dt )

1588 params [ [ ’Pz ’ ] ] <− wi th ( as . l i s t ( params ) , Mz*Dz)

1589
1590 # Progress r e p o r t :

1591 counter <− get ( ’ F i tCounter ’ , env i r = . GlobalEnv )

1592 i f ( counter%%10 == 0 ) { cat ( ’ \ n ’ ) ; pr in t ( params ) ; cat ( ’ \ n ’ ) }

1593 assign ( ’ F i tCounter ’ , counter +1 , env i r = . GlobalEnv )

1594 cat ( paste0 ( counter +1 , ’ / 10000 , ’ ) )

1595
1596 modCost ( model=MFLmodel . Ct ( params , assaytimes=assaytimes ) ,
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1597 obs=MFLsummary [ MFLsummary$ s t r a i n%i n%c ( ’wrmc ’ , ’ ermc ’ ) , ] ,

1598 x= ’ PcID ’ , y= ’Zmean ’ , e r r = ’ Zsd ’ )

1599 }

1600
1601 Fi tCounter <− 0

1602 erwr I . cos t l og ( e rwr I . l pa r s )

1603
1604 ## Def ine some l i m i t s on the v a r i a b l e parameters ##

1605 erwr I . lower <−
1606 c ( Er= 100 , Hr=1 , Es= 500 , Hs=1 , Mt=6000 , Mz=500 , D i l =log ( 2 ) / 40 ,

1607 DtScale =1 , LOscale =0.1 , HOscale =0.1)

1608 erwr I . upper <−
1609 c ( Er=2400 , Hr=3 , Es=10000, Hs=5 , Mt=32000, Mz=1300 , D i l =log ( 2 ) / 27 ,

1610 DtScale =20 , LOscale =5 , HOscale=5)

1611
1612 # Take logs o f l i m i t s ( and reorder the l i m i t s to match the parameters ) :

1613 erwr I . lower <− log ( e rwr I . lower [ e rwr I . vary ] )

1614 erwr I . upper <− log ( e rwr I . upper [ e rwr I . vary ] )

1615
1616 ### F i t the model using a Monte−Carlo approach ###

1617 Fi tCounter <− 0

1618 erwr I . f i t <−
1619 modFit ( f =e rwr I . cost log , p=erwr I . lpars , method= ’ Pseudo ’ ,

1620 lower=erwr I . lower , upper=erwr I . upper ,

1621 control= l i s t ( verbose=TRUE) )

1622
1623 ### Er ro rs on the parameter est imates ###

1624 erwr I . f i t . s t d e r r <−
1625 data . frame ( es t imate=coef ( e rwr I . f i t ) ,

1626 lower=coef ( e rwr I . f i t )−summary ( e rwr I . f i t ) $par [ , ’ Std . E r ro r ’ ] ,

1627 upper=coef ( e rwr I . f i t )+summary ( e rwr I . f i t ) $par [ , ’ Std . E r ro r ’ ] ,

1628 conf low= c o n f i n t ( e rwr I . f i t ) [ , 1 ] , confup= c o n f i n t ( e rwr I . f i t ) [ , 2 ] )

1629 erwr I . f i t . s t d e r r <− exp ( e rwr I . f i t . s t d e r r )

1630 erwr I . f i t . s t d e r r <− w i t h i n ( e rwr I . f i t . s tde r r , lowerdev <− conflow−est imate )

1631 erwr I . f i t . s t d e r r <− w i t h i n ( e rwr I . f i t . s tde r r , upperdev <− confup−est imate )

1632 erwr I . f i t . s t d e r r <− w i t h i n ( e rwr I . f i t . s tde r r , meandev <− ( abs ( lowerdev )+abs ( upperdev ) ) / 2)

1633
1634 # } } }

C.3 Fitting the model to the flow cytometry assays

Fits of the flow cytometry data set were performed in a simlar way to that described in
the previous section for the LacZ assay data. However, the idiosyncracies of the flow
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cytometry data set necessitated a number of amendments. These included (1) choosing
appropriate ‘deterministic’ data points, (2) setting fluorescence intensity scaling and offset
factors, (3) introducing additional model parameters, and (4) using an alternative optimi-
sation algorithm. These amendments will be explained in the coming paragraphs.

The idiosyncracies of this new data necessitated a few modifications to the protocol,
which are described in detail in Appendix C.3, but summarised in the following three
points. (1) Unlike the activities obtained by LacZ assay, the fluorescence intensities mea-
sured by flow cytometry were not calibrated to an absolute reference. To relate fluores-
cence intensity to reporter gene activity, fluorescence scaling and offset parameters were
chosen for each assay using preliminary alignments of the model and data. These per-as-
say parameters allow for systematic day-to-day variation in fluorescence measurements,
essentially acting to calibrate each assay to a nominal reference value for the MZ param-
eter (here, standing for the fluorescence produced from an unrepressed pR promoter).
(2) There was insufficient flexibility in the initial model to simultaneously match the data
at all equilibration time points, so three new parameters were introduced. An ‘initial Tum
scaling’ parameter complemented the low and high O/N scaling parameters by effectively
dissociating initial CI and Tum concentrations. A pair of ‘time-offset’ parameters, one for
the low cell count assays and one for the high cell count assays, were used to permit a lag
time before cells start log phase growth. (3) The greater apparent correspondence between
the initial model predictions and the deterministic projection of the flow cytometry data
motivated a directed approach to fitting the data instead of the pseudo-random search
used to fit the LacZ assay data. It was more informative and efficient to incrementally
optimise parameters, fitting related parameters and data sets together (e.g., those pertain-
ing to the Tum− control strains), whilst keeping other parameters constrained except for a
final step of numerical optimisation with all parameters left unconstrained.

Without knowing a priori the likelihood of a sub-population belonging to the presump-
tive deterministic trajectory, it was assumed that the ‘stochastic’ sub-populations were
those with intensities furthest from their initial states. This was a naïve choice of ‘deter-
ministic’ data, but stood as a basic first guess to determine preliminary parameters. Since
the deterministic model predicts a single macroscopic state, only one sub-population of
each sample can be attributed to the deterministic trajectory. The choice of data to include
was based on a heuristic assessment of sub-populations consistent with a deterministic in-
terpretation. The assumption was that any sub-population centred in the ‘alternative’ zone
of fluorescence (i.e., with intensities furthest from the initial state) arose stochastically by,
for example, some low probability stochastic switching event shifting the state of the cir-
cuit into the basin of attraction of the alternative stable state. That is, the data was filtered
to exclude low fluorescence points in low O/N samples and to exclude high fluorescence
points in high O/N samples. So for bimodal low or high O/N samples, the expected
sub-populations (i.e., those populations with fluorescence intensity closest to their initial
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states) were kept and the alternative populations excluded. Unimodal low O/N samples
with low fluorescence were also excluded to avoid the potential inclusion of dominant
‘stochastic’ populations that might mask smaller ‘deterministic’ populations. Similarly,
unimodal samples with high fluorescence were discarded for the high O/N samples. An
additional three points in the high O/N samples were also excluded since they diverged
significantly from expected behaviour: these were small sub-populations in the normal
equilibration time and high cell count long equilibration time assays whose locations fell
substantially below the control curves at low CI production rates. All data excluded from
the fits is indicated by the open circles in Figure C.1.

Unlike the activities obtained by LacZ assay, the fluorescence intensities measured by
flow cytometry were not calibrated to an absolute reference, so additional care needed to
be taken when relating these intensities to reporter gene activity. Fluorescence intensities
measured by flow cytometry are sensitive functions of many instrumental settings (e.g.,
the laser strength and pulse width, the photomultiplier tube voltage, and the sample flow
rate); these can be set consistently, but some level of day-to-day variation in fluorescence
intensity remains unavoidable. The result is that relative fluorescence intensities within an
assay can be reliably compared, but comparisons between assays are less reliable. Since
cellular autofluorescence produces a non-zero background fluorescence, both this offset
and the scale of fluorescence may vary across assays. To allow for this variation in the
model, per-assay fluorescence offset and scaling parameters were added that could be
optimised for a given assay. The scaling parameter is essentially equivalent to the MZ pa-
rameter used when fitting the LacZ assay data. MZ represents the maximum steady-state
level of reporter protein that would be produced from the unrepressed pR promoter. Here,
MZ becomes the steady-state level of fluorescent protein produced from pR (in arbitrary
fluorescence units instead of LacZ units), but to facilitate inter-assay comparison, it was set
fixed to 1000, leaving the fluorescence scaling parameter to convert relative fluorescence
intensities to this nominal absolute reference activity.

It was found that leaving the fluorescence offset and scaling parameters to freely vary
within the fitting algorithm provided too much flexibility in the model: the optimisation
function would frequently get trapped in poorly-fitting local minima. Hence, methods
were sought that might objectively fix the fluorescence offset and scale for each assay.
Fluorescence offset parameters were simple to determine, since all of the assays contained
a number of data points that could be presumed to have close to zero activity. These data
points were picked to be the low activity high O/N unimodal points in both the tum+

and tum− strains (an approximate filter for ‘low pR activity’ was obtained by restricting
to data points at CI production rates greater than half of the maximum CI production
rate). To allow for slight trends in the data, model curves simulated from a crude MFL
parameter set were scaled and offset using linear regression to match the model curves
to these selected low-activity data points. The fitted offsets were then kept as the fixed
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fluorescence offset parameters for each assay.

Ideally, the fluorescence scaling parameters would then be fixed using high pR activ-
ity reference data points that are known to be consistent between assays. Unfortunately,
such data points are difficult to identify in the present assays, since the high pR activity
data points show fairly large (absolute) variation with equilibration time, which is then
further compounded by greater experimental variability at the same activities. Instead,
fluorescence scale parameters were chosen by performing flexible fits of the data for each
assay separately. In these preliminary fits of the data, loose bounds were placed on all
other model parameters, so that any flexibility that might be captured by these other pa-
rameters would not bias scaling parameter determination. In so doing, data points whose
values are largely determined by the maximum production rate from pR (such as the high
fluorescence low O/N data) also have the largest influence in determining the scaling pa-
rameter. For all subsequent fits of the data, the fluorescence scale parameter for each assay
was set fixed to this optimised value.

Parameterisation of the model was much the same as was previously specified for fit-
ting of the LacZ assays. As before, the core optimisation parameters are the EC50s and
Hill coefficients of the CI−pR and Tum−CI equilibria (εR, HR, εS and HS), the maximal
steady-state Tum concentration (MT), and the rates of protein loss (γ and δT). The only
core parameter missing from this list is the maximal steady-state reporter activity (MZ),
since, as previously mentioned, it is set fixed to 1000 in favour of per-assay fluorescence
scaling parameters. Recall that the rates of loss of CI and the reporter were both set by
the dilution rate (γ). Further, the Tum degradation rate was also parameterised as a mul-
tiplier of γ, so that with a lower bound of one, δT would never be smaller (slower) than γ.
The production rates necessary for simulation (pC, pT and pZ) are then determined by the
maximal steady-state concentrations and these rates of loss.

Induction levels of the P lac promoter are set for each sample in terms of the calibrated
steady-state concentrations of total CI. When fitting the LacZ assay data, a RBS scaling
factor was applied to reduce the steady-state CI concentrations measured for production
from the eRBS to those measured for production from the wRBS (see Section 4.3.3). Since
it was likely that the eRBS measurements were an overestimate, this same scaling was
applied when modelling the flow cytometry data. To confirm its applicability to the flow
cytometry data set, the CI RBS scaling factor was applied to the ER-MC curve shown in
Figure 5.9 for comparison with the WR-MC curve in that figure. The overlap of the two
assays was as good as that previously observed for the LacZ assays. The steady-state CI
concentrations remained fixed at these scaled values for all fits; CI production rates are,
however, still able to vary since the dilution rate is allowed to vary.

The core parameters are complemented by three parameters whose roles are essentially
to enable additional flexibility in the initial conditions. The introduction of such parame-
ters is justified by the need to compensate for the anticipated differences between cultures
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in log phase versus those in stationary phase (i.e., the initial O/N cultures). For fitting of
the LacZ assays, low and high O/N scaling factors were introduced that could indepen-
dently adjust the effective level of induction of the O/N cultures. This addition allowed
for asymmetries in conditions between the two alternative O/N cultures and meant that
steady-state CI concentrations in the O/N cultures could be greater or lesser than might
be expected in a growing log-phase culture. Both of these parameters were retained for
fitting the flow cytometry data. The O/N scaling parameters implicitly affect the initial
concentration of Tum, which adopts steady-state values according to the adjusted induc-
tion levels. When fitting the short equilibration time flow cytometry assays, however, it
became necessary to dissociate the initial Tum and CI concentrations so that the appar-
ently slow evolution of the high fluorescence sub-populations might be matched. For this
reason an additional parameter was introduced (identical for both O/N conditions) that
would adjust the initial steady-state concentration of Tum by scaling the maximum Tum
production rate (pT).

A final pair of parameters were introduced to account for timing differences between
the assay sets. In order to keep consistency with LacZ assay protocols, cultures were as-
sayed by flow cytometry only when they reached an OD600 of 0.6. This meant that the
actual time taken until cultures were assayed could vary between assays, even if the same
equilibration protocol was followed. This is seen in Figure 5.11 when comparing the re-
ported times to assay between the low and high cell count assay sets. The high cell count
assays (lower panels) consistently take a shorter time to reach similar final OD600s than
the low cell count assays do, in spite of otherwise identical protocols. The time intervals
between each equilibration method (i.e., about 1.4 hours between short and medium, and
1 hour between medium and long equilibration times) are, however, very similar between
the sets. Thus the discrepancy appears to be differing lag times occuring early in the as-
say, perhaps pertaining to the time it takes to transition from stationary-phase to log-phase
growth. The origin of these differences is unknown, but likely signifies some unaccounted
systematic difference in the states of the O/N cultures. To account for this divergent lag
time, two time offset parameters, one for each assay set, were introduced into the model.
These time offset parameters reduce the effective times taken to reach the short equilibra-
tion time point, but do not change the relative times between equilibration assays within
each set. The introduction of these parameters allowed for much better alignment of the
model with the combined assay sets, particularly when modelling the Tum− control data.
It also dissociated fitting of the dilution rate and Tum degradation rate parameters from
the presumptive initial conditions.

Parameter optimisation was performed incrementally, fitting the model to the flow cy-
tometry data set in stages. This is in contrast with the all-parameter pseudo-random search
that was used to find parameters for the LacZ assay data set. For the flow cytometry data,
the relationship between model and data was more apparent, so a directed approach to
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fitting the data became more efficient and informative. Thus, instead of allowing all pa-
rameters to freely vary, protocols were implemented to hold certain parameters fixed in
early optimisation iterations, but with progressively more parameters allowed to vary as
the model better matched the data. Numerical optimisation of the unconstrained parame-
ters in each iteration was made using a quasi-Newton method of the R optim function that
performs a directed search of parameter space based on function values and gradients. In
final optimisation iterations, all parameters in this numerical optimisation algorithm were
left unconstrained.

After preliminary parameter optimisation for setting the per-assay fluorescence offset
and scale parameters, all other model parameters were subsequently optimised to simul-
taneously fit all six assays. In keeping with the directed fitting approach, the data for the
Tum− control strains was fit first to establish tighter constraints on the subset of parame-
ters pertaining to the control curves (i.e., εR, HR, γ, the low and high O/N scaling factors,
and the two time offset parameters). These parameters were then constrained to their opti-
mised values while the remaining model parameters were optimised to fit the Tum+ MFL
data. In final fits, both Tum+ and Tum− data were fitted and all parameters (including the
control parameters) left unconstrained.

The final optimised parameters produced a good match to the data at almost all equi-
libration times as can be seen in Figure C.1. This came at the cost of permitting the the
degradation rate of Tum to be slower than the dilution rate, as can be seen from the opti-
mised parameters listed in the ‘Full fit’ column of Table C.1. Only by so doing could the
deterministic model match the slow evolution of the high fluorescence sub-populations.

In this knowledge, an additional optimisation step was performed for just the long
equilibration time data sets. This improved the discrepancy as can be seen from the ‘Long
only’ column of Table C.1, but the change was still insufficient to allow the Tum half life to
fall equal to or below the doubling time. As such, the ‘Simple fit’ strategy described in the
main text (Section 6.3.1) was employed.
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Figure C.1 (Continued): Two sets of short, normal and long equilibration time hysteresis assays of the
ER-MC strain were measured by flow cytometry: the first set (upper panels) were measured for lower cell
counts (10,000–35,000), and the second set (lower panels) were measured for higher cell counts (78,000–
92,000). The fluorescence distributions were curated as described in Figure 5.9 and the sub-populations are
also plotted as described in that figure. Indicated in italic text for each assay is the equilibration type (short,
normal or long) and the recorded number of hours of equilibration time. A deterministic model was fitted
to the long equilibration time data as described in the text, but is shown overlaid in all panels for reference.
Data points that were included in the parameter optimisation protocols are shown as filled circles, whilst
those that were excluded are shown as open circles. As in previous figures, colour is used to distinguish
history (low/high overnight (O/N)) and presence or absence of Tum (Tum+/Tum−). Since the scale of CI
production was allowed to vary when fitting the model to the data, the units of the CI production rate are
displayed as a percentage of the maximum CI production rate (i.e., the production rate of the high O/N
Tum+/Tum− samples induced to 300 µM IPTG).



C.3 Fitting the model to the flow cytometry assays 307

Table C.1: A comparison of the deterministic parameters fitted to various subsets of the time-course flow
cytometry data. measured for the ER-MCTum−CI MFL. The upper block contains the core MFL parame-
ters; the middle block contains the initial condition scaling parameters; the lower block contains the timing
parameters. Unless otherwise indicated, limits specify 95% confidence intervals.

Parameter Full fit* Long only** Simple fit†

εR (CI dimers/cell) 9.39× 102 9.45× 102 9.74× 102

HR 3.05 3.07 3.01

εS (Tum monomers/cell) 7.98× 103 3.00× 103 2.67× 103

HS 1.19 1.01 1.04

MT (Tum monomers/cell) 3.19× 104 3.19× 104 3.18× 104

Doubling time (min.) 27.1 27.0 32.4

Tum half life (min.) 153.5 51.5 32.4

Low O/N scaling 4.49 4.81 –

High O/N scaling 1.67 1.48 –

Initial Tum scaling 7.86 7.81 –

Assay time (hours)‡

LCC, short equil. 2.4 2.4 –

LCC, normal equil. 3.7 3.7 –

LCC, long equil. 4.7 4.7 –

HCC, short equil. 3.0 2.8 –

HCC, normal equil. 4.5 4.3 –

HCC, long equil. 5.6 5.3 5.0

* Parameters determined experimentally in this thesis or derived from the literature.
** Parameters from the model shown in Figure 5.11 fitting all available parameters to match the time course

data.
† Parameters from the model shown in Figure 6.3 fitted to match a single long equilibration time assay

with a simplified parameter scheme.
‡ The period of log phase growth attributed to each of the Low Cell Count (LCC) and High Cell Count

(HCC) short, normal and long equilibration time (equil.) assays.





D
The hybrid stochastic/deterministic model

of the Tum−CI MFL

Networks of stochastic reactions can be modelled as Markov processes with a probabil-
ity density function that evolves according to a CME that defines the network [Gillespie,
1992; Kepler and Elston, 2001; Paulsson, 2005; Qian and Bishop, 2010]. In theory, the full
stochastic behaviour of a gene network is completely specified by solutions to its CME,
but deriving such solutions, whether analytically or numerically, is impractical for any but
the simplest networks. Solutions must instead be characterised either via simulated trajec-
tories consistent with the CME [Rao et al., 2002] or by making suitable approximations to
the full CME [Thattai and van Oudenaarden, 2001; Elf and Ehrenberg, 2003].

In this thesis, stochastic modelling of the Tum−CI MFL is performed by running Monte-
Carlo simulations of the network. Specifically, a hybrid stochastic/deterministic simula-
tor [Kiehl et al., 2004] based on the Next-Reaction variant [Gibson and Bruck, 2000] of
the standard Gillespie algorithm [Gillespie, 1977] is implemented. The basic theory and
a summary of the modelled reactions has already been presented in Chapter 6. In this
appendix, additional technical details and samples of the simulation code are included to
explain how the simulator has been implemented.

The hybrid simulator extends the standard Gillespie algorithm by allowing for con-
tinuous changes to the state. To accommodate this in an otherwise discrete simulation
method, the hazards (reaction propensities) dependent on any continuous processes need
to be integrated over time to determine if changes in the deterministic variables affect the
probability of getting the next reaction. Here, an Euler integration method is employed,
which simplifies the implementation at the cost of reduced accuracy. However, by ensur-
ing a small enough step size (set here to be at most 1 minute), the reduction in accuracy is
inconsequential.

The core functionality of the stochastic model has been implemented in C++ and makes
use of classes and inheritance to promote flexibility and reusability of the code. As such,
the model has been split into various interchangeable units that are combined together
to constitute the specific model. The most fundamental unit is the model state, which
needs to synchronise between discrete and continuous representations of the system. A

309
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state class was designed to handle these tasks in a transparent way and its code is listed in
Appendix D.1.

The model itself is built from a ‘state’ class, a ‘parameters’ class, an ‘equilibrator’ class
and a ‘simulator’ class. The syntax of these classes is specified in Appendix D.2 as a col-
lection of interfaces. The ‘simulator’ class specifies the generic simulation method and
comes in two forms: a basic form that takes equal time-steps and is suited to determin-
istic simulation, and a stochastic form that accepts a list of stochastic events that it can
track and integrate the hazards of. The latter simulator is of most interest here, since it
defines the hybrid simulation algorithm. The code implementing the Euler integration
step of the hazards and coordinating event firing can be found at the end of the listing in
Appendix D.2.

MFL-specific code can be found in Appendix D.3. This includes:

1. the definition of a class to store model parameters,
2. expanding the ‘state’ class to additionally track CI and/or Tum levels,
3. definitions of the stochastic events in the Tum−CI MFL, including cell

division,
4. a highly optimised ‘equilibrator’ that solves the Tum−CI constraint equation

(Equation (6.5)) and is called to determine the free species concentrations, and
5. declarations of the models (the deterministic tum− control and MFL models,

and the stochastic tum− control and MFL models).

The code listings in Appendix D.4 exemplify how simulation is applied in practice.
The example presented can be used to perform time-course simulations using the listed
models and is part of an R library that allows the C++ library to be called from R.

The final section in this appendix (Appendix D.5) displays and explains the R code
that was used to add experimental noise onto the raw stochastic simulation data. Mixture
models of this generated data were fit using the constrained skew-t method described in
Appendix B.

D.1 Tracking simulator state

As specified by Kiehl et al. [2004], it is important to ensure that discrete and continuous
representations of the hybrid stochastic/deterministic model are kept well-synchronised.
Here, the state of the system is defined to be completely characterised by the current vol-
ume V and three continuous state variables for the total concentrations of Tum, CI and
GFP. The number of each protein is then determined by the product of that protein’s con-
centration with the current volume, and discrete values are obtained by rounding down.

In the stateinterfaces.h header file, the ‘Variable’ class is defined to automatically
detect whether a continuous or discrete representation is required based on the context.
Operator overloading means that the ‘Variable’ class acts like a standard C++ variable.
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The ‘Variable’ class depends on the ‘Volume’ class to convert between concentrations and
counts, and changes in ‘Volume’ trigger all ‘Variable’ instances to update their recorded
concentrations. The time, ‘Volume’ and ‘Variable’ instances are collected together in a
‘state’ structure to be passed between the various calculators of the simulator.

1 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

2 / / s t a t e i n t e r f a c e s . h :

3 / / Def ine i n t e r f a c e s f o r managing hybr id d e t e r m i n i s t i c / s t o c h a s t i c s imu la t i on

4 / / s ta tes . When def ined t h i s way , d i s c r e t e and cont inuous rep resen ta t i ons o f

5 / / each s ta te v a r i a b l e are maintained i n sync .

6
7 # i fndef STATEINTERFACES_H

8 #define STATEINTERFACES_H

9
10 #include <cmath>

11 #include < c s t d l i b >

12 #include <vector >

13
14 typedef unsigned i n t u i n t ;

15
16 class Volume ;

17 class Var iab le ;

18
19 / / The r e l a t i o n s h i p between d i s c r e t e and cont inuous rep resen ta t i ons i s

20 / / dependent on c e l l volume . The Volume c lass keeps a l i s t o f r e g i s t e r e d

21 / / s imu la t i on v a r i a b l e s t h a t should be n o t i f i e d when the volume i s changed .

22 class Volume {

23 public :

24 Volume ( double vo l =1.0) : vo l ( vo l ) { }

25
26 / / Var iab le r e g i s t r a t i o n and n o t i f i c a t i o n

27 void r e g i s t e r V a r i a b l e ( Var iab le &) ;

28 void volumeChanged ( ) ;

29
30 / / Type convers ion to double s imply accesses the volume

31 operator double ( ) const { return vo l ; }

32
33 / / St reaml ine d e f i n i t i o n o f ( compound ) assignment opera tors using a macro :

34 #define VOLUME_ASSIGNMENT(Op ) \

35 Volume& operator Op ( const Volume& rhs ) { \

36 vo l Op rhs . vo l ; volumeChanged ( ) ; return * th is ; \

37 } \

38 Volume& operator Op ( const double rhs ) { \

39 vo l Op rhs ; volumeChanged ( ) ; return * th is ; \

40 } / * END VOLUME_ASSIGNMENT * /
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41
42 / / Def ine the ( compound ) assignment opera tors

43 VOLUME_ASSIGNMENT(= )

44 VOLUME_ASSIGNMENT(+=)

45 VOLUME_ASSIGNMENT(−=)

46 VOLUME_ASSIGNMENT( * = )

47 VOLUME_ASSIGNMENT( / = )

48
49 / / St reaml ine d e f i n i t i o n o f a r i t h m e t i c opera tors using a macro :

50 #define VOLUME_ARITHMETIC(Op, RetType ) \

51 const RetType operator Op ( const Volume& rarg ) const { \

52 return vo l Op rarg . vo l ; \

53 } \

54 f r iend const RetType operator Op ( const Volume& larg , const Volume& rarg ) { \

55 return l a r g . vo l Op rarg . vo l ; \

56 } \

57 const RetType operator Op ( const double ra rg ) const { \

58 return vo l Op rarg ; \

59 } \

60 f r iend const RetType operator Op ( const double l a rg , const Volume& rarg ) { \

61 return l a r g Op rarg . vo l ; \

62 } / * END VOLUME_ARITHMETIC * /

63
64 / / Def ine the a r i t h m e t i c opera tors

65 VOLUME_ARITHMETIC(+ , double )

66 VOLUME_ARITHMETIC(− ,double )

67 VOLUME_ARITHMETIC( * , double )

68 VOLUME_ARITHMETIC ( / , double )

69
70 / / Def ine the r e l a t i o n a l opera tors

71 VOLUME_ARITHMETIC( < , bool )

72 VOLUME_ARITHMETIC( > , bool )

73 VOLUME_ARITHMETIC( <= , bool )

74 VOLUME_ARITHMETIC( >= , bool )

75 VOLUME_ARITHMETIC(== , bool )

76 VOLUME_ARITHMETIC( ! = , bool )

77
78 / / P r i n t i n g

79 f r iend std : : ostream& operator << ( s td : : ostream& o , Volume& v ) { o<<v . vo l ; return o ; }

80
81 private :

82 double vo l ;

83 std : : vector <Var iab le *> vars ;

84 typedef s td : : vector <Var iab le * > : : c o n s t _ i t e r a t o r v a r I t e r ;
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85 } ;

86
87 / / S imu la t ion v a r i a b l e s t h a t may be t rea ted s imul taneous ly i n d i s c r e t e and

88 / / cont inuous spaces should be def ined using the ’ Var iab le ’ c lass . This c lass

89 / / automates convers ion between numbers o f molecules and concen t ra t i on . When

90 / / opera t ing using the ’ double ’ type , the c lass works i n concen t ra t ions ; when

91 / / opera t ing using the ’ unsigned i n t ’ type , the c lass works i n molecule

92 / / counts .

93 class Var iab le {

94 public :

95 / / I n i t i a l i s e w i th a concen t ra t i on :

96 Var iab le ( double i n i t , Volume& vo l ) : conc ( i n i t ) , vo l ( vo l ) {

97 f racCount = conc * vo l ;

98 / / NB: cas t ing from f l o a t i n g−po in t type to i n t e g e r type i s performed as

99 / / t r u n c a t i o n :

100 count = stat ic_cast <u in t >( s td : : abs ( f racCount ) ) ;

101 / / Reg is te r to rece ive updates to the Volume :

102 vo l . r e g i s t e r V a r i a b l e ( * th is ) ;

103 }

104 / / I n i t i a l i s e w i th a count :

105 Var iab le ( u i n t i n i t , Volume& vo l ) : count ( i n i t ) , vo l ( vo l ) {

106 f racCount = stat ic_cast <double >( count ) ;

107 conc = fracCount / vo l ;

108 vo l . r e g i s t e r V a r i a b l e ( * th is ) ;

109 }

110 / / I n i t i a l i s e w i th an i n t e g e r :

111 Var iab le ( i n t i n i t , Volume& vo l ) : vo l ( vo l ) {

112 / / NB: negat ive values w i l l be re ta ined by fracCount

113 f racCount = stat ic_cast <double >( i n i t ) ;

114 count = stat ic_cast <u in t >( s td : : abs ( i n i t ) ) ;

115 conc = fracCount / vo l ;

116 vo l . r e g i s t e r V a r i a b l e ( * th is ) ;

117 }

118
119 / / Dual type convers ions

120 operator u i n t ( ) const { return count ; }

121 operator i n t ( ) const { return stat ic_cast < int >( count ) ; }

122 operator double ( ) const { return conc ; }

123
124 / / Assignment

125 Var iab le& operator = ( const Var iab le &rhs ) {

126 count = rhs . count ; f racCount = rhs . f racCount ;

127 conc = rhs . conc ; vo l = rhs . vo l ; return * th is ;

128 }
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129 Var iab le& operator = ( const double rhs ) {

130 conc = rhs ; f racCount = rhs * vo l ;

131 count = stat ic_cast <u in t >( s td : : abs ( f racCount ) ) ;

132 return * th is ;

133 }

134 Var iab le& operator = ( const u i n t rhs ) {

135 count = rhs ; f racCount = stat ic_cast <double >( rhs ) ;

136 conc = fracCount / vo l ; return * th is ;

137 }

138 Var iab le& operator = ( const i n t rhs ) {

139 f racCount = stat ic_cast <double >( rhs ) ;

140 count = stat ic_cast <u in t >( s td : : abs ( rhs ) ) ;

141 conc = fracCount / vo l ; return * th is ;

142 }

143
144 / / St reaml ine d e f i n i t i o n o f compound assignment opera tors using a macro :

145 #define VARIABLE_ASSIGNMENT(Op ) \

146 Var iab le& operator Op ( const Var iab le &rhs ) { \

147 / * Operate on fracCounts , but der i ve o ther values using t h i s * / \

148 / * ins tance ’ s volume : * / \

149 f racCount Op rhs . f racCount ; \

150 count = stat ic_cast <u in t >( s td : : abs ( f racCount ) ) ; \

151 conc = fracCount / vo l ; return * th is ; \

152 } \

153 Var iab le& operator Op ( const double rhs ) { \

154 conc Op rhs ; f racCount = conc * vo l ; \

155 count = stat ic_cast <u in t >( s td : : abs ( f racCount ) ) ; \

156 return * th is ; \

157 } \

158 Var iab le& operator Op ( const u i n t rhs ) { \

159 count Op rhs ; f racCount Op stat ic_cast <double >( rhs ) ; \

160 conc = fracCount / vo l ; return * th is ; \

161 } / * END VARIABLE_ASSIGNMENT * /

162
163 / / Def ine compound assignment opera tors

164 VARIABLE_ASSIGNMENT(+=)

165 VARIABLE_ASSIGNMENT(−=)

166 VARIABLE_ASSIGNMENT( * = )

167 VARIABLE_ASSIGNMENT ( / = )

168
169 / / St reaml ine d e f i n i t i o n o f a r i t h m e t i c opera tors using a macro :

170 #define VARIABLE_ARITHMETIC(Op, RetTypeConc , RetTypeCount ) \

171 const RetTypeConc operator Op ( const double rhs ) const { return conc Op rhs ; } \

172 f r iend const RetTypeConc operator Op ( const double lhs , const Var iab le& rhs ) { \
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173 return l hs Op rhs . conc ; \

174 } \

175 const RetTypeCount operator Op ( const u i n t rhs ) const { return count Op rhs ; } \

176 f r iend const RetTypeCount operator Op ( const u i n t lhs , const Var iab le& rhs ) { \

177 return l hs Op rhs . count ; \

178 } / * END VARIABLE_ARITHMETIC * /

179
180 / / Def ine a r i t h m e t i c opera tors

181 VARIABLE_ARITHMETIC(+ , double , u i n t )

182 VARIABLE_ARITHMETIC(− ,double , u i n t )

183 VARIABLE_ARITHMETIC ( * , double , u i n t )

184 VARIABLE_ARITHMETIC ( / , double , u i n t )

185
186 / / Def ine r e l a t i o n a l opera tors

187 VARIABLE_ARITHMETIC( > , bool , bool )

188 VARIABLE_ARITHMETIC( < , bool , bool )

189 VARIABLE_ARITHMETIC( >= ,bool , bool )

190 VARIABLE_ARITHMETIC( <= ,bool , bool )

191 VARIABLE_ARITHMETIC(== , bool , bool )

192 VARIABLE_ARITHMETIC ( ! = , bool , bool )

193
194 / / P r i n t i n g

195 f r iend std : : ostream& operator << ( s td : : ostream& o , Var iab le& v ) { o<<v . conc ; return o ; }

196
197 / / This f u n c t i o n gets c a l l e d whenever the volume i s updated :

198 void volumeChanged ( ) {

199 / / Only the concen t ra t i on changes wi th volume changes :

200 conc = fracCount / vo l ;

201 }

202
203 private :

204 u i n t count ;

205 double conc , f racCount ;

206 Volume& vo l ;

207 } ;

208
209 / / Given the d e f i n i t i o n o f a Var iab le , now def ine Var iab le r e g i s t r a t i o n and

210 / / event n o t i f i c a t i o n i n the Volume c lass . Note t h a t the Volume c lass i s

211 / / f i l l e d using re ferences i n s t a n t i a t e d elsewhere , so i s not respons ib le f o r

212 / / c r ea t i on or d e l e t i o n o f the r e g i s t e r e d Var iab les .

213 i n l i n e void Volume : : r e g i s t e r V a r i a b l e ( Var iab le& var ) {

214 vars . push_back(& var ) ;

215 }

216 i n l i n e void Volume : : volumeChanged ( ) {
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217 / / N o t i f y a l l r e g i s t e r e d v a r i a b l e s t h a t Volume has changed

218 for ( v a r I t e r var = vars . begin ( ) ; var != vars . end ( ) ; ++var )

219 ( * var)−>volumeChanged ( ) ;

220 }

221
222 / / S imu la t ion s ta t e i s s tored i n the ’ s t a t e ’ s t r u c t . Note t h a t t h i s s t r u c t can

223 / / be copied and assigned to so t h a t an i n i t i a l s t a t e can be saved and then the

224 / / main s ta te l a t e r rese t .

225 struct s ta te {

226 e x p l i c i t s ta te ( ) : t ( 0 . 0 ) , vo l ( 1 . 0 ) , Report (0u , vo l ) { }

227 double t ;

228 Volume vo l ;

229 Var iab le Report ;

230 v i r t u a l double ca l l _even t ( class stochEvent * event ) ;

231 } ;

232
233 #endif / * STATEINTERFACES_H * /

D.2 The generic simulation framework

1 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

2 / / mode l in te r faces . h :

3 / / Def ine i n t e r f a c e s f o r accessing model l ing s imu la to rs ( s t o c h a s t i c or

4 / / d e t e r m i n i s t i c ) . I n h e r i t from these i n t e r f a c e s to create model l ing p ro toco l s

5 / / w i th def ined opera t ion .

6
7 # i fndef MODELINTERFACES_H

8 #define MODELINTERFACES_H

9
10 #include <gs l / gs l_rng . h>

11 #include <vector >

12 #include " s t a t e i n t e r f a c e s . h "

13
14 / / To avoid d i v i s i o n s by zero and numer ica l e r r o r s we need to set v o l a t i l e

15 / / concen t ra t ions c lose to zero to some absolu te zero re ference .

16 const double zeroconc = 1e−3;

17 / / Use a d i f f e r e n t th resho ld f o r zero f o r hazards

18 const double zerohazard = 1e−9;

19
20 / / Parameter l i s t s should be noncopyable to avoid d u p l i c a t e parameter sets

21 / / d i ve rg ing i n a p p r o p r i a t e l y dur ing i n i t i a l i s a t i o n

22 struct parameters {

23 protected :

24 parameters ( ) { }
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25 ~parameters ( ) { }

26
27 private :

28 parameters ( const parameters &) ;

29 parameters & operator = ( const parameters &) ;

30 } ;

31
32 / / The e q u i l i b r a t o r c lass needs an e q u i l i b r a t e and s teadys ta te f u n c t i o n

33 / / and t y p i c a l l y should need no more than a p o i n t e r to some s ta te and a

34 / / p o i n t e r to some parameter set from which to make c a l c u l a t i o n s

35 class e q u i l i b r a t o r {

36 public :

37 v i r t u a l void e q u i l i b r a t e ( ) = 0 ;

38 v i r t u a l void s teadys ta te ( ) = 0 ;

39
40 protected :

41 / / I n t e r f a c e d e f i n i t i o n , so keep the cons t ruc to r p ro tec ted

42 e x p l i c i t e q u i l i b r a t o r ( s t a t e * s , parameters * p ) : s ( s ) , p ( p ) { }

43 / / We do not want to a l low polymorphic d e l e t i o n

44 v i r t u a l ~ e q u i l i b r a t o r ( ) { }

45
46 private :

47 / / noncopyable

48 e q u i l i b r a t o r ( const e q u i l i b r a t o r & ) ;

49 e q u i l i b r a t o r & operator = ( const e q u i l i b r a t o r & ) ;

50
51 / / Keep these p r i v a t e so t h a t der ived classes can a l t e r n a t i v e l y work w i th

52 / / c h i l d r e n o f ’ s t a t e ’ or ’ parameters ’ c lasses

53 s ta te * s ;

54 parameters * p ;

55 } ;

56
57 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

58 / / ’ s imu la to r ’ c lass

59 / / * * * * * * * * * * * * * * * * *
60 / / The base s imu la t i on c lass from which new s imu la t i on c lasses should be

61 / / der ived . You can e i t h e r request s i n g l e steps to be taken , or spec i f y a t ime

62 / / to s imu la te to ( the c lass then works out how many steps i t needs to take ) .

63
64 class s imu la to r {

65 public :

66 / / S imu la t ion

67 v i r t u a l void i n i t i a l i s e ( ) { } / / Opt iona l i n i t i a l i s a t i o n f u n c t i o n

68 v i r t u a l void step ( double t s ) { s−>t += t s ; eq−>e q u i l i b r a t e ( ) ; }
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69 v i r t u a l void s imu la te ( double simtime ) {

70 / / NB: we want to s imu la te an ADDITIONAL simtime minutes

71 simtime += s−>t ;

72
73 / / Step the d e f a u l t t ime step s ize unless i t would take us past simtime :

74 while ( ( simtime − s−>t ) > t s _ d e f a u l t ) step ( t s _ d e f a u l t ) ;

75
76 / / F in i sh by stepping exac t l y to the des i red step t ime . This i s i n a

77 / / wh i le loop s ince the t imestep supp l ied to step ( ) i s p re fe r red but

78 / / not guaranteed :

79 while ( s−>t < simtime ) step ( simtime − s−>t ) ;

80 }

81
82 / / We do not want to a l low polymorphic d e l e t i o n but to avoid warnings make

83 / / d e s t r u c t o r v i r t u a l and p u b l i c . . .

84 v i r t u a l ~ s imu la to r ( ) { }

85
86 protected :

87 / / I n t e r f a c e d e f i n i t i o n , so keep the cons t ruc to r p ro tec ted

88 s imu la to r ( s t a t e * s , parameters * p , e q u i l i b r a t o r * eq , const double t s )

89 : t s _ d e f a u l t ( t s ) , s ( s ) , p ( p ) , eq ( eq ) { }

90
91 / / The d e f a u l t t ime step s ize :

92 const double t s _ d e f a u l t ;

93
94 private :

95 / / noncopyable

96 s imu la to r ( const s imu la to r & ) ;

97 s imu la to r & operator = ( const s imu la to r & ) ;

98
99 / / Keep these p r i v a t e so t h a t der ived classes can a l t e r n a t i v e l y work w i th

100 / / c h i l d r e n o f ’ s t a t e ’ , ’ parameters ’ or ’ e q u i l i b r a t o r ’ c lasses

101 s ta te * s ;

102 parameters * p ;

103 e q u i l i b r a t o r * eq ;

104 } ;

105
106 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

107 / / ’ model ’ c lass

108 / / * * * * * * * * * * * * *
109 / / This base c lass s p e c i f i e s how a l l the components should be c o l l e c t e d

110 / / t oge ther f o r a complete model l ing package . This i s the i n t e r f a c e t h a t users

111 / / w i l l access . A model should be const ruc ted wi th a p r i v a t e c o l l e c t i o n o f the

112 / / unique ins tances of ’ s t a t e ’ , ’ parameters ’ , ’ e q u i l i b r a t o r ’ and ’ s imu la to r ’
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113 / / c lasses

114
115 class model {

116 public :

117 / / ’ i n i t i a l i s e ’ member f u n c t i o n s should do something equ iva len t to the

118 / / f o l l o w i n g but may need updat ing depending on the s ta t e s t r u c t :

119 v i r t u a l void i n i t i a l i s e ( ) {

120 s−>t = 0 . 0 ; s−>Report = 0 . 0 ; / / Set a l l s t a t e v a r i a b l e s

121 eq−>s teadys ta te ( ) ; / / Relax i n i t i a l values to s teadys ta te

122 sim−> i n i t i a l i s e ( ) ; / / Run any s imu la to r i n i t i a l i s a t i o n

123 }

124
125 / / Accessors & mutators

126 v i r t u a l double t ime ( ) { return s−>t ; }

127 v i r t u a l void t ime ( double t ) { s−>t = t ; }

128 v i r t u a l double a c t i v i t y ( ) { return s−>Report ; }

129
130 / / E q u i l i b r a t i o n

131 v i r t u a l void e q u i l i b r a t e ( ) { eq−>e q u i l i b r a t e ( ) ; }

132 v i r t u a l void s teadys ta te ( ) { eq−>s teadys ta te ( ) ; }

133
134 / / S imu la t ion

135 v i r t u a l void step ( double t s ) { sim−>step ( t s ) ; }

136 v i r t u a l void s imu la te ( double t ime ) { sim−>s imula te ( t ime ) ; }

137
138 / / We do not want to a l low polymorphic d e l e t i o n but to avoid warnings make

139 / / d e s t r u c t o r v i r t u a l and p u b l i c . . .

140 v i r t u a l ~model ( ) { }

141
142 protected :

143 / / P ro tec t the cons t ruc to r so t h a t on ly c h i l d r e n can i n i t i a l i s e a model

144 e x p l i c i t model ( s t a te * s , parameters * p , e q u i l i b r a t o r * eq , s imu la to r * sim )

145 : s ( s ) , p ( p ) , eq ( eq ) , sim ( sim ) { }

146
147 private :

148 / / noncopyable

149 model ( const model & ) ;

150 model & operator = ( const model & ) ;

151
152 / / Keep these p r i v a t e so t h a t der ived classes can a l t e r n a t i v e l y work w i th

153 / / c h i l d r e n o f ’ s t a t e ’ , ’ parameters ’ , ’ e q u i l i b r a t o r ’ or ’ s imu la to r ’

154 / / c lasses

155 s ta te * s ;

156 parameters * p ;
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157 e q u i l i b r a t o r * eq ;

158 s imu la to r * sim ;

159 } ;

160
161 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

162 / / ’ stochEvent ’ c lass

163 / / * * * * * * * * * * * * * * * * * *
164 / / I n h e r i t from t h i s c lass to b u i l d new s t o c h a s t i c events . An event needs the

165 / / f o l l o w i n g members :

166 / / − a f u n c t i o n t h a t samples t h i s event ’ s p r o b a b i l i t y d i s t r i b u t i o n

167 / / − a comparison opera tor so t h a t we can choose the next event

168 / / − a f u n c t i o n to update the s ta te

169 / / − a p o i n t e r to a RNG

170 / / − Note t h a t step ( ) should NOT update the s ta te t ime

171
172 class stochEvent {

173 f r iend bool compare ( stochEvent * , stochEvent * ) ;

174
175 public :

176
177 / * * * Event−s p e c i f i c behaviour − c h i l d r e n must de f ine these fu n c t i o n s * * * /

178
179 / / Overr ide these to r e t u r n the instantaneous hazard f o r t h i s event

180 v i r t u a l double hazard ( s t a t e * i n i t ) {

181 throw " E r ro r : base stochEvent : : hazard ( s t a t e * ) method c a l l e d . " ;

182 }

183 v i r t u a l double hazard ( struct repress * i n i t ) {

184 / / Delegate to c h i l d r e n by upcast ing

185 return this−>hazard ( ( s t a te * ) i n i t ) ;

186 / * throw " Er ro r : base stochEvent : : hazard ( repress * ) method c a l l e d . " ; * /

187 }

188 v i r t u a l double hazard ( struct mf l * i n i t ) {

189 / / Delegate to c h i l d r e n by upcast ing

190 return this−>hazard ( ( repress * ) i n i t ) ;

191 / * throw " Er ro r : base stochEvent : : hazard ( mf l * ) method c a l l e d . " ; * /

192 }

193
194 / / F i r e the event , updat ing the g loba l s t a t e

195 v i r t u a l void f i r e ( ) = 0 ;

196
197 / * * * Standard s t o c h a s t i c event behaviour * * * /

198
199 / / Event behaviour i s assumed Poissonian , so sample a random number from

200 / / Exp ( 1 ) and rese t the cumulat ive hazard
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201 v i r t u a l void sample ( ) {

202 rexp = −l og ( gsl_rng_uni form_pos ( r ) ) ;

203 h_cumulat ive = 0;

204 }

205
206 / / Peek ahead to see i f t h i s event w i l l f i r e w i t h i n the supp l ied t ime step

207 v i r t u a l bool w i l l _ f i r e ( double t s ) {

208 i f ( h_cumulat ive + t s * hazard ( s ) > rexp )

209 return true ;

210 else

211 return fa lse ;

212 }

213
214 / / Return the t ime to the next event assuming a Euler t imestep

215 v i r t u a l double t ime_to_event ( ) {

216 double h = hazard ( s ) ;

217 / / I f hazard i s too c lose to zero ( or negat ive ) , se t i t to a very smal l

218 / / ( nonzero ) value to guarantee the event w i l l be outs ide the cu r ren t t ime

219 / / s tep :

220 i f ( h < zerohazard ) h = zerohazard ;

221 / * s td : : cout <<"Event : "<< t h i s−>name( ) < <" ; hazard : "<<h ; * /

222 / * s td : : cout < <"; cumulat ive hazard : "<< h_cumulat ive ; * /

223 / * s td : : cout < <"; random draw : "<<rexp <<std : : endl ; * /

224 return ( rexp − h_cumulat ive ) / h ;

225 }

226
227 / / Step the cumulat ive hazard forward i n t ime

228 v i r t u a l void step ( double ts , s t a t e * i n i t ) {

229 / / Update the cumulat ive hazard :

230 h_cumulat ive += t s * hazard ( i n i t ) ;

231 }

232
233 v i r t u a l const char * name ( ) { return " unspec i f i ed " ; }

234
235 / / We do want to a l low polymorphic d e l e t i o n so we need a v i r t u a l

236 / / d e s t r u c t o r to ensure t h a t d e l e t i o n i s def ined

237 v i r t u a l ~stochEvent ( ) { }

238
239 protected :

240 / / I n t e r f a c e d e f i n i t i o n , so keep the cons t ruc to r p ro tec ted

241 e x p l i c i t stochEvent ( s t a t e * s , parameters * p , gs l_rng * r )

242 : rexp ( 0 . 0 ) , h_cumulat ive ( 0 . 0 ) , r ( r ) , s ( s ) , p ( p ) { }

243
244 double rexp ; / / Random draw from Exp ( 1 ) d i s t r i b u t i o n



322 Appendix D. The hybrid stochastic/deterministic model of the Tum−CI MFL

245 double h_cumulat ive ; / / Cumulat ive hazard

246 gs l_rng * r ;

247
248 private :

249 / / noncopyable

250 stochEvent ( const stochEvent &) ;

251 stochEvent & operator = ( const stochEvent &) ;

252
253 / / Keep these p r i v a t e so t h a t der ived classes can a l t e r n a t i v e l y work w i th

254 / / c h i l d r e n o f ’ s t a t e ’ or ’ parameters ’ c lasses

255 s ta te * s ;

256 parameters * p ;

257 } ;

258
259 / / Def ine a compare f u n c t i o n o f po in te r s to ’ stochEvent ’ ob jec ts s ince we w i l l

260 / / want to f i n d the next event according to i t s ’ t_event ’ from a vec to r o f

261 / / po i n te r s to stochEvent ob jec ts

262 i n l i n e bool compare ( stochEvent * a , stochEvent * b )

263 { return a−>t ime_to_event ( ) < b−>t ime_to_event ( ) ; }

264
265 / / Al low double d ispatch between events and s ta tes :

266 i n l i n e double s ta te : : ca l l _even t ( stochEvent * event ) { return event−>hazard ( th is ) ; }

267
268 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

269 / / ’ s tochSimula tor ’ base c lass

270 / / * * * * * * * * * * * * * * * * * * * * * * * * * * *
271 / / S tochas t i c s imu la to rs should i n h e r i t from t h i s c lass by a l l o c a t i n g a set o f

272 / / poss ib le s t o c h a s t i c events to the events vec to r .

273
274 template <class StateType > class s tochSimula tor : public s imu la to r {

275 public :

276 v i r t u a l void i n i t i a l i s e ( ) ;

277 v i r t u a l i n l i n e void step ( double ) ;

278 / / Add i n an o p t i o n a l d e t e r m i n i s t i c step

279 v i r t u a l i n l i n e void step_detrm ( double t s ) { } ;

280
281 protected :

282 / / I n t e r f a c e d e f i n i t i o n , so keep the cons t ruc to r and d e s t r u c t o r p ro tec ted

283 e x p l i c i t s tochSimula tor ( StateType * s , parameters * p ,

284 e q u i l i b r a t o r * eq , gs l_rng * r , double t s =1.0)

285 : s imu la to r ( s , p , eq , t s ) , r ( r ) , s ( s ) , eq ( eq ) { }

286 ~stochSimula tor ( ) {

287 / / Ensure t h a t a l l o c a t e d events are destroyed :

288 i f ( ! events . empty ( ) )
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289 for ( e v e n t I t e r a t o r i t e r = events . begin ( ) ; i t e r != events . end ( ) ; ++ i t e r )

290 delete ( * i t e r ) ;

291 }

292
293 gs l_rng * r ;

294 std : : vector <stochEvent *> events ; / / Vector o f poss ib le s t o c h a s t i c events

295 typedef s td : : vector <stochEvent * > : : c o n s t _ i t e r a t o r e v e n t I t e r a t o r ;

296
297 private :

298 / / noncopyable by i n h e r i t a n c e

299
300 StateType * s ;

301 e q u i l i b r a t o r * eq ;

302 } ;

303
304 template <class StateType >

305 i n l i n e void stochSimulator <StateType > : : i n i t i a l i s e ( ) {

306 / / Make sure we don ’ t i n i t i a l i s e ( or s t a r t ) s imu la t i on i f our s imu la to r has

307 / / no events ( o therwise we w i l l get segmentat ion f a u l t s . . . )

308 i f ( events . empty ( ) )

309 throw " E r ro r i n s t o c h a s t i c s imu la to r : events stack i s empty ! " ;

310
311 / / Draw random times from each of the d i s t r i b u t i o n s

312 s td : : for_each ( events . begin ( ) , events . end ( ) , s td : : mem_fun(& stochEvent : : sample ) ) ;

313 }

314
315 template <class StateType >

316 i n l i n e void stochSimulator <StateType > : : step ( double t s ) {

317 / / This step i s e s s e n t i a l l y an ODE i n t e g r a t i o n step

318 / / For the moment , Euler i n t e g r a t i o n steps are taken to keep the a lgo r i t hm

319 / / s imple ( l a t e r i t might be good to perform Runge−Kut ta i n t e g r a t i o n ) .

320 / / The s imu la to r needs to update the d e t e r m i n i s t i c reac t ions , but a lso

321 / / needs to i n t e g r a t e over any time−vary ing s t o c h a s t i c hazards .

322
323 / / We need to save the i n i t i a l s t a t e so t h a t i t can be re−used to update

324 / / both the d e t e r m i n i s t i c reac t i ons and e v o l u t i o n o f the hazards :

325 StateType i n i t ( * s ) ;

326
327 / / F i r s t check i f any events are due f o r f i r i n g :

328 e v e n t I t e r a t o r w i l l _ f i r e ;

329 for ( w i l l _ f i r e = events . begin ( ) ; w i l l _ f i r e != events . end ( ) ; ++ w i l l _ f i r e )

330 i f ( ( * w i l l _ f i r e )−> w i l l _ f i r e ( t s ) ) break ;

331
332 i f ( w i l l _ f i r e != events . end ( ) ) {
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333 / / An event w i l l f i r e t h i s step , so est imate event f i r i n g t imes and p ick

334 / / the minimum :

335 e v e n t I t e r a t o r nextEvent = s td : : min_element ( events . begin ( ) , events . end ( ) ,& compare ) ;

336
337 double ts_event = ( * nextEvent)−>t ime_to_event ( ) ;

338
339 / / F i r s t step the d e t e r m i n i s t i c reac t i ons forwards to the event :

340 step_detrm ( ts_event ) ;

341
342 / / Then step each s t o c h a s t i c hazard forwards to the event :

343 for ( e v e n t I t e r a t o r i t e r = events . begin ( ) ; i t e r != events . end ( ) ; ++ i t e r )

344 ( * i t e r )−>step ( ts_event , & i n i t ) ;

345
346 / / Update the s ta te t ime :

347 s−>t += ts_event ;

348
349 / / F i n a l l y , take the s t o c h a s t i c jump :

350 ( * nextEvent)−> f i r e ( ) ;

351 / / And sample a new random number :

352 ( * nextEvent)−>sample ( ) ;

353 } else {

354 / / F i r s t step the d e t e r m i n i s t i c reac t i ons forwards :

355 step_detrm ( t s ) ;

356
357 / / Then step each s t o c h a s t i c hazard forwards :

358 for ( e v e n t I t e r a t o r i t e r = events . begin ( ) ; i t e r != events . end ( ) ; ++ i t e r )

359 ( * i t e r )−>step ( ts , & i n i t ) ;

360 / / Update the s ta te t ime

361 s−>t += t s ;

362 }

363
364 / / Once the ODE i n t e g r a t i o n step has completed , f i n i s h by e q u i l i b r a t i n g

365 / / any f a s t reac t i ons :

366 eq−>e q u i l i b r a t e ( ) ;

367 }

368
369 #endif / * MODELINTERFACES_H * /

D.3 Classes for simulation of the MFL

D.3.1 mflLibrary.h

The first part of mflLibrary.h defines C++ structures that contain parameters used when
modelling the Tum−CI MFL. A number of different parameter sets were used, but the first
exemplifies the general syntax of these structures. The other parameter sets are omitted
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for brevity.

1 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

2 / / m f l L i b r a r y . h :

3 / / Def ine the procedures f o r model l ing MFL−l i k e genet ic networks .

4
5 # i fndef MFLLIBRARY_H

6 #define MFLLIBRARY_H

7
8 #include " mode l in te r faces . h "

9 #include <cmath>

10 #include <gs l / gs l_rng . h>

11 #include <vector >

12
13 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

14 / / ’MFLparams ’ s t r u c t u r e

15 / / * * * * * * * * * * * * * * * * * * * * *
16 / / A s t r u c t u r e f o r ho ld ing a l l the constants necessary f o r making c a l c u l a t i o n s

17 / / from a given s ta te .

18
19 struct MFLparams : public parameters {

20 / / Copy numbers

21 double genome , PtCopy , pRcopy , cSi tes , nM_per_atom , ConcCIsi tes ;

22 / / Parameters used f o r model l ing c e l l volume :

23 double Tdbl , V i n i t , Vrate , PartProb , Vscale , VrateDt , PartProbDt ;

24 / / Product ion and degradat ion

25 double PcBasal , PcMax , Pt , Pz , Dc , Dt , Dz , Mz, uni ts_per_conc ;

26 / / Parameters used when f i t t i n g the model to data :

27 double P t I n i t S c a l e , DtScale , LOscale , HOscale ;

28 / / S tochas t i c parameters

29 double PcMaxBurstRate , PtMaxBurstRate , PzMaxBurstRate ;

30 double PcBurstSize , PtBurstSize , PzBurstSize ;

31 double DegEvents ;

32 / / E q u i l i b r i a Parameters

33 double Hr , Er , Hs , Es ;

34 / / NB: the f o l l o w i n g parameters are not c u r r e n t l y used .

35 double Ds , kson , k s o f f ;

36
37 void p r i n t ( s td : : ostream& out = std : : cout ) const {

38 out <<" * * * * Copy Numbers * * * * "<<std : : endl ;

39 out <<"Genome: "<<genome<<" ; PtCopy : "<<PtCopy<<" ; pRcopy : "<<pRcopy ;

40 out <<" ; cS i tes : "<<cSi tes <<" ; ConcCIsi tes : "<<ConcCIsites <<std : : endl ;

41
42 out <<" * * * * Model l ing c e l l volume * * * * "<<std : : endl ;

43 out <<" Doubl ing t ime : "<<Tdbl <<" ; V i n i t : "<< V i n i t << " ; Vscale : "<<Vscale ;
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44 out <<" ; Vrate : "<<Vrate <<" ; VrateDt : "<<VrateDt <<std : : endl ;

45 out <<" ; PartProb : "<<PartProb <<" ; PartProbDt : "<<PartProbDt <<std : : endl ;

46
47 out <<" * * * * Product ion (nM/ min ) * * * * "<<std : : endl ;

48 out <<" PcBasal : "<<PcBasal<<" ; PcMax : "<<PcMax<<" ; Pt : "<<Pt<<std : : endl ;

49 out <<" * * * * LacZ Product ion ( Un i ts / min ) * * * * "<<std : : endl ;

50 out <<" uni ts_per_conc : "<<uni ts_per_conc <<" ; Pz : "<<Pz<<std : : endl ;

51
52 out <<" * * * * Parameters used to f i t the model to data * * * * "<<std : : endl ;

53 out <<" P t I n i t S c a l e : "<< P t I n i t S c a l e <<" ; DtScale : "<<DtScale ;

54 out <<" ; LOscale : "<<LOscale<<" ; HOscale : "<<HOscale<<std : : endl ;

55
56 out <<" * * * * Degradat ion * * * * "<<std : : endl ;

57 out <<"Dc : "<<Dc<<" ; Dt : "<<Dt<<" ; Ds : "<<Ds<<" ; Dz : "<<Dz<<std : : endl ;

58
59 out <<" * * * * S tochas t i c * * * * "<<std : : endl ;

60 out <<" PcMaxBurstRate : "<<PcMaxBurstRate<<" ; PcBurstSize : "<<PcBurstSize <<std : : endl ;

61 out <<" PtMaxBurstRate : "<<PtMaxBurstRate <<" ; PtBurs tS ize : "<<PtBurstSize <<std : : endl ;

62 out <<" PzMaxBurstRate : "<<PzMaxBurstRate<<" ; PzBurstSize : "<<PzBurstSize <<std : : endl ;

63 out <<" DegEvents : "<<DegEvents<<" per minute ; r e l a t i v e degSizes : " ;

64 out <<100*Dc / DegEvents<<"% ( Ct ) , " <<100*Dt / DegEvents<<"% ( Tt ) "<<std : : endl ;

65 out <<" Ct degSizes i n molecules : "<<PcBasal / ( DegEvents * nM_per_atom)<< " ( min ) , " ;

66 out <<PcMax / ( DegEvents * nM_per_atom)<< " (max) "<<std : : endl ;

67 out <<" Tt degSizes i n molecules : "<<Pt / ( ( 1 + std : : pow(PcMax / ( Dc* Er ) , Hr ) ) * DegEvents * nM_per_atom ) ;

68 out <<" ( min ) , "<<Pt / ( DegEvents * nM_per_atom)<< " (max) "<<std : : endl ;

69
70 out <<" * * * * E q u i l i b r i a * * * * "<<std : : endl ;

71 out <<" Hr : "<<Hr<<" ; Er : "<<Er<<" ; Hs : "<<Hs<<" ; Es : "<<Es<<std : : endl ;

72 out <<" kson : "<<kson<<" ; k s o f f : "<<kso f f <<std : : endl ;

73 }

74
75 e x p l i c i t MFLparams ( bool TumDeg = true ) {

76 d e f a u l t I n i t ( ) ;

77 i f ( ! TumDeg) changeDt (Dc ) ;

78 }

79
80 e x p l i c i t MFLparams ( double PcBS, double PtBS , double NewEs=1175.0 ,double newDt=0.0693) {

81 d e f a u l t I n i t ( ) ;

82 changeDt ( newDt ) ;

83 Es = NewEs ;

84
85 / / Est imated burs t s izes

86 PcBurstSize = PcBS ;

87 PtBurs tS ize = PtBS ;
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88 / / Ca lcu la ted burs t ra tes

89 PcMaxBurstRate = PcMax / PcBurstSize ;

90 PtMaxBurstRate = Pt / PtBurs tS ize ;

91 }

92
93 e x p l i c i t MFLparams ( double newDt ) {

94 d e f a u l t I n i t ( ) ;

95 changeDt ( newDt ) ;

96 }

97
98
99 protected :

100 void changeDt ( double newDt ) {

101 Pt = Pt / Dt *newDt ;

102 Dt = newDt ;

103 PtBurs tS ize = Pt / PtMaxBurstRate ; / / (nM)

104 uni ts_per_conc = Pz / Pt ;

105 }

106
107 private :

108 void d e f a u l t I n i t ( ) {

109 / / DNA elements

110 genome = 2 . 3 ; / / Number o f copies o f the genome per c e l l

111 PtCopy = 10 .0 ; / / Number o f copies o f pR−tum r e l a t i v e to the genome

112 pRcopy = 12 .0 ; / / Number o f copies o f pR r e l a t i v e to the genome

113 cS i tes = 7 . 0 ; / / Number o f CI dimer b ind ing s i t e s per pR promoter

114 nM_per_atom = 1.47 ; / / Conversion from absolu te number per c e l l to nM

115
116 / / Ca lcu la te the concen t ra t i on o f a v a i l a b l e s i t e s f o r CI dimer b ind ing

117 ConcCIsi tes = genome * pRcopy * cS i tes * nM_per_atom ;

118
119 / * * * * * Product ion & Degradat ion * * * * * /

120
121 / / Product ion ra tes (nM/ min )

122 PcBasal = 14 .6 ; PcMax = 326.8 ; Pt = 2050.0;

123
124 / / Degradat ion ra tes ( min^−1)

125 Dc = 0.0173; Dt = 0.0693;

126
127 / / Degradat ion ra te o f lacZ i s the same as CI

128 Dz = Dc ;

129 / / Product ion ra te o f lacZ i s the unrepressed s teadys ta te value ( i n u n i t s )

130 / / m u l t i p l i e d by the degradat ion ra te .

131 Pz = 850.0 * Dz ;
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132 / / The lacZ t r a n s c r i p t i o n ra te ( i n u n i t s / min ) can be determined from the

133 / / Pt promoter produc t ion ra te ( i n nM/ min , where Pt g ives the maximum

134 / / r a te ) through a convers ion v ia uni ts_per_conc .

135 uni ts_per_conc = Pz / Pt ;

136
137 / * * * * * S tochas t i c Parameters * * * * * /

138
139 / / Est imated burs t ra tes i n RNAP f i r i n g s per minute

140 PcMaxBurstRate = 4 . 3 ;

141 PzMaxBurstRate = 7 . 3 ; / / NB: value f o r s i n g l e copy pR r e p o r t e r

142 PtMaxBurstRate = PtCopy * PzMaxBurstRate ; / / NB: value f o r PtCopies o f pR

143
144 / / Ca lcu la ted burs t s izes

145 PcBurstSize = PcMax / PcMaxBurstRate ; / / (nM)

146 PtBurs tS ize = Pt / PtMaxBurstRate ; / / (nM)

147 PzBurstSize = Pz / PzMaxBurstRate ; / / ( u n i t s )

148
149 / / Number o f s t o c h a s t i c degradat ion events to occur per minute

150 DegEvents = 10 .0 ; / / per minute

151 / / NB: to ensure d i f f e r e n t t imesca les f o r degradat ion and product ion , set

152 / / t h i s parameter to 600 to get 10 degradat ion events per second . 20 per

153 / / minute w i l l mean t h a t a t low f i r i n g rates , cont inuous degradat ion w i l l

154 / / never occur over a t imesca le where the consequent change i n PtRate w i l l

155 / / have an impact .

156
157 / * * * * * E q u i l i b r i a Parameters * * * * * /

158
159 / / pR repress ion

160 Hr = 1 . 2 ; Er = 690.0 ; / / (nM)

161 / / Tum−CI b ind ing

162 Hs = 2 . 5 ; Es = 1175.0; / / (nM)

163
164 / * * * * * Unused Parameters * * * * * /

165
166 Ds = 0.0173; / / ( min^−1)

167 kson = 3 .73 ; / / (nM^−Hs . min^−1)

168 k s o f f = 1.77e+8; / / ( min^−1)

169 }

170 } ;

After defining the parameter sets, mflLibrary.h continues by defining state structures
specific to the MFL, and a cohort of stochastic events that can be used in various formula-
tions of the stochastic model.

488 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
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489 / / State s t r u c t u r e s

490 / / * * * * * * * * * * * * * * * *
491 / / S t ruc tu res f o r con ta in ing the s ta te o f the model

492
493 struct repress : v i r t u a l public s ta te {

494 e x p l i c i t repress ( )

495 : PcR( 1 0 . 0 ) , PtR ( 1 0 . 0 ) , Ct (10u , vo l ) { }

496 double PcR;

497 double PtR ;

498 Var iab le Ct ;

499 / / Al low double d ispatch between events and s ta tes :

500 double ca l l _even t ( stochEvent * event ) { return event−>hazard ( th is ) ; }

501 } ;

502
503 struct mf l : v i r t u a l public repress {

504 e x p l i c i t mfl ( ) : Tt (10u , vo l ) { }

505 Var iab le Tt ;

506 / / Al low double d ispatch between events and s ta tes :

507 double ca l l _even t ( stochEvent * event ) { return event−>hazard ( th is ) ; }

508 } ;

509
510 / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
511 Stochas t i c Event D e f i n i t i o n s

512 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

513
514 / * * * * * Pc Product ion v a r i a n t s * * * * * /

515
516 / / S tochas t i c produc t ion from Pc . Burst s i ze constant .

517 class stochPcNoMsg : public stochEvent {

518 public :

519 stochPcNoMsg ( repress * s , MFLparams* p , gs l_rng * r )

520 : stochEvent ( s , p , r ) , p ( p ) , s ( s )

521 { h_scale = 1/p−>PcBurstSize ; }

522
523 / / Double d ispatch to the s ta te−s p e c i f i c f u n c t i o n

524 double hazard ( s ta t e * i n i t ) { return i n i t −>ca l l _even t ( th is ) ; }

525 double hazard ( repress * i n i t ) { return i n i t −>PcR * h_scale ; }

526 double hazard ( mf l * i n i t ) {

527 / * s td : : cout <<"stochPcNoMsg− PcR: "<< i n i t −>PcR ; * /

528 / * s td : : cout < <"; h_scale : "<<h_scale <<std : : endl ; * /

529 return i n i t −>PcR * h_scale ; }

530
531 void f i r e ( ) {

532 s−>Ct += p−>PcBurstSize ;
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533 }

534
535 protected : MFLparams* p ; double h_scale ;

536 private : repress * s ;

537 } ;

538
539 / / S tochas t i c produc t ion from Pc . Burst s i ze s t o c h a s t i c .

540 class stochPc : public stochPcNoMsg {

541 public :

542 stochPc ( repress * s , MFLparams* p , gs l_rng * r )

543 : stochPcNoMsg ( s , p , r ) , s ( s ) { }

544 void f i r e ( ) {

545 s−>Ct += p−>PcBurstSize * (− l og ( gsl_rng_uni form_pos ( r ) ) ) ;

546 }

547 const char * name ( ) { return " stochPc " ; }

548 private : repress * s ;

549 } ;

550
551 / / T ru l y d i s c r e t e produc t ion o f CI molecules ( i . e . , molecules are added

552 / / as counts and not as volume−dependent concen t ra t ions ) .

553 class stochPcDiscrete : public stochPc {

554 public :

555 stochPcDiscrete ( repress * s , MFLparams* p , gs l_rng * r )

556 : stochPc ( s , p , r ) , s ( s ) {

557 p_geom = p−>Vscale / p−>PcBurstSize ;

558 }

559 void f i r e ( ) {

560 / / For t r u l y d i s c r e t e product ion , molecules should be added as counts

561 / / ( i . e . , not added as concen t ra t ions t h a t have a volume dependence ) . So

562 / / choose a burs t s i ze from the geometr ic d i s t r i b u t i o n wi th mean

563 / / 1 /p_geom = 1.5* V i n i t * PcBurstSize ( 1 . 5 * V i n i t i s the mean c e l l volume

564 / / each generat ion , so should c o r r e c t l y sca le the PcBurstSize from

565 / / molecules / c e l l to a count ) :

566 s−>Ct += gsl_ran_geometr ic ( r , p_geom ) ;

567 }

568 protected : double p_geom ;

569 private : repress * s ;

570 } ;

571
572 / * * * * * Pt Product ion v a r i a n t s * * * * * /

573
574 / / S tochas t i c r e p o r t e r produc t ion from Pt . Burst s i ze s t o c h a s t i c .

575 class stochPtReport : public stochEvent {

576 public :
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577 stochPtReport ( repress * s , MFLparams* p , gs l_rng * r )

578 : stochEvent ( s , p , r ) , p ( p ) , s ( s )

579 { h_conversion = p−>uni ts_per_conc / p−>PzBurstSize ; }

580
581 / / Double d ispatch to the s ta te−s p e c i f i c f u n c t i o n

582 double hazard ( s ta t e * i n i t ) { return i n i t −>ca l l _even t ( th is ) ; }

583 / / Instantaneous hazard o f r e p o r t e r produc t ion a t a given s ta te :

584 double hazard ( repress * i n i t ) {

585 / / The Pt ra te ( monomers ) must be converted to r e p o r t e r u n i t s

586 return i n i t −>PtR * h_conversion ;

587 }

588 double hazard ( mf l * i n i t ) {

589 / / The Pt ra te ( monomers ) must be converted to r e p o r t e r u n i t s

590 return i n i t −>PtR * h_conversion ;

591 / * s td : : cout <<" stochPtReport ; convers ion : "<< h_conversion ; * /

592 / * s td : : cout <<"PtR : "<< i n i t −>PtR<<std : : endl ; * /

593 }

594
595 void f i r e ( ) {

596 s−>Report += p−>PzBurstSize * (− l og ( gsl_rng_uni form_pos ( r ) ) ) ;

597 }

598
599 const char * name ( ) { return " stochPtReport " ; }

600 protected : double h_conversion ; MFLparams* p ;

601 private : repress * s ;

602 } ;

603
604 / / T ru l y d i s c r e t e produc t ion o f r e p o r t e r molecules ( i . e . , molecules are added

605 / / as counts and not as volume−dependent concen t ra t ions ) .

606 class s tochPtRepor tD iscre te : public stochPtReport {

607 public :

608 s tochPtRepor tD iscre te ( repress * s , MFLparams* p , gs l_rng * r )

609 : s tochPtReport ( s , p , r ) , s ( s ) {

610 p_geom = p−>Vscale / p−>PzBurstSize ;

611 }

612 void f i r e ( ) {

613 / / For t r u l y d i s c r e t e product ion , molecules should be added as counts

614 / / ( i . e . , not added as concen t ra t ions t h a t have a volume dependence ) . So

615 / / choose a burs t s i ze from the geometr ic d i s t r i b u t i o n wi th mean

616 / / 1 /p_geom = 1.5* V i n i t * PzBurstSize ( 1 . 5 * V i n i t i s the mean c e l l volume

617 / / each generat ion , so should c o r r e c t l y sca le the PzBurstSize from

618 / / molecules / c e l l to a count ) :

619 s−>Report += gsl_ran_geometr ic ( r , p_geom ) ;

620 }
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621 protected : double p_geom ;

622 private : repress * s ;

623 } ;

624
625 / / S tochas t i c Tum produc t ion from Pt . Burst s i ze s t o c h a s t i c .

626 class stochPtTum : public stochEvent {

627 public :

628 stochPtTum ( mf l * s , MFLparams* p , gs l_rng * r )

629 : stochEvent ( s , p , r ) , p ( p ) , s ( s )

630 { h_scale = 1/p−>PtBurs tS ize ; }

631
632 / / Double d ispatch to the s ta te−s p e c i f i c f u n c t i o n

633 double hazard ( s ta t e * i n i t ) { return i n i t −>ca l l _even t ( th is ) ; }

634 double hazard ( mf l * i n i t ) {

635 return i n i t −>PtR * h_scale ;

636 }

637
638 void f i r e ( ) {

639 s−>Tt += p−>PtBurs tS ize * (− l og ( gsl_rng_uni form_pos ( r ) ) ) ;

640 }

641
642 const char * name ( ) { return " stochPtTum " ; }

643
644 protected : double h_scale ; MFLparams* p ;

645 private : mf l * s ;

646 } ;

647
648 / / T ru l y d i s c r e t e produc t ion o f Tum molecules ( i . e . , molecules are added as

649 / / counts and not as volume−dependent concen t ra t ions ) .

650 class stochPtTumDiscrete : public stochPtTum {

651 public :

652 stochPtTumDiscrete ( mf l * s , MFLparams* p , gs l_rng * r )

653 : stochPtTum ( s , p , r ) , s ( s ) {

654 p_geom = p−>Vscale / p−>PtBurs tS ize ;

655 }

656 void f i r e ( ) {

657 / / For t r u l y d i s c r e t e product ion , molecules should be added as counts

658 / / ( i . e . , not added as concen t ra t ions t h a t have a volume dependence ) . So

659 / / choose a burs t s i ze from the geometr ic d i s t r i b u t i o n wi th mean

660 / / 1 /p_geom = 1.5* V i n i t * PtBurs tS ize ( 1 . 5 * V i n i t i s the mean c e l l volume

661 / / each generat ion , so should c o r r e c t l y sca le the PtBurs tS ize from

662 / / molecules / c e l l to a count ) :

663 s−>Tt += gsl_ran_geometr ic ( r , p_geom ) ;

664 }
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665 protected : double p_geom ;

666 private : mf l * s ;

667 } ;

668
669 / * * * * * Ce l l d i v i s i o n * * * * * /

670
671 / / Here , c e l l d i v i s i o n i s def ined to be a non−s t o c h a s t i c event t h a t occurs

672 / / r e g u l a r l y a f t e r each per iod o f c e l l d i v i s i o n . So ove r r i de each of the

673 / / s t o c h a s t i c func t ions , rep lac ing wi th d e t e r m i n i s t i c ones :

674 class c e l l D i v i s i o n : public stochEvent {

675 public :

676 c e l l D i v i s i o n ( s t a te * s , MFLparams* p , gs l_rng * r )

677 : stochEvent ( s , p , r ) , s ( s ) {

678 / / The hazard here i s s imply the ra te o f growth i n volume :

679 h_scale = p−>Vrate ;

680 / / The i n i t i a l volume i s a lso the cap on h_cumulat ive , s ince c e l l s

681 / / double i n s ize :

682 V i n i t = p−>V i n i t ;

683 / / The p r o b a b i l i t y used f o r p a r t i t i o n i n g species by the b inomia l

684 / / d i s t r i b u t i o n :

685 PartProb = p−>PartProb ;

686 }

687
688 / / Overr ide the sampling f u n c t i o n to make c e l l d i v i s i o n d e t e r m i n i s t i c a l l y

689 / / p e r i o d i c :

690 void sample ( ) {

691 h_cumulat ive = 0; / / Reset the volume growth counter

692 rexp = V i n i t ; / / ’ rexp ’ i n t h i s ins tance i s the t a r g e t growth i n volume

693 }

694
695 / / Hazard has no s ta t e dependence , so do not need to double d ispatch i n

696 / / t h i s case :

697 double hazard ( s ta t e * i n i t ) { return h_scale ; }

698 double hazard ( repress * i n i t ) { return h_scale ; }

699 double hazard ( mf l * i n i t ) { return h_scale ; }

700
701 void f i r e ( ) {

702 / / Reset the volume to i n i t i a l :

703 s−>vo l = V i n i t ;

704
705 / / S p l i t each popu la t ion i n h a l f according to the b inomia l d i s t r i b u t i o n :

706 s−>Report = gs l_ ran_b inomia l ( r , PartProb , s−>Report ) ;

707 / / NB: the Var iab le c lass a u t o m a t i c a l l y handles convers ion to and from

708 / / unsigned i n t s i n the above .
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709 }

710 protected : double h_scale , PartProb , V i n i t , V f i n a l ;

711 private : s t a t e * s ;

712 } ;

713
714 class ce l lD i v i s i onRepress : public c e l l D i v i s i o n {

715 public :

716 ce l lD i v i s i onRepress ( repress * s , MFLparams* p , gs l_rng * r )

717 : c e l l D i v i s i o n ( s , p , r ) , s ( s ) { }

718 void f i r e ( ) {

719 / * s td : : cout < <"** Before s p l i t * * Vol : "<<s−>vo l ; * /

720 / * s td : : cout < <"; Ct : "<<s−>Ct <<" / "<< s t a t i c _ c a s t < u in t >(s−>Ct)<< std : : endl ; * /

721
722 c e l l D i v i s i o n : : f i r e ( ) ; / / Run the parent event f i r s t

723 / / A d d i t i o n a l l y s p l i t CI popu la t ion i n h a l f :

724 s−>Ct = gs l_ ran_b inomia l ( r , PartProb , s−>Ct ) ;

725
726 / * s td : : cout < <"** A f t e r s p l i t * * Vol : "<<s−>vo l ; * /

727 / * s td : : cout < <"; Ct : "<<s−>Ct <<" / "<< s t a t i c _ c a s t < u in t >(s−>Ct)<< std : : endl ; * /

728 }

729 private : repress * s ;

730 } ;

731
732 class ce l lD iv i s ionMFL : public ce l lD i v i s i onRepress {

733 public :

734 ce l lD iv i s ionMFL ( mf l * s , MFLparams* p , gs l_rng * r )

735 : ce l lD i v i s i onRepress ( s , p , r ) , s ( s ) { }

736 void f i r e ( ) {

737 ce l lD i v i s i onRepress : : f i r e ( ) ; / / Run the parent event f i r s t

738 / / A d d i t i o n a l l y s p l i t Tum popu la t ion i n h a l f :

739 s−>Tt = gs l_ ran_b inomia l ( r , PartProb , s−>Tt ) ;

740 }

741 private : mf l * s ;

742 } ;

743
744 #endif / * MFLLIBRARY_H * /

D.3.2 equilibration.h

1 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

2 / / e q u i l i b r a t i o n . h :

3 / / Def ine p ro toco l s f o r e q u i l i b r a t i n g the Tum−CI and CI−pR e q u i l i b r i a i n the

4 / / MFL s t r a i n s .

5
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6 # i fndef EQUILIBRATION_H

7 #define EQUILIBRATION_H

8
9 #include " m f l L i b r a r y . h "

10 #include <gs l / gs l_ roo ts . h>

11 #include <vector >

12 #include <algor i thm >

13
14 / / To save on computing time , set a th resho ld squared d i f f e r e n c e t h a t i s

15 / / t o l e r a b l e when r e c a l c u l a t i n g the h i l l c o e f f i c i e n t terms .

16 const double d i f f t h r e s h o l d = 1e−12;

17
18 / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

19 / / ’ gs lRootSolver ’ c lass

20 / / * * * * * * * * * * * * * * * * * * * * *
21 / / Class to wrap up the roo t so l v i ng a lgo r i t hm from the GSL

22
23 struct g s l E r r o r {

24 g s l E r r o r ( i n t error_code , const char * f u n c t i o n )

25 : error_code ( error_code ) , f u n c t i o n ( f u n c t i o n ) { }

26 i n t error_code ;

27 const char * f u n c t i o n ;

28 } ;

29
30 class gslRootSolver {

31 public :

32 e x p l i c i t gslRootSolver ( double r e l _ t o l = 0.0001 ,unsigned i n t max_i ter = 100)

33 : r e l _ t o l ( r e l _ t o l ) , max_i ter ( max_i ter ) , solverType ( g s l _ r o o t _ f s o l v e r _ b r e n t )

34 { so l ve r = g s l _ r o o t _ f s o l v e r _ a l l o c ( solverType ) ; }

35 ~gslRootSolver ( )

36 { g s l _ r o o t _ f s o l v e r _ f r e e ( so l ve r ) ; }

37
38 double t o le rance ( ) { return r e l _ t o l ; }

39 unsigned i n t maxI te ra t ions ( ) { return max_i ter ; }

40 unsigned i n t p r e v I t e r a t i o n s ( ) { return i t e r ; }

41
42 double f i n d r o o t ( g s l _ f u n c t i o n * , double , double ) ;

43
44 private :

45 double r e l _ t o l ;

46 unsigned i n t i t e r ;

47 unsigned i n t max_i ter ;

48 const g s l _ r o o t _ f s o l v e r _ t y p e * solverType ;

49 g s l _ r o o t _ f s o l v e r * so l ve r ;
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50 } ;

51
52 i n l i n e double gslRootSolver : : f i n d r o o t ( g s l _ f u n c t i o n *F , double i n i tLower , double i n i t Up p e r ) {

53 / / s td : : cout << in i tLower <<" < "<< in i tUpper <<std : : endl ;

54 i t e r = 0 ;

55 i n t s ta tus = GSL_CONTINUE;

56 s ta tus = g s l _ r o o t _ f s o l v e r _ s e t ( so lver , F , in i tLower , i n i t U p pe r ) ;

57 i f ( s ta tus != GSL_SUCCESS) throw g s l E r r o r ( s ta tus , " g s l _ r o o t _ f s o l v e r _ s e t " ) ;

58
59 do {

60 ++ i t e r ;

61 / / I t e r a t e the roo t f i n d e r

62 s ta tus = g s l _ r o o t _ f s o l v e r _ i t e r a t e ( so l ve r ) ;

63 i f ( s ta tus != GSL_SUCCESS) throw g s l E r r o r ( s ta tus , " g s l _ r o o t _ f s o l v e r _ i t e r a t e " ) ;

64
65 / / Test whether the new i n t e r v a l s a t i s f i e s the s p e c i f i e d r e l a t i v e

66 / / t o le rance . NB: the t h i r d parameter to the f u n c t i o n s p e c i f i e s the

67 / / abso lu te e r ro r , which we take to be the same as the r e l a t i v e to le rance

68 / / so t h a t roo ts c lose to zero w i l l a lso converge .

69 s ta tus = g s l _ r o o t _ t e s t _ i n t e r v a l (

70 gs l_ roo t_ f so l ve r_x_ lower ( so l ve r ) ,

71 gs l_ roo t_ fso lve r_x_upper ( so l ve r ) ,

72 r e l _ t o l , r e l _ t o l ) ;

73 i f ( s ta tus != GSL_CONTINUE && s ta tus != GSL_SUCCESS)

74 throw g s l E r r o r ( s ta tus , " g s l _ r o o t _ t e s t _ i n t e r v a l " ) ;

75 } while ( s ta tus == GSL_CONTINUE && i t e r < max_i ter ) ;

76
77 i f ( s ta tus == GSL_CONTINUE)

78 throw " gs lRootSolver : : f i n d r o o t ( ) f a i l e d to converge . " ;

79 i f ( s ta tus != GSL_SUCCESS)

80 throw " gs lRootSolver : : f i n d r o o t ( ) f a i l e d . " ;

81
82 return g s l _ r o o t _ f s o l v e r _ r o o t ( so l ve r ) ;

83 }

84
85 / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

86 / / ’ eqHelper ’ c lass

87 / / * * * * * * * * * * * * * * * *
88 / / Provides he lper f u n c t i o n s f o r per forming opt imised e q u i l i b r a t i o n

89 / / c a l c u l a t i o n s .

90
91 class eqHelper {

92 public :

93 eqHelper ( ) :
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94 i nvEr ( 0 . 0 ) , invEs ( 0 . 0 ) , Hr ( 0 . 0 ) , Hs ( 0 . 0 ) ,

95 R H i l l ( 0 . 0 ) , S H i l l ( 0 . 0 ) , o ldCf ( 0 . 0 ) , o ldT f ( 0 . 0 ) { }

96
97 / / Ensure t h i s f u n c t i o n i s c a l l e d before any of the c a l c u l a t i o n fu n c t i o n s

98 / / are used

99 void i n i t i a l i s e ( MFLparams* pars ) {

100 i nvEr = 1 / pars−>Er ; invEs = 1/ pars−>Es ;

101 Hr = pars−>Hr ; Hs = pars−>Hs ;

102 }

103
104 / / Ca l cu l a t i ng ( Cf / Er ) ^ Hr

105 double c a l c R H i l l ( double Cf ) {

106 / / Do a quick t e s t to see i f Cf i s s i g n i f i c a n t l y d i f f e r e n t from the

107 / / p rev ious c a l c u l a t i o n o f R H i l l

108 double d i f f e r e n c e = Cf − oldCf ;

109 i f ( d i f f e r e n c e * d i f f e r e n c e > d i f f t h r e s h o l d ) {

110 oldCf = Cf ;

111 R H i l l = pow( Cf * invEr , Hr ) ;

112 }

113 return R H i l l ;

114 }

115
116 / / Ca l cu l a t i ng ( Tf / Es ) ^Hs

117 double c a l c S H i l l ( double Tf ) {

118 / / Do a quick t e s t to see i f Tf i s s i g n i f i c a n t l y d i f f e r e n t from the

119 / / p rev ious c a l c u l a t i o n o f S H i l l

120 double d i f f e r e n c e = Tf − o ldT f ;

121 i f ( d i f f e r e n c e * d i f f e r e n c e > d i f f t h r e s h o l d ) {

122 o ldT f = Tf ;

123 S H i l l = pow( Tf * invEs , Hs ) ;

124 }

125 return S H i l l ;

126 }

127
128 private :

129 / / Store l o c a l copies o f the requ i red parameters ; these are set from a

130 / / g iven MFLparams s t r u c t by c a l l i n g ’ i n i t i a l i s e ’

131 double invEr , invEs , Hr , Hs ;

132 / / Store l o c a l copies o f the p rev ious l y ca l cu la ted r e s u l t s so t h a t the

133 / / power c a l c u l a t i o n can be omi t ted i f the o ld values are c lose enough to

134 / / the new ones .

135 double RHi l l , S H i l l ;

136 double oldCf , o ldT f ;

137 } ;
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138
139 / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

140 / / ’ e q u i l i b r a t o r ’ c lasses

141 / / * * * * * * * * * * * * * * * * * * * * * *
142 / / The e q u i l i b r a t o r c lasses spec i f y the f u n c t i o n s t h a t are needed to update

143 / / the s ta te v a r i a b l e s t h a t are dependent on e q u i l i b r i a occur ing on much

144 / / f a s t e r t imesca les than the s imu la t i on step s ize .

145
146 / / E q u i l i b r a t o r f o r Repressor (Tum−); ignores loss o f CI to CI−pR

147 class rep ressEqu i l : public e q u i l i b r a t o r {

148 public :

149 i n l i n e rep ressEqu i l ( repress * s , MFLparams* p )

150 : e q u i l i b r a t o r ( s , p ) , p ( p ) , s ( s ) {

151 / / I n i t i a l i s e the he lper c lass based on the parameters

152 h . i n i t i a l i s e ( p ) ;

153 / / Ca lcu la te the concen t ra t i on o f a v a i l a b l e s i t e s f o r CI dimer b ind ing

154 / / ( t h i s parameter i s needed only f o r c h i l d r e n t h a t account f o r loss

155 / / o f CI dimers through CI−pR bind ing )

156 ConcCIsi tes=p−>ConcCIsi tes ;

157 }

158
159 / / Species c a l c u l a t i o n s

160 / / In the simple repressor , the amount o f f r ee CI i s s imply the t o t a l

161 / / amount o f f r ee CI

162 v i r t u a l double FreeCI ( ) { return s−>Ct ; }

163 v i r t u a l double PtRate ( ) {

164 / / Ca lcu la te the produc t ion ra te from the Pt promoter based on

165 / / the amount o f repress ion due to f ree CI

166 return p−>Pt / ( 1 + h . c a l c R H i l l ( FreeCI ( ) ) ) ;

167 }

168
169 / / E q u i l i b r a t e the s ta te

170 v i r t u a l void e q u i l i b r a t e ( ) {

171 s−>PtR = PtRate ( ) ;

172 }

173 v i r t u a l void s teadys ta te ( ) {

174 s−>Ct = s−>PcR / p−>Dc ;

175 e q u i l i b r a t e ( ) ;

176 s−>Report = p−>uni ts_per_conc * s−>PtR / p−>Dz ;

177 }

178
179 protected :

180 double ConcCIsi tes ;

181 MFLparams* p ;
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182 eqHelper h ; / / Create a l o c a l copy o f the he lper c lass

183
184 private :

185 repress * s ;

186 } ;

187
188 / / E q u i l i b r a t o r f o r Repressor (Tum−); account f o r loss o f CI to CI−pR

189 class repressEqui lCRbind : public rep ressEqu i l {

190 public :

191 e x p l i c i t repressEqui lCRbind ( repress * s , MFLparams* p )

192 : rep ressEqu i l ( s , p ) , s ( s ) {

193 / / I n i t i a l s e the wrapper g s l _ f u n c t i o n ready f o r the roo t so l ve r

194 gslRepressorPoly . f u n c t i o n = &repressEqui lCRbind : : RepressorPolyWrapper ;

195 gslRepressorPoly . params = th is ;

196 }

197
198 / / Species c a l c u l a t i o n s

199 v i r t u a l double FreeCI ( ) {

200 / / When t o t a l CI i s e f f e c t i v e l y zero , r e t u r n zero f ree CI

201 i f ( s−>Ct <= zeroconc ) return zeroconc ;

202 else return so l ve r . f i n d r o o t (& gslRepressorPoly , zeroconc , s−>Ct ) ;

203 }

204
205 protected :

206 gslRootSolver so l ve r ;

207 g s l _ f u n c t i o n gslRepressorPoly ;

208
209 s t a t i c double RepressorPolyWrapper ( double Cf , void * data ) {

210 repressEqui lCRbind * _ t h i s = stat ic_cast <repressEqui lCRbind * >( data ) ;

211 return _ th is−>RepressorPoly ( Cf ) ;

212 }

213
214 / / The polynomia l whose roo ts g ive FreeCI f o r the repressor

215 double RepressorPoly ( double Cf ) {

216 return Cf *h . c a l c R H i l l ( Cf ) + ( ConcCIsi tes − s−>Ct ) * h . c a l c R H i l l ( Cf ) + Cf − s−>Ct ;

217 }

218
219 private :

220 repress * s ;

221 } ;

222
223 / / E q u i l i b r a t o r f o r MFL (Tum+ ) ; ignores loss o f CI to CI−pR

224 class mf lEqu i l : public rep ressEqu i l {

225 public :
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226 mf lEqu i l ( mf l * s , MFLparams* p )

227 : rep ressEqu i l ( s , p ) , s ( s ) {

228 / / I n i t i a l s e g s l _ f u n c t i o n f o r roo t so l ve r

229 gslNoBindPoly . f u n c t i o n = &mf lEqu i l : : NoBindPolyWrapper ;

230 gslNoBindPoly . params = th is ;

231
232 / / I n i t i a l i s e the pre−ca l cu la ted roo t so l ve r l i m i t s g r i d :

233 i n i t G r i d ( ) ;

234 }

235
236 / / Species c a l c u l a t i o n s

237 v i r t u a l double FreeTum ( ) {

238 / / When t o t a l CI i s e f f e c t i v e l y zero , r e t u r n t o t a l Tum; note t h a t s ince

239 / / t o t a l CI thus never goes to 0 , Tf w i l l be a t l e a s t ’ d i f f t h r e s h o l d ’

240 / / l ess than s−>Tt

241 i f ( s−>Ct <= zeroconc ) return s−>Tt ;

242 / / When t o t a l Tum i s e f f e c t i v e l y zero , r e t u r n zero f ree Tum

243 i f ( s−>Tt <= zeroconc ) return zeroconc ;

244
245 / / Uncomment to so lve w i thou t the g r i d :

246 / * r e t u r n solveRoot ( zeroconc , s−>Tt−d i f f t h r e s h o l d ) ; * /

247
248 / / Find bounds f o r the so l ve r using the pre−computed g r i d :

249 i n t i = f l o o r ( s−>Ct * invStepCt ) ;

250 i n t j = f l o o r ( s−>Tt * invStepTt ) ;

251
252
253 double lower , upper ;

254
255 i f ( i < 0 | | j < 0) throw " Cannot e q u i l i b r a t e : there are negat ive concen t ra t ions . " ;

256
257 / / Check i f we are outs ide the g r i d :

258 i f ( i +1 >= nbins | | j +1 >= nbins ) {

259 / / I f we are outs ide d e f a u l t to the max and min poss ib le values :

260 lower = zeroconc ;

261 upper = s−>Tt−d i f f t h r e s h o l d ;

262 } else {

263 / / Locate the bounds on each corner o f the g r i d surrounding t h i s po in t :

264 double corners [ 4 ] ;

265 corners [ 0 ] = bounds [ i ] [ j ] ;

266 corners [ 1 ] = bounds [ i ] [ j + 1 ] ;

267 corners [ 2 ] = bounds [ i + 1 ] [ j ] ;

268 corners [ 3 ] = bounds [ i + 1 ] [ j + 1 ] ;

269
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270 / / Find the minimum and maximum values o f the g r i d

271 lower = corners [ 0 ] ;

272 upper = corners [ 0 ] ;

273 for ( i n t k = 1; k <4; ++k ) {

274 i f ( lower > corners [ k ] ) lower = corners [ k ] ;

275 i f ( upper < corners [ k ] ) upper = corners [ k ] ;

276 }

277
278 / / Output f o r debugging :

279 / * s td : : cout <<std : : endl <<"Bounds : " ; * /

280 / * s td : : cout <<bounds [ i ] [ j ] < < " , " ; * /

281 / * s td : : cout <<bounds [ i ] [ j +1 ] < <" , " ; * /

282 / * s td : : cout <<bounds [ i + 1 ] [ j ] < < " , " ; * /

283 / * s td : : cout <<bounds [ i + 1 ] [ j +1]<< std : : endl ; * /

284
285 / / Scale s l i g h t l y to avoid e r r o r s when close to a g r i d edge

286 lower *= stat ic_cast <double >(0 .999 ) ;

287 upper *= stat ic_cast <double >(1 .001 ) ;

288
289 i f ( upper > s−>Tt ) upper = s−>Tt−d i f f t h r e s h o l d ;

290 }

291
292 / / Output f o r debugging :

293 / * s td : : cout <<" i : "<< i < <" , j : "<< j < <" , Tt : "<<s−>Tt ; * /

294 / * s td : : cout < <" , lower : "<< lower < <" , upper : "<<upper ; * /

295
296 double Tf ;

297 t ry {

298 Tf = solveRoot ( lower , upper ) ;

299 } catch ( g s l E r r o r e r r ) {

300 s td : : cer r <<" Er ro r "<< e r r . error_code <<" from f u n c t i o n ’ " ;

301 s td : : cer r << e r r . f unc t i on <<" ’ "<<std : : endl ;

302 s td : : cer r <<" Root f u n c t i o n d id not s t r add le 0 . Ret ry ing . . . "<<std : : endl ;

303 Tf = solveRoot ( zeroconc , s−>Tt−d i f f t h r e s h o l d ) ;

304 }

305
306 / / Output f o r debugging :

307 / * s td : : cout < <" , Tf : "<<Tf < <" , p r e v I t e r : "<< so l ve r . p r e v I t e r a t i o n s () < < std : : endl ; * /

308
309 return Tf ;

310 }

311
312 v i r t u a l double FreeCI ( ) {

313 / / I f the t o t a l Tum i s e f f e c t i v e l y zero , r e t u r n the t o t a l CI
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314 i f ( s−>Tt <= zeroconc ) return s−>Ct ;

315 else {

316 double Tf = FreeTum ( ) ;

317 return ( s−>Tt − Tf ) / ( 2 * h . c a l c S H i l l ( Tf ) ) ;

318 }

319 }

320
321 v i r t u a l double CmplxConc ( ) {

322 / / I f the t o t a l Tum i s e f f e c t i v e l y zero , r e t u r n zero complex

323 i f ( s−>Tt <= zeroconc ) return zeroconc ;

324 else {

325 double Tf = FreeTum ( ) ;

326 return ( s−>Tt − Tf ) / 2 ;

327 }

328 }

329
330 / / E q u i l i b r a t e the s ta te

331 v i r t u a l void s teadys ta te ( ) {

332 rep ressEqu i l : : s teadys ta te ( ) ;

333 / / Make a rough guess o f t o t a l Tum concen t ra t i on by reducing the maximum

334 / / Tum concen t ra t i on by the pR repress ion t h a t would occur by t o t a l CI

335 / / ( i . e . ignore seques t ra t i on by any Tum ) .

336 s−>Tt = p−>Pt / p−>Dt / (1+pow( s−>Ct / p−>Er , p−>Hr ) ) ;

337 / / Improve the guess by one i t e r a t i o n (NB: ‘ rep ressEqu i l : : s teadys ta te ( ) ‘

338 / / c a l l s ‘ e q u i l i b r a t e ( ) ‘ , and hence ‘ FreeTum ( ) ‘ , to set s−>PtR )

339 rep ressEqu i l : : s teadys ta te ( ) ;

340 s−>Tt = s−>PtR / p−>Dt ;

341
342 / / s td : : cout <<" Steadystate params : "<< std : : endl ;

343 / / p . p r i n t ( s td : : cout ) ; s td : : cout <<std : : endl ;

344 }

345
346 protected :

347 / / Cache upper and lower l i m i t s f o r the so l ve r i n a 2D g r i d o f s ize

348 / / nbins * nbins . Index ing i s [ Ct ] [ Tt ] . The choice o f nbins=200 seems to

349 / / balance between t ime requ i red to b u i l d the ar ray versus the number o f

350 / / i t e r a t i o n s requ i red . Observe the f o l l o w i n g :

351 / / nbins =20: mean i t e r s = 5 . 3 ; generat ion t ime = 1 ms;

352 / / nbins =200: mean i t e r s = 3 ; generat ion t ime = 120 ms;

353 / / nbins =500: mean i t e r s = 2 . 5 ; generat ion t ime = 729 ms;

354 s t a t i c const i n t nbins = 200;

355 i n t maxCt , maxTt ;

356 double stepCt , stepTt , invStepCt , invStepTt ;

357 double bounds [ nbins ] [ nbins ] ;
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358
359 gslRootSolver so l ve r ;

360 g s l _ f u n c t i o n gslNoBindPoly ;

361
362 s t a t i c double NoBindPolyWrapper ( double Tf , void * data ) {

363 mf lEqu i l * _ t h i s = stat ic_cast < mf lEqu i l * >( data ) ;

364 return _ th is−>NoBindPoly ( Tf ) ;

365 }

366
367 / / The polynomia l whose roo ts g ive the FreeTum f o r the MFL

368 double NoBindPoly ( double Tf ) {

369 double S H i l l = h . c a l c S H i l l ( Tf ) ;

370 return Tf * S H i l l + ( 2 . 0 * s−>Ct − s−>Tt ) * S H i l l + Tf − s−>Tt ;

371 }

372
373 / / Make the so l ve r f u n c t i o n v i r t u a l so t h a t i t can be over r idden w i thou t

374 / / needing to change the ’ i n i t G r i d ’ or ’ FreeTum ’ f u n c t i o n s

375 v i r t u a l double solveRoot ( double lower , double upper ) {

376 return so l ve r . f i n d r o o t (& gslNoBindPoly , lower , upper ) ;

377 }

378
379 v i r t u a l void i n i t G r i d ( ) {

380 / / Ca lcu la te the maximum poss ib le d e t e r m i n i s t i c values f o r Tt and Ct and

381 / / m u l t i p l y by a f a c t o r to account f o r noise :

382 maxTt = 1 .5*p−>Pt / p−>Dt ;

383 maxCt = 1 .5*p−>PcMax / p−>Dc ;

384
385 / / Ca lcu la te the step between g r i d p o i n t s i n the ar ray :

386 stepCt = maxCt / stat ic_cast <double >( nbins ) ;

387 s tepTt = maxTt / stat ic_cast <double >( nbins ) ;

388 / / Ca lcu la te the inverse o f the step to i n i t i a l i s e f o r g r i d l o c a t i n g :

389 invStepCt = 1 . 0 / stepCt ;

390 i nvStepTt = 1 . 0 / s tepTt ;

391
392 / / I n i t i a t e the l i m i t s ar ray :

393 for ( i n t i =0; i <nbins ; ++ i ) {

394 s−>Ct = i * stepCt ;

395 for ( i n t j =0; j <nbins ; ++ j ) {

396 s−>Tt = j * s tepTt ;

397 bounds [ i ] [ j ] = solveRoot ( 0 . 0 , s−>Tt ) ;

398 / / Output f o r debugging :

399 / * s td : : cout << i < < ’ \ t ’<< j < < ’ \ t ’<<bounds [ i ] [ j ]<< std : : endl ; * /

400 }

401 }
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402 }

403
404 private :

405 mf l * s ;

406 } ;

407
408 / / E q u i l i b r a t o r f o r MFL (Tum+ ) ; accounts f o r loss o f CI to CI−pR

409 class mflEqui lCRbind : public mf lEqu i l {

410 public :

411 mflEqui lCRbind ( mf l * s , MFLparams* p ) : m f lEqu i l ( s , p ) , s ( s ) {

412 / / I n i t i a l s e g s l _ f u n c t i o n f o r roo t so l ve r

413 g s l F u l l P o l y . f u n c t i o n = &mflEqui lCRbind : : Ful lPolyWrapper ;

414 g s l F u l l P o l y . params = th is ;

415 i n i t G r i d ( ) ;

416 }

417
418 protected :

419 g s l _ f u n c t i o n g s l F u l l P o l y ;

420
421 s t a t i c double Ful lPolyWrapper ( double Tf , void * data ) {

422 mflEqui lCRbind * _ t h i s = stat ic_cast <mflEqui lCRbind * >( data ) ;

423 return _ th is−>Fu l lPo l y ( Tf ) ;

424 }

425
426 / / The polynomia l whose roo ts g ive the FreeTum f o r the MFL

427 double Fu l lPo l y ( double Tf ) {

428 double SFactor = NoBindPoly ( Tf ) ;

429 double S H i l l = h . c a l c S H i l l ( Tf ) ; / / This shouldn ’ t c a l l pow ( )

430 return ConcCIsi tes * S H i l l + SFactor *
431 (1 + pow( 2*p−>Er * S H i l l / ( s−>Tt−Tf ) ,p−>Hr ) ) ;

432 }

433
434 / / Overr ide the mf lEqu i l r oo t so l ve r f u n c t i o n

435 v i r t u a l double solveRoot ( double lower , double upper ) {

436 return so l ve r . f i n d r o o t (& gs lFu l lPo l y , lower , upper ) ;

437 }

438
439 v i r t u a l void i n i t G r i d ( ) {

440 / / Re− i n i t i a l i s e the ar ray using the new solveRoot f u n c t i o n :

441 / / TODO t h i s i s c o s t l y and should not have to be repeated . . .

442
443 / / NB: the MFL CRbind f u n c t i o n i s t r i c k i e r s ince i t blows up when Tt

444 / / gets c lose to zero or c lose to Tf , so we need to handle those cases

445 / / separa te ly . The upper l i m i t g iven to solveRoot must never be equal
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446 / / to Tt .

447
448 / / No Tum or CI g ives us zeroconc of f r ee Tum

449 bounds [ 0 ] [ 0 ] = zeroconc ;

450
451 / / No CI g ives us Tf equal to t o t a l Tum, less the d i f f t h r e s h o l d

452 for ( i n t j =1; j <nbins ; ++ j ) {

453 bounds [ 0 ] [ j ] = j * s tepTt − d i f f t h r e s h o l d ;

454 }

455
456 / / No Tum gives us zeroconc reduced by the amount o f CI

457 s−>Tt = zeroconc ;

458 for ( i n t i =1; i <nbins ; ++ i ) {

459 s−>Ct = i * stepCt ;

460 bounds [ i ] [ 0 ] = solveRoot ( 0 . 0 , zeroconc−d i f f t h r e s h o l d ) ;

461 }

462
463 for ( i n t i =1; i <nbins ; ++ i ) {

464 s−>Ct = i * stepCt ;

465 for ( i n t j =1; j <nbins ; ++ j ) {

466 s−>Tt = j * s tepTt ;

467 bounds [ i ] [ j ] = solveRoot ( 0 . 0 , s−>Tt−d i f f t h r e s h o l d ) ;

468 / / Output f o r debugging :

469 / * s td : : cout << i < < ’ \ t ’<< j < < ’ \ t ’<<bounds [ i ] [ j ]<< std : : endl ; * /

470 }

471 }

472 / / Output f o r debugging :

473 / * s td : : cout <<std : : endl <<"MFL CRbind g r i d : " ; * /

474 / * s td : : cout <<bounds [ 0 ] [ 1 3 5 ] < < " , " ; * /

475 / * s td : : cout <<bounds [ 0 ] [ 1 3 6 ] < < " , " ; * /

476 / * s td : : cout <<bounds [ 1 ] [ 1 3 5 ] < < " , " ; * /

477 / * s td : : cout <<bounds [1 ] [136] < < std : : endl ; * /

478 }

479
480 private :

481 mf l * s ;

482 } ;

483
484 #endif / * EQUILIBRATION_H * /

D.3.3 models.h

1 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

2 / / models . h : De f in ing MFL models from the l i b r a r y

3
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4 # i fndef MODELS_H

5 #define MODELS_H

6
7 #include " mode l in te r faces . h "

8 #include " m f l L i b r a r y . h "

9 #include " e q u i l i b r a t i o n . h "

10
11 / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
12 Model Templates

13 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

14
15 / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

16 / / ’ repressModel ’ c lass

17 / / * * * * * * * * * * * * * * * * * * * * * * * * *
18 / / ’ repressModel ’ descr ibes the s ta te o f a network where CI represses the pR

19 / / ( here named Pc ) promoter to produce some output r e p o r t e r a c t i v i t y .

20
21 class repressModel : public model {

22 public :

23
24 v i r t u a l void PcAct ( double PcA)

25 { s−>PcR = p−>PcBasal + PcA * ( p−>PcMax−p−>PcBasal ) ; }

26 v i r t u a l double PcAct ( ) const

27 { return ( s−>PcR−p−>PcBasal ) / ( p−>PcMax−p−>PcBasal ) ; }

28
29 v i r t u a l void i n i t L O ( )

30 { PcAct ( 0 . 0 ) ; i n i t i a l i s e ( ) ; }

31 v i r t u a l void i n i t H I ( )

32 { PcAct ( 1 . 0 ) ; i n i t i a l i s e ( ) ; }

33
34 v i r t u a l void i n i t i a l i s e ( ) {

35 s−>t = 0 . 0 ;

36 s−>vo l = p−>V i n i t ;

37 eq−>s teadys ta te ( ) ;

38 sim−> i n i t i a l i s e ( ) ;

39 }

40
41 / / Accessors & mutators

42 void Tota lCI ( double CIconc ) { s−>Ct = CIconc ; }

43 double Tota lCI ( ) const { return s−>Ct ; }

44 double PcRate ( ) const { return s−>PcR ; }

45 double FreeCI ( ) const { return eq−>FreeCI ( ) ; }

46 double PtRate ( ) const { return s−>PtR ; }

47
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48 repressModel ( repress * s , MFLparams* p , repressEqu i l * eq , s imu la to r * sim )

49 : model ( s , p , eq , sim ) , s ( s ) , p ( p ) , eq ( eq ) , sim ( sim ) { }

50
51 private :

52 repress * s ;

53 MFLparams* p ;

54 rep ressEqu i l * eq ;

55 s imu la to r * sim ;

56 } ;

57
58 / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

59 / / ’ mflModel ’ c lass

60 / / * * * * * * * * * * * * * * * *
61 / / ’ mflModel ’ extends the ’ repressModel ’ by adding i n f u n c t i o n a l i t y f o r Tum

62 / / and Tum−CI complex concen t ra t ions .

63
64 class mflModel : public repressModel {

65 public :

66
67 / / Accessors & mutators

68 void TotalTum ( double TumConc) { s−>Tt = TumConc ; }

69 double TotalTum ( ) const { return s−>Tt ; }

70 double FreeTum ( ) const { return eq−>FreeTum ( ) ; }

71 double CmplxConc ( ) const { return eq−>CmplxConc ( ) ; }

72
73 mflModel ( mf l * s , MFLparams* p , m f lEqu i l * eq , s imu la to r * sim )

74 : repressModel ( s , p , eq , sim ) , s ( s ) , eq ( eq ) { }

75
76 private :

77 mf l * s ;

78 mf lEqu i l * eq ;

79 } ;

80
81 / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
82 Model D e f i n i t i o n s

83 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

84
85 / * * * * * D e t e r m i n i s t i c s imu la to rs * * * * * /

86
87 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

88 / / ’ lacDetRepress ’ model

89 / / * * * * * * * * * * * * * * * * * * * * * * * * *
90 / / Extend basicDetRepress by a d d i t i o n a l l y s imu la t i ng r e p o r t e r degradat ion .

91
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92 class lacDetRepressSim : public s imu la to r {

93 public :

94 lacDetRepressSim ( repress * s , MFLparams* p , e q u i l i b r a t o r * eq )

95 : s imu la to r ( s , p , eq , 0 . 1 ) , s ( s ) , p ( p ) , eq ( eq ) { }

96
97 void step ( double t s ) {

98 s−>t += t s ;

99 s−>Ct += ( s−>PcR − p−>Dc*s−>Ct ) * t s ;

100 s−>Report += ( p−>uni ts_per_conc *s−>PtR − p−>Dz*s−>Report ) * t s ;

101 eq−>e q u i l i b r a t e ( ) ;

102 }

103
104 private : repress * s ; MFLparams* p ; e q u i l i b r a t o r * eq ;

105 } ;

106
107 struct lacDetRepress {

108 lacDetRepress ( MFLparams* p )

109 : eq(&s , p ) , sim(&s , p ,&eq ) , m(&s , p ,&eq ,& sim ) { }

110 repress s ; repressEqu i l eq ;

111 lacDetRepressSim sim ;

112 repressModel m;

113 } ;

114
115 struct lacCRbDetRepress {

116 lacCRbDetRepress ( MFLparams* p )

117 : eq(&s , p ) , sim(&s , p ,&eq ) , m(&s , p ,&eq ,& sim ) { }

118 repress s ; repressEqui lCRbind eq ;

119 lacDetRepressSim sim ;

120 repressModel m;

121 } ;

122
123 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

124 / / ’ detMFL ’ model

125 / / * * * * * * * * * * * * * * * * * * * * * * * * *
126 / / Add i n d e t e r m i n i s t i c Tum produc t ion & degradat ion to model the MFL

127
128 class detMFLsim : public s imu la to r {

129 public :

130 detMFLsim ( mf l * s , MFLparams* p , e q u i l i b r a t o r * eq , const double t s =0.1)

131 : s imu la to r ( s , p , eq , t s ) , s ( s ) , p ( p ) , eq ( eq ) { }

132
133 void step ( double t s ) {

134 s−>t += t s ;

135 s−>Ct += ( s−>PcR − p−>Dc*s−>Ct ) * t s ;
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136 s−>Tt += ( s−>PtR − p−>Dt *s−>Tt ) * t s ;

137 s−>Report += ( p−>uni ts_per_conc *s−>PtR − p−>Dz*s−>Report ) * t s ;

138 eq−>e q u i l i b r a t e ( ) ;

139 }

140
141 private : mf l * s ; MFLparams* p ; e q u i l i b r a t o r * eq ;

142 } ;

143
144 struct detMFL {

145 detMFL ( MFLparams* p , const double t s =0.1)

146 : eq(&s , p ) , sim(&s , p ,&eq , t s ) , m(&s , p ,&eq ,& sim ) { }

147 mfl s ; m f lEqu i l eq ;

148 detMFLsim sim ;

149 mflModel m;

150 } ;

151
152 struct detCRbMFL {

153 detCRbMFL( MFLparams* p )

154 : eq(&s , p ) , sim(&s , p ,&eq ) , m(&s , p ,&eq ,& sim ) { }

155 mfl s ; mf lEqui lCRbind eq ;

156 detMFLsim sim ;

157 mflModel m;

158 } ;

159
160 / * * * * * S tochas t i c s imu la to rs * * * * * /

161
162 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

163 / / ’ s tochDiscreteRepress ’ model

164 / / * * * * * * * * * * * * * * * * * * * * * * * * *
165 / / Hybr id s t o c h a s t i c / d e t e r m i n i s t i c s imu la t i on o f s imple pR repress ion , where

166 / / d i s c r e t e and cont inous rep resen ta t i ons o f the model s t a t e are

167 / / s imu l taneous ly t racked . This model a d d i t i o n a l l y s imula tes growth by a

168 / / l i n e a r increase i n c e l l volume wi th p e r i o d i c and c e l l d i v i s i o n events

169 / / ( b inomia l p a r t i t i o n i n g ) .

170
171 class stochDiscreteRepressSim : public stochSimulator <repress > {

172 public :

173 stochDiscreteRepressSim ( repress * s , MFLparams* p ,

174 e q u i l i b r a t o r * eq , gs l_rng * r )

175 : s tochSimulator <repress >(s , p , eq , r ) , s ( s ) , p ( p ) , eq ( eq )

176 {

177 / / P a r t i t i o n molecules a t c e l l d i v i s i o n

178 events . push_back (new ce l lD i v i s i onRepress ( s , p , r ) ) ;

179
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180 / / Note t h a t f o r t r u l y d i s c r e t e product ion , molecules should be added as

181 / / counts ( i . e . , not added as concen t ra t ions t h a t have a volume

182 / / dependence ) . So use d i s c r e t e vers ions o f each s t o c h a s t i c event .

183
184 / / D isc re te produc t ion o f CI

185 events . push_back (new stochPcDiscrete ( s , p , r ) ) ;

186 / / D isc re te produc t ion o f r e p o r t e r

187 events . push_back (new s tochPtRepor tD iscre te ( s , p , r ) ) ;

188 }

189
190 protected :

191 double D t D i f f ;

192 void step_detrm ( double t s ) {

193 / / Fast reac t i ons are handled by e q u i l i b r a t o r , so the only d e t e r m i n i s t i c

194 / / s tep i s a l i n e a r increase i n volume :

195 s−>vo l += p−>Vrate * t s ;

196 / / Note t h a t the Volume c lass then a u t o m a t i c a l l y updates a l l dependent

197 / / Var iab les

198 }

199
200 private : repress * s ; MFLparams* p ; e q u i l i b r a t o r * eq ;

201 } ;

202
203 struct stochDiscreteRepress {

204 stochDiscreteRepress ( MFLparams* p , gs l_rng * r )

205 : eq(&s , p ) , sim(&s , p ,&eq , r ) , m(&s , p ,&eq ,& sim ) { }

206 repress s ; repressEqu i l eq ;

207 stochDiscreteRepressSim sim ;

208 repressModel m;

209 } ;

210
211 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

212 / / ’ stochDiscreteMFL ’ model

213 / / * * * * * * * * * * * * * * * * * * * * * * * * *
214 / / Hybr id s t o c h a s t i c / d e t e r m i n i s t i c s imu la t i on o f the MFL where d i s c r e t e and

215 / / cont inous rep resen ta t i ons o f the model s t a t e are simulaneously t racked .

216 / / This model a d d i t i o n a l l y s imula tes growth by volume increases and c e l l

217 / / d i v i s i o n ( b inomia l p a r t i t i o n i n g ) .

218
219 class stochDiscreteMFLsim : public stochSimulator <mfl > {

220 public :

221 stochDiscreteMFLsim ( mf l * s , MFLparams* p , e q u i l i b r a t o r * eq , gs l_rng * r )

222 : s tochSimulator <mfl >(s , p , eq , r ) , s ( s ) , p ( p ) , eq ( eq )

223 {
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224 / / P a r t i t i o n molecules a t c e l l d i v i s i o n

225 events . push_back (new ce l lD iv i s ionMFL ( s , p , r ) ) ;

226
227 / / Note t h a t f o r t r u l y d i s c r e t e product ion , molecules should be added as

228 / / counts ( i . e . , not added as concen t ra t ions t h a t have a volume

229 / / dependence ) . So use d i s c r e t e vers ions o f each s t o c h a s t i c event .

230
231 / / D isc re te produc t ion o f CI

232 events . push_back (new stochPcDiscrete ( s , p , r ) ) ;

233 / / D isc re te produc t ion o f Tum

234 events . push_back (new stochPtTumDiscrete ( s , p , r ) ) ;

235 / / D isc re te produc t ion o f r e p o r t e r

236 events . push_back (new s tochPtRepor tD iscre te ( s , p , r ) ) ;

237
238 / / The d i f f e r e n c e between d i l u t i o n ra te and ra te o f loss o f Tum:

239 D t D i f f = −(p−>Dt − p−>Dc ) ; / / W i l l be p o s i t i v e f o r ’ f i t t edpa rams ’

240 }

241
242 protected :

243 double D t D i f f ;

244 void step_detrm ( double t s ) {

245 / / Fast reac t i ons are handled by e q u i l i b r a t o r , so the only d e t e r m i n i s t i c

246 / / s tep i s a l i n e a r increase i n volume :

247 s−>vo l += p−>Vrate * t s ;

248 / / Note t h a t the Volume c lass then a u t o m a t i c a l l y updates a l l dependent

249 / / Var iab les

250
251 / / Since Tum i s al lowed an a l t e r n a t i v e degradat ion ( d i l u t i o n ) ra te ,

252 / / which was f i t t e d to a ra te much slower than t h a t caused by c e l l

253 / / d i v i s i o n , a d d i t i o n a l l y model d e t e r m i n i s t i c ’ degradat ion ’ o f Tum using

254 / / the d i f f e r e n c e between Dt and D i l (NB: t h i s e f f e c t i v e l y makes f o r

255 / / exponent ia l growth i n t h i s case s ince the d i f f e r e n c e should be

256 / / negat ive , g i v i n g a p o s i t i v e c o e f f i c i e n t i n the exponent ) .

257 s−>Tt += D t D i f f * s−>Tt * t s ;

258 }

259
260 private : mf l * s ; MFLparams* p ; e q u i l i b r a t o r * eq ;

261 } ;

262
263 struct stochDiscreteMFL {

264 stochDiscreteMFL ( MFLparams* p , gs l_rng * r )

265 : eq(&s , p ) , sim(&s , p ,&eq , r ) , m(&s , p ,&eq ,& sim ) { }

266 mfl s ; m f lEqu i l eq ;

267 stochDiscreteMFLsim sim ;
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268 mflModel m;

269 } ;

270
271 #endif / * MODELS_H * /

D.4 Running the simulator

1 / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

2 / / t imecourse . cpp

3 / / Simulate and r e t u r n a s i n g l e t ime course f o r var ious models

4 / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

5
6 #include <Rcpp . h>

7 #include " pch . h "

8 #include " mode l in te r faces . h "

9 #include " models . h "

10
11 using namespace std ;

12 using namespace Rcpp ;

13
14 namespace timecourseNamespace {

15
16 / / Conta iner f o r s t o r i n g repressor model output

17 struct repressArray {

18 vector <double> t ime ;

19 vector <double> PcR ;

20 vector <double> Ct ;

21 vector <double> Cf ;

22 vector <double> PtR ;

23 vector <double> Report ;

24 } ;

25
26 / / Conta iner f o r s t o r i n g MFL model output

27 struct mf lAr ray {

28 vector <double> t ime ;

29 vector <double> PcR ;

30 vector <double> Ct ;

31 vector <double> Cf ;

32 vector <double> PtR ;

33 vector <double> Report ;

34 vector <double> Tt ;

35 vector <double> Tf ;

36 } ;

37
38 / / Sample a repress model by appending data to a repressArray
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39 void tcSample ( repressArray& out , repressModel& model ) {

40 out . t ime . push_back ( model . t ime ( ) ) ;

41 out .PcR . push_back ( model . PcRate ( ) ) ;

42 out . Ct . push_back ( model . To ta lC I ( ) ) ;

43 out . Cf . push_back ( model . FreeCI ( ) ) ;

44 out . PtR . push_back ( model . PtRate ( ) ) ;

45 out . Report . push_back ( model . a c t i v i t y ( ) ) ;

46 }

47
48 / / Sample a MFL model by appending data to a mf lAr ray

49 void tcSample ( mf lAr ray& out , mflModel& model ) {

50 out . t ime . push_back ( model . t ime ( ) ) ;

51 out .PcR . push_back ( model . PcRate ( ) ) ;

52 out . Ct . push_back ( model . To ta lC I ( ) ) ;

53 out . Cf . push_back ( model . FreeCI ( ) ) ;

54 out . PtR . push_back ( model . PtRate ( ) ) ;

55 out . Report . push_back ( model . a c t i v i t y ( ) ) ;

56 out . Tt . push_back ( model . TotalTum ( ) ) ;

57 out . Tf . push_back ( model . FreeTum ( ) ) ;

58 }

59
60 / / Def ine f u n c t i o n to conver t repressArray to DataFrame :

61 DataFrame RcppArray ( repressArray& a ) {

62 return DataFrame : : c reate (

63 Named( " t ime " )=a . t ime ,

64 Named( "PcR" )=a . PcR, Named( " PtR " )=a . PtR ,

65 Named( " Ct " )=a . Ct , Named( " Cf " )=a . Cf ,

66 Named( " Report " )=a . Report ) ;

67 }

68
69 / / Def ine f u n c t i o n to conver t mf lAr ray to DataFrame :

70 DataFrame RcppArray ( mf lAr ray& a ) {

71 return DataFrame : : c reate (

72 Named( " t ime " )=a . t ime ,

73 Named( "PcR" )=a . PcR, Named( " PtR " )=a . PtR ,

74 Named( " Ct " )=a . Ct , Named( " Cf " )=a . Cf ,

75 Named( " Report " )=a . Report ,

76 Named( " Tt " )=a . Tt , Named( " Tf " )=a . Tf ) ;

77 }

78
79 const u i n t sampl ingrate = 20;

80
81 / * * * * * Sample s ta tes over the course o f a s imu la t i on * * * * * /

82 template <typename Array , typename Model>
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83 void assay ( Array& out , Model& model , bool lo , double a c t i v a t i o n ,

84 double f l ush t ime , double ontime , double assaytime ) {

85
86 / / I n i t i a l i s e the model

87 i f ( l o ) model . i n i t L O ( ) ;

88 else model . i n i t H I ( ) ;

89
90 / / E q u i l i b r a t e / randomize s t a r t i n g p o s i t i o n s by s imu la t i ng f o r f l u s h t i m e

91 / / minutes ( should be around two generat ions ) :

92 model . s imu la te ( f l u sh t i m e ) ;

93 model . t ime ( 0 . 0 ) ; / / Reset the t ime but keep the randomised IC

94
95 / / Output the i n i t i a l values :

96 tcSample ( out , model ) ;

97
98 / / Step through the O/N i n def ined step s izes using the s imu la te f u n c t i o n :

99 u i n t nSamples = sampl ingrate * stat ic_cast <u in t >( ontime ) ;

100 double s teps ize = ontime / stat ic_cast <double >(nSamples ) ;

101 for ( u i n t i = 0 ; i <nSamples ; ++ i ) {

102 model . s imu la te ( s teps ize ) ; / / Simulate f o r a s i n g l e step

103 tcSample ( out , model ) ; / / Sample a f t e r each t ime step

104 }

105
106 / / Set the assay a c t i v a t i o n l e v e l :

107 model . PcAct ( a c t i v a t i o n ) ;

108
109 / / Step through the assay i n def ined step s izes using the s imu la te f u n c t i o n :

110 nSamples = sampl ingrate * stat ic_cast <u in t >( assaytime ) ;

111 s teps ize = assaytime / stat ic_cast <double >(nSamples ) ;

112 for ( u i n t i = 0 ; i <nSamples ; ++ i ) {

113 model . s imu la te ( s teps ize ) ; / / Simulate f o r a s i n g l e step

114 tcSample ( out , model ) ; / / Sample a f t e r each t ime step

115 }

116 }

117
118 RcppExport SEXP timecourse (SEXP raw_act , SEXP raw_on , SEXP raw_model ,

119 SEXP raw_parset , SEXP raw_params , SEXP raw_ontime , SEXP raw_assaytime ,

120 SEXP raw_seed , SEXP raw_debug ) {

121 t ry {

122
123 / / Determine i f we should output any debug in fo rma t i on :

124 bool debug = as<bool >( Log ica lVec to r ( raw_debug ) ) ;

125
126 / / Const ruct Rcpp ob jec ts from the R arguments
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127 NumericVector R_act ( raw_act ) ;

128 CharacterVector R_on ( raw_on ) ;

129 CharacterVector R_model ( raw_model ) ;

130 CharacterVector R_parset ( raw_parset ) ;

131 L i s t R_params ( raw_params ) ;

132 NumericVector R_ontime ( raw_ontime ) ;

133 NumericVector R_assaytime ( raw_assaytime ) ;

134
135 double a c t i v a t i o n = as<double >( R_act ) ;

136 bool l o = R_on [ 0 ] == "LO" ;

137 double assaytime = as<double >( R_assaytime ) ;

138 double ontime = as<double >( R_ontime ) ;

139
140 / / Convert to C++ parameters . . .

141 double PcBS = as<double >(R_params [ "PcBS" ] ) ;

142 double PtBS = as<double >(R_params [ " PtBS " ] ) ;

143 double PzBS = as<double >(R_params [ "PzBS" ] ) ;

144
145 / / I n i t i a l i s e parameter sets

146 mflFi t tedParams f i t t edpa rams (PcBS, PtBS , PzBS ) ;

147 mflManParams manparams (PcBS, PtBS , PzBS ) ;

148
149 / / Parameter re ference v a r i a b l e

150 MFLparams* params ;

151 params = &f i t t edpa rams ; / / De fau l t parameter set

152 i f ( R_parset [ 0 ] == " f i t t e d " ) params = &f i t t edparams ;

153 i f ( R_parset [ 0 ] == " manual " ) params = &manparams ;

154
155 i f ( debug ) {

156 R p r i n t f ( " S imu la t ing wi th : \ n " ) ;

157 R p r i n t f ( " ontime = %f \ nassaytime = %f \ n a c t i v a t i o n = %f \ n " ,

158 ontime , assaytime , a c t i v a t i o n ) ;

159
160 / / Also output the parameters being used :

161 s t r i ngs t ream p a r s t r i n g ;

162 params−>p r i n t ( p a r s t r i n g ) ;

163 R p r i n t f ( "%s parameters : \ n%s " ,

164 as< s t r i n g >( R_parset [ 0 ] ) . c_ s t r ( ) ,

165 p a r s t r i n g . s t r ( ) . c_s t r ( ) ) ;

166 }

167
168 / * * * Shared i n i t i a l i s a t i o n code * * * /

169
170 / / Create a random number generator
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171 / / Taus i s the f a s t e s t ( but l e a s t ’ n ice ’ ) method

172 gs l_rng * r = gs l_ rng_a l l oc ( gsl_rng_mt19937 ) ;

173
174 / / Since t h i s may be c a l l e d repeated ly from R very qu ick l y , cannot use

175 / / the system time to set the seed :

176 unsigned long i n t rng_seed = as<unsigned long int >( In tegerVec to r ( raw_seed ) ) ;

177 gs l_rng_set ( r , rng_seed ) ;

178
179 / / Since c e l l d i v i s i o n i s taken to be per iod i c , randomise the leng th o f

180 / / the f l u s h t ime un i f o rm ly over the doubl ing time , so t h a t c e l l s s t a r t

181 / / a t random po in t s i n the cyc le :

182 double f l u s h t i m e = 60 + gsl_rng_uni form_pos ( r ) * params−>Tdbl ;

183
184 / / Create an empty DataFrame to be re turned a f t e r s imu la t i ons are complete :

185 DataFrame ou td f ;

186
187 i f ( R_model [ 0 ] == "DR" ) {

188 repressArray ou ta r ray ;

189 lacDetRepress DR( params ) ;

190 assay ( outar ray , DR.m, lo , a c t i v a t i o n , f l ush t ime , ontime , assaytime ) ;

191 ou td f = RcppArray ( ou ta r ray ) ;

192 }

193
194 i f ( R_model [ 0 ] == "DM" ) {

195 mf lAr ray ou ta r ray ;

196 detMFL DM( params ) ;

197 assay ( outar ray , DM.m, lo , a c t i v a t i o n , f l ush t ime , ontime , assaytime ) ;

198 ou td f = RcppArray ( ou ta r ray ) ;

199 }

200
201 i f ( R_model [ 0 ] == "SR" ) {

202 repressArray ou ta r ray ;

203 stochDiscreteRepress SR( params , r ) ;

204 assay ( outar ray , SR.m, lo , a c t i v a t i o n , f l ush t ime , ontime , assaytime ) ;

205 ou td f = RcppArray ( ou ta r ray ) ;

206 }

207
208 i f ( R_model [ 0 ] == "SM" ) {

209 mf lAr ray ou ta r ray ;

210 stochDiscreteMFL SM( params , r ) ;

211 assay ( outar ray , SM.m, lo , a c t i v a t i o n , f l ush t ime , ontime , assaytime ) ;

212 ou td f = RcppArray ( ou ta r ray ) ;

213 }

214
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215 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

216 / / Clean up before e x i t i n g . . .

217
218 / / Free up memory used by random number generator

219 gs l_ rng_ f ree ( r ) ;

220
221 / / Return the DataFrame to R ( f i l l e d or not )

222 return ( ou td f ) ;

223
224 } catch ( s td : : except ion &ex ) {

225 fo rward_except ion_to_r ( ex ) ;

226 } catch ( . . . ) {

227 : : R f_er ro r ( " c++ except ion ( unknown reason ) " ) ;

228 }

229 return R_NilValue ; / / −Wall

230 }

231
232 } ;

1 # Def ine an R i n t e r f a c e f u n c t i o n to check and cura te arguments before handing

2 # over to the C++ ’ t imecourse ’ r o u t i n e :

3 t imecourse <− function ( a c t i v a t i o n =0.2 , on=c ( ’LO ’ , ’ HI ’ ) ,

4 model=c ( ’SM ’ , ’SR ’ , ’DM ’ , ’DR ’ ) ,

5 parset=c ( ’ f i t t e d ’ , ’ manual ’ ) ,

6 params= l i s t (PcBS=100 , PtBS=100 , PzBS=10) ,

7 ontime =60 , assaytime =250 , debug=FALSE ) {

8 # Match ’ on ’ , ’ model ’ and ’ parset ’ , to the formals o f t h i s f u n c t i o n :

9 on <− match . arg (on )

10 model <− match . arg ( model )

11 parset <− match . arg ( parset )

12
13 # Make sure t h a t we have a l l o f the params as s p e c i f i e d i n the d e f a u l t

14 # argument l i s t ; i f some are missing , then set those to t h e i r d e f a u l t s :

15 requiredParams <− formals ( t imecourse ) $params

16 missingParams <−
17 names ( requiredParams ) [ ! (names ( requiredParams ) %i n% names ( params ) ) ]

18 params [ missingParams ] <− requiredParams [ missingParams ]

19 i f (debug ) pr in t ( params )

20
21 # Ensure the c o r r e c t type f o r a l l o ther arguments :

22 i f ( ! ( is . numeric ( a c t i v a t i o n ) | | is . numeric ( ontime ) | | is . numeric ( assaytime ) ) )

23 stop ( ’ " a c t i v a t i o n " , " ontime " and " assaytime " must a l l be numeric . ’ )

24
25 ontime <− abs ( ontime ) # Make sure ontime i s p o s i t i v e

26 assaytime <− abs ( assaytime ) # Make sure assaytime i s p o s i t i v e
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27
28 i f ( a c t i v a t i o n <0 | | a c t i v a t i o n >1)

29 stop ( ’ " a c t i v a t i o n " must be i n [ 0 , 1 ] ’ )

30
31 # Choose a new seed f o r t h i s ins tance :

32 seed <− sample . i n t ( . Machine$ integer .max, 1)

33
34 . Cal l ( " t imecourse " , PACKAGE= ’ s t o c h l i b ’ ,

35 a c t i v a t i o n , on , model , parset , params , ontime , assaytime , seed , debug )

36 }

37
38 # Run a complete MFL experiment m u l t i p l e t imes :

39 t cExpt <− function ( a c t i v a t i o n =0.2 , model=c ( ’M ’ , ’R ’ ) ,

40 parset=c ( ’ f i t t e d ’ , ’ manual ’ ) ,

41 params= l i s t (PcBS=100 , PtBS=100 , PzBS=10) ,

42 n=10 , ontime =60 , assaytime =250 , debug=FALSE,

43 col=c ( ’ b lue ’ , ’ red ’ ) , l t y = ’ s o l i d ’ ) {

44 model <− match . arg ( model )

45 dataset <− l i s t ( )

46 co ls <− rep ( col , each=trunc (4 / length ( col ) ) )

47 co ls <− lapply ( cols , function ( x ) rgb2hsv ( co l2rgb ( x ) ) )

48
49 t c tags <− paste0 ( c ( ’ s l ’ , ’ sh ’ , ’ d l ’ , ’ dh ’ ) , model )

50
51 # Run m u l t i p l e s t o c h a s t i c s imu la t i ons

52 for ( i i n 1 : n ) {

53 for ( j i n 1 : 2 ) {

54 dataset [ [ t c tags [ j ] ] ] $data [ [ i ] ] <−
55 t imecourse ( a c t i v a t i o n , on= i f ( j ==1) ’LO ’ else ’ HI ’ ,

56 model=paste0 ( ’S ’ ,model ) , parset=parset , params=params ,

57 ontime=ontime , assaytime=assaytime , debug=debug )

58 dataset [ [ t c tags [ j ] ] ] $ co ls [ [ i ] ] <− hsv ( co ls [ [ j ] ] [ 1 ] , i / n , co ls [ [ j ] ] [ 3 ] )

59 dataset [ [ t c tags [ j ] ] ] $ l t y s [ [ i ] ] <− l t y [1+ ( j −1)%%length ( l t y ) ]

60 }

61 }

62
63 # Run s i n g l e d e t e r m i n i s t i c s imu la t i ons

64 for ( j i n 3 : 4 ) {

65 dataset [ [ t c tags [ j ] ] ] $data [ [ 1 ] ] <−
66 t imecourse ( a c t i v a t i o n , on= i f ( j ==3) ’LO ’ else ’ HI ’ ,

67 model=paste0 ( ’D ’ ,model ) , parse t=parset , params=params ,

68 ontime=ontime , assaytime=assaytime , debug=debug )

69 dataset [ [ t c tags [ j ] ] ] $ co ls [ [ 1 ] ] <− hsv ( co ls [ [ j ] ] [ 1 ] , co ls [ [ j ] ] [ 2 ] , co ls [ [ j ] ] [ 3 ] )

70 dataset [ [ t c tags [ j ] ] ] $ l t y s [ [ 1 ] ] <− l t y [1+ ( j −1)%%length ( l t y ) ]
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71 }

72
73 structure ( dataset , t i t l e =model )

74 }

D.5 Adding experimental noise to stochastic simulations

In order to best replicate the experimental data, background noise was added to the sim-
ulated results. Experimental noise was simulated by randomly sampling from a normal
distribution with a mean (offset) and standard deviation chosen so that the distribution
would match the spread of the fully repressed control samples. This background noise
was added to the stochastic simulation data before being analysed like the flow cytometry
samples were.

The following code block shows how this was achieved in R using the R library de-
scribed in this appendix. The assayocc and assaydet functions in the listing are similar
to the time course simulation code shown in the previous section, except that they return
a large collection of activities at a specified time point for stochastic or deterministic simu-
lations respectively. The ’DR’ and ’DM’ models specified in calls to the assayocc function
choose between repressor and MFL stochastic models of the (Discrete) hybrid stochas-
tic/deterministic model.

After adding in noise, the data is then analysed using code taken from the flow cytom-
etry library that was customised only to handle the different format of the data structures
shown below. These steps included (1) Logicle transformation of all data, (2) fitting the
control simulations with skew-t distributions, (3) training the constrained skew-t model
using this data, and (4) fitting the MFL simulations with a constrained skew-t mixture
model.

1 l i b r a r y ( s t o c h l i b ) # The s t o c h a s t i c s imu la t i on l i b r a r y

2
3 ### EXCERPTED: customised f low cytometry ana lys i s code ###

4
5 # Set the number o f s imu la t i ons to run

6 Nlarge <− 3e4

7 # Simula t ion t imes are 3 , 4 and 5 hours

8 simtimes <− l i s t ( sho r t =180 , medium=240 , long =300)

9
10 # Choose the l e v e l s o f i nd u c t i on f o r s t o c h a s t i c s imu la t i on . . .

11 i ndLeve ls <− seq (0 ,1 , length . out =24)

12 # . . . and f o r d e t e r m i n i s t i c s imu la t i on

13 i ndLeve ls . det <− seq (0 ,1 , length . out =200)

14
15 # Def ine the background noise t h a t w i l l be generated to s imu la te the

16 # exper imenta l background :
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17 bgdPars <− l i s t ( of fset =1674 * 1000 / 5861 , bgsd=1254 * 1000 / 5861)

18
19 # Set parameters as per the other t h e s i s f i g u r e s :

20 manpars <− l i s t (PcBS=300 ,PtBS=3000 ,PzBS=100)

21
22 # S t a r t by b u i l d i n g a model o f the c o n t r o l d i s t r i b u t i o n s : { { {

23
24 # Standard d e t e r m i n i s t i c s imu la t i ons

25 SRdet .man <−
26 lapply ( simtimes , function ( simtime ) {

27 assaydet ( indLeve ls . det , model= ’R ’ , parse t= ’ manual ’ ,

28 params=manpars , assaytime=simtime ) } )

29
30 # Hybr id s t o c h a s t i c s imu la t i ons

31 SRocc .man <−
32 lapply ( simtimes , function ( simtime ) {

33 assayocc ( indLevels , model= ’DR ’ , nsamples=Nlarge ,

34 parset= ’ manual ’ , params=manpars , assaytime=simtime ) } )

35
36 PcR.man <− sapply ( SRocc .man [ [ 1 ] ] $ h i s t l o , function ( x ) x$PcR [ [ 1 ] ] )

37
38 # Add background noise

39 SRocc . bgd .man <−
40 lapply ( SRocc .man, function ( assay )

41 lapply ( assay , function ( x )

42 lapply ( x , function ( sim ) {

43 wi th ( bgdPars , sim$Report + rnorm ( Nlarge , offset , bgsd ) )

44 } ) ) )

45
46 # Determine Log ic le t rans fo rma t i on parameters

47 negref .man <−
48 lapply ( SRocc . bgd .man, function ( assay )

49 c ( Reduce ( c , assay$ h i s t l o , numeric ( ) ) ,

50 Reduce ( c , assay$ h i s t h i , numeric ( ) ) ) )

51 negref .man <−
52 lapply ( negref .man, function ( ng ) unname( quanti le ( ng [ ng <=0] , probs = 0 . 0 5 ) ) )

53 log ic leW .man <−
54 lapply ( negref .man, function ( ng ) (4.5− log10 (262144 / abs ( ng ) ) ) / 2)

55
56 # Do the Log ic le t rans fo rma t i on

57 SRocc . bgd . log .man <−
58 mapply ( function ( assay , Wpar ) {

59 lapply ( assay , function (on ) {

60 cat ( ’ \ n ’ )
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61 lapply (on , function ( f f d a t a ) {

62 cat ( ’ . ’ ) ; i n v L o g i c l e ( f f da ta , Wpar )

63 } ) } )

64 } , SRocc . bgd .man, log ic leW .man, SIMPLIFY=FALSE)

65
66 SRocc . f i t s .man <−
67 lapply ( SRocc . bgd . log .man, function ( assay )

68 skewt . u n i f i t ( w i th ( assay , c ( h i s t l o , h i s t h i ) ) ) )

69
70 SRocc . p r e d i c t o r .man <−
71 lapply ( SRocc . f i t s .man, function ( f i t s ) skewt . p r e d i c t o r ( f i t s ) )

72
73 # END c o n t r o l d i s t r i b u t i o n s } } }

74
75 # Now f i t the const ra ined skew t model to s imulated MFL d i s t r i b u t i o n s : { { {

76
77 # Standard d e t e r m i n i s t i c s imu la t i ons

78 SMdet .man <−
79 lapply ( simtimes , function ( simtime ) {

80 assaydet ( indLeve ls . det , model= ’M ’ , parset= ’ manual ’ ,

81 params=manpars , assaytime=simtime ) } )

82
83 # Hybr id s t o c h a s t i c s imu la t i ons

84 SMocc .man <−
85 lapply ( simtimes , function ( simtime ) {

86 assayocc ( indLevels , model= ’DM’ , nsamples=Nlarge ,

87 parset= ’ manual ’ , params=manpars , assaytime=simtime ) } )

88
89 # Pc i nd u c t i o n l e v e l s are the same as PcR .man

90 a l l (PcR .man == sapply (SMocc .man [ [ 1 ] ] $ h i s t l o , function ( x ) x$PcR [ [ 1 ] ] ) ) # TRUE

91
92 # Add background noise

93 SMocc . bgd .man <−
94 lapply (SMocc .man, function ( assay )

95 lapply ( assay , function ( x )

96 lapply ( x , function ( sim ) {

97 wi th ( bgdPars , sim$Report + rnorm ( Nlarge , offset , bgsd ) )

98 } ) ) )

99
100 # Use the same Log ic le t rans fo rma t i on parameters as the repressor c o n t r o l s

101
102 # Do the Log ic le t rans fo rma t i on

103 SMocc . bgd . log .man <−
104 mapply ( function ( assay , Wpar ) {
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105 lapply ( assay , function (on ) {

106 cat ( ’ \ n ’ )

107 lapply (on , function ( f f d a t a ) {

108 cat ( ’ . ’ ) ; i n v L o g i c l e ( f f da ta , Wpar )

109 } ) } )

110 } , SMocc . bgd .man, log ic leW .man, SIMPLIFY=FALSE)

111
112 # F i t mix ture models ( unimodal and bimodal ) to the data :

113 # NB: the f o l l o w i n g was re−run wi th even more p a r t i t i o n s i n the i n i t i a l

114 # parameter search i n the ’ bimodal . skewt .em’ f u n c t i o n

115 SMocc . m i x f i t s .man <−
116 mcmapply ( function ( assay , p r e d i c t o r )

117 lapply ( assay , Moda l i t yAna lys is , p r e d i c t o r = p r e d i c t o r ) ,

118 SMocc . bgd . log .man, SRocc . p r e d i c t o r .man, SIMPLIFY=FALSE)

119
120 SMocc .summary .man <−
121 mcmapply ( function ( assay f i t s , p red i c t o r , Wpar )

122 lapply ( assay f i t s , summary , W=Wpar , p r e d i c t o r = p r e d i c t o r ) ,

123 SMocc . m i x f i t s .man, SRocc . p r e d i c t o r .man, log ic leW .man, SIMPLIFY=FALSE)

124
125 SMocc .summary .man <−
126 lapply (SMocc .summary .man, function ( e q u i l )

127 lapply ( equ i l , function ( x ) w i t h i n ( x , bimodal <− v a l u e d i f f < −100)))

128
129 # END MFL d i s t r i b u t i o n s } } }
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