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Thesis abstract

Ancient DNA (aDNA) research in the Americas represents a genetic strategy to
investigate demographic and historical events of populations in the continent with the
added bonus of having a direct and temporal perspective. This thesis aims to explore
human mitochondrial DNA (mtDNA) diversity from a large number of pre-Columbian
samples in a diachronic transect through time in order to refine our understanding of the
genetic structure and diversity of ancient civilizations in the Central Andes of South
America prior to the arrival of Europeans.

| used a combination of traditional PCR-based methods and the latest technological
advances for DNA analysis (i.e. Next-Generation Sequencing — NGS) to generate high-
resolution mtDNA data to explore the past genetic diversity of South American
populations.

This work shows the perspective of aDNA research to identify temporal transitions in the
genetic composition in the Central Andes of South America in real-time, since | aimed to
incorporate samples from all cultural archaeological periods, improving the spatial and
geographic coverage.

By comparing the results with genetic data from modern-day native populations, this
thesis will also address the potential impact of the European colonization on indigenous
populations to understand the evolutionary history of Native Americans. To that end, the
acquisition of high-resolution genomic data from ancient specimens showcase the true
potential of aDNA research to uncover (re-discover) lost genetic diversity or lost mtDNA
lineages from pre-Columbian populations, which cannot be inferred from modern-day
populations.

| aim to provide an accurate description of patterns of genetic diversity through time,
reconciling and contrasting the genetic data with valuable archaeological information, and
to test for demographic and population continuity or discontinuity in pre-contact South
America. Finally, this thesis adds important perspective to the existing knowledge about

MtDNA diversity and population prehistory in the Central Andes.



Research Aims of the project

a)

b)

d)

To explore novel ancient mitochondrial DNA data from Native Americans from the
Central Andes of South America across several archaeological periods in order to
contrast this information with available HVR-I data from present-day and ancient

populations to better understand the overall pre-Columbian mtDNA genetic diversity.

To generate complete mitochondrial DNA genome data at highest level of resolution
from selected ancient samples from South America to characterize and explore the
potential of mitochondrial genomes to unveil mtDNA genetic diversity in South
America before the European arrival.

To reconcile genetic and archaeological information in the light of temporal sampling
to reconstruct the population history of pre-Columbian ancient groups in restricted
geographic locations in South America.

To combine the advantages of traditional and novel methods for aDNA analysis in

order to develop and establish a new technique for genotyping ancient specimens

exclusively from pre-contact Americas.
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Thesis structure

This PhD thesis is written as a combination of chapters in publication format and a
published paper. The content of the chapters and relevant supplemental materials are as

follows:

Chapter 1: General Introduction

a. General description of the state-of-the art and current knowledge about population
history in pre-Columbian Americas.

b. General introduction to ancient DNA field, applications and limitations.

C. General introduction to Next-Generation Sequencing technologies and applications

in aDNA research.

Chapter 2: Ancient DNA from pre-Columbian populations in the Central Andes of
South America: a diachronic study of mtDNA haplogroup diversity based on
Hypervariable Region |

Exploration of the mtDNA genetic diversity with a large sample size in a broad
geographical and chronological range, contrasting ancient and modern diversity in

populations from South America based on analysis of the hypervariable region-I.

Chapter 3: High-resolution mitochondrial genome sequencing reveals a substantial
loss of Pre-Columbian diversity

Application of Next-Generation Sequencing techniques to ancient samples from South
America in order to retrieve mtDNA complete genomes by applying a temporal sampling
through archaeological periods in the Central Andes of South America.

Exploration of mtDNA diversity in pre-Columbian Americas under a great level of genetic

resolution.
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Chapter 4: Ancient DNA analysis from the ‘Huaca Pucllana’ archaeological site in
Central coastal Peru: Chronological study of mitochondrial DNA variation in the
context of the Wari Empire expansion during the Middle Horizon

Exploration of changes in genetic diversity and micro-evolutionary processes in a transect
through time in a restricted geographic area, i.e. coastal Peruvian populations, driven by

the impact of pre-Columbian colonization led by the Wari Empire.

Chapter 5: AmericaPlex26 — A SNaPshot multiplex system for genotyping the main
human mitochondrial founder lineages of the Americas (co-author)

Development of a laboratory analytical technique to perform an exhaustive screening of
archaeological samples in the Americas for genotyping purposes and sample selection for

Next-Generation Sequencing.

Published paper: Coutinho A, Valverde G, Fehren-Schmitz L, Cooper A, Barreto
Romero MI, Espinoza IF, Llamas B, and Haak W. 2014. AmericaPlex26: a SNaPshot
multiplex system for genotyping the main human mitochondrial founder lineages of the
Americas. PLoS ONE 9(3):€93292.

Chapter 6: General Discussion

Summary and conclusion of the overall study.

Limitations of research, future perspectives and assessment for potential aDNA follow-up
studies in South America.

12



Thesis declaration

This work contains no material which has been accepted for the award of any other degree
or diploma in any university or other tertiary institution to Guido Valverde and, to the best
of my knowledge and belief, contains no material previously published or written by any

other person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being
made available for loan and photocopying, subject to the provisions of the Copyright Act
1968.

The author acknowledges that copyright of published works contained within this thesis
(as listed below) resides with the copyright holders(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web,
via the University’s digital research repository, the Library catalogue, the Australian
Digital Theses Program (ADTP) and also through web research engines, unless

permission has been granted by the University to restrict access for a period of time.

The published works of my thesis include:

Coutinho A, Valverde G, Fehren-Schmitz L, Cooper A, Barreto Romero Ml, Espinoza IF,
Llamas B, and Haak W. 2014. AmericaPlex26: a SNaPshot multiplex system for
genotyping the main human mitochondrial founder lineages of the Americas. PLoS ONE
9(3):e93292.

Guido Valverde
October, 2015

13



Acknowledgements

The present work has been made possible with the financial support of the Australian
Research Council funding (ARC), Discovery Project “DP1095782”.

I would like to thank the School of Biological Sciences at the University of Adelaide for
supporting my Candidature and the Australian Centre for Ancient DNA — ACAD, which
provided the logistics to perform the project.

I would like to show my gratitude and admiration to my thesis supervisors Wolfgang Haak
and Bastien Llamas for their understanding and patience guidance and encouragements
during this time.

I am grateful to Alan Cooper for giving me the opportunity to work in this fascinating
research field. | feel privileged to have been granted access to ancient DNA laboratories at
ACAD and perform the laboratory analysis under the most impressive working conditions
for ancient DNA research.

I would like to thank Lars Fehren-Schmitz for valuable advice and collaborative work.

I would like to thank Michael Herrera for valuable assistance and collaboration.

I would like to recognize all people and lab members at the Australian Centre for Ancient
DNA for their intellectual, technical support and friendship.

I would like to thank the archaeologists at the Huaca Pucllana archaeological site in Peru;
the Department of Humanities and Archaeology, Pontificia Universidad Catdlica del Peru;
Centro de Investigaciones Arqueolédgicas del Museo de Ancén, Perl; Unidad de
Arqueologia y Museos (UDAM), Ministerio de Culturas de Bolivia; Instituto de Alta
Investigacion (IAl), Laboratorio de Arqueologia y Paleoambiente, Universidad de
Tarapacd, Arica, Chile, for providing the valuable samples for analysis and for relevant

advise and archaeological information.

I would like to address a very special thanks to Ana and Thomas Ryan for making me feel
like home and support me during my stay in Adelaide as my Australian family.

I owe my deepest gratitude to my family and my parents Guido and Mery and my brother
Alvaro for their constant support and encouragements despite the distance and during the

last stage of completion of the thesis.

14



CHAPTER 1

General Introduction

15



16



Ancient DNA from pre-Columbian South America

A) Population history of pre-Columbian Americas

The study of pre-Columbian Americas represents a fascinating and extensive
research field. Various disciplines such as archaeology, linguistics, morphology and
genetics have provided substantial insights into the history of the continent from different
perspectives to refine our understanding of the complexity of societies, cultural
development and structure of Native American populations before the European contact
(Greenberg et al. 1986; Crawford 1998; Mulligan et al. 2004; Mann 2005; Livi-Bacci
2006; Tamm et al. 2007; Goebel et al. 2008; Kitchen et al. 2008; Dillehay 2009; Meltzer
2009; O'Rourke and Raff 2010; O'Fallon and Fehren-Schmitz 2011; Raff et al. 2011;
Chatters et al. 2014; Rasmussen et al. 2014; Rasmussen et al. 2015a).

The American continents were the last ones to be colonized by anatomically
modern humans. Two major demographic events seem to have played a central role in
the settlement of the Americas and the population history of indigenous Americans: first,
the initial migration of Native American ancestors into the continent through Beringia
and second, the arrival of Europeans in the New World during the 15" century AD.

The recent coupling of archaeology and molecular anthropology in a
“collaborative agreement” (Renfrew 2010), has provided the most significant
contributions to our understanding about human migrations and dispersals across the
world. Particularly in the Americas, the field of genetics has provided the key
assumptions to explain long-standing questions regarding ancestry and relationships of
the first human groups that settled and spread throughout the continent (Schurr et al.
1990; Torroni et al. 1992; Horai et al. 1993; Torroni et al. 1993; Torroni et al. 1994b;
Merriwether et al. 1995; Bonatto and Salzano 1997; Silva et al. 2002; Rasmussen et al.
2010; Reich et al. 2012; Raghavan et al. 2014a; Raghavan et al. 2014b; Rasmussen et al.
2014; Raghavan et al. 2015; Rasmussen et al. 2015a). Nevertheless, explaining the
human diaspora across the world still requires a multidisciplinary approach and support
from other disciplines to generate a coherent synthesis of the many diverse processes
involved.

Here, | present a summary of the current knowledge about the population history
of pre-Columbian Americas from archaeological, linguistic, morphological and genetic

evidence.
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Archaeological evidence

The precise timing, colonization routes and number of migration followed by the
first human groups that settled the Americas is one of the most debated topics in
archaeology (Goebel et al. 2008). During the Last Glacial Maximum (LGM) ~21,000
years before present (YBP) (Clark et al. 2009), Asia and America were connected by a
land bridge known as Beringia that corresponds what is now the Bering Strait, since the
level of the sea was lower than it is today (Figure 1). However, the North American
territories were covered by two glaciers; the Laurentide and the Cordilleran ice sheets,
which would have formed an impenetrable barrier for human groups on their way

towards the American continents (Meltzer 2009).

Human colonization of the Americas and the paths that the first settlers may have
followed were influenced by environmental and climatic effects during the last
glaciations period in the Last Pleistocene (Meltzer 1993; Mandryk et al. 2001). The
archaeological evidence led to suggest hypotheses for the peopling of the Americas
differing in terms of the timing (human incursions around the LGM period) and
migration routes (i.e. Pacific coastal route vs. ice-free corridor (Mandryk et al. 2001)).

The two proposed entry routes into the Americas therefore are dependent on
environmental conditions, chronology and isolation events of human groups before they
spread from Beringia towards the Americas. The Pacific coastal route (Fladmark 1979)
might have become available after deglaciation affected the Cordilleran ice sheet around
15,000 YBP (Taylor et al. 2014). Alternatively, the inland ice-free corridor (Dixon 1993)
might have become passable for human explorers when both ice sheets began to separate
on the eastern side of the Rocky Mountains ~13,500 YBP (Mandryk et al. 2001).

The Pacific coastal route of human colonization of the Americas implies access to
marine resources, such as sea mammals, shellfish, etc. (Erlandson et al. 2007), mammal
hunting and the ability to built transportations means (e.g. watercraft to traverse the edge
of the Beringian landmass around the ice sheets until reaching unglaciated areas to the
south — reviewed in (Schurr 2008)). In contrast, the passage of human groups through
the ice-free corridor also required the accessibility and availability of food sources (e.g.

American megafauna).
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Archaeological evidence in the Americas, particularly in North America, covers
widely dispersed habitation sites, which indicates early dispersal within the continent and
different types of adaptation of the first populations to new environments in the
continent, which laid the foundation for subsequent cultural developments (Goebel et al.
2008).

The earliest archaeological discoveries in the early 1930’s became known as the
Clovis cultural complex (Hrdlicka 1937). The Clovis culture, named after the eponymous
archaeological site in New Mexico (USA), dates back to 13,500 — 12,000 YBP (Waters
and Stafford 2007) and features a diverse set of characteristic stone tools constructed
from a variety of stone types including stone projectiles known as the “Clovis points”.
These fluted projectiles and an accompanying array of lithic artefacts were associated
with the hunting of the American megafauna — mammoth and mastodon (Howard 1933)
as one of their main subsistence resources.

The discovery of several contemporaneous sites corresponding to the Clovis
culture found throughout the United States led to propose the “Clovis First” Model,
which refers to a late peopling of the Americas (i.e. after the LGM). Although the Clovis
cultural complex was a widely distributed archaeological horizon in North America, it
was soon replaced by other groups. The Folson tradition (12,900 — 12,000 YBP) for
instance, was characterized by a different design of lithic artefacts and the sharp points
mainly associated with the hunting of small mammals such as bison. Nevertheless,
according to some authors the Clovis people might have been responsible for hunting at
massive scale, which led to a sudden demise of mammal populations. This extinction
model was termed the “Blitzkrieg” (rapid overkill) hypothesis of American colonization
(Martin 1984).

The subsequent discoveries of other sites in North America, which are seemingly
older than the Clovis culture, challenge the Clovis First Model. Reports of older
archaeological sites such as Paisley Cave (14,600 YBP), La Sena/Lovewell (22,000 —
19,000 YBP), Meadowcroft (22,000 — 18,000 YBP) and Cactus Hill (20,000 — 18,000
YBP) — reviewed in (Goebel et al. 2008), suggest an even earlier human occupation of
the continent. This implies that people of the Clovis complex were not the earliest
migrants in North America, and this earlier settlement might otherwise represent an
expansion of a successful cultural adaptation that developed among early settlers around
the North American ice sheets of the LGM (O'Rourke and Raff 2010).

19



However, archaeological evidence from these sites is scarce, and rest on bones
harbouring marks that could have potentially been made by humans. Since no other
characteristic artefacts were found, this casts doubts on the actual early presence of

humans in North America.

Monte Verde in South America (Puerto Montt, Southern Chile) represents another
interesting pre-Clovis settlement, dated at 14,600 YBP (Dillehay 1997; Meltzer 1997;
Dillehay et al. 2008). The remains found at Monte Verde are very rich and well preserved
and include stone tools and organic materials such as bone, ivory and plants.

These data suggest a coastal type of livelihood relying on marine resources from
the Pacific. Despite questions about how and when people reached the southern cone of
South America without leaving much other evidence in the Americas, the presence of
human remains more than 14,600 years-old at Monte Verde offers important clues to the
peopling of the Americas (Dillehay et al. 2008). Indeed, this pre-Clovis settlement lends
support to the hypothesis of a Pacific coastal route scenario, which opened ~15,000 YBP,
as opposed to the inland ice-free corridor, which was not passable until 13,500 YBP.

Monte Verde has implications on the timing of the spread as it needs to explain
the coverage of almost 10,000 miles from Alaska to Chile in a relatively short time
period. Moreover, the latitudinal crossing from humans adapted to the Arctic in North
America passing through tropical regions of the continent is one of the question that
remains opened — see (Jobling et al. 2013).

A hypothesis put forward to explain this migration scenario is the so-called “Kelp
highway”, which proposes that early maritime peoples were able to colonize the south
part of the Americas based on a maritime ecology evidence along the Pacific coast
(Erlandson et al. 2007). Overall, the sum of pre-Clovis sites nonetheless suggests that the
first human incursions in the Americas dated back to shortly after the LGM (Goebel et al.
2008).

20
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=AY Approximate coastline
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Figure 1. Map showing the main physical characteristics of the American continent
during the Last Glacial Maximum (LGM), with a selection of the prehistoric sites
mentioned in the text. After (Marangoni et al. 2013).
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Linquistic evidence

The first multidisciplinary model to address the settlement of the Americas
incorporating linguistic, dental and genetic evidence dates back to the mid 1980’s. Upon
comparison of languages spoken by Native American groups, Greenberg and
collaborators proposed the “Tree-wave migration model” describing three language
groups that reached the Americas at different times (Greenberg et al. 1986) (Figure 2).

The first wave gave rise to a large “Amerind” language family comprising
population of South and Central America and parts of North America with a proposed
entry time into the Americas around 11,000 YBP. A second migration wave comprising
Na-Dene speakers (restricted to North America) occurred later, around 9,000 YBP.
Finally, populations speaking Eskimo-Aleutian languages (restricted to the Aurctic)
migrated to the Americas around 4,000 YBP (Greenberg et al. 1986).

This model implies that the peopling of America involved a minimum of three
independent and separated migration episodes during distinct pre-historical periods.
However, it has been strongly challenged by physical anthropologists (i.e. ‘see below”)
that proposed two waves of migration (Neves and Pucciarelli 1991), as well as by more
recent models based on genetic data that support a single wave of migration
(Merriwether et al. 1995; Bonatto and Salzano 1997; Silva et al. 2002). Moreover, the
majority of linguists have criticized this model as broadly used in genetics (Bolnick et al.
2004).

Na-dene ___

Figure 2. Three-wave migration model. Native Americans descended from three groups
of migrants belonging to distinct linguistic families: Amerindians, Na-denes and Eskimo-
Aleutians (Marangoni et al. 2013).
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Evidence from cranial morphology

Physical anthropology, and here specifically craniometrical variation, also
provided important insights into the complexity of early Native American populations
and proposed models describing the colonization of the continent (Powell and Neves
1999; Gonzalez-Jose et al. 2001; Jantz and Owsley 2001; Neves and Hubbe 2005).
Significant contributions were made by Neves and colleagues in the late 1990°s based on
the study of human skeletal remains from the Lagoa Santa, Sumidouro Cave, Lapa

Vermehla IV archaeological sites in Brazil (Neves and Pucciarelli 1991).

The comparative analysis of craniofacial morphology led to the proposal of two
distinct morphological types, termed “Paleoamerican” and “Amerindian”. This model
became known as the “two main biological components / stock hypothesis” (Neves and
Pucciarelli 1991; Neves and Hubbe 2005). The cranial morphology of Paleoamericans
suggests a close affinity with Australo-Melanesian groups, whereas Amerindians show
similarity with Northern Asian populations. These observations were interpreted as two
distinct ancestral populations which colonized the Americas in separate waves, with the
arrival of Paleoamericans around 15,000 YPB and Amerindians around 4,000 YPB
(Pucciarelli 2004). As a result, Paleoamerican and Native American cranial types
represent and should be considered as two separate populations.

An alternative craniometrical study based on the analysis of late Pleistocene/early
Holocene modern skulls challenged the classical interpretation of Paleoamerican and
Amerindian craniofacial patterns, suggesting that the cranial differences should be
viewed as extremes of a continuous morphological variation (Gonzalez-Jose et al. 2008).
The authors of this study also suggest that these differences should be understood and
explained by means of micro-evolutionary changes, genetic drift, gene flow and maybe
directional selection.

Another study that compared craniometrical data from ancient groups in
Argentina ranging from 8,000 to 400 years BP has found that the oldest individuals
displayed the Paleoamerican features, but harboured the same mtDNA variation as the
oldest individuals with the Amerindian morphology. The authors also concluded that
morphological differences might be result also of a local phenomena, random genetic

drift and non-random factors such as selection and plasticity (Perez et al. 2009).
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The latest study on cranial morphometry in Native Americans argues that there is
no clear distinction between Paleoamerican and Amerindian groups (Chatters et al.
2014). Excavations of submerged cave sites at the “Hoyo Negro” in the Yucatan
Peninsula in Mexico, revealed the complete human skeleton of a teenage individual dated
as 12,000-13,000 year-old. Morphological analysis of the skull helped to explain
physical differences between the first Paleoamericans and Native Americans that should
be interpreted as a result of ‘in sifu’ evolution within the continent after the migration out
of Asia (Chatters et al. 2014).

The authors conclude that despite differences in face and skull features,
Paleoamericans and modern Native Americans were related, and probably deriving from
the same gene pool. However, upon re-analysis by an independent group, the ancient
DNA evidence of this publication had been criticized. The “Hoyo Negro” sample does
not show the characteristic damage patterns of ancient DNA, which therefore questions
the antiquity of the samples (Prifer and Meyer 2015). The original authors nonetheless
claim that irrespective of the genetic observation the proposed hypothesis is strong
enough based on the cranio-morphological evidence alone (Kemp et al. 2015). Moreover
a recent study of Raghavan et al. 2015 did not find genetic support for the two waves of
migrations of Paleoamericans vs. Native Americans (Raghavan et al. 2015).

Most recently, the “Kennewick Man”, one of the most iconic human remains in
the Americas, has been analysed morphologically and genetically (Rasmussen et al.
2015a). The population affinities of this 9,000-year-old male skeleton discovered in
Washington State (USA) have long been subject to a heated scientific debate. Some
anthropologists have claimed that the cranio-morphological and facial features do not
resemble those of Native Americans and that he might have a connection with
populations from Asia (i.e. Ainu, a group from Japan) or groups from the Polynesia
(Owsley and Jantz 2014).

However, morphological evidence of this individual has been not conclusive and
requires further investigations. The recent morphological re-analysis of the skull argues
that it is not possible to link the Kennewick Man to specific contemporary groups in the
Americas and that the phenotypic similarities with Asian and Polynesians groups are
more likely a result of adaptations and/or ‘in vivo’ modifications, genetic drift or natural

selection in the continent (Rasmussen et al. 2015a).
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Genetic evidence

Modern genetics is a major contributor for the study of human origins, dispersals
and diversity across the world. During the last 30 years, technical and methodological
developments to analyse DNA have helped to clarify some of the disputed theories about
human prehistory, of which the peopling of the Americas is most relevant here.

The genetic portrait of the colonization process of the Americas was based on the
two uniparentally-inherited genetic marker systems: mitochondrial DNA and the non-
recombining portion NRY of the Y-chromosome, from early studies in the mid 1990’s
(Torroni et al. 1993; Forster et al. 1996). Native American genetic diversity represents a
subset of the one found in Northeast Asia. Moreover, comparing to their Northeast
Siberian neighbours, Native American populations exhibit a low level of genetic
variability, expressed in only four mtDNA haplogroups (A, B, C, D) (Schurr et al. 1990;
Torroni et al. 1992; Torroni et al. 1993) and two founder Y-chromosome lineages (C, Q)
(Karafet et al. 1999).

During the initial colonization of the Americas, which involves the crossing of
the Bering land bridge, the populations entering the Americas must have gone through a
genetic bottleneck that resulted in a loss of diversity, the so-called “founder effect”. The
latter implies that all lineages of modern Native Americans are derived from these few

founder lineages.

a. Mitochondrial DNA
The mitochondrial DNA (mtDNA) has become a widely used genetic tool to
study the human evolutionary history (Cann et al. 1987; Ingman et al. 2000). In general,
mtDNA has a number of properties and features that make it an efficient and convenient
genetic marker system to study population genetics, phylogeography and allow the
reconstruction of population history:
1) MtDNA follows an exclusively maternal inheritance and is passed on
directly from mother to offspring.
2) MtDNA does not undergo recombination, which means mtDNA
molecules are transmitted with relatively few changes through
generations. The haploid nature of the molecule implies that at least

initially all mtDNAs from an individual are identical.
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However, in vivo mutability over the course of the lifetime of a cell/tissue
type/organism can result in slightly different types of mtDNAs
(hetereoplasmy) in the same organism.

3) MtDNA is characterized by a relatively rapid evolutionary rate, which
allows the tracking of the accumulation of mutations over time (Brown
1979; Giles 1980; Olivio 1983). The resulting mtDNA phylogeny has a
hierarchical structure. This fact and the differential geographic
distributions and frequencies of specific profiles of mutations across
various populations (Schurr 2002), allow us to reconstruct peopling
histories and migration patterns.

4) MtDNA represents less than 1% of the total DNA, however the large
amount and number of copies (10° — 10*) per cell makes it a molecule of

choice for genetic studies in human populations.

The mtDNA is a circular double-stranded molecule with an extra-nuclear origin.
Two strands compose the human mtDNA, the H strand (heavy strand), which is rich in
guanines (G), and the L strand (light strand), which is rich in cytosines (C).
The complete human mtDNA genome is on average 16,569 base pairs (bp) long and
encodes for 13 polypeptides, integral members of the mitochondrial respiratory chain, 22
distinct transfer RNAs, and 2 ribosomal RNAs (Pakendorf and Stoneking 2005).

The mtDNA genome can be divided into two main regions:

1) The Coding Region, represents the largest fraction and harbours functional
genes underlying biochemical processes that take place inside the
mitochondria.

I The non-coding displacement loop (D-loop) or Control Region (CR)
comprising about 1100 bp, which is located around the origin of
replication and has mainly regulatory functions (Pakendorf and Stoneking
2005).

Sub-regions within the D-loop are called Hypervariable Regions (e.g. HVR I-11)
and are characterized by a higher mutation rate compared to the rest of the mtDNA with
high variability across populations, which is used to study population relationships
(Stoneking et al. 1991; Schurr 2002). The base count starts at the replication origin on
the heavy strand (Oy) at the position 1 in the middle of the CR (Figure 3).
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The Control Region expands from position 16024 to 16569 (HVR-I) and
continues from position 1 to 579 (HVR-II). The human mtDNA had been sequenced in
its entirety for the first time by (Anderson et al. 1981), and since been termed
“Cambridge Reference Sequence” (CRS). Due to some inconsistencies and
misinterpretations of the sequence, a revision of such sequence was performed by
(Andrews et al. 1999) modifying 18 nucleotides, now termed as “revised Cambridge
Reference Sequence” (rCRS) and in use as mtDNA reference since. The fact that the
rCRS represents a derived European mitochondrial sequence often leads to errors and
confusion around the description of haplogroup defining SNPs (Single Nucleotide
Polymorphisms).

A recent revision of mtDNA nomenclature based on in-depth analysis of modern
human and available Neanderthal mtDNA genomes therefore suggested the use of a basal
human reference sequence, termed “Reconstructed Sapiens Reference Sequence”
(RSRS). Although not fully accepted by the community of mtDNA researchers, the
RSRS provides a clearer perspective of human evolution and ancestry (Behar et al.
2012).

Control
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Pakendorf B, Stoneking M. 2005.
Annu. Rev. Genomics Hum. Genet. 6:165-83

Figure 3. Structure of human mitochondrial DNA (Pakendorf and Stoneking 2005)

b. Human mitochondrial DNA haplogroups

Researchers have estimated that the mtDNA has undergone a mutation every
10,000 years since the appearance of the first human, the so-called “Mitochondrial Eve”
who lived ~200,000 years ago in Africa (Cann et al. 1987).
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These selective mutations through time have been used to group mtDNA
changes/variation into clusters termed haplogroups (hg). Haplogroups share a common
recent ancestor and the set of mutations for a given lineage are transmitted to all
descendants from the same maternal line. Human mitochondrial haplogroups are defined
by the sum of a specific set of polymorphic sites or diagnostic substitutions (O’Rourke
and Raff 2010). Haplotypes are defined as subsets of haplogroups carrying additional

mutations or polymorphisms.

Historically, two main methods were used to characterize the variability of human
mtDNA. The first mtDNA studies used restriction enzymes applying a method called
RFLP-typing (Restriction Fragment Length Polymorphisms) to analyse DNA
polymorphisms (Cann and Wilson 1983; Torroni et al. 1992). This was followed by the
direct sequencing of the HVR-I and HVR-II (Vigilant et al. 1991) and later by the
sequencing of complete mtDNA genomes (Kivisild et al. 2006).

Mitochondrial DNA substitutions have been accumulating throughout time along
maternal lineages as human groups expanded towards different geographic regions
around the globe. Therefore, mtDNA haplogroups have a particular geographic
distribution and are continental-specific markers and could in theory be traced to specific
points in time and space in human history (Schurr and Sherry 2004).

The nomenclature of mtDNA haplogroups follows a hierarchical structure and
was introduced in the mid-1990°’s with the assignation of letters A-G to describe the
variation in Asian and Native American lineages (Torroni et al. 1993), letters H-K for
European lineages (Torroni et al. 1994a) and letter L to describe the variation in African
populations (Figure 4). The standard reference for mtDNA haplogroup nomenclature and

phylogeny is represented by “Phylotree” (van Oven and Kayser 2009).

The African mtDNA lineages comprises the Macro-haplogroup L, subdivided in
LO (LOa, LOd, LOf and LOK) with an East African origin being the oldest branch in the
African mtDNA phylogeny. LOa and LOd are haplogroups traditionally found in Khoisan
speakers (Tishkoff et al. 2007; Barbieri et al. 2014). LOa, L1 and L2 haplogroups are
found in other sub-Saharan populations, including Bantu speakers and Pygmies (Tishkoff
et al. 2007). Haplogroup L1 (Lla, L1b, L1c) is carried also by populations that are
descendants of Khoisan speakers (Chen et al. 1995).

28



Haplogroup L2 (L2a, L2b, L2c, L2d) is distributed also in East Africa related
with the Bantu expansion, represents the main variability in sub-Saharan populations
(Salas et al. 2002). Haplogroups L3, M and N are also nested within Macro-haplogroup
L. Haplogroup L3* (also known as N/M/L3) is restricted to the African continent (Salas
et al. 2002) specific of sub-Saharan Africans, whereas M and N haplogroups originated
in Eastern Africa but later dispersed into Europe and Asia around the time when

anatomically modern humans colonized these regions (Quintana-Murci et al. 1999).

Mitochondrial DNA haplogroups H, I, J, K N1b, T, U, V and W are present in
relatively similar frequency in many European populations and encompass virtually all
European mtDNA lineages. All of them are derived from the Macro-haplogroup N
(Torroni et al. 1996). Haplogroup U6, which is present in the Portuguese population is of
North African origin (Pereira et al. 2000; Maca-Meyer et al. 2003; Pereira et al. 2010).
Many Asian haplogroups are also derived from the Macro-haplogroup N (A, B, F, N9-
21, O, S, P and Y), but most are derived from Macro-haplogroup M (M1-M40, C/Z, D,
E, G) with different frequencies throughout Asian regions (Kivisild et al. 1999).

Australo-Melanesian haplogroups comprise region-specific M27, M28 and M29
lineages as well as Asian lineages in particular haplogroups B, F and E, while haplogroup
N derived lineages O and S are exclusive to Australia, which shares haplogroup P with
e.g. Papua New Guinea (Merriwether et al. 2005). Finally, Native American mtDNA
haplogroup variation falls within A, B, C, D and X (see below).
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Figure 4. Map of mitochondrial DNA haplogroups with expansion times. After (Stewart
and Chinnery 2015).
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C. Mitochondrial DNA diversity in the Americas

The mtDNA variation in present-day Native Americans can be attributed
primarily to five mtDNA haplogroups named A, B, C, D, and X (Torroni et al. 1992;
Torroni et al. 1993; Torroni et al. 1994b; Schurr and Sherry 2004). A refinement of the
resolution identified the so-called Pan-American haplogroups: A2, B2, Clb, Clc, D1,
and D4h3a (Tamm et al. 2007; Achilli et al. 2008). In addition, the haplogroup
composition across the Americas is compatible with a single wave of migration from
Beringia (Merriwether et al. 1995; Achilli et al. 2008; Fagundes et al. 2008; Kitchen et
al. 2008).

Recent studies based on high-resolution genomic data of complete mtDNA
genomes have expanded the knowledge about mtDNA variation in the Americas by
identifying several new sub-lineages. In consequence, the overall mtDNA diversity in
Native Americans is better described as 15 American founder lineages (A2, A2a, A2b,
B2, Clb, Clc, Cld, C1dl, C4, D1, D2a, D3, D4h3a, X2g, X2a) (Achilli et al. 2008;
Perego et al. 2010; Bodner et al. 2012). The frequencies of mtDNA founding
haplogroups A-D and X in the Americas show wide pattern of distribution from North to
Central and South America (Malhi et al. 2002; Schurr 2002). Moreover, another study
suggests that geographic and linguistic factors moderately influenced the mtDNA
distributions (6% and 7%, respectively) and mtDNA haplogroups A and D correlated
positively and negatively with latitude (Bisso-Machado et al. 2012).

Haplogroup A is found throughout the Americas, but occurs at highest
frequencies in North American populations (Tamm et al. 2007; Perego et al. 2010), and
decreases considerably in southern latitudes (Lalueza et al. 1997). Haplogroup A
comprises sub-haplogroup A2a mainly found in Inuit, Na-Dene and Siberian populations
(Achilli et al. 2013), while sub-haplogroup A2b can be found in Eskimo speaking
populations across the Arctic (Gilbert et al. 2008a).

Frequencies of haplogroup B are mainly restricted to populations from South
America, with a high concentration in the Andean region (Rodriguez-Delfin et al. 2001;
Lewis et al. 2007; Afonso Costa et al. 2010; Barbieri et al. 2011; Gaya-Vidal et al. 2011,
Sandoval JR et al. 2013; Taboada-Echalar et al. 2013), but with relatively low
frequencies in North America (Schurr et al. 1990; Torroni et al. 1992; Torroni et al.
1993; Malhi et al. 2001).
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Haplogroup C is present in Central and South American groups (Perego et al.
2010). Sub-haplogroups within the Americas includes C1b, Clc, C1d and C4c (Perego et
al. 2010; Kumar et al. 2011). Haplogroup D is characteristic of populations in the
southern parts of South America (Bodner et al. 2012; de Saint Pierre et al. 2012a). Sub-
haplogroups within the Americas comprise D1, D2a, D3 and D4h3a (Perego et al. 2009).
On the other hand, haplogroup X, with sub-haplogroups X2, X2a is found nearly
exclusively in North America (Torroni et al. 1992; Torroni et al. 1993; Brown et al.
1998; Malhi et al. 2001). It has been suggested that this distribution likely reflects both
the original pattern of settlement of the Americas and the subsequent genetic
differentiation of Native American populations within the continental areas (Schurr and
Sherry 2004).

d. Complete mtDNA genome data in the Americas

There has been increasing emphasis to generate genomic data from Native
American populations. A better resolution of the genetic information is crucial to
understand the details of population differentiation and dispersal within the continent.

To date, complete mtDNA genomes from ~600 modern-day Native Americans
have been sequenced (Tamm et al. 2007; Achilli et al. 2008; Fagundes et al. 2008;
Perego et al. 2010; Bodner et al. 2012; Cardoso et al. 2012; de Saint Pierre et al. 2012b;
Achilli et al. 2013), with most studies aiming to test a suite of migration models and to
estimate entry dates into the Americas. However, such mtDNA data focused only on
specific sub-lineages of interest, and therefore cannot be considered as a representative
source for the mtDNA genetic diversity of the continent. Nevertheless these mtDNA
sequences have been used to refine and improve the human mitochondrial tree (van Oven
and Kayser 2009). Mitochondrial DNA genome information from ancient population is
still scarce and restricted to North America; amongst these are the Saggaq, a Paleo-
eskimo individual (Rasmussen et al. 2010), four Mid-Holocene individuals from north
coast of British Columbia, Canada (Cui et al. 2013), the Anzick-1 genome from an
individual associated with the Clovis culture (Rasmussen et al. 2014) and the Kennewick
Man (Rasmussen et al. 2015a). A study in South America has reported five Early to
Middle Holocene mtDNA genomes from Lauricocha individuals in highlands Peru
(Fehren-Schmitz et al. 2015) and another study by Raghavan and colleagues features
high coverage genomes of two Native American present-day Inuit, two Siberians, one

Aleutian Islanders and two Athabascans (Raghavan et al. 2014a).
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e. Y-chromosome

In humans, biological sex is determined by presence or absence of the two distinct
sex chromosomes X and Y. Females have two copies of the X-chromosome (XX) and
males one X-chromosome and one Y-chromosome (XY). The Y-chromosome is
paternally inherited from father to son. It also contains a non-recombinant region (NRY))
which, similarly to the mtDNA for the maternal history, makes it a highly effective
means to study the paternal genetic history of humans (Jobling MA 1995).

Native Americans exhibit also a very limited amount of Y-chromosomal variation
in contrast with Asian populations (Karafet et al. 1999; Zegura et al. 2004), which is
consistent with the assumption that the peopling of the Americas involved a population
bottleneck. Like mtDNA, the reduced genetic diversity of Y-chromosome markers in
Native Americans is best explained as a consequence of a founder effect and according to
Karafet and colleagues the current distribution throughout the Americas seems to reflect
a genetic drift (Karafet et al. 1999).

Studies of paternally inherited NRY genetic variation in Native Americans
consistently confirm the bottleneck hypothesis, as only a small subset of the Asian Y-
chromosome haplogroups have been identified in the continent. The founder haplogroups
C and Q were most probably carried into the Americas during a single migration process
and occur in the majority of indigenous populations (Karafet et al. 1999; Schurr and
Sherry 2004; Zegura et al. 2004).

High-resolution screening of haplogroup Q established a common ancestor
between Southern Altaian and Native American groups and revealed important
information about the potential the origins of population that settled the American
continents (Dulik et al. 2012). A study focussing on Y-chromosome Single Nucleotide
Polymorphisms (SNPs) analyses identified three major haplogroups: C, Q including R
from a big sample size (n= 588) (Zegura et al. 2004). Haplogroup C was found in
Amerind, Na-Dene and Aleut-Eskimo speakers and haplogroup Q found only in Na-Dene
speakers, with both representing nearly 96% of Native American Y-chromosomes.

Moreover, demographic scenarios in Native Americans were also evaluated by
studying Y microsatellite markers (Y-STRs), which have a much faster evolutionary rate
than SNPs. Y-STRs have been a helpful tool in understanding of population and
chromosome evolutionary histories (Bisso-Machado et al. 2012). In this study focused on
the analysis of Y-chromosome haplogroups from 68 populations and 1,814 individuals

plus Y-STR markers from 29 populations and 590 subjects, results showed that the
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diversity of the markers makes it difficult to establish a general picture of Y-chromosome
variability in the populations subjected to study. However, haplogroup Qla3a* was
almost always the most prevalent, whereas Q1a3* occurred equally in all regions. This
suggested its prevalence among the early colonizers. The STR allele frequencies were
used to derive a possible ancient Native American Q-clade chromosome haplotype,
which showed significant geographic variation. Geography apparently plays a more
important role than language in explaining the data for the Y-chromosome Q clade-STRs
(Bisso-Machado et al. 2012).

Finally, the presence of other Y-haplotypes (i.e. R haplotypes) observed in Native
American populations most likely represents the result of recent historic admixture with
European and African populations (O'Rourke and Raff 2010).

f. Autosomal DNA

Autosomal DNA refers to the 22 pairs of chromosomes found in the nucleus
excluding sex chromosomes X and Y, whereby one copy of each chromosome is
biparentally inherited from the mother and one from the father and therefore reflects both
male and female ancestry. Similar to the results from mtDNA and the Y-chromosome
studies, geneticists have observed a reduced autosomal genetic diversity in extant Native
Americans, showing a decline in genetic variability directly correlated with population
distance from the Bering Strait (Wang et al. 2007; Halverson and Bolnick 2008).

A particular short tandem repeat (STR) marker studied in Native Americans,
termed ‘D9S1120° (Schroeder et al. 2007) reveals a high frequency in the continent and
has been characterized as ubiquitous and universal for Native American groups,
suggesting that D91120 resulted from a common descent. Due to the novelty of this
allele it has been suggested that the Americas were colonized by a single founding
population (Schroeder et al. 2009). The analysis of autosomal data showed also a clear
north-to-south reduction in diversity when compared to Siberian populations, supporting
the conclusions of the previous studies based on either mtDNA or Y-chromosome (Wang
et al. 2007). A recent study addressed questions revolving around the timing and mode of
the entry into the Americas. Researchers used genome-wide data from 52 Native
American (n=493) and 17 Siberian groups (n=245) genotyping at 364,470 SNPs by using
Illumina microarrays. They proposed that North and South America were populated by

three migrations waves rather than just a single migration (Reich et al. 2012).
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g. Ancient DNA analyses in the Americas

Ancient DNA (aDNA) data is now widely used to reconstruct origins, migration
routes, settlement histories and relationships of past populations around the globe.
During the last two decades, aDNA research has helped to clarify some questions about
the peopling of the Americas and the evolution of the populations within the continent
(Tamm et al. 2007; Gilbert et al. 2008a; Kitchen et al. 2008; Rasmussen et al. 2010;
Rasmussen et al. 2014; Rasmussen et al. 2015a). Most important, aDNA studies in the
Americas offer the possibility to shed light on demographic and historical events prior to
the European contact. When compared with modern-day diversity, aDNA data can help
to describe the evolution of the genetic pool of pre-Columbian populations over time.

For instance, aDNA was used to type blood groups of ancient Native Americans
that showed a low genetic diversity associated with ABO blood group markers
comparable to extant Native Americans (Halverson and Bolnick 2008). A study on
aDNA of human coprolites from one of the earliest human settlements in the Americas,
the Paisley 5 Mile Point Caves in Oregon, USA dated to 14,000 YBP, reported Native
American founder mtDNA haplotypes A2 and B2 (Gilbert et al. 2008b).

A recent review from Raff and colleagues provides a comprehensive synthesis of
genetic research of aDNA in the Americas, summarizing the genetic diversity of
prehistoric populations throughout the continent (Raff et al. 2011). A comparison of
aDNA mitochondrial frequencies with contemporary genetic variation confirms once
more the existence of the founder A, B, C, D haplogroups in pre-contact times suggesting
also that the overall geographic structure of mtDNA in Native Americas seems to have
been established very early (O'Rourke and Raff 2010).

It is worth noting that, no other haplogroup has been identified from ancient
Native Americans samples with the exception of the haplogroup X in North America
(Malhi and Smith 2002), which is present in native populations in restricted areas of
North America and some populations from South America (Ribeiro dos Santos et al.
1996). However, it is theoretically possible that early migrants into the Americas might
have carried a higher genetic diversity or eventually other lineages.

A study by Malhi et al. 2007 identified the presence of mtDNA haplogroup M in
two mid-Holocene individuals from North America. This study was met with scepticism
as M is a common haplotype present in East Asia but has never been reported in ancient

or modern population in the Americas (Malhi et al. 2007).
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At the moment it is not clear how robust these results are, but it suggests that
other lineages could have existed in pre-contact Americas, which entered the continent in
low frequency and were lost by drift, or after the population demise following the
European contact.

Research on aDNA was also used to investigate the formation of the genetic
diversity of Native Americans through time. Although at global scale the broad genetic
structure of prehistoric populations in the Americas seemed to been established rapidly
(Reich et al. 2012), the observation of widespread genetic homogeneity among groups
suggests a degree of population continuity over time. However, at smaller scale there is
evidence for genetic discontinuity and population replacements in particular regions in
the continent, e.g. Greenland and Xaltocan, Mexico (Gilbert et al. 2008a; Mata-Miguez et
al. 2012).

By and large, genetic evidence in the Americas suggests population continuity
between pre- and post-contact human groups, based on haplogroup composition (mtDNA
and Y haplogroups) and shared ancestry (autosomal DNA data) through time. However,
the resolution of pre-contact genetic diversity across the Americas is poorer than that of
modern-day populations. Therefore more detailed analyses on a larger number of ancient
populations are needed to fully characterize the pre-Columbian genetic pool of Native
Americans and their relationship with present-day native groups throughout the
continent.

The development of new analytical methods combined with methodological
improvements offers the opportunity to generate more genomic data from ancient and
modern samples. Massive amounts of genetic information can be nowadays obtained
using the Next-Generation Sequencing (NGS) technology, which has generated a better
resolution of the genetic information.

Recent genomic aDNA studies have provided important insights into the
colonization of the Americas. For instance, the genetic analysis of a complete nuclear
genome from a 24,000 year-old Upper Paleolithic individual in Siberia (Malt’a boy) has
found a genetic link between ancient Siberians and the initial settlers of the Americas
(Raghavan et al. 2014). Moreover, aDNA retrieved from the only archaeological human
remains associated with the “Clovis” culture (Anzick-1) could clarify the genetic roots of
Native American populations in the Americas (Rasmussen et al. 2014). Interestingly, the

genetic signature from this individual shows a cline of gene flow with the Mal’ta boy.
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The Mal’ta boy’s genome offers the first global picture of genetic composition in
Native Americans, suggesting that 18-38% of its genome variation is present in the
current genetic pool of indigenous Americans across the continent. In addition, the report
of a complete genome sequence from a 40,000-year-old early modern human from
Tianyuan cave in China, has revealed a basal mMtDNA ‘haplogroup B’ shared by Native
American and present-day Asian populations (Fu et al. 2013).

Furthermore, aDNA analysis in the pre-Columbian Americas not only provides
the opportunity to study past events in the continent; it has also been used to test the
demographic impact of the European contact on Native American populations. Historical
accounts report that the European colonization lead to a dramatic demise of Native
Americas, and list a range of factors such as warfare, exploitation, disruption of the
social structure, epidemics and diseases (Mann 2005).

By applying Bayesian analysis to a combined set of ancient and modern genetic
data (O'Fallon and Fehren-Schmitz 2011) attempted to investigate the consequences of
the European contact on Native American people. The study showed a dramatic episode
of population reduction, shown clearly by a decline of the female effective population

size, which coincides with the European arrival 500 years ago.

A recent study by (Llamas et al,. in press) offers the first genetic view of the role
that European colonization played in reducing the overall Native American genetic pool
to the low levels observed today. Gaining access to aDNA information and the power of
a better resolution dataset was fundamental to refine this scenario, suggesting a local
mass mortality and extinction of genetic diversity and lineages after the European
contact. This implies that the European arrival in the early 16" century has had a strong
impact over Native Americans leading to a second population bottleneck event, which
also resulted in a loss of diversity of the Amerindian genetic pool.

By applying the NGS approach, the field of ancient DNA will continue to
generate new insights to elucidate essential questions about human evolutionary history
in pre-Columbian Americas, plus a more extensive sampling either from ancient or
modern-day population and in-depth sequencing efforts are needed to formally test this

scenario.
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h. Hypotheses on the peopling of the Americas based on modern genetic data

Genetic information has been proven essential in testing colonization scenarios
into the Americas. The exact timing when the first people migrated into the Americas is
critical for our understanding of the human evolutionary history of the continent. A
common feature of all genetic studies, whether they focus on mtDNA, Y-chromosome or
autosomal markers, is the fact that Native Americans show a reduced genetic diversity
when compared to worldwide populations. This low genetic diversity links to a small
group of individuals (founders) during the initial peopling of the Americas (Wang et al.
2007; Halverson and Bolnick 2008).

For instance, combining information gathered from mtDNA, Y-chromosome and
autosomes, researchers have estimated that the effective size of the founding population
for the Americas was fewer than 80 individuals, approximately 1% of the effective size
of the estimated ancestral Asian population (Hey 2005). However, other estimates based
on mtDNA data range from an effective female population size of 1,000— 2,000
(Mulligan et al. 2008) to 1,000-5,400 females (Kitchen et al. 2008).

Based on the fact that all four mtDNA haplogroups were present throughout the
Americas, a single migration event was proposed (Merriwether et al. 1995; Forster et al.
1996), suggesting that the patterns of genetic variation across the Americas can be
attributed to ‘in-situ’ differentiation of Native American populations after the first
colonization event rather than as a consequence of subsequent expansion waves (Schurr
2008). Based on the analysis of a continuous segment of 8.8 kb of the mtDNA coding
region from 30 Native American individuals, Silva and colleagues argued also for a
single migration wave into the Americas by observing a low diversity within the four
Native American mtDNA haplogroups A, B, C and D (Silva et al. 2002). The authors
calculated a time of differentiation at around 21,000 YBP and argued for a shared
ancestry and common origin of all Native Americans, which suggested a colonization of
the continent before the LGM.

On the other hand, multiple streams of migrations from Siberia into the Americas
have been also proposed (Greenberg et al. 1986; Bortolini et al. 2003; Perego et al.
2009). For instance, early coalescence age estimates argued for the occurrence of two or
more migrations based on older dates obtained for haplogroups A, C, D and X (between
35,000 — 20,000 YBP), that might have entered the continent in a first wave (Torroni et
al. 1992; Torroni et al. 1993; Brown et al. 1998), and a younger date for haplogroup B
(between 17,000 — 13,000 YBP), which suggests that this lineage might have arrived
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later in the Americas in a separated migration. However, more recent studies using
improved methodologies rather argue for a synchronicity of coalescence age estimates
for all Native American lineages (Kumar et al. 2011)(LlIamas et al. in press).

An alternative peopling scenario proposed by Schurr and Sherry suggested a
Pacific coastal migration of people around 20,000 — 15,000 YBP containing only A-D
mtDNA lineages, followed by a second migration via the ice-free corridor containing the
haplogroup X (Schurr and Sherry 2004). This dual hypothesis (Figure 5) was further
supported by Perego and colleagues based on the analysis of two rare mtDNA lineages,
D4h3 distributed in populations along the Pacific coastal regions in North and South
America, and X2a present only in populations from North America, which might have
entered the Americas once the ice-free corridor opened up (Perego et al. 2009).

Furthermore, another model has suggested that Asian migrants experienced a

long-term occupation in Beringia before moving on into the Americas (i.e. Beringian
Incubation Model (Tamm et al. 2007)) (Figure 5).

Figure 5. The single, dual and Beringian standstill hypothesis for migration into the
Americas (Marangoni et al. 2013)

The generation of high-resolution mtDNA genome data from Native American
populations with a broad geographic coverage, alongside the development of modelling

algorithms (e.g. Bayesian phylogenetic analysis or Bayesian coalescent simulations), has
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allowed researchers to explore more plausible peopling scenarios and the timing of
population entry in the Americas in more detail (Tamm et al. 2007; Perego et al. 2010).

Tamm and colleagues proposed a refined model of the single demographic event
for the peopling of the Americas, coined “Beringian Incubation Model” (BIM) (Tamm et
al. 2007). The mtDNA genome data (n=623) available after sequencing Asian and Native
American samples revealed a previously hidden diversity within the American founding
haplogroups, as well as evidence for a potential recent gene flow and back migrations
between the continents. According to the authors, the most parsimonious hypothesis was
a long-term incubation of Native American founders around Beringia (comprising the
main haplogroups A, B, C and D), where the population had sufficient time to
differentiate from their Asian sister clades. Tamm and colleagues argue that the
Beringian environment provided “glacial refugium” until the climatic and ecological
conditions permitted entering the Americas, upon which humans rapidly spread into the

continent, first via the coastal route and then via the ice-free corridor (Tamm et al. 2007).

Fagundes and colleagues also proposed a single pre-Clovis population migration
around the LGM by analysing complete mtDNA genomes (n=86) and applying novel
Bayesian methods that allowed the reconstruction and the timing of demographic events
(Fagundes et al. 2008). The authors observed a strong population expansion right after
the LGM (but pre-Clovis) between 18,000 and 15,000 YBP. Since these dates were not
compatible with the dates of the opening of an inland corridor, which only became ice-
free around 13,500 YBP (Mandryk et al. 2001), they argued for a Pacific coastal route,
which was ice-free by 15,000 YBP (Taylor et al. 2014). This study was supported
independently by Achilli and colleagues that obtained a coalescence time ranging from
18,000 to 21,000 years for haplogroups A2, B2, C1 and D1 after analysed (n=171)
complete mtDNA genomes using a phylogenetic reconstruction approach (Achilli et al.
2008).

Ho and Endicott (2008) re-analysed the dataset of Fagundes and colleagues using
different calibration techniques to estimate substitution rates in sequence data from
Native American populations. They argued that the global substitution rate (1.26 x 10®
subs/site/year) used by Fagundes et al. 2008, which was inferred by calibration with the
human-chimpanzee split, is not adequate for the study of a human sub-population such as

Native Americans. Instead, they applied a higher mutation rate (2.038 x 10
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subs/site/year), based on substitution rates derived from internal calibrations for mtDNA
evolution (Endicott and Ho 2008). The resulting younger dates for the population growth
commencing 13,000 — 12,000 YBP challenged the pre-Clovis population expansion
proposed by Fagundes and colleagues (Ho and Endicott 2008).

An alternative study by Kitchen and colleagues explored mitochondrial (77
mtDNA coding region sequences, plus 812 mtDNA HVRI+II sequences) and nuclear
data using the Bayesian skyline approach implemented in the software BEAST. This
analytical tool infers effective population size backwards through time from a set of
sequence data and has been demonstrated to be an effective means for reconstructing
population dynamics (Drummond et al. 2005). Based on the shape of resulting
demographic curve, the authors proposed a “Three-step model” with detailed timeframe
with a three stage colonization event (Kitchen et al. 2008). The initial stage (~43,000 —
36,000 YBP) comprised an expansion and genetic divergence between populations from
East Central Asia and the ancestors of Native Americans. The second stage was
interpreted as occupation of Beringia, characterized by a period of isolated settlement
and a population growth for the subsequent 20,000 years, which was consistent with the
“Beringian standstill” hypothesis (Tamm et al. 2007). The third stage was the
colonization of the continent by expansion throughout the Americas around 16,000 years
ago.

Reich and colleagues give support to the evidence of three major migration waves
into the Americas, sustaining the controversial interpretation of language relationship
proposed by (Greenberg et al. 1986) . The authors argue that most Native Americans
descent from an ancestral group they called “First Americans” that crossed the Beringian
land bridge from Siberia. However, Eskimo-Aleut speakers from the Arctic region
inherited almost half of their ancestry from a second stream of Asian genes/pool and the
Chipewyan Na-Dene speakers from Canada, inherited roughly one-tenth of their ancestry
from a third stream (Reich et al. 2012).

In terms of dissemination of people in the continent , the archaeological evidence
suggests that humans peopled South America most likely between 15,000 and 13,500
YBP (Goebel et al. 2008). However, there is much debate regarding the routes and
processes of early human migrations in South America. The settlement of the continent,
according to some authors involved nomadic hunters, fishermen and gatherers who

crossed the Isthmus of Panama and entered the northern Andean region spreading
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towards the central and southern Andean region of South America (Bennett and Bird
1964). Other studies suggest two major migratory movements into South America. First,
a migration into the Amazonas followed by a westward movement towards the highland
regions in the Andes, suggesting that present-day Andean populations can trace their
ancestry to Amazonian groups (Rothhammer et al. 2001). Another scenario for the
peopling of South America, suggests a migration of populations heading first to the
southern part of the continent along the Pacific coast, and then a subsequent migration
towards the Andean highlands to finally move to the Pampas and Patagonia regions in
the southern part of South America (Rothhammer and Dillehay 2009). However, based
on differentiation in Amazonian and Andean populations it was observed that the overall
genetic variance between these main two groups is low, which has led to postulate a
single major migratory event for the settlement of South America (Moraga et al. 2000;
Lewis et al. 2007).

A genetic study of South American populations identified two novel mtDNA
subclades D1g and D1J, which are geographically restricted to populations from southern
Argentina and Chile (Bodner et al. 2012). The estimated age of these mtDNA hg D1
subclades (18,000 - 14,000 YBP) coincides with the earliest dates of the archaeological
site of Monte Verde in southern Chile. The authors proposed three models for the spread
of these lineages to South America’s southern cone whereby humans could have spread
both eastward and westward after a period of incubation in north-western South America
or expanded along the Pacific coast before crossing the Andes, with or without a
subsequent gene flow between east and west (Figure 6).
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Figure 6. Maps showing the direction and timing of three alternative dispersal models in
South America (Bodner et al. 2012).
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The latest genetic analyses performed by two research teams focused on detailed
exploration of genomic information from modern-day and ancient populations, have
added another layer on the complexity of the peopling of the Americas. Both publications
highlight the novel detection of traces of DNA signatures from people from Australia and
Melanesia into the DNA diversity of some Native American groups (Raghavan et al.
2015; Skoglund et al. 2015).

The study by Skoglund and colleagues proposed a working model stating that a
group of “First Americans” migrated into the continent around 15,000 YBP, while a
second group tentatively called “Population Y could have migrated before, after or even
at the same time as the First Americans. Incidentally, this Population Y carries ancestry
more closely related to indigenous Australians, New Guineans, and Andaman Islanders
than to any present-day Eurasians or Native Americans. However, this diversity is only
reflected in Amazonian populations from present-day Brazil in South America, the
Karitiana and Surui tribes whereas no other population from North America,
Mesoamerica or western South America carries such genetic signature (Skoglund et al.
2015).

The study performed by Raghavan et al., 2015 postulated a single migratory wave
into the Americas, which focused on the development of the Eurasian migration across
the Bering Strait. The authors suggest that the migration across the land bridge of
Beringia took place at the height of the last glacial period (Raghavan et al. 2015) . Native
Americans diverged genetically from Eurasians around 23,000 YBP, however the
Eurasian migrants were locked in the Bering Strait by the North American ice sheets for
about 8,000 years. After the retreat of the glaciers about 14,000 years ago the first
colonizers continued moving along the coast to the southernmost part of South America
(Raghavan et al. 2015).

While this study did not performed an in-depth analysis of the Amazonian groups,
the team did find a weak link between Australasians ancestry in some South American
native populations, albeit not as strong as observed by Skoglund and colleagues. Both
studies therefore suggest that the ancestry of the first Americans is a lot more
complicated than scientists had envisioned, which leads to think a more diverse set of
founding populations in the Americas than previously accepted (Skoglund et al. 2015).
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Conclusion from genetic data

Genetic evidence combined with archaeological, linguistic and palaeoecological
has allowed to researchers to propose plausible peopling scenarios describing the origin
of Native Americans groups and migratory routes. The most likely hypothesis based on
genetic and archaeological evidence suggests that the Americas were colonized 15,000
YBP after the deglaciation of the Cordilleran icesheet which opened up the Pacific
coastal corridor (Goebel et al. 2008). Overall, genetic and linguistic data tend to support
the hypothesis of (at least) three independent waves of dispersal into the Americas
(Greenberg et al. 1986; Reich et al. 2012), although the linguistic theory is still
controversial (Bolnick et al. 2004). Due to advances in sequencing technology it is now
more feasible to address the long-standing question of the origins of Native Americans.
In consequence, based on latest research it seems that large-scale genomic information
(i.e. nuclear genomes) supports at least two big migrations of populations from Asia into
the Americas (Skoglund et al. 2015). However, an agreement between mtDNA, Y-
chromosome and autosomal evidence has not been reached so far with regard to
hypothesis supporting colonization models (i.e. single vs. multiple streams of migration).
Nevertheless, these models and their underlying assumptions will continue to be used as
the framework for testing further hypothesis regarding peopling scenarios in the
Americas (O'Rourke and Raff 2010).

Final remarks

Research on human population history in the Americas will continue. Ancient
DNA represents a powerful tool to test long-standing questions about pre-Columbian
Americas. The key advantage of aDNA techniques is to travel back in time, which
enables us to assess genetic diversity in real-time, and to road-test existing hypotheses
about the first settlements in the continent. Additional genetic studies of prehistoric
human remains in the Americas are likely to reveal important insights into population
history of Native Americans. However, is it important that future studies adopt a multi-
disciplinary approach in order to incorporate knowledge from diverse disciplines and to
attempt a better synthesis. With novel technological analytical advances, aDNA research
can play a central role and the incorporation of large numbers of samples from ancient
populations in a broader temporal and geographic context within the continent will refine

our perspective and understanding of pre-Columbian civilizations.
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B) Population history of Native Americans after the European arrival

For centuries, Native American populations lived and evolved in isolation from
Old World influence. America before Columbus was characterized by highly-developed
and sophisticated civilizations with technological know-how and complex cultural, socio-
economic and political structures (Mann 2005). An estimated number of several million
indigenous people lived in the Americas before in pre-Columbian times (Dobyns 1983;
Mann 2005; Livi-Bacci 2006), and the catastrophic demographic decline of the
indigenous population (Mann 2005) was estimated to have caused the death of almost
95% of the population during the first 130 years after the contact (Livi-Bacci 2006).

Same estimates for population counting have suggested that indigenous peoples in
the Americas were reduced from over 44 million to 2 or 3 million in fewer than 100
years — reviewed in (Crawford 1998). Overall counts in the Americas following the so-
called “approximation of populations densities” calculated the approximate size of pre-
Columbian indigenous populations in South America ranging around 10 million peoples,
estimating that almost 3,5 millions people were dispersed in the Central Andes (Steward
and Faron 1959).

Even in South America lowlands it has been suggested that the European contact
resulted in the extinction of 75% of societies and the loss of over 95% of the overall
population in indigenous Amazonians from Brazil (Hamilton et al. 2014). While the
precise scale and dimension of this catastrophe is still debated, the reduction of
population size accounts for a significant population bottleneck, likely led to a
considerable loss of genetic variability in indigenous populations. The main cause of
such decline is likely due to violent deaths during the European colonization, but also the
exposure to new infectious agents is thought to have played an important role in the
Native American population collapse. In fact, diseases all over the world are known to
have played a significant role in human history (Patterson and Runge 2002). In order to
explain the particular vulnerability of Native Americans to European diseases two
possible hypotheses have been suggested: the disease-free Eden or Virgin soil paradigm,

and the Black Legend paradigm.

The Prehispanic “Disease-free-Eden” / Virgin soil Paradigm
For millennia, Europe/Eurasia and North Africa have been the centre of war and
trade, facilitating a fertile ground for diverse human contacts and also allowed for the

spread of transmissible and contagious diseases (Dobyns. 1993; Diamond 1997). In
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addition, early domestication events involved close and frequent contact between animals
and people, increasing chances for pathogens (virus or bacteria) from domestic animals
to mutate and transfer to humans, fostered a source of new virulent diseases associated
with the fauna (Diamond 1997). In contrast, the few domestic animals associated to the
Native Americans populations (e.g. guinea pigs, Ilamas, alpacas, etc.) did not allow
exposure to new diseases in comparison with the Europeans.

Long term exposure of a population to diseases leads to the development of
immune resistance (Diamond 1997). Therefore Old World populations had acquired
some resistance to their own diseases but Native Americans populations lacked the same
immunity mechanisms. An alternative hypothesis is based on the observation that, prior
to the initial peopling of the Americas, the founding population experienced a genetic
bottleneck in Beringia. Therefore, assuming general reduction of genetic diversity would
in turn explain a lack of immune response to new diseases in Native American
populations. In other words, the lack of immune response is solely due to the overall
reduced genetic diversity and not due to the absence of exposure to pathogens.

Old World diseases that were not present in the Americas before Columbus
include smallpox (Figure 7), measles, chickenpox, influenza among others (Larsen
1994). However, the Americas were not free of endemic pathogens. There is documented
evidence to suggest that endemic diseases such as tuberculosis or syphilis were present in
the Americas before Columbus (Salo et al. 1994). Also, epidemic outbreaks were known
to Native Americas people (e.g. Cocolitzli a type of haemorrhagic fever) mainly during
periods of drought (Acuna-Soto et al. 2002).

The contrast between the Old World environment and the state of isolation of the
Americas (disconnected from other continents since the initial peopling) is an ideal
circumstance where a “biologically naive” population exposed to new diseases succumbs
at a high rate, resulting in a “virgin soil” epidemic (Crosby 1976). In this paradigm, the
Old World infectious diseases brought by the Europeans to the Americas represent a
major, if not the main factor behind the depopulation of the American continent during
the European colonization. The concept that pre-Columbian populations lived in a
“disease-free Eden” before the first contact represents a possible epidemiological model
that explains in realistic terms the impact of Old World diseases on the ‘naive’ immune
system of the Native Americans (Livi-Bacci 2006). This would explain how the health of

the American people was altered after 1492 (Mann 2005).
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Figure 7. Native Americans suffering from smallpox (Sixteenth century Mexica
drawings). After (Mann 2005).

Black Legend Paradigm

The arrival of the Spanish “Conquistadores” in the Americas in 1492 also meant
the disruption and destruction of the Native American culture and way of living. The
remarkable development of Native Americans in their own conceptions of the world,
state, writing, languages, art, food, education, and religion were practically destroyed
after the European contact. In contrast to the disease-driven demise, here the cruelty of
the Spanish conquest and regimes’ harsh conditions represent the main causes of the
demographic catastrophe and is associated with environmental (destruction of
infrastructure, deforestation, etc), political (wars, conflicts, warfare), social (dislocation
and disruption of communities and cultures), economic (exploitation, confiscation) and
demographic (abduction, separation) factors that strongly impacted the Native American
societies (Figure 8) (Livi-Bacci 2006).

Moreover, the so-called “Indian reductions” or mission towns, established by the
Jesuit missionaries in Central and South America were developed in order to relocate the
indigenous populations. The main purpose of the reductions was to establish a direct
control over Native populations through culturally transformation and religion (i.e.
Christianization), establishing also in the taxation and exploitation of the indigenous
communities. As consequence, the shift into the reductions had highly disruptive effects
on the indigenous society, which experienced one more time the break of families and

group relationships with the exposure to diseases and forced labour.
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Figure 8. The Black Legend or “Leyenda Negra Espafola” is a term used to describe the cruelty
and intolerance of the Spaniards during the Colonial period in the Americas. (Engraving by
Theodor de Bry, from Bartolome De Las Casas's 'A Short Account of the Destruction of the
Indies’)

Another chapter of the colonization of the Americas by Europeans, represents the
“the transatlantic African slave trade”. Millions of people were forced and removed from
Africa and brought to the “New World”. The historical record of the African slave trade
is based on scattered sources by the time (e.g. legislative notes, trade transactions,
journals of slavers, etc.), making it difficult to account for the entire history (Morgan
1997). It is well known by historians that the slave trade began with the Spanish
incursions into the Caribbean (Palmer 1995). As the records on such matter are scarce,
another strategy to shed light on such events is to infer individual’s origins and ancestry
by applying the molecular technology (Lao et al. 2008).

Research has provided insights showing that genomic data can be used to trace
the genetic ancestry of long-dead individuals, a finding that has important implications
for archeology, especially in cases where historical information is missing (Schroeder et
al. 2015). In this particularly scenario, poorly preserved DNA were analyzed from
enslaved Africans in the Caribbean to determine where in Africa the individuals likely
lived before they were captured; determining with high specificity the ethnic origins of
such individuals. These analysis show the opportunity to understand the patterns of the
trans Atlantic slave trade, offering new clues about the general practice of historical
research (Schroeder et al. 2015).
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Final remark

When two previously isolated populations make contact, the result has not only
cultural, social and political consequences, but also can have a significant impact on
health and disease. The moment when Christopher Columbus’ fleets landed in the “New
World” represents a turning point in the history of the Americas. The cultural and
demographic encounter between the Old and New World had catastrophic consequences

that caused the complete disruption of the complexity of pre-Columbian Americas.

C) Ancient DNA: Potentials and pitfalls of aDNA analyses

Ancient DNA (aDNA) refers to the retrieval/isolation and analysis of the genetic
information from ancient/old material from historical or pre-historical sources or
museum specimens. Some researchers have defined aDNA as any bulk or trace of DNA
from a dead organism or parts thereof, as well as extracorporeal DNA from living
organisms (Herrmann and Hummel 1994). Results arising from this field of research
have helped to answer long-standing questions about evolutionary biology, human
evolution, species extinctions, climate change, domestication processes and phylogenetic
relationships of a variety of extinct and extant species.

Research on aDNA started in 1984 with the extraction and characterization of
genetic material from a museum specimen known as Quagga (Equus quagga) kept at the
Museum of Natural History in Mainz, Germany. This pioneering work reported the
retrieval of the first aDNA sequence from an extinct species missing since 1883 (Higuchi
et al. 1984). The reported 228 bp DNA fragment was compared with closely related
species, determining that this extinct mammal was indeed phylogenetically related to
modern zebras.

The following year, Svante Padbo, a Swedish researcher at Uppsala University,
reported a 3,400 bp DNA fragment from a 2,400 year old Egyptian mummy (Paabo
1985). The use of molecular cloning techniques revealed a repetitive sequence from
human nuclear genome. However, the result of this work did not withstand scrutiny of
today’s criteria of authenticity and are now considered as modern DNA contamination
rather than authentic DNA originating from the mummy (Del Pozzo et al. 1989).
Nevertheless, the significance of both studies lies in the fact that DNA can potentially

survive over long periods of time after death and be analysed.
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These two seminal studies were performed in the “pre-PCR” (Polymerase Chain
Reaction) era, and the amplification of aDNA sequences was based on bacterial cloning
followed by Sanger sequencing of the cloned fragments (Sanger et al. 1977). However,
the limitation of that approach was the lack or absence of reproducible results, which
made it impossible to validate the authenticity of aDNA sequences (Paabo 1989).
Moreover, contamination with “exogenous DNA”, which refers to any DNA molecules
that originate outside the study organism, was not considered at the time or was of little
concern in the early days of aDNA work.

With the development of the Polymerase Chain Reaction (PCR) in the mid-
eighties (Saiki et al. 1985; Mullis and Faloona 1987) began the “PCR era” for DNA
research. The PCR made it possible to perform the amplification of DNA from very few
or even a single starting molecule to obtain thousands or even millions of DNA copies at
the end of the process. Since then, PCR became a methodological breakthrough in
molecular biology and still represents the standard technique for DNA research.

The PCR methodology was soon also applied to the aDNA field, with the result
that the field of aDNA research experienced a booming phase (Paabo and Wilson 1988;
Paabo 1989). Despite the fragmentary nature of aDNA, the PCR allowed the
amplification of millions of copies of aDNA, however, PCR is a stochastic process that

depends solely of the quality and amount of target DNA subject to analysis.

The physico-chemical properties of aDNA and the process behind its ‘post-
mortem’ modification were investigated/studied by (Paabo 1989), inspired by Lindahl’s
pioneering work (1993). Paabo analysed several sets of samples from different origins
and ranging through time and observed that genetic material in ancient samples was
modified by hydrolytic and oxidative processes (Paabo 1989; Lindahl 1993).

This study also reported that due to the great specificity of PCR, contemporary or
exogenous DNA contamination was present in all ancient samples, an observation which
formed the basis for the most inherent problems in aDNA research (Paabo et al. 1989).

Depending on the source of the aDNA sample (and its handling history), it is
likely that endogenous and contaminant DNA will be co-extracted and amplified at the
same time, leading to false positives in very extreme cases when authentic endogenous
DNA forms the minority of molecules or is not preserved at all. This observation led to
suggest a set of criteria for DNA authenticity in order to better assess the potential effects

of contamination (Paabo et al. 1989).
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Reanalysis of the Quagga mtDNA showed that two of the substitutions detected
in the previously reported sequences from cloned fragments were not seen in the new
sequences obtained with PCR analysis (Paabo and Wilson 1988).

In the early days of the aDNA research, working with human aDNA represented
seemingly unsurmountable problems since contamination with modern molecules proved
to be very difficult to evaluate and disprove. Human aDNA bears the intrinsic and
ubiquitous peril of human contamination due to the similarity of DNA from worker (i.e.
any persons handling the sample) and the sample itself. Therefore, any results obtained
from human aDNA must withstand a set of authentication criteria, especially for work
with human material (Gilbert et al. 2005). Continuously improved techniques and more
stringent protocols help to discriminate between endogenous DNA and modern
contamination (e.g. the software “Map damage” (Ginolhac et al. 2011)).

Not surprisingly, aDNA researchers preferably focussed on non-human
organisms, in particular those that had gone extinct. Soon the field regularly reported
aDNA sequences retrieved from extinct animal species, e.g. DNA from mammoth bones
(Hagelberg et al. 1989; Hagelberg et al. 1994), the marsupial wolf (Thomas et al. 1989),
the moa - a giant flyless birds from New Zealand (Cooper et al. 1992), and American
ground sloths (Hoss et al. 1996a). At the same different sources of biological material
besides bones and teeth were explored for potential retrieval of aDNA. Examples include
coprolites from a giant North America ground sloth (Poinar et al. 1998) or soft tissues
such as brain tissue (Doran et al. 1986), and hair and nail (Bengtsson et al. 2011). The
importance of hair shafts in particular as reliable source for aDNA was demonstrated by
Gilbert with the subsequent sequencing of complete mitochondrial genomes (Gilbert et
al. 2007).

Following the initial enthusiasm that the PCR-technique had unfolded in the field
of aDNA research, some aDNA studies explored the upper temporal limits of DNA
preservation. As a consequence aDNA sequences were reported from a variety of
exceptionally/extremely old extinct species, e.g. a cytochrome b DNA sequences from a
Cretaceous Dinosaur that had vanished 80 million years ago (Woodward et al. 1994).
Other studies claimed to have sequenced DNA recovered from insects trapped in amber
(DeSalle et al. 1992; Cano et al. 1993). However, all these rather sensational findings
were later disproven showing that all of them were in fact products of contamination
and/or sequencing artefacts (Hedges and Schweitzer 1995; Zischler et al. 1995; Austin et
al. 1997).
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Due to a series of ‘high profile’ studies, where could be shown were based on
inconsistent or erroneous results, the emerging aDNA field was soon discredited and
experienced a serious phase of scepticism and disregard by the research community. This
was not surprising given the uncertainty and unreliability of the outcomes; an instance
which could have led to the end of the young field.

Nevertheless, despite the lasting controversy and the ‘bad days’ of aDNA
research, one positive effect was the establishment of strict “authenticity criteria” in an
effort to guarantee that endogenous DNA / authentic DNA could indeed be retrieved
from reliable ancient sources. Since then, several guidelines for authentication of aDNA
have been suggested to allow peers, reviewers and general readers to assess the overall
quality of aDNA results (Cooper and Poinar 2000; Hofreiter et al. 2001; Poinar 2003;
Paabo et al. 2004; Gilbert et al. 2005; Willerslev and Cooper 2005).

Substantial research efforts have focussed on understanding the characteristics of
the ancient DNA molecules (Gilbert et al. 2003; Briggs et al. 2007; Brotherton et al.
2007). Moreover, factors related to preservation, survival and DNA damage has been
explored in detail with the help of NGS methodologies (Ginolhac et al. 2011; Allentoft et
al. 2012; Overballe-Petersen et al. 2012). Today even after three decades of aDNA
research, contamination still remains the principal obstacle to overcome. With the advent
of new technologies (e.g. Next-Generation Sequencing — NGS) techniques and laboratory
protocols have improved to better prevent or minimize, monitor and detect aDNA

contamination.

The DNA molecule

To better characterize the molecular processes resulting in ‘post-mortem” DNA
degradation in ancient samples it is important to understand the chemical structure of
DNA and its properties. The primary structure of DNA (Deoxyribonucleic acid) being a
double-stranded helix molecule was first described by (Watson and Crick 1953) by
means of X-ray diffraction. The DNA molecule can be explained as a polymer composed
of a pentose sugar, a 2’ deoxyribose, a phosphate group and four nitrous bases. The bases
which form part of the DNA are two purines: Adenine (A) and Guanine (G) and two
pyrimidines: Citosine (C) and Thymine (T). Purines and pyrimidines are classified as the
two kinds of nitrogen-containing bases. Purines have a double-ring structure and

pyrimidines only a single-string structure.
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These bases are linked to phosphorylated sugars by means of glycosilic bonds.
The phosphorylated sugars are 2’deoxiribose units linked to each other by means of
phospodiester bonds. Hydrogen bonds between purines and pyrimidines adhere to a strict
complementarity on opposite strands, always matching A with T only (and vice versa) by
two hydrogen bonds and G with C only (and vice versa) via 3 hydrogen bonds. The ends
of each of the strands of DNA are called 5'-P (phosphate) and 3'-OH (hydroxyl) in the
deoxyribose. The two strains are aligned in parallel, but in opposite directions (both in 5
'— 3' directions so that they reverse complement each other). In other words, since the
interaction between the two strands is determined by the hydrogen bonds between the
bases, this means that both DNA strands are located in an antiparallel sense (Figure 9).

DNA Structure
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Nitrogenous
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Figure 9. Structure of DNA.  source: http://theinvestigation.yolasite.com/dna-
structure.php

DNA degradation

After the death of an organism, biological molecules undergo severe ‘post-
mortem’ changes. Cellular instability starts immediately because metabolic pathways and
especially the DNA repair mechanisms are no longer effective. Without these, DNA
molecules become prone to degradation and undergo several physicochemical
modifications. Endonucleases drive complex autolytic and enzymatic processes resulting
in the breakdown of DNA molecules (Lindahl 1993). At the same time, external factors
such as bacterial, fungal or insect colonization (Eglinton and Logan 1991), or
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environmental factors such as heat, humidity, physical and chemical processes can also
considerably affect the structure of DNA. Overall, the degradation process affects
primarily the DNA backbone, and introduces a series of chemical modifications resulting
in strand breaks, which leads to base modification and loss of very valuable information

(i.e. nucleotide sequence), that will later affect the DNA retrieval and sequencing.

Ancient DNA characteristics
The study of DNA degradation has resulted in detailed descriptions of possible
types of DNA damage, and the chemical properties of DNA have led to predictions as to
how DNA molecules extracted from ancient tissues would look like under certain
conditions (Lindahl et al. 1993). Direct evidence from aDNA studies have confirmed
many of these observations and have led to the characterizations of various categories of
DNA damage and bio-chemical alterations of (parts of) the DNA molecule, such as
fragmentation of the DNA strands, blocking lesions, nucleotide modification and PCR
inhibitors (Paébo et al. 2004):
a) DNA fragmentation
Analyses of aDNA have shown that it is only possible to reliably amplify DNA
fragments in the size range smaller than of 100-500 base pairs (bp) (Paabo 1989;
Hofreiter et al. 2001). It has also been shown that there is an inverse relationship
between amplification efficiency and length of the amplification products
(Malmstrom et al. 2005), in clear linear relationship with the state of preservation
of the sample. Therefore, amplification of aDNA ranging above 500 bp is likely

to represent exogenous contamination (Paabo 1989).

b) Blocking lesions
Blocking lesions generally describe chemical alterations/modifications of
nucleotides in the DNA strands that prevent amplification and sequencing of
molecules by PCR.
-Hydrolytic Damage:
The DNA molecule is particularly prone to hydrolytic damage related to the
presence of water. Hydrolytic processes are also responsible for breaks of
phosphodiester and glycosidic bonds, which leads to the generation of baseless
(i.e. abasic) sites, which are prone to strand-breaks and ultimately lead to DNA
fragmentation (Lindahl 1993)(Figure 10).
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The glycosidic bond is particularly susceptible to base protonation, this process is
also known as depurination with a consequent formation of an
apurinic/apyrimidinic site (AP site) (Lindahl and Nyberg 1972). In general
apurinic sites are much more common than apyrimidic sites and can generate the
break down the DNA molecule resulting in a DNA single-strand nick (Lindahl
1993).

-Oxidative Damage:

The oxidative damage occurs mainly though the action of free radicals (e.g.
hydroxyl radicals -OH, peroxide radicals -O, and hydrogen peroxide H;0,)
(Lindahl 1993). Bacterial or fungal process could be associated with the
production of such radicals and oxidative processes mainly affect the double
bound of purines and pyrimidines.

The phosphodiester bond is also prone to break down due to oxidative damage
mainly because of the absence of 2’0OH group in the ribose unit and following a
break down generating a series of single-stranded nicks in the molecule (Lindahl
1993)(Figure 10).

Nucleotide modification

Ancient DNA sequences are subject to post-mortem damage in the form of
nucleotide misincorporations. The main modifications described in aDNA are the
deamination of nitrous bases. For example, deamination of Cytosine (C) to Uracil
(V) an analogue base of Thymine (T) along with the deamination of Adenine (A)
to hypoxanthine (HX), an analogue of Guanine (G) (Friedberg et al. 1995;
Hofreiter et al. 2001). Such a DNA base modifications can lead to changes in the
crucial information of the molecule, generating potentially misleading DNA
sequences. Moreover because of the complementary of DNA strands, it has been
noticed that the process of deamination of cytosine (C) leads to artificial C to T
transitions (Lindahl 1993) but, if the complementary strand is sequenced, then it
will be read as a G to A transition. Similarly, the deamination of A may be

observed as change from A to G, or as T to C transition in the complement strand.
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Figure 10. DNA damage in aDNA. Sites susceptible to hydrolytic attack are
indicated by green arrows and those prone to oxidative damage by blue arrows.
G, guanine; C, cytosine; T, thymine; A, adenine (After Hofreiter et al. 2001).

PCR inhibitors

Samples for aDNA analysis can come from a range of diverse sources (e.g.
archaeological excavations, burial sites, ice or sediment cores, soils, museums,
etc.) and are often contaminated with environmental substrates.

While minute amounts of DNA can be selectively amplified by PCR, this
enzymatic step is also sensitive to inhibition, which can be caused by agents that
are co-extracted alongside the DNA molecules.

These so-called “PCR inhibitors” are in general not associated with the ancient
samples themselves, but form an inherent part of the environmental surrounding
from which ancient material had been obtained. PCR inhibitors are mainly soil
components or derived from products of soil degradation (e.g. fulvic, humic
acids, tannins or complex iron molecules)(Paabo, 1989).

The exact mechanism of inhibition is not well understood, but it is assumed that
the agents interact in a non-specific way leading to a loss or substantial decrease

of the Tag polymerase activity during the PCR.
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Other inhibitor are so-called Maillard products, which are derived from organic
reactions such as sugar reduction/condensation (Willerslev and Cooper 2005) or
which DNA is bound, or DNA derived from microorganisms, that is co-extracted
with the target DNA, and could potentially contain competing primer binding

sites.

e) “Jumping PCR”

A coding or blocking lesion in the DNA template can cause the Taq polymerase
to discontinue strand elongation during PCR amplification. However, the partly
synthesized strand can act as primer in the next PCR cycle, where the polymerase
resumes on another DNA template, therefore producing a mixed strand of two
potentially different templates. This process results in chimeric” sequences,
which could not only be misinterpreted as novel genetic variant, but could also
generate drastically misleading phylogenetic information if not recognized as
such (Paabo et al. 2004; Willerslev and Cooper 2005).

Survival of DNA molecules

If we consider the process of DNA degradation as continue over time,
theoretically all DNA molecules will be damaged, become more and more fragmented
and will eventually too small to detect or will disintegrate entirely. However, contrary to
this assumption, if degradation processes come to a halt, DNA molecules can
survive/remain preserved under specific circumstances (i.e. particular environmental
conditions). Such conditions include, low temperatures, fast inactivation of the nucleases
activity, inhibition of micro-organisms or fast desiccation (Hoss et al. 1996b). Other
conditions include high salt concentration and neutral pH.

Temperature is probably the most important environmental factor in the
preservation of the genetic material, since physicochemical reactions responsible for
DNA damage take place with low rate at low temperatures (HOss et al. 1996b; Willerslev
et al. 2003). Under such favourable conditions it is estimated that DNA molecules can
survive for several millennia (Lindahl 1993). However, a study of modern papyri from
Egypt with an age-span from 1,300-3,200 years BP showed that the DNA half-life in
papyri is as short as 19-24 years (Marota et al. 2002).

It has been estimated that 100,000 years is the time before the DNA molecule will

completely break down and will no longer be detectable/amplifiable by laboratory
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methods (Lindahl 1993; Hofreiter et al. 2001). Consequently, Paddbo and colleagues
estimated that all aDNA sequences older than 1 million years should be considered as
artefacts (Paabo et al. 2004).

A study focussed specifically on survival time of the aDNA used remains from
158 moa species and found that the total DNA from the remains of the moa is halved
over 521 years when stored at a temperature of 13.1 degrees (Allentoft et al. 2012).
When extrapolated over time, they concluded that DNA in bone could survive for 6.8
million years if kept constantly at a temperature of five degrees below zero.

Recent studies from exceptional sites have exceeded the 100,000 years mark.
Ancient DNA from permafrost environments has yielded the oldest records for DNA
survival for plant and invertebrate species with a date of approximately 800,000 years
(Willerslev et al. 2003). Also, a study reporting aDNA from a 700,000-year-old Middle
Pleistocene horse has dramatically extended the known limit of DNA survival for
mammalian species (Orlando et al. 2011). New technological approach based on
targeting ultrashort DNA fragments of DNA have made possible to report the oldest
aDNA sequences outside the permafrost recovering the mtDNA genome of a <300,000-
year-old from a cave bear in Spain (Dabney et al. 2013) and an early hominin remains
ranging in age from the early Pleistocene to the Holocene from Sima de Huesos — ‘pit of
bones’ (Meyer et al. 2014).

Contamination of DNA

While ‘post-mortem’ DNA damage and degradation pose technical and analytical
challenges, research on aDNA also encounters a series of experimental difficulties in the
form of the ubiquitous peril of contamination by external modern DNA molecules.
Exogenous or modern DNA contamination can be co-extracted and processed alongside
the targeted endogenous DNA at all stages of the experiment, which could potentially
lead to disputed outcomes and in the worst case scenario to false positive results if the
analytical framework and laboratory protocols are not properly set up. Despite all
precautions to minimize DNA contamination in aDNA analysis, it remains likely that

contamination can occur at some step (Gilbert et al. 2005).

a) Sample collection and handling

Correct handling of samples before and during sample collection is not only the

first but also one the most important step in aDNA studies, on which most of the
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b)

ultimate success of aDNA retrieval depends. However, accession and collection
of specimens cannot always be performed under ideal contamination-free
conditions, or are difficult to monitor or maintain. This is of particular importance
when archaeological samples have been excavated many years or decades ago,
and have since been held at museum collections (Malmstrom et al. 2005).
Therefore, the post-excavation history and archaeological context are
fundamental to evaluate preservation and handling of samples for selection of
reliable material (Gilbert et al. 2005).

In the best-case scenario, archaeologists and anthropologists trained in ancient
DNA sampling are the first to recover ‘in situ’ ancient specimens (i.e. freshly
samples from and during archaeological excavations). Several guidelines to
perform a careful collection in order to avoid any possible contamination have
been proposed (Brown and Brown 1992; Yang and Watt 2005). The compulsory
use of protective gear (e.g. face masks, face shields, full body suits, sterile latex
gloves, etc.) during sample collection is recommended in order to minimize the
risk of contamination. It has been shown that freshly excavated specimens are
ideal in terms of preservation (Pruvost et al. 2007). Another important point in
reducing contamination is to avoid contact of samples with water and do not wash
them. If samples were collected from damp environment, it is important to either
freeze or dry them to prevent microbial growth. It is generally recommended to
store samples appropriately, either kept refrigerated or under cool conditions
before analysis.

The use of preservatives of other kind of substances such as hardeners should be
postponed until after the sampling as these might interfere with or cause
inhibitions during the PCR. If feasible, it is recommended to genotype all people
involved in peri- and post-excavation handling of the samples and in the sampling
step itself. This will allow aDNA researchers to compare potential contaminants
with genetic profiles of those persons who handled the samples and/or museum

collections.

Laboratory Procedures

Ancient DNA analysis is only possible in a controlled environment. It is
imperative to carry out aDNA research exclusively in purpose-built facilities. The

aDNA laboratory must be separated from any modern and post-PCR laboratories.
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Ancient DNA laboratories should be equipped with a positive air pressure system
to reduce contamination from the surrounding environment, while spatial
separation of all work areas and experimental steps is recommended as a standard
procedure (Fulton 2012; Knapp et al. 2012). Before entering the laboratory,
aDNA researchers must adhere to a set of protocols in order to keep
contamination at a minimum (Paabo 1989; Cooper and Poinar 2000; Willerslev
and Cooper 2005; Yang and Watt 2005). A mandatory measure to perform aDNA
lab work is the use of protective gear (e.g. face mask, face shield, full body suit,
sterile gloves and gum boots) (Fulton 2012). The use of chemical oxidants such
as bleach and UV light irradiation is recommended as to decontaminate the
sample surface (Yang and Watt 2005). Regular cleaning steps on every surface
and work benches before and after any experiment must be performed. Also work
areas must be cleaned with 3-5% bleach to destroy any potential contaminant
followed by wiping with ethanol and nightly UV irradiation. Additional and
thorough weekly cleaning is necessary to maintain a “DNA-free” work
environment (Fulton 2012).

Regarding reagents and consumables, it is important to follow the same
procedures and despite the fact that some are labelled as sterile or certified as
DNA-free materials, all disposables and equipment must be decontaminated
before use. Moreover, is important to keep a strict one-way system of

consumables and disposals once they entered to the laboratory.

Criteria of authenticity

All features of aDNA presented above (fragmentation, PCR inhibition, nucleotide
modification and contamination), can eventually pose problems in the subsequent
analysis and interpretation of genetic data. Criteria of authenticity are based on a
combination of precautions, interpretation of aDNA based on expected biochemical
properties, and common sense. Ancient DNA researchers have suggested guidelines to
standardize protocols and to validate the results (Cooper and Poinar 2000; Poinar 2003;

P&&bo et al. 2004), although some of them are no longer applied.
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Top 10 criteria of authenticity for DNA for ancient and degraded samples
Modified after (Poinar 2003)

1 | Physically isolated work area

Given the susceptibility of ancient material in each step of the analytical process,
samples must be analysed in a purpose-built facilities equipped with positive air
pressure inside, HEPA filters and work surfaces and specimens should be radiated
with ultraviolet light and oxidant agents. All post-PCR steps must be performed in a

separate laboratory.

2 | No template controls

The use of no template controls in extraction and amplification steps, as well as
library preparations. Such controls contain all reagents, except the DNA template.
Any positive result of negative controls is indicative of the introduction of

contaminating DNA during the experiment.

3 | Appropriate molecular behaviour

Since DNA fragmentation only allows DNA amplification of fragments less than
~200-300 bp in size, larger products must be interpreted with caution. Recommended
is the verification of the size of PCR molecules. We expect an inverse relationship
between the number of surviving/amplified DNA fragments and the length of aDNA

sequences.

4 | Quantitation

Measuring the amount of starting molecules of DNA by real time PCR is critical to
assess whether or not an observed mutations in a sequence might result from one
DNA copy with post-mortem oxidative modifications. Generally, when the number
of starting DNA molecules exceeds > 10000 the probability of all sequence having a

damaged base at the same site becomes low.

5 | Reproducibility
To achieve a consistency in the experiments, it is important to replicate results if
samples are available. As a general rule, it is recommended to analyse at least two

independent samples coming from the same source.

6 | Cloning

In the PCR era of ancient DNA research, cloning of the amplified aDNA was

recommended to assess the state of initial degradation of the DNA molecules, detect
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contamination, and possible non-specific binding of the primers in the PCR reaction.
Cloning allows detecting sequence heterogeneity present in the amplification
products and can help identifying whether it is cause by contamination, molecular

modifications and / or errors of the PCR polymerase.

7 | Independent replication
Perform the experiments in other research laboratories independently. The idea is to
eliminate the possibility of systematic contamination in one lab. This is very
important for studies on human remains, and when novel or unexpected results are
observed.

8 | Biochemical preservation
This criterion uses independent observation of the survival of other biomolecules as
indicator for the likelihood of survival of DNA molecules. Its purpose is to establish
whether the general state of sample preservation is good enough to reasonably expect
the preservation of authentic DNA molecules.

9 | Associated remains
The processing of associated faunal remains from the same site/location can help in
assessing the overall chances of DNA preservation at a given site, and potentially
monitor contamination (e.g. detection of human DNA in non-human species).

10 | Phylogenetic sense

Results should fall in appropriate places on a phylogenetic tree. The rationale is that
very old samples are expected to fall onto basal branches (or even assume out-group
status) and not on terminal twigs with the tree. When phylogeographic relationships
are known, haplotype status is often an indicator for contamination. For example,
given the known peopling history it is highly unlikely to observe typical European
haplotypes in Pre-Columbian samples from the Americas.

The authentication of aDNA and assessment of contamination by external sources
remains an issue in aDNA research despite the great major advances in aDNA analysis in
the last years. Next-Generation Sequencing (NGS) techniques applied to aDNA requires
a new set of guidelines to work with aDNA. In that regard, Knapp and colleagues, have
proposed a new set of authenticity criteria to deal with the fundamental changes in

sequencing strategies introduced by NGS (Knapp et al. 2015).
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Ancient DNA: Applications and perspectives

The analysis of aDNA allowed archaeologists, anthropologists, palaeontologists,
and geneticist to reconstruct the evolutionary history and systematics of a wide range of
extinct and extant species, and interpret events in the past. In Table 1, I list a (subjective)
selection of significant milestone studies resulting from aDNA research.

The ability to retrieve and characterize aDNA from ancient sources and materials
has been evolving during the last decades resulting in continuously improving laboratory
protocols and data analysis tools, otherwise it would not be possible to perform aDNA
research without the developed, improvements and breakthrough aDNA methods — for a

review see (Rizzi et al. 2012; Ermini et al. 2015).

a) Evolutionary and phylogenetic relationships of extinct and extant species
From the first study in aDNA research, the analysis of the Quagga museum
specimen (Higuchi et al. 1984), which clarified its phylogenetic relationship to
plain zebras, aDNA has helped to elucidate phylogenetic and taxonomic
positioning of many species. Many such studies contributed to our understanding
of species evolution and — to a degree — their extinctions. A famous example for
the systematic classification of an extinct species through means of aDNA
analyses is the Tasmanian tiger (Thylacinus cynocephalus), which was found to
be closer to Australian marsupials than to South American marsupials (Krajewski
et al. 1997), suggesting an independent evolution of marsupials within the two
continents. The moa, a giant flightless bird species from New Zealand was
determined to be related more closely to Australian birds than to Kiwis from New
Zealand (Cooper et al. 1992). Moreover, a recent analysis of aDNA extracted
from two Madagascar elephant birds, has revealed its close genetic relationship
with the kiwi, despite large differences in morphology and geography (Mitchell et
al. 2014).

Coprolites from extinct ground sloths were genetically analysed to gain
information about their diet and ecology of this species in the Americas (Poinar et
al. 1998). The analyses of mammoth bones from the Pleistocene present another
interesting case study, for which a phylogenetic relationship with the African
elephant was first suggested (Yang et al. 1996). However, the analysis of

complete mitochondrial genomes (Krause et al. 2006; Rohland et al. 2007) and
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nuclear DNA finally solved this issue, determining that mammoths were indeed
more closely related to Asian elephants (Miller et al. 2008).

Another important aspect of aDNA analysis is the ability to correlate species
relationships with temporal and/or geographical variables in order to see how
species evolved or expanded across space and time. Such an approach was used
to obtain a view of population dynamics of Pleistocene bears in Alaska (Leonard
et al. 2000). Later results clarified the ecology, distribution and relationship with
extant bear species, and the genetic relationship with polar bear species (Miller et
al. 2012).

Since its inception a huge variety of extant and extinct species have been
characterized by aDNA, including hyenas (Rohland et al. 2005; Sheng et al.
2014), Myotragus, a cave goat from the Balearic Islands (Lalueza-Fox et al. 2000;
Lalueza-Fox et al. 2005a; Ramirez et al. 2009), wild aurochs species (Bos
primigenius) (Zeyland et al. 2013), chicken (Thomson et al. 2014) to name only a
few — reviewed in (Hofreiter et al. 2001).

With the ability to generate massive high resolution data set through Next-
Generation Sequencing approaches, many of these question have been revisited in
recent times, leading to further clarification, especially where the ancient
evidence was relying on mitochondrial DNA. Today, many complete
mitochondrial and nuclear genomes are available for extinct species, which
helped to track changes in evolutionary and population changes over time and
resolved remaining phylogenetic questions. Accessing high-resolution data allows
aDNA researchers to reconstruct past and present population dynamics of extinct
species (Miller et al. 2009; Orlando et al. 2011; Dabney et al. 2013; Mitchell et al.
2014).

b) Molecular paleopathology

Ancient DNA studies have shown that is possible to retrieve DNA not only from
the host (i.e. the organism carrying a disease), but also from the pathogens
associated with a particular disease, in which case there must be traces of viral or
bacterial infections.

The alleged survival of DNA from microorganisms (bacteria, fungus, viruses) has
been reported and discussed in several publications, — for a review see (Harkins

and Stone 2015). To study diseases that affect by human populations in the past,
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to understand human-pathogen interactions through time and the role played by
microorganisms in the history of human groups, it is important to assess its
origin, prevalence and evolution (Harkins and Stone 2015).

In screening and studying pathogens in past populations, the field of molecular
paleopathology has reported interesting findings. For instance, the tuberculosis —
TB — causing agent Mycobacterium tuberculosis has been detected in pre-
Columbian mummified remains (Salo et al. 1994; Arriaza et al. 1995; Braun et al.
1998), in East Central Europe (Faerman and Jankauskas 2000; Haas et al. 2000;
Fletcher et al. 2003), and in Egyptian mummies (Zink et al. 2001; Zink et al.
2003; Crubezy et al. 2006).

With the advent of NGS technology, a recent study on tuberculosis has postulated
a novel hypothesis regarding the origin and spread of the disease. By analysing
human remains from South America, researchers found that the ancient TB
strains from Peru did not resemble human-adapted forms, but were very similar to
strands from Mycobacterium pinnipedii, which are adapted to seals and sea lions.
These findings suggest that seals might have picked up the disease in Africa and
carried it across the ocean to pre-Columbian Americas, meaning that tuberculosis
was present before the European contact (Bos et al. 2014).

The presence of Yersinia pestis was reported by (Drancourt et al. 1998) by
analysing teeth extracted from skeletons excavated from 16th and 18th century
French graves. This particular pathogen, which is thought to have caused the
Black Death (1348-1350 AD), one of the most devastating pandemics of plague
in human history, was later studied by using NGS methods retrieving the genome
from plague victims from medieval mass graves (Bos et al. 2011; Schuenemann
et al. 2011). These studies suggest that ancient Y. pestis strains do not differ from
modern-day bacterial phenotypes in terms of virulence; however as the causative
agent of the Black Death, other factors such as environment, vector dynamics or
host susceptibility might have played a role in the spread of such pandemics in
medieval times.

A very recent aDNA study identified the oldest evidence of Y. pestis in human
teeth from Asia and European individuals ranging from 2,800 — 5,000 years ago.
The results suggest that plague infections in the past might be endemic of
Eurasian populations, pushing back the origins of the disease by some 3,000 years
(Rasmussen et al. 2015b).
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From an historical and epidemiological point of view the origins of pathogen or
epidemics is often unclear or debated. For example, a European or American
origin of the syphilis disease (caused by Treponema palladium) had been
suggested, and thus been studied in ancient samples (Kolman et al. 1999; von
Hunnius et al. 2007). Recent investigations showed that syphilis was introduced
to the New World by the Spanish (de Melo et al. 2010) based on the finding of
the oldest reported case of syphilis in the Old World, suggesting a European
origin of the disease (Montiel et al. 2012).

Dental calculus — calcified plaque, has received particular attention in recent
years as a special type of outlasting sample that traps and binds DNA during its
formation. With the study of microbial DNA from dental calculus it has been
possible to generate important insights into the diet and cultural changes, and the
emergence of new pathogens related to the introduction of agriculture and the
associated changes in microbial diversity it brought about (Adler et al. 2013;
Warinner et al. 2014).

However, ancient samples with highly degraded DNA in which pathogenic taxa
represent often a minute component, performing a sequence-based metagenomic
characterization for these kinds of studies represents a costly and time consuming
approach. Latest methods to analyse pathogens have incorporated the use of the
“Microbial Detection Array technology”, tested successfully with previous
ancient pathogens/samples, showing that a less expensive and more efficient
paleo-pathological screening is available, without the lengthy analysis associated
with high-throughput sequencing. Based on this, it is possible now to obtain an
informative “snapshot” of microbial diversity in complex samples (Devault et al.
2014). Further research will focus on the mechanisms and processes of
host/pathogen interactions to better understand pathogen evolution and related

functional adaptations through time.

¢) Hominin evolution

The evolution of archaic forms of humans poses a key question in aDNA studies,
as the information gained provides insight into the evolutionary puzzle
concerning the origins and dispersals of anatomically modern humans (AMH)

and their interaction with archaic humans. The most iconic of these, the so-called
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Neanderthals, were a group of humans that existed in Western Asia and Europe
until they became extinct around 30,000 years ago (Hublin 2009). In an
evolutionary context, Neanderthals represent human’s closest relatives.

The breakthrough for aDNA research came with the retrieval of the first
Neanderthal sequences from the Feldhofer-Cave specimen from the Duessel
valley in Germany (Krings et al. 1997), which opened up avenues to explore the
genetic relationship of AMHs and extinct hominids. The successfully amplified
and cloned sequence of the mtDNA — hypervariable Region | (HVR-I) showed
that modern humans and Neanderthals shared some similar genetic characteristic.
However, there were enough differences in the Neanderthal mtDNA sequence
that suggested that Neanderthals fell outside the genetic variation from modern
humans (Krings et al. 1997). This results was later confirmed with sequences
from HVR-11 from the same individual (Krings et al. 1999).

Since this first report many more Neanderthal samples were screened by several
research teams, leading to sequencing of complete (Green et al. 2008) and partial
mitochondrial genomes (Ovchinnikov et al. 2000; Lalueza-Fox et al. 2005b;
Caramelli et al. 2006; Briggs et al. 2007; Burbano et al. 2010).

With the advent of NGS techniques it was also possible to retrieve genomic data,
which allowed answering the all-important question whether or not there was
gene-flow between AMHs and Neanderthals (Green et al. 2010; Prufer et al.
2014).

When compared to a set of worldwide modern populations, the study found
signals of 1-4 % Neanderthal genetic contribution in all present-day non-African
human populations (Green et al. 2010).

Upon screening of more samples identified as potential Neanderthal, researchers
from the Max Planck Institute in Leipzig found the sequence of an unknown
hominid. This archaic hominid was later named as Denisovan after the Denisova
cave in the Altai Mountains of Southern Siberia where its remains were found.
The archaeological site contained unique cultural layers that indicate presence of
archaic humans from 280,000 years ago onwards. The finger bone from which the
unknown sequence was derived was found in a layer dated between 50,000 and
30,000 years ago. With no fossil record other than and a small fragment of a
finger phalanx and two molars, and no phenotypic information, the sequence

analysis shows that these elusive individuals represents an archaic human group
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closely related to Neanderthals and modern humans (Reich et al. 2010; Meyer et
al. 2012). In consequence, Denisovans added another layer of complexity to the
puzzle of human evolution (Reich et al. 2010). A comparison between
Neanderthal, Denisovans and modern human genomes, revealed a basal genetic
signature shared by the three forms. It has also been shown that a contribution of
5% of Denisovan ancestry can be seen in today’s populations from Papua New
Guinea and the Pacific, suggesting independent events of interbreeding between
archaic forms of humans (Reich et al. 2011). More recently, aDNA of hominin
remains from Sima de Huesos — ‘pit of bones’— in Spain revealed that it is closely
related to the lineage leading to mtDNA genomes of Denisovans (Meyer et al.
2014).

d) Human evolutionary history

The study of human origin and dispersal has received special attention in aDNA
research in order to better understand the processes of migration that led to the
colonization of almost the entire world. The generation of genomic data, as
reported in many recent studies — reviewed in (Ermini et al. 2015), bears the most
promising prospect to evaluate and reconstruct relationships from past and
modern-day human populations, and to reconstruct critical events in human
evolutionary history.

From the earliest works in human populations studying the colonization of Japan
(Horai et al. 1996; Oota et al. 1999), the peopling of the Pacific Islands
(Hagelberg and Clegg 1993), population genetics studies of prehistoric Italian
populations (Vernesi et al. 2004), or studies performed to explain the genetic
variation in lberians and Sardinians populations (Sampietro et al. 2006; Caramelli
et al. 2007), aDNA was used to investigate population affinities from ancient
individuals all over the world. Studies have also targeted complete mtDNA
genomes such as the Paleoeskimo from the Saqgaq culture in Greenland
(Rasmussen et al. 2010), or an Aboriginal Australians (Rasmussen et al. 2011).

A series of studies addressed the origins of Native Americans populations by
aDNA aiming to clarify questions about the peopling of the Americas and the
subsequent history of migrations and relationships among Native American
groups (Stone and Stoneking 1993; Stone and Stoneking 1998; Stone and
Stoneking 1999; Gilbert et al. 2008b). This also involved sampling strategies to
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address regional questions, such as the peopling of the Caribbean (Lalueza-Fox et
al. 2001; Lalueza-Fox et al. 2003) or studies on ancient human mummies from
Andean populations in South America (Shimada et al. 2004; Moraga et al. 2005;
Shinoda et al. 2006; Carnese et al. 2010; Fehren-Schmitz et al. 2011; Baca et al.
2012; Fehren-Schmitz et al. 2015).

A specimen of special interest to Europeans is the Tyrolean ice mummy, a 5,300-
year-old male individual from the Copper Age, known as “Otzi”, named after the
site in Otztal Alps in Italy, where he was discovered (Handt et al. 1994). The key
factor for successful aDNA retrieval from this individual was preservation in
permafrost conditions. Further molecular analysis of the complete mtDNA
genome revealed the European mtDNA haplogroup subcluster K16 (Rollo et al.
2006). Despite initial fruitless efforts in trying to retrieve nuclear DNA data, this
was possible by applying NGS technologies as shown in a study reporting a low
coverage version of the complete genome, which revealed closely affinities to
populations from Corsica and Sardinia (Keller et al. 2012).

Given the temperate and cooler climates favourable for DNA preservation, aDNA
studies from Europe continued to provide new insights relevant to long-standing
archaeological and anthropological research questions, for example whether
ancient Neolithic remains from central Europe would support a Palaeolithic or
Neolithic ancestry/origin of modern-day European populations (Haak et al. 2005).
Soon after, strong signals for genetic discontinuity were shown between hunter-
gatherers and the first farmers during the Mesolithic-Neolithic transition in
Europe (Bramanti et al. 2009; Malmstrom et al. 2009), while the origin of the first
farmers could be traced back to the Near East (Haak et al. 2010).

This could soon be confirmed in Western and Central Europe with the generation
of SNP data and mtDNA genomes from Mesolithic hunter-gatherers and early
farmers (Sanchez-Quinto et al. 2012; Skoglund et al. 2012; Lazaridis et al. 2014;
Olalde et al. 2014), highlighting the dramatic impact of farming during the
Neolithic period and the resulting demographic changes during the transition
from foraging to agricultural societies. Moreover, autosomal genome data has
shed light on phenotypic traits in order to unveil specific and adaptive features
(e.g. eye color, hair and skin pigmentation genes) or diet and immunity genes

from ancient individuals (Olalde et al. 2014).
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However, aDNA studies have been shown to be particularly powerful when
applied over wider temporal windows, as so-called “transect through time” or
“diachronic” studies. One such study reports ancient mitochondrial genome from
39 individuals belonging to haplogroup H, the dominant lineage in present-day
Europe. This study describes the steady rise in frequency starting with the early
Neolithic, identifies incoming lineages in the Late Neolithic, and more generally
highlights the power of high resolution mitogenome sequencing (Brotherton et al.
2013).

Another study reports mtDNA profiles from ~360 prehistoric individuals in
Central Europe and details subsequent changes in genetic composition following
the initial Mesolithic-Neolithic period, which were characterized by a resurgence
of hunter-gather lineages in the Middle Neolithic and another marked changeover
during the transition from Late Neolithic to Early Bronze Age cultures (Brandt et
al. 2013; Brandt et al. 2015).

Ancient DNA studies from other parts of the world include the report of mtDNA
genome and the entire non-repetitive portion of chromosome 21 from a 40,000-
year-old individual in Tianyuan cave in China. This study described the basal
form of the mitochondrial B haplogroup, ancestral to present-day B haplogroup,
which is common in East Asian / Native American populations today (Fu et al.
2013).

A remarkable finding was the genetic evidence from the Upper Palaeolithic
Malt’a boy (Raghavan et al. 2014b), discovered in Siberia, which shows genomic
signatures that link to Mesolithic populations in Western and Central Eurasia, but
also to present-day Asians and Native Americans. This research provides an
invaluable piece of the puzzle in the connection between Siberian populations and
the initial colonizers of the Americas. A related study reporting the complete
genome of the ‘Anzick-1" individual from the Clovis culture in North America
dated to (10,705+35 **C years BP) confirms the scenario about the peopling of
the Americas from eastern Siberia (Rasmussen et al. 2014).

Another recent study from a Siberian individual named Ust’-Ishim retrieved the
oldest genomic data thus far from an anatomically modern human (AMH) with an
age of 45,000 years. The data reveals a non-differentiated population in northern
Asia during the Palaeolithic, which offers insight into the timing and mode of out-

of-Africa journey of AMHSs and gene-flow with Neanderthals (Fu et al. 2014).
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A landmark study, that reconciled the available ancient data with high resolution
data from 2,400 modern-day Europeans, but also generated three high coverage
genomes from ancient Europeans, (two hunter-gatherers and one early farmer)
could show that nearly present-day Europeans can trace their ancestry to three
different groups: indigenous hunter-gatherers who colonized Europe in
Palaeolithic times, Middle Eastern farmers who expanded west with the rise of
agriculture and animal husbandry, and a mysterious third population, related to
the Siberian Mal’ta boy (termed ‘Ancient North Eurasian’; ANE) that spanned
across northern Europe and Siberia (Lazaridis et al. 2014).

This ancestry composition was further explored in follow up study that utilised a
novel SNP capture method to generate genome wide SNP data from 69
prehistoric European ranging from 3,000 to 8,000 years old. The study could shed
further light on the third component, which could be traced back to cattle herders
from the Eurasian steppes, which expanded west reaching Central Europe around
4,500 years ago. Since the Eurasian steppes are one of the proposed homelands of
the “proto-Indo-European” language family, the substantial genetic turnover
observed in Europe 4500 years ago suggests that at least some of the Indo-
European languages must have been brought to Europe with this large-scale

expansion (Haak et al. 2015).

Latest research involving genetic and morphological analyses has shed light on
the genetic affinity of the 8,500-year-old “Kennewick Man”, America’s most
iconic prehistoric skeleton. The ancestry and origin of Kennewick Man has been
subject of a long-held dispute, but ancient DNA evidence suggests that
Kennewick Man is more closely related to Native Americans than any other
population (Rasmussen et al. 2015a).

Lately, the first complete nuclear genome from a 4,500-year-old human skeleton
from the “Mota” cave in southern Ethiopian highlands in Africa has been
sequenced to a mean coverage of 12.5X (Llorente et al. 2015). Resulting analyses
suggest that the DNA from this skeleton is different from today’s Africans, and
does not show signals for Eurasian backflow from populations closely related to
Early Neolithic farmers that spread into Africa 3,000 years ago. This signal is
otherwise widely spread across the continent. Therefore, these results highlight

the importance of ‘“unadmixed” reference baseline data to reconstruct
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demographic events in population studies. Despite not very favourable climatic
conditions for sample preservation for most parts Africa, this study raises hope
for future with aDNA studies.

Next-Generation Sequencing (NGS)

The introduction and development of 2™ 3" and Next-Generation Sequencing
(NGS) technologies has revolutionized the fields of molecular biology and genetic
research (Margulies et al. 2005; Bentley et al. 2008). Despite the great accomplishments
made possible with classical Sanger sequencing (Sanger et al. 1977), including
sequencing of the first complete human genome (Lander et al. 2001; Venter et al. 2001),
it had been quickly replaced by new sequencing techniques in the last decade. Next-
Generation Sequencing techniques are capable of generating massive amounts of
genomic information in a more efficient way, rendering the generation of genomic data
by several orders of magnitude, therefore increasing the prospects for research in a
variety of newest applications and benefits (Mardis 2008; Shendure and Ji 2008; Metzker
2010).

Applications of Next-Generation Sequencing technologies
The wide range of NGS applications includes data generation for de novo whole-

genome sequencing, exome sequencing, methylation patterns of DNA, RNA analysis,

epigenomics, proteomics, metabolomics, and metagenomics (Mardis 2008; Pareek et al.

2011).

a) de novo whole-genome sequencing

The most common application of NGS is the generation of complete genome
sequence data (Wheeler et al. 2008). Next-generation sequencing platforms are
capable of producing massive amount of genetic information in a single run,
which has led to the development of large-scale sequencing projects such as the
1000 genomes project (The 1000 Genomes Project Consortium 2010), the
HapMap project (Consortium 2005), the Human ENCODE project (Dunham et al.
2012), or the Human Microbiome Project (Gevers et al. 2012), aiming to increase
the knowledge of medical genetics and how genetic variation affects health and
disease in humans. Moreover, NGS has opened the possibility to explore the
genomic information encoded in most of living organisms and consequently a

large number of animals, plant and microbial species genomes have been
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b)

sequenced. The overall quality and degree of accuracy for a complete genome is
measured in terms of “sequencing depth” or “fold-coverage” parameters (e.g.
20X), which is the average number of reads for a given nucleotide or the number
of times each nucleotide is sequenced.

For ancient DNA, the quality of a genome depends on the integrity and
preservation of samples. Genomes obtained from modern samples usually reach a
deep fold-coverage above 40X, typically representing 99% of the overall genetic
information. According to estimates it has been proposed that 8X (times)
sequence coverage represents an acceptable genome quality (Millar et al. 2008).
However, for poorly preserved ancient specimens, NGS has dealt with
sequencing fold-coverage ranging from 0.7X from mammoth bones (Poinar et al.
2006), 1.3X from first Neanderthal genome (Green et al. 2006), spanning to 6.4X
coverage of Australian aboriginal genome (Rasmussen et al. 2011) to an genomic
coverage of 20X from an inhabitant of Greenland from the Saggaq culture
(Rasmussen et al. 2010). In maximising sequencing efforts, a significant increase
in coverage could be achieved for the archaic hominins, including a 30X of
genome of the Denisovan individual (Meyer et al. 2012) and the 52X genome
from a Neanderthal from the Altai Mountains (Prufer et al. 2014).

Re-sequencing or targeted sequencing

Target sequencing approaches have been used to delimit and focus on a specific
segment or ‘informative’ regions of the entire genome. Performing a ‘DNA
enrichment’ of the targeted segment or particular loci (Mertes et al. 2011) can
substantially increase the amount of genetic data for the desirable genomic
region. Thus, targeted enrichment has been considered one of the most interesting
methodological improvements of the NGS era (Harismendy et al. 2009;
Mamanova et al. 2010). This was exemplified by a study of (Hodges et al. 2007),
which used a highly-sensitive microarray method to capture desired region of the
human genome (e.g. protein-coding exons). Targeted sequencing also allows the
screening of common and rare genetic, and unknown variants within the target
region in an organism (Ng et al. 2009; Liu and Leal 2010), and identification of
new genes associated with both rare and common diseases (Ng et al. 2009). It
facilitates the generation of exclusive panels of genes, either functional or

phenotypic SNPs (e.g. high-altitude (Yi et al. 2010)), or genomic regions
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d)

associated to a disease, which can be updated on regular terms, and provide new
insights into the complexity of regulatory human mechanisms (Biesecker 2010;
Liu and Leal 2010).

Researchers investigating gene expression and functional genomics have taken
advantage of this approach studying for instance evolutionary differences among
species. Applying this methodology to ancient DNA it was possible to study
functional variants in genes associated to speech ability in humans and
Neanderthals targeting the denominated FOXP2 gene, which has shed light on
speech and language acquisition in humans (Krause et al. 2007). (Briggs et al.
2009) used a technique called ‘Primer extension capture’ (PEC) to enrich for
heavily degraded aDNA samples from a high background of microbial DNA. A
more recent DNA enrichment approach used biotinylated baits in solution,
sequence complete ancient mtDNA genomes (Maricic et al. 2010). This method
was also successfully used to sequence five complete mtDNA genomes from
Neanderthals (Briggs et al. 2009), while a novel microarray-based sequence
capture method was developed to retrieve target regions from Neanderthal DNA
even in the presence of substantial bacterial contamination (Burbano et al. 2010).
Overall, enrichment techniques are more cost-effective, and highly sensitive to

target minute amounts of endogenous DNA from ancient samples.

DNA Methylation.

DNA methylation is a key process in molecular development in higher organisms.
Methylation patterns are studied to understand the regulation of processes such as
cell differentiation, development, and disease occurrence (Bock et al. 2010).
Various sequencing approaches are used to identify global patterns of methylation
(methylome) with high reliability, in a short time and at minimal cost per base
when compared to traditional sequencing (Harris et al. 2010).

Metagenomics

Metagenomics refers to the retrieval of genome sequences from a variety of
organisms, especially microorganisms such as bacteria, fungi and viruses, mainly
from environmental samples, with the extraction and characterization of DNA
from the entire population comprising the samples. The genomic information is

known as metagenome or metagenomic DNA, which represents the overall
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genetic profile from the global set of species in such a sample. The main aim of
metagenomic studies is to characterize the biodiversity derived from samples,
with special focus on those species, which cannot be cultured with classical
microbiological protocols. However, the resulting challenge lies in the accurate
identification of the total number of organisms (and their diversity) present in a
given sample, e.g. water, soil, sediments, ice cores, etc.

As a consequence, researchers working with metagenomics analyses find many
practical applications to study complex environmental microbial communities and
in a comprehensive manner offer the opportunity to observe how ecosystems
develop and respond to e.g. environmental change (Edwards et al. 2006). The
information provided by metagenomic analysis is constantly increasing and finds
direct applications in industry, such water research or agencies engaged in

environmental sustainability.

Ancient DNA and Next-Generation Sequencing

Ancient DNA samples were traditionally analysed using standard molecular
biology methods, such as bacterial cloning, Polymerase Chain Reaction (PCR) (Mullis
and Faloona 1987) and Sanger sequencing (Sanger et al. 1977). Due to the fragmentary
nature of ancient DNA molecules, aDNA research was largely restricted to the analysis
of short fragments of DNA, mainly from the mitochondria (mtDNA) due the higher
abundance of copies per cell compared to nuclear DNA.

Amplification of DNA via PCR helped to overcome the low amounts of
endogenous DNA in ancient samples, but at the same time introduced new problems,
such as the potential (and often preferential) co-amplification of contaminating
exogenous DNA. Traditional PCR based techniques have been unable to fully resolve the
molecular characteristics of aDNA. Before applying NGS a novel single primer
extension (SPEX)-based technique has provided new insight into the molecular nature of
aDNA damage and fragmentation (Brotherton et al. 2007). However, recent
developments in DNA sequencing methodologies applied to ancient samples were able to
study characteristic aDNA damage profiles in more detail (Ginolhac et al. 2011).
Nevertheless, PCR-based protocols are still widely used in laboratories with no or limited

access to NGS platforms.
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For instance, in order to recover as much information as possible from aDNA,
traditional approaches rely on sets of overlapping primer pairs to analyse aDNA from a
small and specific locus (e.g. mtDNA Hypervariable Regions HVR-1, HVR-II).

Targeting the minute amount of DNA molecules is sufficient to gain valuable
information and allow a valid haplogroup call (Haak et al. 2010). Another popular
approach to analyse degraded and aDNA using PCR techniques, is the so-called
“Multiplex PCR” (Sanchez and Endicott 2006). This technique differs from standard
PCR in that the amplification is performed simultaneously using multiple primers for
multiple loci in the DNA molecule instead of just one. Multiplex PCR approaches are
advantageous as less template DNA is needed compared to multiple simplex PCRs
(Butler et al. 2003; Haak et al. 2010).

Multiplexing techniques are particular suitable for SNP-typing because the small
amplicon sizes are only minimally affected by the degree of DNA fragmentation in
ancient samples. Multiplex PCR typing assays proved to be an important tool in targeting
Y-chromosome SNPs from modern-day (Sanchez et al. 2003; Berniell-Lee et al. 2007;
Martinez-Cruz et al. 2011), forensic (Sanchez et al. 2006; Sanchez et al. 2008) and
ancient samples (Bouakaze et al. 2007; Haak et al. 2010). Furthermore, (Seidenberg et al.
2012) adapted STR multiplexing techniques to analyse short tandem repeats (STRs) from
ancient and degraded DNA (i.e. miniSTR heptaplex system) for individuals identification
and for reconstruction of kinship.

Specific aDNA multiplex PCR systems have been successfully applied in
National Geographic’s Genographic Project to screen worldwide mtDNA genetic
diversity in human populations using the GenoCoRe22 SNP assay (Haak et al. 2010;
Martinez-Cruz et al. 2012), and with particular relevance to this thesis, to screen genetic
diversity in ancient human populations from South America using the AmericaPlex26
assay (Coutinho et al. 2014)(Chapter 5).

New NGS techniques applied to the field of aDNA has now moved away from
targeted PCR amplification to the generation of (amplified) complete DNA genomic
libraries from ancient extracts. Despite the fact that NGS was not developed for aDNA
research, this field has benefitted greatly from this technology (Millar et al. 2008; Knapp
and Hofreiter 2010), because NGS platforms have currently only a limited read length,
which requires that the DNA to be fragmented before it can be prepared for sequencing.
The short fragment length of aDNA therefore proves in fact advantageous as the DNA

does not need to be mechanically or enzymatically fragmented before the genomic
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library construction (Knapp and Hofreiter 2010; Meyer and Kircher 2010; Briggs and
Heyn 2012).

In many cases it is only possible to retrieve minute amounts of endogenous DNA
from ancient samples, and the average amount of endogenous aDNA varies greatly but is
usually small and represents no more than the 5%, while the remaining DNA in an aDNA
extract comes from environmental sources and microbes, such as bacteria or fungi (Green
et al. 2006; Millar et al. 2008). Provided that sufficiently complex aDNA libraries can be
generated, massively parallel sequencing made it possible to generate complete mtDNA
genomes and nuclear genomes from ancient specimens.

A recent methodological development in aDNA research for genomic library
preparation focussed on DNA libraries from “single-stranded” DNA molecules. The
technique allows a substantial improvement in the retrieval of aDNA molecules, mainly
from fragmented and degraded aDNA molecules with single-strand breaks, which are
likely present in ancient samples. The advantage of such technique lies in the additional
capture of single-strand DNA molecules, which would not be possible with the standard
double-strand library preparation approach (Gansauge and Meyer 2013). Moreover,
another method was also developed to target the small amount of ‘“endogenous
molecules” using biotinylated RNA baits synthesis transcribed form DNA libraries.
Carpenter and colleagues were able to capture DNA fragments increasing the reads
mapped to human genomes. In consequence, this represents an effective DNA
enrichment approach, making it less expensive and applicable to large numbers of
samples (Carpenter et al. 2013).

The deep coverage of NGS data does in theory allow discrimination of
contamination from endogenous aDNA, and novel bioinformatics tools allow the
examination of aDNA characteristics. Patterns of nucleotide misincorporation using the
NGS approach have been elucidated (Stiller et al. 2006) and an in-depth exploration of
nucleotide misincorporations were studied to distinguish aDNA in a wide range of
ancient remains (Sawyer et al. 2012).

New bioinformatics tools such as the “Map of aDNA damage” software
(Ginolhac et al. 2011) allows to calculate and plot the rate of damage according to the
main types (e.g. nucleotide misincorporation and fragmentation patterns) using NGS
sequencing reads. This tool is also embedded in a novel analysis pipeline called
“Paleomix” which was established to handle aDNA data from the raw reads to the

mapping reads to reference genomes (Schubert et al. 2014). Next-Generation Sequencing
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technologies applied to aDNA research have provided the field with an unprecedented
volume of genetic information (i.e. complete genomes) from ancient and extinct
specimens (Ho and Gilbert 2010; Knapp and Hofreiter 2010; Krause 2010; Shapiro and
Hofreiter 2010; Orlando et al. 2011; Paijmans et al. 2012).

The first study to report of NGS technology applied to aDNA was the large-scale
sequencing of 27,000 bp from a Pleistocene cave bear (Noonan et al. 2005). A year later,
13 billion (base pairs) bp from the nuclear genome of a woolly mammoth permafrost
sample were published under the suggestive title “Metagenomics to paleogenomics”
(Poinar et al. 2006).

The reported first 1 million bp from a Neanderthal marked a major breakthrough
in the field of ancient human DNA (Green et al. 2006). The data analysis led Green and
colleagues to suggest some degree of admixture (i.e. genetic contribution from one
population to another) between humans and Neanderthals by the time both forms co-
existed in Europe around 40,000 years ago according to the archaeological record.

The study also estimated the time of divergence of both groups to be 516,000
years BP based on SNP composition (Green et al. 2006). A parallel study using the same
Neanderthal DNA extract reported 75,000 bp of the nuclear genome (Noonan et al.
2006), and estimated a divergence time for modern humans and Neanderthals of 370,000
years. Concerning the specific question of admixture, Noonan and colleagues pointed out
that little or no interbreeding had occurred. Since both studies differed in the time of
divergence and interbreeding, this lead to suggest that at least one of the publications was
erroneous. A reanalysis of the data by (Wall and Kim 2007) reported some incongruence
in the Green et al. data mainly identified as longer sequence reads, that resembles modern
human contamination. Soon after, the same research group published the first complete
mitochondrial genome from the same specimen (Green et al. 2008) and the first draft
genome of the Neanderthal with 1.3X fold coverage, representing almost 60% of the
genome. Learning from the previous attempt to sequence aDNA from a closely related
human species and the omnipresent DNA contamination risk, this work also showed the
necessity to validate the authenticity of Neanderthal genome in this new era of massive
DNA sequencing (Green et al. 2009), and highlighted critical steps such as the
preparation and amplification of the genomic libraries in a sterile environment (Green et
al. 2009). The NGS based analysis of genomic data from the Denisovan specimen
indicated that Neanderthal had a sister taxon, and suggested a genetic contribution of 4-

6% from this archaic human to the gene pool of present-day populations from Papua
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New Guinea and Oceania (Reich et al. 2010). Later, in an outstanding technological
development coupled with NGS, researchers were able to obtain a high coverage (30X)
complete genome sequence from the same Denisovan individual (Meyer et al. 2012).
Here, the single-stranded library preparation method was applied first and
allowed to generate additional sequence data, which helped to complete a full genome
sequence similar in quality to modern human genomes. The ultimate research effort in
aDNA completing a long-standing endeavour was the publication of the high coverage
Neanderthal genome (Prufer et al. 2014). A toe phalanx also found in the Denisova Cave
in the Altai Mountains from Siberia represents the best preserved Neanderthal sample,
with sufficient complexity to obtain a high-resolution DNA nuclear genome. The
comparison with present-day humans and Denisovans has established a complex pattern

of gene flow in the past between these archaic humans.

Final remarks

Since the establishment of the ancient DNA research field in the mid 80’s, the
retrieval of aDNA molecules has astonished the research community and impressive
scientific achievements were accomplished. Ancient DNA offers a window into the past
and allows reconstructing historic events, which would not be possible to infer by
analysing only modern genetic data. With the advent of new methodological and
technological advances in recent years (e.g. NGS, optimization of extraction, library
preparation protocols, capture techniques, and not least massive advances in
bioinformatics), the field has truly come of age and confirmed the true potential of aDNA
research, undertaking large-scale genetic studies, and making great progress in answering
long-standing research questions. The NGS era has changed the landscape of genomic
projects, pushing the boundaries to what it is achievable in terms of data generation,
ultimately leading to field of “Paleogenomics”. While technology is moving forward, the
field of ancient DNA is not from its inherent problems and it remains important for
aDNA researchers to continuously improve strategies that guarantee the validation of the
results. Working with ancient human samples is particularly challenging. New
opportunities to study arise (e.g. gene expression or positive selection of genes,
refinement of population genetics involving ancestral populations, climate and
environmental change and evolution of diseases). In more general terms, biologists have
made progress in understanding the processes of evolution for animals, plants and human

species.
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However, since the sequencing of genomes has already been accomplished for

many of the extinct species, it is now important to fully understand such information in

order to interpret ancient genomic data with care.

Table 1. Subjective milestones in aDNA research

Date | Reference Publication
1984 | (Higuchi et al. 1984) First aDNA sequences from Quagga species
1985 | (Paabo 1985) Egyptian mummy DNA
1987 | (Mullis and Faloona 1987) Polymerase Chain Reaction - PCR
1992 | (Cooper et al. 1992) aDNA from Moa species
1994 | (Woodward et al. 1994) Dinosaur DNA
1997 | (Krings et al. 1997) First Neanderthal mtDNA sequence
2000 | (Cooper and Poinar 2000) | Ancient DNA guidelines
‘Do it right or not at all’
2006 | (Green et al. 2006) Neanderthal DNA (1 million bp)
2006 | (Poinar et al. 2006) Mammoth metagenomics (NGS aDNA)
2008 | (Ermini et al. 2008) Tyrolean Iceman mtDNA genome sequence
2008 | (Miller et al. 2008) Woolly mammoth genome sequence
2009 | (Miller et al. 2009) Tasmanian tiger (Thylacine) genome sequence
2008 | (Green et al. 2008) Neanderthal mtDNA complete sequence
2008 | (Gilbert et al. 2008c) ‘Paleoskimo’ mtDNA complete genome
) Targeted retrieval and analysis of Neanderthal
2009 | (Briggs et al. 2009)
mtDNA genomes
2010 | (Greenetal. 2010) Neanderthal: Draft genome sequence
_ Genetic history of an archaic hominin group
2010 | (Reich et al. 2010) ) S
from Denisova Cave in Siberia.
mtDNA genome of an Early Modern Human
2010 | (Krause etal. 2010) ) )
from Kostenki, Russia
Ancient human genome sequence of an extinct
2010 | (Rasmussen et al. 2010) o
Palaeo-Eskimo individual
2011 | (Schuenemann et al. 2011) DNA from from victims of the Black Death
aDNA sequences from a permafrost-preserved
2011 | (Orlando et al. 2011) ) ’ )
Pleistocene horse bone (3" Generation NGS)
2012 | (Keller et al. 2012) New insights into the Tyrolean Iceman's origin
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and phenotype as inferred by whole-genome

sequencing

High-coverage complete genome sequence from

2012 | (Meyer et al. 2012)

‘Denisovan’ individual
2013 | (Fuetal. 2013) DNA from an early human in Tianyuan, China

Mitochondrial genome reconstructed from ultra-
2013 | (Dabney et al. 2013)

short DNA fragments

Single-stranded DNA library preparation for
2013 | (Gansauge and Meyer 2013) )

ancient or damaged DNA

Upper Palaeolithic Siberian Genome
2014 | (Raghavan et al. 2014b)

(Malt’a boy)

Middle Pleistocene hominin genome sequence
2014 | (Meyer et al. 2014)

from ‘Sima de los Huesos’
2014 | (Rasmussen et al. 2014) Late Pleistocene genome from ‘Clovis’ burial
2014 | (Prufer et al. 2014) High resolution Neanderthal genome sequence

Mesolithic genome: ancestral pigmentation
2014 | (Olalde et al. 2014)

genes

) Genomic structure in Europeans dating back at

2014 | (Seguin-Orlando et al. 2014)

least 36,200 years

Genome sequence of a 45,000-year-old modern
2014 | (Fuetal. 2014) o

human from western Siberia

o Genomes from Mesolithic and Neolithic ancient

2014 | (Lazaridis et al. 2014)

Europeans
2014 | (Bos et al. 2014) Pre-Columbian tuberculosis in the New World
2014 | (Devault et al. 2014) Microbial detection Array for ancient pathogens
2015 (Haak et al. 2015) Massive migration from the steppe was a source

for Indo-European languages in Europe
2015 | (Allentoft et al. 2015) Population genomics of Bronze Age Eurasia
2015 | (Rasmussen et al. 2015a) Ancestry of ‘Kennewick Man’

Genomic evidence for the Pleistocene and recent
2015 | (Raghavan et al. 2015) ) ) ) )

population history of Native Americans
2015 | (Llorente et al. 2015) First ancient genome from African remains
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ABSTRACT

Genetic data generated from past and present-day populations are now routinely used to
reconstruct the origins, migrations and relationships of human populations around the
world. We analysed mitochondrial DNA (mtDNA) from pre-Columbian coastal and
highland human remains in the Central Andes of South America, incorporating samples
from archaeological periods (Late Archaic: 8000-1900 BC to Late Horizon: 1476-1534
AD), in order to evaluate changes in the maternal genetic diversity through time. We
typed mtDNA haplogroups and haplotypes from 302 samples (149 ancient Native
American individuals), using three different approaches, including sequencing of the
Hypervariable Region 1, a coding-region single-nucleotide polymorphism (SNP)
multiplex assay (GenoCoRe22), and a novel continent-specific SNP multiplex assay
(AmericaPlex26) designed to further resolve the four major American mtDNA
haplogroups A, B, C, and D.

Sequencing and SNP-typing results were successfully and reproducibly obtained from
72 individuals, and assigned to one of the four major Native American founder
haplogroups (A2, B2, C1, D1). This study is the first to incorporate archaeological
samples from all cultural periods in the Central Andes available to date, and provides a
temporal description of demographic events in ancient South America. Mitochondrial
DNA haplogroup frequencies and genetic distances (Fst) reveal a population
differentiation in the Late Archaic Period and two temporal transitions in the subsequent
archaeological Early Horizon and Early Intermediate periods. In addition, the data
suggests another temporal transition for the three successive Middle Horizon, Late
Intermediate and Late Horizon periods, suggesting a process of genetic assimilation
between highland and coastal populations. While we evidenced fluctuations in the
haplogroup composition of ancient populations, we observe no major differences to
modern-day populations, suggesting general population continuity in the Central

Andean region of South America.

KEYWORDS: ancient DNA, mitochondrial DNA, Native American haplogroups,
Central Andes.
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1. INTRODUCTION

The human settlement of the Americas has been a subject of debate over the past
decades, with a specific focus on questions regarding the timing, entry routes and
migratory waves (Greenberg et al. 1986; Horai et al. 1993; Torroni et al. 1994;
Merriwether et al. 1995; Bonatto and Salzano 1997; Tamm et al. 2007; Wang et al.
2007; Fagundes et al. 2008; Kitchen et al. 2008; O'Rourke and Raff 2010; Reich et al.
2012).

Two demographic events have had a major impact on the genetic diversity of
human populations in the Americas. First, a massive population bottleneck during the
initial peopling which shaped the genetic makeup of the First Americans crossing the
Beringian land bridge from Siberia (Horai et al. 1993; Torroni et al. 1994; Goebel et al.
2008). A second significant episode in the history of the continent took place ~500
years ago with the arrival of Europeans. The European contact with Native Americans
resulted in a dramatic episode of population collapse (Livi-Bacci 2006), impacting on
the effective female population size (O'Fallon and Fehren-Schmitz 2011) and
potentially on the genetic diversity of Native Americans.

It has been suggested that this bottleneck explains the restricted genetic diversity
amongst Native Americans expressed in only five major mitochondrial DNA (mtDNA)
haplogroups: A-D (Schurr et al. 1990; Horai et al. 1993; Torroni et al. 1993; Bandelt et
al. 2003; Perego et al. 2010) and X (Brown et al. 1998), with only a particular set of
lineages found exclusively in the Americas, namely the Pan-American haplogroups: A2,
B2, C1b, Clc, D1, and D4h3a (Tamm et al. 2007; Achilli et al. 2008), which are absent
in Asian populations. This reduced diversity could be due to stochastic events during
the settlement process over thousands of years (which was coined “incubation” period
in Beringia by (Szathmary 1981; Tamm et al. 2007), such as the genetic drift expected
from bottlenecks and/or small population sizes (Tamm et al. 2007; O'Rourke and Raff
2010). Moreover, it is hypothesized that a rapid population expansion into the Americas
(Mulligan et al. 2008), resulted in the establishment of successful mtDNA lineages, and
the formation of the initial genetic diversity in the Americas.

A study on complete mtDNA genomes has refined the founder hypothesis and
describes the mtDNA diversity in Native Americans more precisely as so-called 15
American founder lineages (A2, A2a, A2b, B2, Clb, Clc, Cl1d, C1d1, C4, D1, D23, D3,
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D4h3a, X2g, X2a)(Perego et al. 2010), which form basal sister-clades within the
aforementioned America-specific haplogroups.

Although all Native American mtDNA haplogroups are widely distributed
across the continent with the exception of haplogroup X, which is restricted to North
America (Brown et al. 1998; Dornelles et al. 2005), there is genetic variation across
space that might link to a particular haplogroup frequency composition to geographic
regions within the Americas.

Frequencies of haplogroup A are generally high in North American populations
(Tamm et al. 2007; Perego et al. 2010) and decrease considerably in southern latitudes
(Lalueza et al. 1997). Haplogroup B is mainly found in populations from South
America, with a high concentration (>50%) in the Andean region (Rodriguez-Delfin et
al. 2001; Lewis et al. 2007; Afonso Costa et al. 2010; Barbieri et al. 2011; Gaya-Vidal
et al. 2011; Sandoval JR et al. 2013; Taboada-Echalar et al. 2013). Haplogroup C is
present in populations in Mesoamerica (Perego et al. 2010) and populations in north-
western South America, while haplogroup D is characteristic of populations in the
southern parts of South America (Bodner et al. 2012; de Saint Pierre et al. 2012).

Research on ancient DNA (aDNA) in the Americas has developed considerably
over the last years — for a review see (Raff et al. 2011), but focused mainly on small but
informative portions of the mtDNA (e.g. Control Region), typical for PCR-based aDNA
studies. Ancient DNA data from South American populations has accumulated to a
large number of samples (n~500) from ~20 sites (Fehren-Schmitz et al. 2011a), but is
limited in genetic resolution (Shimada et al. 2004; Moraga et al. 2005; Shinoda et al.
2006; Fehren-Schmitz et al. 2009; Carnese et al. 2010; Fehren-Schmitz et al. 2011a;
Baca et al. 2012; Baca et al. 2014; Mendisco et al. 2014). More recently, genome wide
data from a large number of modern-day populations has been published (e.g. Reich et
al. 2012), but also the first genomic data from ancient Native Americans (Rasmussen et
al. 2010; Raghavan et al. 2014; Rasmussen et al. 2014; Rasmussen et al. 2015),
however restricted to North America.

Studies on ancient human remains from South America in particular are
providing new insights into human prehistory, and a direct means to reconstruct the
population history in this part of the world. Ancient DNA has been used to test different
hypotheses on population relationships, to infer genetic continuity and discontinuity
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associated with cultural transitions (Kemp et al. 2009), kinship relationships and social
organization of Pre-Columbian populations (Baca et al. 2012; Baca et al. 2014), and to
reconstruct micro-evolutionary processes and history of ancient populations (Moraga et
al. 2005; Mendisco et al. 2014). Ancient DNA studies have the potential to explore
cultural evolution and population dynamics to elucidate history of pre-Columbian
societies (Fehren-Schmitz et al. 2010; Fehren-Schmitz et al. 2011b). Diachronic studies
of ancient populations from Peru have shown significant differentiation between coastal
and highland populations over time (Fehren-Schmitz et al. 2011b). Also, aDNA studies
have shed light on the role of other factors such as climate influences and climate
variability in the Andean and coastal regions from Peru that have driven population
demography and cultural transitions over time (Fehren-Schmitz et al. 2014).

However, while some aDNA studies in South America have attempted limited
temporal sampling (Moraga et al. 2005; Kemp et al. 2009; Fehren-Schmitz et al.
2011b), most are restricted to samples from a particular archaeological site or period. To
date, there is no comprehensive diachronic/chronological study incorporating samples

across the many cultural archaeological periods in South America.

Here, we present a detailed study of mitochondrial genetic diversity across time
periods in the Central Andes of South America incorporating a temporal sampling
strategy in order to understand demographic processes undergone by ancient
populations through time, testing for population continuity, discontinuity and genetic
maternal relationships between ancient and modern populations.

The ancient samples analysed for this study span from the Late Archaic period
(8000-1900 BC) to the Late Horizon Period (1476-1534 AD). We have compiled the
largest ancient DNA dataset available in order to contrast samples from coastal and
Andean populations with modern indigenous South American populations. For reasons
of compatibility and direct comparison, our study focuses on the HVR-I of the mtDNA
from well-defined ancient and modern populations. This type of data is not yet available
for complete mitochondrial genome studies, since most of these studies largely focus on

phylogenetic refinements rather than population genetic analyses.
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2. MATERIAL AND METHODS.
2.1. Sample description and DNA extraction

We collected a total of 302 samples from pre-Columbian archaeological
sites/cultures across the Central Andes belonging to 149 individuals.

A minimum of two independent samples per individual were collected for the
purpose of replication and authentication of aDNA results (Figure 1, Table 1). Samples
were processed in dedicated aDNA facilities at the Australian Centre for Ancient DNA
(ACAD), University of Adelaide, Australia. The laboratory employs standardized
aDNA protocols and infrastructure to carry out aDNA work (positive air pressure, UV
irradiation and regular cleaning with oxidating agents e.g. commercial bleach and
Decon® to minimize contamination) (Cooper and Poinar 2000; Fulton 2012; Knapp et
al. 2012).

The aDNA-specific workflow used in this study is summarized here:

1) Samples (bone or tooth) were decontaminated upon entry to the aDNA
laboratory by exposure to UV light. The surface of the samples was gently
wiped with 3% sodium hypochlorite solution (bleach) and then physically
removed by abrasion using a Dremel® drill. A Mikro-dismembrator ball mill
(Sartorius) was used to pulverize the sample and 0.2 g of bone powder were

subsequently used in DNA extractions.

2) Samples were decalcified by incubation in 4 mL of 0.5 M EDTA (pH 8.0)
overnight at 37°C on a rotor at ~30 rpm. Next, 70 pL Proteinase K
(Invitrogen) was added and the lysis mix was incubated for 2 hours at 55°C.
DNA was isolated using silicon dioxide solubilised in a Guanidinium buffer
(Qiagen), as described previously (Brotherton et al. 2013; Der Sarkissian et
al. 2013). DNA was resuspended in 200uL of TE buffer including 0.05%
Tween-20 and stored at -20°C. Since samples from different cultural periods
and times vary in quality and preservation, we applied three PCR-based
mtDNA typing techniques and compare the overall performance and
effectiveness of each method to deal with degraded DNA (Table 2 - 3).
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2.2. PCR amplification and sequencing of mtDNA Hypervariable Region |

Four sets of PCR primers pairs were used to amplify overlapping DNA
fragments of the hypervariable region HVR-I. Primer names indicate forward (L-strand
(L) and reverse primer orientation (H-strand (H). [L16055-H16142]: 126bp, [L16117-
H16233]: 162bp, [L16209-H16348]: 179bp and [L16287-H16410]: 162bp (Figure 2),
covering 354bp length (according to the Reconstructed Sapiens Reference Sequence,
RSRS) (Behar et al. 2012). These short amplicons are suitable for highly fragmented
DNA. PCRs were prepared in the aDNA laboratories at ACAD, while amplification and
post-PCR procedures were performed in a standard modern DNA laboratory, isolated
from the ancient DNA lab. DNA extract or extraction blank (3uL) was added to 1X
PCR Gold Buffer (Applied Biosystems), 2.5 mM MgCI2 (Applied Biosystems), 0.5
mM deoxynucleoside triphosphate (ANTP) Mix (Invitrogen), 2U AmpliTag Gold DNA
Polymerase (Applied Biosystems), 0.2 puM primer pairs, and 1 mg/mL Rabbit Serum
Albumin (RSA, Sigma).

PCR cycling was performed in a DNA thermocycler Tetrad 2 Peltier (BioRAD
Laboratories) under the following conditions: Initial enzyme activation at 95°C for 6
min: 45 cycles of denaturation at 95°C for 30s, annealing at 56°C, for 30s, elongation at
72°C for 30s, followed by final elongation at 65°C for 10 min. PCR reactions (5 pL)
were run on a 3.5% agarose gel at 100V for 30-40 min, post-stained in GelRed™
(Biotium), and visualised under UV light to confirm presence of bands of the expected
lengths.

Post-PCR removal of non-incorporated dNTPs and primers were performed on
successful amplicons by incubation of 5 pL PCR product with 0,8 U Exonuclease |
(Exol) and 1 U Shrimp Alkaline Phosphatase (SAP) for 45 min at 37°C, followed by
heat inactivation for 15 min at 80°C. We used the BigDye Terminator® Technology
(Applied Biosystems) to sequence purified products in forward and reverse direction on
a 3130xI Genetic Analyzer.

2.3. Genotyping of mtDNA by Multiplex PCR (GenoCoRe22)

DNA extracts have also been analysed with a mtDNA coding region Single
Nucleotide Polymorphism (SNPs) assay. The GenoCoRe22 is a multiplex reaction
designed to target 22 informative SNPs that characterize basal branches of worldwide
mtDNA haplogroups in one single reaction (Haak et al. 2010).
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This multiplex PCR has been designed to target particularly short DNA
fragments (average 60 — 80bp) and is suitable for degraded and ancient DNA.
Genotyping of samples was performed using SBE reactions — Single-Base Extension
(SNaPshot kit, Applied Biosystems) following the manufacturer’s instructions and

analysed as described in (Haak et al. 2010).

2.4. Genotyping of mtDNA by Multiplex PCR (AmericaPlex26)

DNA samples were analysed using a second multiplex coding region Single
Nucleotide Polymorphism (SNPs) assay, coined AmericaPlex26, designed specifically
to target Native American mtDNA haplogroups and their most common subclades
(Coutinho et al. 2014)(Chapter 5). The AmericaPlex26 is a powerful alternative
technique to the sequencing of the HVR-I because the small amplicon sizes cope with
the degree of DNA fragmentation often observed in South American samples, and the
degree of typing resolution is high. SNaPshot typing was performed using SBE
reactions — Single-Base Extension (SNaPshot kit, Applied Biosystems) following the

manufacturer’s instructions and analysed as described in (Coutinho et al. 2014).

2.5. Sequence analysis

DNA sequences were edited, assembled, and aligned with Geneious Pro®
Software v.6 (Biomatters Ltd) (Drummond et al. 2011). Ancient DNA sequences
corresponding to 126bp, 162bp, 179bp, 162bp length were obtained with the
overlapping primers respectively covering 354bp of the HVR-I. Sequences were aligned
against the Reconstructed Sapiens Reference Sequence (RSRS) (Behar et al. 2012),
from which contigs and a consensus sequence were generated. Haplotypes were
determined using the online database Phylotree (http://www.phylotree.org) (mtDNA
tree Build 16 [19 Feb 2014]) (van Oven and Kayser 2009) (Table 4).

2.6. Populations for comparative analyses

Ancient DNA sequences obtained in this study were compared to other ancient
populations from South America and modern Native American populations obtained
from the literature (Table 5). We trimmed or adjusted all DNA sequences to 354bp in
length (np 16,055 to 16,410) to make the dataset compatible. We excluded substitutions

at nucleotide positions 16,182 and 16,183, because they are dependent on the presence
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of C at the position 16,189 (Horai et al. 1993), and also excluded insertions in poly-C
stretch (due to uncertainty in the exact position of such mutations). The final dataset

including our ancient samples comprises 92 populations (66 modern and 26 ancient).

2.7. Population genetics and statistical analyses

Population differentiation and molecular diversity indices, haplotype (h),
nucleotide diversity (m) (Table 6-7), genetic distances (pairwise Fst), and linearized
Slatkin’s Fst values were calculated using Arlequin v3.5 (Excoffier and Lischer 2010)
to measure genetic diversity and relationships between populations (Table 8).

Analysis of Molecular Variance (AMOVA) was performed in order to evaluate
population structure (Table 9). Multidimensional Scaling (MDS) was performed in
order to visualize genetic similarities and dissimilarities as measured by fixation indices
(Slatkin’s Fst) (Slatkin 1995) in a bi-dimensional space using a customized script in R

2.14.1 version (www.r.project.org). Two datasets (modern & ancient combined; Figure

3 and ‘ancient only’; Figure 4) were compiled to visualize genetic relationships between
ancient samples and present-day populations as well as among only ancient populations.

From 92 populations, we excluded ten [modern] outliers from Amazonian
groups (Waorani, Jamandi, Cinta Larga, Chibchan), populations from the Gran Chaco
(Paraguay, Guarani), three populations from the highlands (Chipaya-Uru, Llapallapani-
Uru, Puno-Quechua) and Central America (Ngoebe), and four additional [ancient]
outliers, Patagonia, Pica-8, Lullaillaco and Lauricocha, due to small sample sizes and
better MDS configuration. The MDS final plot comprises 78 populations.

Principal Component Analysis (PCA) was performed using a customized R
script for samples grouped into archaeological periods in order to visualize genetic
relationships among ancient populations in a reduced number of dimensions called
‘components’ to detect internal structure (Figure 5). Ward hierarchical clustering based
on haplogroup frequencies was performed and plotted using a customized R script
(Figure 6). The newly obtained HVR-I sequences have been deposited in GeneBank
under accession numbers XXXXXX to XXXXXX.
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2.8. Authentication of aDNA

Replication of results in aDNA research as part of the authentication criteria
(Cooper and Poinar 2000) is fundamental to validate the analyses. All samples were
collected following strict guidelines for aDNA research regarding contamination with
exogenous DNA (Yang and Watt 2005). To minimize the risk of contamination by
exogenous DNA, samples were processed in ACAD’s purpose built laboratory aDNA
facilities. Strict precautions to ensure the reliability of the results were applied including
separate pre- and post-PCR laboratories and the use of protective gear (body suits, face
mask, gumboots and disposable latex gloves). All working surfaces, workbenches and
instruments were decontaminated by using DNA oxidants such as bleach (3%) Decon
and clean-room 70% Isopropanol. For each individual, we extracted DNA from at least
two independent samples to monitor the reproducibility of results (Table 3). Each batch
of aDNA extraction consisted of twelve samples and two Extraction Blank Controls
(EBCs) at a ratio of 1:6.

3. RESULTS and DISCUSSION
3.1. Performance of the three typing methods

From 302 samples analysed (149 individuals examined), we could generate
HVR-I consensus sequences for 72 individuals (Table 4), which represents an overall
success rate of 48.3% for extraction and sequencing of mtDNA. From the new 72
aDNA sequences reported in this study, 40 sequences were obtained and validated by
using direct sequencing with four overlapping primers pairs for HVR-I. The remaining
32 sequences were trimmed and extracted from complete mitochondrial genome data
obtained from a parallel study (Chapter 3).

Successful reported aDNA sequences take into account reproducibility from the
two independent samples analysed from each individual as inclusion criteria. For HVR-
| sequences, we observed partial and no reproducible results on the remaining 109
individuals. For example, partial profiles (i.e. only one sample with partial DNA
sequence and no sequence data for the second sample), was observed in 46 individuals.
Moreover, we observed that 63 individuals failed for aDNA extraction of both
independent samples (Table 2-3). Sequencing of HVS-I is primarily intended to
generate sequence haplotype data. However, without typing of sub-haplogroup
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diagnostic SNPs, that are often found in the coding region, an unambiguous assignment
at sub-haplogroup level is not always possible.

From 302 samples analysed with the GenoCoRe22 assay, 39 individuals were
successfully genotyped with both independent samples yielding same haplotype (Table
2). Partial profiles were observed in 43 individuals and 67 individuals failed for
genotyping of both independent samples (Table 2-3).

From 261 samples (130 individuals) analysed with the AmericaPlex26 assay, 32
individuals yielded consistent genotypes (Table 2). Partial genotype profiles were
observed in 80 individuals and 18 individuals failed for genotyping of both independent
samples. The AmericaPlex26 is a powerful alternative technique to the sequencing of
the HVR-lI because the small amplicon sizes cope with the degree of DNA
fragmentation often observed in South American samples and cover the most common
sub-haplogroups in modern-day Native Americans. Here, the Americaplex26 assay not
only complements the HVSI sequencing, but can also serve as standalone tool for
confident haplogroup calling.

Finally, we report a total of 60 consensus calls across all typing results from the
three used methods (Table 2-3). Moreover, the three genotyping methods show
consistent results and similar success rates and no significant differences when compare

to each other p < 0.01, Chi-square test (Figure 9).

3.2. Contamination detection

The majority of samples collected for this study come from museum collections.
Museum samples often lead to inefficient DNA recovery (Pruvost et al. 2007) and
contamination due to handling of specimens by museum personnel (Malmstrom et al.
2005). Samples stored at Museum collections for long-time periods might not always be
adequate or optimal for aDNA retrieval with the add bonus of displaying a very variable
levels of contamination due to inadequate handling or post-excavation history (Yang
and Watt 2005).

For instance, a sample from Huaca Pucllana 10776A (Wari culture) yielded a
Native American B4 haplotype, however the second/independent sample 10777A from
the same individual gave a European T2 haplotype. Another example, sample 10784A
did not yield amplifiable aDNA, however the second sample 10783A reported a K
haplotype. Both samples were excluded from subsequent analyses.
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We found no aDNA haplotype sequences that match ACAD personnel, or
people involved in the study. Samples were collected and processed by WH (mtDNA
hg H1), BL (hg H3), and GV (hg B2), however this B2 haplotype harbours a set of
unique mutations not seen in the overall B2 diversity of our Native American samples.
The identification of non-Native American mtDNA in this case is likely due to
manipulation from archaeologists of Eurasian origin. Nevertheless, we observed
consistent Native American haplotypes across experiments. We also sequenced
Extraction Blank Controls (EBCs) when they were positive, but could not find evidence
for systematic PCR contamination, cross-contamination or “carryover” effects, which

indicates a low level of contamination in the laboratory (Table 3).

3.3. Overall success rates of analysed samples

Results from well-preserved high altitude samples from Tiwanaku resulted in a
high success rate (90%), likely due to cooler environmental conditions favouring the
long-term DNA preservation (i.e. 7.7°C annual average temperature) which highlights
also the importance of freshly excavated samples that are in general the best preserved
material for aDNA studies (Pruvost et al. 2007).

Samples from the much older Lauricocha site confirm this observation,
although the sample size is small and the preservation differs between samples from the
same archaeological period. In contrast, samples from Peruvian coastal cultures (Huaca
Pucllana), gave variable amplification success rates (Lima 60%, Wari 50%, Ychsma
88%, and Chancay 77%), while samples from some Peruvian lowland sites (Caral,
Aspero and Puemape) failed to produce reliable haplotypes. This could be due to the
older age of the samples (Late Archaic Period), as younger lowland samples, i.e. Pueblo
Viejo-Pucara, Inca samples belonging to the Late Horizon Period showed a higher
success rate (61%) (Table 2).

3.4. Haplogroup composition and frequency based genetic distances across cultural
periods

This study incorporates archaeological samples from all cultural periods in the

Central Andes of South America, aiming to improve the spatial and geographic

coverage. All aDNA sequences could be assigned to haplogroups A, B, C, and D, which

are well-described for Native American populations, with the exception of haplogroup
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X, which was not observed in our samples. At the sub-haplogroup level, the ancient
mtDNA sequence profiles could be assigned to A2 (10.4 %,), B2 (24.7%), B2b (16.8%),
C1b (28.5%), Clc (6.5%), C1d (1.3%), and D1 (11.8%) (Table 4).

By tracking the haplogroup composition and genetic distances through time
from the Late Archaic to Late Horizon period (Figure 7), we can explore dynamic
processes and genetics shifts between archaeological cultures. Genetic composition of
populations during the Late Archaic Period-LA (8000-1900 BC) Lauricocha and Pernil
Alto show a high frequency of haplogroup A (43%) and also the lowest frequencies of
haplogroup C (13%), which are distinct in comparison to the subsequent cultural
periods. This might be due to low sample number per site (16 individuals in total).
However, a similarly skewed composition in two archaic groups, Lauricocha from the
highlands and Pernil Alto from the South coastal Nasca region, might represent the
initial genetic structure in prehistoric populations in this region of South America,
which had a higher percentage of haplogroup A.

The following two time periods Early Horizon—-EH and Early Intermediate
Period—EIP show a genetic proximity (Fst = 0.03055) (Table 8). Interestingly, the most
significant change in haplogroup composition is observed in individuals from the EH
(900 BC-200 AD), where we observed a substantial increase in haplogroup D
frequency (73%), especially in individuals from the Palpa region, suggesting a local
genetic fluctuation, and a drop out of haplogroups A and B in individuals from
Caverna6 and Palpa. Haplogroup C (15%) remains constant in comparison with the Late
Archaic Period. The Early Intermediate Period—EIP (200-600 AD) represented by
Pampa Grande, Monte Grande and Lima group, shows an increase in haplogroup C
(26%) and B (23%) in contrast to the previous periods while the frequency of
haplogroup D remains high (44%).

The Middle Horizon period—-MH (600-1000 AD), represented by Conchopata,
Wari, Laramate MH, Palpa MH and Tiwanaku populations, and the Late Intermediate
Period-LIP (1000-1476 AD), represented by Laramate LIP, Huari, Palpa, Ychsma,
Chancay, and Montegrande, show similar patterns of haplogroup composition.
However, they mark another shift in haplogroup composition, with haplogroup B (46%
and 49%) and haplogroup C (32% and 37%, respectively) being the dominant
haplogroups at the time.
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Samples from the Huaca Pucllana archaeological site in coastal Lima represent
another key area in our study with individuals from three successive cultural periods
until the arrival of Europeans; the Lima culture from the Early Intermediate Period
(200-600 AD), followed by the Wari culture in the Middle Horizon (600-1000 AD),
and the Ychsma culture in the Late Intermediate Period (1000-1476 AD). Huaca
Pucllana represents an important cultural time transect and provides an opportunity for a
regional and chronological study to explore further micro-evolutionary processes in the
Central Andes (see Chapter 4).

Interestingly, samples from the Wari population of Huaca Pucllana resemble the
genetic signature from Huari (LIP) and suggest genetic influx from high-altitude Huari
population and the expansion to coastal sites in Central Peru during the Middle Horizon
period (Menzel 1964; Lumbreras 1969).

The Middle Horizon characterises an important phase in political and cultural
changes in the Central Andes and describes the rise of two competing empires, the Wari
and Tiwanaku, which both expanded and led to political interactions and potential gene
flow between groups.

The addition of new samples from the Tiwanaku culture, considered as one of
the most important pre-Columbian civilizations in the Altiplano region, allowed us to
contrast the genetic relationship with Wari populations during the Middle Horizon. It
has been suggested that the dynamics of Tiwanaku and Wari expansions had played a
crucial role in shaping and shuffling the genetic diversity which in this area, resulted in
an increased homogenization of ancient populations from highlands and coastal regions
in the Central Andes starting with the Middle Horizon (Isbell 2008).

To date, the genetic diversity of the Tiwanaku has been poorly investigated
(Rothhammer et al. 2003), however a number of Wari samples had been reported by
(Kemp et al. 2009), suggesting population continuity after the collapse of the Wari
Empire. The Tiwanaku samples show low genetic distances (Fst = 0.0398) with Wari
populations, which suggest a direct interaction of both empires in the Andean region of
Peru and Bolivia during the Middle Horizon. The suggested process of genetic
homogenization during the Middle Horizon (Lewis 2009; Fehren-Schmitz et al. 2011b)
is also supported by mtDNA haplogroup frequency analysis followed by Ward
Clustering and PCA, which show a clear association between the two successive periods
(Figures 5-6), but also embrace the Late Horizon period.
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The Late Horizon—-LH (1476-1534 AD) represented by Llullaillaco,
Acchaymarca, Puca, Tompullo, and Pueblo Viejo is further characterized by higher
proportion of haplogroup B (57%) in comparison with all preceding archaeological
periods. This cultural period also marks the arrival of the Europeans in South America,
thus it defines the ultimate Native American mtDNA diversity in pre-Columbian
populations prior to the European contact. Note that the high frequency of haplogroup B
in the Late Horizon is consistent with today’s population diversity from this region in
South America (Barbieri et al. 2011; Gaya-Vidal et al. 2011; Sandoval JR et al. 2013).

3.5. Genetic comparison of ancient and modern populations

To achieve a better representation of population affinities we grouped all 78
populations into a main geographic eco-regional pattern (Table 5). The resulting MDS
plot shows a clustering in the bottom quadrants indicating and association between
modern and ancient samples, although Coordinate 1 separates the large majority of
modern samples from Central South America from the other regions.

Modern Central Andean populations are distributed mostly on the left, while
ancient coastal groups and modern South populations fall on the right side of the MDS
plot. The main cluster is observed at the bottom quadrants, which shows a closer
relationship between ancient highland groups with coastal ancient populations. All
ancient highland populations form a cluster on the bottom quadrants as for many of the
coastal ones, suggesting also a closer relationship/connection between highlands and
lowlands groups in ancient times. Also, Coordinate 2 separates all ancient highlands
from coastal ancient populations.

Geographic pattern is visible on three populations from Tierra de Fuego that
cluster together on the right hand side of the plot, in part visible on populations from
modern southern South America that form a separate/regional cluster on the bottom
right quadrant, and not visible on Amazonian populations and populations from the

Gran Chaco, which do not form a cluster despite same geographic affinities (Figure 3).

3.6. Genetic comparison of ancient populations

Genetic relationships among the 22 ancient groups were explored in further
detail by MDS (Figure 4). The position of groups is described in temporal order.
Samples from the Late Archaic Period (Pernil Alto) and Early Horizon (Caverna6 and
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Palpa) form outliers in the lower quadrants of the plot, based on substantial differences
in haplogroup composition, which might be driven by sample sizes. Coastal samples
from the subsequent Early Intermediate Period cluster in the right upper quadrant
(Monte Grande and Palpa) and left upper quadrant, while the highland site (Pampa
Grande) falls inside the lower left quadrant.

The most interesting observation is the similarity of Middle Horizon and Late
Intermediate samples visualized in the MDS plot (Figure 4). We observe a strong
genetic affinity of MH and LIP populations falling in the upper quadrants with no
distinctions between coastal and highland groups. This is further supported by
significantly negative values (p<0.05) of Tajimas’s D, for these two periods, suggesting
that MH and LIP populations have gone through demographic expansions in the past.
The transition to the later successive Middle Horizon, Late Intermediate Period
therefore represents a distinct temporal phase according to pairwise (Fst ) and heatmap
(Figure 8). The proximity of samples from Huari (LIP) and Wari samples from Huaca
Pucllana (MH) is consistent with Kemp et al. (Kemp et al. 2009), who suggested
population continuity between the Middle Horizon and Late Intermediate period.
Moreover, the Huari samples from Conchopata cluster also with samples from the
Tiwanaku culture, confirming the proposed interaction between the Wari and Tiwanaku
empires during the Middle Horizon period (Isbell 2008).

Samples from the Late Horizon (Pueblo Viejo, Tompullo, Acchaymarca, are
positioned in the upper left quadrant, with the exception of Puca individuals which are
separated by the second coordinate.

3.7. Analysis of Molecular Variance (AMOVA)

We used AMOVA framework to evaluate potential population structure under
various groupings and to investigate patterns of association in the genetic dataset (Table
9). Populations were alternatively grouped according to chronological (time period,
cultural period, ancient vs. modern populations) and geographic (distance, altitude) or
geo-political (country) criteria. We expect groupings that reflect associations observed
in our genetic data to show high “among groups” variation and low “within
populations” variation.

First, the grouping based on geographic criteria (8 large geographic regions or
eco-zones in South America: Amazon, Tierra de Fuego, South Andean, Central Andean,
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Central Andean [highland], Central Andean [coast], Gran Chaco, North Western) shows
the highest variance component with 8.63% (p< 0.000), which indicates that population
structure in South America follows geography, which is visible in the MDS plot (Figure
3).

A second grouping based on modern samples was pooled according to geo-
political criteria (present-day countries) and shows a lower but significant value of
6.09% variation (p<0.0136). This also supports a genetic structure of populations,
which largely follows geography. The finding of a significant value for the current
political grouping in South America can be explained by the fact that some eco-zones
are unique to particular countries or in turn, that political territories circumscribe
geographic regions.

For a third group we used only ancient sequences, which were grouped into six
cultural archaeological periods: Archaic, Early Horizon, Early Intermediate Period,
Middle Horizon, Late Intermediate Period and Late Horizon. The resulting variance
component of 5.22% (p<0.0225) is lower than the above, but still points to a distinct
signal per cultural entity, which we explored further with different analyses (see
Haplogroup frequency, Ward Clustering and PCA).

A fourth AMOVA variant grouping tested Highland versus Lowland
sites/populations, and reveals a low variance component of 3.70% (p<0.0358),
suggesting a higher homogeneity in Andean population compared with coastal
populations. We also explored a fifth grouping that contrasts Andean and Amazonian
populations, following a previous study which had postulated a genetic relationship of
Andean and Amazonian extant populations (Rothhammer et al. 2003). However, the
resulting variance component is lowest (1.81%), which makes this scenario less
plausible in comparison to other groupings tested by our AMOVA results.

Lastly, an all encompassing sixth grouping based on two time periods (ancient
vs. modern) has a low variance component of 0.82% showing no differentiation through
time and thus suggests a higher variance within each temporal group than between
them. For this matter, the sufficient overlap between ancient and modern populations is
enough to reject population discontinuity. Note that the geographic and temporal
structure, even if significant, is never stronger than the within groups/between

population structure.
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4. CONCLUSION

The Central Andes of South America highlight an important geographic region
to contrast archaeological and genetic information, in order to explore cultural and
demographic events in pre-Columbian times. The sequencing of HVR-I still represents
a valuable approach to study mtDNA genetic diversity, mainly because of the
comprehensive amount of available modern and ancient data to perform comparative
analysis. Although the level of resolution of HVR-I is low in comparison with genomic
data (i.e. complete mtDNA genomes), we can gain important information about the
female population history and test hypotheses concerning cultural transitions in this
region of South America. Based on the analyses of mtDNA haplogroup frequencies
(PCA and Ward clustering) and genetic distances (Fst) we observe two temporal
transitions in subsequent archaeological periods. The first transition describes the
transition from the Late Archaic Period—-LA (8000-1900 BC) to the Early Horizon-EH
and Early Intermediate period—EIP. The second is marked by characteristic changes that
define the Middle Horizon—MH, and the subsequent Late Intermediate-LIP and Late
Horizon—LH periods, altogether suggesting a continuous process of genetic assimilation
through time between highland and coastal populations.

With the advent of new technologies, such as Next-Generation Sequencing
(NGS) applied to the aDNA field, the possibility to obtain larger amounts of high-
resolution genomic information (e.g. complete mitochondrial and nuclear genomes)
opens a new era, which will allow the detailed exploration of Native American genetic
history.
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Figure 1. Map of South America showing sites from which ancient human remains
were sampled for this study. See Table 1 for detailed information about the sites and
samples.

Lima [1], Wari [2], Ychsma [3], Miramar Necrépolis [4], Chancay [5], Aspero [6],
Caral Supe [7], Pueblo Viejo-Pucara [8], Tablada de Lurin [9], Puemape [10], Palpa
[11], Pernil Alto[12], Chullpa Botiriayocc [13], Lauricocha [14], Tiwanaku [15], Pica8-
Tarapaca [16], Azapa-Tarapaca [17], Llullaillaco [18], Patagonia [19].
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HVR-1
Positions 16055 - 16410
L16055
H16142
L16117
H16233
L16209
H16348
L16287
H16410

Length in bp
Primer | Primer Sequences 5’ to 3’ (incl./excl. REETEEE

primer)
L16055 | GAAGCAGATTTGGGTACCAC 126bp (Handt et al. 1996)
H16142 | ATGTACTACAGGTGGTCAAG (Stone 1998)
L16117 | TACATTACTGCCAGCCACCAT 16% (Haak et al. 2005)
H16233 | GCTTTGGAGTTGCAGTTGATGTGT P (Haak et al. 2005)
L16209 | CCCCATGCTTACAAGCAAGT 179 (Handt et al. 1996)
H16348 | ATGGGGACGAGAAGGGATTTG P (Haak et al. 2005)
L16287 | ACTAGGATACCAACAAACCC 16% (Handt et al. 1996)
H16410 | GCGGGATATTGATTTCACGG P (Handt et al. 1996)

Figure 2. Details of primers used for standard HVR-I amplification and sequencing.
Set of four overlapping DNA primers to amplify 354 bp of the HVR-1 (16,055 —

16,410).
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Figure 5. Principal component analysis (PCA) based on major mtDNA haplogroup
frequencies from cultural periods. Late Archaic Period—-LA, Early Horizon—-EH, Early
Intermediate Period—EIP, Middle Horizon—-MH, Late Intermediate Period—LIP and
Late Horizon—LH. In sum, PCA axes 1 and 2 describe 90% of the total variance.
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Figure 6. Ward clustering dendrogram of the six archaeological groups in South
America. Late Archaic Period-LA, Early Horizon—-EH, Early Intermediate Period—
EIP, Middle Horizon—-MH, Late Intermediate Period—LIP and Late Horizon—-LH.
Bootstrapping values (red/green) support three main clusters.
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Figure 7. Variation of mtDNA frequencies from six distinct cultural periods in the
Central Andes of South America through time.
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Figure 8. Genetic distances (pairwise (Fst) between archaeological periods: Late
Archaic Period-LA, Early Horizon-EH, Early Intermediate Period—EIP, Middle
Horizon—MH, Late Intermediate Period—LIP and Late Horizon—LH. Increasing blue
intensity indicates larger genetic distance. The heatmap was created using

Arlequinv3.5.
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Performance of three genotyped methods
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Figure 9. Comparison and haplotyping success of the three methods: HVR-I

sequencing, GenoCoRe 22 and AmericaPlex26 multiplex assays.

The success rate is given in percentage of unambiguous haplotype calls for each of

the three methods. Chi-square test show 0.1616 (p-value: 0.996907).

The result is not significant at p < 0.01
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Table 3. Details of the haplotyping results for all ancient individuals.

Comparison of three typing methods and consensus haplogroup call

Ind | ACAD | Ext | Culture HVR-1 | GenoCoRe | America | Consensus
# Plex26

1 11115A | 95 | Pica-Tarapaca B? B? -

1 11116A | 100 | Pica-Tarapaca B4 - -

2 11117A | 95 | Pica-Tarapaca ? B? -

2 11118A | 100 | Pica-Tarapaca A2 - -

3 11119A | 95 | Pica-Tarapaca ? ? -

3 11120A | 100 | Pica-Tarapaca - - -

4 11121A | 95 | Pica-Tarapaca B ? -

4 11122A | 95 | Pica-Tarapaca ? ? -

5 11125A | 95 | Azapa Late ? ? -

formative
5 11127A | 95 | Azapa Late - -
formative

6 10709A | 106 | Ychsma, Pucllana C1? ? Clb

6 10710A | 85 | Ychsma, Pucllana C1 Cc? M

7 10712A | 106 | Ychsma, Pucllana B4 ? B2 B2
7 10713A | 85 | Ychsma, Pucllana B4 B B2 B2
8 10715A | 81 | Ychsma, Pucllana ? ? ?

8 10715B | 82 | Ychsma, Pucllana B4? B? B2 B2
8 10716A | 106 | Ychsma, Pucllana ? B B2 B2
9 10717A | 106 | Ychsma, Pucllana C1? ? M M
9 10718A | 81 | Ychsma, Pucllana ? ? M M
9 10718B | 82 | Ychsma, Pucllana ? c? ?

10 | 10719A | 85 | Ychsma, Pucllana B4 B B2 B4
10 | 10720A | 106 | Ychsma, Pucllana B4 ? B2b B4
11 10722A | 106 | Ychsma, Pucllana D1 D ? D1
11 | 10723A | 85 | Ychsma, Pucllana D1 D M? D1
12 | 10724A | 107 | Ychsma, Pucllana C1 C Cilb Clb
12 | 10725A | 85 | Ychsma, Pucllana C1 C Cilb Cilb
13 | 10726A | 107 | Ychsma, Pucllana ? ? B2

13 | 10727A | 85 | Ychsma, Pucllana ? B B2b

14 | 10728A | 81 | Ychsma, Pucllana B4 B? B2 B2
14 | 10728B | 82 | Ychsma, Pucllana B4 B? ?

14 | 10729A | 107 | Ychsma, Pucllana B B? B2 B2
15 | 10730A | 84 | Ychsma, Pucllana B4 B B2 B4
15 | 10730Y | 107 | Ychsma, Pucllana B4 B B2b B4
16 | 10731A | 84 | Ychsma, Pucllana C1 C Cilb Clb
16 | 10731Y | 107 | Ychsma, Pucllana C1 C Cib Cilb
17 | 10732A | 84 | Ychsma, Pucllana D? D ? D
17 | 10732Y | 107 | Ychsma, Pucllana D1? D ? D
18 10793A | 109 | Ychsma, Pucllana B4 ? B2 B2
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Ind | ACAD | Ext | Culture HVR-1 | GenoCoRe | America | Consensus
Plex26

18 | 10794A | 83 | Ychsma, Pucllana B4 B B2 B2

19 | 10796A | 109 | Ychsma, Pucllana B4 ? B2b

19 | 10797A | 83 | Ychsma, Pucllana ? ? B2

20 | 10800A | 109 | Ychsma, Pucllana B4 B B2b B4

20 | 10801A | 83 | Ychsma, Pucllana B4 ? B2 B4

21 | 10804A | 81 | Ychsma, Pucllana D1 ? M D1

21 | 10804B | 82 | Ychsma, Pucllana D1 ? ? D1

21 | 10805A | 111 | Ychsma, Pucllana D1 D D1? D1

22 | 10809A | 111 | Ychsma, Pucllana C1 C Clb Clb

22 | 10810A | 85 | Ychsma, Pucllana C1 C Cib Cib

23 | 10733A | 81 | Wari, Pucllana ? c? Clb Clb

23 10733B | 82 | Wari, Pucllana ? c? ?

23 | 10734A | 107 | Wari, Pucllana B4? ? Clb Clb

24 | 10736A | 83 | Wari, Pucllana ? ? ?

24 | 10737A | 107 | Wari, Pucllana A? ? ?

25 | 10738A | 107 | Wari, Pucllana ? ? ?

25 | 10739A | 83 | Wari, Pucllana ? ? ?

26 | 10741A | 81 | Wari, Pucllana ? B? B2 B2

26 10741B | 82 | Wari, Pucllana ? B? ?

26 | 10742A | 107 | Wari, Pucllana ? B B2 B2

27 | 10744A | 83 | Wari, Pucllana ? ? ?

27 | 10745A | 107 | Wari, Pucllana ? B? ?

28 | 10747A | 83 | Wari, Pucllana ? B ? B

28 | 10748A | 107 | Wari, Pucllana ? B B2 B

29 | 10749A | 108 | Wari, Pucllana ? B B2 B2

29 10750A | 98 | Wari, Pucllana ? B B2 B2

30 | 10751A | 108 | Wari, Pucllana ? ? ?

30 | 10752A | 83 | Wari, Pucllana ? D? ?

31 10753A | 108 | Wari, Pucllana ? B B2 B2

31 | 10754A | 98 | Wari, Pucllana B4? B B2 B2

32 10756A | 83 | Wari, Pucllana B4? ? ?

32 | 10757A | 108 | Wari, Pucllana ? ? ?

33 10758A | 85 | Wari, Pucllana ? ? ?

33 | 10759A | 108 | Wari, Pucllana ? ? ?

34 | 10761A | 85 | Wari, Pucllana ? ? ?

34 | 10762A | 108 | Wari, Pucllana ? ? ?

35 | 10763A | 108 | Wari, Pucllana C1? ? Cilb

35 10764A | 85 | Wari, Pucllana C4? c? ?

36 | 10765A | 98 | Wari, Pucllana not B Cc? Cilb Cilb

36 | 10766A | 108 | Wari, Pucllana ? ? Clb Clb

37 | 10768A | 108 | Wari, Pucllana ? ? ?

37 | 10769A | 81 | Wari, Pucllana not R ? ?

37 | 10769B | 82 | Wari, Pucllana ? ?
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Ind | ACAD | Ext | Culture HVR-1 | GenoCoRe | America | Consensus
# Plex26

38 | 10770A | 108 | Wari, Pucllana c? ? ?

38 | 10771A | 98 | Wari, Pucllana not B c? Cib

39 | 10772A | 99 | Wari, Pucllana C1 Cib Cib

39 | 10773A | 108 | Wari, Pucllana C1 ? Cilb Clb

40 | 10774A | 108 | Wari, Pucllana ? ? A2 A2

40 | 10775A | 99 | Wari, Pucllana not B A? A2 A2

41 | 10776A | 99 | Wari, Pucllana B4? ? B2

41 | 10777A | 109 | Wari, Pucllana T2 T ?

42 | 10778A | 99 | Wari, Pucllana D? ? A2 A2

42 | 10779A | 109 | Wari, Pucllana ? ? A2 A2

43 | 10780A | 81 | Lima, Pucllana ? ? ?

43 10780B | 82 | Lima, Pucllana ? ? ?

43 | 10781A | 109 | Lima, Pucllana ? ? ?

44 | 10783A | 109 | Lima, Pucllana K? ? -

44 | 10784A | 99 | Lima, Pucllana ? ? ?

45 | 10785A | 99 | Lima, Pucllana ? ? ?

45 | 10786A | 109 | Lima, Pucllana ? ? ?

46 | 10787A | 83 | Lima, Pucllana ? ? B2 B2

46 | 10788A | 109 | Lima, Pucllana B ? B2 B2

47 | 10789A | 109 | Lima, Pucllana B4 ? B2b B2b

47 | 10790A | 99 | Lima, Pucllana ? B? B2b B2b

48 | 10791A | 109 | Lima, Pucllana A2 A A2 A2

48 | 10792A | 81 | Lima, Pucllana A2 ? A2 A2

48 10792B | 82 | Lima, Pucllana A2 ? ?

49 | 10798A | 109 | Lima, Pucllana ? ? ?

49 | 10799A | 83 | Lima, Pucllana ? ? ?

50 | 10802A | 83 | Lima, Pucllana ? ? B2 B2

50 | 10803A | 111 | Lima, Pucllana ? ? B2 B2

51 | 10806A | 111 | Lima, Pucllana ? ? M

51 | 10807A | 99 | Lima, Pucllana C1 ? ?

52 | 10811A | 111 | Lima, Pucllana ? ? M

52 | 10812A | 85 | Lima, Pucllana ? ? ?

53 | 10813A | 111 | Lima, Pucllana B4 B B2 B2

53 | 10814A | 85 | Lima, Pucllana B4 B B2 B2

54 | 10815A | 99 | Lima, Pucllana ? ?

54 | 10816A | 111 | Lima, Pucllana : ? ?

55 | 10817A | 111 | Lima, Pucllana C1 Cc? Cilb Cilb

55 | 10818A | 99 | Lima, Pucllana ? C Clb Clb

56 | 10819A | 99 | Lima, Pucllana c? Cc? D4b1??

56 | 10820A | 111 | Lima, Pucllana ? Cc? Clb

57 | 10821A | 111 | Lima, Pucllana B4 B B2 B2

57 | 10822A | 99 | Lima, Pucllana B4 B B2 B2

58 | 10824A | 100 | Aspero late archaic ? ? -
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Ind | ACAD | Ext | Culture HVR-1 | GenoCoRe | America | Consensus
# Plex26
58 | 10825A | 104 | Aspero late archaic ? ? -
59 | 10826A | 104 | Aspero late archaic ? ? -
59 | 10827A | 93 | Aspero late archaic ? ? -
60 | 10828A | 93 | Aspero late archaic ? ? -
60 | 10829A | 93 | Aspero late archaic D4? ? -
61 | 10830A | 96 | Aspero late archaic Aor D? ? -
61 | 10831A | 104 | Aspero late archaic ? ? -
62 | 10832A | 104 | Aspero late archaic ? ? -
62 | 10833A | 93 | Aspero late archaic ? ? -
63 | 10835A | 84 | Aspero late archaic ? ? -
63 | 10836A | 104 | Aspero late archaic ? ? -
64 | 10839A | 96 | Aspero late archaic ? ? -
64 | 10840A | 104 | Aspero late archaic ? ? -
65 | 10842A | 104 | Aspero late archaic ? ? -
65 | 10843A | 96 | Aspero late archaic ? ? -
66 | 10844A | 84 | Aspero late archaic ? ? -
66 | 10845A | 104 | Aspero late archaic ? ? -
67 | 10846A | 96 | Aspero late archaic ? ? -
68 | 10847A | 96 | Aspero late archaic ? ? -
68 | 10848A | 104 | Aspero late archaic ? ? -
69 | 10849A | 105 | Aspero late archaic ? ? -
69 | 10850A | 84 | Aspero late archaic ? ? -
70 | 10851A Aspero late archaic ? ? -
70 | 10852A | 105 | Aspero late archaic ? ? -
71 | 10853A | 96 | Aspero late archaic B4 ? -
71 | 10854A | 105 | Aspero late archaic ? ? -
72 | 10855A | 84 | Aspero late archaic A ? -
72 | 10856A | 105 | Aspero late archaic ? ? -
72 | 10857A | 96 | Aspero late archaic not B ? -
73 | 10858A | 105 | Aspero late archaic ? ? -
73 | 10859A | 96 | Aspero late archaic ? ? -
74 | 10860A | 84 | Caral formative ? ? -
74 | 10861A | 105 | Caral formative ? ? -
75 | 10862A | 105 | Caral formative ? ? -
75 | 10863A | 84 | Caral formative ? ? -
76 | 10864A | 93 | Caral formative ? ? -
76 | 10865A | 105 | Caral formative ? ? -
77 | 10866A | 84 | Caral formative ? ? -
77 | 10867A | 105 | Caral formative ? ? -
78 | 10868A | 105 | Caral formative ? ? -
78 | 10869A | 84 | Caral formative ? ? -
79 | 10870A | 93 | Caral formative ? ? -
79 | 10871A | 105 | Caral formative ? ? -
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Ind | ACAD | Ext | Culture HVR-1 | GenoCoRe | America | Consensus
# Plex26

79 | 10872A | 93 | Caral formative ? ? -

80 | 10873A | 105 | Caral formative B4 ? -

80 | 10874A | 93 | Caral formative ? ? -

81 | 10875A | 96 | Caral formative notB ? -

81 | 10876A | 106 | Caral formative ? ? -

82 | 10877A | 84 | Caral late archaic ? ? -

82 | 10878A | 106 | Caral late archaic C1 ? -

83 | 10879A | 84 | Caral late archaic ? ? -

83 | 10880A Caral late archaic ? ? -

84 | 10882A | 84 | Caral late archaic ? ? -

84 | 10883A | 106 | Caral late archaic ? ? -

85 | 10884A | 106 | Caral late archaic ? ? -

85 | 10885A | 93 | Caral late archaic ? ? -

86 | 10886A | 106 | Caral late archaic ? ? -

86 | 10887A | 84 | Caral late archaic ? ? -

87 | 13235A | 114 | Tiwanaku, Bolivia ? ? ?

87 | 13236A | 114 | Tiwanaku, Bolivia B4 B B2

88 | 13237A | 114 | Tiwanaku, Bolivia B B B2

88 | 13239A | 114 | Tiwanaku, Bolivia ? ? ?

89 | 13240A | 114 | Tiwanaku, Bolivia B B B2

90 | 13241A | 114 | Tiwanaku, Bolivia C1 C M

90 | 13243A | 114 | Tiwanaku, Bolivia ? ? ?

91 | 13244A | 114 | Tiwanaku, Bolivia B B B2

91 | 13245A | 114 | Tiwanaku, Bolivia ? c? Cib

92 13246A | 114 | Tiwanaku, Bolivia A2 A A2 A2

92 | 13247A | 114 | Tiwanaku, Bolivia A2 A A2 A2

93 13256A | 114 | Tiwanaku, Bolivia B4 B B2 B2

93 13264A | 115 | Tiwanaku, Bolivia B4 B B2 B2

94 | 13267A | 115 | Tiwanaku, Bolivia B4 B ? B4

94 13272A | 115 | Tiwanaku, Bolivia B4 B B2 B4

95 | 13275A | 115 | Tiwanaku, Bolivia B B B2

96 13278A | 115 | Tiwanaku, Bolivia C1 C M C1

96 | 13279A | 115 | Tiwanaku, Bolivia C1 C Cib C1

97 | 11152A | 87 | Pueblo Viejo D1 D? -

97 | 11153A | 97 | Pueblo Viejo B4 D? -

98 | 11154A | 87 | Pueblo Viejo C1 C - C1

98 | 11155A | 97 | Pueblo Viejo C1 C - C1

99 | 11156A | 97 | Pueblo Viejo C1 C - C1

99 | 11157A | 87 | Pueblo Viejo C1 C - C1

100 | 11158A | 97 | Pueblo Viejo C1 C - C1

100 | 11159A | 87 | Pueblo Viejo C1 C - C1

101 | 11160A | 87 | Pueblo Viejo B4 B -
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Ind | ACAD | Ext | Culture HVR-1 | GenoCoRe | America | Consensus
# Plex26

102 | 11161A | 87 | Pueblo Viejo Cilb C - Cilb
102 | 11162A | 97 | Pueblo Viejo Cilb C - Clb
103 | 11163A | 97 | Pueblo Viejo Clb C -

103 | 11164A | 87 | Pueblo Viejo B4 B -

104 | 11165A | 97 | Pueblo Viejo B4 B - B4
104 | 11166A | 87 | Pueblo Viejo B4 B - B4
105 | 11167A | 97 | Pueblo Viejo B4 B B4
105 | 11168A | 87 | Pueblo Viejo B4 B - B4
106 | 11169A | 97 | Pueblo Viejo B4 B -

106 | 11170A | 95 | Pueblo Viejo D1 D? -

107 | 11171A | 95 | Pueblo Viejo B4 B -

107 | 11172A | 98 | Pueblo Viejo C1? C -

108 | 11173A | 98 | Pueblo Viejo B4 B - B4
108 | 11174A | 95 | Pueblo Viejo B4 B - B4
109 | 11175A | 97 | Pueblo Viejo B4 B - B4
109 | 11176A | 98 | Pueblo Viejo B4 B - B4
110 | 11177A | 97 | Pueblo Viejo B4 B - B4
110 | 11178A | 98 | Pueblo Viejo B4 B - B4
111 | 11179A | 97 | Pueblo Viejo D1 D? - D1
111 | 11180A | 98 | Pueblo Viejo D1 D? - D1
112 | 11181A | 87 | Pueblo Viejo B4 B - B4
112 | 11182A | 98 | Pueblo Viejo B4 B - B4
113 | 11183A | 87 | Pueblo Viejo Cib C - Clb
113 | 11184A | 98 | Pueblo Viejo Cilb C - Cilb
114 | 11185A | 87 | Pueblo Viejo D1 D? - D1
114 | 11186A | 98 | Pueblo Viejo D1 D? - D1
115 | 11187A | 103 | Wari, Miramar ? ? B2 B2
115 | 11188A | 87 | Wari, Miramar ? ? B2 B2
116 | 11189A | 87 | Wari, Miramar ? ? ?

116 | 11190A | 103 | Wari, Miramar ? ? ?

117 | 11191A | 103 | Wari, Miramar ? ? ?

117 | 11192A | 87 | Wari, Miramar ? ? ?

118 | 11193A | 87 | Wari, Miramar ? ? ?

118 | 11194A | 103 | Wari, Miramar ? ? ?

119 | 11195A | 87 | Wari, Miramar ? ? ?

119 | 11196A | 103 | Wari, Miramar ? ? ?

120 | 11197A | 88 | Chancay, Pasamayo ? A A2 A2
120 | 11198A | 103 | Chancay, Pasamayo ? A A2 A2
121 | 11199A | 103 | Chancay, Pasamayo B4 ? B2 B2
121 | 11200A | 88 | Chancay, Pasamayo B4 B? B2 B2
122 | 11201A | 88 | Chancay, Pasamayo ? B B2 B2
122 | 11202A | 103 | Chancay, Pasamayo B4 B B2 B2

149




Ind | ACAD | Ext | Culture HVR-1 | GenoCoRe | America | Consensus
# Plex26
123 | 11203A | 88 | Chancay, Pasamayo A ?
123 | 11204A | 103 | Chancay, Pasamayo : ? ?
124 | 11205A | 103 | Chancay, Pasamayo A? ? Cilb Cilb
124 | 11206A | 88 | Chancay, Pasamayo ? Cc? Cilb Clb
125 | 11207A | 103 | Chancay, Pasamayo ? ? ?
125 | 11208A | 88 | Chancay, Pasamayo B4 B B2
126 | 11209A | 103 | Chancay, Pasamayo C1 C M C1
126 | 11210A | 88 | Chancay, Pasamayo C1 C M C1
127 | 11211A | 95 | Chancay, Pasamayo C C M
127 | 11212A | 104 | Chancay, Pasamayo C1? ? M
128 | 11213A | 104 | Chancay, Pasamayo ? ? D4b1?
128 | 11214A | 95 | Chancay, Pasamayo ? ? D4b1?
129 6317A | 32 | Llullaillaco, D D - D
Lightning girl
129 | 6318A | 32 | Llullaillaco, D D - D
Lightning girl
130 6319A | 32 | Llullaillaco, La D D - D
Doncella
130 | 6320A | 32 | Llullaillaco, La D D - D
Doncella
131 6321A | 32 | Llullaillaco, The Boy C C - C
131 | 6322A | 32 | Llullaillaco, The Boy C C - C
132 | 10891A | 81 | Patagonia, Chile B4 B - B4
132 | 10891B | 82 | Patagonia, Chile B4 B - B4
133 | 6691A | 38 | Taino B? B - B
133 | 6692A | 55 | Taino ? B - B
134 | 6693A | 38 | Taino ? C - C
134 | 6694A | 55 | Taino : C - C
135 | 12686A | 110 | Lauricocha A2p A -
(LaulEsq9)
136 | 12687A | 110 | Lauricocha A2 A -
(Lau3Esqg6)
136 | 12076A | 100 | Lauricocha A2? A? -
(Lau3Esqg6)
137 | 12077A | 100 | Lauricocha A2 A -
(LaudEsg2)
137 | 12688A | 110 | Lauricocha A2 A -
(Lau4Esq2)
138 | 12689A | 110 | Lauricocha B4 B -
(Lau5Esqgl)
138 | 12078A | 100 | Lauricocha B ? -
(Lau5Esqgl)
139 | 12690A | 110 | Chullpa C1? C? -
Botigiriayocc
139 | 12691A | 110 | Pernil Alto, Peru C1? Cc? -
140 | 12692A | 110 | Jauranga (cyclops) C1? C - C
140 | 12693A | 110 | Jauranga (Palpa) C1? C - C
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Ind | ACAD | Ext | Culture HVR-1 | GenoCoRe | America | Consensus
# Plex26

141 | 12303A | 113 | Tablada de Lurin ? ? -

141 | 12304A | 113 | Tablada de Lurin ? ? -

142 | 12306A | 113 | Tablada de Lurin ? ? -

142 | 12310A | 113 | Tablada de Lurin ? ? -

143 | 12317A | 113 | Tablada de Lurin ? ? -

143 | 12310A | 113 | Tablada de Lurin ? ? -

144 | 12322A | 113 | Tablada de Lurin ? ? -

144 | 12324A | 113 | Tablada de Lurin ? ? -

145 | 12327A | 113 | Tablada de Lurin ? ? -

145 | 12328A | 113 | Tablada de Lurin ? ? -

146 | 12329A | 113 | Tablada de Lurin ? ? -

146 | 12332A | 113 | Tablada de Lurin ? ? -

147 | 12303A | 113 | Tablada de Lurin ? ? -

147 | 12333A | 113 | Tablada de Lurin ? ? -

148 | 14117A | 119 | Puemape ? ? -

148 | 14118A | 119 | Puemape ? ? -

149 | 14119A | 119 | Puemape ? ? -

149 | 14120A | 119 | Puemape ? ? -

TOTAL | 302 40 39 32 60

EBC 81 ? ? ? -
10915
EBC 82 ? ? ? -
10923
EBC 81 ? ? ? -
10915
EBC 85 ? ? ? -
10988
EBC 99 ? ? ? -
12060

Note: Consensus haplogroups were called based on both replicates from independent
extractions. (?)/(-): Insufficient or no sequence or genotyped information.
EBC: Extraction Blank Control.
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Table 4. Haplogroup determination of 72 HVR-1 sequences analysed in this study

# ACAD Populations Location Radiocarbon dates | Haplogroup
1 12686* Lauricocha Laul Peru 8589 - 8482 calBP A2
2 SO238* | Lauricocha Lau2 Peru 8589 - 8482 calBP A2
3 12689* Lauricocha Lau5 Peru 8700 - 8599 calBP B2
4 13247 Tiwanaku Bolivia A2
5 13237 Tiwanaku Bolivia B2
6 13264* Tiwanaku Bolivia 1017 - 1155 calAD B2
7 13272 Tiwanaku Bolivia B2
8 13240 Tiwanaku Bolivia B2
9 13275 Tiwanaku Bolivia B2
10 | 13241* Tiwanaku Bolivia 901 - 1024 calAD Clc
11 | 13279 Tiwanaku Bolivia Clb
12 | 13245 Tiwanaku Bolivia C
13 | 11116 Pica8-Tarapaca Chile B2
14 | 11118 Pica8-Tarapaca Chile B2
15 | 11121 Pica8-Tarapaca Chile B2
16 | 11200 Chancay Peru B2
17 | 11211 Chancay Peru Clb
18 | 11205 Chancay Peru Clb
19 | 11209 Chancay Peru Clc
20 | 11213 Chancay Peru D1
21 | 11197 Chancay Peru A2
22 | 11208 Chancay Peru B2b
23 | 6322 Llullaillaco Argentina Clb
24 | 6320 Llullaillaco Argentina D1
25 | 6317 Llullaillaco Argentina D
26 | 10791* Lima Peru 584-660 calAD A2
27 | 10814 Lima Peru B2
28 | 10802 Lima Peru B2
29 | 10789 Lima Peru B2b
30 | 10817* Lima Peru 534-642 calAD Clb
31 | 10820 Lima Peru Clb
32 | 10806 Lima Peru Clc
33 | 10811 Lima Peru D*
34 | 10821 Lima Peru B2
35 | 10774 Wari Peru A2
36 | 10754* Wari Peru 974-1220 calAD B2b
37 | 10734* Wari Peru 776-968 calAD Clb
38 | 10763 Wari Peru Cilb
39 | 10771 Wari Peru Clb
40 | 10773 Wari Peru Cilb
41 | 10778 Wari Peru A2
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# ACAD Populations Location Radiocarbon dates | Haplogroup
42 | 10742 Wari Peru B2b
43 | 10750 Wari Peru B2b
44 | 10765 Wari Peru Cilb
45 | 10713 Ychsma Peru B2
46 | 10729 Ychsma Peru B2
47 | 10720 Ychsma Peru B2b
48 | 10726 Ychsma Peru B2b
49 | 10709* Ychsma Peru 1244-1288 calAD Clb
50 | 10717 Ychsma Peru Clb
51 | 10725 Ychsma Peru Clb
52 | 10731 Ychsma Peru Cilb
53 | 10722* Ychsma Peru 1221-1278 calAD D1
54 | 10732 Ychsma Peru D*
55 | 10730 Ychsma Peru B2b
56 | 10805* Ychsma Peru 1223 - 1280 calAD D1
57 | 10810* Ychsma Peru 1149 - 1249 calAD Cld
58 | 10794 Ychsma Peru B2
59 | 10800 Ychsama Peru B2b
60 | 12692 Palpa- Jauranga Peru Clc
61 | 10891* Patagonia Chile 2158 — 2268 calBC B
62 | 11165 Pueblo Viejo Peru B2
63 | 11168 Pueblo Viejo Peru B2
64 | 11173 Pueblo Viejo Peru B2
65 | 11182 Pueblo Viejo Peru B2b
66 | 11176 Pueblo Viejo Peru B2b
67 | 11154 Pueblo Viejo Peru Clb
68 | 11157 Pueblo Viejo Peru Cilb
69 | 11161 Pueblo Viejo Peru Cilb
70 | 11183 Pueblo Viejo Peru Clc
71 | 11180 Pueblo Viejo Peru D1
72 | 11185 Pueblo Viejo Peru D1

*: These sequences have direct radiocarbon dates; all other dates are based on the

relevant archaeological period.

Cal AD: calibrated radiocarbon years Anno Domini.

Cal BP: calibrated radiocarbon years Before Present
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Table 5. List of populations used to perform the comparative analysis

MODERN n | in MDS | Country Region Reference
POPULATIONS
Arequipa 22 ARE Peru Central Andean Fuselli et al., 2003
San Martin 21 SAN Peru Central Andean Fuselli et al., 2004
Tayacaja 59 TAY Peru Central Andean Fuselli et al., 2005
Ancash 33 ANC Peru Central Andean | Lewis et al., 2005
Puno-Quechua 30 | QUEP Peru Central Andean | Lewis et al., 2007
(Highland)
Puno-Aymara 14 | AYMP Peru Central Andean Lewis et al., 2007
(Highland)
Yungay 36 YUN Peru Central Andean Lewis et al., 2007
Tupe 16 TUP Peru Central Andean Lewis et al., 2007
Titicaca-Quechua 37 | QUET Peru Central Andean Barbieri et al., 2011
(Highland)
Titicaca-Aymara 20 | AYMT Peru Central Andean Barbieri et al., 2012
(Highland)
Titicaca-Uros 7 URT Peru Central Andean Barbieri et al., 2013
(Highland)
Cajamarca_QUE 19 CAJ Peru Central Andean Sandoval et al., 2013
Huancavelica_ QUE 26 | HUAQ Peru Central Andean Sandoval et al., 2013
Apurimac_QUE 10 APU Peru Central Andean Sandoval et al., 2013
Machiguenga_ ARA 11 MAC Peru Central Andean Sandoval et al., 2013
Puno_URU 25 PUNU Peru Central Andean Sandoval et al., 2013
Urus_Ar_Yanesha 18 | URUY Peru Central Andean Sandoval et al., 2013
Amantani_QUE 26 | AMAQ Peru Central Andean Sandoval et al., 2013
SantaRosa_ AYM 18 SANA Peru Central Andean Sandoval et al., 2013
Puno_QUE 35 | PUNQ Peru Central Andean Sandoval et al., 2013
Capachica_QUE 15 CAP Peru Central Andean Sandoval et al., 2013
Chimu_AYM 16 CHI Peru Central Andean Sandoval et al., 2013
Cusco_AYM 36 CUSA Peru Central Andean Sandoval et al., 2013
Ancash_ QUE 10 | ANCQ Peru Central Andean Sandoval et al., 2013
Gran Chaco 204 | GCH Paraguay Gran Chaco Cabana et al., 2006
Guarani 200 | GUA Paraguay Gran Chaco Marrero et al., 2007
Kaingang 74 KAI Paraguay Gran Chaco Marrero et al., 2007
Paraguay 63 PAR Paraguay Gran Chaco Schmitt et al., 2004
Mapuche 34 | MAP1 Chile South Andean Moraga et al., 2000
Pehuenche 24 PEH2 Chile South Andean Moraga et al., 2000
Yaghan 15 YAG Chile Tierra de Fuego Moraga et al., 2000
Mapuche 18 | MAP2 Chile South Andean de Saint Pierre et al.,
2012
Yamana 21 YAM Chile Tierra de Fuego de Saint Pierre et al.,
2012
Tehuelche 23 TEU Chile South Andean de Saint Pierre et al.,
2012
Atacamefio 28 ATAC Chile Central Andean de Saint Pierre et al.,

2012

154




MODERN n | in MDS | Country Region Reference
POPULATIONS
Aymara 39 | AYMC Chile Central Andean de Saint Pierre et al.,
2012
Pehuenche 41 PEH Chile South Andean de Saint Pierre et al.,
2012
Huilliche 47 HUI Chile South Andean de Saint Pierre et al.,
2012
Kawwesqgar 13 KAW Chile Tierra de Fuego Moraga et al., 2010
Bolivia Lowlands 53 BOLL Bolivia Central Andean Bert et al., 2004
Quechua_Bol 93 | QUEB Bolivia Central Andean Gaya-Vidal et al.,
(Highland) 2011
Aymara_Bol 97 | AYMB Bolivia Central Andean Gaya-Vidal et al.,
(Highland) 2011
Llapallapani_URU 5 LLA Bolivia Central Andean Sandoval et al., 2013
Chipaya_URU 8 CHI Bolivia Central Andean Sandoval et al., 2013
LaPaz AYM 7 LAP Bolivia Central Andean Sandoval et al., 2013
Andamarca_ AYM 19 AND Bolivia Central Andean Sandoval et al., 2013
Desaguadero_AYM 11 DES Bolivia Central Andean Sandoval et al., 2013
Pajchiri_AYM 20 PAJ Bolivia Central Andean Sandoval et al., 2013
Oruro_ AYM 13 ORU Bolivia Central Andean Sandoval et al., 2013
Potosi_ QUE 29 POT Bolivia Central Andean Sandoval et al., 2013
SantaAna_AYM 11 SAT Bolivia Central Andean Sandoval et al., 2013
CintaLarga 8 CIN Brazil Amazon Ramallo et al., 2013
Goraotire 11 GOR Brazil Amazon Ramallo et al., 2013
Jamamadi 13 JAM Brazil Amazon Ramallo et al., 2013
Kuben-Kran-Kegn 18 KKK Brazil Amazon Ramallo et al., 2013
Munduruku 14 MUN Brazil Amazon Ramallo et al., 2013
Arara 19 ARA Brazil Amazon Ramallo et al., 2013
Mekranoti 24 MEK Brazil Amazon Ramallo et al., 2013
Gaviao 27 GAV Brazil Amazon Ward et al., 1996
Xavante 25 XAV Brazil Amazon Ward et al., 1996
Zoro 30 ZOR Brazil Amazon Ward et al., 1996
Yanomami 155 | YAN Brazil Amazon Williams et al., 2002
Chibchan 80 CHI Colombia North Western Melton et al., 2007
Arawaken 29 ARW Colombia North Western Melton et al., 2007
Waorani 25 WAO Brazil North Western Cardoso et al., 2012
Ngoebe 15 NGO Panama North Western Kolman et al., 1995
ANCIENT n in MDS | Country Region Reference
POPULATIONS
Caverna6_EH 7 CAV Peru Central Andean Fehren-Schmitz et al,
(Coastal) 2014
Palpa_MH 11 PMH Peru Central Andean Fehren-Schmitz et al,
(Coastal) 2014
Palpa_EIP 56 PEIP Peru Central Andean Fehren-Schmitz et al,
(Coastal) 2014
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Laramate LIP 38 LLIP Peru Central Andean Fehren-Schmitz et al,
(Highland) 2014
Palpa_EH 26 PEH Peru Central Andean Fehren-Schmitz et al,
(Coastal) 2014
MonteGrande_EIP 11 MEIP Peru Central Andean Fehren-Schmitz et al,
(Coastal) 2014
Laramate_ MH 39 LAR Peru Central Andean Fehren-Schmitz et al,
(Highland) 2014
Palpa_LIP 11 PLIP Peru Central Andean Fehren-Schmitz et al,
(Coastal) 2014
MonteGrande_LIP 11 MLIP Peru Central Andean Fehren-Schmitz et al,
(Coastal) 2014
Conchapata_MH 10 CON Peru Central Andean Kemp et al., 2009
(Highland)
Huari_LIP 17 HUA Peru Central Andean Kemp et al., 2009
(Highland)
Pernil Alto 13 PER Peru Central Andean Fehren-Schmitz et al,
(Coastal) 2010
Tompullo2 24 TOM Peru Central Andean Fehren-Schmitz et al,
(Highland) 2014
Acchaymarca 14 ACC Peru Central Andean Fehren-Schmitz et al,
(Highland) 2014
Puca 11 PUC Peru Central Andean Fehren-Schmitz et al,
(Highland) 2014
Pampa 19 PGD | Argentina Central Andean Fehren-Schmitz et al,
Grande EIP-MH" (Highland) 2014
Huaca Pucllana - 9 LIM Peru Central Andean This Study
Lima (Coastal)
Huaca Pucllana - 7 WAR Peru Central Andean This Study
Wari (Coastal)
Huaca Pucllana - 15 YCH Peru Central Andean This Study
Ychsma (Coastal)
Chancay 7 CHA Peru Central Andean | This Study
(Coastal)
Lauricocha_LA 3 LAU Peru Central Andean This Study
(Highland)
Pueblo Viejo 11 PVJ Peru Central Andean This Study
Tiwanaku 9 TIW Bolivia Central Andean This Study
(Highland)
Patagonia 1 PAT Argentina Tierra de Fuego | This Study
Llullaillaco 3 LLU Argentina Central Andean This Study
(Highland)
Pica8 - Tarapaca 3 PIC Chile Central Andean | This Study
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Table 9. Population genetic structure estimated from the analysis of molecular variance
(AMOVA) based on the HVR-I sequences of mtDNA (354bp).

Variance components (%0)
Population grouping Number Number of | Among Among Within p
of groups | populations | groups | populations/ | populatio
within groups ns

No grouping 1 92 24.10 75.90 0.000
Time Period

Ancient vs. Modern 2 92 0.82% 23.74% 75.44% 0.2590
Cultural periods o 0 0

(ancient only)* 6 27 5.22% 5.19% 89.25% 0.0225
Altitude o 0 0
(highlands-lowlands) 2 92 3.70% 21.85% 73.59% 0.0358
Region o 0 0
(Amazonian-Andean) 2 60 1.81% 12.60% 85.38% 0.0269
Geographic criteria** 8 92 8.63% 16.46% 73.89% 0.0024
Country (modern only)*** 6 66 6.09% 20.80% 73.89% 0.0136

Significant p value (p<0.05)
*Archaic, Early Horizon, Early Intermediate Period, Middle Horizon, Late Intermediate Period,

Late Horizon

**Amazon, Tierra de Fuego, South Andean, Central Andean, Central Andean [highland], Central
Andean [coast], Gran Chaco, North Western

*** Peru, Bolivia, Paraguay, Colombia, Chile, Brazil
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CHAPTER 3

High-resolution mitochondrial genome sequencing
from ancient pre-Columbian populations reveals

new insights into South American genetic diversity
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ABSTRACT

Ancient DNA (aDNA) from past cultures and civilizations can provide essential
information to reconstruct human population history. The advent of new technological
DNA sequencing strategies (e.g. Next-Generation Sequencing) has revolutionised the
scope of genetic studies by generating high-resolution genomic data.

These techniques have also substantially improved DNA-based phylogenies, such as the
human mitochondrial tree. We applied mitochondrial DNA (mtDNA) capture by
hybridization and high-throughput sequencing with the aim of exploring the maternal
genetic diversity in populations over time. We generated 92 complete mtDNA genomes
from pre-Columbian human remains in South America spanning from the Archaic to
Late Horizon cultures. Samples were screened for mtDNA preservation in advance, and
yielded the four Native American founder haplogroups (A2, B2, C1, and D1).

Samples grouped into archaeological periods define a temporal transition during the
Archaic period (8000-1900 BC), followed by a genetic assimilation / homogenization
process over the course of the four subsequent periods, involving the Early Intermediate,
Middle Horizon, Late Intermediate and Late horizon (EIP — LH: 900 BC-1534 AD).

Our analyses of mtDNA genetic diversity reveal ancestral lineages with a substantial
amount of “private” mutations not reported in the modern genetic pool of Native
American populations, suggesting a considerable loss of maternal diversity in the
Americas after the European arrival. This study represents the largest effort in obtaining
ancient mtDNA complete genomes from pre-Columbian populations to date, and offers
an unprecedented level of resolution to assess mitochondrial diversity in ancient South

Americans.

KEYWORDS: Ancient DNA, mtDNA genomes, South America
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1. INTRODUCTION

By inferring human demographic events from genetic (Schurr et al. 1990;
Merriwether et al. 1995; Schurr and Sherry 2004; Tamm et al. 2007; Kitchen et al. 2008;
Mulligan et al. 2008; Perego et al. 2010; Reich et al. 2012; Raghavan et al. 2015;
Skoglund et al. 2015), anthropological, morphological (Neves and Hubbe 2005;
Gonzalez-Jose et al. 2008; Chatters et al. 2014; Rasmussen et al. 2015a), linguistic
(Greenberg et al. 1986; Gruhn 1988; Sicoli and Holton 2014) and paleo-ecological data
(Hoffecker et al. 2014), researchers have proposed a number of hypotheses for the
peopling of the Americas. The consensus model claims that the first human settlers
arrived in the Late Pleistocene from Northeast Siberia through the Bering Strait, crossing
a land bridge that was passable during the last glacial maximum (LGM) ~16,500 years
before present (YBP).

While an Asian origin is largely undisputed these days, the debate about the
exact entry routes and number of migratory waves is still controversial (Forster et al.
1996; Schurr and Sherry 2004; Dillehay et al. 2008; Goebel et al. 2008; O'Rourke and
Raff 2010; Reich et al. 2012). Recent studies based on high-resolution ancient DNA
(aDNA) data have reinforced the consensus scenario of human migration into the
Americas. Rasmussen et al., analysed the complete nuclear genome from a 12,000 YBP
male individual from Montana USA termed Anzick-1. This individual is associated with
the Clovis culture, which was the most widespread and oldest archaeological complex in
North America (Waters and Stafford 2007; Goebel et al. 2008). The analysis of the
complete genome of Anzick-1 suggests that all Native Americans are descendants of the
first people that successfully settled the Americas as this genome is equally closely
related to all indigenous populations in the Americas and not closer to any other group

outside (Rasmussen et al. 2014).

Interestingly, the genetic signature from this individual also shows a gene flow
from a 24,000 year-old Upper Palaeolithic individual from Siberia known as “Mal’ta
boy” (Raghavan et al. 2014b). The Mal’ta boy’s genome offered the first global picture
of genetic composition in Native Americans, suggesting that 18-38% of its genome
variation is present in the current genetic pool of indigenous Americans across the
continent (Raghavan et al. 2014b).
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A related study reported the complete mtDNA genome sequence from an 40,000-
year-old early modern human from the Tianyuan cave in China, which was shown to be
basal mtDNA haplogroup B, which is shared by present-day Asian and Native American
populations alike (Fu et al. 2013). Both studies could link extant Native Americans with
these ancestral groups in Asia, reinforcing the East Asian and Siberian origins of all
indigenous peoples in the Americas.

The two most recent studies based on nuclear genome data from modern and
ancient samples in the Americas have provided new insights into the complex peopling
scenario of the continent by detecting of traces of DNA diversity from some populations
from Australia and Melanesia, linked with genetic diversity of some Amazonians groups
(i.e. Surui and Karitiana) from South America (Raghavan et al. 2015; Skoglund et al.
2015)

In recent years, research has increasingly focused also on large genomic SNP
data to explore genetic diversity at a broader population scale. This approach has been
effectively applied to genetic research on modern populations (Wang et al. 2007; Reich
et al. 2012; Moreno-Estrada et al. 2014), while the ultimate resolution can be achieved
by sequencing complete nuclear genomes. The latter has been applied in selected ancient
specimens in order to tackle the most outstanding question regarding human evolution
(Green et al. 2008; Rasmussen et al. 2010; Reich et al. 2010; Rasmussen et al. 2011;
Keller et al. 2012; Meyer et al. 2012; Prufer et al. 2014; Raghavan et al. 2014a;
Raghavan et al. 2014b; Rasmussen et al. 2014). Two studies on prehistoric Europeans
were able to show that these new techniques can be applied to larger numbers of ancient
samples (Allentoft et al. 2015; Haak et al. 2015), with great promise for population scale

genetics on prehistoric individuals from the Americas.

Population genetic studies have described a restricted mtDNA diversity in Native
American groups, and explained it as a consequence of stochastic and demographic
events during the original peopling of the continent (Tamm et al. 2007; Kitchen et al.
2008; Mulligan et al. 2008). Native American mtDNA is characterized by four
haplogroups identified as (A2, B2, C1, D1) spread widely all over the continent (Schurr
et al. 1990; Horai et al. 1993; Torroni et al. 1993; Forster et al. 1996) and haplogroup X,
which is less common and restricted to some populations in North America (Brown et al.
1998; Malhi et al. 2001; Dornelles et al. 2005).
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The assignment to a particular haplogroup is defined by diagnostic substitutions
(mostly single nucleotide polymorphisms — SNPs) on the mtDNA genome (Torroni et al.
1993; Kivisild et al. 2002; Bandelt et al. 2003). The confirmation of mtDNA
haplogroups and refinement at sub-haplogroup level is possible by analysing diagnostic
SNPs in the control region (CR) and the coding region of the mtDNA genome (Schurr et
al. 1990; Torroni et al. 1993; Forster et al. 1996; Herrnstadt et al. 2002; Bandelt et al.
2003; Haak et al. 2010; van Oven et al. 2011). A refinement of the analyses has
identified the so-called Pan-American mtDNA haplogroups (A2, B2, Clb, Clc, Cld,
C1d1, D1 and D4h3a) (Tamm et al. 2007; Perego et al. 2009; Perego et al. 2010).

Recent studies based on complete mtDNA genomes have expanded our
knowledge about mtDNA variation in the Americas by identifying several new sub-
lineages. The overall mtDNA diversity in Native Americans is now described by a total
of 15 so-called American founder lineages (A2, A2a, A2b, B2, Clb, Clc, Cld, C1d1,
C4, D1, D2a, D3, D4h3a, X2g, X2a) (Tamm et al. 2007; Achilli et al. 2008; Perego et al.
2010; Bodner et al. 2012; Achilli et al. 2013).

Moreover, complete mtDNA genome data from Native American extant
populations were sequenced in order to infer demographic events and reconstruct the
population history of indigenous populations (Tamm et al. 2007; Achilli et al. 2008;
Fagundes et al. 2008; Perego et al. 2009; Perego et al. 2010; Bodner et al. 2012; Cardoso
et al. 2012; de Saint Pierre et al. 2012; Achilli et al. 2013).

Although the large majority of mtDNA genomes were generated using Sanger
sequencing technology, the availability of new sequencing technologies (i.e. Next-
Generation Sequencing — NGS (Margulies et al. 2005; Bentley et al. 2008), coupled with
DNA hybridization-based enrichment techniques (Patel and Sive 2001), has increased
the amount of MtDNA genomes on a global scale. Besides, hybridization techniques to
retrieve mtDNA genomes have also been applied successfully to ancient samples
(Briggs et al. 2009; Burbano et al. 2010; Maricic et al. 2010; Brotherton et al. 2013).

Mitochondrial genetic diversity in ancient Native American populations has been
explored intensively — for a review see (Raff et al. 2011) — but only based on small
segments of the mtDNA genome. Most studies on mtDNA in human populations
focused on sequencing the Hypervariable Regions (HVR-I and Il of the control region),
which was cost-effective to study mtDNA genetic diversity.

Another advantage is the availability of large and comprehensive datasets of

modern populations for comparative analysis.
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However, the full potential of mtDNA studies is only reached when complete
mtDNA genomes are sequenced, both from modern and ancient samples. Today it has
been possible to obtain complete mtDNA sequence data from approximately ~600
modern-day Native Americans — according to “Phylotree” (van Oven and Kayser 2009).
However, most data comes from studies, which focussed on phylogenetic refinements
rather than population based investigations. Therefore, ancient mtDNA genomes from
Native Americans is very limited with only a small number of samples from North
America (Gilbert et al. 2008; Cui et al. 2013; Rasmussen et al. 2014; Rasmussen et al.
2015Db), and some samples from South America (Fehren-Schmitz et al. 2015).

Here, we present the largest dataset of complete ancient human mtDNA genomes
from South America sequenced so far, aiming to investigate the genetic relationship
among ancient groups in a time transect spanning the Archaic to the Late Horizon
periods. This in-depth exploration of the mtDNA diversity will shed light on the
haplogroup composition and genetic diversity in pre-Columbian populations before the
European arrival, and will explore potential changes through time in order to reconstruct

past human history in the continent.

2. MATERIAL AND METHODS
2.1. Selection of samples for genomic library preparation

Samples were processed in the dedicated aDNA facilities of the Australian
Centre for Ancient DNA (ACAD) at the University of Adelaide, Australia (85 samples),
at the University of California at Santa Cruz’s (UCSC) Human Paleogenomic lab (15
samples), and the Reich lab at Harvard Medical School (HMS)(Table 1). The
laboratories employ standardized aDNA protocols and infrastructure (Cooper and Poinar
2000; Fulton 2012; Knapp et al. 2012).

We selected a total of 100 individual samples for whole mtDNA genome
sequencing (SI Table 1), and the criteria for inclusion were based on reliable/consistent
genetic profiles obtained from the two independent samples assessed previously for
aDNA analysis (see Chapter 2). As for the 85 samples analysed at ACAD, preservation
and suitability for genomic library preparation were tested in advance by sequencing the
Hypervariable Region (HVR-1), and genotyping with the GenoCoRe22 (Haak et al.
2010) and the AmericaPlex26 (Coutinho et al. 2014) coding region SNPs multiplex

assays.
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2. 2. Radiocarbon dating

Radiocarbon dating was performed at the Oxford Radiocarbon Unit for AMS
Oxford, England in order to confirm the cultural classification of eight samples from the
Huaca Pucllana archaeological site, Lima, Peru, (ACAD 10709, 10722, 10734, 10754,
10791, 10805, 10810, 10817), two samples from the Tiwanaku archaeological site from
Bolivia (ACAD 13241, 13264), and one sample from Patagonia (Chile). Radiocarbon
dates were calibrated using the OxCal Program v.4.2 from Oxford Radiocarbon
Accelerator Unit, using the "IntCall3' dataset (Reimer et al. 2013). The two samples
from Arroyo Seco, Argentina (B9S14 and B2S19) were radiocarbon dated as part of a
previous study (Politis et al. 2014). Samples from Lauricocha (ACAD 12686, 12687,
12688, 126899) were sent to the Curt-Engelhorn-Center for Archaeometry — MAMS for
AMS radiocarbon dating as part of a re-examination of the Lauricocha archaeological
site (Fehren-Schmitz et al. 2015) (SI Table 6).

2.3. DNA extraction library preparation and mitochondrial capture (ACAD)

Samples (bone or tooth) were decontaminated upon entry to the aDNA
laboratory by exposure to UV light, wiping with 3% sodium hypochlorite solution
(bleach) and physical removal of sample surface contaminants by abrasion using a
Dremel® drill. A Mikrodismembrator ball mill (Sartorius) was used to pulverise the
sample, and 0.2 grams of bone powder were used subsequently in DNA extraction. Each
aDNA extraction was performed in parallel on twelve samples plus two Extraction
Blank Controls (EBCs). Samples were decalcified by incubation in 4 ml of 0.5 M EDTA
(pH 8.0) overnight at 37°C on a rotor at ~30 rpm. Next, 70uL Proteinase K (Invitrogen)
was added to the lysis mix and incubated for 2 hours at 55°C. DNA was isolated using
an in solution silica method as described previously (Brotherton et al. 2013; Der
Sarkissian et al. 2013). DNA was resuspended in 200 uL. TE buffer supplemented with
0.05% Tween-20 (Sigma), and stored at -20°C.

2.4. Genomic Library preparation for degraded DNA samples (ACAD)

Genomic libraries were prepared using a modified Illumina® protocol. DNA
extracts were converted into sequencing library following the multiplex protocol for
ancient DNA (Meyer and Kircher 2010; Briggs and Heyn 2012).
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All genomic libraries and enzymatic clean-up steps were performed in a
contamination-free ancient DNA laboratory. Libraries were prepared including an
Extraction Blank Control (EBC) every 8 samples analysed.

a) Standard DNA blunt-end repair: Genomic libraries were prepared as

follows: 20uL of DNA extract, 4ul. 10x PB Buffer (or NEB2 - New England

Biolabs), 0.4uL 10mM dNTPs (100uM each), 0.8uL RSA (rabbit serum

albumin) 10mg/ml (Sigma), 4uL. 10mATP (1uM), 2ul T4-PNK (Polynucleotide

Kinase — New England Biolabs, 10U/uL) and 1.5uL. T4 DNA Polymerase (New

England Biolabs, 3U/uL) and 40puL ddH,0. The reaction was incubated at 25°C

for 30 min. After cycling, 10uL of EDTA pH8.0 was added to inactivate the

enzymes. DNA purification was performed using the MinElute spin column
purification (Enzymatic reaction clean-up kit, Qiagen) according to

manufacturer’s instructions. DNA was eluted with 22.5uL 0.1x EB buffer +

0.05% Tween-20.

b) Adaptor ligation reaction: Sample-specific truncated Illumina adaptors were

ligated to libraries in order to allow differentiation among samples/individuals

for the subsequent multiplex library sequencing (SI Table 3). The ligation
reaction was prepared as follows: 20uL of blunt-end repaired DNA, 4uL 10x T4

Ligase Buffer (Fermentas), 4uLL PEG-4000 (50% solution in water), 0.25uL T4

DNA Ligase (30U/uL Fermentas), 1pL of truncated barcoded P5 adapter

(25mM), 1L of truncated barcoded P7 adapter (25mM), ddH,0 q.s.p 40uL. The

reaction was incubated at 22°C for 1h. DNA was purified using MinElute spin

columns (Enzymatic reaction clean-up kit, Qiagen) according to manufacturer’s
instructions. DNA was eluted with 22.5uL 0.1x EB buffer + 0.05% Tween-20.

¢) Bst-DNA polymerase fill-in reaction: The reaction was prepared as follows:

20pL of ligation reaction eluate, 4ul. 10x Thermopol Buffer (New England

Biosciences), 0.3ul dNTP (25mM each), 1.5uL. Bst DNA Polymerase (New

England Biosciences, 8 U/uL), ddH,0O q.s.p 40pL. The reaction was incubated at

37°C for 30min followed by an increase to 80°C for 10min to denaturate the Bst

Polymerase. DNA was eluted with 30uL 0.1x EB buffer + 0.05% Tween-20.

d) Library PCR first amplification: PCR reactions were performed in

quintuplicate to reduce amplification bias and to increase the amount of available

DNA for subsequent capture by hybridisation. Each PCR reaction was prepared

as follows: 3uL of library DNA, 2.5uL 10x Gold Buffer (Applied Biosystems),
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2.5uL MgCI2 (25mM), 2.5U AmpliTaq Gold (Applied Biosystems), 0.25uL of
dNTPs (Invitrogen, 25mM each), 1.25uL 1S7_short_amp.P5 (10uM), 1.25uL
IS8 short_ amp.P7 (10uM) (SI Table 5), ddH,O q.s.p 25uL. The DNA
amplification and all subsequent steps were performed in a standard molecular
biology laboratory at the University of Adelaide. The thermocycling profile
consisted of 94 °C for 6min, followed by 12 cycles of 30sec at 94°C, 30sec at
60°C and 1min at 72°C, followed by a final 10min at 72°C.

All PCR products for each library were pooled together for a final volume of
125uL. A clean-up step using AMPure® XP PCR Purification (magnetic beads
system AGENCOURT,; Beckman Coulter) was performed adding 198uL
AMPure, followed by 3 washes with 80% ethanol. Final DNA libraries were
eluted in 30uL EB buffer + 0.05% Tween-20.

e) Library PCR re-amplification: Libraries were then subject to a second PCR
amplification round. The second amplification and the DNA purification were
performed as for the first amplification above. Finally, the amplification products
were visualized following an electrophoresis on a 3,5% agarose gel. DNA

quantification was performed with a Nanodrop 2000 (Thermo Scientific).

2.5. DNA Extraction and library preparation (UCSC Human Paleogenomic Lab)
DNA extraction was based on the protocol from Dabney et al. 2013 (Dabney et
al. 2013) using 75 mg of bone or tooth powder. DNA was eluted twice in 16-30 pL 1X
TE buffer (with 0.05% Tween-20). Aliquots were stored at -18°C until further use.
Double-stranded Illumina libraries were built from 30 ul of each DNA extract following
the protocol from Rohland et al. 2015 using truncated Illumina adapters with dual 7-mer
internal barcodes (Rohland et al. 2015). Depending on the libraries, DNA was either not
repaired, subject to partial UDG treatment (Uracil-DNA-Glycosylase + endoVIII)
(Rohland et al. 2015), or subject to USER repair (New England Biolabs). DNA libraries
were then sent to the Reich lab at HMS for mitochondrial capture by hybridization and

sequencing.

2.6. Mitochondrial DNA enrichment using biotinylated RNA probes (ACAD)
Mitochondrial RNA baits for DNA capture by hybridization were prepared in-
house. In a first step, the whole mitochondrial genome (WMG) of BL (haplogroup

H3k1) was amplified in three overlapping fragments using the Expand Long Range
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dNTPack kit (Roche), and following the manufacturer’s protocol with an annealing
temperature of 60°C and the primers. From this step onward, all commercial kits were

used according to the manufacturer’s protocols.

For each amplicon, one of the primers was 5’-tailed with a T7 promoter sequence
(5’- AATTGTAATACGACTCACTATAGGG-3’) in order to perform an in vitro
transcription using the T7 High Yield RNA Synthesis Kit (New England BioLabs).
DNA was degraded with DNase after the in vitro transcription was completed. Resulting
RNA was purified using the Ambion MEGAclear kit (Life Technology), and eluted in 2
x 50 pL of RNase-free molecular grade water. RNA was quantified using a Nanodrop
spectrophotometer (FisherScientific), and RNA integrity was assessed using a
TapeStation (Agilent). For each mitochondrial fragment, 40 pg of RNA was then
fragmented using the NEBNext Magnesium RNA Fragmentation Module (New England
BioLabs). Fragmented RNA was purified using the RNeasy Minelute Cleanup kit
(Qiagen), and eluted in 15 pL of RNase-free molecular grade water. RNA was
quantified using a Nanodrop spectrophotometer, and RNA fragmentation was assessed
using a TapeStation. Finally, fragmented RNA was randomly biotinylated using the EZ-
Link Psoralen-PEG3-Biotin kit (Thermo Scientific), performing as many assays as was
possible given the concentration of starting template. Biotinylated RNA was purified
using the RNeasy Minelute Cleanup kit (Qiagen), and eluted in 15 pL of RNase-free
molecular grade water. Biotinylated RNA baits from the initial three mitochondrial
fragments were pooled at a concentration of 50 ng/ul each (150 ng total) for capture by
hybridisation.

2.7. Hybridization capture for mtDNA (ACAD)

The overall process is the following:
a) Tracer concentration: Ancient genomic libraries after the 2" amplification
were concentrated by evaporation in order to reach 70ng/uL required as initial
concentration. 3uLL of DNA libraries were pooled per mtDNA bait.
b) Block mastermix set-up: Mastermix was prepared for a final volume of 5uL.
adding 2.5uL Cot 1 DNA (1pg/lpL) (Block #1), 2.5uL salmon sperm DNA
(1png/luLl) (Block #2). 5uL of Block mastermix was added to each tube
containing 3uL of pooled DNA libraries.
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c) RNA-mix preparation: Reaction conditions for RNA-mix were prepared for
at total volume of 7.5uL. Tubes were prepared containing 5ul. of mtDNA baits,
1uL RNase Block (SUPERase-In), 0.5uL (Proprietary blocking agent) Block #3
(P5/P7 RNA)(50uM of each), 0.5uL of DNA Block 1S5 (50uM of each) and
0.5uL DNA Block 1S6 (50uM of each)

d) Hybridization solution mastermix preparation: Mastermix was prepared
for a final volume of 18.4uL. Final reaction comprised: 10uL 20xSSC (saline
sodium citrate) (Hyb#1), 0.4uL 0.5M EDTA (Hyb#2), 4uL 50X Denhardt's
(Hyb#3) and 4uL 1% SDS (Hyb#4).

e) Touchdown PCR: The thermocycling step was performed using a
modification of temperature profile (Touchdown) as follows: Step 1: 94°C — 5
min, Step 2: 65°C — 3 min, Step 3: 65°C -2 min, Step 4: 65°C — 9 h, Step 5: 63°C
— 9 h, Step 6; 61°C — 9 h, Step 7: 59°C — 9 h, Step 8: 57°C — 9 h, Step 9: 60°C — 3
h. Mastermixes were combined and incubated for 48 hours. DNA library and
Block mastermix (8uL) was incubated at the start of Step 1. RNA-mix (6.5uL)
was incubated at the start of Step 2. Hybridization buffer was incubated at the
start of Step 3. 145uL of hybridization solution was added to each RNA-mix at
the end of Step 3. Finally, hybridization buffer plus RNA-mix were added to
each DNA library.

f) Streptavidin beads preparation: My One™ C1 beads (Invitrogen) magnetic
beads in solution were vortexed at the start of each wash for 5sec. After each
step, beads were pellet using a magnetic stand and then the supernatant was
discarded. For each hybridisation reaction 50ul of magnetic beads were
transferred to a 1.5 mL tube (Eppendorf). Beads were subjected to a series of
washes, using a saline sodium citrate (SSC) 2X. Two washes were performed
using 500uL 2X SSC + 0.05% Tween-20 at room temperature. Beads were
incubated in 500uL 2X SSC + 0.05% Tween-20 adding 100ug yeast tRNA for 30
min on rotor at room temperature. Another wash step using 500uL 2X SSC +
0.05% Tween-20 was performed at room temperature. Finally beads were
resuspended in 200 puL 2X SSC + 0.05% Tween-20.

g) Post capture bead wash: Beads were vortexed at the start of each wash for
5sec. After each step, beads were pellet using a magnetic stand and then the
supernatant was discarded. Hybridization solution was transferred to the beads

and incubated for 30 min on rotor at room temperature. This creates a DNA-
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capture library-bead complex. Beads were immobilised to the magnet stand and
subjected to successively increased-stringency washes, to remove progressively
non-hybridised DNA molecules, using saline solution SSC and temperature
variation.

First washing using 500uL of saline sodium citrate 2X SSC + 0.05% Tween-20
was performed for 10 min at room temperature. Second washing using 500uL
0.75X SSC + 0.05% Tween-20 was performed for 10 min at 60°C. Third
washing using 500uL 0.75X SSC + 0.05% Tween-20 was performed for 10 min
at 60°C. Final washing using 500ul 0.2X SSC + 0.05% Tween-20 was
performed for 10 min at 60°C.

h) PCR set-up with full-length Illumina adaptors: Beads were pellet and dried
down using a magnetic stand after the last wash. PCR reaction using the full-
length Illumina adaptors was performed with a modified step off-bead PCR
(Fisher et al. 2011) adding the PCR mastermix onto the dried streptavidin beads.
Sets of short Illumina adaptors (IS_4 Universal short Adaptor) were used in
concordance with long Illumina Adaptors (SI Table 4), which in permutation
generate a unique combination for every single sample. The tagging process is
important for the subsequent Illumina bioinformatic analysis. PCR reaction with
full-length lllumina adaptors was performed in quintuplicate per original sample.
Final reaction conditions comprised of 2.5uL of 10x Gold Buffer, 2.5uL MgCI2
(25mM), 0.25uL. AmpliTag Gold 2.5U (Applied Biosystems), 0.625ul. dNTPs
(10mM  each) (Invitrogen), 1.25ul.  IS4_indPCR_P5, 1.25uL  of
GAIl_Indexing_1-15 and 16.62ul. H,O. Mastermix was transferred into tubes
after post mtDNA capture containing the enriched library plus the biotinylated
beads for a final reaction volume of 25uL. The thermocycling profile consisted
of 94 °C for 6min, followed by 18 cycles of 30sec at 94°C, 30sec at 60°C, 45sec
at 72°C, followed by a final 10min at 72°C.

i) AMPure® PCR clean-up: All PCR products were cleaned using the
AGENCOURT® AMPure® XP PCR Purification (magnetic beads system).
Since each PCR reaction was performed using the biotinylated beads, a first step
before pooling of samples, involves the removing the resulting beads using a
magnetic rack. Once all beads resultant from the amplification were removed,

only the supernatant was transferred into the tubes.
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J) Measure of concentration: All prepared DNA libraries were quantified using
the Nanodrop 2000 (Thermo Scientific) according to manufacturer’s instructions.
For the final quality control, samples were assessed for fragment size distribution
and DNA concentration after mtDNA Hybridization Capture using Tapestation
2200 Instrument (High sensitive DNA concentration measure screen gel)
(Agilent Technologies) following manufacturer’s instructions. Finally, DNA
pooled samples for Illumina sequencing were diluted in order to reach 2nM for

final concentration.

2.8. Bioinformatics / DNA sequencing and sequence assembly

Pooled DNA libraries were sequenced on two lanes of an Illumina HiSeq2000
machine (lllumina Inc., San Diego CA) at the Australian Cancer Research Foundation
(ACRF) Cancer Genomics Facility, Adelaide, South Australia.

Post-sequencing processing was performed as follows:

[llumina reads were automatically demultiplexed by index using Casava and a
strict matching of the 7-mer indexes. An additional demultiplexing based on a strict
matching of the two 5-mer internal barcodes and trimming of the barcodes were
performed using the program Sabre 1.0 (https://github.com/najoshi/sabre).
AdapterRemoval v1.5.2 (Lindgreen 2012) was used with default parameters to trim
residual adapter sequences, merge overlapping reads, and discard reads shorter than 25
nt. Merged reads were aligned to the Reconstructed Sapiens Reference Sequence
(RSRS) (Behar et al. 2012) sequence with bwa 0.7.5a-r405, using the parameters space
recommended for ancient DNA (no seed, one gap opening, relaxed edit distance).
Duplicate reads were removed using FilterUniqueSAMCons.py and final pileup
statistics were calculated using SAMtools. Characteristic damage patterns were assessed

using MapDamage v0.3.6 (Ginolhac et al. 2011) (Figure 6a).

2.9. Sequencing analysis and SNP calling

DNA sequence pileups were visually inspected and edited using Geneious Pro®
Software V.6 (Biomatters Ltd) (Drummond et al. 2011). Single Nucleotide
Polymorphisms (SNPs) were called using Annotate & predict (Find Variation) function

in Geneious Pro®, and exported into table format.
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Haplotype determination was performed manually in reference to the online
phylotree database (www.phylotree.org) mtDNA tree Build 16 [19 Feb 2014] (van Oven
and Kayser 2009).

Ancient DNA is usually characterized by an increase in 5’ C-to-T substitutions,

and 3° G-to-A substitutions in the case of the library construction method used herein. In
order to avoid wrong SNP calls due to damage, we established a threshold of 3x
minimum coverage for every SNP and a Minimum Variant Frequency of 0.75. Global
“diagnostic” and local “private” SNPs were checked visually and confirmed by two

researchers (GV and BL) in order to generate final consensus sequences.

2.10. Population genetics and statistical analyses

Population differentiation and molecular diversity indices, haplotype (h),
nucleotide diversity (r), genetic distances (pairwise Fsr), and linearized Slatkin’s Fsr
values were calculated to measure genetic relationships among populations using the
software Arlequin 3.5 (Excoffier and Lischer 2010) (Table 3).

A Median Joining (MJ) network (Bandelt et al. 1999) was built to evaluate
genetic relationships among all individuals subjected to analysis. Clustering analyses

was performed using the program Network (www.fluxus-engineering.com). Network

analyses were performed separately for the four Native American mtDNA haplogroups.
We excluded substitutions at nucleotide positions 16,182 and 16,183, because they are
dependent on the presence of C at the position 16,189 (Horai et al. 1993). We did not
consider positions 309.1C (C), 315.1C, AC indels at 523 and 524 and deletion 3107 for
mtDNA genomes (van Oven and Kayser 2009).

Principal Component Analysis (PCA) was performed for samples grouped into
archaeological periods to visualize genetic relationship among ancient populations in a
reduced number of dimensions called ‘components’ to detect internal structure (Figures
4a,b). Ward hierarchical clustering based on haplogroup frequencies was performed and
plotted using a customized R script (Figure 5).

In order to explore population demographic structure, distribution of the pairwise
genetic distances and mismatch distribution (Rogers and Harpending 1992) were
calculated. Samples grouped into archaeological periods were used to compare to the
expected distributions of populations that has recently grown in size (population
expansion) or has been stationary over a long time. Simulated and observed mismatch

distributions models were tested using sum of squared difference (SSD) and
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Harpending’s raggedness index (Harpending 1994). Also neutrality test for population
expansion, Fu’s Fs (Fu 1997) and Tajima’s D (Tajima 1989) were calculated in Arlequin
3.5 (Excoffier and Lischer 2010)(Table 5).

3. RESULTS
3.1. Mitochondrial lineages

From a total of 100 samples, we obtained 92 complete mitochondrial genomes
and identified 84 haplotypes. All successful analysed samples could be assigned to one
of the ‘founder’ mtDNA Native American haplogroups (A2: 16.3%, B2: 29.3%, B2b:
11.9%, Clb: 23.9%, Clc: 5.5%, Cld: 2.17%, D: 2.17%, D1: 8.7%)(Table 2).
Haplogroup X was not observed in our dataset. We have obtained partial mtDNA from
the remaining samples, however due to aDNA damage and low DNA quality sequence
coverage, it was not possible to make reliable mtDNA haplogroup calls.

3.2. Data sequence quality

Samples come from a broad temporal range and varied in preservation. Genomic
libraries yielded variable degrees of complexity, genome coverage and per-base
redundancy (coverage at a given position), and sequence quality of ancient samples
correlated with the observed genomic coverage (SI Table 1). In order to ensure
comparable data quality, all sequences used in the study had less than 1% missing data.
Missing data (i.e. no coverage at a given position) were called ‘N’.

Highest average coverage depth per-position was observed in samples coming
from Pueblo Viejo (678.5x), whereas a sample from Llullaillaco showed the lowest
average coverage (3.5x). Incidentally, both samples belong to the latest pre-Columbian
archaeological period (Late Horizon 1476-1534 AD). Due to aDNA damage and low
number of mapped Illumina reads, samples 6317—Llullaillaco, 11187—Miramar, 11202—
Chancay, 10891-Patagonia, 10758-Wari and a contaminated sample from Mexico,
13991-Candelaria that yielded a sample mix-up contamination pattern after NGS, were
removed from the final analysis since no reliable mtDNA genome consensus sequence
were obtained. From the most ancient samples (Archaic period) the highest coverage
was (21.3x) observed in samples from Camarones, Chile (Chinchorro culture) and the
lowest coverage of (10.5x) was observed in a sample from La Galgada, Peru.
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3.3. Haplogroup composition and haplotype diversity

In order to test temporal changes in haplogroup composition, samples were
pooled according to archaeological periods in South America (Figure 2). Samples from
Arroyo-Seco2 belonging to the Early Middle Archaic (6480-6450 BP) were grouped
with samples from Late Archaic period (La Galgada, Camarones and Lauricocha
individuals) (8000 BC-1900 BC). Haplogroup A has the highest frequency (64%)
during this period, while haplogroup C is absent in the Archaic period. Haplogroups B
and D both show (18%). Despite being able to analyse samples from the EH — Early
Horizon period (900 BC—200 AD) in previous study (Chapter 2), no samples for this
period were suitable for complete mtDNA genome sequencing.

For the four subsequent archaeological periods, EIP-Early Intermediate (200—
600 AD) that includes samples from Lima and Palpa populations, MH-Middle Horizon
period (600-1000 AD) represented by Wari and Tiwanaku populations, LIP—Late
Intermediate Period (1000-1476 AD), including samples from Ychsma, Chancay, Pica8,
Chullpa Botigiriayocc and LH-Late Horizon (1476-1534 AD) including samples from
Llullaillaco, San Sebastian and Pueblo Viejo, haplogroup composition remains relatively
constant over time without major fluctuations (Figures 2a, 2b).

Haplotype diversity (h) for each period showed high values among
archaeological periods: Archaic period (1.0000), EIP (0.9905), MH (0.9942), LIP
(0.9933) and LH (0.9905). The same holds true for nucleotide diversity for each
archaeological period (z): Archaic period (0.001655), EIP (0.002157), MH (0.002530),
LIP (0.002372), and LH (0.002230) (Table 5).

3.4. Genetic distances and population affinities

Genetic distances were calculated for samples pooled according to
archaeological periods. High Fst values were observed between the Archaic period and
all four subsequent periods, EIP (0.19071), MH (0.14892), LIP (0.15529) and LH
(0.18296) (Figure 3, Table 4a, 4Db).

Principal Component Analysis (PCA) based on haplogroup frequencies (for
major haplogroups and sub-haplogroups) (Tables 4a, 4b; Figures 4a, 4b) for each of the
five cultural periods also revealed two main clusters. This differentiation is also
supported by hierarchical Ward Clustering, which separated samples from the Archaic
period and grouped samples for the successive four periods (Figure 5).
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Neutrality tests and values for Tajima’s D suggest a population expansion for the
four grouped periods EIP, MH, LIP and LH (-1.60071, p<0.05). Likewise Fu’s FS
values indicate also population expansion for the four groups (-24.14606, p<0.02).
Moreover, mismatch distributions show a multimodal curve which supports the scenario
that expansion (demographic and spatial) cannot be that recent anymore for populations
grouped into archaeological periods, EIP, MH, LIP and LH. Samples from Mexico were
removed from this analysis, as they do not share the geographical region with all the

South American samples. (Figures 7a-d; Table 5).

3.5. Phylogenetic analysis of mtDNA genomes

In order to understand how our ancient samples sit within the modern mtDNA
phylogeny, we placed our ancient samples using the “Phylotree” mtDNA phylogeny
database as scaffold (van Oven and Kayser 2009) build 16 [19 Feb 2014]). We followed
the hierarchical structure of phylotree to embed the new ancient mtDNA sequences.
We used the diagnostic SNPs defining specific haplogroups and sub-haplogroups, and
SNPs not (yet) reported in phylotree were considered as “private” mutations (SI Table
2). All ancient sequences fall into the Native American mtDNA diversity and represent
unique branches within haplogroups A2, B2, C1, and D1 (Figures Sl 1a, 2a, 3a, 4a).

3.6. Haplotype sharing from complete mtDNA genomes

After network analyses we observed haplotype sharing in individuals from the
same cultural layer, such as two individuals from Pica-8 (11116-Pica/11121-Pica)
belonging to hg B2, two individuals from Lima (10817-Lima/10820-Lima) belonging to
hg C1b, two individuals from Ychsma (10722-Ychsma /10805-Ychsma) belonging to hg
D1, and another two individuals from Wari (10734-Wari/10765-Wari) belonging to hg
C1b. We also observed shared haplotypes between individuals from different cultural
layers. For instance, two individuals from Lima-EIP and Ychsma-LIP (10811-
Lima/10732-Ychsma) belonging to hg D, and three samples from Wari and Ychsma
(10763-Wari/10709-Y chsma/10725-Ychsma) belonging to hg Clb. Lastly, we observed
haplotype sharing between two individuals from the same archaeological period (Late
Horizon) but from different cultures (11180-Pueblo Viejo/6320- Llullaillaco (SI Figures
2b, 3b, 4b).
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4. DISCUSSION

Next-Generation Sequencing technology has enabled the generation of genomic
data, which offer novel insights about human evolutionary processes around the globe.
This thesis chapter evaluates information from complete mtDNA genomes in contrast to
limited mtDNA sequence information (e.g. D-loop sequences) (Chapter 2).

Complete mtDNA sequences can reveal aspects in genetic diversity which may
not be evident by analysing small portions of DNA (Kivisild 2015). Despite the fact that
mtDNA research approach reflects only a partial “snapshot”, in fact the maternal part of
the evolutionary history of human populations, the study of high-resolution mtDNA
genomes of pre-Columbian populations represents a major advance in understanding
historical events in the Americas, such as population bottlenecks, population collapse

and population admixture after the European arrival.

The present study has generated novel ancient mtDNA complete sequences from
ancient Native American populations, offering the first overview of the pre-Columbian
genetic diversity under a high mtDNA genome resolution. Our complete mtDNA
genomes confirm the shallow phylogenetic structure of the Native American branches
since the mtDNA sequences from our samples fall into the diversity of the sub-
haplogroups (A2, B2, B2b, Clb, Clc, C1d and D1). However, the description of a
substantially large number of novel haplotypes defined by “private” mutations is the
most important observation in all of the reported mtDNA complete genomes (SI Table
1) and attests a unexpectedly large haplotype diversity in pre-Columbian times.

Of note, all mtDNA genomes generated in this study represent unique mtDNA
lineages that are not present in the modern-day diversity in the Americas. This means
that these lineages have either become extinct or have not yet been observed in modern-
day populations, a bias that can only be explained by severe under-sampling of modern-
day individuals in our regions of interest. Given the availability of a number of
investigations on the genetic make-up of Native Americans based on modern
populations (Tamm et al. 2007; Perego et al. 2009; Perego et al. 2010; Achilli et al.
2013), the present study suggests that there is still a significant amount of “hidden”
diversity that in some way impairs a full comprehension of the complexity of the

evolutionary history in the Americas.
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It is possible that these “lost” mitochondrial lineages might be explained by a
substantial loss of mtDNA diversity in modern populations. Under this scenario, it is
hypothesized that Native Americans had a much greater mtDNA diversity prior to the
European contact (O'Rourke et al. 2000), and that this reduction of diversity was
therefore a consequence of a genetic bottleneck after the arrival of European settlers 500
years ago (Hunley and Healy 2011) and the subsequent population collapse of Native
Americans (Livi-Bacci 2006).

Moreover, O'Fallon and Fehren-Schmitz 2011 could show that the effective
female population size of Native Americans was reduced by 50%, which could have led
to a stochastic extinction of ancient lineages and fixation of mtDNA in Native American
after the European landfall. Another potential explanation suggests that mtDNA
genomes from today’s Native Americans despite current sequencing efforts remain
drastically under-sampled. The possibility that new mtDNA sequences belonging to
modern-day populations would consistently match the ancient haplotypes reported in
this study is still open. However, this requires extensive and systematic sampling and in-
depth sequencing of modern Native American populations to fill these gaps in
knowledge to exclude this scenario.

Although mtDNA variation and genetic structure in the Native American
populations seems to have been established several thousand years ago (Raff et al.
2011), the overall global “genetic snapshot™ depicted in this study suggests a complex
evolutionary picture in the South American regions in pre-Columbian times.

Our mtDNA haplogroup frequency based results (PCA and Ward clustering) and
genetic distances (Fst) suggest only one temporal transition between Archaic
populations and the subsequent archaeological periods Early Intermediate, Middle
Horizon, Late Intermediate and Late horizon period, which form a separate, big cluster
(Figures 4a-b and 5). In concordance with a parallel study (Chapter 2), mtDNA genomic
data also suggest a process of population “assimilation” or “homogenization” in ancient
South America in time periods post-dating the Late Archaic period.

Haplotype sharing occurred mostly between individuals from the same culture
and same archaeological period, and is less often between different cultural layers.
Moreover, maternal relationship was observed interestingly in two samples belonging to
the Inca culture from the Late Horizon period (Llullaillaco and Pueblo Viejo). Although
they do not share the same geographic location, this correlates the large expansion of

Inca Empire before the European arrival.
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Furthermore, we did not evidenced haplotype sharing from our ancient mtDNA
sequences with any modern mtDNA sequences, which reinforces the scenario that pre-
Columbian populations were genetically highly more diverse. Further research with
additional mtDNA and nuclear genomes from ancient and modern samples will be
needed to fully explore demographic models, population bottlenecks and genetic
structure or admixture models in South American populations to better understand

population history of pre-Columbian civilizations.
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Figure 2a. Variation of mitochondrial DNA frequencies through time from five distinct
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Figure 2b. Variation of mitochondrial DNA frequencies through time from five distinct
cultural periods in South America, excluding samples from Mexico (Sub-haplogroups)
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Horizon; LIP: Late Intermediate Period; LH: Late Horizon. Increasing blue intensity
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Figure 4a. Principal component analysis (PCA) based on major mtDNA (A2, B2, C1,
D1) haplogroup frequencies according to five cultural periods. AP: Archaic Period; EIP:
Early Intermediate Period; MH: Middle Horizon; LIP: Late Intermediate Period; LH:
Late Horizon. In sum, PCA axes 1 and 2 describe 93.8 % of the total variance.
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Figure 6a. Example of aDNA damage patterns (sample LP40.3/ACAD 10765-Wari).
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Figure 7a. Demographic and spatial expansion. Mismatch distribution patterns for the
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Figure 7b. Demographic and spatial expansion. Mismatch distribution patterns for the
Middle Horizon period.

198



25

20

15

10

Number of pairs

Late Intermediate Period

|

A

L

I[ == Observed

demographic

spatial

14 71013161922252831343740434649525558616467

Pairwise diffrences

Figure 7c. Demographic and spatial expansion. Mismatch distribution patterns for the

Late Intermediate period.

w H» U1 O N 00 ©

Number of pairs

Late Horizon

e Qbserved

= demographic

«

At

l spatial

t

1 4 710131619222528313437404346495255586164
Pairwise diffrences

Figure 7d. Demographic and spatial expansion. Mismatch distribution patterns for the

Late Horizon period.

199



00¢

ewiT Jo
1Ssamyiou (Sajiw QTE) sanswo] 005 Ajg1ewixoldde ‘niad ul 149sap [eI1Se0d

M SLO0EBTLO6L

(1) @911 e0enH UJ3ULIOU Y] U0 82e113) 3Us2031SI3]d ® 4O Julod uJayInos ayl Uo paredo| dd 000T ~ 0081 S 90 TT.SSol flad E19lid B9enH
punow wioyreld yies pue auols xs|dwod pue abie| e si elalld eoenH
(av00z-0~) poliad eoseN AL L0.11oSL
(T) sourjon so A11e3 8y 0) seyep soul|oN 077 “(As|leA edjed ay) ul JsjuaD Jeuolbay) dg 008T — 0002 P niad SOUIIOIN S07]
aIn} N BISEN 8YI YlIM PaleId0SSe JusWa|ias ued.n arelpswisiu| Aue3 ~Sb810.CoV 1
QT6T Ul Wweybulg Aq paleArIxs ‘nyddid NYdeN Wwo.y
(¢) uenseqes ues salw QT As|JeA eqwiegnin o1y 8yl Ul JUSWS[NSS [eJNJ BIU| — UOZIIOH 818 dd 005~ 009 hiad UENSEQaS UES
epeb[es e JO 24NjonJls [enii ayl apIsul SUOIBNMIS .
(g) epebeo e [eLINg JRJSASS WO SALIBP S|enpIAIpU] “spuejybiH uelAnIad UISYLON dg 000¥% SL0 ooboo&h niad epebjes e
3yl Jo sAajreA Jaddn ay1 ul 813ud9 [en]LI pue B1IS JUSWIJNAS Jleydly 38T M09°65.LCo8
. uoibay edjed ay1 anoge (ado|S uIa1SaAN) AL8LEE.TSabL s00keLN0g
(2) ®=djInyd | spuejybiH uBIANIad [RAUSD-YINOS 8y} Ul dlBWERIeT] JO UMO] UISpowW ay) 0} dg 008 . niad
9S0|9 JUBLIBIIAS BIeIPaLLISIU| 818 B YlIM Paleldosse sI 990Aeunog ed|inyd 802025 Tob1 ediinud
(spouiad [eaibojoaeyale
a3 Jo sabuel ay1 10U ‘SIUBAS |eLING By Y1M 3181102 sabie) Og 008T~
‘poLiad [eniul pue ‘0g 00SE~ O1eydly 818 109 00£9-0089~ 01y AL EhChe0L
(¥) reyoooune Ajre3 ay1 ol Buijpey seseyd [ering 834yl Ul punoy S[enpIAIpUl WOy aALISp 29 00ST — 0089 wro Bretbo niad BYo091INET
sa|dwes "ausd0]oH 81eT 8yl 01 AjJe3 ayl wioly suewny Aq sferng pue “S. 187016101
UOIEPOWLIOIE 10} Pasn A|SnonuUOI Udaq Sey als 8y "UCITeAd|d W0V
"xoidde 1e spuejybiH uelAnIad [e2UaD 8y Ul 181ays 204 B SI Byd0o1INe]
. ‘poriad uozIIoH a3e7 Ul paldnado sem Jeyl JaALI Mo€T LS LY9L eleond
(TT) UL | 1107 aup 30 sjueq 1] oL Uo pateoo] aus eouj Ue si “ereang-ofai ojgend AVYEST ~OLVL | g 1 o1.z1oz1 Md | ofainoigend
"(@v 00v-00e~ AL LO.11oSL
(g) :edjed | ‘g easeN) ainynD BISEN 8yl YlM paleldosse ‘ebueiner 1UsWaNLs [ednt ay) d9 009T — 00.T e niad | edjed ‘ebueiner
J0 aseyd Juswia|nes poliad sreipawiiaiu] Ajreg ay) wody aALsp sejduwres syl " S ¥8'10.2kor1
] ] Aeouey)
(8) Aeauryd NJad BWIT Ul UOJUY WNaSNIA 3yl 1e palds)jo9 sajdwes av 9.¥T — 000T niad ‘ewli ‘oAeWEsEd
(@v 9.¥T - 000T)
(ST) ewisyo A POLId d1eIPaWLIIU| 8. 8yl Ul BWSYIA 8yl Ag uorrednado Ajjeuly pue .
(zT) vem | (QV 000T - 009) UOZLIOH BIPPIAI 8L} Ut 2IMIND LIEA 3} AQ JUBLAINES avewt - ooz | NMEEBSI0LLY gy e | euejjong eoenn
(T eWr | puodsse ‘(QV 009 - 00Z) POLIAd SreIpawalu] ALJes auj ul ewi ayp Aq " S 10L890-21
uo11edna90 15114 B ;BUR|[9Nd BIBNH W04} SpoLIad [eIn}nd SAISS8dINS 83y L
(sejdwes) aanynd sajoN/uondiioseq abuey aby SajeuIpl00) uo1ed07] aweN aMs

Apnis sIy) Ul paulwexa says pue sajdures Jo 1sI7 °T ajgeL




T0¢

'saonoeld Alelauny Jo uoneluasaidal you Aprenonted e

SJaJo pue surewsas o1uehio S)I JO 81e1S UOIBAIBSUOI 0] anp alls [euondsoxe M 0P LS 001 eliejapue)d
(9) erefopUED U® SI 8ARD BLIRjapUBRD 8| "0JIX3|A UI3YLIOU Ul B]INyeoY JO 87els 8yl Ul dv 0091~ 0001 ‘N .91 .5 oS OAMXSN eABND
pa1edo| aus [ealfojoseyale ue si (8AeD eLIRISPURD) BLIR|SPURD B| 9P BASND
"8IS Sy Jo saseyd Ajres ayr wouy anaLap sajduwes
"Uu0 pouiad 21eYIIY 3|PPIA 8Y) WOIY SIeak puesnoyl [eI8AsS A0 paldnado MeST95.62.09
(¢) 009 0koury usaq sey aus dwed ay | -Jusuodwod ueipuj-03jed Juediiubis e yum dg 09 -/+0059 S..17°65.600€€ Bunubly ¢ 0933 ofouy
sedwed ueaunuabiy ay ul auis dwed Jabeloy Jie-uado ue sI g 039S 0A0y
"sa10ads Iay10 pue sjewwew
. JUBI0UE JO SUIewWal JO 39uasald sy} 10} S2UBPIAS 1S8P|0 Y3 JO SWIOS Mul 60.S€.TL
(1) -etuobered paonpoid sajep uogieaoIpey "BUNER) 8U3I0ISIA|d 8187 YIIM PalRId0SSe SI JdI®d 89¢c ~ 85T¢ - G.6'CTYETS 3yd eluobered
alls ay -uoibal eiuobeyed ayl ul eIIYD BASND 1B P399 |09 3jdwes uewnH
"OUIN |3/A0g au pue usprej/e||3duod
3yl ‘16 Bunybi sy :saiwwnw s34y 01 Buojaq sejdwes .
(g) eou) "19seQ ewedely 3yl ulyum nearejd ybiy e uo syead o1uedjon avvesT — 91T ﬁmwmmwoww eunuabiy oge|Ie|IN
yum uoifal e ‘ewredely ap eund ayi 0] sbuojaq pue eunuabiy pue 8j1yd " eve
U93MIaq JapJog ayl Ul OUBI|OA aARIe 1S8ybiy S,ploM a8yl S 0de|1ef|n|T
81N} N3 04I04dUIYD MLV 77.6T.69
(T) oLoyouyd a1 JO 3)Is [eling pue JusWa|Nes dleydly 8je e sl GT ssuotewe) dd 005¢ ~000¥ - S.S7'02,62.0¢ *Io ST SSUOJBUIED
'8
) -edld AJ918WAJ 8y} JO patanodal surewsal ayl Aq Ajpbie| pauiyap usaq sey 1l MLV 77.6T.69
(9) :ge01d pue S3]11X3] pue SJ1Welad 4o AjLiewid aduspIng YNAA "POLIad aleIpawaiu| dd 005 ~ 0001 - S.57'02.62.02 °IIU goedese]
a1e ay1 Buunp padojanap sey eoedele ] -edld xajdwo) feinynd ay.L
"3]IS [ea1bojoseyose
nyeueMI] 8y} 1e piwelAd euedexy ayl Jo seniwixold ayy ui (sainyn) o
Ansiuln uelAljog) seinynD ap OLISISIUIA Y} YHM Uoleloge[|od Ut (un M.70'72.07.89 elAllog
(OT) MIEUBMLL | ¢Go)03eyo1y UelAIfog) NN - SoasnA & eidojoanbay op peprur, a1 Aq AVIBIT=VCL | g 1T0zee.9T | ‘zeded MIRUEILL
P9I 6007 109fo1q euedexy, ay) Yl UOIIRIDOSSE Ul pa123]]09 alam sajdwes
(@v/8TT — ¥22) A poliad / yd0d3 Burinp uoiednado nyeuem |
(1) Lem ‘NIad W04y a1n3nd Liepn syl av 000T = 005 3 eI s1jodoJoaN
: 01 Buojaq sajdwes 'niad ewi Ul UOJUY WNasN|A 8yl Je palas)||od sajdwes : Jewea
(ssjdwes) aanynd sajoN/uondiioseq abuey aby SajeuIpl00) uo1ed07] aweN aMs




Table 2. Haplogroup determination of 92 mtDNA genomes analysed in this study

# | ACAD# | Populations/Culture | Location | Radiocarbon dates | Haplogroup
1 | 12686 Lauricocha Laul Peru 8589 - 8482 calBP A2
2 | 12687 Lauricocha Lau3 Peru 3631 - 3513 calBP A2
3 | 12688 Lauricocha Lau4 Peru 5936 - 5905 calBP A2
4 | 12689 Lauricocha Laub Peru 8700 - 8599 calBP B2
5 | 13247 Tiwanaku Bolivia A2
6 | 13237 Tiwanaku Bolivia B2
7 | 13264* Tiwanaku Bolivia 1017 - 1155 calAD B2
8 | 13272 Tiwanaku Bolivia B2
9 | 13240 Tiwanaku Bolivia B2
10 | 13275 Tiwanaku Bolivia B2
11 | 13241* Tiwanaku Bolivia 901 - 1024 calAD Clc
12 | 13279 Tiwanaku Bolivia Clb
13 | 13245 Tiwanaku Bolivia C
14 | 11116 Pica8-Tarapaca Chile B2
15 | 11118 Pica8-Tarapaca Chile B2
16 | 11121 Pica8-Tarapaca Chile B2
17 | 11200 Chancay Peru B2
18 | 11211 Chancay Peru Cilb
19 | 11205 Chancay Peru Clb
20 | 11209 Chancay Peru Clc
21 | 11213 Chancay Peru D1
22 | 11197 Chancay Peru A2
23 | 11208 Chancay Peru B2b
24 | 6322 Llullaillaco Argentina Cib
25 | 6320 Llullaillaco Argentina D1
26 | 10791* Lima Peru 584-660 calAD A2
27 | 10814 Lima Peru B2
28 | 10802 Lima Peru B2
29 | 10789 Lima Peru B2b
30 | 10817* Lima Peru 534-642 calAD Cib
31 | 10820 Lima Peru Cilb
32 | 10806 Lima Peru Clc
33 | 10811 Lima Peru D*
34 | 10821 Lima Peru B2
35 | 10774 Wari Peru A2
36 | 10754* Wari Peru 974-1220 calAD B2b
37 | 10734* Wari Peru 776-968 calAD Cib
38 | 10763 Wari Peru Cilb
39 | 10771 Wari Peru Clb
40 | 10773 Wari Peru Cilb
41 | 10778 Wari Peru A2

202




# | ACAD# | Populations/Culture | Location | Radiocarbon dates | Haplogroup
42 | 10742 Wari Peru B2b
43 | 10750 Wari Peru B2b
44 | 10765 Wari Peru Clb
45 | 10713 Ychsma Peru B2
46 | 10729 Ychsma Peru B2
47 | 10720 Ychsma Peru B2b
48 | 10726 Ychsma Peru B2b
49 | 10709* Ychsma Peru 1244-1288 calAD Clb
50 | 10717 Ychsma Peru Clb
51 | 10725 Ychsma Peru Clb
52 | 10731 Ychsma Peru Clb
53 | 10722* Ychsma Peru 1221-1278 calAD D1
54 | 10732 Ychsma Peru D*
55 | 10730 Ychsma Peru B2b
56 | 10805* Ychsma Peru 1223 - 1280 calAD D1
57 | 10810* Ychsma Peru 1149-1249 calAD cid
58 | 10794 Ychsma Peru B2
59 | 10800 Ychsma Peru B2b
60 | 12692 Palpa- Jauranga Peru Clc
61 | 12690 Botigiriayocc Peru Clb
62 | 11165 Pueblo Viejo, Inca Peru B2
63 | 11168 Pueblo Viejo, Inca Peru B2
64 | 11173 Pueblo Vigjo, Inca Peru B2
65 | 11182 Pueblo Viejo, Inca Peru B2b
66 | 11176 Pueblo Vigjo, Inca Peru B2b
67 | 11154 Pueblo Vigjo, Inca Peru Clb
68 | 11157 Pueblo Viejo, Inca Peru Clb
69 | 11161 Pueblo Vigjo, Inca Peru Clb
70 | 11183 Pueblo Viejo, Inca Peru Clc
71 | 11180 Pueblo Vigjo, Inca Peru D1
72 | 11185 Pueblo Viejo, Inca Peru D1
73 | 13989 Candelaria Mexico B2
74 | 13990 Candelaria Mexico B2
75 | 13992 Candelaria Mexico B2
76 | 13994 Candelaria Mexico B2
77 | 13993 Candelaria Mexico Clb
# | UCSC Lab# | Populations Location | Radiocarbon dates | Haplogroup
78 | LGA42 La Galgada Peru A2
79 | ASOB9S14* | ArroyoSeco Argentina | 7928 -7591 calBP D1
80 | ASOB2S9* | Arroyo Seco Argentina | 7928 -7581 calBP A2
81 | SO238* Lauricocha Lau2 | Peru 8589 - 8482 calBP A2
82 | CS1 Camarones Chile A2
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# | UCSC Lab# | Populations Location | Radiocarbon dates | Haplogroup
83 | SSN1 San Sebastian Peru A2
84 | PO3 Pica8 Chile A2
85 | PO3 Pica8 Chile A2
86 | BC12 Botigiriayocc Peru B2
87 | LGA13 La Galgada Peru B2
88 | JAl4 Jauranga Peru B2
89 | M21 Los Molinos Peru B2
90 | HPAB66 Huaca Prieta Peru Cilb
91 | SSN5 San Sebastian Peru Cld1
92 | LGA2 La Galgada Peru D1

*: These sequences have direct radiocarbon dates; all other dates are based on the

relevant archaeological period.

Cal AD: calibrated radiocarbon years Anno Domini.

Cal BP: calibrated radiocarbon years Before Present
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Supplementary Table 3. List of Adaptors (Barcodes) P5, P7 used for genomic library
preparation

ACAD | Name Sequence

N1 Sol_adap_P5 1 BC1 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTA*A*C*A*T
N2 Sol_adap_P5 1 rev BC1 | A*T*G*T*TAGATCGGA*A*G*A*G

N3 Sol_adap_P5 1 BC2 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTA*A*G*A*G
N4 Sol_adap P5 1 rev BC2 | C*T*C*T*TAGATCGGA*A*G*A*G

N5 Sol_adap_P5 1 BC3 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTA*A*G*C*C
N6 Sol_adap_P5 1 rev BC3 | G*G*C*T*TAGATCGGA*A*G*A*G

N7 Sol_adap_P5_1 _BC4 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTA*A*G*T*T
N8 Sol_adap_P5 1 rev BC4 | A*A*C*T*TAGATCGGA*A*G*A*G

N9 Sol_adap_P5_1 BC5 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTA*A*T*G*C
N10 | Sol_adap_P5_1 rev BC5 | G*C*A*T*TAGATCGGA*A*G*A*G

N11 Sol_adap P5 1 BC6 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTA*C*A*C*T
N12 Sol_adap P5 1 rev BC6 | A*G*T*G*TAGATCGGA*A*G*A*G

N13 Sol_adap_P5_1 BC7 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTA*C*C*G*G
N14 Sol_adap_P5_1_rev_BC7 | C*C*G*G*TAGATCGGA*A*G*A*G

N15 Sol_adap P5 1 BCS8 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTA*C*G*C*A
N16 | Sol_adap P5_1 rev BC8 | T*G*C*G*TAGATCGGA*A*G*A*G

N17 Sol_adap_P5_1_BC9 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTA*C*G*T*G
N18 | Sol _adap P5 1 rev BCO9 | C*A*C*G*TAGATCGGA*A*G*A*G

N19 Sol_adap_P5 1 BC10 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTA*C*T*A*A
N20 | Sol _adap_P5 1_rev_BC10 | T*T*A*G*TAGATCGGA*A*G*A*G

N21 Sol_adap_P5 1 BC11 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTA*C*T*C*G
N22 Sol_adap_P5 1 rev_ BC11 | C*G*A*G*TAGATCGGA*A*G*A*G

N23 Sol_adap_P5 1 BC12 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTA*C*T*G*T
N24 | Sol_adap_P5 1 rev BC12 | A*C*A*G*TAGATCGGA*A*G*A*G

N73 Sol_adap_P5 1 BC13 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTa*g*g*a*c
N74 | Sol_adap_P5_1_rev_BC13 | g*t*c*c*tAGATCGGA*A*G*A*G

N75 Sol_adap_P5 1 BC14 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTa*g*t*c*a
N76 Sol_adap _P5 1 rev_BC14 | t*g*a*c*tAGATCGGA*A*G*A*G

N77 Sol_adap_P5_1_BC15 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTa*g*t*g*g
N78 Sol_adap P5 1 rev_BC15 | c*c*a*c*tAGATCGGA*A*G*A*G

N79 | Sol_adap_P5_1 BC16 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTa*t*a*c*g
N80 Sol_adap _P5 1 rev_BC16 | c*g*t*a*tAGATCGGA*A*G*A*G

N81 | Sol adap P5 1 BC17 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTa*t*a*g*c
N82 Sol_adap_P5 1 rev_ BC17 | g*c*t*a*tAGATCGGA*A*G*A*G

N83 Sol_adap_P5 1 BC18 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTa*t*c*a*c
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N84 | Sol_adap _P5 1 rev_BC18 | g*t*g*a*tAGATCGGA*A*G*A*G

N85 Sol_adap_P5 1 BC19 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTa*t*g*t*a
N86 | Sol _adap P5 1 rev_BC19 | t*a*c*a*tAGATCGGA*A*G*A*G

N87 Sol_adap_P5 1 _BC20 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTa*t*t*c*c
N88 | Sol_adap P5 1 rev_BC20 | g*g*a*a*tAGATCGGA*A*G*A*G

N89 Sol_adap_P7_2 BC1 G*T*G*A*CTGGAGTTCAGACGTGTGCTCTTCCGATCTa*t*t*g*a
N90 | Sol_adap P7 rev 2 BCl | t*c*a*a*tAGATCGGA*A*G*A*G

N91 Sol_adap_P7_2_BC2 G*T*G*A*CTGGAGTTCAGACGTGTGCTCTTCCGATCTc*a*a*t*t
N92 Sol_adap P7 rev_ 2 BC2 | a*a*t*t*gAGATCGGA*A*G*A*G

N93 Sol_adap_P7_2_BC3 G*T*G*A*CTGGAGTTCAGACGTGTGCTCTTCCGATCTc*a*t*c*t
N94 Sol_adap P7 rev_ 2 BC3 | a*g*a*t*gAGATCGGA*A*G*A*G

N95 Sol_adap_P7_2_BC4 G*T*G*A*CTGGAGTTCAGACGTGTGCTCTTCCGATCTc*a*t*t*c
N96 Sol_adap P7 rev_ 2 BC4 | g*a*a*t*gAGATCGGA*A*G*A*G

N97 Sol_adap_P7_2_BC5 G*T*G*A*CTGGAGTTCAGACGTGTGCTCTTCCGATCTc*c*g*a*g
N98 Sol_adap P7 rev_ 2 BC5 | c*t*c*g*gAGATCGGA*A*G*A*G

N99 | Sol_adap P5 1 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCG*A*T*C*T
N100 | Sol_adap P5 1 rev A*G*A*T*CGGA*A*G*A*G

N101 | P5_short_ RNAblock ACACUCUUUCCCUACACGAC

N102 | P7_short_ RNAblock GUGACUGGAGUUCAGACGUGU

N103 Sol_adap_P5 1 BC21 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTc*g*g*t*t
N104 | Sol adap P5 1 rev_BC21 | a*a*c*c*gAGATCGGA*A*G*A*G

N105 Sol_adap_P5 1 BC22 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTg*a*a*g*c
N106 | Sol _adap P5 1 rev_BC22 | g*c*t*t*cCAGATCGGA*A*G*A*G

N107 Sol_adap_P5 1 BC23 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTg*t*a*c*c
N108 | Sol adap P5 1 rev_BC23 | g*g*t*a*cAGATCGGA*A*G*A*G

N109 Sol_adap_P5 1 BC24 A*C*A*C*TCTTTCCCTACACGACGCTCTTCCGATCTt*a*c*t*g
N110 Sol_adap P5 1 rev_BC24 | c*a*g*t*aAGATCGGA*A*G*A*G

N111 Sol_adap_P5 1 BC25 ACACTCTTTCCCTACACGACGCTCTTCCGATCTtgtgc

N112 Sol_adap _P5 1 rev_BC25 | g*c*a*c*aAGATCGGA*A*G*A*G

N113 | Sol_adap_P7_2 BC6 G*T*G*A*CTGGAGTTCAGACGTGTGCTCTTCCGATCTc*t*c*g*a
N114 | Sol_adap P7 rev 2 BC6 | t*c*g*a*gAGATCGGA*A*G*A*G

N115 | Sol_adap_P7_2 BC7 G*T*G*A*CTGGAGTTCAGACGTGTGCTCTTCCGATCTg*c*g*t*t
N116 | Sol_adap P7 rev 2 BC7 | a*a*c*g*cCAGATCGGA*A*G*A*G

N117 | Sol_adap P7_2 BC8 G*T*G*A*CTGGAGTTCAGACGTGTGCTCTTCCGATCTt*c*g*c*g
N118 | Sol adap P7 rev 2 BC8 | c*g*c*g*aAGATCGGA*A*G*A*G

N119 | Sol_adap_P7_2_BC9 G*T*G*A*CTGGAGTTCAGACGTGTGCTCTTCCGATCTa*c*g*c*a
N120 | Sol_adap_P7 rev_2 BC9 | t*g*c*g*tAGATCGGA*A*G*A*G

N121 | Sol_adap_P5 BC26 ACACTCTTTCCCTACACGACGCTCTTCCGATCTcgaat
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N122 | Sol _adap P5 rev BC26 | attcgAGATCGGAAGAG

N123 Sol_adap_P5 BC27 ACACTCTTTCCCTACACGACGCTCTTCCGATCTcgagg
N124 | Sol _adap_P5 rev_BC27 CCtcgAGATCGGAAGAG

N125 Sol_adap_P5 BC28 ACACTCTTTCCCTACACGACGCTCTTCCGATCTcgatc
N126 | Sol adap _P5 rev_BC28 gatcgAGATCGGAAGAG

N127 Sol_adap_P5 BC29 ACACTCTTTCCCTACACGACGCTCTTCCGATCTcgcac
N128 | Sol adap _P5 rev_BC29 gtgcgAGATCGGAAGAG

N129 Sol_adap_P5_BC30 ACACTCTTTCCCTACACGACGCTCTTCCGATCTcgcgt
N130 | Sol _adap_P5 rev_BC30 acgcgAGATCGGAAGAG

N131 | Sol_adap_P5 BC31 ACACTCTTTCCCTACACGACGCTCTTCCGATCTcgttg
N132 | Sol_adap_P5 rev_BC31 caacgAGATCGGAAGAG

N133 | Sol_adap_P5 BC32 ACACTCTTTCCCTACACGACGCTCTTCCGATCTctaag
N134 | Sol_adap_P5 rev_BC32 CttagAGATCGGAAGAG

N135 | Sol_adap_P5 BC33 ACACTCTTTCCCTACACGACGCTCTTCCGATCTctctc
N136 | Sol_adap_P5 rev_BC33 02agagAGATCGGAAGAG

N137 | Sol_adap P5 BC34 ACACTCTTTCCCTACACGACGCTCTTCCGATCTctgce
N138 | Sol _adap_P5 rev_BC34 09cagAGATCGGAAGAG

N139 | Sol_adap_P5 BC35 ACACTCTTTCCCTACACGACGCTCTTCCGATCTctggt
N140 | Sol_adap_P5 rev_BC35 accagAGATCGGAAGAG

N141 Sol_adap_P5 BC36 ACACTCTTTCCCTACACGACGCTCTTCCGATCTcttgg
N142 Sol_adap_P5_rev_BC36 ccaagAGATCGGAAGAG

N143 Sol_adap_P5 BC37 ACACTCTTTCCCTACACGACGCTCTTCCGATCTgactt
N144 | Sol_adap_P5 rev_BC37 aagtcAGATCGGAAGAG

N145 Sol_adap_P5 BC38 ACACTCTTTCCCTACACGACGCTCTTCCGATCTgagca
N146 | Sol _adap_P5 rev_BC38 tgctcAGATCGGAAGAG

N147 Sol_adap_P5 BC39 ACACTCTTTCCCTACACGACGCTCTTCCGATCTgatac
N148 | Sol_adap_P5 rev_BC39 gtatcAGATCGGAAGAG

N149 Sol_adap_P5 BC40 ACACTCTTTCCCTACACGACGCTCTTCCGATCTgatga
N150 | Sol_adap_P5 rev_BC40 tcatctAGATCGGAAGAG

N151 | Sol_adap_P5 BC41 ACACTCTTTCCCTACACGACGCTCTTCCGATCTgccat
N152 | Sol_adap_P5 rev_BC41 atggcAGATCGGAAGAG

N153 | Sol_adap_P5 BC42 ACACTCTTTCCCTACACGACGCTCTTCCGATCTgccta
N154 | Sol_adap_P5 rev_BC42 taggcAGATCGGAAGAG

N155 | Sol_adap_P5_BC43 ACACTCTTTCCCTACACGACGCTCTTCCGATCTgctce
N156 | Sol adap P5 rev_BC43 09agcAGATCGGAAGAG

N157 | Sol_adap_P5 BC44 ACACTCTTTCCCTACACGACGCTCTTCCGATCTgctgg
N158 | Sol adap_P5 rev_BC44 ccagcAGATCGGAAGAG

N159 | Sol_adap_P5 BC45 ACACTCTTTCCCTACACGACGCTCTTCCGATCTggaac
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N160 | Sol adap P5 rev BC45 | gttccAGATCGGAAGAG

N161 Sol_adap_P5 BC46 ACACTCTTTCCCTACACGACGCTCTTCCGATCTggatg
N162 | Sol adap P5 rev_BC46 catccCAGATCGGAAGAG

N163 Sol_adap_P5 BC47 ACACTCTTTCCCTACACGACGCTCTTCCGATCTggcag
N164 | Sol _adap_P5 rev_BC47 CtgccAGATCGGAAGAG

N165 Sol_adap_P5 BC48 ACACTCTTTCCCTACACGACGCTCTTCCGATCTgotgt
N166 | Sol adap P5 rev_BC48 acacCAGATCGGAAGAG

N167 Sol_adap_P5 BC49 ACACTCTTTCCCTACACGACGCTCTTCCGATCTgtagt
N168 | Sol_adap P5 rev_BC49 actacCAGATCGGAAGAG

N169 | Sol_adap_P5 BC50 ACACTCTTTCCCTACACGACGCTCTTCCGATCTgtata
N170 | Sol_adap_P5 rev_BC50 tatacAGATCGGAAGAG

N171 | Sol_adap_P5 BC51 ACACTCTTTCCCTACACGACGCTCTTCCGATCTgtcaa
N172 | Sol_adap_P5_rev_BC51 ttgacAGATCGGAAGAG

N173 | Sol_adap_P5 BC52 ACACTCTTTCCCTACACGACGCTCTTCCGATCTgtcct
N174 | Sol_adap_P5_rev_BC52 aggacAGATCGGAAGAG

N175 | Sol_adap_P5 BC53 ACACTCTTTCCCTACACGACGCTCTTCCGATCTgtctg
N176 | Sol_adap_P5_rev_BC53 cagacAGATCGGAAGAG

N177 | Sol_adap_P5 BC54 ACACTCTTTCCCTACACGACGCTCTTCCGATCTgtgag
N178 | Sol_adap_P5_rev_BC54 ctcacAGATCGGAAGAG

N179 Sol_adap_P5_BC55 ACACTCTTTCCCTACACGACGCTCTTCCGATCTgtgga
N180 | Sol_adap_P5 rev_BC55 tccacAGATCGGAAGAG

N181 Sol_adap_P5_BC56 ACACTCTTTCCCTACACGACGCTCTTCCGATCTgttat
N182 | Sol_adap_P5 rev_BC56 ataacCAGATCGGAAGAG

N183 Sol_adap_P5_BC57 ACACTCTTTCCCTACACGACGCTCTTCCGATCTgttca
N184 | Sol_adap_P5 rev_BC57 tgaacAGATCGGAAGAG

N185 Sol_adap_P5_BC58 ACACTCTTTCCCTACACGACGCTCTTCCGATCTtaaga
N186 | Sol_adap_P5 rev_BC58 tcttaAGATCGGAAGAG

N187 Sol_adap_P5_BC59 ACACTCTTTCCCTACACGACGCTCTTCCGATCTtagct
N188 | Sol_adap_P5 rev_BC59 agctaAGATCGGAAGAG

N189 | Sol_adap_P5 BC60 ACACTCTTTCCCTACACGACGCTCTTCCGATCTtatag
N190 | Sol _adap_P5 rev_BC60 ctataAGATCGGAAGAG

N191 | Sol_adap_P5 BC61 ACACTCTTTCCCTACACGACGCTCTTCCGATCTtatce
N192 | Sol_adap_P5_rev_BC61 09ataAGATCGGAAGAG

N193 | Sol_adap_P5 BC62 ACACTCTTTCCCTACACGACGCTCTTCCGATCTtcatt
N194 | Sol_adap_P5_rev_BC62 aatgaAGATCGGAAGAG

N195 | Sol_adap_P5 BC63 ACACTCTTTCCCTACACGACGCTCTTCCGATCTtccag
N196 | Sol adap P5 rev_BC63 ctggaAGATCGGAAGAG

N197 | Sol_adap_P5 BC64 ACACTCTTTCCCTACACGACGCTCTTCCGATCTtcgac
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N198 | Sol adap_P5 rev_BC64 gtcgaAGATCGGAAGAG

N199 Sol_adap_P5_BC65 ACACTCTTTCCCTACACGACGCTCTTCCGATCTtcgga
N200 | Sol adap_P5 rev_BC65 tccgaAGATCGGAAGAG

N201 Sol_adap_P5 _BC66 ACACTCTTTCCCTACACGACGCTCTTCCGATCTtgaag
N202 | Sol_adap P5 rev_BC66 | cttcaAGATCGGAAGAG

N203 Sol_adap_P5 BC67 ACACTCTTTCCCTACACGACGCTCTTCCGATCTtgacc
N204 | Sol _adap_P5 rev_BC67 ggtcaAGATCGGAAGAG

N205 Sol_adap_P5 BC68 ACACTCTTTCCCTACACGACGCTCTTCCGATCTtgata
N206 | Sol _adap_P5 rev_BC68 tatcaAGATCGGAAGAG

N207 | Sol_adap_P5 BC69 ACACTCTTTCCCTACACGACGCTCTTCCGATCTtggat
N208 | Sol_adap_P5 rev_BC69 atccaAGATCGGAAGAG

N209 | Sol_adap_P5_BC70 ACACTCTTTCCCTACACGACGCTCTTCCGATCTtggtc
N210 | Sol_adap_P5 rev_BC70 0accaAGATCGGAAGAG

N211 | Sol_adap_P5 BC71 ACACTCTTTCCCTACACGACGCTCTTCCGATCTtgtcy
N212 | Sol_adap_P5 rev_BC71 cgacaAGATCGGAAGAG

N213 | Sol_adap_P5 BC72 ACACTCTTTCCCTACACGACGCTCTTCCGATCTttact
N214 | Sol_adap_P5 rev_BC72 agtaaAGATCGGAAGAG

N215 | Sol_adap_P5 BC73 ACACTCTTTCCCTACACGACGCTCTTCCGATCTttagg
N216 | Sol_adap_P5 rev_BC73 cctaaAGATCGGAAGAG
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