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Abstract

Thulium and holmium lasers operating near 2 pum are required for applications in
various industries, such as remote sensing and detection, spectroscopy, surgery and
optical countermeasures. High power lasers with high brightness are necessary for
many of these applications, with fibre lasers often preferred due to their various
advantages. However, a major drawback of fibre lasers is the brightness requirement
on the pump source, which needs to have moderate to high brightness in order to couple
light into the fibres efficiently. Such pump sources are often prohibitively expensive.

A possible solution is the use of brightness converters. Brightness converters are
lasers that are designed such that the output brightness is significantly greater than that
of its pump source, and is sufficiently bright to pump fibre lasers efficiently. For
example, by using a thulium-doped solid-state laser as a brightness converter, holmium-
doped fibre lasers can be pumped efficiently by cheap, high power but low brightness
diode stacks.

Thulium-doped YAIO; lasers are ideal for this purpose: their emission
wavelength corresponds to the peak absorption of holmium in silica, high power diode
stacks are readily available at its absorption wavelength, and it is a crystal with a high
damage threshold. However, Tm:YAIOs lasers suffer from significant self-pulsing,
which can lead to unstable gain-switching of the holmium-doped fibre laser as well as
risking damage due to the high peak power.

In this thesis, I describe the investigation and development of Tm:Y AlOs lasers as
high power brightness converters and pump sources. A detailed analysis of the self-
pulsing is conducted using a 6.5 W Tm:YAIO; laser. The self-pulsing is shown
initially to be consistent with an unstable relaxation oscillation in the gain medium. A
model based on significant excited-state absorption at the lasing wavelength is shown

to reproduce the experimental results. The assumed cross-section required for this
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process is tested in a further experiment, which rules out this theory. The Tm:YAIO3
laser is then analysed as a chaotic system, with results from time delay embedding and
the 0—1 test for chaos indicating strongly that the laser system is chaotic. To the best of
my knowledge, this is the first analysis and evidence of Tm:YAlO; lasers as a chaotic
system.

I describe the suppression of the self-pulsing using a method applicable to high
power. Using this feedback system, the Tm:Y AlO; laser is shown to produce a stable,
continuous-wave output. To the best of my knowledge, this is the first demonstration
of the suppression of such strong self-pulsing.

This thesis also describes the design and development of a high power Tm:Y AlO;
laser using a novel geometry, which in principle is capable of several hundred watts of
output power. This design aims to combine the superior thermal handling of disk lasers
with the ease of pumping and laser design of the slab laser. A comprehensive model of
such a laser is described, and the development of the laser up to the construction stage

is presented.
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