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ABSTRACT 

Different aspects of porous burners have been studied in the past in terms of the bed 

material, design, heat transfer modes and flame characteristics. However, the 

application of porous burners to NOx reduction and the effect of the bed surface on 

the chemical reactions have not yet been explored. Hence, the objective of this study 

is to investigate the effect of the design and operating parameters on NOx reduction 

inside a porous burner.  

To achieve this objective, a variety of flames, stabilised inside porous burners, were 

investigated experimentally, utilizing thermocouples, gas sampling and 

chromatography.  Numerical tools were also used to understand the chemical 

pathways under different operating conditions better. 

Premixed CNG-air and LPG-air flames at very low equivalence ratios were stabilised 

inside the porous bed. The relationship between the volumetric flow rate of the 

mixture and the minimum equivalence ratio was studied (experimentally and 

numerically) for equivalence ratios as low as =0.35 (equivalent to thermal power of 

2kW). The maximum temperature observed to be consistent with super-adiabatic 

flame temperatures. The maximum measured NOX and CO mole fractions at the 

burner exit were found to be in the order of few PPMs. 

The conversion of NOx was then assessed. A mixture of CNG-air doped with NO 

was introduced into the burner inlet and the effects of the operating parameters on 

NOx reduction were assessed. It was found that NOx reduction is a function of the 

equivalence ratio, total flow rate and NO mole fraction at the inlet. Higher flow rates 

led to an increase in the conversion rate at higher equivalence ratios, due to shorter 

residence times, and the greater need for more flame radicals in the flame. 

The numerical study revealed that different chemical pathways dominate at different 

equivalence ratios, which led to the production of other intermediates and stable 

radicals. The study showed that the Total Fixed Nitrogen, TFN, reduction followed a 

similar trend to the NOx reduction for moderately fuel-rich conditions ( ≤ 1.2) and 

opposite trends for higher equivalence ratios. For >1.2, most of the NO is converted 

to N-containing species such as N2O, NH3 and HCN and not to N2. Analysis of the 

chemical pathways showed that the formation of nitrogen-containing species under 

very fuel rich conditions is due to the increased importance of the HCNO path, as 

compared with the HNO path. The best TFN conversion efficiency, 65%, was found 

at =1.1. 

Intermediate radicals have different rates of destruction and production on the porous 

bed surface, especially for mixtures close to stoichiometric conditions. Under these 

conditions, the conversion of NOX is strongly influenced by the concentration of H 

radicals. A collision probability of  = 810-4 was found to represent this radical loss 

effect and to help predict the destruction and production of intermediate terminals 

with a good level of accuracy. 

This study also found that NOx reductions using porous burners are technically 

feasible and that the resulting CO in the exhaust, derived from the rich mixtures, can 

be burned outside the porous bed. 
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NOMENCLATURE 

i. Roman Symbols 

Symbol Definition Unit 

a Surface Area Density m-1 

A  Arrhenius pre-exponential factor s-1 

Aup Burner Cross Sectional Area M2 

Cm Measured NOx mole fraction PPM 

Cp Specific Heat Capacity kJ.K-1 

cpg Specific heat of gaseous species kJ.kg-1.K-1 

Cr Reference NOx mole fraction PPM 

Gki
* The Gibbs free energy Kg.m2.s-2 

dh Hydraulic Diameter M 

Di Molecular diffusivity of the ith species in Nitrogen  m2.s-1 

dp Pore Diameter M 

E Arrhenius activation energy J.mol-1 

EIi Emission Index - 

EIi Emission Index - 

F Inertia coefficient  m-1 

f Flame Location m 

h Convective heat transfer coefficient for the porous medium W.m-2.K-1 

K Permeability  m2 

K Specific permeability of the porous medium m2/kg 

kcj Diffusion rate of radical species, i, to the burner surface s-1 

kcoll,i  Surface collision rate constant for species i s-1 

keff Effective rate of radical termination at the burner surface s-1 

kg,e Effective thermal conductivity of the gas W.m-1.K-1 

kj  First-order reaction rate constant for the jth reaction s-1 

kk Total number of gaseous species - 

L Bed length  m 



NNoommeennccllaattuurree  

 

xix 

m Measured Oxygen concentration Mole.m-3 

m'' Mass flow rate per unit area kg.m-2.s-1 

Mi  Molecular weight of the ith species  g.mol-1 

Nud 
Nusselt number based on the average particle diameter of the packed 

bed - 

P Pressure Pa 

Pe Péclet number - 

Pr Prandtl number - 

R Universal gas constant, 8.314 J/mol/K 

R Reference Oxygen concentration - 

Re Reynolds number - 

Sp Laminar Flame Speed m.s-1 

T  Temperature  K 

Tamb Ambient temperature K 

Tg Gas temperature K 

Ts Solid temperature K 

up Superficial velocity (cross sectional velocity) m.s-1 

Vbed  Cross-sectional mean velocity (Darcian velocity) m.s-1 

Vp  Total Volume of Pebbles m3 

Vpm  Volume of Porous Media m3 

 

  
 

Mean gas speed of species i m.s-1 
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ii. Greek Symbols 

Symbol Definition Unit 

Φ Equivalence ratio - 

 Radical recombination efficiency = keff / kcoll - 

 Relative rate of radical termination = keff / kci  - 

 Dynamic viscosity kg.s.m-1 

n  Arrhenius temperature coefficient  - 

 Burner surface-to-volume ratio (6400m-1, for this burner) m-1 

 Gas density  Kg.m-3 

 Stefan-Boltzmann constant W.m.K-4 

  Average Reaction Rate Mol.s-1 

Δ Packed Bed Sphere Diameter  m 

Ε Porosity - 

Λ Coefficient of Thermal Conductivity  - 

ν Kinematic viscosity m2.s-1 

σ(x) Net Reaction Rate Mol/cm3s 

τeff Effective Residence Time s 

   GER, Global equivalence ratio - 

 



NNoommeennccllaattuurree  

 

xxi 

iii. Acronyms and Abbreviations  

Acronym  Definition 

CNG Compressed Natural Gas 

FLOX Flameless Oxidation  

HVR High Velocity Regime 

LPG Liquefied Petroleum Gas 

LVD Low Velocity Detonation 

LVR Low Velocity Regime 

MILD Moderate or Intense Low oxygen Dilution  

ND Normal Detonation 

NOx Nitrogen Oxides 

PB Porous Burner 

PBM  Porous Burner Model 

PPB  Part Per Billion 

PPM  Part Per Million 

PRB Porous Radiant Burner 

RCR Rapid Combustion Regime 

SCW Super-adiabatic Combustion Wave  

SVR Sound Velocity Regime 

TFN Total Fixed Nitrogen 
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