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Abstract

ABSTRACT

Different aspects of porous burners have been studied in the past in terms of the bed
material, design, heat transfer modes and flame characteristics. However, the
application of porous burners to NOx reduction and the effect of the bed surface on
the chemical reactions have not yet been explored. Hence, the objective of this study
is to investigate the effect of the design and operating parameters on NOXx reduction
inside a porous burner.

To achieve this objective, a variety of flames, stabilised inside porous burners, were
investigated experimentally, utilizing thermocouples, gas sampling and
chromatography. Numerical tools were also used to understand the chemical
pathways under different operating conditions better.

Premixed CNG-air and LPG-air flames at very low equivalence ratios were stabilised
inside the porous bed. The relationship between the volumetric flow rate of the
mixture and the minimum equivalence ratio was studied (experimentally and
numerically) for equivalence ratios as low as ¢=0.35 (equivalent to thermal power of
2kW). The maximum temperature observed to be consistent with super-adiabatic
flame temperatures. The maximum measured NOx and CO mole fractions at the
burner exit were found to be in the order of few PPMs.

The conversion of NOx was then assessed. A mixture of CNG-air doped with NO
was introduced into the burner inlet and the effects of the operating parameters on
NOx reduction were assessed. It was found that NOx reduction is a function of the
equivalence ratio, total flow rate and NO mole fraction at the inlet. Higher flow rates
led to an increase in the conversion rate at higher equivalence ratios, due to shorter
residence times, and the greater need for more flame radicals in the flame.

The numerical study revealed that different chemical pathways dominate at different
equivalence ratios, which led to the production of other intermediates and stable
radicals. The study showed that the Total Fixed Nitrogen, TFN, reduction followed a
similar trend to the NOXx reduction for moderately fuel-rich conditions (¢ < 1.2) and
opposite trends for higher equivalence ratios. For ¢>1.2, most of the NO is converted
to N-containing species such as N2O, NHz and HCN and not to N2. Analysis of the
chemical pathways showed that the formation of nitrogen-containing species under
very fuel rich conditions is due to the increased importance of the HCNO path, as
compared with the HNO path. The best TFN conversion efficiency, 65%, was found
at p=1.1.

Intermediate radicals have different rates of destruction and production on the porous
bed surface, especially for mixtures close to stoichiometric conditions. Under these
conditions, the conversion of NOx is strongly influenced by the concentration of H
radicals. A collision probability of 7 = 8x10*was found to represent this radical loss
effect and to help predict the destruction and production of intermediate terminals
with a good level of accuracy.

This study also found that NOx reductions using porous burners are technically
feasible and that the resulting CO in the exhaust, derived from the rich mixtures, can
be burned outside the porous bed.
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Nomenclature

NOMENCLATURE

i. Roman Symbols

Symbol Definition

a Surface Area Density

A Arrhenius pre-exponential factor
Aup Burner Cross Sectional Area

Cn Measured NOy mole fraction
Cp Specific Heat Capacity

Cpyg Specific heat of gaseous species
Cr Reference NOx mole fraction

AGKi™ The Gibbs free energy

dn Hydraulic Diameter

Di Molecular diffusivity of the i species in Nitrogen

dp Pore Diameter

E Arrhenius activation energy

El; Emission Index

Eli Emission Index

F Inertia coefficient

f Flame Location

h, Convective heat transfer coefficient for the porous medium
K Permeability

K Specific permeability of the porous medium

Kej Diffusion rate of radical species, i, to the burner surface
Keoll,i Surface collision rate constant for species i

Keff Effective rate of radical termination at the burner surface
Kge Effective thermal conductivity of the gas

K First-order reaction rate constant for the j™ reaction

kk Total number of gaseous species

L Bed length

xviii

MZ

PPM
ki.K?
kl.kglK1
PPM
Kg.m?.s?
M

m2.s?t

M

J.mol*?

W.m2K1
m2

m?/kg



Nomenclature

Measured Oxygen concentration
Mass flow rate per unit area

Molecular weight of the it" species

Nusselt number based on the average particle diameter of the packed

bed

Pressure

Péclet number

Prandtl number

Universal gas constant, 8.314

Reference Oxygen concentration

Reynolds number

Laminar Flame Speed

Temperature

Ambient temperature

Gas temperature

Solid temperature

Superficial velocity (cross sectional velocity)
Cross-sectional mean velocity (Darcian velocity)
Total Volume of Pebbles

Volume of Porous Media

Mean gas speed of species i

Xix

Mole.m-
kg.m2s1

g.mol?

Pa

J/mol/K



Nomenclature

ii.  Greek Symbols

Symbol

Q D T T T I N B

B Q|

m

o(x)

Teff

S|

Definition

Equivalence ratio

Radical recombination efficiency = Keft / Kcorl
Relative rate of radical termination = Kest / Kei
Dynamic viscosity

Arrhenius temperature coefficient

Burner surface-to-volume ratio (6400m™, for this burner)
Gas density

Stefan-Boltzmann constant

Average Reaction Rate

Packed Bed Sphere Diameter

Porosity

Coefficient of Thermal Conductivity
Kinematic viscosity

Net Reaction Rate

Effective Residence Time

GER, Global equivalence ratio

XX

Unit

kg.s.m?

Kg.m3

W.m.K*

Mol.s?

m2.st
Mol/cmds

S



Nomenclature

ii.  Acronyms and Abbreviations

Acronym Definition

CNG Compressed Natural Gas

FLOX Flameless Oxidation

HVR High Velocity Regime

LPG Liquefied Petroleum Gas

LVD Low Velocity Detonation

LVR Low Velocity Regime

MILD Moderate or Intense Low oxygen Dilution
ND Normal Detonation

NOXx Nitrogen Oxides

PB Porous Burner

PBM Porous Burner Model

PPB Part Per Billion

PPM Part Per Million

PRB Porous Radiant Burner

RCR Rapid Combustion Regime

SCW Super-adiabatic Combustion Wave
SVR Sound Velocity Regime

TFN Total Fixed Nitrogen
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