Nature and timing of brittle structures at the Challenger Gold Mine

Caitlin Rowett- corresponding author

Dept of Geology and Geophysics, School of Earth and Environmental Sciences

University of Adelaide, South Australia, 5005

caitlin.rowett@student.adelaide.edu.au

Prof. David Giles

Director, Centre for Mineral Exploration Under Cover, School of Earth and Environmental Sciences,

University of Adelaide, South Australia, 5005.

TABLE OF CONTENTS

ABSTRACT4				
1.0 INTRODUCTION				
1.1	Regional Geology	7		
2.0 METHOD				
3.0 RESU	3.0 RESULTS16			
3.1	Geometry of the Late Structures			
3.2	Relationship to intrusions			
3.3	Textures and Mineralogy of Alteration	20		
3.4	⁴⁰ Argon/ ³⁹ Argon Results	22		
CHA	ALLENGER-880-8	22		
CHA	ALLENGER-880-9A	23		
CHA	ALLENGER-880-9B	23		
4.0 DISC	4.0 DISCUSSION			
4.1	Significance of Argon Data	23		
4.2	Interpretation of Fault Geometry	27		
4.3	Regional Setting of Structures			
4.4	Regional Setting of Lamprophyres			
5.0 CON	CLUSION			
REFEREN	REFERENCES			
ACKNOV	ACKNOWLEDGEMENTS			
FIGURE	FIGURE CAPTIONS			
Figure	Figure 1: Background42			
Figure	2: Stereo-graphic representations of structural data	43		
Figure 3: Photomicrographs43				
Figure 4: Wall Maps and Photos of Mapped Area44				
Figure	5: Field Observations			
Figure	e 6: goCad® Model			
Figure	e 7: Potential Model Geometry			
Figure	e 8: Argon Age Plateau Plots	47		
Figure	e 9: Interpretation of Stress and Strain			
Figure	e 10: Cooling History of the Challenger Deposit			
Figure	e 11: Geological History of Selected Gawler Craton Domains			
TABLE C	APTIONS			

	Table 1: Joint Characteristics	49		
A	APPENDICES			
	Appendix 1: goCad [®] Legend	50		
	Appendix 2: Wall and Backs Maps	51		
	Appendix 3: Challenger-880-8 Raw Data	66		
	Appendix 4: Challenger-880-8 Normal and Inverse Isochron	69		
	Appendix 5: Challenger-880-9a Raw Data	70		
	Appendix 6: Challenger-880-9a Normal and Inverse Isochron	73		
	Appendix 7: Challenger-880-9b Raw Data	74		
	Appendix 8: Challenger-880-9b Normal and Inverse Isochron	77		
FIGURES7		78		
	Figure 1: Background	78		
	Figure 2: Stereo-graphic Representations of Structural Data	. 80		
	Figure 3: Photomicrographs	81		
	Figure 4: Wall Maps and Photos of Mapped Area	82		
	Figure 5: Field Observations	84		
	Figure 6: goCad [®] Model representations and mapped data	85		
	Figure 7: Potential Model Geometries	87		
	Figure 8: Argon Age Plateau Graphs	. 88		
	Figure 9: Interpretation of Stress and Strain	90		
	Figure 10: Cooling History of the Challenger Gold Mine	.91		
	Figure 11: Geological History of Selected Gawler Craton Domains	92		

ABSTRACT

The Challenger Gold Mine in the western Gawler Craton exhibits brittle deformation features that post-date mineralisation. This study has looked at the geometric relationships of the observed joint sets and has identified a dominant shallowly north-east dipping thrust fault package with a crosscutting vertical joint set. In the 880rL, a lamprophyric sill is emplaced within the shallowly north-east dipping fault.

Structural observations were made over 40 vertical metres in three of the underground mining levels the 920rL, the 900rL and the 880rL. Observations of these structural features culminated in the production of an interpreted 3D model using goCad[®] showing the connection of the fault package between the mapped levels. These observations in conjunction with alteration information and structural data showed that the fault network had a consistent dip across the package despite the undulations in the fault plane and that the series of splays observed linked the package together. The displacement and structural data both concluded that the shallowly north-east dipping fault network is a brittle deformation thrust system.

Three biotite samples from the lamprophyre were analysed using ³⁹Argon/⁴⁰Argon Thermochronology. Challenger-880-8 shows a plateau with 90% of cumulative ³⁹Argon released between 1750 Ma and 1900 Ma. Challenger-880-9a produced a plateau using 55% cumulative ³⁹Argon realised between 1800 Ma and 2100 Ma. Challenger-880-9b produces a plateau at 1860 Ma using five continuous steps where 45% of Cumulative ³⁹Argon is released. Sample Challenger-880-9a provided an approximate crystallisation age of 1950 Ma. This is a coarser grained sample from close to the lamprophyre centre and produced a poorly defined plateau and consequently is thought to represent the minimum age of crystallisation. Challenger-880-9b and Challenger-880-8 both are fine grained samples from the chill margin of the lamprophyre and present ages of approximately 1860 Ma. This is interpreted as an age of structural significance associated with the Cornian Orogeny, illustrating reactivation along the fault package during the Paleoproterozic which had not been previously recognised in the western Gawler Craton.

The lamprophyre intruded into a pre-existing fault indicating that the shallowly north-east dipping fault package is older than 1950 Ma (the age of crystallisation). This provides information regarding the early-mid Paleoproterozoic in the western Gawler Craton.

Key Words: Challenger Gold Mine, Structural Analysis, ⁴⁰Argon/³⁹Argon Thermochronology, Paleoproterozoic Gawler Craton