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Abstract

Utilising lattice QCD to calculate nucleon matrix elements has had a huge impact
on the knowledge of the structure of nucleons. From the comparison to experimen-
tal data, to the new insights into the structure of nucleons, the practices of lattice
QCD has cemented itself as a fundamental field for particle physics. Some key
contributions to the understanding of nucleon structure lattice QCD can provide
are parameters needed for the beyond standard model (BSM) extensions, under-
standing the size of the nucleons via the charge radii and the decomposition of the
spin and angular momentum of the quarks and gluons within the nucleon.

But the extraction of hadron matrix elements in lattice QCD using the standard
two- and three-point correlator functions demands careful attention to systematic
uncertainties. Although other systematics including discretisation, renormalisa-
tion and chiral extrapolation effects need to be analysed, one of the most recent
and emerging sources of systematic error is contamination from excited-states.

This thesis applies the variational method to calculate the axial vector current
gA, the scalar current gS, the tensor current gT and the quark momentum fraction
〈x〉 of the nucleon and we compare the results to the more commonly used sum-
mation and two-exponential fit methods. Proceeding with the same comparison of
methods, we extend the calculation to non-zero momentum transfer to access the
vector form factors for both the proton and neutron, as well as the iso-vector com-
bination of the axial and induced pseudoscalar form factors for the proton. The
results demonstrate how excited-states affect the extraction of nucleon matrix el-
ements and in the process discovering that the variational approach offers a more
efficient and robust method for the determination of nucleon matrix elements.

Through this demonstration of how excited-states impact lattice QCD calcu-
lation and how we can use methods to suppress these excited-states, we can hope
to achieve higher and higher precision determinations of nucleon matrix elements
form lattice QCD which will aid in our understanding of the structure of nucleons.

2



3



I certify that this work contains no material which has been accepted for the
award of any other degree or diploma in my name in any university or other ter-
tiary institution and, to the best of my knowledge and belief, contains no material
previously published or written by another person, except where due reference has
been made in the text. In addition, I certify that no part of this work will, in the
future, be used in a submission in my name for any other degree or diploma in any
university or other tertiary institution without the prior approval of the Univer-
sity of Adelaide. I give consent to this copy of my thesis, when deposited in the
University Library, being made available for loan and photocopying, subject to the
provisions of the Copyright Act 1968. The author acknowledges that copyright of
published works contained within this thesis resides with the copyright holder(s) of
those works. I also give permission for the digital version of my thesis to be made
available on the web, via the University’s digital research repository, the Library
Search and also through web search engines, unless permission has been granted
by the University to restrict access for a period of time.

Jack Dragos

4



5



Acknowledgements

From the beginning, I thank Waseem Kamleh and Derek Leinweber for starting
me off on my road to research through my pre-PhD years. Little did I know what
I was getting into when you set me up on this research path, yet over the years you
make it quite clear what the motivations and goals in this research topic was. I
am grateful for your patience while I staggered over my self numerous times trying
to get my head around lattice QCD concepts. None of the things I have achieved
in my PhD would have been possible without the two of you.

In this period, I send my deepest gratitude to Ben Owen. Probably one of
the best teachers I have ever had, along with his endless patience me, made my
honours year and the years to follow the most inspiring and interesting years of my
academic life. Never turning me away and always attempting to explain things I
had troubles understanding in different and new ways, my understanding of lattice
QCD would not be what it is today without his support. I wish him all the best
in his life and will always be remembered.

A special thanks to Kaustubh Naik for the friendship we had during our under-
and post-graduate years. You made sure I was well fed with lunch at mid day sharp,
and I value all the random talks we had about physics, gaming and other topics.

Next in the time line comes James Zanotti. After sitting in on my honours
meetings and helping me through this period, it started to come clear that I would
eventually be working with James for my PhD. I thank you for this path you
have shown to me, from the beginnings of creating the lattice data, to showing
me the world of lattice QCD research at the lattice conference and to the patience
you had with my bad writing skills for my publications.... Always making time
to try to assist in my understanding of lattice QCD, James always made sure I
fully understand what I was doing and explaining things in an understandable and
relatable way. It always amazed me how much enthusiasm, interest and support he
had with the work I was producing, always giving me the confidence to continue.

After working with Ross Young for some time, I started to understand how
supportive he is to me and his colleagues as well as how passionate his about
particle physics. My fear of showing Ross some writing or some results was a very
real thing, as he will pick through every little detail and make sure everything is

6



exact and correct. I was very honoured to have Ross as my supervisor, someone
who was always making sure I was working up to a high standard of research and
always made me keep track of the key goals of my work.

To my fellow colleagues, Samuel Thomas, Adrian Kiratidis, Daniel Trewartha,
Finn Stokes, Alexander Chambers, Ryan Bignell and Dylan Harries (and others
I have talked with over the years). You made my PhD years interesting and
insightful (even if it wasn’t anything to do with physics) and helped me understand
physics in a whole new way. Listening to you guys talking about random stuff made
my days somehow. Whether it be listening to seminars at the conference, or just
talking about physics and other random stuff at different events, you guys made
my time here interesting and enjoyable. Along side this, the research you share
and produce is always amassing and inspiring to me, pushing me to always better
myself to keep up with your ever increasing standards.

A large thanks to the CSSM and Physical Sciences department. They both
have made my PhD years new and exciting, whether it be the CSSM conferences
they hosted and sent me to, or the Physical Sciences department showing me the
teaching side of being in academia.

To all the people I meet at the international lattice conference in Japan. The
conversations and presentations I was a part of gave my work a sense of purpose
in the lattice QCD community. Special thanks to Andrea Shindler who I look
forward to working with in the future.

To my loving and caring family, I thank whole-heartily. My mother Sophie
Wait for supporting and taking care of me throughout my journey, to my brothers
James and Jon Dragos for always listening and making me laugh over the years
and to all my extended family for the fun gatherings and entertaining times.
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Chapter 1

Introduction

After the discovery of internal structure of the proton and neutrons, the standard
model (SM) was slowly developed to explain what constitutes the inner workings of
these composite particles. We describe all observed particles as being built up by
elementary particles we call quarks and leptons and they interact via the exchange
of gauge bosons.

Whether it be the protons (up up down quarks), neutrons (down down up
quarks) and electrons observed from our periodic table, or it be some undetectable
exchange of intermediate particles, they can all be described by the standard
model. Through the mechanism of the electro-weak theory, quantum electrody-
namics (QED) and quantum chromodynamics (QCD), we explain how all the
elementary particles in the standard model interact with one another via the ex-
change of photons, W-bosons, Z-boson and gluons. Along with this, we have the
vacuum energy being non-zero which results in particle/anti-particle creation and
annihilation. Due to this, any real world observable we want to calculate will
always have inherent vacuum interactions present.

This in turn gives rise to all the properties seen in our observable universe.
Hence, our understanding of simple physics questions need to be re-evaluated,
including once simple questions such as “what is the mass of a proton/neutron?”
needs to be re-evaluated to “what is the observed mass of a 3 light quark system
in a vacuum, including all their interaction forces?” Further questions that we can
inquire about are the spatial, momentum, spin, flavour and gluon structure of the
nucleon which can lead to a picture of how the nucleon is put together and how it
interacts with itself, the vacuum and other particles.

Although the Standard Model describes the theory, we still need to prescribe
the degrees of freedom of the theory. As experimental physics gets pushed further
and further to higher energy scales and more exotic detection methods, we begin
to constrain these degrees of freedom with reduced experimental uncertainty. Re-
cently, primarily driven by the evidence for the existence of dark matter which
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is not predicted from the Standard Model, the physics community has started to
explore theories that are beyond the Standard Model (such as Supersymmetric
theories). Again, with enough precision, experimental physics will show where the
Standard Model breaks down and how it needs to be extended.

Due to the self interactions of the gluons in the theory of QCD, it is difficult
to calculate quantities analytically at low-energy scales. We can attempt to apply
perturbation theory in certain regimes, where we calculate quantities in the large
energy sector or where asymptotic freedom occurs and try to extrapolate to the
lower energy scales, but it is not possible to extrapolate all the way to hadronic
energy scales. The only way currently to calculate observables from first principles
in a non-perturbative way is in lattice Quantum Chromodynamics (QCD), where
a discretised version of the theory is calculated on supercomputers. Thought to
be highly impractical in the past, due to limitations in computing power, has now
come to fruition from the massive increase in computing technology over recent
years. For observables of the nucleon, we have extended beyond the mass calcula-
tions to more exotic observables associated with the structure of the nucleon.

Discretising space-time and calculating observables comes with its own system-
atics that need to be taken into consideration. The work in this thesis is primarily
focused on the systematic error associated with the phenomenon of excited-state
removal in the extraction of some selected nucleon observables. Although there
are other effects that need to be accounted for, such as the finite lattice spacing
in space and time, the finite extent of the spatial and temporal dimensions and
the chiral extrapolation of the quark masses to their physical mass, excited-state
removal has proven to be a complicated task to undertake and has required the
use of specific techniques. This thesis calculates and shows how the excited-states
can be suppressed by comparing a naive calculation with the summation method,
two-state fit method and the variational method.

Beginning with a brief overview of QCD along with a look at some experimental
processes in Chapter 2, the lattice approach to QCD is outlined in Chapter 3. Once
we have the foundations laid out for computing QCD on the lattice, some advanced
techniques are formalised in Chapter 5 along with some extraction methods in
Chapter 6. A detailed comparison of the mentioned techniques for zero-momentum
transfer matrix elements are presented in Chapter 7, then a demonstration of
excited-state effects in form factor calculations appear in Chapter 8. As these
quantities need to be renormalised to be comparable to physical quantities, the
theory and a brief demonstration for this process is outlined in Chapter 4.
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Chapter 2

Quantum Chromodynamics
(QCD)

2.1 Quarks and Interactions

The Standard Model is a theory that explains how all the atoms that we see are
made up of quarks, leptons and gluons. The generations of the flavours of quarks
in the theory are grouped into pairs, up and down flavour quarks being the lightest,
the strange and charm being heavier and the top and bottom being the heaviest.
Analogous to these, the leptons are paired off into their generations: the electron
and electron neutrino, the muon and muon neutrino and the tau and tau neutrino
all from lightest to heaviest generation. We describe the interactions between these
particles through the exchange of bosons. In the electro-weak interactions they
come in the form of a neutral charged massless photon, a heavy positively and
negatively charged W-bosons, and a heavier electrically neutral Z-boson, while for
the strong nuclear forces we have a decomposition of 8 gluons. Lastly, the explicit
mass parameters in this theory is generated via the interaction with a spin-0 higgs
field. A summary of all these properties appear in Figure 2.1.

For this thesis, we focus on QCD theory and interactions for baryons. If we
consider the lightest three flavoured quarks (up, down and strange), the baryons
are comprised of three quarks that break down into decuplet, octets or singlets:

3⊗ 3⊗ 3→ 10⊕ 8⊕ 8⊕ 1 (2.1)

The proton and neutron correspond to the combination that has spin 1
2
, hy-

percharge 1 and charge +1 for the proton and 0 for the neutron. The only such
combination is an up, up, down quark combination for the proton and down, down,
up quark combination for the neutron, both with two iso-spins aligned and one
iso-spin anti-aligned.
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Figure 2.1: Diagram showing the standard model, and how the particles are
categorised into their respective groups [1].

Colour charge is introduced into the theory to account for the discovery of
the ∆++(uuu) particle which, due to the Pauli exclusion principle, should not be
allowed since it requires 3 up quarks, all with spin-up. We add a colour SUc(3)
charge to the quarks, but since this colour charge is never observed we assume
that all objects are “colour neutral” either in the form of a meson having a colour
charged quark and a colour charged anti-quark, or a hadron containing 3 colour
charges that are anti-symmetrised to form a colour singlet.

2.2 Lagrangian

Using the particles described in the previous section, we can describe how the
quarks and gluons interact through a non-abelian gauge field theory. The La-
grangian that describes this interaction in the gauge field is:

LQCD = −1

4
F (a)
µν F

(a)µν +
∑
q

ψ
i

q

(
iγµDij

µ − δijmq

)
ψjq . (2.2)

Where we have F
(a)
µν defined as the field strength tensor:

F (a)
µν ≡ ∂µA

a
ν − ∂νAaµ + gsfabcA

b
µA

c
ν , (2.3)
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and we have the covariant derivative Dij
µ defined as:

Dij
µ ≡ δij∂µ − igs

∑
a

λija
2
Aaµ. (2.4)

The strong coupling parameter gs is the only arbitrary parameter of the theory.
We denote ψ as the spin-1

2
fermion fields in the fundamental representation (which

are the quark fields) and Aaµ corresponds to the spin-1 gauge bosons (which are
the gluon fields). Summing over the q variable amounts to summing over all the
quark flavours in our theory (up, down, strange etc...). The conventions in the
equations above are that the letters a, b, c = 1, . . . , 8 correspond to indices in the
adjoint representation of SU(3)c and i, j = 1, 2, 3 correspond to indices in the
fundamental representation of SU(3)c. fabc are the SU(3) Lie group structure
constants and λa are the Gell-Mann matrices which are generators of the SU(3)c
algebra.

Using an independent SU(3) transformation at every point via V (x) = eiφ
a(x)λ

a

2

ψ(x)→ ψ(x)′ = V (x)ψ(x), (2.5)

Aµ(x)→ A′µ(x) = V (x)Aµ(x)V −1(x) +
i

gs

(
∂µV (x)

)
V −1(x), (2.6)

and requiring these gauge transformation to be invariant (i.e. ψ(x) = ψ(x)′ and
Aµ(x) = A′µ(x)), along with conditions of renormalisability and the coupling gs
completely specify the theory and impose the Lagrangian.

In the QCD Lagrangian there are terms that allow the gluons to couple to
themselves. Due to this effect, we can analyse two regions of different energy. The
asymptotic free region which occurs at high-energies where the quarks essentially
act as free particles, while the confined region occurs at low-energies, in which the
quarks are never observed as free particles but are bound in hadrons. Calculating
hadron properties in the low energy region has proven to be highly difficult without
the use of lattice QCD.

We can determine experimentally the mass spectrum for mesons and baryons
defined in Section 2.1, but since we have confinement at low energies, we cannot
directly measure the quark masses from experiments. We can use the masses
calculated from experiments along with a quark model to infer a quark mass, but
the obvious drawback is that the quark masses calculated are dependant on the
type of experiment and quark model used. As a result, a systematic analysis is
required to cross-check the different methods.

Features of QCD can be studied in the lab by undergoing measurements which
can be used to determine matrix elements. Theoretically, these are difficult in
QCD so we use lattice QCD instead. This thesis is interested in the determination
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Figure 2.2: Figure showing the β-decay process of a the neutron decaying into a
proton and emitting an electron and electron anti-neutrino via a W− boson.

of nucleon matrix elements, with a theory that only considers the three lightest
quarks (up, down and strange).

2.3 Neutron β-Decay

The coupling gA is related to the rate of neutron β-decay, which is where a neutron
decays into a proton and emits a W− boson which decays into an electron and an
electron anti-neutrino. In the language of QCD, a down quark within the neutron
changes into an up quark and emits an electron and an electron anti-neutrino.

n→ p+ e− + νe d→ u+ e− + νe (2.7)

From the diagram depicting how the decay occurs in Figure 2.2, we can derive
the scattering matrix element Tfi as:

Tfi = (−igW )2 cos θc
(
ue(~pe)γµ(1− γ5)ννe(~pν)

) i

m2
W

〈p(~p)| JµL(0) |n(~p)〉 , (2.8)

with the weak current JµL(0) ≡ uγµ (1− γ5) d and with the assumption that the W
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boson mass mW is much larger than the transfer momentum q so that the initial
neutron and final proton states have approximately the same momentum pµ.

To obtain a matrix element between the neutron and proton, we need to define
gA and gV using the above approximation q � mW :

〈p|uγµd |n〉 = gV upγµun, 〈p|uγµγ5d |n〉 = gAupγµγ5un. (2.9)

We know that gV = 1 due to the vector isospin charge ladder operator Q+
V .

Using the relation [
A3
µ, Q

+
V

]
= A+

µ , (2.10)

where

A3
µ =

1

2
(uγµγ5u− dγµγ5d), A+

µ = uγµγ5d, (2.11)

the value gA can be related to,

〈p|uγµγ5d |n〉 = 〈p(~p), ~s|uγµγ5u− dγµγ5d |p(~p), ~s〉 = 2sµgA. (2.12)

This gives a way to relate the gA of neutron β-decay to a matrix element of
the proton.

By using the differential decay rate relation

dΓ
(
n→ pe−νe

)
∝

1 +

∣∣∣~ke∣∣∣ (1− gA)2

Ee(1 + 3gA)2
cos θ

 dEed cos θ, (2.13)

with the angle θ between the emitted electron and electron anti-neutrino and
utilising momentum conservation, the value of gA can be extracted.

Experimentally, λ = gA/gV = 1.270(3) has been observed [2–21], with the
newest experiments using “cold polarised neutrons”.

2.4 Form Factors

The spatial, charge and magnetisation density of nucleons are encoded in electro-
magnetic form factors [22]. While these were first studied for the proton and
neutron in the 1950’s [23, 24], yet we still have much to determine and discover with
them [25]. Nowadays we have many precise experimental determinations of many
form factors [26–29] and to accompany this, many low energy non-perturbative
lattice QCD calculations have been performed [30–46].

Electron-nucleon scattering is one of the most common experiments performed,
which involves an electron elastically scattering of a nucleon. Within this colision,
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Figure 2.3: Figure showing the nucleon/electron interaction with initial momenta
ke and p and final momenta k′e and p ′, respectively.

momentum−q2 is transfered (shown in Figure 2.3) in the ranges of [0.49, 3.47](GeV )2

in [27], [0.215, 0.474](GeV )2 in [28] and [0.298, 0.695](GeV )2 in [29]. Assuming one
photon exchange, we can obtain a scattering amplitude of

Tfi = (−ie)2ue(~k′e)γµue(~ke)
−i
q2

〈
~p ′|Jµ(~q)|~p

〉
, (2.14)

where the vector current Jµ is

Jµ = quuγµu+ qddγµd+ ... (2.15)

and qq is the charge associated with the the quark q = u, d, s, .... We can use the
vector form factor to understand how the nucleon is structured, for example, the
charge distribution of the nucleon.

Considering all possible unique vector terms, we arrive at the decomposition
for the vector matrix element:

〈
~p ′|Jµ(~q)|~p

〉
= u(~p ′)

[
qµ

2mN

F0(q2) + γµF1(q2) +
iσµνqν
mN

F2(q2) +
qµγ

νqν
4m2

N

F3(q2)

]
u(~p),

(2.16)
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where mN is the mass of the nucleon and F1(q2) and F2(q2) are the electric current
and anomalous magnetic moment form factors at momentum transfer q2 ≡ qµqµ.

The terms F0(q2) and F3(q2) do not contribute due to the Ward identity, which
tells us

ue(~k′e)γµue(~ke)q
µ = 0. (2.17)

It is common practice to define the Sachs electric and magnetic form factors as

GE(q2) = F1(q2) +
q2

(2mN)2
F2(q2),

GM(q2) = F1(q2) + F2(q2),

(2.18)

respectively. Two useful quantities are the mean square radius of the nucleon,
which in the non-relativistic limit is

〈r2〉 ≡ −6
dGE(q2)

dq2

∣∣∣∣∣
q2=0

, (2.19)

and the magnetic moment of the nucleon, which is µ = GM(Q2 = 0).
The next form factor is the non-zero transfer momentum version of β-decay

described in Section 2.3. Depending on the transfer of momentum direction, the
W−-boson processes are described as

νl + n→ l + p, n→ νl + l + p, (2.20)

where the lepton l = e−, µ−, τ−. The matrix element the muon-neutrino, neutron
scattering process diagrammatically shown in Figure 2.4, is

Tfi = (−igW )2 cos θcuµ(~k′µ)γµ(1− γ5)uν(~kν)
i

m2
W

〈
p(~p ′)|Jµ5 (~q)|n(~p)

〉
. (2.21)

The Lorentz decomposition for the neutron-proton transition matrix element
part becomes

〈
p(~p ′)|Jµ5 (~q)|n(~p)

〉
= up(~p

′)

[
γµγ5GA(q2) +

qµ

2mN

γ5GP (q2)

]
un(~p), (2.22)

where we have defined the axial-vector form factor GA(q2) and the induced pseudo-
scalar form factor GP (q2).

Last point, as noted previously, we have the relation:
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Figure 2.4: Figure showing the analogous non-zero transfer momentum q version
β-decay from Figure 2.2.

GA(q2 = 0) = gA (2.23)

Although these form factors have rich and deep experimental and theoretical
importance, this thesis will be more concerned with how we extract the form factors
from lattice QCD calculations and systematics associated with these extractions.

2.5 Deep Inelastic Scattering

Another way to describe the structure of hadrons is by understanding the Parton
Distribution Functions (PDF) which, when analysing the unpolarised PDF, de-
scribes how the momentum of the hadron is distributed to the quarks and gluons.
The PDF’s can be determined experimentally by deep inelastic scattering, which
is still a lepton-nucleon collision, but in which transfer momentum q is so large,
the target is no longer a nucleon.

Many models have been formulated [47–53] and experiments undertaken [54–
57] to understand this field. Lattice QCD has been involved in determining matrix
elements that are related to Mellin moments of the parton distribution functions
[58–61], and in Chapter 7, we show extracted values for the first moment or mo-
mentum fraction 〈x〉.

For deep inelastic scattering, the process is shown pictorially in Figure 2.5 and
is described by the scattering amplitude

10



Figure 2.5: Figure demonstrating the deep inelastic scattering process for a
nucleon/electron collision producing some final state X.

Tfi = (−ie)2ue(~p
′
e)γµue(~pe)

−i
q2
〈X| Jµ(~q) |~p〉 , (2.24)

where X is some unknown final state. The usual initial and final momenta of
the target are p and p ′ and initial and final momenta of the lepton k = (Ee, ~k)

and k′ = (E ′e,
~k ′) respectively. To be more precise about the inelastic scattering

condition, the invariant mass M2
X = (p+ q)2 in elastic scattering must be fixed to

the final state M2
X = m2

N , where as for inelastic scattering, we take M2
X > mN .

The Bjorken scaling parameter x and its inverse ω are defined as

ω ≡ 1/x ≡ 2mNν

Q2
=
−2p · q
q2

, ν ≡ p · q
mn

. (2.25)

Elastic scattering has values x = ω = 1 but for deep inelastic scattering, we
have any x ≤ 1 but require large Q2 ≡ −q2. The resulting cross section becomes

d2σ

dΩdE ′e

∣∣∣∣∣
N lab. frame

=
α2

mNQ4

E ′e
Ee
LµνW

µν , (2.26)

where the leptonic tensor is defined as

Lµν = k′µkν + k′νkµ − gµνk′ · k + iεµνσρs
ρ
eq
σ. (2.27)

By considering the inclusive process in which the final states X are summed
over, the hadronic part of the cross section has the form
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W µν =
1

4π

∫
d4xe−iq·x 〈p| [Jµ(x), Jν(0)] |p〉 ,

≡ W µν
S + iW µν

A .

(2.28)

We can Lorentz decompose the scalar and axial components of the hadronic
cross section term to produce the factors

W µν
S =

(
gµν +

qµqν

q2

)
F1(x,Q2) +

1

mNν

(
pµ − p · q

q2
qµ
)(

pν − p · q
q2

qν
)
F2(x,Q2)

W µν
A =

1

mNν
εµνρσqρsσg1(x,Q2) +

1

mNν
εµνρσqρ

(
sσ −

q · s
mNν

pσ

)
g2(x,Q2)

(2.29)

The unpolarised structure functions F1 and F2 carry information about the
longitudinal parton structure and g1 and g2 encode the corresponding longitudi-
nal spin distributions. For the present thesis, we focus on the quark momentum
fraction 〈x〉 which is related to the structure functions F1 and F2. Although the
axial-vector current gA can be related to g1 by the Bjorken sum rule, it is not
explored in this thesis.

To gain physical intuition, we can employ Feynman’s parton model of the nu-
cleon, in which in the Bjorken limit of high transfer energy Q2 →∞ at some fixed
Bjorken scale x, the nucleon is considered to be three free on-shell particles or
“partons”. We can define the Bjorken limit structure functions as

F1(x) = lim
Q2→∞

F1(x,Q2), F2(x) = lim
Q2→∞

ν

MX

F2(x,Q2), (2.30)

where the previously defined ν in Eq.(2.25) is the energy transferred to the nucleon
by the scattering electron.

By continuing Feynman’s parton view of the nucleon, the total structure func-
tion is related to a sum of the individual quark or “parton” densities constituting
the proton

F1(x) =
1

2

∑
i

e2
i fi(x), F2(x) = x

∑
i

e2
i fi(x), (2.31)

utilising the parton distribution function fi(x) which describes the probability that
the probed quark i carries a fraction, x, of the proton’s momentum.

To relate the parton interpretation to the structure functions, we define the
first moment of the structure functions as
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2

∫ 1

0

dxxF1(x,Q2) = ESF1;v2
(µ, gS)vS2 (µ) +O(1/Q2),∫ 1

0

dxF2(x,Q2) = ESF2;v2
(µ, gS)vS2 (µ) +O(1/Q2),

(2.32)

involving the Wilson coefficients ESF2;v2
(µ, gS) calculated in perturbation theory

for some scheme S at some momentum scale µ, and the proton (forward) matrix
elements vSn which will be calculated using lattice QCD renormalised at the same
scheeme S.

Utilising the operator product expansion (OPE) which tells us that for some
current operator O(q) acting on quark (q), in limit where now the position vector
x→ 0 (or q →∞), the product of two operators can be reduced to one

lim
x→0

O
(q)
i (x)O

(q)
j (0) =

∑
k

Eijk(x)O
(q)
ijk(0), (2.33)

where Eijk are the appropriate Wilson coefficients which can be calculated per-
turbatively for small distances. All allowable operators for the right hand side of
Eq.(2.33) have the form

O(q)
µ1...µn

= in−1qγµ1
↔
Dµ2 . . .

↔
Dµnq,

O(5q)
µ1...µn

= in−1qγµ1γ5

↔
Dµ2 . . .

↔
Dµnq,

(2.34)

using the standard left/right derivative definition
↔
D ≡ 1

2
(
→
D −

←
D). For this thesis,

we will only consider the n = 2 case, which reduces down to

O(q)
µν = iqγµ

↔
Dνq,

O(5q)
µν = iqγµγ5

↔
Dνq.

(2.35)

The symmetrised traceless part of the operator O
(q)
µν is defined as

SO(q)
µν = iq

[
γ{µ
↔
Dν} −

1

4
ηµνγω

↔
Dω

]
q. (2.36)

〈~p,~s| iq
[
γ{µ
↔
Dν} −

1

4
ηµνγω

↔
Dω

]
q |~p,~s〉 = vf2u(~p,~s)

(
γ{µpν} −

1

4
ηµνγωp

ω

)
u(~p,~s).

(2.37)
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The simplest of choice for lattice QCD calculations is to consider the combination

O(q)
v2,b
≡ q

γ4

↔
D4 −

1

3

3∑
i=1

γi
↔
Di

 q, (2.38)

which when calculated in lattice QCD in sections to come, will be proportional to
v2. The last remark is that in the parton model, v2 can be related to the quark
momentum fraction 〈x〉 at some scale µ. The quark momentum fraction 〈x〉 is
defined as the average value of the momentum fraction probability function qP of
quark q = up, down, strange, etc...

vq2(µ) = 〈x〉q (µ) ≡
∫ 1

0

dxx[qP (x, µ) + qP (x, µ)] (2.39)

This is why v2 and 〈x〉 are used interchangeably throughout the thesis.
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Chapter 3

Quantum Chromodynamics on
the Lattice

To calculate non-perturbative properties in QCD from first principles we follow
the Lattice gauge theory formulation of the Feynman path integral. A general
overview can be found in [62–64]

The first step is to work in Euclidean space, which is achieved by rotating the
time dimension by 90◦ in the complex plane

t→ it , it→ −t. (3.1)

For dealing with fermions in the later Section 3.2, the γ matrices in Eu-
clidean space satisfy hermiticity γ = γ† and the anticommutator has the relation{
γµ, γν

}
= 2δµν . For this thesis, the Sakurai representation for the γ matrices,

which can be seen in Appendix A.1, were used.
The notion of a Lattice implies that a finite set of points in space-time will be

used as a substitute for the continuous space-time we live in. This requires that the
formalism for QCD including the Feynman path integral need analogous Lattice
QCD versions. Assuming we have a uniform lattice of points, these quantities
will depend on the separation between each of the points (denoted by a) and the
length of the lattice in each space-time direction (denoted (Lx, Ly, Lz, Lt)). So our
continuous space-time vectors xµ now are restricted to only take values that are
points on our lattice (Lat).

To introduce functions onto our lattice, we restrict the function to reflect our
discretised lattice domain:

ψ(x)→ ψ(an) : n ∈ Nnx × Nny × Nnz × Nnt , (3.2)

where nx, ny, nz, nt are the number of points in the (x, y, z, t) directions respectively
and a is the lattice spacing used. The labelling an is usually dropped for the lattice
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restricted space-time point x.

3.1 Gluon Action

The continuum gauge fields are replaced with a set of links Uµ(x) which now allows
a gauge invariant method of transporting a quantity from x→ x+ µ̂ where µ̂ is an
adjacent lattice site corresponding to which direction is chosen for (µ = 1, 2, 3, 4).
This gauge link can be related to the gluon fields Aµ(x) via

Uµ(x) = Peig
∫ a
0 Aµ(x+bµ̂/a)db, (3.3)

where P orders the integration on the path from x to x+ µ̂.
We still impose the same gauge invariance on the lattice as in the continuous

version, and require our gauge links Uµ(x) which belong in the gauge group SU(3)
rather than continuum gauge field algebra su(3), to have the transformation

U ′µ(x) = V (x)Uµ(x)V (x+ µ̂)−1, (3.4)

using V (x) described in Eq.(2.5).
With this transformation, it is easy to see that any traced loop of gauge links

that have a common start and end point (for example, Eq.(3.5)) will be gauge
invariant.

Naturally, the first quantity to note is the plaquette, which is the smallest loop
of gauge links that start and end at a common space-time position. The Figure 3.1
shows how the gauge links are arranged to form the loop. We define it as

Pµν(x) =
1

3
ReTrUsq, (3.5)

where,

Usq ≡ Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν(x). (3.6)

Rewriting as an integration around a closed loop and Taylor expanding, Eq.(3.5)
becomes,

Pµν(x) =
1

3
ReTrPeig

∮
� A.dx

=
1

3
ReTrP

[
1 + ig

∮
�
A.dx− 1

2

(
g

∮
�
A.dx

)2

+O(A3)

]
.

(3.7)

Working in the Abelian theory, Stokes’s Theorem tells us that,
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Figure 3.1: Diagram showing the arrangement of the gauge links U to form the
smallest loop on the lattice in the µ, ν plane.

∮
�
A.dx =

∫ a
2

−a
2

dxµdxν
[
∂µAν(x0 + x)− ∂νAµ(x0 + x)

]
=

∫ a
2

−a
2

dxµdxνFµν(x0 + x)

= a2Fµν(x0) +
a4

24
(∂2
µ + ∂2

ν)Fµν(x0) +O(a6, A2),

(3.8)

where Fµν = ∂µAν−∂νAµ is the abelian field strength tensor and x0 is the centre of
the integration loop. The final line is the Taylor expansion of Fµν(x0+x) about the
origin x0. By inserting Eq.(3.8) into Eq.(3.7) and extracting the real component,
we get,

Pµν = 1− 1

2
g2a4TrF 2

µν +O(g2a6, a8, g4a6) (3.9)

The Wilson action for gluons on the lattice is written in terms of our plaquette
operator,

SWil =
2

g2

∑
x,µ>ν

(1− Pµν(x)) =
a4

2g2

∑
x,µ>ν

Tr
[
Fµν(x)2

]
+O(a2, a2g2). (3.10)
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The Wilson action of this kind agrees with the continuum gluon action (the
first term in Eq.(2.2)) up until terms of order O(a2). Since we can calculate not
only squares, but rectangles and parallelograms on the lattice, we can improve
on our action by incorporating rectangular terms Rµν and parallelogram-shaped
terms Lµν to correct the O(a2) effects [65].

Then added in a way to improve the action up to O(a4) at tree level and
O(g2a2)

SImp =
2

g2

∑
x,µ>ν

[
c0(1− Pµν(x)) + c1(1−Rµν(x)) + c2(1− Lνµ(x))

]
,

c0 + 8c1 + 8c2 = 1

(3.11)

where the coefficients ci which are generally functions of g2 and are selected to
remove tree level O(a4) effects. A choice of c0 = 20/12, c1 = −1/12 and c2 = 0
corresponds to the tree-level improved action [66] and c0 = 3.648, c1 = −0.331
and c2 = 0 corresponds to the Iwasaki gauge action [67].

3.1.1 Gauge Field Mean-Field Improvement

Taylor expanding the gauge links with respect to the gluon fields, we can see,

Uµ(x) ≈ 1 + iagAµ(x)− 1

2
a2g2A2

µ(x) + . . . . (3.12)

It can be noted that the terms O(a2g2) and larger are lattice artefacts which
give rise to quark-gluon vertices with two or more gluons. The tadpole diagram
can be constructed by contracting the two gluons in the term 1

2
a2g2A2

µ(x). Lepage
and Mackenzie [68] noted that for quantum fields, contracting the Aµ terms can
create divergence factors of 1/a2 that counteract the increasing power of a. This
means that the trailing terms are O(g2) which results in large renormalisations
that spoil naive perturbative lattice expansions. We can take account for this
by modifying the lattice gauge fields by applying the mean-field improvement (or
tadpole improvement).

This is done by separating the quark fields into a high energy UV component
and the useful low energy IR component,

eiagAµ(x) = eiag(A
IR
µ (x)+AUVµ (x)) ∼ u0e

iagAIRµ (x) ≡ u0Ũµ(x). (3.13)

As long as u0 ≤ 1, the new gauge fields Ũµ(x), when replacing the old gauge
fields Uµ(x), will retain the same transformation properties. Generally, the mean-
field improved gauge links are constructed with the u0 parameter set to
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u0 =

(
1

3
ReTr

〈
Usq
〉)

. (3.14)

3.2 Fermion Action

Although the gauge fields themselves can provide much information about the
structure of our vacuum, introducing fermions into lattice QCD provides a way to
analyse how fermionic particles are structured and how they interact with the rest
of QCD. Starting with the Dirac action for a fermion:∫

d4xψ(x)( /D +m)ψ(x). (3.15)

Derivatives on the lattice are reduced to finite differences. The two nearest
neighbour prescriptions are

D(f)
µ ψ(x) =

1

a

[
Uµ(x)ψ(x+ µ̂)− ψ(x)

]
,

D(b)
µ ψ(x) =

1

a

[
U †µ(x− µ̂)ψ(x− µ̂)− ψ(x)

]
,

(3.16)

where the gauge links U have been constructed in Section 3.1, and a is the lat-
tice spacing. The symmetric nearest neighbour derivative is constructed via the
following,

Dµψ(x) =
1

2

[
D(f)
µ ψ(x)−D(b)

µ ψ(x)
]

=
1

2a

[
Uµ(x)ψ(x+ µ̂)− U †µ(x− µ̂)ψ(x− µ̂)

]
(3.17)

A first candidate for the fermion action on the lattice SNF can be derived by
naively discretising the free fermion action

SNF [U, ψ, ψ] =
∑
x∈Lat

ψ(x)
4∑

µ=1

1

2a
γµ

[
Uµ(x)ψ(x+ µ̂)− U †µ(x− µ̂)ψ(x− µ̂)

]
+∑

x∈Lat

mψ(x)ψ(x).

(3.18)

The above can be rewritten in terms of an interaction matrix MN
xy[U ] by in-

serting delta functions and summing over the lattice variables x, y
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SNF [U, ψ, ψ] =
∑

x,y∈Lat

ψ(x)MN
xy[U ]ψ(y), (3.19)

where

MN
xy[U ] = mδxy +

1

2a

4∑
µ=1

γµ

[
Uµ(x)δx(y−µ̂) − U †µ(x− µ̂)δx(y+µ̂)

]
. (3.20)

We define the free field propagator as the propagator in momentum space in
which we set Uµ = 1 for all points over the lattice. This fermion action suffers
from the fermion doubling problem, which occurs when we look at the roots to the
inverse of the free field propagator with respect to its momentum:

S−1(p) = mq +
i

a

∑
µ

γµ sin (pµa). (3.21)

Taking a limit in which our quark masses mq → 0 we see this vanishes for
multiple momenta solutions for −π/a < pµ < π/a , µ = 1, 2, 3, 4, obtaining more
than 1 type of fermion.

3.2.1 Improving the Action

There are two methods used to resolve this problem, the first method involves
staggering the degrees of freedom of the quarks on the lattice which results in
reducing the number of momenta solutions from 16 to 16/4 [69].

Another method involves adding a Wilson term [70, 71] which is a five-dimensional
scalar operator which would be added to the naive fermion action in Eq.(3.18)
which breaks chiral symmetry at O(a)

SW =
∑
x∈Lat

ψ(x)

∑
µ

(
γµDµ −

r(Df
µ +Db

µ)

2

)
+m

ψ(x), (3.22)

where Dµ is defined in Eq.(3.17) and Df
µ and Db

µ are defined in Eq.(3.16) respec-
tively.

A mass proportional to r/a is given to the 15 doublers which removes the
doubler solutions in Eq.(3.18). Using the D definitions, we can write the action in
full:

20



SW =

(
m+

4r

a

) ∑
x∈Lat

ψ(x)ψ(x)+

1

2a

∑
x∈Lat

4∑
µ=1

ψ(x)
[
(γµ − r)Uµ(x)ψ(x+ µ̂)− (γµ + r)U †µ(x− µ̂)ψ(x− µ̂)

]
,

≡
∑

x,y∈Lat

ψ
L

xM
W
xyψ

L
y .

(3.23)

Again, our interacting matrix is pulled out as:

MW
n.m[U ]a = δn,m − κ

∑
µ

[
(r − γµ)Uµ(x)δn,m−µ + (r + γµ)U †µ(x− µ)δn,m+µ

]
,

(3.24)
and we have renormalised our quark fields and introduced our κ parameter by

ψL = ψ/
√

2κ, κ = (2mqa+ 8r)−1. (3.25)

When taking the standard value r = 1, the quark mass becomes

mq =
1

2

(
1

κ
− 1

κc

)
. (3.26)

The parameter κc is the critical kappa value which describes where the quark
masses vanish. In the free theory, this is at κc = 1/8r, but when we have an
interacting theory, additive and multiplicative renormalisations are needed due to
explicit chiral symmetry breaking by the Wilson term.

Rewriting the Wilson action in the continuum limit

SW =

∫
d4ψ(x)

(
/D +m− ar /D

2

2

)
ψ(x) +O(a2), (3.27)

we see a term an O(a) difference between the Wilson action in Eq.(3.27) and the
naive action in Eq.(3.18).

3.2.2 Further Improving the Action

Since the Wilson action has O(a) errors, for this action to be reliable, simulations
need to be undertaken at very fine lattice spacings which in turn requires more
computational time. An improvement to the scaling properties of the action can
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be obtained by adding operators of increasing dimension which all vanish in the
continuum limit. Through many works [72–74], the clover term improved Wilson
fermion action has been developed, which is also employed in this thesis and has
the form

SSW = SW −
iaCSW r

4
ψ(x)σµνFµνψ(x), (3.28)

in the process, scaling out the parameters of the theory by bq, cq, bg and bm

ψ → ψ′ = (1 + bqam)(1− cqa
−→
/D)ψ ψ → ψ

′
= (1 + bqam)ψ(1 + cqa

←−
/D),

g2 → g2(1 + bgma), m→ m(1 + bmma).
(3.29)

The parameter CSW is tuned depending on the situation to remove the O(a)
errors

CSW =


1 at tree level,
1/u3

0 mean-field improved ,
CLat
SW non-perturbatively lattice QCD calculated.

(3.30)

where u0 corrects for the quantum renormalisation of the operators. Improvements
to the tuning can be done by using the Ward identity to tune CSW which also
improves the coupling g2, quark mass mq and the currents. Selecting CSW = CLat

SW

is referred to as the non-perturbative (NP) improved clover fermion action, which
is demonstrated by Chapter 4 [74].

3.3 Gauge Field and Propagator Generating

Just like in statistical mechanics systems, the partition function is where one gen-
erally begins to extract useful quantities. In lattice QCD, the partition function
is defined as

Z =

∫
DUµDψDψe

−S S = SG + SF = SG +
∑

ψMψ, (3.31)

where S is the total QCD action, which encodes the systems particles and inter-
actions. S is broken up into the gauge part SG and the fermion part SF which
can be written in terms of an interaction matrix M as described in the previous
section.

We can separate and integrate out the Grassmann fermion fields ψ and ψ to
simplify the expression to
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Z =

∫
DUµ det [M ]e−SG . (3.32)

Physical observables in lattice QCD correspond to expectation values

〈O〉 =
1

Z

∫
DUµ det [M ]Oe−SG , (3.33)

where 〈O〉 is the expectation value of the operator O which corresponds to the
average value of the physical observable.

In Eq.(3.33), we have a dependency on the the background gauge field U [A]
which is being integrated over via

∫
DUµ. Since we cannot integrate over a con-

tinuous range, we must approximate the integral by a finite sum over some set of
N gauge fields U [N ] =

{
U i|i = 1, 2, ..., N

}
,

〈O〉 ≈ 1

N

N∑
i=1

O[U [i]], (3.34)

where O[U [i]] represents a measurement of O on a background gauge field “con-
figuration” U [i]. A Markov chain is used to generate U [N ] via the accept/reject
prescription to take us from the U [i−1] to U [i]

P [U [i−1]]P (U [i−1] → U [i]) = P [U [i]]P (U [i] → U [i−1]), (3.35)

where

P [U ] =

(
1

Z
det [M ]e−SG

)
[U ], (3.36)

is the probability weighting factor for proposing configuration U and P (U → U
′
)

is the probability for the transfer of U to U ′.
Starting from some initial gauge field U [0], which can be chosen to be “cold”

which corresponds to the identity matrix, or “hot” where we choose a random
SU(3) matrix, the Markov chain needs to thermalise which is decided by some
thermalisation condition for U [i=n]. Once thermalised, our set of gauge fields be-
comes

U [N ] =
{
U [i]|i = n, ..., N + n

}
, (3.37)

where n is the number of iterations before the gauge fields have thermalised in the
Markov chain.

Since we require more than just the gauge fields to probe quarks and their
interactions, we introduce quarks via the quark propagator. The goal of introducing
the quark propagator is to remove the dependence of the quark operators on the
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quark fields by performing Wick contractions. The quark propagators can be
obtained by inverting the the Dirac operator on a particular gauge field U

Sαβab (x, y, U,mq) = (Mαβ
ab )−1(x, y, U,mq), (3.38)

where α, a, y are the spin, colour and lattice site of the annihilation “sink” operator
respectively and β, b, x are the spin, colour and lattice site of the quark creation
“source” operator respectively. Each propagator is calculated on a single gauge
field U for a particular quark mass mq.

Propagators are the building blocks for any hadronic lattice QCD calculation
as we can combine propagators in different ways to analyse the particle system in
question. To calculate anything we desire would require propagators from y → x
for all x and y on the lattice, which is very computationally expensive. As we will
see in the coming sections, we mitigate this problem by reducing the propagators
to go from y → x for all x on the lattice, but some fixed space-time point y.

3.4 Correlation Functions

From this point onwards in this thesis, there will be a set of conventions used.
Upper indices in English characters will represent the colour indices, lower indices
in Greek will represent spin indices and any other subscripts/superscripts will be
used for labelling. Using the split space-time notation x = xµ = (~x, t), the source
will be represented at the space-time position x0 = (~x0, t0) (set to 0 = (~0, 0) for
the theory), the sink space-time position will be at x = (~x, t). When a spatial
Fourier transform is applied, the sink time-momentum will be p′ = (~p ′, t). The
later defined three-point correlation function in Section 3.4.2 has an intermediate
space-time point which will be denoted y = (~y, τ) or when spatial transformed to
momentum space will be q = (~q, τ).

If summing over a primed vector variable (e.g. ~x ′), it is implied that the time
variable is the same as the unprimed time variable (e.g. x′ = (~x ′, t) as x = (~x, t)).

The spin matrix Γ is a spin projector which is utilised to pick out components
when traced with a spin matrix. When taking the trace Tr{}, it will imply tracing
both over spin matrices and colour matrices.

3.4.1 Two-Point Functions

Although gauge fields and quark propagators in position and momentum space can
be studied in great depth, this thesis works on the calculations of nucleon masses
and matrix elements. These require the construction of two-point and three-point
correlation functions. For general interpolating fields χ1 and χ2 which correspond

24



to annihilation and creation operators at the sink and source respectively, the
(forward) two-point correlation function on the lattice is defined as

G2(Γ; ~p, t− t0) ≡
∑
~x−~x0

e−i~p·(~x−~x0)Tr
{

Γ 〈Ω|χ1(~x, t)χ2(~x0, t0) |Ω〉
}
. (3.39)

The spin matrix Γ is used with the trace to project out particular spin components,
~p is the momentum of the system and t0 and t are the times in which the particle
is created and annihilated on the lattice, respectively. The correlator is taken to
momentum space with momentum ~p by a spatial Fourier transform since we are
interested in systems with momentum ~p rather than systems that travel from ~x0

to ~x.
Although practically (~x0, t0) will most likely be non-zero to avoid boundary

condition effects, theoretically we set it to zero since we can translate our lattice
in space-time to create an equally valid gauge field for our statistics (in Eq.(3.37)).

The usefulness of the two-point correlator can be seen once we reduce Eq.(3.39).
Although in general, the source and sink interpolating fields can be different (which
will be the case in Section 5.2), we set χ1 = χ2 = χ for this derivation. First we
translate the operator χ(~x, t), noting that we are working in Euclidean time

χ(~x, t) = eĤte−i~̂p·~xχ(~0, 0)e−Ĥtei~̂p·~x

G2(Γ; ~p, t) =
∑
~x

e−i~p·~xTr
{

Γ 〈Ω| eĤte−i~̂p·~xχ(~0, 0)e−Ĥtei~̂p·~xχ(~0, 0) |Ω〉
}
,

(3.40)

where the Hamiltonian and momentum operators are Ĥ and ~̂p respectively. Next
step is to insert a complete set of states,

G2(Γ; ~p, t) =
∑
~x

e−i~p·~xTr
{

Γ 〈Ω| eĤte−i~̂p·~xχ(~0, 0)e−Ĥtei~̂p·~xÎ χ(~0, 0) |Ω〉
}
.

Î =
∑
Ns

|Ns〉 〈Ns|
Eps

+ |Ω〉 〈Ω|
(3.41)

The index Ns is summed over all eigenstates, with each state having energy
Eps , momentum ~ps and spin s. The operators acting on |Ns〉 give

Ĥ |Ns〉 = Eps |Ns〉 ~̂p |Ns〉 = ~ps |Ns〉 , (3.42)

hence

G2(Γ; ~p, t) =
∑
~x,Ns

1

Eps
e−i(~p−~ps)·~xe−Eps tTr

{
Γ 〈Ω|χ(~0, 0) |Ns〉 〈Ns|χ(~0, 0) |Ω〉

}
.

(3.43)
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Breaking the sum over eigenstates into energy, momenta and spinNs = Eps , ~ps, s
we can sum over ~x, giving a δ-function and hence can be summed over ~ps∑

~ps,~x

= e−i~x·(~p−~ps)F (~ps) =
∑
~ps

δ3(~p− ~ps)F (~ps) = F (~p), (3.44)

which amounts to replacing ~ps → ~p

G2(Γ; ~p, t) =
∑
Ep,s

1

Ep
e−EptTr

{
Γ 〈Ω|χ(~0, 0) |Ep, ~p, s〉 〈Ep, ~p, s|χ(~0, 0) |Ω〉

}
. (3.45)

Next we evaluate the overlaps with the interpolating fields

〈Ω|χ(~0, 0) |Ep, ~p, s〉 = Z(Ep, ~p)
√
Epu(~p, s)

〈Ep, ~p, s|χ(~0, 0) |Ω〉 = Z(Ep, ~p)
√
Epu(~p, s),

(3.46)

where u(~p, s) is a spinor and Z(Ep, ~p) is the coupling strength of operator χ to the
state with energy/momentum (Ep, ~p)

G2(Γ; ~p, t) =
∑
~x,Ep,s

(ZZ)(Ep, ~p)e
−EptTr

{
Γu(~p, s)u(~p, s)

}
. (3.47)

For baryons we must consider the anti-baryon contribution as well, which
is achieved by changing χ → χ and χ → χ. We denote the anti-particle en-
ergy/spinnors/correlator with a prime. The total contribution to the two-point
correlation function is

G2(Γ; ~p, t) =G2(Γ; ~p, t) +G′2(Γ; ~p, t) =∑
Ep,s

(ZZ)(Ep, ~p)Tr

{
Γ
(
e−Eptu(~p, s)u(~p, s)

)}
+

∑
E′p,s

(ZZ)(E ′p, ~p)Tr

{
Γ
(
e−E

′
ptv′(~p, s)v′(~p, s)

)}
.

(3.48)

If we can satisfy (0� t) on our lattice and we assume the lowest lying energy
state is not the anti-particle version of the baryon (e.g. anti-proton), Eq.(3.48)
can be reduced to just a ground state energy term of

G2(Γ; ~p, t) = (ZZ)(E[0]
p , ~p)e

−E[0]
p t
∑
s

Tr
{

Γu(~p, s)u(~p, s)
}
, (3.49)
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where E
[0]
p is the ground state energy of the baryon. Summing over s, we have

∑
s

u(~p, s)u(~p, s) =− i/p+m

G2(Γ; ~p, t) =(ZZ)(E[0]
p , ~p)e

−E[0]
p tA(Γ, ~p,m[0]),

(3.50)

where we have defined the kinematical constant

A(Γ, ~p,m[0]) ≡ Tr
{

Γ(−i/p+m[0])
}
. (3.51)

The most common projector used is the “unpolarised” projector Γ = Γ4 ≡
(I + γ4)/2 which gives rise to

G2(~p, t) ≡ G2(Γ4; ~p, t) = (ZZ)(E[0]
p , ~p)e

−E[0]
p t, (3.52)

with the relabelling of (ZZ)(E
[0]
p , ~p)A(Γ4, ~p,m

[0]) → (ZZ)(E
[0]
p , ~p). The main fo-

cus of this thesis is fundamentally on the question “when can we be justified in the
approximation, (0 � t)?” The results in Chapter 7 is a detailed analysis on the
importance of this approximation and when we can be justified in this approxima-
tion for the two-point correlation functions and three-point correlation functions
(defined in Section 3.4.2).

Using the propagators described in Section 3.3, we create two-point correlators
on the lattice by combining different quark propagators to create the system we
want to analyse. For a baryon that consists of two different types of quarks (e.g.
up and down quark for proton/neutron), we can write down their interpolating
fields for a proton.

χα(x) = εabcuaα(x)ubβ(x)C̃βγd
c
γ(x) χα(x) = εa

′b′c′uaα(x)d
b

β(x)C̃βγu
c
γ(x). (3.53)

The quark fields u and d refer to the “doubly” or the “singly” -represented
up and down quark in the proton which correspond to the quark occurring twice
or once in the baryon respectively (and the convention q refers to any quark).

The spin matrix C̃ = Cγ5 where C is the charge conjugation matrix. In Sakurai
representation, we have C̃ = γ4γ2γ5 = γ3γ1.

The forward propagating two-point correlator can be expressed in terms of
quark fields

G2(Γ; ~p, t) ≡
∑
~x

e−i~p·~xεabcεa
′b′c′C̃βγC̃β′γ′Γα′α 〈uaα(x)ubβ(x)dcγ(x)ua

′

α′(0)d
b′

β′(0)uc
′

γ′(0)〉 .

(3.54)
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Next we perform Wick contractions for all possible combinations. The standard
Wick contraction of two quark fields we define as the propagator in Eq.(3.38),
dropping the (U,mq) for ease of notation

S
(q)aa′

αα′ (x, y) ≡ qaα(x)qa
′

α′(y), (3.55)

where q represents the quark flavour used in the contraction, which is either the
doubly/singly quark in the baryon, or in general could correspond to a disconnected
quark (e.g. strange quark in the proton). In Eq.(3.54) we can write down two
different ways to contact all the quark fields

G2(Γ; ~p, t) =
∑
~x

e−i~p·~xεabcεa
′b′c′C̃βγC̃β′γ′Γα′α

〈S(d)cb′

γβ′ (x, 0)
(
S

(u)aa′

αα′ (x, 0)S
(u)bc′

βγ′ (x, 0) + S
(u)ac′

αγ′ (x, 0)S
(u)ba′

βα′ (x, 0)
)
〉 .

(3.56)

For simplicity, we define the quantity

S
(q)cb′

γ′β (x, 0) ≡ C̃βγS
(q)cb′

γβ′ (x, 0)C̃β′γ′ , (3.57)

which simplifies the expression to

G2(Γ; ~p, t) =
∑
~x

e−i~p·~xεabcεa
′b′c′

[〈
Tr
{

ΓS(u)aa′(x, 0)
}

Tr
{
S(d)cb′(x, 0)S(u)bc′(x, 0)

}〉
+

〈
Tr
{

ΓS(u)ac′(x, 0)S(d)cb′(x, 0)S(u)ba′(x, 0)
}〉]

.

(3.58)

So once we have constructed the propagators S and S on each of the gauge
field, we can take traces of the combinations above to give the two-point correlation
function G2.

3.4.2 Three-Point Functions

To investigate the internal structure of the hadron (in this case, baryon), we must
create a three-point correlation function. The three-point correlation function is
analogous to the two-point correlator with the added current insertion operator
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O(q) at some intermediate position (~y, τ) on some quark q = up, down, strange, ....
Again we assume the creation operators are at the origin

G3(Γ; ~p ′, t; ~q, τ ;O(q)) =
∑
~x,~y

e−i~p
′·~xei~q·~yTr

{
Γ 〈Ω|χ(~x, t)O(q)(~y, τ)χ(~0, 0) |Ω〉

}
.

(3.59)
This time, we have two independent momenta ~q and ~p ′ which correspond to the

momenta at the current insertion space-time point (~y, τ) and sink (~x, t). For ease
of notation, we refer to the source momentum pµ = p′µ − qµ. We follow the same
procedure for the two-point correlation function, starting with time invariance
from Eq.(3.40)

G3(Γ; ~p ′, t; ~q, τ ;O(q)) =
∑
~x,~y

e−i~p
′·~xei~q·~y

Tr
{

Γ 〈Ω| eĤte−i~̂p·~xχ(~0, 0)e−Ĥtei~̂p·~x ×

eĤτe−i~̂p·~yO(q)(~0, 0)e−Ĥτei~̂p·~yχ(~0, 0) |Ω〉
}
.

(3.60)

Inserting the complete set of states from Eq.(3.41)

G3(Γ; ~p ′, t; ~q, τ ;O(q)) =
∑
~x,~y

∑
N1,N2

1

EN1EN2

e−i~p
′·~xei~q·~y

Tr
{

Γ 〈Ω| eĤte−i~̂p·~xχ(~0, 0)e−Ĥtei~̂p·~x |N1〉

〈N1| eĤτe−i~̂p·~yO(q)(0)e−Ĥτei~̂p·~y |N2〉 〈N2|χ(~0, 0) |Ω〉
}
,

(3.61)

with the state Ni, i = 1, 2 being decomposed into energy Epi , momentum ~pi and
spin si. Using the eigenvalues in Eq.(3.42) with the notation change of s→ s1 or
s2, we have

G3(Γ; ~p ′, t; ~q, τ ;O(q)) =
∑
N1,N2

∑
~x,~y

e−i~p
′·~xei~q·~y

1

EN1EN2

Tr
{

Γ 〈Ω|χ(~0, 0)e−Ep1 tei~p1·~x |N1〉 〈N1| eEp1τe−i~p1·~y

O(q)(0)e−Ep2τei~p2·~y |N2〉 〈N2|χ(~0, 0) |Ω〉
}
.

(3.62)
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Next we have the prescription ~p1 → ~p ′ and ~p2 → ~p = ~p ′ − ~q due to the two
delta sums over ~x and ~y demonstrated in Eq.(3.44)

G3(Γ; ~p ′, t; ~q, τ ;O(q)) =
∑
N1,N2

1

EN1EN2

e−Ep′ te−(Ep−Ep′ )τ

Tr
{

Γ 〈Ω|χ(~0, 0) |N1〉 〈N1|O(q)(0) |N2〉 〈N2|χ(~0, 0) |Ω〉
}
.

(3.63)

Utilising the spin sum in Eq.(3.46) along with

〈Ep′ , ~p ′, s1|O(q)(0) |Eq, ~p, s2〉 = u(~p ′, s1)JO(q)(q2)u(~p, s2), (3.64)

where JO(q)(q2) is an appropriate form factor combination for the operator O
described in Sections 2.4 and 2.5. Substituting all the overlaps gives us expressions

G3(Γ; ~p ′, t; ~q, τ ;O(q)) =
∑
Ep′ ,Ep

∑
s1,s2

1

EpEp′
e−Ep′ te−(Ep−Ep′ )τ

Tr
{

Γ
√
Ep′Z(Ep′ , ~p

′)u(~p ′, s1)u(~p ′, s1)JO(q)(q2)

u(~p, s2)
√
EpZ(Ep, ~p)u(~p, s2)

}
,

(3.65)

then summing over the spin s1 and s2 as shown in Eq.(3.50), we have

G3(Γ; ~p ′, t; ~q, τ ;O(q)) =
∑
Ep′ ,Ep

e−Ep′ te−(Ep−Ep′ )τZ(Ep′ , ~p
′)Z(Ep, ~p)

1√
Ep′Ep

Tr
{

Γ(−i/p′ +msi)JO(q)(q2)(−i/p+mso)
}
,

(3.66)

where we have defined msi and mso as the source and sink ground state masses,
which will generally be m = mso = msi. For convenience, we define the quantity

FF (Ep → Ep′ ,Γ, O
(q)) ≡ Tr

{
Γ(−i/p′ +msi)JO(q)(q2)(−i/p+mso)

}
. (3.67)

Looking at the bare two- and three-point correlators individually, you cannot
access the form factor JO(q)(q2) due to the Z(Ep′ , ~p

′) and Z(Ep, ~p) terms. To
remove these, there are one of two combinations we take depending on which
momenta we have access to
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R(Γ; ~p ′, t; ~q, τ ;O(q)) ≡ G3(Γ; ~p ′, t; ~q, τ ;O(q))

G2(~p ′, t)

√
G2(~p ′, τ)G2(~p ′, t)G2(~p, t− τ)

G2(~p, τ)G2(~p, t)G2(~p ′, t− τ)
,

(3.68)

R2(Γ; ~p ′, t; ~q, τ ;O(q)) ≡

√
G3(Γ; ~p ′, t; ~q, τ ;O(q))G3(Γ; ~p, t;−~q, τ ;O(q))

G2(~p ′, t)G2(~p, t)
, (3.69)

where we have omitted Γ = Γ4 as our projector for the two-point correlation
function for notational convenience. With these ratios, we have already made the
assumption that m = mso = msi so that the same interpolating fields are used for
the two- and three-point correlators.

When we look at Eq.(3.68), we can break it into analysing the “energy and
time dependence”, the “Z dependence” and everything else that is left over. Since
we know a priori that we need to under go a large current insertion and sink time
approximation t� τ � 0, we assume this for the derivation below.

The energy and time dependence for the ratio function Eq.(3.68) is

R(Γ; ~p ′, t; ~q, τ ;O(q))time = e
−E[0]

p′ te
−
(
E

[0]
p −E

[0]

p′

)
τ
e
E

[0]

p′ t×√
e
−E[0]

p′ τe
−E[0]

p′ te−E
[0]
p (t−τ)e−E

[0]
p τe−E

[0]
p te

−E[0]

p′ (t−τ)
,

(3.70)

which reduces to

R(Γ; ~p ′, t; ~q, τ ;O(q))time = e
−
(
E

[0]
p −E

[0]

p′

)
τ

√
e
−2
(
E

[0]

p′ −E
[0]
p

)
τ

= 1. (3.71)

So we see that taking this combination removes all time dependence from our
correlation function at the large time approximation. Next we look at the Z term

R(Γ; ~p ′, t; ~q, τ ;O(q))Z =
Z(E

[0]
p′ , ~p

′)Z(E
[0]
p , ~p)

Z(E
[0]
p′ , ~p

′)Z(E
[0]
p′ , ~p

′)

√√√√Z(E
[0]
p′ , ~p

′)Z(E
[0]
p′ , ~p

′)

Z(E
[0]
p , ~p)Z(E

[0]
p , ~p)

R(Γ; ~p ′, t; ~q, τ ;O(q))Z =

√√√√Z(E
[0]
p′ , ~p

′)Z(E
[0]
p , ~p)

Z(E
[0]
p , ~p)Z(E

[0]
p′ , ~p

′)
.

(3.72)

Lastly, we can remove the Z dependence if we assume Z(E
[0]
p′ , ~p

′)Z(E
[0]
p , ~p) is

real.
Using the definition in Eq.(3.67), the left-over becomes the whole ratio function

(as the other terms become 1)
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Figure 3.2: A pictorial representation of the connected (left) and disconnected
(right) contributions to the three-point correlation function depending on the how
we Wick contract Eq.(3.76).

R(Γ; ~p ′, t; ~q, τ ;O(q)) =
1√

E
[0]
p E

[0]
p′

 E
[0]
p′

E
[0]
p′ +m


√√√√√
E[0]

p′ +m

E
[0]
p′

( E
[0]
p

E
[0]
p +m

)
×

FF (E[0]
p → E

[0]
p′ ,Γ, O

(q)),

(3.73)

which, when reduced down, becomes

R(Γ; ~p ′, t; ~q, τ ;O(q)) = FF (E[0]
p → E

[0]
p′ ,Γ, O

(q))
1√

(E
[0]
p′ +m[0])(E

[0]
p +m[0])

,

(3.74)
which we can substitute the defined A kinematical function from Eq.(3.51)

R(Γ; ~p ′, t; ~q, τ ;O(q)) = FF (E[0]
p → E

[0]
p′ ,Γ, O

(q))
1√

E
[0]
p E

[0]
p′

(
A(Γ4, ~p,m

[0])A(Γ4, ~p
′,m[0])

)− 1
2
.

(3.75)

Following the same process for the two-point correlation function construction,
we class the Wick contracted terms into disconnected and connected terms which
correspond to whether the current insertion quarks are contracted with themselves
or not respectively (pictorially demonstrated in Figure 3.2)
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Gdis
3 (Γ; ~p ′, t; ~q, τ ;O(q)) =

∑
~x,~y

e−i~p·~xei~q·~yεabcεa
′b′c′C̃βγC̃β′γ′Γα′α×

〈uaα(x)ubβ(x)dcγ(x)qdδ(y)Ode
δε q

e
ε (y)ua

′

α′(0)d
b′

β′(0)uc
′

γ′(0)〉,
(3.76)

where q = up, down, strange, ... is a quark chosen to obtain the total current
contribution for the current acting on the selected quark (which includes both
disconnected and connected contributions).

The disconnected contribution has the Wick contracted form of

Gdis
3 (Γ; ~p ′, t; ~q, τ ;O(q)) =

∑
~x,~y

e−i~p·~xei~q·~yεabcεa
′b′c′

〈[
Tr
{

ΓS(u)aa′(0, x)
}

Tr
{
S(d)cb′(0, x)S(u)bc′(0, x)

}
+

Tr
{

ΓS(u)ac′(0, x)S(d)cb′(0, x)S(u)ba′(0, x)
}]
×

Tr
[
S(q)ef (y, y)Ofe(y)

]〉
,

(3.77)

which is the same calculation for the two-point correlation function with the added
disconnected term

Sdis ≡ Tr
[
S(q)ef (y, y)Ofe(y)

]
(3.78)

This extra term is difficult to calculate as we need to construct propagators
from all source to sink space-time locations. While not discussed in this thesis,
this has been looked at for nucleons [75–77].

At this point, we branch off into two common techniques for calculating the
three-point correlation functions. The first method is the sequential source through
the operator (TTO) technique in which we firstly construct a special TTO prop-
agator, then construct the three-point correlator utilising the TTO and regular
propagator. This propagator is defined as

Ŝ
(q)ab
αβ (x; ~q, τ ; 0, O) ≡

∑
~y

ei~q·~yS
(q)ad
αδ (x, y)Ode

δεS
(q)eb
εβ (y, 0), (3.79)

where we have introduced the “hat”ˆnotation to denote the sequential propagator.
To construct this propagator on the lattice, we rearrange the correlator as follows
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∑
x

M (q)za
ωα (x′, x)Ŝ

(q)ab
αβ (x; ~q, τ ; 0, O) =

∑
~y,x

ei~q·~yM
(q)za
ωδ (x′, x)S

(q)ad
αδ (x, y)Ode

δεS
(q)eb
εβ (y, 0),

(3.80)
the inverse propagator M is defined in Eq.(3.38). Reducing the equation down,
we have the matrix inverse equation∑

~x

M (q)za
ωα (x′, x)Ŝ

(q)ab
αβ (x; ~q, τ ; 0, O) = ei~q·~x

′
Oze
ωεS

(q)eb
εβ (x′, 0), (3.81)

where it is noted that x′ = (~x′, t).
So in the same way as inverting the equation in Eq.(3.38), we can invert the

above to create the TTO propagator. The TTO method of calculating the three-
point correlator requires a chosen operator and current time-momentum (~q, τ) since
the TTO propagator involves O and ~q (as seen in Table 3.1).

Now we have the definition for the TTO propagator, we can utilise them in
the quark level analysis of the three-point correlators. The Wick contracted three-
point correlators for the current insertion on the doubly and singly -represented
quarks are as follows

G3(Γ; ~p ′, t; ~q, τ ;O(u)) =
∑
~x

e−i~p·~xεabcεa
′b′c′Γα′α〈

S
(d)cb′

γ′β (x, 0)
[
Ŝ

(u)aa′

αα′ (x; ~q, τ ; 0, O)S
(u)bc′

βγ′ (x, 0)+

Ŝ
(u)ac′

αγ′ (x; ~q, τ ; 0, O)S
(u)ba′

βα′ (x, 0)+

Ŝ
(u)ba′

βα′ (x; ~q, τ ; 0, O)S
(u)ac′

αγ′ (x, 0)+

Ŝ
(u)bc′

βγ′ (x; ~q, τ ; 0, O)S
(u)aa′

αα′ (x, 0)
]〉

,

(3.82)

and

G3(Γ; ~p ′, t; ~q, τ ;O(d)) =
∑
~x

e−i~p·~xεabcεa
′b′c′Γα′α〈

Ŝ
(d)cb′

γ′β (x; ~q, τ ; 0, O)
[
S

(u)aa′

αα′ (x, 0)S
(u)bc′

βγ′ (x, 0)+

S
(u)ac′

αγ′ (x, 0)S
(u)ba′

βα′ (x, 0)
]〉

,

(3.83)

using the underline notation defined in Eq.(3.57). This method was not employed
in this thesis and only included for completeness.
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Figure 3.3: Diagram showing (left) the fixed sink propagator section of the three-
point correlation function used in the sequential source fixed sink method and
(right) the source used in the inversion to create the fixed sink propagator. The
label (d/s) refers to a doubly or singly represented quark flavor propagator. For
example, the proton we have (d/s) = (u/d) for the up and down quarks.

The second method, named the fixed sink (FS) propagator construction method,
starts by rewriting the three-point correlator in three terms

G3(Γ; ~p ′, t; ~q, τ ;O(q)) =
∑
~y

ei~q·~y 〈Σ(q)(~p ′, t; y; 0; Γ)O(y)S(q)(y, 0)〉 , (3.84)

where we define the fixed sink propagator Σ as

Σ(q)(~p ′, t; y; 0; Γ) ≡
∑
~x

e−i~p
′·~xS

(q)
(C)(x, 0,Γ)S(q)(x, y), (3.85)

and the source for the inversion S
(q)
(C) is represented by all the quark lines excluding

the one with a current vertex. The source is defined individually for the doubly-
represented quark vertex

S
(u)cb′

(C)βγ′(x, y, 0,Γ) ≡εabcεa′b′c′×[
Γα′αS

(d)aa′

αα′ (x, 0)S
(d)bc′

βγ′ (x, 0) + Γα′αS
(d)ac′

αγ′ (x, 0)S
(d)ba′

βα′ (x, 0)
]
,

(3.86)

and the singly-represented quark vertex

S
(d)bc′

(C)βγ′(x, y, 0,Γ) ≡εabcεa′b′c′×[
Γα′αS

(d)cb′

βγ′ (x, 0)S
(u)aa′

αα′ (x, 0) + ΓβαS
(d)ca′

γδ′ (x, 0)S
(u)ab′

αδ′ (x, 0)+

Γα′βS
(d)ab′

δγ′ (x, 0)S
(u)ca′

δα′ (x, 0) + Γβγ′S
(d)aa′

αδ′ (x, 0)S
(u)cb′

αδ′ (x, 0)
]
.

(3.87)

35



Fixed Sink Method

Fixed before inversion Fixed Symbol Free after inversion Free Symbol
interpolating fields χ current insertion operator O

spin projector matrix Γ current insertion time τ
sink momentum ~p ′ current/source momentum ~p or ~q

sink annihilation time t
current quark flavour u/d

Through the Operator Method

Fixed before inversion Fixed Symbol Free after inversion Free Symbol
current insertion operator O interpolating fields χ

current insertion time τ spin projector matrix Γ
current/source momentum ~p or ~q sink momentum ~p ′

sink annihilation time t
current quark flavour u/d

Table 3.1: Table describing what variables are fixed before the second inversion
(left) or free to be varied post-inversion for both the fixed sink method (top) and
through the operator method (bottom) for the three-point correlation function
creation.

The diagrams that demonstrate the propagators used to construct the fixed sink
propagator, as well as the source used in the construction of the FS propagator, are
shown in Figure 3.3. Analogous to the TTO propagator, the fixed sink propagator
is created via the inversion equation

∑
y

M (q)za
ωα (x′, y)

(
γ5Σ(q)†(~p ′, t; y; 0; Γ)γ5

)ab
αβ

= e−i~p
′·~x ′
(
γ5S

(q)†
(C) γ5

)zb
ωβ

(x′, 0,Γ),

(3.88)
where we have used the summed space-time point y = (~y, τ).

For the fixed sink method of creating the three-point correlation function, the
baryon interpolating field χ, the spin projector Γ and the sink momentum ~p ′ must
be decided before creating the fixed sink propagator. For this reason, generally the
ratio function Eq.(3.68) is used since access to the three-point correlation function
with ~p ′ ↔ ~p requires additional computational time to create.

In Table 3.1 for the fixed sink method and the through the operator method, we
show what quantities must be set before the second inversion and what quantities
are free to be varied after the second inversion.
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Chapter 4

Renormalisation

Since in continuum QCD, calculating the Feynman path integral leads to divergent
integrals, we must cut off the integral to remove these divergences. When moving
to non-perturbative lattice QCD, we introduce a lattice spacing a, which acts as
a regulator by cutting off the high frequency modes of the integral. Calculating
correlation functions and extracting values (e.g. in Chapter 6) using the cutoff
provided by a is not sufficient to give values that are comparable with experimental
results. The general approach to renormalising a lattice operator O(a) (defined in
Eq.(3.33)) for observables which depend on the choice of regulator is

OS(M) = ZSO(M, g0(a))O(a), (4.1)

where we have renormalised using some particular scheme S for removing diver-
gences, at some scale M and at a coupling strength g0(a).

4.1 Vector Form Factor Renormalisation

At finite lattice spacing, the local vector current O(q) = qγµq is not conserved. By
utilising the Ward identity, the conserved vector current for Wilson-style fermions
has the form

Oa(c)
µ (x) ≡ 1

2

[
q̄(x)(γµ − I)taUµ(x)q(x+ µ) + q̄(x+ µ)(γµ + I)taU †µ(x)q(x)

]
,

(4.2)
where ta is a hermitian group generator of SU(nf ) (nf being the number of
flavours). So by taking the combination using the conserved vector current, we can
renormalise the local vector current by constructing the ratio of lattice three-point
functions Eq.(3.66)
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G3(Γ4;~0, t;~0, τ ;O
(c)
µ )

G3(Γ4;~0, t;~0, τ ;Oµ)

t�0−−→ ZV

Z
(c)
V

= ZV , (4.3)

where ZV is the renormalisation constant for the local vector current. Since the
conserved vector current was not calculated for this thesis, we can renormalise the
vector form factor by using charge conservation with the fact that the ratio factor
defined in Eq.(3.68), when applied to the vector current operator, produces

R(Γ;~0, t;~0, τ ;O4)
t�0−−→ 1√

2ZV
FF (m→ m,Γ4, O4) =

1

ZV
. (4.4)

4.2 General Non-Perturbative Renormalisation

This section follows closely the work and method done in [78] and [79] to calcu-
late the renormalisation values. There are other methods available, for example
the Schrödinger functional method [80–84], but for this thesis we use the Rome-
Southampton approach to calculating the renormalisation values.

To compute general renormalisation factors for all the current types, we start
by constructing Greens functions on the lattice with source four-momentum p and
sink four-momentum p ′.

Gαβ(p, p ′, O) ≡a
12

V

∑
x,y,z

e−ip
′·(x−z)e−ip·(z−y) 〈Oαβ(x, y, z)〉 ,

Oαβ(x, y, z) ≡qα(x)O(z)qβ(y)

(4.5)

where V is the volume of the lattice and q is an up/down/strange quark. Next we
define the amputated Greens function as

Γ(p, p ′, O) = S−1(p)G(p, p ′, O)S−1(p ′), (4.6)

with the definition of a quark propagator being

S(p) ≡ a8

V

∑
x,z

e−ip·(x−y) 〈qα(x)qβ(y)〉 , (4.7)

4.2.1 Zero Transfer Momentum

The simplest case, which was calculated in this thesis, occurs when p = p ′. For this
case, we can impose the renormalisation condition on the vertex function [85–87]
as
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ΓR(p) = Z−1
q ZΓ(p), (4.8)

where Zq is the renormalisation for the fermion field (e.g. qR = Zqq), and Z is the
renormalisation value required. The renormalisation value Zq can be equated to
the projection of the propagator onto the Born (or tree level) massless quark

Zq = Λq(p)|p2=µ2 , Λq(p) =
Tr(−i

∑
µ sin (apµ)aS−1(p))

12
∑

µ sin2 (apµ)
. (4.9)

We fix Z by the renormalisation condition

1

12
Tr
[
ΓR(p, p, O)Γ−1

Born(p, p, O)
]
p2=µ2

= 1, (4.10)

with the renormalisation scale set to p2 = µ2 for some µ2. Utilising the Born term
for the vertex function as ΓBorn, with some rearranging, we can write an expression
for the renormalisation constant Z

Z = 12ZqTr
[
Γ(p, p, O)Γ−1

Born(p, p, O)
]−1

p2=µ2
. (4.11)

The Born term ΓBorn(p, p ′, O) is dependent on which O is selected, the mo-
mentum p and the momentum transfer p ′ − p (if non-zero)

ΓBorn(p, p, γµ) =− iγµ,
ΓBorn(p, p, I) =− iI,

ΓBorn(p, p, γµγ5) =− iγµγ5,

ΓBorn(p, p, γµγν) =− iγµγν ,
(4.12)

and the Born term for the momentum fraction 〈x〉 shown in Eq.(2.38) has the form

ΓBorn

p, p, γ4

↔
D4 −

1

3

3∑
i=1

γi
↔
Di

 = γ4p4 −
1

3

3∑
i=1

γipi. (4.13)

The lattice momentum p must be chosen to avoid the energy scales

Λ2
QCD � p2 ≤

(
π

a

)2

, (4.14)

which avoids the QCD scale Λ2
QCD, and lattice size effects from

(
π
a

)2
.

We denote the result from this renormalisation calculation as a variant of the
Regularisation Independent Momentum scheme (denoted RI ′ −MOM).
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4.2.2 Lattice Greens Function Calculation

Firstly, the Fourier transformed quark propagator in Eq.(4.7) can be calculated by
first calculating the inverse of the Dirac matrix Eq.(3.38), then taking the Fourier
transform (we omit the conventional tilde used for Fourier transforms)

S(p) =
∑
x

e−ip·xS(x, 0), (4.15)

making mention to this being a space-time Fourier transform, opposed to the
spatial Fourier transform used for correlation functions in Chapters 3, 5 and 6.
Then for the Greens function defined in Eq.(4.5), the total construction is

G(p, p ′, O) =
∑
z

e−i(p
′−p)·zS(p ′, z)O(z)S(z, p),

S(z, p) ≡
∑
y

S(z, y)eip·y,

S(p, z) ≡
∑
y

S(y, z)eip·y,

(4.16)

where we have utilised the “momentum source” propagator S(p, z) or S(z, p) that
propagates from a position z to some momentum p (or vice-versa). We construct
such a propagator via the inversion∑

ω

M(z, ω)S(ω, p) = eip·z. (4.17)

I.e. Inverting the above equation will produce a momentum source propagator
S(z, p).

4.2.3 Moving to the MS Scheme

The most commonly used scheme is named the Modified Minimal Subtraction
scheme (denoted MS) usually taken at the energy scale µ = 2 GeV . The first
attempt to convert to this scheme would be to use Eq.(4.1) and convert directly
to MS

ZMS(2GeV ) = ∆ZMS
RI′−MOM(µ)ZRI′−MOM(µ). (4.18)

We first move to the Renormalisation Group Invariant (RGI) scheme, resulting
in

ZMS(2GeV ) = ∆ZMS
RGI(2GeV )∆ZRGI

RI′−MOM(µ)ZRI′−MOM(µ). (4.19)
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We now perturbatively calculate the conversion factors ∆Z by starting with
the three loop approximation to the coupling constant gS(µ) in some scheme S

gS(µ)2

16π2
=

1

β0L
− β1

β3
0

logL

L2
+

1

β5
0

β2
1 log2 L− β2

1 logL+ β2β0 − β2
1

L3
,

L ≡ log
µ2

Λ2
MS

,

(4.20)

where the βS function defined in Appendix B along with the perturbative expan-
sion of said quantity. Once the coupling strengths g have been calculated, the
conversion factor can be solved by the relation

∆ZS(µ) =

(
2β1

gS(µ)2

16π2

)− γS1
2β1

exp

∫ gS(µ)

0

dg′

(
γS(g′)

βS(g′)
+

γ0

β0g′

), (4.21)

which, up to three-loop approximation, is

∆ZS(µ) =

(
2β1

gS(µ)2

16π2

)− γS1
2β1

[
1 +

gS(µ)2

16π2

β1γ0 − β0γ
S
1

2β2
1

+
gS(µ)4

(16π2)2
×

−2β3
0γ
S
2 + β2

0(γS1 (2β1 + γS1 ) + 2β2β0)− 2β0β1γ0(β1 + γS1 ) + β2
1γ

2
0

8β4
0

]
.

(4.22)

Again, the γS function is also defined in Appendix B along with the perturba-
tive expansion of said quantity.

Lastly, we note that each calculation at p = µ in the RI’-MOM scheme is
a momentum dependent result, where-as the renormalisation value we require is
at zero momentum. So the process is to use the acceptable momentum range in
Eq.(4.14) in the RGI scheme, chirally extrapolate back to zero momentum and
then lastly convert to the MS scheme at µ = 2GeV .

4.3 Calculation

In this section, we undertake a calculation in the RI ′ − MOM scheme for the
renormalisation constant Z〈x〉, as well as demonstrating how we transform this
quantity to the MS scheme.
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4.3.1 Lattice Parameters

These results presented were undertaken on a 323 × 64 lattice with β = 5.50
using the SLiNC action. Working with a lattice spacing a = 0.074 fm, we set
the clover parameter csw = 2.65 and the stout parameter ω = 0.1 [66, 74]. To
try to remove quark mass dependence, multiple quark masses were calculated and
chirally extrapolated back to the physical quark mass. The κ and corresponding
pion masses are displayed in the right of Table 4.1. Here we present the results for
the renormalisations undertaken for the five operators, which correspond to five
renormalisation constants displayed in the left of Table 4.1.

Operator O Renormalising Constant
γ4 ZV
γ3γ5 ZA
γ1γ2 ZMS

T

I ZMS
S

D4γ4 − 1
3
(
∑3

i=1Diγi) ZMS
〈x〉

κu = κd = κs amπ

0.120900 0.1757(10)
0.120920 0.1647(4)
0.120950 0.1508(4)
0.120990 0.1285(7)
0.121021 0.1089(21)

Table 4.1: Two tables showing on the left, the different renormalising constants
calculated along with which operators they derive from and on the right, the κ
values along with the corresponding pion masses used in the linear extrapolation
to the physical pion mass.

The resolution of the momenta allowable in standard lattice QCD can be im-
proved by introducing a twist to the boundary condition [88]. The allowable mo-
menta on a periodic boundary conditional lattice (in lattice units of momentum)
is

p =
2π

L
(nx + θx, ny + θy, nz + θz,

1

2
(nt + θt)), (4.23)

for some set of integers nx, ny, nz, nt and twist angles θx, θy, θz, θt. We have made
the assumption with the number of lattice points in each dimension to be Lx =
Ly = Lz = 1

2
Lt = L. The optimal choice to reduce the number of perturbative

corrections needed is to choose momentum diagonally in four-dimensional space
[66]. Table 4.2 summarises the momenta used in the calculation.

42



θ = (0, 0, 0, 0) θ = (1
2
, 1

2
, 1

2
, 0) θ = (1

4
, 1

4
, 1

4
, 1

2
)

nxyzt + θxyzt (ap)2 nxyzt + θxyzt (ap)2 nxyzt + θxyzt (ap)2

(1, 1, 1, 1) 0.15421 (01
2
, 01

2
, 01

2
, 01

2
) 0.03855 (01

4
, 01

4
, 01

4
, 01

4
) 0.00964

(2, 2, 2, 2) 0.61685 (11
2
, 11

2
, 11

2
, 11

2
) 0.34698 (11

4
, 11

4
, 11

4
, 11

4
) 0.24096

(3, 3, 3, 3) 1.38791 (21
2
, 21

2
, 21

2
, 21

2
) 0.96383 (21

4
, 21

4
, 21

4
, 21

4
) 0.78070

(4, 4, 4, 4) 2.46740 (31
2
, 31

2
, 31

2
, 31

2
) 1.88910 (31

4
, 31

4
, 31

4
, 31

4
) 1.62887

(5, 5, 5, 5) 3.85531 (41
2
, 41

2
, 41

2
, 41

2
) 3.12280 (41

4
, 41

4
, 41

4
, 41

4
) 2.78546

(6, 6, 6, 6) 5.55165 (51
2
, 51

2
, 51

2
, 51

2
) 4.66493 (51

4
, 51

4
, 51

4
, 51

4
) 4.25048

(7, 7, 7, 7) 7.55642 (61
2
, 61

2
, 61

2
, 61

2
) 6.51548 (61

4
, 61

4
, 61

4
, 61

4
) 62393

(8, 8, 8, 8) 9.86960 (71
2
, 71

2
, 71

2
, 71

2
) 8.67446 (71

4
, 71

4
, 71

4
, 71

4
) 8.10580

Table 4.2: Table showing the different momenta calculated, utilising 3 different
twist angles for more resolution. The first column corresponding to θ = (0, 0, 0, 0)
corresponds to the standard, non-twisted boundary condition.

4.3.2 Results

We begin by analysing the renormalisation constants in the RI ′ −MOM scheme
calculated over multiple p2. The green points plotted in Figures 4.2, 4.3 and 4.1
represent the renormalisation constant ZRI′−MOM for the scalar, tensor and mo-
mentum fraction operators respectively. In this scheme, we can see a non-linear
dependence on the momentum scale p2.

Next, by utilising the scheme transformation value ∆ZRGI
RI′−MOM found in Eq.(4.19),

we can plot the renormalisation constant in the RGI scheme. The red shaded
area in Figures 4.2, 4.3 and 4.1 correspond to an area that encapsulates the errors
associated with fitting p2 ∈ [5, 10] and p2 ∈ [2, 10] (satisfying Eq.(4.14)). This en-
capsulation is done to take into account any deviations from a linear set of points
in the data.

Lastly, we convert to the MS scheme at 2 GeV for every scale p2 as demon-
strated by the blue points in Figures 4.2, 4.3 and 4.1. The linear fit is the same
undertaken in RGI scheme, only multiplied by ∆ZMS

RGI to coincide with the MS
scheme.

Up to third order, the vector and axial vector renormalisation constants ZV
and ZA have the same coefficients in the MS and RI ′ −MOM schemes (shown

in Appendix B). This means ∆ZMS
RI′−MOM = 1 in Eq.(4.18) and is why the vector

(red) and axial vector (blue) values in Figure 4.4 show the renormalisation values
in the MS scheme, and equivalently the RI ′ −MOM scheme.

The final result in the MS scheme at µ = 2 GeV for the momentum fraction
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renormalisation constant is

ZMS
〈x〉 = 1.104(23). (4.24)

For error analysis and improved renormalisation values (besides 〈x〉), see [78].

0 2 4 6 8 10

p2(GeV)2

1.0

1.5

2.0

2.5

Z
〈 x
〉

Z
MS〈
x
〉 (µ= 2GeV) =ZMS

RI ′ −MOMZ
RI ′ −MOM
bare

value = 1.489(31)

value = 1.104(23)

Z
RI ′ −MOM〈
x
〉

Z
RGI〈
x
〉

Z
MS〈
x
〉

Figure 4.1: Graph showing the momentum fraction renormalisation constant ZS〈x〉
plotted over p2 in RI ′ −MOM , RGI and MS schemes. The lines are linear fit
functions fitted to p2 values that appropriately satisfy Eq.(4.14), which are used
to extrapolate to p2 = 0.
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0.5

0.6

0.7

0.8

0.9

Z
S

ZMS
S (µ= 2GeV) =ZMS

RI ′ −MOMZ
RI ′ −MOM
bare

value = 0.5604(68)

value = 0.7469(91)

ZRI ′ −MOM
S

ZRGI
S

ZMS
S

Figure 4.2: Graph showing the scalar renormalisation constant ZSI plotted over
p2 in RI ′−MOM , RGI and MS schemes. The lines are linear fit functions fitted
to p2 values that appropriately satisfy Eq.(4.14), which are used to extrapolate to
p2 = 0.
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ZRGI
T
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Figure 4.3: Graph showing the tensor renormalisation constant ZST plotted over
p2 in RI ′−MOM , RGI and MS schemes. The lines are linear fit functions fitted
to p2 values that appropriately satisfy Eq.(4.14), which are used to extrapolate to
p2 = 0.
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Figure 4.4: Graph showing the vector and axial vector renormalisation constants
ZV and ZA plotted over p2. The lines are linear fit functions fitted to p2 values
that appropriately satisfy Eq.(4.14), which are used to extrapolate to p2 = 0.
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Chapter 5

Advanced Correlation Functions

5.1 Smearing the Quark Fields

One of the first ideas to improve the overlap of the correlation functions with
observable states was to “smear” the quark fields to resemble a quark field that is
closest to the state required for the analysis [89]. The general method for achieving
this is

qa(1)α(x) =
∑
~x ′

Hab(~x, ~x ′)qbα(x′),

qa(n)α(x) =
∑
~x ′

Hab(~x, ~x ′)qb(n−1)α(x′),
(5.1)

where Hab(~x, ~x ′) is a smearing matrix which “smears” out the quark operator
around x. Repeated applications of this smearing operator will create different
levels of smearing for the quark operator.

Any type of smearing matrix can be used forH, but for this thesis, the Gaussian
gauge invariant smearing operator is used [89], which is defined as

H
(
~x, ~x ′

)
= (1− α) δ~x ′~x +

α

6

∑
î

{
δ~x ′(~x−î)Uî

(
~x ′
)

+ δ~x ′(~x+î)U
†
î

(
~x ′ − î

)}
, (5.2)

where α is a smearing parameter usually taken to be α = 0.7. Generally this oper-
ator is repeatedly applied to the quark field on the order of 20-150 times to produce
an improved correlator with higher suppression of excited-state contamination.

Pushing this through to propagators, we have the notation

S
(q)aa′

(mn)αα′(x, y) ≡ qa(m)α(x)qa
′

(n)α′(y), (5.3)
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using the level of smearing indices (mn) to represent how many applications of
the smearing operator H have been applied to the sink and source quark fields
respectively.

5.1.1 Fixed Sink Propagator Smearing

When constructing the fixed sink propagator for the fixed sink three-point corre-
lation function, there is no direct access to the sink of the propagator S(q)(x, y) in
Eq.(3.84) since we are inverting Eq.(3.88) to construct Σ(q)(~p ′, t; y; 0; Γ) directly.
To overcome this problem, we look at the smeared version of Eq.(3.85)

Σ
(q)
(mn)(~p

′, t; y; 0; Γ) =
∑
~x

e−i~p
′·~xS

(q)
(C)(mn)(x, 0,Γ)S

(q)
(m0)(x, y), (5.4)

noting that smearing is not to be done on the source of the quark propagator S
(q)
(m0)

beginning at the current y = (~y, τ). For simplicity, we start the with m = 1 case

Σ
(q)
(1n)(~p

′, t; y; 0; Γ) =
∑
~x,~x ′

e−i~p
′·~xS

(q)
(C)(1n)(x, 0,Γ)H(~x, ~x ′)S(q)(x′, y), (5.5)

simply by switching the sum variables ~x ↔ ~x ′ we have exact same equation with
a modified source propagator

S
(q)
(C1)(1n)(x, 0,Γ) ≡

∑
~x ′

e−i~p
′·(~x ′−~x)S

(q)
(C)(1n)(x

′, 0,Γ)H(~x ′, ~x),

Σ
(q)
(1n)(~p

′, t; y; 0; Γ) =
∑
~x

e−i~p
′·~xS

(q)
(C1)(1n)(x, 0,Γ)S(q)(x, y),

(5.6)

and then iteratively apply the procedure m times, to show by induction

S
(q)
(Cm)(mn)(x, 0,Γ) =

∑
~x ′

e−i~p
′·(~x ′−~x)S

(q)
(Cm−1)((m−1)n)(x

′, 0,Γ)H(~x ′, ~x),

Σ
(q)
(mn)(~p

′, t; y; 0; Γ) =
∑
~x

e−i~p
′·~xS

(q)
(Cm)(mn)(x, 0,Γ)S(q)(x, y).

(5.7)

The index m on Cm must be the same as the index m for the sink of S
(q)
(Cm)(mn) or

else the sink smearing for the quark with the current insertion will be of different
size to the spectator quarks.
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5.2 Variational Method for Correlation Functions

The variational method has proven to be a robust and useful tool for studying
two-point correlators [90–96]. The conceptual basis for the variational method is
to create a correlator that is a combination of multiple source and sink smearing
amounts which is optimised to extract the state desired. The process starts by
inferring the existence of an optimised operator for the state β, which is then used
to construct an optimised two-point correlation function

Gβ
2 (~p, t; Γ) ≡

∑
~x

e−i~p·~xTr
{

Γ 〈Ω|φβ(x)φ β(0) |Ω〉
}
, (5.8)

where we have the overlaps

〈Ω|φβ(x) |Eα
p , ~p, s〉 =

√
Eβ
pZ(Eβ

~p , ~p)δαβu(~p, s),

〈Eα
p , ~p, s|φ β(0) |Ω〉 =

√
Eβ
pZ(Eβ

~p , ~p)δαβu(~p, s).

(5.9)

Inserting this into Eq.(3.48)

Gβ
2 (~p, t; Γ) = (ZZ)(Eβ

~p , ~p)e
−Eβ

~p
tTr
{

ΓV (~p)
}
, (5.10)

where we have defined

V (~p) ≡

{ ∑
s u(~p, s)u(~p, s) for β = particle state.∑
s v(~p, s)v(~p, s) for β = antiparticle state.

, (5.11)

where for the above equation, u and v are spinors. We obtain the ground state
when β = 0 and Γ = Γ4

Gβ=0
2 (~p, t) = (ZZ)(E[0]

p , ~p)e
−E[0]

p t. (5.12)

We can approximate the ideal interpolating fields φ by creating a linear com-
bination of N interpolating fields denoted with a tilde φ̃

φβ(x) ≈ φ̃β(x, ~p) ≡
N∑
i=1

vβi (~p)χi(x),

φ β(0) ≈ φ̃ β(0, ~p) ≡
N∑
i=1

uβi (~p)χi(0).

(5.13)

If we express the correlators G2 created over some basis of source and sink
interpolating fields χi, χj as a matrix of correlators (G2)ij, we can construct an
improved two-point correlation function as
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G̃β
2 (~p, t; Γ) = vβi (~p) (G2)ij (Γ; ~p, t)uβj (~p), (5.14)

which constructs a new two-point correlator that has a stronger coupling to state
β. By selecting two sink times t = t0 and t = t0 + ∆vt, u and v can be found via
the solution to the following eigenvalue equations:

vβi (~p)
[
G2(Γ; ~p, t0 + ∆t)G2(Γ; ~p, t0)−1

]
ij

= vβj (~p)λβ, (5.15)[
G2(Γ; ~p, t0)−1G2(Γ; ~p, t0 + ∆t)

]
ij
uβj (~p) = uβi (~p)λβ. (5.16)

Using this construction, it can be shown [96] that in theory the uncertainty
should be

Gβ
2 (~p, t) = G̃β

2 (~p, t) +O(e−(EN+1−Eβ)t0), (5.17)

i.e. excited states have been numerically removed. Recently, this approach has
been extended to three-point correlators, specifically aiming to reduce the effect
of excited-state contamination in matrix elements [45, 46, 97–102].

The estimation for the optimised three-point correlation function of state β has
the form

G̃β
3 (Γ; ~p ′, t; ~q, τ ;O(q)) =

∑
~x,~y

e−i~p
′·~xei~q·~yTr

{
Γ 〈Ω| φ̃β(x)O(q)(y)φ̃ β(0) |Ω〉

}
,

≈ Gβ
3 (Γ; ~p ′, t; ~q, τ ;O(q)) =

∑
~x,~y

e−i~p
′·~xei~q·~yTr

{
Γ 〈Ω|φβ(x, ~p ′)O(q)(y)φ β(0, ~p) |Ω〉

}
.

(5.18)

or rewritten over ij, utilising the same u and v found for the two-point correlators
at a particular momentum

G̃β
3 (Γ; ~p ′, t; ~q, τ ;O(q)) = vβi (~p ′) (G3)ij (Γ; ~p ′, t; ~q, τ ;O(q))uβj (~p). (5.19)

Lastly, we construct the same ratio as previously described in Eq.(3.68):

R̃β(Γ; ~p ′, t; ~q, τ ;O(q)) ≡ G̃β
3 (Γ; ~p ′, t; ~q, τ ;O(q))

G̃β
2 (~p ′, t)

√
G̃β

2 (~p ′, τ)G̃β
2 (~p ′, t)G̃β

2 (~p, t− τ)

G̃β
2 (~p, τ)G̃β

2 (~p, t)G̃β
2 (~p ′, t− τ)

.

(5.20)
It is general convention to omit the tilde, and consider Gβ

2 , Gβ
3 and Rβ as the

variational method optimised functions for state β.
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5.2.1 Bases for the Variational Analysis

Although the main calculation of this thesis only considers different levels of smear-
ing of the source and sink propagators as the basis of the matrix of correlators,
other operators with the same quantum numbers [103] and even shifts in time can
be used to construct the basis.

The general matrix of correlation functions has the form

(G2)ij (Γ; ~p, t) =
∑
~x

e−i~p·~xTr
{

Γ 〈Ω|χi(~x, t)χj(~0, 0) |Ω〉
}
. (5.21)

The usual candidates for χi for the proton being the two creation interpolating
fields

(χ1)α(x) = εabcuaα(x)ubβ(x)C̃βγd
c
γ(x),

(χ2)α(x) = εabc(γ5)αδu
a
δ(x)ubβ(x)Cβγd

c
γ(x),

(5.22)

and their corresponding annihilation interpolating fields

(χ1)α(x) = εa
′b′c′uaα(x)d

b

β(x)C̃βγu
c
γ(x),

(χ2)α(x) = εa
′b′c′uaδ(x)(γ5)αδd

b

β(x)Cβγu
c
γ(x).

(5.23)

Commonly in ground state analysis, χ2 is omitted since it is well known to
have weak coupling to the ground state [93, 104].

As shown in Section 5.1, we can smear the quark fields to create a smeared
interpolating field. Hence we have more candidates for our basis

(χmi)α(x) = εabcua(mi)α(x)ub(mi)β(x)C̃βγd
c
(mi)γ

(x),

(χmi)α(x) = εa
′b′c′ua(mi)α(x)d

b

(mi)β
(x)C̃βγu

c
(mi)γ

(x).
(5.24)

We use the convention where the quark fields are smeared mi times for each
of the basis indices i (for example, m1 = 32 times, m2 = 64 times and m3 = 128
times).

It is important to note that the basis of operators can be the outer product of
any of the bases described here or in the “Pencil of Function” method described
in the next section. In practice, selecting the basis of operators is difficult as with
no knowledge of the overlap depenance of the operators, we need to calculate a
large number of interpolating fields identify an optimal basis for the variational
method.
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5.2.2 Pencil of Function Basis

Although there are many other construction methods (e.g. locally split sink inter-
polating fields [105]), the final one discussed in this thesis is called the “Pencil of
Function” method [106–110].

We begin by defining interpolating fields that have been shifted in time by δ,

χδ (~x, t) ≡ eĤδχ (~x, t) e−Ĥδ = χ (~x, t+ δ) ,

χδ (~x, t) ≡ e−Ĥδχ (~x, t) eĤδ = χ (~x, t− δ) ,
(5.25)

where δ is usually chosen to be 1 or 2. The ij = 2× 2 matrix of correlators is now
defined as shifts in time on the source and sink interpolating fields by δ

(G2)ij (Γ; ~p, t) ≡
∑
~x

e−i~p·~x×

Tr

Γ

[
〈Ω|χ(~x, t)χ(~0, 0) |Ω〉 〈Ω|χδ(~x, t)χ(~0, 0) |Ω〉
〈Ω|χ(~x, t)χδ(~0, 0) |Ω〉 〈Ω|χδ(~x, t)χδ(~0, 0) |Ω〉

]
ij

 .

(5.26)

Due to transnational invariance, we note that

〈Ω|χ(~x, t)χδ(~0, 0) |Ω〉 = 〈Ω|χ(~x, t)χ(~0,−δ) |Ω〉 → 〈Ω|χ(~x, t+ δ)χ(~0, 0) |Ω〉 ,
(5.27)

and as a result, we can rewrite Eq.(5.26) to

(G2)ij (Γ; ~p, t) ≡
∑
~x

e−i~p·~x×

Tr

Γ

[
〈Ω|χ(~x, t)χ(~0, 0) |Ω〉 〈Ω|χ(~x, t+ δ)χ(~0, 0) |Ω〉
〈Ω|χ(~x, t+ δ)χ(~0, 0) |Ω〉 〈Ω|χ(~x, t+ 2δ)χ(~0, 0) |Ω〉

]
ij

 ,

(5.28)

which with some substitution becomes

(G2)ij (Γ; ~p, t) =

[
G2(Γ; ~p, t) G2(Γ; ~p, t+ δ)

G2(Γ; ~p, t+ δ) G2(Γ; ~p, t+ 2δ)

]
ij

. (5.29)
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A strong recommendation is that we avoid δ = ∆vt since the solution to the
eigenvalue problem in Eq.(5.15) will have a degeneracy.

The corresponding three-point correlation function basis is derived by

(G3)ij (Γ; ~p ′, t; ~q, τ ;O(q)) =
∑
~x,~y

e−i~p
′·~xei~q·~y

Tr

Γ

[
〈Ω|χ(~x, t)O(q)(~y, τ)χ(~0, 0) |Ω〉 . . .
〈Ω|χ(~x, t)O(q)(~y, τ)χδ(~0, 0) |Ω〉 . . .

〈Ω|χδ(~x, t)O(q)(~y, τ)χ(~0, 0) |Ω〉
〈Ω|χδ(~x, t)O(q)(~y, τ)χδ(~0, 0) |Ω〉

]
ij

 .

(5.30)

Again, with the same trick from Eq.(5.27), we have

(G3)ij (Γ; ~p ′, t; ~q, τ ;O(q)) =
∑
~x,~y

e−i~p
′·~xei~q·~y

Tr

Γ

[
〈Ω|χ(~x, t)O(q)(~y, τ)χ(~0, 0) |Ω〉 . . .

〈Ω|χ(~x, t+ δ)O(q)(~y, τ + δ)χ(~0, 0) |Ω〉 . . .

〈Ω|χ(~x, t+ δ)O(q)(~y, τ)χ(~0, 0) |Ω〉
〈Ω|χ(~x, t+ 2δ)O(q)(~y, τ + δ)χ(~0, 0) |Ω〉

]
ij

 ,

(5.31)

and lastly, substituting in the three-point correlation function, we have (omitting
Γ and O(q) for brevity)

(G3)ij (~p ′, t; ~q, τ) =

[
G3(~p ′, t; ~q, τ) G3(~p ′, t+ δ; ~q, τ)

G3(~p ′, t+ δ; ~q, τ + δ) G3(~p ′, t+ 2δ; ~q, τ + δ)

]
ij

. (5.32)

5.2.3 Variational Method Optimised Fixed Sink Propagator

Since in most cases, a single sink momentum ~p ′ is chosen (usually ~p ′ = ~0), we
can reduce the computation time for the three-point correlator from n2 to n where
n is the basis size in the variational method. This is achieved by constructing a
three-point correlator as a combination of sink interpolating fields with weights v
created from the variational method on the two-point correlators:
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(Gβ
3 )j(Γ; ~p ′, t; ~q, τ ;O(q)) ≡ vβi (~p ′) (G3)ij (Γ; ~p ′, t; ~q, τ ;O(q)). (5.33)

Now when we create the fixed sink propagator Σ, we can solve Eq.(3.88) with
a substitution of:

e−i~p
′·~x ′S

(q)
(Cm)mn

(
~p ′;x′; 0,Γ

)
⇒
∑
i

e−i~p
′·~x ′S

(q)
(Ci)minj

(
x′; 0,Γ

)
vβi (~p ′), (5.34)

where vβi (~p ′) are the weightings obtained from the variational method applied to

the two-point correlators, and S
(q)
(Ci)minj

are the i, j’th source propagator for the

fixed sink inversion. That is, if S
(q)
(Ci)minj

was to be used as the source propagator

in the fixed sink inversion, it could eventually be used to create (G3)ij
An important point to note here is that a single combination of t0 and ∆vt must

be chosen from the two-point correlator as vβi (~p ′) is now used in the matrix inver-
sion calculation to create the fixed sink propagator/correlator and is dependent on
these parameters.

One additional advantage of this source propagator combination, is for the
pencil of function method. If we decide to run the analysis over two such sink
times t1 and t2 = t1 + δ, we have

[
Gβ

3 (~p ′, t1; ~q, τ)

Gβ
3 (~p ′, t1 + δ; ~q, τ)

]
=

[
vβ1 (~p ′) vβ2 (~p ′)

] [ G3(~p ′, t1; ~q, τ) G3(~p ′, t1 + δ; ~q, τ)
G3(~p ′, t1 + δ; ~q, τ + δ) G3(~p ′, t1 + 2δ; ~q, τ + δ)

]
,

(5.35)

[
Gβ

3 (~p ′, t2; ~q, τ)

Gβ
3 (~p ′, t2 + δ; ~q, τ)

]
=

[
vβ1 (~p ′) vβ2 (~p ′)

] [ G3(~p ′, t2; ~q, τ) G3(~p ′, t2 + δ; ~q, τ)
G3(~p ′, t2 + δ; ~q, τ + δ) G3(~p ′, t2 + 2δ; ~q, τ + δ)

]
,

(5.36)

we notice that

Gβ
3 (~p ′, t2; ~q, τ + δ) = Gβ

3 (~p ′, t1 + δ; ~q, τ). (5.37)

Hence we get a “three sink times for the price of two” effect in terms of compu-
tation time for creating the fixed sink propagator. Repetitions of this can create
5 sink times with 3 inversions, 7 for 5 etc..
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Chapter 6

Analysis of Correlation Functions

Analysing two- and three-point correlation functions has proven to be a difficult
task due to limitations arising from limited computational resources. The effects
include finite lattice spacing effects, effects from determining the renormalisation
constants, continuum extrapolation complications and effects due to contamination
from excited-states.

Since we have a lattice spacing a when we calculate quantities on the lattice,
this induces errors in our calculations (for example, O(an) errors in any fermion
and gauge actions we choose). Although you could quantify these errors and any
other discretisation effects, a common technique is to calculate the same quantity
over multiple lattice spacings a and fit to extrapolate to the continuum (a → 0)
limit. The results in this thesis does not analyse this effect.

The process of calculating the renormalisation factors is described in Chapter 4.
Generally, calculations involving correlation functions are greatly more cost

effective to perform at heavier pion (quark) masses. But this incurs an error when
we decide to chirally extrapolate to the physical pion (quark) mass. Recently with
the recent increase in computational power, there have been calculations at the
physical pion (quark) mass [111]. In this thesis we have selected the pion mass to
be mπ = 470 MeV.

The term excited-state contamination is used to describe when a correlator
has not satisfied a large enough time to suppress terms that have different contri-
butions from states of higher energies (excited-states). The classic example is in
the two-point correlation function starting from Eq.(3.52), with out implying the
approximation t� 1

G2(~p, t) = (ZZ)(E[0]
p , ~p)e

−E[0]
p t + (ZZ)(E[1]

p , ~p)e
−E[1]

p t + ..., (6.1)

where generally we only want a single term out of all the terms being summed,

for example
(

(ZZ)(E
[0]
p , ~p)e−E

[0]
p t
)

for ground state analysis. The reason why the
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large time approximation is difficult to satisfy is because the signal to noise ratio
of the correlation function is dependent on the source-sink separation. Too small
a t and the excited-states start to contaminate the signal, yet too large a t turns
the correlation function into noise.

The contamination from excited-states is starting to emerge as the largest and
most difficult effect to analyse and control for baryons. The work in this thesis is
a systematic analysis of many efforts to analyse and reduce this effect.

6.1 Two-Point Function Analysis

Although extraction of energy states of hadrons is a large and very important
field in lattice QCD, it is not what this thesis is focused on. Nevertheless the
two-point correlation functions are being created in the process for hadron matrix
elements, we can conceptually understand the excited-state contamination through
the extraction of the energies. The process is outlined in this section.

Using a two-point correlation function, the most common method to identify
the ground-state dominance is via the effective mass which is defined by combina-
tion

log

(
G2(Γ4; ~p, t)

G2(Γ4; ~p, t+ ∆t)

)
t�0−−→ E[0]

p ∆t, (6.2)

which when plotted will “plateau” to a constant value for some large enough value
of t which is then considered the region in which t� 0.

An example of the effective mass defined in Eq.(6.2) can be found in Fig-
ure 6.1, where we see at smaller source-sink separations t, the effective mass has
not achieved ground-state saturation.
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Figure 6.1: Effective mass plot defined in Eq.(6.2) demonstrating the effect of
excited-state contamination at smaller source-sink separations t. We chose the
time shift parameter ∆t = 3 defined in Eq.(6.2), and 64 sweeps of smearing applied
to the quark fields as described in Section 5.1.

This effective mass construction is only used as a guide to help constrain the
fit range and instead, the following fit parametrisation should be utilised.

Since we know the functional form of the two-point correlator in the region
t � 0, we can fit a function directly to these points. The fit function for the
one-exponential fit is parameterised by the following

G2(Γ4; ~p, t) = A
E

[0]
p
e−E

[0]
p t, (6.3)

where we have the two fit parameters A
E

[0]
p

and E
[0]
p . To employ this fit, we find a

region where t� 0 to fit to, then extract the E
[0]
p as a fit parameter. Although in

principal we can select two sink times t to extract a fit parameter, it is common
practice to use as many sink times that are still considered statistically significant
to help remove gauge field fluctuations.

This fitting procedure can be taken one step further, considering the next pre-
dominant state E

[1]
p in a region where we are dominated by the first two-states. The

fit function for the two-exponential fit can have one of the two forms (depending
on preference)
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G2(Γ4; ~p, t) =A
E

[0]
p
e−E

[0]
p t + A

E
[1]
p
e−(E

[0]
p +∆E

[0,1]
p )t,

G2(Γ4; ~p, t) =A
E

[0]
p
e−E

[0]
p t(1 + A′

E
[1]
p
e−∆E

[0,1]
p t), A′

E
[1]
p
≡
A
E

[1]
p

A
E

[0]
p

,
(6.4)

where we have defined the energy difference ∆E
[0,1]
p ≡ E

[1]
p − E[0]

p . Now we have

four fit parameters A
E

[0]
p
, A

E
[1]
p
, E

[0]
p ,∆E

[0,1]
p . The benefit of fitting the first excited-

state and the ground-state together is the fitting window can be relaxed to earlier
sink times. Another reason for fitting both states is that they can be determined
from the two-point correlation function before fitting to the three point correla-
tion function since the same parameters appear in both the two- and three-point
correlators.

Although theoretically more states can be fitted to the correlation function,
it is usually unfeasible due to the statistical precision of the correlation functions
and the number of fit parameters that are needing to be constrained.

One interesting extension to fitting the states of the two-point correlator is
to consider a class of differently smeared correlation functions, and fit one- or
two-states to the correlation functions. The one-exponential fit has the form

(G2)ij (Γ4; ~p, t) = Aij
E

[0]
p

e−E
[0]
p t, i, j = 1, ..., n (6.5)

where we have individual fit parameters Aij
E

[0]
p

for each correlation function, but a

single parameter E
[0]
p . Not much extra will be gained from a single exponential fit,

as each correlation function must satisfy the large sink time approximation t� 0
which will depend on the smearing.

The two-exponential fit has the form

(G2)ij (Γ4; ~p, t) =Aij
E

[0]
p

e−E
[0]
p t(1 + A′ij

E
[1]
p

e−∆E
[0,1]
p t), (6.6)

where again, we have individual fit parameters Aij
E

[0]
p

and Aij
E

[1]
p

for each correlation

function, but two shared parameters E
[0]
p and ∆E

[0,1]
p . The two-exponential fit

may provide an improvement, but again multiple fit ranges will be needed to find
regions in which two-states are dominant for each individually smeared correlator
(G2)ij (Γ4; ~p, t).
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6.2 Three-Point and Ratio Function Analysis

Utilising the two- and three-point correlation functions to construct the ratio func-
tion in Eq.(3.68) (or Eq.(3.69)), we can extract the desired FF function for the
ground-state defined in Eq.(3.67) by rearranging Eq.(3.75)

FF (E[0]
p → E

[0]
p′ ,Γ, O

(q)) = R(Γ; ~p ′, t; ~q, τ ;O(q))
(
A(Γ4, ~p,m

[0])A(Γ4, ~p
′,m[0])

)− 1
2
,

(6.7)
as long as we satisfy t� τ � 0.

The satisfaction of the large time approximation is more difficult to identify
than the two-point correlator case (in Section 6.1), since either τ is fixed when
using the “through the operator” method or t is fixed when using the “fixed sink
propagator” method for creating the three-point correlation function (described in
Section 3.4.2). Fixing τ requires you to have knowledge that the condition τ � 0
is satisfied for the particular operator being studied, whereas fixing t requires you
have the knowledge that t � τ when τ � 0, otherwise some sort of excited-state
contamination will be in effect.

For the “fixed sink propagator” method, we look at variations of the ratio
function with respect to τ . Although picking τ = t/2 would be the “optimal”
choice for the extraction of FF , we can re-assure ourselves that there is no excited-
state contamination from transition matrix elements by fitting over a plateaued
region where t � τ and τ � 0. For the example for gA in Figure 6.2, we see
no clear plateau over the centre region for τ , which means we cannot draw any
conclusions for the value of gA from this calculation.
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Figure 6.2: Graph for gA extracted from the R function defined in Eq.(3.68) plot-
ted over the current insertion time τ which has been centred about zero via the
construction τ − t/2. We have selected the 32 sweeps of smearing for the quark
fields described in Section 5.1 and the fixed sink calculation was undertaken at a
source-sink separation of t = 13.

Knowing the functional form of the three-point correlation function, as well as
noting some of the parameters are shared with the two-point correlation function,
we can fit directly to the three-point correlator. The parametrisation of the first
state of the three-point correlation function is

G3(Γ; ~p ′, t; ~q, τ ;O(q)) = B00

√
A
E

[0]
p
A
E

[0]

p′
e
−E[0]

p′ te
−
(
E

[0]
p −E

[0]

p′

)
τ
, (6.8)

where A
E

[0]
p

, A
E

[0]

p′
, E

[0]
p and E

[0]
p′ are all fit parameters extracted from a single state

fit to the two-point correlators with momentum p and p ′. The resulting parameter
out of the fit is

B00 = FF
(
E[0]
p → E

[0]
p′ ,Γ, O

(q)
)(

A(Γ4, ~p,m
[0])A(Γ4, ~p

′,m[0])
)− 1

2
. (6.9)

It is worth noting, that this method is very similar to the construction of the
ratio function Eq.(3.68), but instead of utilising the two-point correlation functions
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at τ and t, we use fitted versions of the two-point correlation function at τ and t.
It is possible that using the fitted values might help remove statistical fluctuations,
especially at larger sink times, t.

To extend this fitting method to two-states, we arrive at the commonly named
two-state fit method [77, 111–114] which has the functional form

G3(Γ;~0, t; ~q, τ ;O(q)) =
√
A
E

[0]
p
A
E

[0]

p′
e
−E[0]

p′ te
−
(
E

[0]
p −E

[0]

p′

)
τ×{

B00 +B10e
−∆E

[0,1]
p τ +B01e

−∆E
[0,1]

p′ (t−τ)
+

B11e
−∆E

[0,1]

p′ t
e
−
(

∆E
[0,1]
p −∆E

[0,1]

p′

)
τ

}
,

(6.10)

in which A
E

[0]
p

, A
E

[0]

p′
, E

[0]
p , E

[0]
p′ , ∆E

[0,1]
p and ∆E

[0,1]
p′ are all calculated from the

two-exponential fit to the two-point correlator. The four remaining fit parameters
are B00, B10, B01 and B11 which correspond to

B00 = FF
(
E[0]
p → E

[0]
p′ ,Γ, O

(q)
)(

A(Γ4, ~p,m
[0])A(Γ4, ~p

′,m[0])
)− 1

2
,

B10 =

√√√√A
E

[1]
p

A
E

[0]
p

FF
(
E[1]
p → E

[0]
p′ ,Γ, O

(q)
)(

A(Γ4, ~p,m
[1])A(Γ4, ~p

′,m[0])
)− 1

2
,

B01 =

√√√√A
E

[1]

p′

A
E

[0]

p′

FF
(
E[0]
p → E

[1]
p′ ,Γ, O

(q)
)(

A(Γ4, ~p,m
[0])A(Γ4, ~p

′,m[1])
)− 1

2
,

B11 =

√√√√A
E

[1]
p
A
E

[1]

p′

A
E

[0]
p
A
E

[0]

p′

FF
(
E[1]
p → E

[1]
p′ ,Γ, O

(q)
)(

A(Γ4, ~p,m
[1])A(Γ4, ~p

′,m[1])
)− 1

2
.

(6.11)

Since when using the fixed sink method, the sink momentum is often fixed to
~p ′ = ~0, we can use the replacement Ep′ → m in Eq.(6.8) and Eq.(6.10). When
analysing zero momentum transfer matrix elements, we also set ~p = ~0, which
reduces Eq.(6.8) and Eq.(6.10) to

G3(Γ; ~p ′, t; ~q, τ ;O(q)) = B00Am[0]e−m
[0]t, (6.12)

and
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G3(Γ;~0, t;~0, τ ;O(q)) =Am[0]e−m
[0]t×{

B00 +B10

(
e−∆m[0,1]τ + e−∆m[0,1](t−τ)

)
+B11e

−∆m[0,1]t

}
.

(6.13)

Once again, the parameters B00, B10, B01 and B11 correspond to

B00 = FF
(
m[0] → m[0],Γ, O(q)

)(
A(Γ4, ~p,m

[0])A(Γ4,~0,m
[0])
)− 1

2
,

B10 = B01 =

√
Am[1]

Am[0]

FF
(
m[1] → m[0],Γ, O(q)

)(
A(Γ4, ~p,m

[1])A(Γ4,~0,m
[0])
)− 1

2
,

B11 =
Am[1]

Am[0]

FF
(
m[1] → m[1],Γ, O(q)

)(
A(Γ4, ~p,m

[1])A(Γ4,~0,m
[1])
)− 1

2
.

(6.14)
We have the relation B10 = B01 as a result of the transition FF function being

time-reversal invariant

FF
(
m[1] → m[0],Γ, O(q)

)
= FF

(
m[0] → m[1],Γ, O(q)

)
. (6.15)

One important fact to keep in consideration is that the specific function used
to fit the correlator must be dominated by the one- or two-states. This gives the
fitting a great deal of sensitivity to the fit ranges over sink and current times,
which can result in skewed results.

Given the experience in spectroscopy studies, we emphasise that the fit param-
eter ∆E

[0,1]
p should not be taken too literally in terms of the energy gap to the first

excited-state as the exponential behaviour is merely acting to mock up the sum
of all excited-states over the range of fit considered. It is for this reason we prefer
the nomenclature two-exponential fit instead of two-state fit.

Analogous to the ratio function described in Section 3.4.2, we can construct a
one- or two-exponential fitted ratio function by utilising the one- or two-exponential
fitted function instead of the actual two-point correlation function. These ratio
functions play no part in the extraction of the matrix elements and are merely for
illustrative purposes only. For the one-exponential fit, it is defined as

ROSF (Γ; ~p ′, t; ~q, τ ;O(q)) ≡ G3(Γ; ~p ′, t; ~q, τ ;O(q))√
A
E

[0]
p
A
E

[0]

p′
e
−E[0]

p′ te
−
(
E

[0]
p −E

[0]

p′

)
τ
, (6.16)

and for the two-exponential fit function it is defined at ~p = 0 as
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RTSF (Γ;~0, t;~0, τ ;O(q)) ≡ G3(Γ;~0, t;~0, τ ;O(q))

Am[0]e−m
[0]t + Am[1]e−(m[0]+∆m[0,1])t

, (6.17)

where the parameters in the numerators have been predetermined by fits to the
two-point correlation functions.

6.3 Summing the Ratio Function

As has been used many times in the past and in recent works [109, 112, 113, 115], a
summation method can be employed in this calculation to reduce the excited-state
contamination. The process proceeds by summing the ratio R(Γ; ~p ′, t; ~q, τ ;O(q))
over operator insertion times, τ :

S
(
Γ; ~p ′, t; ~q;O

)
=

t−δt∑
τ=δt

R(Γ; ~p ′, t; ~q, τ ;O(q))→

c+ t

{
FF (E[0]

p → E
[0]
p′ ,Γ, O

(q)) +O
(
e
−min

(
∆E

[0,1]
p ,∆E

[0,1]

p′

)
t

)}
,

(6.18)

where ∆E
[0,1]
p is the energy difference between the ground and first excited-state

energies with momentum ~p. The (apparent) advantage of this technique is that
the correction to the matrix element is suppressed by an exponential in t, the full
source–sink separation time. This is in contrast to the conventional method where
the parametric suppression of excited-states in given by a similar exponential of
time t − τ (or τ), which is ∼ t/2 in the plateau region. We allow for the slight
generalisation of Eq.(6.18) including a δt parameter, also considered in [113] which
describes the number of current insertion results of the summation of R which have
been removed closest to both the source and sink. This region has the strongest
statistical signal, yet provides minimal information on the ground-state matrix
element. In most instances, we find the results to be largely insensitive to δt,
as one might expect. But the summation method results shown later for 〈x〉 in
Figure 7.44 is an example where we see a statistically significant change when we
vary the δt parameter.

After performing simulations at multiple source-sink separation times, t, one
performs a linear fit to determine FF (E

[0]
p → E

[0]
p′ ,Γ, O

(q)).
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6.4 Form Factor Extractions

Once the “FF” function is extracted from the two- and three-point correlation
functions, we can proceed to extracting charges and form factors. As a reminder,
the “FF” function is defined in Eq.(3.67) as

FF (Ep → Ep′ ,Γ, O
(q)) ≡ Tr

{
Γ(−i/p′ +m)JO(q)(q2)(−i/p+m)

}
, (3.67)

or alternatively, we can express the above as

FF (Ep → Ep′ ,Γ, O
(q)) ≡ Tr

{
Γ(Ep′γ4 − i~p ′ · ~γ +m)JO(q)(q2)(Epγ4 − i~p · ~γ +m)

}
.

(6.19)
The quantity JO(q)(q2) is defined and explained in Sections 2.4 and 2.5 with

the label (q) referring to the selection of either the doubly or singly represented
quark contribution(i.e. up or down quark in the proton, respectively).

Generally, we utilise different combinations of these quark contributions de-
pending on the situation. The most common example is the iso-vector combi-
nation for the proton in which the difference between the up and down quarks
((q) = doub − sing = up − down) is taken. The benefit of the iso-vector combi-
nation is the disconnected quark loop contributions in Eq.(3.77) cancel out in the
isospin limit and hence, are not needed in the calculation. Most commonly for the
vector form factors, as demonstrated for the vector current in Eq.(2.15), the sum
of the quark charges multiplied by the contribution from that quark is taken.

For a lattice calculation using operator O(q), the result is proportional to
JO(q)(q2) which, depending on what O(q) is used, is defined in Sections 2.4 and 2.5.

For example, if dealing with the vector current using O(q) = qγ4q, the unpo-
larised projector Γ = Γ4 and fixing the sink momentum ~p ′ = ~0, we have

FF (E[0]
p → m,Γ4, qγ4q) = (E[0]

p +m)mF
(q)
1 (q2). (6.20)

For this case, we can extract the form factor F
(q)
1 (q2) for the quark contribution

(q) by a simple rearrangement and substitution of Eq.(6.7) to give

F
(q)
1 (q2) = R(Γ; ~p ′, t; ~q, τ ;O(q))

1

m

√
2

(E
[0]
p +m)E

[0]
p

. (6.21)

This is one of the most simplest extractions for a form factor. In general,
assuming the general fixed sink condition of ~p ′ = ~0, we will have an equation of
the form

NFF∑
i=1

aiF
(q)
i (q2) = R(Γ; ~p ′, t; ~q, τ ;O(q))

(
A(Γ4, ~p,m

[0])A(Γ4,~0,m
[0])
)− 1

2
, (6.22)

64



remembering to take into consideration excited-state contamination effects in the
ratio function R. The sum variable i is summed over the number of form factors
for the particular type of from factor

Scalar and Pseudo Scalar NFF = 1,

Vector and Pseudo Vector NFF = 2,

Tensor NFF = 3.

(6.23)

The parameter ai will depend on the specific matrix selected for O(q) and Γ
and typically is calculated numerically in real time.

When utilising the fixed sink method for creating three-point correlation func-
tions, the free variables in Table 3.1 are generally calculated over as many different
values as possible as they are free to calculate (compared to the inversion times).
For this thesis, the operator basis calculated was

O(q) = q

(
I, γµ, γ5, γ5γµ, σµν ,

↔
Dµ, γµ

↔
Dν , γ5

↔
Dµ, γ5γµ

↔
Dν , σµν

↔
Dδ

)
q. (6.24)

All current insertion times from τ = 0 to τ = t along with all current insertion

momenta in the range of 0 ≤ ~q 2 < 9
(

2π
a

)2
in lattice units (assuming isotropic

spatial lattice dimensions L = Lx = Ly = Lz).
Utilising all the data, we can construct an over-determined set of linear equa-

tions to be solved. For a set of solutions j = (O
(q)
j , ~qj) which iterate over every

combination of O(q) and ~q ∈ ~q 2 calculated, we have the set of equations

ajiF
(q)
i (q2

j ) = R(Γ; 0, t; ~qj, τ ;O
(q)
j )
(
A(Γ4, ~pj,m

[0])A(Γ4,~0,m
[0])
)− 1

2
, (6.25)

or with a rearrangement

AjiF (q)
i (q2

j ) = R(Γ; 0, t; ~qj, τ ;O
(q)
j ), Aji ≡ aji

√
A(Γ4, ~pj,m[0])A(Γ4,~0,m[0]).

(6.26)
Solving this over determined system of equations achieves both an averaging

over different momentum solutions for a particular q2, as well as decomposing
of the individual form factor terms resulting from each operator O(q), all in one
calculation. As discussed previously, the individual quark contributions (q) for F

(q)
i

can be arranged in any way to obtained the desired iso-vector, proton, neutron or
any other contribution.
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Chapter 7

Zero Momentum Transfer Results

The majority of this chapter will consist of the key findings from a set of calcu-
lations of two- and three-point correlation functions and have been published in
[116]. The renormalisation factors used to renormalise the operators in this section
are discussed in Chapter 4.

7.1 Lattice Details

Simulations were performed on a 323 × 64 lattice with a pion mass of 460 MeV
and a lattice spacing of 0.074 fm [66, 117, 118]. This ensemble corresponds to the
SU(3)-symmetric point, where mu = md = ms with κ = 0.120900, and has been
tuned to be close to the physical, average light-quark mass m = 1

3
(mu +md +ms)

[66]. The simulation uses a clover action defined in Eq.(3.28) comprising of a
stout smeared fermion action along with a tree-level Symanzik improved gluon
action defined in 3. We perform O(1000) measurements on O(1800) trajectories,
with multiple source locations to remove autocorrelations. The renormalisation
constants ZA = 0.8728(6)(27) , ZMS

S = 0.682(6)(18) and ZMS
T = 0.9945(010)(035)

at 2 GeV have been reported in [78], and ZMS
〈x〉 = 1.067 is calculated in Chapter 4.

A fixed (zero) boundary condition in Euclidean time dimension and periodic
boundary conditions in the spatial dimensions are chosen for this calculation. To
avoid the temporal boundary conditions as discussed in the beginning of Sec-
tion 3.4, a source time of t0 = 16 as selected. This results in the source-sink
separation t = tsink− t0 being the time separation away from t0 = 16. As outlined
in Section 3.4.2, we employ the sequential source through the sink method or the
named fixed sink method to compute three-point function. Hence we are required
to fixed the sink momentum ~p ′ for which we set ~p ′ = ~0.

The smearings undertaken in later sections are a gauge-invariant Gaussian
smearing defined in Eq.(5.2) with α = 0.7 and is applied iteratively to the source
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t 10 11 13 16 19 22
Nsmear

32 ? ? ? ? ?
64 ?

128 ?
variational ? ?

pencil of function ? ?

Table 7.1: Table showing all smearing and source-sink separations undertaken in
this paper.

and sink quark field Nsmear times as described in Section 5.1.

To form our variational basis we solve our quark propagators for 32, 64 and
128 sweeps of smearing which correspond to root mean square radii of 0.248 fm,
0.351 fm and 0.496 fm respectively. This basis was selected after the initial cal-
culation of two-point correlation functions over a larger basis consisting of 8, 16,
32, 64, 128, 256 sweeps of smearing. Due to the smaller 8 and 16 sweeps of
smearing two-point correlators having minimal effect on the variational method
and the largest 256 sweeps of smearing result having poor signal to noise ratio,
we removed these smearing amounts when constructing the three-point correlation
function basis. Then once the basis was selected, the three-point correlation func-
tions were calculated at a source-sink separation of t = 13, 16 (in physical units,
t = 0.74 fm, 1.184 fm).

To get an extensive range of source-sink separation times for the study of the
summation and two-exponential fit methods, we have performed the sequential-
source inversions at source-sink separations of 10, 13, 16, 19 and 22 time slices. In
physical units, this corresponds to the range 0.74-1.63 fm. This extended range is
primarily at our reference source smearing of Nsmear = 32.

The final study was a pencil of function calculation which was performed over
the same sweeps of smearings as the variational method but a new set of sequential-
source inversions were undertaken at a source-sink time separation of 10 and 11.
The delta time shift parameter used to construct a pencil of function basis de-
scribed in Section 5.2.2 was set to δ = 1. The full ensemble of inversions performed
in this study are indicated in Table 7.1.

For illustrative purposes in the following graph legends and axis labels, we
denote the variational method interchangeably as CM or REvec, with the follow-
ing ∆t in (CM t0#∆t#) referring to our variational method eigenvalue solving
parameter ∆vt from Eq.(5.15).
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7.2 Mass Extraction from Two-Point Correlation

Function

The starting point for any lattice QCD calculation involving any nucleon matrix
element is an analysis of its ground state mass m[0]. Using the construction and
theory of the two-point correlation function described in Section 3.4.1, we can start
by plotting the effective mass in Eq.(6.2) which for zero momentum is

log

(
G2(Γ4;~0, t)

G2(Γ4;~0, t+ ∆t)

)
t�0−−→ m[0]∆t, (6.2)

for which we select ∆t = 3 for the subsequent plots.
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 Mass Comparison ∆t=3
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CM t04∆t2

Figure 7.1: Effective mass plots defined in Eq.(6.2) over sink time comparing the
different smearings and the variational method labelled by t0 = 4, ∆vt = 2. We
chose the time shift parameter ∆t = 3 defined in Eq.(6.2).

To begin with, we plot the effective mass combinations of the three individually
smeared and variational method two-point functions calculated in Figure 7.1. By
plotting this, the excited-state contamination can clearly be seen to be altering
the effective mass from source-sink separations of t < 10. We can also highlight
how the excited-states are affecting the correlators more for the less source-sink
smeared interpolating fields. The effectiveness of the variational method is clear
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in this figure, as we see a further improvement over the three individually smeared
effective masses.

When constructing the variational method, we are required to select two source-
sink separations t0 and ∆vt to solve the eigenvalue equation in Eq.(5.15). By vary-
ing the parameters individually in Figure 7.2, we shows there is minimal change
when altering t0 for fixed ∆vt and ∆vt for fixed t0.
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CM t04∆t2

CM t04∆t3

Figure 7.2: Effective mass plots defined in Eq.(6.2) over sink time comparing
different t0 parameters for a fixed ∆vt = 2 on the left and comparing different ∆vt
parameters for a fixed t0 = 4 for the figure on the right. We chose the time shift
parameter ∆t = 3 defined in Eq.(6.2).

Although plotting effective masses is useful for understanding the excited-state
contamination effects in the two-point correlation functions, eventually we need
to extract the mass m[0]. To achieve this, an appropriate source-sink separated
time window is needed, where we are satisfied with the χ2

PDF defined in Eq.(A.8).
The one-exponential fit ranges illustrated in Figure 7.3 for the smeared two-point
correlators began at the same source-sink separation, even though the different
smeared results have different exited-state contamination effects. In the following
Figure 7.4, the one-exponential fit ranges for the variational method and pencil
of function methods are shown. We see similar values and uncertainties between
both mass parameters m[0], despite the fact that the pencil of function methods
effective mass points over the source-sink separations are wildly varying and have
large uncertainties.
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Figure 7.3: Effective mass plots defined in Eq.(6.2) over sink time for differently
smeared two-point correlators, shown in conjuncture with lines and shaded uncer-
tainties that represent the one-exponential fit parameter m[0].
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Figure 7.4: Effective mass plots defined in Eq.(6.2) over sink time, for the pencil of
function and variational method two-point correlators, shown in conjuncture with
lines and shaded uncertainties that represent the one-exponential fit parameter
m[0].

70



The proposed two-exponential fit, in which a ground and first excited state
functional form is fitted to the two-point correlation functions, is not displayed in-
dividually for each individual two-point correlation function. Instead, we demon-
strate the combine fit

G2(Γ4;~0, t) = Aie−m
[0]t(1 + A′ ie−∆m[0,1]t), (6.6)

where we have multiple coupling parameters Ai, A′i for each smearing index i,
but common mass parameters m[0] and ∆m[0,1] = m[1] − m[0]. Figure 7.5 illus-
trates this fitting method over the three smeared two-point functions. Opposed to
the previous one-exponential fit, we see the effective mass combination of the fit
function being non-constant. The difference between the three coloured lines at
smaller source-sink separated results shows how the different correlation functions
have different couplings to the first excited state, i.e. different values for A′ii

m[0] in
Eq.(6.6). But when moving to the largest source-sink separated points, a common
m[0] parameter is the only contribution in the effective mass construction. The
variational and pencil of function methods are omitted from the fit, since these
methods have already removed a large amount of excited states.
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Figure 7.5: Effective mass plots defined in Eq.(6.2) over sink time shown in con-
juncture with the two-exponential fit method extracted from all the three smearing
sweeps of 32, 64 and 128 as one inclusive fit shown in Eq.(6.6). The lines represent
the fit function used in place of the two-point correlator in the mass extraction
function Eq.(6.2) and the grey band represents the mass parameter m[0] extracted
from the combine two-exponential fit.
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The extracted values for m[0] from the one- and two-exponential fits are sum-
marised in Table C.1.

7.3 Zero Momentum Proton Iso-Vector Matrix

Elements

The first quantity selected for analysis was the nucleon axial charge gA, which has
been quite an important benchmark for the validity of lattice QCD calculations.
It can be calculated by looking at the operator/iso-vector combination

O(q) = O(u) −O(d) = uiγ3γ5u− diγ3γ5d, (7.1)

while using a spin projector which corresponds to Γ = Γ3 ≡
(
I+γ4

2

)
γ3γ5.

Next, we selected the scalar current, which has been notorious for its large
excited-state contamination [102, 119]. For reference, some experimental deter-
minations of the scalar charge can be seen in [120–124]. It can be calculated by
looking at the identity operator with the iso-vector combination

O(q) = O(u) −O(d) = uIu− dId, (7.2)

while using a spin projector Γ = Γ4 ≡ I+γ4
2

which corresponds to an unpolarised
nucleon.

Deep inelastic scattering experiments as described in Section 2.5, are our pri-
mary method for understanding the nucleon and QCD in general. At the physical
quark mass, it is predicted that from the fitted global MRST2001 parton anaysis
[125], 〈x〉MRST = 0.157(9) whereas the lattice determination of 〈x〉 at many quark
masses has consistently over estimated the quantity over the years [60, 102, 126].
One possible explanation could be due to the contamination from excited-state
effecting the results.

This is why we have selected the momentum fraction 〈x〉, which can be cal-
culated by looking at the operator defined in Eq.(2.38) and the iso-vector quark
contribution

O(q) = O(u) −O(d) = u

γ4

↔
D4 −

1

3

 3∑
i=1

γi
↔
Di


u− d

γ4

↔
D4 −

1

3

 3∑
i=1

γi
↔
Di


 d,

(7.3)

while using a spin projector which corresponds to Γ = Γ4. At zero momentum, the
resulting ratio function R for this operator/spin projector combination (assuming
large time approximation t� τ � 0) is
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R(Γ4; 0, t; 0, τ ;O(q)) = −mNv2,b = −mN 〈x〉 . (7.4)

Lastly, beyond the standard model (BSM) extensions to neutron beta-decay
requires tensor charge gT (as well as gS) corrections, so the extraction of gT has
been of great interest as well. Experimentally, we have seen results using semi-
inclusive deep inelastic scattering (SIDIS) from [127–129] which can be combine
with Bell e+e− scattering experiments to extract gT [127, 130]. This charge has
shown to be less affected by excited-state contamination as shown in [102, 113,
119].

Hence, the the tensor charge was selected also, which can be calculated by
looking at the operator/iso-vector combination

O(q) = O(u) −O(d) = uγ1γ2u− dγ1γ2d, (7.5)

while using a spin projector which corresponds to Γ = Γ3 ≡
(
I+γ4

2

)
γ3γ5.

The following subsection will consist of each of the key methods and analysis
techniques discussed in the previous chapters, for the nucleon axial charge gA,
scalar charge gS, the tensor charge gT and the quark momentum fraction 〈x〉.

7.4 Analysing the Variational Method Data

In this section, we look at the set of data calculated for a fixed source-sink separa-
tion t = 13 over 32, 64 and 128 sweeps of smearing at the source and sink. Along
with this, the variational method over the 32, 64 and 128 sweeps of smearing was
undertaken at a source-sink separation of t = 13 and 16. Lastly, the pencil of
function method was attempted at source-sink separations of t = 10 and 11.

7.4.1 Plateau Smearing/Variational comparison

We start our analysis of zero momentum transfer matrix elements by extending
the variational method to the three-point correlation function in Section 5.2. As
a reminder, the resulting ratio factor ratio for the fixed sink sequential source
method of constructing the three-point correlation function is

R(Γ; 0, t; 0, τ ;O(q)) ≡ G3(Γ;~0, t;~0, τ ;O(q))

G2(~0, t)
, (3.68)

and the variational method optimised ratio function is constructed as

R̃β(Γ;~0, t;~0, τ ;O(q)) ≡ G̃β
3 (Γ;~0, t;~0, τ ;O(q))

G̃β
2 (~0, t)

, (5.20)
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where β = 0 corresponds to a variational method optimised ratio function for the
ground state. In this section, we analyse the first equation for the 32, 64 and 128
sweeps of smeared results, and the second equation using the variational method
over the basis of 32, 64 and 128 sweeps of smearing all at a source-sink separation of
t = 13. The general technique in analysing these plots is to refer to the large time
approximation t� τ and τ � 0 that is required to reach the ground state solution.
In analysing the graph, we can note that the centre point τ = t/2 is considered
the point in which the excited-state contamination is minimised for a particular
source-sink separation t. Furthermore, if around this point a plateau is formed,
we can say that the excited-state effects from the transitional matrix elements, for
which the first dominate state is ∝ FF (m[0] → m[1]), has been suppressed within
statistical uncertainty. A detailed discussion can be seen in Section 6.2.
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Figure 7.6: Graph for gA extracted from the R function defined in Eq.(3.68).
The lines indicate the constant fit value extracted from each set of data used
in Figure 7.42. All subsequent R function graphs are plotted over the current
insertion time τ which has been centred about zero via the construction τ − t/2.
This and the following three plots compares different diagonally smeared values to
the variational method with a source-sink separation of t = 13.

In Figure 7.6 for the smeared results, we see that no clear plateau is revealed
around the central current insertion point. In contrast, we can see that the vari-
ational method seems to have removed the majority of the contamination from
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Figure 7.7: Graph for gS extracted from the R function defined in Eq.(3.68).
The lines indicate the constant fit value extracted from each set of data used in
Figure 7.43.

transition matrix elements as it looks to plateau from current insertion time 5 to
11 (or on the graph, -1.5 to 1.5). Furthermore, the value produced is statistically
larger than any of the smeared results indicating that a poor choice of source and
sink operators and/or short source-sink separation times can lead to excited-state
contamination which acts to suppress gA. This is in agreement with other findings
[102, 113].

In Figure 7.7, we see a similar picture for gS. The variational method produces a
flatter ratio as a function over τ compared to the individually smeared correlators.
We note that in this case, we see that the transition matrix elements are much
larger than in gA as there is a larger curvature with respect to current time insertion
τ .

A similar improvement as observed in the previous two quantities has been
achieved by the variational method for 〈x〉 shown in Figure 7.8. For this operator
we see there is even more excited-state contamination compared to the precision
of the calculation of the current insertion time τ .
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Figure 7.8: Graph for 〈x〉 extracted from the R function defined in Eq.(3.68).
The lines indicate the constant fit value extracted from each set of data used in
Figure 7.44.
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Figure 7.9: Graph for gT extracted from the R function defined in Eq.(3.68).
The lines indicate the constant fit value extracted from each set of data used in
Figure 7.45.
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We see a completely different picture in the variational method result for gT
shown in Figure 7.9. The removal of excited-state contamination due to varying
the current insertion time τ causes the results to decrease, where as increasing the
sweeps of smearing causes the results to increase.

7.4.2 One-Exponential Comparison

As we did in the previous section, we again analyse the 32, 64 and 128 smearing
sweeps results, along with the variational method over the basis of 32, 64 and 128
sweeps of smearing all at a source-sink separation of t = 13. But instead of using
the ratio function, we utilise the one-exponential fit ratio discussed in Section 6.2

ROSF (Γ;~0, t;~0, τ ;O(q)) ≡ G3(Γ;~0, t;~0, τ ;O(q))

Am[0]e−m
[0]t

, (6.16)

where, m[0] and Am[0] are fit parameters from fitting to the two-point correlation
function. The aim of this section is to see if there is any slight deviations of the
ratio functions and the extracted values from the normal ratio function utilised in
the previous section.
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Figure 7.10: A graph utilising the construction defined in Eq.(6.16) along with a
line and shaded area for each calculation corresponding to the one-exponential fit
parameter gS on each set. All results in this section have a source-sink separation
of t = 13 for the 32, 64 and 128 sweeps of smearing and the variational method
calculations.
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For gA, the one-exponential fit results Figure 7.10 shows a slight shift down-
wards in the variational method results to make a small overlap with the 128 sweeps
of smearing result. The three smeared results show unnoticeable deviations from
their ratio function counterparts.

A similar conclusion is found for gS and 〈x〉 in Figures 7.11 and 7.12. We see
essentially zero shift when comparing the two plots, which indicates that extracting
gS and 〈x〉 are not sensitive to the fitting procedure.
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Figure 7.11: A graph utilising the construction defined in Eq.(6.16) along with a
one-exponential fit parameter (and uncertainty) corresponding to gS on each set.
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Figure 7.12: A graph utilising the construction defined in Eq.(6.16) along with a
one-exponential fit parameter (and uncertainty) corresponding to 〈x〉 on each set.
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Figure 7.13: A graph utilising the construction defined in Eq.(6.16) along with a
one-exponential fit parameter (and uncertainty) corresponding to gT on each set.

Although being hard to distinguish between the different results for the tensor
charge gT in Figure 7.13, there is a slight shift up in the smaller smeared results.

79



7.4.3 Source-Sink Separation Dependence

Finding a plateau of the ratio function over current insertion time τ in Section 7.4.1
indicates to us that the transitional matrix elements, for which the dominant first
state is ∝ FF (m[0] → m[1]), are all being sufficiently suppressed. But it does not
tell us any information about the excited to excited state matrix elements, for
which the dominant first state is ∝ FF (m[1] → m[1]). This is indicated to us when
analysing the two-exponential fit function for the three-point correlation function,
where the two-state approximation to a three-point correlator is

G3(Γ;~0, t; ~q, τ ;O(q)) =Am[0]e−m
[0]t×{

B00 +B10

(
e−∆m[0,1]τ + e−∆m[0,1](t−τ)

)
+B11e

−∆m[0,1]t

}
.

(6.13)

The term B10, which is ∝ FF (m[0] → m[1]), is dependant on the current time
and source-sink time separation τ and t respectively, where as the term B11, which
is ∝ FF (m[1] → m[1]), is only dependant on the source-sink separation t.

This motivates the study of three-point correlation functions at multiple source-
sink separation times, as it is the only way to justify, via the analysis of plateaus,
that the three-point correlation function is dominated by the ground state matrix
element (which is ∝ FF (m[0] → m[0])).

As a result, the strategy in this section is to accredit excited state suppressed
three-point correlation functions as those with no shift in value between different
source-sink separated results, as well as a plateau forming over current insertion
points τ . To execute this strategy, we begin in this section with selecting the 32
sweeps of smearing results along with the variational method results at source-sink
separations of 13 and 16.

Beginning with gA in Figure 7.14 we see sufficiently suppressed excited-states
removed as the results did not shift up when moving from a source-sink separation
of 13 to 16. Compared to the smallest smeared operators, we see excited-states
being removed in the change from a source-sink separation of 13 to 16.
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Figure 7.14: Graph for gA extracted at each current time τ comparing different
variational results for different source-sink separations. This is overlaid with the
same source-sink separated results, but for the 32 sweeps of smearing.
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Figure 7.15: Graph for gS extracted at each current time τ comparing different
variational results for different source-sink separations. This is overlaid with the
same source-sink separated results, but for the 32 sweeps of smearing.
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Once again for gS in Figure 7.15, which has been established to have larger
excited-state effects than gA, increasing the source-sink separation for the vari-
ational method shows no more statistically significant removal of excited-states
which cannot be said about the smallest smeared result.

In the case of 〈x〉, as displayed in Figure 7.16, we see no statistically signifi-
cant difference between the variational method for the two source-sink separations
which implies the variational method has dramatically reduced the amount of
excited-state contamination. The 32 sweeps of smearing result seems to be even
more effected by excited state effects as the previous two values.
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Figure 7.16: Graph for 〈x〉 extracted at each current time τ comparing different
variational results for different source-sink separations. This is overlaid with the
same source-sink separated results, but for the 32 sweeps of smearing.

In the case of gT , as displayed in Figure 7.17, we see no statistically signif-
icant difference between the variational method for the two source-sink separa-
tions which implies the variational method has dramatically reduced the amount
of excited-state contamination. But curiously, the same can be said for the 32
sweeps of smearing result which has a statistically significant signal. The question
arises, which smearing operator is correct?
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Figure 7.17: Graph for gT extracted at each current time τ comparing different
variational results for different source-sink separations. This is overlaid with the
same source-sink separated results, but for the 32 sweeps of smearing.

7.4.4 Two-Exponential Comparison

A two-exponential fit can be applied to the differently smeared three-point corre-
lation functions. By doing this, we can attempt to remove the ground to excited
transition matrix element contribution. Since our data set has a single source-sink
separation of t = 13, the two-exponential fit function will have the form

G3(Γ;~0, t; ~q, τ ;O(q)) =Am[0]e−m
[0]t×{

B00 +B10

(
e−∆m[0,1]τ + e−∆m[0,1](t−τ)

)}
.

(6.13)

The term B10, which is ∝ FF (m[0] → m[1]), is what we hope remove from the
three-point correlation function, to leave us with the term B00 which may still be
contaminated with the B11 term. To help visualise the two-exponential fit, we plot
the two-exponential ratio function

RTSF (Γ;~0, t;~0, τ ;O(q)) ≡ G3(Γ;~0, t;~0, τ ;O(q))

Am[0]e−m
[0]t + Am[1]e−(m[0]+∆m[0,1])t

, (6.17)
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where the denominator consists of parameters extracted from the two-point corre-
lator.

The two-exponential fit method is not applied to the variational method two-
and three-point correlation functions as the two-exponential fit method will have
a hard time trying to parameterise the highly suppressed excited states.
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Figure 7.18: Graph of Figure 7.6 utilising the construction defined in Eq.(6.17),
overlaid with a two-exponential fit calculation on each set. For all subsequent
graphs in this section, the lines are the corresponding fit function and the shaded
areas corresponds to gA value extracted from the fit parameters. Since there is no
variation in sink time t, no B11 was calculated in Eq.(6.13) as discussed in the end
of Section 6.2.

In applying the two-exponential fit for gA to the different smearing results in
Figure 7.18, we observe that all three smearing fits coincide with one another. It
is also clear that the determination of the ground state matrix elements have a
larger relative error compared to the data points fitted to and being statistically
consistent with a constant fit to the largest smeared (sm128) result.

Now applying the two-exponential fit for the smeared results to gS in Fig-
ure 7.19, leads to an improvement to all 3 smeared results. Furthermore, uncer-
tainties on the parameter extracted has increased compared to the uncertainties
associated with the ratio factor for each current insertion τ points.
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Figure 7.19: Graph of Figure 7.7 utilising the construction defined in Eq.(6.17),
overlaid with a two-exponential fit calculation on each set.
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Figure 7.20: Graph of Figure 7.8 utilising the construction defined in Eq.(6.17),
overlaid with a two-exponential fit calculation on each set.
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Next, we apply the two-exponential fit to 〈x〉 for the smeared results in Fig-
ure 7.20, which looks to have made an improvement to all 3 smeared results. The
errors on the parameter extracted has increased compared to the error from a ratio
function points, but for 〈x〉 it seems that the two-exponential fit was more suc-
cessful due to the relative size of the excited-state contamination to the precision
of the ratio function points.

Lastly, applying the two-exponential fit to gT for the smeared results in Fig-
ure 7.21, it has shifted the 64 and 128 sweeps of smearing result to a common
extracted value, but the 32 sweeps of smearing has extracted a value larger than
the others. The errors on the parameter extracted has increased compared to
the error from a ratio function points. For gT it seems that the two-exponential
fit has produced some interesting extractions due to the unexpected excited-state
contamination effect.
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Figure 7.21: Graph of Figure 7.9 utilising the construction defined in Eq.(6.17),
overlaid with a two-exponential fit calculation on each set.

7.4.5 Pencil of Function Analysis

Lastly, the pencil of function method is used with a 6 × 6 basis being the outer
product of the 32, 64 and 128 sweeps of smearing with a pencil of function time
shift of δt = 1. A detailed discussion of this process was presented in Section 5.2.2.
We jump straight to the one-exponential fit method, as it can average out noisy
correlation functions. For comparison, we select the standard variational method
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result at a source-sink separation of t = 13 as it is considered to have highly sup-
pressed excited-state contamination, along with the 32 sweeps of smearing result
as it is considered to be affected substantially by excited-state contamination .
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Figure 7.22: Graph for gA extracted using the one-exponential fit method com-
paring the pencil of function method to the variational result and a 32 sweeps of
smearing result. For all graphs in this section, source-sink separation for the pencil
of function method is at t = 10 and the rest are at t = 13.

The pencil of function results in Figure 7.22 show how the method’s statistical
uncertainties are much larger than all the other calculations, even with such a
short source-sink separation. Since the R function for the pencil of function has
minimal variation with respect to τ , and the value is comparable with the varia-
tional method, give us a glimpse into the large excited-state removal potential of
the pencil of function method as it is able to isolate the ground-state even at a
source-sink separation of t = 10.

Again, for gS in Figure 7.23, we have large statistical uncertainties compared to
the other methods, but we do start to see a highly optimised correlation function
with minimal excited-state contamination over a large time window. This is more
prevalent in Figure 7.23, as the excited-state contamination has a greater effect
then it did for gA in Figure 7.22.
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Figure 7.23: Graph for gS extracted using the one-exponential fit method com-
paring the pencil of function method to the variational result and a 32 sweeps of
smearing result.
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Figure 7.24: Graph for 〈x〉 extracted using the one-exponential fit method com-
paring the pencil of function method to the variational result and a 32 sweeps of
smearing result.
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The same large statistical uncertainty is repeated for 〈x〉 in Figure 7.24. We
do see very promising excited-state removal potential, with a curious trend over
the current insertion time τ − t/2 which is in the opposite direction to regular
excited-state contamination.

The pencil of function results in Figure 7.25 show no meaningful results, as the
statistical uncertainty encapsulates both the variational method and 32 sweeps of
smearing results.
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Figure 7.25: Graph for gT extracted using the one-exponential fit method com-
paring the pencil of function method to the variational result and a 32 sweeps of
smearing result.

7.5 Source-Sink Analysis

In this section, we apply the more commonly utilised summation, one-exponential
fit and two-exponential fit methods to the set of data that consists of 32 sweeps
of smearing at the source and sink, but with source-sink separations of t =
10, 13, 16, 19 and 22.

7.5.1 Summing the Ratio Function

To begin the summation method, we analyse the summed ratio function, for which
the definition is
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S
(
Γ; ~p ′, t; ~q;O

)
=

t−δt∑
τ=δt

R(Γ; ~p ′, t; ~q, τ ;O(q))→

c+ t

{
FF (E[0]

p → E
[0]
p′ ,Γ, O

(q)) +O
(
e
−min

(
∆E

[0,1]
p ,∆E

[0,1]

p′

)
t

)}
,

(6.18)

which amounts to summing the ratio function over the current insertion points.
After summing, we undergo a linear line of best fit to the summed ratio func-
tion over the source-sink separated points t, for which the slope parameter is the
quantity of interest (gA, etc...). As discussed further in Section 6.3, we can addi-
tionally vary the number of points excluded at either end of the source-sink time
window δt as well as the resulting source-sink separation points selected to fit
a linear function to. For the subsequent plots, the colours/symbols blue/circle,
red/square, green/triangle and pink/up-side-down triangle let us see the change
in the line of best fit when we vary δt = 0, 1, 2, 3 respectively in Eq.(6.18). Results
with small source-sink separations are likely to have the most contamination from
higher excitations. They also have smallest statistical error and so can dominate
in a weighted fit. By fitting only to the largest 3 source-sink separated results, we
can extend the lines back to compare with the smaller source-sink separated re-
sults. Any significant deviation indicates that those smaller source-sink separated
results should be excluded from the final fit.

In the plots in Figure 7.26 we have the summation function defined in Eq.(6.18)
for gA plotted over the source-sink separation times (in which we have summed
over the current insertion times). The top plot shows that the summation fits
show no statistically significant change in slope for the different δt value results
and the line of best fit seems to satisfy the points well to extract a value. For
gA in the bottom plot in Figure 7.26, we have excluded the two smallest source-
sink separated points from the linear fit and we see that the projected errors do
encapsulate the smaller source-sink separated results. We can also see that the
errors on the results drastically increase when compared to the top figure.
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Figure 7.26: Summed ratio factor values for multiple source-sink times defined
in Eq.(6.18) used to extract gA. For all the subsequent plots in this section, the
different colours/symbols (blue/circle, red/square, green/triangle and pink/up-
side-down triangle respectively) correspond to δt = 0, 1, 2, 3 where δt is defined
in Eq.(6.18). The linear line of best fit, which has initial points of t = 10 for
the upper plot and t = 16 for the lower plot, is used to extract a slope which
corresponds to gA (or gS, 〈x〉, gT ). The dashed lines correspond to the projected
error ranges to smaller source-sink summed results.

In the summation method results for gS, comparing the 4 coloured slopes
passing through the 4 colours/symbols in the top of Figure 7.27 shows that the
δt = 0, 1, 2, 3 parameter variation is not statistically significant. However, as the
fit is a weighted fit and the smallest source-sink separated points have the smallest
errors and the set of points are not linear, the smallest points are forcing the lin-
ear function to underestimate the slope of the larger source-sink separated values.
Fitting over the larger source-sink separated points in the bottom of Figure 7.27
and projecting the fit backwards to smaller times reveals a tension between the
results at small and large source-sink separations as the projected errors do not
encapsulate the smaller source-sink separated results. This suggests that the error
term in Eq.(6.18) is starting to be statistically significant.
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Figure 7.27: Summed ratio factor values for multiple source-sink times defined in
Eq.(6.18) used to extract gS.
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Figure 7.28: Summed ratio factor values for multiple source-sink times defined in
Eq.(6.18) used to extract 〈x〉.
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Now the summation method fit undertaken in the top of Figure 7.28 for 〈x〉
does show a variation on the δt parameter that is statistically significant. We
can see for 〈x〉 the linear fit function is not sufficient to approximate the summed
R function values. Again, fitting over larger source-sink separated points in the
bottom of Figure 7.28 and projecting the errors to smaller times shows that there
is an inconsistency as the smaller source-sink separated result do not lie within the
fit errors projected to smaller times. This tells us that the two-state approximation
used in the summation method has broken down.

The top plot of Figure 7.29 in which we have summed the ratio function to
determine gT , the summation fits show no statistically significant change in slope
for the different δt value results and the line of best fit seems to satisfy the points
well to extract a value. For gT in the bottom plot in Figure 7.29, we have excluded
the two smallest source-sink separated points from the linear fit and we see that
the projected errors do encapsulate the smaller source-sink separated results. We
can also see that the errors on the results increase when compared to the top figure.
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Figure 7.29: Summed ratio factor values for multiple source-sink times defined in
Eq.(6.18) used to extract gT .
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7.5.2 Comparing Summation Method to the Correlators

Once the slope of the summed ratio function has been extracted, we can show a
comparison between the extracted value and the different ratio functions at source-
sink separated points t = 10, 13, 16, 19 and 22 at 32 sweeps of smearing (which was
used in the summation method fit). For the demonstration, we have selected a
summation exclusion parameter δt = 3 as it is the least susceptible to the effect
arising from the problematic boundary of τ = t and τ = 0. The summation value
results for gA, gS, 〈x〉 and gT used in this section correspond to the purple line in
the top graph of Figures 7.26, 7.27, 7.28 and 7.29 respectively.

The extracted summation method result for both gA and gS compared to their
respective source sink separated results in Figures 7.30 and 7.31 produces results
comparable to the largest source-sink separated result, but with less statistical
uncertainty.
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Figure 7.30: Graph for gA extracted from the R function defined in Eq.(3.68) for
different source-sink separated results compared to a summation method result.
For all subsequent graphs in this section, the ratio function is plotted for a fixed
smearing of 32 sweeps along side a single summation result of δt = 3 fitting over
all the source-sink separated results.
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Figure 7.31: Graph for gS extracted from the R function defined in Eq.(3.68) for
different source-sink separated results compared to a summation method result.
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Figure 7.32: Graph for 〈x〉 extracted from the R function defined in Eq.(3.68) for
different source-sink separated results compared to a summation method result.
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The summation value extracted for 〈x〉 compared to the source sink separated
results in Figure 7.31, gives a bold claim of a value which is comparable to the
largest source-sink separated result, but with greatly reduced uncertainty. Refer
to the previous section for a discussion on the validity of the extraction method
and the effects of including insufficient source-sink separated results at t = 10, 13.
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Figure 7.33: Graph for gT extracted from the R function defined in Eq.(3.68) for
different source-sink separated results compared to a summation method result.

We compare an extracted summation method result for gT to the source sink
separated results in Figure 7.33. We start to see a peculiarity in the excited-state
contamination as increasing the source-sink separation seems to have minimal
improvement. Along with Figure 7.9, we might need to start distinguishing the
difference between the transition matrix element contamination and excited- to
excited-state contamination and how smearing the interpolating fields effects these
quantities.

7.5.3 One-Exponential Comparison

As we did with the variational method comparison in Section 7.4.2, we apply
the one-exponential fit equation to the two- and three-point correlation functions,
but now over the different source-sink separations t = 10, 13, 16, 19, 22 for a fixed
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smearing of 32 sweeps (as described above). Again, we utilise the one-exponential
fit ratio discussed in Section 6.2

ROSF (Γ;~0, t;~0, τ ;O(q)) ≡ G3(Γ;~0, t;~0, τ ;O(q))

Am[0]e−m
[0]t

, (6.16)

where, m[0] and Am[0] are fit parameters from fitting to the two-point correlation
function. The aim of this section is to see if there is any slight deviations of the ratio
functions and the extracted values from the normal ratio function demonstrated
in the previous section.

All four Figures 7.34, 7.35, 7.36 and 7.37 show the one-exponential fit results
over the same smearing results as in Figure 7.30. We see slight shifts when com-
paring the one-exponential figures in this section with the ratio function values in
the previous section. The shifting effect for the smallest source-sink separation is
showing a large deviation from the ratio function in all four cases, which might
be due to excited-states affecting the two-point correlation function at the small
source-sink separation.
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Figure 7.34: Graph for gA over different source-sink separated results, utilising the
one-exponential fit construction defined in Eq.(6.16) along with a one-exponential
fit calculation on each set. For all subsequent graphs in this section, the lines and
shaded areas corresponds to gA value extracted from the fit parameters and all
results are calculated at 32 sweeps of smearing.
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Figure 7.35: Graph for gS over different source-sink separated results, utilising the
one-exponential fit construction defined in Eq.(6.16) along with a one-exponential
fit calculation on each set.
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Figure 7.36: Graph for 〈x〉 over different source-sink separated results, utilising the
one-exponential fit construction defined in Eq.(6.16) along with a one-exponential
fit calculation on each set.
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Figure 7.37: Graph for gT over different source-sink separated results, utilising the
one-exponential fit construction defined in Eq.(6.16) along with a one-exponential
fit calculation on each set.

7.5.4 Two-Exponential Comparison

Here we present, what is considered the current “standard” technique to remove
excited-state contamination. Although the two-exponential fit was applied to the
single source-sink separation for varying smearing in Section 7.4.4, the intended
way for the two-exponential fit to be applied is through the use of multiple source-
sink separated three-point correlation functions. The benefit of this approach is
that a single two-exponential fit function is fitted to both the source-sink separation
t and the current insertion time τ to extract the three fit parameters B00, B10 and
B11. The fit function is

G3(Γ;~0, t; ~q, τ ;O(q)) =Am[0]e−m
[0]t×{

B00 +B10

(
e−∆m[0,1]τ + e−∆m[0,1](t−τ)

)
+B11e

−∆m[0,1]t

}
,

(6.13)

and once again, for visualisation purposes, we plot the two-exponential ratio func-
tion

RTSF (Γ;~0, t;~0, τ ;O(q)) ≡ G3(Γ;~0, t;~0, τ ;O(q))

Am[0]e−m
[0]t + Am[1]e−(m[0]+∆m[0,1])t

, (6.17)
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Figure 7.38: Graph for gA utilising the two-exponential fit ratio (Eq.(6.17)), over-
laid with a two-exponential fit over both current and sink times (Eq.(6.13)). For all
the graphs in this section, the lines correspond to the two-exponential fit function
constructed and the blue shaded area corresponds to the gA parameter extracted
from the two-exponential fit. All results are calculated with 32 multiples of smear-
ing at the source and sink.

where the numerator consists of parameters extracted from the two-point correla-
tor.

For gA, doing a combined fit to all the source-sink separated data as in Fig-
ure 7.38 leads to a result that is very similar to a constant fit for the largest source-
sink separated result. Similar to the summation method, the two-exponential
method is heavily weighted by the smallest source-sink separated values which can
be problematic as these values are most susceptible to excited-state contamination.
To ensure that the extracted results are free from such contamination, we repeat
the fit excluding t = 10, 13 results, which are included in the summary Figure 7.42.
Comparing a two-exponential fit to all the data to the exclusion of t = 10, 13, we
find consistency in uncertainties when the smallest fit range (corresponding to a
cut parameter δt = 5) is implemented, but some increase in uncertainties for the
smaller δ = 3, 4, which is also replicated for the following calculations of gS, 〈x〉
and gT .

The two-exponential fit to gS in Figure 7.39 again raises a lot of concern over
the inclusion of small source-sink separations into the fit. Since the fit is weighted

100



heavily to the smaller source-sink separated results, due to their statistical error
the larger source-sink separated results are almost ignored.
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Figure 7.39: Graph for gS utilising the two-exponential fit ratio (Eq.(6.17)), over-
laid with a two-exponential fit over both current and sink times (Eq.(6.13)).
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Figure 7.40: Graph for 〈x〉 utilising the two-exponential fit ratio (Eq.(6.17)), over-
laid with a two-exponential fit over both current and sink times (Eq.(6.13)).

The two-exponential fit to all five source-sink time separations for 〈x〉 in Fig-
ure 7.40 has been more successful relative to the previous two quantities. We
see the fit function being approximated appropriately for all current time and
source-sink data sets. But as discussed in the summation method, we must be
sure that the two-state approximation is satisfied, especially as the excited-state
contamination is so large for 〈x〉.

The two-exponential fit to all five source-sink time separations for gT in Fig-
ure 7.41 produced a result which is comparable to the four largest source-sink
separated fitted results. We see the fit function being approximated appropriately
for all current time and source-sink data sets.
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Figure 7.41: Graph for gT utilising the two-exponential fit ratio (Eq.(6.17)), over-
laid with a two-exponential fit over both current and sink times (Eq.(6.13)).

7.6 Summary

Here we display summary plots, which summarise every value that has been ex-
tracted from all the methods in the previous sections for the quantities gA, gS, 〈x〉
and gT . We define the labels in the x-axis of all the following summary graphs in
this section in Table 7.2.
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Key Description More Information
Fits Plateau fit to the data Section 6.2
sm## ## sweeps of smearing results Section 5.1
t# source-sink separation of # Section 3.4.2
Var/CM correlation matrix method, or variational method result Section 5.2
t0#δt# variational method eigenvalue solver parameters Eq.(5.15)
PoF pencil of function method result Section 5.2.2
1SF one-exponential fit method result Eq.(6.12)
2SF two-exponential fit method result Eq.(6.13)
All using all source-sink separated results t = 10, . . . , 22
Lrg using large source-sink separated results t = 16, 19, 22
Sml using small source-sink separated results t = 10, 13
fr2 summed ratio function ignoring t = 10, 13 results Section 6.3

Table 7.2: Table explaining all the labels used in the summary plots Fig-
ures 7.42, 7.43, 7.44 and 7.45.
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gA Summary

Figure 7.42: Summary of all the extracted values for gA over the different methods.
See Table 7.2 for information on labels.
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In the final summary plot for gA containing all the extracted values from all
the different methods calculated (Figure 7.42), we see that the variational method
demonstrates reliability and robustness as it produces a value that improves on the
results that alter the smearing amounts and small source-sink separated results by
removing excited-states. The variational method also improves on the summation
and two-exponential fit method by producing a much more precise result. We
note that there is no noticeable difference between the “Fits” and “Var” results
compared with the “1SF” results (barring the t = 10 result).
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gS Summary

Figure 7.43: Summary of all the extracted values for gS over the different methods.
See Table 7.2 for information on labels.

Similarly for the summary for gA, gS in summary (Figure 7.43) shows that the
variational method has sufficiently suppressed the excited-states and provides far
more precise results compared to the summation and two-exponential fit methods.
In addition, while not statistically significant, we observe an undesired δt depen-
dence for each of the summation method results. We also observe no difference
between the “Fits” and “Var” results compared with the “1SF” results (barring
the t = 10 result) which indicates that the extraction of gS is not sensitive to the
fitting the two-point correlation function.
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Figure 7.44: Summary of all the extracted values for 〈x〉 over the different methods.
See Table 7.2 for information on labels.

In summary for 〈x〉 (Figure 7.44) we see that the amount of excited-state con-
tamination removed by the variational method is at the point where the statistical
precision has become a larger factor. This puts into question the validity of the
summation method and the two-exponential fit results as they show a large dis-
agreement to the variational method. This could be due to insufficient source-sink
separated values skewing the results as is indicated by the summation method
having a δt dependence when it should not. The larger uncertainties due to using
very large source-sink separated results could also contribute to the disagreement.
Once again, there is undetectable sensitivity of the fitting method as “Fits” and
“Var” is indistinguishable to “1SF” over t > 10.
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gT Summary

Figure 7.45: Summary of all the extracted values for gT over the different methods.
See Table 7.2 for information on labels.

As we had for 〈x〉 in Figure 7.44, the summary for gT (Figure 7.45) shows that
the amount of excited-state contamination removed by the variational method
is at the point where the statistical precision has become a larger factor. Once
again, this puts into question the validity of the summation method and the two-
exponential fit results as they show a disagreement to the variational method.
This time, we cannot attribute this effect to insufficient source-sink separated
values skewing the results as past the source-sink separation t > 10, we have
statistical agreement. My speculation would be that the transitional excited state
contaminants are different in sign or in magnitude to the excited- to excited-state
contaminants in the three-point correlation function.

The summary plots in this section for gA, gS, 〈x〉 and gT are tabulated in
Appendix C.1. In the following we summarise our findings.

7.6.1 Summation Results

In Figures 7.38, 7.39, 7.40, we observe that the summation method looks as if it is
improving the result. However, when looking at gS and R for 〈x〉 extracted values
in their respective summary plots (Figures 7.43, 7.44) we can see a dependence
in the δt value when, if our two-state ansatz were satisfied, it should have no or
minimal effect.
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This is seen more clearly when considering summation fits excluding smaller
source sink separations (gA in Figure 7.26, gS in Figure 7.27 and 〈x〉 in Figure 7.28).
When we exclude the smaller source-sink separated results, we can see that the
two-state ansatz is breaking down for gS and 〈x〉 as the data points do not lie
within the errors projected to earlier source-sink separated time values.

7.6.2 One-Exponential Fit Results

The one-exponential fit discrepancies can be best distinguished from the regular
plateau fit method by analysing the summary figures Figures 7.42, 7.43, 7.44 and 7.45.
A large discrepancy between the one-exponential fit and the plateau fit for the
smallest source-sink separation t = 10 (32 sweeps of smearing) arises in all four
quantities calculated. This can be accredited to the two-point correlation function
at t = 10 still being effected by excited-state contamination effects.

The only other slight discrepancy that was observable was at the largest source-
sink separation t = 22, in which a non-statistically significant shift was observed
in all four quantities calculated. This may be attributed to the large source-sink
separation causing statistical fluctuation in the two-point correlation function at
t = 22. The one-exponential fit method result at t = 22 is a value extracted from
a fit using more constrained earlier source-sink separated results, which may have
the effect of “averaging” over the fluctuations at larger t.

7.6.3 Two-Exponential Fit Results

The “Two Exponential Variational Comparison” plots seem to show minimal im-
provement for gA in Figure 7.18 and gT in Figure 7.18, some improvements for gS
(Figure 7.19) and the most improvement for 〈x〉 (Figure 7.20). Poor determination
would be attributed to not being able to distinguish excited-state contamination
from our error within a fit range in which a two-state ansatz is justified. These
results give a good demonstration of using fitting functions to remove transitional
matrix elements. In all cases, the smaller smeared results (with larger excited-
state contamination) extract a value closer to the larger smeared results. From
the summary plots (Figures 7.42, 7.43, 7.44, 7.45), we see minimal effect on the δt
fit parameter for the two-exponential fit method.

Extending to the full source-sink separated set of results in “Two Exponential
Fit Comparison” for 32 sweeps of smearing (Figures 7.38, 7.39, 7.40, 7.41), we
see that the fit is weighted predominately by the smallest source-sink separations.
Furthermore, we see how poorly the larger source-sink separated results are in
terms of symmetry about the middle current insertion time, as well as deformations
to the expected curved fit lines. Although using the two-exponential fit method
controls the excited-states better than using a single source-sink separation, we
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found there was no improvement to a constant fit over the largest source-sink
separation for gA, gS and gT and a questionable improvement for 〈x〉.

7.6.4 Variational Results

Beginning with the effective mass plots in Figure 7.1 where the effective masses
for the three different smearing results were compared to the variational method,
the variational method allows us to extract the mass from the two-point correlator
beginning from an earlier time slice compared to the individually smeared results.
The improvement is due to the excited-states being suppressed when constructing
the optimal correlator in Eq.5.14.

In Figures 7.6, 7.7, 7.8, 7.9 we compare the ratio functions (Eq.3.68) for the
three different smearing results to the variational method in which the functions
are varied over the current insertion time τ for a fixed source-sink separation
t = 13. The figures show how applying the variational method improves the
suppression of excited-state contamination. The ability to fit a plateau over a
much larger current insertion time τ shows how the transition matrix elements are
being sufficiently suppressed compared to the individually smeared results. The
shift in each of the ratio values for each particular τ shows how the variational
method is suppressing all types of excited-state contamination (“transition” and
“excited to excited-state” matrix elements).

The final collection of graphs “TSink Variational Comparison” (Figures 7.14,
7.15, 7.16, 7.17) compares the variational method to the 32 sweeps of smearing
results over the current insertion times τ and the source-sink separation of 13 and
16. All four quantities calculated with the variational method show no statistically
significant difference between the two source-sink separations. This shows us that
choosing a source-sink separation of 16 for the variational method gives us a re-
sult where the residual excited-state contamination is smaller than the statistical
error. Besides the curious case of the tensor charge gT , a much larger source-sink
separation in the 32 sweeps of smearing case is needed to remove the remaining
excited-state contamination.

7.6.5 Pencil of Function Results

Although only a proof of concept at this state, the pencil of function shown in
“Pencil of Function Comparison” being compared to the variational method and 32
sweeps of smearing result demonstrated potential as, within statistical uncertainty,
there is zero excited-state contamination with respect to current insertion time τ
for all charges calculated.

There is a possibility that the gauge field correlations have been lost due to
the “time trick” defined in Eq.(5.27), which is the cause of such high uncertainties
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Create Standard 2exp & SM (over nt) CM (over nbasis) PoF
C2 1 1 nbasis nbasis
C3 4 4nt 4nbasis (nt + 1)4nbasis
Total 5 1 + 4nt 5nbasis (4nt + 5)nbasis
This Thesis 5 21 15 39

Table 7.3: Comparative computational times for each method for two-point and
three-point correlators as well as the total. nt is the number or source-sink time
separations used, nbasis is the number of basis interpolating fields used.

relative to all the other methods. A discussion of this is shown in Appendix A.3.

7.7 Cost Benefit Analysis

One run of calculations was undertaken to produce all the data for Sections 7
and 8, so in this section, we discuss the computational costs associated with each
method of calculation. Assuming we have an equal number of gauge fields for our
particular κ value (or pion mass), we can model the efficiency as to how many
inversions we undertake per gauge field. One inversion is required for calculating
the two-point correlator, then a second inversion is required for each specific three-
point correlator we want to calculate. The fixed sink method requires that we
choose a sink time, sink momentum, spin projector and which quark the current
acts on for a fixed hadron before the three-point correlator is calculated (Table 3.1).

The variational method requires nbasis inversions to create the two-point corre-
lators, where nbasis is the number of basis interpolating fields used (e.g. 3 smearings
for this work). Then a further nbasis is required to create a particular fixed sink
resulting correlator as shown in Section 5.2.3.

The two-exponential fit and summation methods are identical to the standard
way, but creating nt multiples of the three-point correlator, where nt is the number
or source-sink time separations.

Lastly the pencil of function method requires the same basis of two-point cor-
relators to be calculated as the variational method, due to the time translation
being readily available. The three-point correlation function requires a calculation
for two source-sink separated values t and t + δ, but increasing the sink to t + δ
and t+ 2δ we notice the same result t+ δ can be utilised in both calculations (also
indicated in Section 5.2.3). This results in (nt + 1)nbasis inversion per gauge field
for the three-point correlator.

For this analysis, simulations were performed with zero sink momentum and
two different spin projectors for both up and down quark contributions to the
proton. This results in four times the number of inversions for each three-point
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correlator required. The inversion numbers are outlined in Table 7.3.
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Chapter 8

Form Factor Results

In this chapter, we move onwards from calculating charges at zero transfer mo-
mentum to extracting form factors at finite Q2. The lattice data and parameters
used to extract the form factors are the same as described in Section 7.1.

Since form factors are more difficult to extract from the data due to the non-
zero momenta ~p at the source, we focus on the key sets of calculations from the
“plateau” fit method as well as the one- and two-exponential fit methods. We omit
the pencil of function due to the large statistical uncertainty and the summation
method due to the problems outlined in the previous Chapter 7. The full list can
be found in Table 8.1 and the formalism as to how the form factors are extracted
from the lattice data is described in Chapter 6.4.

Note that each individual method in the following figures have had their Q2

slightly shifted to help distinguish different methods with similar extracted values.

Method Sets Cut Range
Fit t = 13 sm32 δt = 5
1SF t = 13 sm32 δt = 5
Fit t = 13 variational method t0 = 4, ∆vt = 2 δt = 5
1SF t = 13 variational method t0 = 4, ∆vt = 2 δt = 5
2SF t = 10, 13, 16, 19, 22 sm32 δt = 4

Table 8.1: Table showing the specific calculations and extraction methods used
for all the form factor plots.

8.1 Vector Form Factors

The vector form factor is defined as
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〈
~p ′|Jµ(~q)|~p

〉
= u(~p ′)

[
γµF1(Q2) +

iσµνqν
mN

F2(Q2)

]
u(~p), (2.16)

where F1(Q2) and F2(Q2) are the Dirac and Pauli form factors at momentum
transfer Q2. To access these form factors on the lattice, we look at all operators
of the form

O(q) = quO
(u) + qdO

(d) = quuγµu+ qddγµd, (8.1)

with qq being the total charge contribution from quark(s) q in the proton or neu-
tron. This implies that the form factors are actually the combination

Fi = quF
(u)
i + qdF

(d)
i , (8.2)

with the individual quark contributing form factors F
(q)
i being defined in Eq.(6.21).

Due to the extra computational cost, which is discussed in Section 3.4.2, we do
not consider the disconnected quark loops in this calculation.

In the previous Chapter 7, the calculation of the zero-momentum values util-
ising 32 sweeps of smearings at a source-sink separation t = 13 demonstrated a
substantial excited-state contamination effect. Along with this, we demonstrated
that the variational method was an effective method in suppressing excited-state
contamination and the two-exponential fit method showing some minimal excited-
state suppression. In Figures 8.1 and 8.2, we have shown how suppressing excited-
states, which is equivalent to moving from the 32 sweeps of smearing results to the
variational method results, affects the determination of the vector form factors F1

and F2.

Specifically, the excited-state contamination is larger at larger Q2 for F1 in
Figure 8.1 but is larger at smaller Q2 for F2 in Figure 8.2. The two-exponential
fit method attempts to remove some excited-state contamination but resulting in
a larger uncertainty. In addition, the lowest Q2 for F2 shows the two-exponential
fit method disagreeing with the variational method, which may indicate that the
two-exponential fit may be insufficient at suppressing excited-state contamination.

As also explored in Chapter 7 for zero-momentum quantities, we can test the
sensitivity of the fitting procedure by looking at differences between the plateau
and one-exponential fit extraction methods. There seems to be no statistically
significant disagreement between plateau and the one-exponential fit results over
both F1 and F2 from Figures 8.1 and 8.2 over allQ2 calculated, which would suggest
the ratio function R is not being affected by lattice fluctuations over source-sink
separations t at all Q2 shown.
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Figure 8.1: First vector form factor F1 for the proton plotted as a function of
the physical transfer momentum Q2. For all subsequent graphs, the red square
and green triangle points are the plateau and one-exponential fit results for the 32
sweeps of smearing result respectively, the blue diamond and purple up-side-down
triangle points are the plateau and one-exponential fit results for the variational
method respectively and the dark blue circle points are for the two-state fit results
using the 32 sweeps of smearing correlators. the points labelled “1SF ” and “2SF ”
refer to the one-exponential fit and two-exponential fit methods, “Fits” refers to
using a plateau method and “Var” indicates the use of the variational method.
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Figure 8.2: Second vector form factor F2 for the proton plotted as a function of
the physical transfer momentum Q2.

In Figures 8.3 and 8.4 showing F1 and F2 for the neutron respectively, we
see a similar excited-state effect as we did for the proton in Figures 8.1 and 8.2.
This is as to be expected, since both the proton and neutron are constructed as
linear combinations of the individual quark contributions to the form factor. As
the first form factor F1 is close to zero, we see much larger relative uncertainties.
One peculiarity, in Figure 8.3 is the two-exponential fit method showing a larger
deviation away from the 32 sweeps of smearing result compared to the variational
method which is primarily observed at the lowest Q2 values. Again, it is hard to
draw any conclusions from this, due to the such small quantities calculated.
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Figure 8.3: First vector form factor F1 for the neutron plotted as a function of the
physical transfer momentum Q2.
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Figure 8.4: Second vector form factor F2 for the neutron plotted as a function of
the physical transfer momentum Q2.
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The Sachs electric and magnetic form factors, which can be constructed by
combining F1 and F2

GE(Q2) = F1(Q2) +
Q2

(2mN)2
F2(Q2),

GM(Q2) = F1(Q2) + F2(Q2),

(2.18)

give us more insights into the structure of the proton and neutron. The charge
radius of the nucleon can be calculated by

〈r2〉 ≡ −6
dGE(Q2)

dQ2

∣∣∣∣∣
Q2=0

, (2.19)

i.e. The slope of the form factor at Q2 = 0. Along with this, the magnetic moment
of the proton or neutron is µ = GM(Q2 = 0).

To obtain both the radius and magnetic moment, we apply a dipole fit of the
general form

Fi(Q
2) =

Fi(0)(
1 + Q2

m2
τ

)2 (8.3)

utilising a weighted bootstrap level fit to extract the parameter mτ . The value
for Fi(0) = GE(0) is set to the charge of the proton (1) or neutron (0) when
analysing the Sachs electric form factor, where as the magnetic moment of the
proton/neutron Fi(0) = GM(0) = µ is considered as a second fit parameter in the
dipole fit to the Sachs magnetic form factor.

We demonstrate the excited-state contamination effect in the extraction of GE

for the proton in Figure 8.5, which is almost analogous to F1 since only low Q2

has been calculated. Nonetheless, we see the same shift downwards when remov-
ing excited-state contamination (which is analogous to moving from 32 sweeps of
smearing to the variational method). We can see from the figure that there is
clearly a large effect on the slope of GE at Q2 = 0 when we suppress excited-state
contamination effects, which is confirmed by the charge radii shown in Table 8.2.
Since the charge radius is such a fundamental quantity, it is crucial that GE be
free from excited-state as it is determined by this mentioned slope.
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Figure 8.5: Electric Sachs form factor GE for the proton plotted as a function
of the physical transfer momentum Q2. The coloured lines for the 32 sweeps of
smearing, variational method and two-exponential fit method results correspond
to dipole fits used to extract a charge radius for the proton 〈r2〉.

The Sachs magnetic form factor GM , gives us insights into the magnetic field
properties (or current distributions) within the nucleon. The excited-state contam-
ination effects demonstrated in Figure 8.6 are just the combination of F1 and F2.
This produces an interesting “crossing over” effect, where the excited-state sup-
pression increases the value at the lowest Q2 and decreasing the value at higher
Q2. Overall, this results in a more concentrated magnetic form factor distribution
at lower Q2 when we suppress excited-state contamination. We also see that the
magnetic moment µ of the proton, which is extracted by the extrapolation of the
dipole fit to Q2 = 0, is very sensitive to excited-state contamination effects. The
“crossing over” effect observed in the figure causes the dipole fit to drastically
increase when moving from the 32 sweeps of smearing result to the variational
method result. The values extracted for the magnetic moment µ as well as the
magnetic charge radius 〈r2

M〉 are shown in Table 8.2
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Figure 8.6: Magnetic Sachs form factor GM for the proton plotted as a function
of the physical transfer momentum Q2. The coloured lines correspond to dipole
fits used to extrapolate back to Q2 = 0 to extract the magnetic moment µ for the
proton.

The neutron is a difficult quantity to analyse the Sachs electric form factor GE

due to the neutron having no net charge from the constituent quarks and as well the
absence of disconnected quark loop contributions. Still, we can attempt to analyse
the excited-state effects on GE for the neutron in Figure 8.7, which shows how
a more pronounced curvature for the excited-state suppressed variational method
results plotted as a function of the 32 sweeps of smearing result. This feature
is important when attempting to compare with phenomenology, where we see a
“hump” in the neutron GE form factor which has a particular amplitude and centre
(see [131]).

The neutron Sachs magnetic form factor GM is expected to have a similar
shape and excited-state contamination effect to the proton GM [131]. We confirm
this with the neutron Figure 8.8 in comparison to the proton Figure 8.6 as the
variational method results “cross over” the 32 sweeps of smearing results which
results in a larger incline. The neutron values for the magnetic moment µ as well
as the 〈r2

M〉 are shown in Table 8.2.
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Figure 8.7: Electric Sachs form factor GE for the neutron plotted as a function of
the physical transfer momentum Q2.
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Figure 8.8: Magnetic Sachs form factors GM for the neutron plotted as a function
of the physical transfer momentum Q2. The coloured lines correspond to dipole
fits used to extrapolate back to Q2 = 0 to extract the magnetic moment µ for the
neutron.

120



A common combination studied in the literature is the ratio of the electric
to magnetic Sachs form factors GE/GM [28]. Although the general interest is in
the large Q2 region to determine if there is a crossing over to negative values,
understanding the excited-state contamination effects at lower Q2 helps us un-
derstand the excited-state dependence on Q2. The ratio GE/GM for the proton,
in Figure 8.9, displays a substantial effect to excited-state contamination as the
32 sweeps of smearing results are marginally larger than the variational and two-
exponential fit results. This indicates to us that the excited-state effects from
GE and GM are amplified when constructing the ratio, which is something to be
mindful for when undergoing precise lattice determination of GE/GM for the pro-
ton. When looking at the plateau vs one-exponential fit results for the 32 sweeps
of smearing results, we start to see a statistically significant difference. This in-
dicates to us that the ratio GE/GM for the proton is susceptible to the fitting
method used.

The neutron GE/GM combination can also be constructed to analyse the
excited-state contamination effects. When the comparison is plotted in Figure 8.10,
we see a small excited-state contamination effect at low Q2, but a more pronounced
excited-state contamination effect when moving to higher Q2. This would indicate
to us that the removal of excited-states causes the value to increase, as well as the
slope at the lowest Q2 to increase as well.
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Figure 8.9: Sachs form factor ratio GE/GM for the proton plotted as a function of
the physical transfer momentum Q2.
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Figure 8.10: Sachs form factor ratio GE/GM for the neutron plotted as a function
of the physical transfer momentum Q2.

8.2 Axial GA and GP

To understand the axial-charge distribution within nucleons, we can study the
axial form factors GA and GP , as these form factors involve a flavor changing
current insertion which involve a weak interaction. The axial form factor defined
as

〈
p(~p ′)|Jµ5 (~q)|n(~p)

〉
= up(~p

′)

[
γµγ5GA(Q2) +

qµ

2mN

γ5GP (Q2)

]
un(~p), (2.22)

which the isovector combination can be accessed by looking at all operators of the
form

O(q) = O(u) −O(d) = uγµγ5u− dγµγ5d, (8.4)

since Eq.(2.12) demonstrates how it is equivalent to a flavor changing current.
This implies that the form factors are actually the combination

GA = G
(u)
A −G

(d)
A , GP = G

(u)
P −G

(d)
P , (8.5)

with the individual quark contributing form factors F
(q)
i , in this case are G

(q)
A and

G
(q)
P , being defined in Eq.(6.21).
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Lastly, from analysing the axial form factors, we can understand the axial
charge radius of the proton by looking at the slope of the axial vector current form
factor as a function of Q2

〈r2
A〉 ≡ −6

dGA(Q2)

dQ2

∣∣∣∣∣
Q2=0

, (8.6)

where again, we have employed a dipole fit from Eq.(8.3) to extract the slope at
Q2 = 0. The parameter GA(Q2 = 0) = gA in the dipole fit has previously been
calculated in Chapter 7.

For the axial form factor GA in Figure 8.11, we see that suppressing excited
states produces the same interesting trend as we observed in the proton and neu-
tron Sachs magnetic form factor GM in Figures 8.6 and 8.8. For small Q2, as
previously seen for gA = GA(Q2 = 0), suppressing the excited-states results in
decreasing the value, whereas for high Q2 suppressing excited-states increases the
value, resulting in a “crossing over” effect. This results for the axial charge radius
〈r2
A〉 shown in Table 8.2 demonstrate the susceptiblity to excited-state contamina-

tion, which is due to the slope at Q2 = 0 being severely impacted by the “crossing
over” effect.
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Figure 8.11: Axial vector form factor GA plotted as a function of the physical
transfer momentum Q2.

Although the induced pseudoscalar form factor GP in Figure 8.12 shows less
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significant excited-state effects at low Q2, we do see an excited-state contamination
effect at low Q2 which results in a steeper decent.

Both plots show an agreement between the two-exponential fit and variational
method, as well as showing no sensitivity between utilising the one-exponential fit
or the plateau method.
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Figure 8.12: Induced pseudoscalar form factor GP plotted as a function of the
physical transfer momentum Q2.

8.3 Summary

In general, the one-exponential fit method shows quite close agreement with a
standard plateau method for the 32 sweeps of smearing result, only showing the
slight differences on quantities that are very susceptible to statistical noise. For
example, the neutron GE results shown in of Figure 8.10 is highly susceptible to
fluctuation as the nucleon has close to zero overall charge.

The main aim of this chapter is to demonstrate how controlling the excited-
state contamination is a crucial part of form factor calculations. The excited-state
contamination not only has an effect on the individual form factors at each Q2,
it also has the potential of increasing or decreasing the slope of the form factors
with respect to Q2. This last point is especially important, as the functional
form of these form factors with respect to Q2 plays an important role in not
only experimental extrapolations from high momentum transfer results, but for
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Method Proton Neutron

〈r2〉 〈r2
A〉 〈r2

M〉 µ 〈r2
M〉 µ

Fits 0.405(62) 0.22(18) 0.620(31) 2.259(35) 0.368(20) 1.370(24)
Var 0.300(26) 0.15(13) 1.224(87) 2.797(66) 0.767(60) 1.738(48)

TSF 0.417(21) 0.267(84) 0.93(11) 2.51(12) 0.524(65) 1.492(77)

Table 8.2: Table showing the extracted values for the proton charge radius 〈r2〉
and axial charge radius 〈r2

A〉 in units of fm2 as well as the magnetic moment µ and
the magnetic charge radius 〈r2

M〉 in units of fm2, for both the proton and neutron.
The multiple values correspond to using the 32 sweeps of smearing (sm32) result
at a source-sink separation of t = 13, the variational method (Var) at a source-
sink separation of t = 13 and using the two-exponenital fit (TSF) method over all
source-sink separated results t=10, 13, 16, 19 and 22, with 32 sweeps of smearing.

interesting physical properties as well.
We can see that excited-state contamination has caused both the electric and

axial charge radii to be smaller than expected for the proton, as the slope at Q2 = 0
has increased when moving to the variational method in Figures 8.5 and 8.11.
These figures demonstrates how important the excited-state systematics are to
the determination of radii, as small excited-state effects in the individual Q2 form
factor values can lead to large shifts in the shape of the fit function used to find
the slope at Q2 = 0.

A similar sensitivity is observed when exploring how excited-state contamina-
tion effects the determination of the magnetic moment for the proton and neutron.
In both Figures 8.5 and 8.11 we observed a “crossing over” effect of the extracted
form factor points, which had a very large impact on the dipole fit extrapolation
to Q2 → 0.

We display all the extracted radii and magnetic moments in Table 8.2 and all
the numerical values plotted in this section can be found in Appendix C.2.
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Chapter 9

Summary

To understand the structure of the proton and neutron, we began with a brief
overview of Quantum Chromodynamics and looked at some experimental processes
used to extract useful quantities. The simplest was neutron β-decay, occurring at
the limit of zero momentum transfer, then moving onto elastic scattering processes
at small transfer momentum producing the vector and axial form factors. Lastly
we looked at large momentum transfer collisions creating in-elastic scattering pro-
cesses. The quark momentum fraction 〈x〉 shows us, in the parton mode view of
a nucleon, the fractional momentum carried by the up/down quark in the proton
or neutron. After defining the quantities to analyse, the lattice approach to cal-
culating these said quantities was developed. Beginning with the discretisation
of space-time, the gluon and fermion actions are then defined. Once randomly
generated gauge fields are generated, particles are introduced into the system by
inverting the Dirac matrix to from the two-point propagator. These propagators are
then the building blocks for calculating useful quantities associated with nucleons.

The two-point correlator is the spatial Fourier transform of an appropriate
combination of two-point propagators, which gives us access to the masses, energies
and useful scaling properties. To probe the structure of the nucleon, we utilised
the three-point correlator, in which a third insertion point is added to the two-point
correlator on a single quark in the nucleon. Although these constructs are enough
to extract quantities by fitting a plateau to the ratio function, this naive approach
is highly susceptible to excited-state contamination effects which can severely alter
the fitted values. This motivates us to employ the variational method to the two-
and three-point correlation functions, which utilises multiple nucleon interpolating
fields (commonly achieved through the use of smearing operators). Another more
common approach is to employ the two-exponential fit methods to the two- and
three-point correlation functions to attempt to parameterise the ground and first
excited-states.

The results presented in Chapter 7 clearly shows how excited-state contami-
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nation is an important systematical effect and must be controlled to extract any
meaningful quantities. It is worth noting, that the comparisons to follow still do
not consider finite lattice spacing effects, renormalisation determination effects and
larger pion mass effects.

The variational method produced a value for the axial-vector current of gA =
1.157(11), which still undershoots the experimental determination of gA = 1.270(3)
[2–21], but we did see an improvement when removing excited-states (which caused
the value to increase).

A tensor charge value of gT = 0.8+0.35
−0.44 has been calculated experimentally using

the transfer momentum dependant (TMD) distribution method [132–134] and this
is in agreement with the dihadron method [135, 136]. The variational method em-
ployed here to our lattice result produced a value of gT = 1.0734(78) which agrees
to the experimental determination within the current statistical uncertainties.

For the quark momentum fraction, the variational method has the largest effect
of removing excited-states, producing a smaller value of 〈x〉 = 0.1874(23), which
still over-evaluates compared to the experimental estimate of 〈x〉MRST = 0.157(9)
[125], but again, we have employed a heavier quark mass.

The preceding Chapter 8 shows that excited-state contamination effects are still
prevalent when moving to non-zero momentum transfer. The vector Sachs form
factor combination GE/GM for the proton and neutron shows a clear distinction
between results with excited-states present and the variational method with its
reduced excited-state contamination. We looked into some key properties of proton
and neutron by analysing the charge and axial charge radius of the proton, as
well as their magnetic moments. Large sensitivity was discovered for the radii
〈r2〉 and 〈r2

A〉 with respect to excited-state contamination, due to the dipole fit
function changing shape when effected by excited-states. A similar sensitivity was
discovered for the magnetic moment, as the extrapolated dipole fit functions to
Q2 → 0 changed shape when excited-states were suppressed. As experimental form
factor data [21] is undertaken at large Q2, the ideal range to work in lattice QCD
would also be at large Q2. However, this is problematic as firstly, the signal to noise
drastically reduces as we increase Q2 and secondly, the excited-state contamination
is more prevalent. Along with this, the other aforementioned systematics need to
be brought under-control.

The pencil of function method outlined in Section 5.2.2 hinted at a potential
method for improving the excited-state extraction process for zero momentum
transfer results. The problem demonstrated in Chapter 7 is the signal to noise
ratio is greatly decreased when applying the method. In Appendix A.3, we outline
a potential cause for the such weak signal to noise ratio.

Lastly, so that the results presented in Chapter 7 and Chapter 8 have physi-
cal meaning, we formalised the standard non-perturbative renormalisation scheme
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RI ′−MOM and demonstrated how we use perturbative constants to convert these
renormalisation constants to the MS scheme in Chapter 4. The main value calcu-
lated in this thesis that had not been calculated previously, was ZMS

〈x〉 = 1.104(23).
As we increase computing power, we can brute force the extraction of hadron

matrix elements that have highly suppressed excited-state contamination by util-
ising multi-state fitting methods. But the only current way we can improve the
excited-state determination from a physics standpoint, is by constructing optimal
interpolating fields that have high overlap with the ground-state or excited-state in
question. I would argue that the latter approach is a more computationally cost-
effective and robust in achieving the goal of extracting hadron matrix elements
with suppressed excited-state contamination.
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Appendix A

Lattice QCD

A.1 Sakurai Representation

Here we display our chosen gamma matrix basis, the Sakurai Representation, in
Euclidean space. These will co-inside with the results when a suitable O has been
chosen for the three-point correlation function in Section 3.4.2.

γ0 = γ4 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , γ1 =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 ,

γ2 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 , γ3 =


0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

 , γ5 =


0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0


(A.1)

In this representation, we have the σ tensor being

σµν = −iγµγν . (A.2)

A.2 Bootstrap and Jackknife Ensembles of Correlation

Functions

For the analysis of correlation functions described in Chapter 6, we note that the
quantities calculated per gauge field are correlated. This means that we can either
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use Bootstrap or Jackknife statistical analysis methods of the correlation functions,
which enables us to construct combinations and create fits.

For this thesis, we undergo bootstrap analysis. For some quantity O calculated
on the gauge field Ui ∈ UN , we create the bootstrapped set by

Ob =

NA∑
i=1

1

NA

O[Ur(i)], (A.3)

where NA is the size of the averaging process, and r(i) is the i’th a random index
from a list of NA randomly generated indices spanning 1, . . . , N .

Then we can estimate the mean and standard deviation using the same equa-
tions, but applied to the bootstrapped configurations

O =

Nb∑
b=1

1

Nb

Ob, σO =

√√√√ Nb∑
b=1

1

Nb

(Ob −O)2. (A.4)

For Jackknife, we use the following similar construction

Oj =
N∑
i 6=j

1

N − 1
O[Ui], (A.5)

then we can estimate the mean and standard deviation using the similar equations,
but applied to the jackknifed configurations

O =
N∑
j=1

1

N
Oj, σO =

√√√√ N∑
j=1

N − 1

N
(Oj −O)2. (A.6)

This technique of replacing the individual gauge field quantities with the boot-
strap or jackknife configuration versions must be done once the two- and three-
point correlation functions have been calculated. After this construction, we ma-
nipulate our correlators by undergoing the operation on a per-bootstrap config-
uration level or per-jackknife configuration level. For example, multiplication of
two bootstrap quantities is achieved by

O = O1O2 → Ob = O1bO2b, ∀b = 1, ..., Nb. (A.7)

This technique applies to the ratio function construction in Eq.(3.68) or Eq.(3.69),
the iso-vector, proton or neutron combinations created from the quark contribu-
tions to the three-point correlation function discussed in Section 6.4, the summa-
tion method in Section 6.3 and solving the form factor system of equations outlined
in Section 6.26.
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Moreover, when fitting a bootstrapped quantity, we fit the individual boot-
strapped values which results in bootstrapped fit parameters. This is done in the
one-exponential, two-exponential and plateau fit methods described in Chapter 6.

For testing the “goodness” of a fit, we use the χ2
PDF which is defined as

χ2
PDF (O,F ) =

χ2(O,F )

D
=

1

D

n∑
t=1

(F (t)−O(t))2

σ2
O(t)

, (A.8)

for some set of quantities O over some values (usually time values) t and some fit
function F . We use σO(t) due to the fact that all fitting done are weighted by the
standard deviation of the sink time result O(t). The quantity D is the number of
degrees of freedom that are unconstrained

D = n− fit parameters in function F (A.9)

It is common practice when analysing fits of correlation functions to reject any
fit range with χ2

PDF > 1. In fact this value is generally used as a parameter to
find an appropriate fit range that satisfies some large time approximation (e.g.
two-point correlation functions with t� 0).

A.3 Pencil of Function De-correlation

As demonstrated in Chapter 7, the pencil of function construction outlined in
Section 5.2.2 seems to demonstrate greatly improved excited-state suppression,
but as a downside, has significantly smaller signal to noise ratios. One potential
cause for this effect could be due to a de-correlation in the statistical analysis due
to different source locations within the matrix of correlators.

Analysing the time translation definition

χδ (~x, t) ≡ eĤδχ (~x, t) e−Ĥδ = χ (~x, t+ δ)

χδ (~x, t) ≡ e−Ĥδχ (~x, t) eĤδ = χ (~x, t− δ)
(5.25)

on a per gauge field basis, the correct way may be to express Eq.(5.29) without
shifting the time in Eq.(5.25). When we analyse from some source time to t0, the
basis of two-point correlation functions becomes

(G2)ij (Γ; ~p, t, t0) =

[
G2(Γ; ~p, t0) G2(Γ; ~p, t+ δ, t0)

G2(Γ; ~p, t, t0 − δ) G2(Γ; ~p, t+ δ, t0 − δ)

]
, (A.10)
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where the bottom row is a new set of correlation functions constructed at a shifted
source time t0 − δ. This correction can be extended to three-point correlation
functions by correcting Eq.(5.32) to

(G3)ij (~p ′, t; ~q, τ ; t0) =

[
G3(~p ′, t; ~q, τ ; t0) G3(~p ′, t+ δ; ~q, τ ; t0)

G3(~p ′, t; ~q, τ ; t0 − δ) G3(~p ′, t+ δ; ~q, τ ; t0 − δ)

]
, (A.11)

where, once again, a new row of correlation functions on the second line need to
be constructed from a source time t0 − δ.
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Appendix B

Perturbative Renormalisation
Parameters

In Section 4.2.3, we utilise perturbatively expanded coefficients βi and γi and this
appendix, we defines these quantities and show their numerical value.

The anomalous dimension in some scheme S is defined and expanded as

γS ≡ −µ d

dµ
log (ZS) = γ0

gS(µ)2

16π2
+ γS1

(
gS(µ)2

16π2

)2

+ γS2

(
gS(µ)2

16π2

)2

. . . , (B.1)

where again, S is the current scheme. Analogously, the β-function is defined as

βS ≡ −µ d

dµ
gS(µ) = −β0

gS(µ)3

16π2
− β1

gS(µ)5

(16π2)2
− βS2

gS(µ)7

(16π2)3
. . . , (B.2)

The coefficients βi up to three loops are equivalent for S = MS and RI ′ −
MOM , with values [78]

β0 = 11− 2

3
Nf ,

β1 = 102− 38

3
Nf ,

β2 =
2857

2
− 5033

18
Nf +

325

54
N2
f ,

(B.3)

where Nf is the number of flavours. The anomalous dimension is operator de-
pendant, with the vector and pseudo-vector values being γ = 0. The scalar and
pseudo-scalar values are
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γ0 = −8,

γMS
1 = −404

3
+

40

9
Nf ,

γRI
′−MOM

1 = −252 +
104

9
Nf ,

γMS
2 = −2498 +

(
4432

27
+

320

3
ζ3

)
Nf +

280

81
N2
f ,

γRI
′−MOM

2 = −40348

3
+

6688

3
ζ3 +

(
35176

27
− 256

9
ζ3

)
Nf +

1712

81
N2
f ,

(B.4)

where the zeta function ζ3 = 1.20206 . . .. The tensor values are

γ0 =
8

3
,

γ1 =
724

9
− 104

27
Nf ,

γMS
2 =

105110

81
− 1856

27
ζ3 −

(
10480

81
+

320

9
ζ3

)
Nf −

8

9
N2
f ,

γRI
′−MOM

2 =
359012

81
− 26144

27
ζ3 +

(
−39640

81
− 512

27
ζ3

)
Nf +

2288

243
N2
f ,

(B.5)

and the 〈x〉 or v2,b values are

γ0 =
64

9
,

γMS
1 =

23488

243
− 512

81
Nf ,

γMS
2 =

11028416

6561
+

2560

81
ζ3 −

(
334400

2187
+

2560

27
ζ3

)
Nf −

1792

729
N2
f ,

(B.6)

The values for γRI
′−MOM were only calculated the whole function ∆ZRGI

RI′−MOM for
the quark momentum fraction 〈x〉, which is summarised over the momenta scale
µ2 in Table B.1
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µ2 ∆ZRGI
RI′−MOM

0.15421 1.40463
0.61685 1.08859
1.38791 1.22120
2.46740 1.32251
3.85531 1.38676
5.55165 1.43366
7.55642 1.47039
9.86960 1.50045
12.49122 1.52580

µ2 ∆ZRGI
RI′−MOM

0.03855 1.35984
0.34698 1.34455
0.96383 1.13380
1.88910 1.27893
3.12280 1.35753
4.66493 1.41180
6.51548 1.45302
8.67446 1.48610
11.14186 1.51362
13.91768 1.53711

µ2 ∆ZRGI
RI′−MOM

0.00964 1.10353
0.24096 1.08374
0.78070 1.05920
1.62887 1.25240
2.78546 1.34088
4.25048 1.39973
6.02393 1.44362
8.10580 1.47843
10.49609 1.50717
13.19481 1.53155

Table B.1: Table showing the calculated quantity ∆ZRGI
RI′−MOM for the quark

momentum fraction 〈x〉 at every momenta scale used in Chapter 4
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Appendix C

Tabulated Results

In this appendix, we present the tabulated results which correspond to the mass
parameters extracted in Section 7.2 as well as the values presented in the summary
Figures 7.42, 7.43, 7.44 and 7.45 in Chapter 7. In addition, this appendix includes
tabulated results for all the form factor values presented in Chapter 8.

C.1 Zero Momentum

calculation type fit type fit range m[0] ∆m[0] χ2
PDF

sm32 OSF 12-19 0.4618 0.0045 0.07486
sm64 OSF 12-19 0.4599 0.0042 0.02868

sm128 OSF 12-19 0.4595 0.0046 0.04725
variational method OSF 8-19 0.4617 0.0038 0.08476

pencil of function OSF 3-16 0.4630 0.0036 0.62055
sm32, 64, 128 TSF 4-19 0.4581 0.0043 0.08361

Table C.1: Table showing all the extracted masses m[0] in lattice units from the
one-exponential fit (OSF) and the two-exponential fit (TSF).
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Methods gA gS 〈x〉 gT
Fit t=10, sm32 1.0359(64) 0.748(12) 0.2484(18) 1.0610(53)
Fit t=13, sm32 1.0858(95) 0.837(22) 0.2223(23) 1.0571(89)
Fit t=16, sm32 1.112(16) 0.901(36) 0.2009(33) 1.047(14)
Fit t=19, sm32 1.114(29) 0.956(58) 0.1865(46) 1.030(25)
Fit t=22, sm32 1.136(53) 0.97(10) 0.1802(78) 1.044(46)
Fit t=13, sm32 1.0858(95) 0.837(22) 0.2223(23) 1.0571(89)
Fit t=13, sm64 1.1108(92) 0.879(22) 0.2111(22) 1.0655(82)
Fit t=13, sm128 1.1389(92) 0.931(23) 0.1977(22) 1.0734(78)
Var CM t=13, t0=4 ∆t=2 1.157(11) 0.978(26) 0.1874(23) 1.0787(82)
Var CM t=16, t0=2 ∆t=2 1.150(20) 0.970(51) 0.1851(45) 1.084(17)
1exp t=10, sm32 1.099(16) 0.793(16) 0.2636(39) 1.126(16)
1exp t=13, sm32 1.0793(91) 0.827(21) 0.2218(22) 1.0532(86)
1exp t=16, sm32 1.100(15) 0.885(34) 0.2044(31) 1.045(14)
1exp t=19, sm32 1.125(27) 0.955(58) 0.1928(44) 1.047(22)
1exp t=22, sm32 1.160(54) 0.99(12) 0.1870(82) 1.072(41)

Table C.2: Summary of results as displayed in Figures 7.42, 7.43, 7.44, 7.45 for
the fits and half the one-exponential fits.

137



Methods gA gS 〈x〉 gT
1exp PoF t=13, t0=4∆t=2 1.135(49) 0.982(62) 0.1876(100) 1.047(44)
1exp PoF t=16, t0=2∆t=2 1.128(55) 0.963(75) 0.185(11) 1.031(49)
1exp t=13, sm32 1.0793(91) 0.827(21) 0.2218(22) 1.0532(86)
1exp t=13, sm64 1.1039(91) 0.869(21) 0.2105(21) 1.0614(80)
1exp t=13, sm128 1.1334(98) 0.921(23) 0.1975(22) 1.0703(80)
1exp CM t=13, t0=4 ∆t=2 1.153(16) 0.963(27) 0.1878(28) 1.075(13)
2exp t=13, sm32 δt=2 1.148(23) 0.944(39) 0.2001(52) 1.064(16)
2exp t=13, sm32 δt=3 1.148(23) 0.953(41) 0.2060(76) 1.060(18)
2exp t=13, sm32 δt=4 1.151(24) 0.971(47) 0.221(14) 1.053(19)
2exp t=13, sm64 δt=2 1.144(17) 0.959(35) 0.1910(49) 1.050(12)
2exp t=13, sm64 δt=3 1.144(18) 0.965(37) 0.1947(70) 1.049(14)
2exp t=13, sm64 δt=4 1.145(19) 0.971(41) 0.208(12) 1.041(16)
2exp t=13, sm128 δt=2 1.160(16) 0.998(35) 0.1836(50) 1.051(12)
2exp t=13, sm128 δt=3 1.159(17) 1.000(36) 0.1834(72) 1.050(14)
2exp t=13, sm128 δt=4 1.158(19) 0.993(39) 0.188(13) 1.044(18)
2exp All sm32 δt=2 1.140(26) 0.957(58) 0.1771(63) 1.034(25)
2exp All sm32 δt=3 1.149(33) 0.976(70) 0.1753(72) 1.039(30)
2exp All sm32 δt=4 1.157(45) 1.005(92) 0.1736(87) 1.046(37)
2exp t 6=10,13 sm32 δt=2 1.155(45) 1.013(93) 0.1728(83) 1.041(37)
2exp t 6=10,13 sm32 δt=3 1.157(47) 1.012(97) 0.1723(86) 1.043(39)
2exp t 6=10,13 sm32 δt=4 1.157(51) 1.01(10) 0.1730(91) 1.047(41)
2exp t 6=16,19,22 sm32 δt=2 1.129(17) 0.948(42) 0.1816(59) 1.030(16)
2exp t 6=16,19,22 sm32 δt=3 1.138(19) 0.958(47) 0.1819(65) 1.034(18)
2exp t 6=16,19,22 sm32 δt=4 1.152(25) 0.972(58) 0.1800(78) 1.042(23)
Sum All δt=0 1.179(28) 1.026(80) 0.1542(64) 1.041(26)
Sum All δt=1 1.170(27) 1.009(74) 0.1596(57) 1.041(25)
Sum All δt=2 1.160(25) 0.987(67) 0.1671(50) 1.041(23)
Sum All δt=3 1.147(22) 0.959(60) 0.1767(43) 1.043(20)
Sum t 6=10,13 δt=0 1.16(11) 1.24(24) 0.138(20) 1.000(96)
Sum t 6=10,13 δt=1 1.15(11) 1.19(22) 0.142(19) 0.998(93)
Sum t 6=10,13 δt=2 1.15(10) 1.15(21) 0.143(17) 1.001(88)
Sum t 6=10,13 δt=3 1.148(96) 1.11(19) 0.147(15) 1.006(82)

Table C.3: Summary of results as displayed in Figures 7.42, 7.43, 7.44, 7.45 for half
the one-exponential fits, the two-exponential fits and summation method results.

C.2 Form Factors
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Iso-Vector
Two-Exponential Fit Form Factors
Q2(GeV)2 GA GP

0.0 1.149(33) NA
0.26295 0.915(24) 8.94(42)
0.50674 0.775(25) 5.45(27)
0.73503 0.650(29) 3.44(20)
0.95045 0.577(35) 2.41(32)

Table C.4: Table showing the iso-vector form factors using the two-exponential fit
method over all 32 sweeps of smearing results, tabulated over the physical transfer
momentum Q2.

Iso-Vector 32 Smearing
Plateau Form Factors

Q2(GeV)2 GA GP

0.0 1.0858(95) NA
0.26295 0.9214(79) 8.09(16)
0.50674 0.8072(73) 4.922(86)
0.73503 0.7144(89) 3.293(81)
0.95045 0.653(11) 2.463(87)

Iso-Vector 32 Smearing
One-Exponential Fit Form Factors
Q2(GeV)2 GA GP

0.0 1.0793(91) NA
0.26295 0.9209(79) 8.21(15)
0.50674 0.8097(71) 5.041(86)
0.73503 0.7165(84) 3.368(78)
0.95045 0.650(10) 2.487(82)

Table C.5: Tables showing the iso-vector form factors using the 32 sweeps of smear-
ing calculation with a plateau fit (left) and one-exponential fit (right), tabulated
over the physical transfer momentum Q2.

Iso-Vector Variational Method
Plateau Form Factors

Q2(GeV)2 GA GP

0.0 1.157(11) NA
0.26295 0.9283(89) 9.02(26)
0.50674 0.7630(99) 5.13(13)
0.73503 0.651(15) 3.43(13)
0.95045 0.561(21) 2.23(18)

Iso-Vector Variational Method
One-Exponential Fit Form Factors
Q2(GeV)2 GA GP

0.0 1.153(16) NA
0.26295 0.935(12) 9.15(25)
0.50674 0.779(11) 5.40(14)
0.73503 0.666(14) 3.56(13)
0.95045 0.580(20) 2.41(15)

Table C.6: Tables showing the iso-vector form factors using the variational method
calculation with a plateau fit (left) and one-exponential fit (right), tabulated over
the physical transfer momentum Q2.
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