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Abstract 

Low phosphorus (P) availability limits plant growth in many soils, particularly in 

Andisols and Oxisols, due to their large content of minerals that strongly sorb P (e.g. Al/Fe 

oxyhydroxides, allophane). Because of the strong P retention, P fertilizer requirements are 

high in these soils. Strategies to increase the efficiency of P fertilizers – and reduce P rates 

needed to obtain maximal yield – remain key to reducing the pressure on limited rock 

phosphate reserves. To develop management practices or fertilizer formulations that enhance 

P availability and fertilizer efficiency in strongly P-sorbing soils, a better understanding of 

the chemical reactions of P in these soils is needed. This work aimed (i) to examine the 

chemical behaviour of soil P and added P to plant uptake in strongly P-sorbing soils and (ii) 

to compare the effect of different P fertilizer types (granular/fluid/nano-sized) as a strategy to 

increase the efficiency of P fertilizers. 

A laboratory incubation experiment was conducted to evaluate the diffusion and 

lability of P from granular and fluid fertilizers applied to Andisols and Oxisols using the 

isotopic dilution technique and a novel visualization method. In all soils, fluid fertilizers 

enhanced P diffusion, but not P lability, i.e. the amount of added P that remained in 

isotopically exchangeable form. In the Oxisols, a greater percentage of added P remained 

isotopically exchangeable when added as granular monoammonium phosphate (MAP) (41% 

labile) than when added as fluid MAP (25% labile). In the Andisols, no significant difference 

was observed in the percentage of labile P between both fertilizer types (circa 25% labile). 

Given these results, it was hypothesized that there would be no agronomic benefit from the 

application of fluid P fertilizer in these soils. A subsequent pot trial was conducted to assess 
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the uptake of P by wheat (Triticum aestivum) from granular and fluid fertilizers using the 

indirect isotopic dilution method in two Andisols, two Oxisols, and a calcareous soil (where 

fluid P has been proven more effective). This pot trial indeed showed no significant 

difference in dry matter yield, P uptake and the percentage of P derived from the fertilizer in 

the plant (%Pdff) between granular and fluid MAP in the Andisols or Oxisols, while there 

was a significant increase with fluid fertilizer in the calcareous soil.  

Hydroxyapatite nanoparticles (Ca10(PO4)6(OH)2, n-HAP) were also tested as a 

potential P fertilizer, based on the hypothesis that nano-sized particles can potentially move 

in the soil and reach the plant roots through the transpiration flow. Because of the strong 

adsorption and subsequent fixation of soluble P in this type of soils, nanoparticulate P could 

potentially have a benefit over soluble fertilizers. Column studies showed some leaching 

(5%) of n-HAP in the Andisol but very little in the Oxisol. In contrast, bulk-sized HAP did 

not move in either of the soils. A pot trial using the isotopic dilution procedure evaluated P 

availability for wheat from n-HAP, bulk-sized HAP, and triple superphosphate. For Andisols 

and Oxisols, P uptake and %Pdff differed significantly from P treatments as follows: TSP > 

n-HAP > bulk-HAP. Thus, while sparingly-soluble fertilizer in nanoparticulate form (n-HAP) 

performed better than its bulk counterpart, it was less efficient than soluble fertilizer (TSP). It 

was hypothesized that the difference between n-HAP and bulk-HAP was due to the 

difference in rate of dissolution, but that the n-HAP has no direct effect on the uptake and 

only contributes via dissolution. 

The pot trial showed that n-HAP did not have an agronomic benefit over soluble 

granular fertilizers, but the possible contribution of nanocolloidal P to P uptake was still 

further investigated in hydroponic experiments. Phosphorus bioavailability is related to its 

concentration and speciation in the soil solution. Free orthophosphate is the form of P taken 

up by plants; but colloidal P constitutes an important fraction of total solution P in oxide- or 
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allophane-rich soils and its bioavailability has not been previously considered. The uptake of 

P by wheat seedlings was measured from radiolabeled non-filtered (colloid-containing) and 

3-kDa filtered (colloid-free) soil-water extracts from Andisols and Oxisols. In the Andisol 

extracts, P uptake was up to seven-fold higher in the non-filtered solutions than in the 

corresponding 3-kDa filtered solutions. It is hypothesized that labile humic/fulvic-Fe/Al-P 

complexes increased the diffusive transport flux of free P to the roots. In the Oxisol extract, 

no difference in P uptake between both solutions was observed. Also, the diffusional flux of 

P measured with the diffusive gradient in-thin films (DGT) method was larger in the non-

filtered than in the 3-kDa filtered solutions. These results are the first observation that natural 

colloidal P is not inert and can contribute to plant P uptake.  

This work has shown that increasing soil available P and fertilizer efficiency in soils 

where strong adsorption reactions control P availability is very challenging. However, the 

observed contribution of colloidal P to plant P uptake for Andisols is a finding that may lead 

to the development of new management practices to enhance the release of P-containing 

colloids into solution as a complimentary strategy to P fertilization in these strongly P-

sorbing soils. Although in this study hydroxyapatite nanoparticles offered no advantage over 

conventional soluble P fertilizers for plant growth, this does not imply that nano-sized P 

fertilizers can be ruled ineffective. The addition of labile nanocolloidal P that is mobile in soil 

and contributes to P uptake is still a worthwhile fertilizer strategy to investigate.
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Structure of the thesis 

This thesis is presented in publication format and includes papers that have been 

published or submitted for publication. As a result, there is a degree of unavoidable overlap, 

especially between the introductory chapters (Chapter 1 and 2) and the introduction sections 

of the experimental chapters (Chapters 3-6).  

 

Chapter 1 includes the thesis introduction and a general discussion of the importance 

and limitations of P fertilizer application in strongly P-sorbing soils for adequate crop 

production. This chapter also outlines the motivations that triggered the development of the 

present work.  

 

Chapter 2 provides an overview of the literature on the chemical behaviour of soil and 

fertilizer phosphorus (P) in acidic and strongly P-sorbing soils, and presents the research 

objectives. This chapter summarizes the key processes that limit the availability of P from 

water-soluble fertilizers when applied to strongly sorbing soils and highlights the need to 

improve fertilizer efficiency. This chapter also includes a brief review of the main processes 

that affect the fate and behaviour of nanoparticles in soils, as it has been suggested that 

nanotechnology can potentially be used to design more effective fertilizers.  

 

Chapter 3 describes the results from two incubation experiments performed to 

evaluate the effect of fertilizer type (granular vs. fluid) on the diffusion, lability and solubility 

of P from a range of P fertilizers applied to acidic and strongly P-sorbing soils.  
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Chapter 4 presents the results of a pot trial that was conducted to test the hypothesis 

that fluid P fertilizers do not offer any agronomic benefit over granular P fertilizers in soils 

where strong adsorption reactions control the availability of P. The isotopic dilution approach 

was used to assess P uptake by wheat from the P fertilizers. This is a follow-up study to the 

study presented in Chapter 3.  

 

Chapter 5 describes the results of two experiments conducted to evaluate the potential 

use of hydroxyapatite nanoparticles as P fertilizer for acidic and strongly P-sorbing soils. In 

the first experiment, the transport of nano- and bulk-sized hydroxyapatite was evaluated in 

soil-packed columns. The second experiment was a pot trial where P uptake by wheat from 

nano- and bulk-hydroxyapatite and a conventional water-soluble P fertilizer was assessed 

using 
33

P isotopic dilution.  

 

Chapter 6 presents results of short-term P uptake experiments that were conducted to 

assess the contribution of colloidal P in soil-water extracts from Andisols and Oxisols to plant 

P uptake.  

 

Chapter 7 summarizes the principal findings arising from this thesis and includes 

recommendations for future work. 

 

 

 

 

 

 



CHAPTER 1  

Introduction 

Phosphorus (P) is considered the most important macronutrient after nitrogen limiting 

plant growth (Holford, 1997). Phosphorus deficiency is a widespread constraint and it has 

been estimated that in nearly 70% of the world’s agricultural soils, the concentration of 

available P is too low to sustain optimal crop production (Cakmak, 2002). This is certainly 

the case for highly weathered soils (e.g. Andisols and Oxisols) dominated by Al and Fe 

oxyhydroxides and allophane, which are minerals known to strongly sorb P (Parfitt, 1989). 

Strongly P-sorbing soils are extensively present in subhumid East and West Africa, 

Central America, South America, and South-East Asia (Fig. 1.1.). Some countries of these 

regions, especially those in Africa, are constantly being affected by food shortages due to low 

crop yields, hence it is essential to implement plant nutrient management practices to increase 

agricultural productivity and ensure food security for the population (FAO et al., 2013; 

Sanchez, 2010). 
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Fig. 1.1. World map of soil phosphorus sorption capacity (area in red corresponds to soils 

with very high P sorption capacity) (Batjes, 2011). 

 

In order to overcome P deficiency and to increase crop yields, the application of P 

fertilizers is necessary. However, in strongly P-sorbing soils, P management is challenging 

because large fertilizer application rates (e.g. > 300 kg P ha
-1

) are required to maximize crop 

yields (Dahlgren et al., 2004; Sanchez and Uehara, 1980). This heavy fertilization is not only 

economically prohibitive for small farm-holders but can also adversely affect the 

environment. Furthermore, P fertilizers are produced from rock phosphate, a finite and non-

renewable mineral, and it has been speculated that the more accessible reserves will be 

depleted in the next few centuries (Obersteiner et al., 2013). The continuous and increasing 

demand for P fertilizers has raised concerns for its long term availability (Scholz et al., 2013). 

Management practices designed to improve the efficiency of P fertilizers in strongly 

P-sorbing soils have been investigated for many decades. Earlier studies suggested that single 

massive P applications followed by subsequent lower P rates were needed to maximize crop 

yields and to obtain long-term residual P value (Sanchez and Uehara, 1980; Yost et al., 

1979). However, these large P applications do not prevent P from reacting with the soil, so 

the availability from the remaining fertilizer diminishes with time due to the slow P sorption 

reactions (Barrow, 1980). The effect of fertilizer placement has also been investigated. In 

2



soils where strong adsorption reactions control soil P availability, banding the fertilizer near 

the roots has been a better placement option than broadcasting for most crops, as it reduces 

contact of P with soil resulting in saturation of the sorption sites and hence higher solution 

concentrations (Havlin et al., 2006; Randall and Hoeft, 1988; Smyth and Cravo, 1990). 

However, when precipitation reactions are dominant, banding may reduce the efficiency of 

fertilizer P (McLaughlin et al., 2011).  

A strategy with more potential to improve fertilizer P efficiency is the modification of 

fertilizer formulations (Withers et al., 2014). Ideally, P fertilizers should be designed and/or 

chosen considering the chemical properties of the soils. The modification of fertilizer 

formulations that have been investigated to improve fertilizer P efficiency include co-

granulating P with other chemical compounds (Bouldin and Sample, 1958; Bouldin et al., 

1960), different fertilizer type (Holloway et al., 2001), addition of polymers (Gordon and 

Tindall, 2006), and recently the use of nanofertilizers has been suggested (DeRosa et al., 

2010).  

Fluid P fertilizer has been investigated as an approach to improve the efficiency of P 

fertilizers in calcareous soils. Results from field and pot experiments conducted in Australian 

calcareous soils have consistently shown higher P uptake, dry matter yield, and grain yield 

when wheat was fertilized with fluid P fertilizer than with granular P (Bertrand et al., 2006; 

Holloway et al., 2001). The higher fertilizer efficiency with the fluid form was explained by 

the enhanced P diffusion resulting in less concentrated P environments and hence less 

formation of Ca-P precipitates (Lombi et al., 2006). The positive plant response obtained with 

fluid P in calcareous soils raised interest in the use of fluid P fertilizers in non-calcareous 

soils. McBeath et al. (2005) evaluated the effectiveness of fluid (phosphoric acid and 

ammonium polyphosphate) and granular P (triple superphosphate) fertilizers in a collection 

of Australian soils with soil pH ranging from 5.3 to 8.4. Higher dry matter yield was 
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measured with fluid P fertilizer in three of the ten acid to neutral soils investigated, in 

contrast with earlier work where no differences were observed between fluid and granular P 

fertilizers in acidic soils (Miner and Kamprath, 1971). In a more recent study, Khatiwada et 

al. (2012) also observed higher resin-extractable P with fluid than with granular P fertilizer 

applied to an acidic non-calcareous soil. These mixed results indicate no generalizations can 

be made regarding the efficiency of fluid P fertilizer in acidic soils and more research to 

better understand its behaviour in non-calcareous soils is still needed. 

It has been suggested that implementation of nanotechnology can potentially advance 

of agriculture and food production through increased efficiency and sustainability (Chen and 

Yada, 2011; Ghormade et al., 2011; Sekhon, 2014). Nanofertilizers could be designed to 

release nutrients in a controlled way synchronized with plant demand, or be designed to 

prevent the immobilization of nutrients in the soil, or could even be directly taken up by the 

plant and thereby improve nutrient-use efficiency (DeRosa et al., 2010). The potential 

benefits of nanofertilizers over conventional P fertilizers still need to be explored and hence 

research in this area is very much needed.  

In addition to developing novel more efficient fertilizer formulations, it is important to 

improve our understanding of soil-plant P dynamics in strongly P-sorbing soils. Plants take 

up P from the soil solution as free orthophosphate ions (H2PO4
─
, HPO4

2─
) but other P species 

are also present in the soil solution and their contribution to plant nutrition has been 

overlooked. For example humic-metal-P complexes can account for an important fraction of 

solution P in Andisols rich in organic matter and these species may contribute to soil 

available P as the humic molecules can dissociate to release P (Gerke, 2010).  

In summary, the use of P fertilizers for agricultural production is essential but the 

current management of P fertilizers needs improvement as P will become increasingly 

expensive in the future. There is a need to develop more effective P fertilizer formulations for 
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soils that strongly sorb P; however, in order to develop innovative fertilizer technologies it is 

necessary to better understand the chemical processes that control the fate and availability of 

added P. Furthermore, P bioavailability also relates to the speciation of P in the soil solution 

and free orthophosphate is frequently not the dominant P species in the solution of soils, 

especially in soils rich in Al/Fe oxides. Mobile colloidal P is an important P species in these 

soils that could potentially contribute to P availability but this has not been yet considered.
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CHAPTER 2  

Literature review 

Introduction 

Phosphorus (P) is an essential element required for plant growth. It participates 

directly or indirectly in all metabolic processes of plants, as it is a component of key 

molecules like nucleic acids (RNA, DNA), nucleotides (ATP, ADP), phospholipids, and 

coenzymes (Raghothama, 2005). Plants suffering from P deficiency exhibit stunted growth 

and delayed maturity. Purplish coloration of the leaves due to excess anthocyanin 

accumulation is a characteristic symptom of P deficient plants (Havlin et al., 2006). 

There is great awareness on the importance of P to sustain life. In recent years, 

increasing the efficiency of P fertilizers has gained much interest because of three main 

reasons as summarized by Johnston et al. (2014). First, inorganic P fertilizers are made from 

phosphate rock, a finite and non-renewable resource which depletion of easy accessible 

reserves is a concern. Second, many agricultural soils especially those in developing 

countries of the tropics are P deficient and therefore application of P fertilizers is 

indispensable for crop production. Third, inadequate P management and overfertilization 

especially in developed countries is the main cause for eutrophication of water bodies. 

This chapter reviews the literature regarding our current understanding of the 

chemistry and forms of soil P, the reactions of P fertilizers in soils, and the management 

practices developed to enhance the efficiency of applied P for strongly P-sorbing soils. 

Furthermore, since nanotechnology has been proposed as the technology with potential to 
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improve fertilizer formulations (DeRosa et al., 2010), this chapter includes an overview of the 

properties and behaviour of nanomaterials in soils and the potential mechanisms by which the 

efficiency of P fertilizers may be improved with the use of nanotechnology. 

 

Phosphorus in the soil 

In soils, P is present in the solid and solution phase. The major processes that control 

the exchange of P between the solid and liquid phases are dissolution/precipitation of 

phosphate minerals and adsorption/desorption of P onto soil constituents (Sims and 

Pierzynski, 2005). Depending on the parent material, soil type, and fertilization practices, the 

concentration of P in soils can vary from 50 to 3000 mg kg
-1

 (Sims and Pierzynski, 2005). 

Although high total P concentrations can be present in soils, the concentrations of P measured 

in the soil solution are generally low (µM concentrations), especially in highly weathered and 

oxide rich soils (Johnston et al., 2014).  

 

Soil solution P 

Soil solution P represents a minor but critical fraction of total soil P as plant roots take 

up P as inorganic ions from the soil solution. The speciation of orthophosphate in soil 

solution is determined by its pH. At pH below 6.5, most orthophosphate is present as H2PO4
-
, 

whereas at a pH higher than 7.5, the dominant P species is HPO4
2-

. In addition to free 

orthophosphate, organic P esters (P-O-C bonds) and colloidal P (P associated with Al/Fe 

oxides and organic matter of size range 1-1000 nm) species can also be present in soil 

solution (Hens and Merckx, 2002; Shand et al., 2000). Indeed, it has been shown colloidal P 

can comprise an important fraction of solution P (90%), especially in oxide-rich soils 

(Haygarth et al., 1997; Hens and Merckx, 2001; Sinaj et al., 1998). Tavakkoli et al. (2013) 

recently investigated the isotopic exchangeability of colloidal P from filtered soil-water 
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extracts obtained from neutral and alkaline Australian soils with medium and high organic 

carbon content. A linear correlation was observed between the concentrations of Al+Fe 

(related to colloid abundance) and the non-isotopically exchangeable P pool in the soil with 

medium organic carbon content, whereas in the soil with higher organic carbon content no 

such relationship was observed (Tavakkoli et al., 2013). Santner et al. (2012) demonstrated 

that under diffusion-limited P conditions, P associated with Al-oxide nanoparticles enhanced 

the uptake of P by plants most likely due to P desorption from the nanoparticles near the 

roots. Since Andisols and Oxisols can have large quantities of soil solution P in colloidal 

form, the implication of this to plant nutrition needs to be addressed. Furthermore, it has been 

reported organic P forms can also represent a significant proportion (> 50%) of total P in soil 

solution (Ron Vaz et al., 1993; Shand et al., 1994); however, its chemical nature and 

availability to plants has received little attention (Richardson et al., 2005). Using radiolabeled 

bacterial extracts as organic P sources, Macklon et al. (1997) demonstrated that plants can 

access orthophosphate-P from dissolved organic P through hydrolysis by root surface 

phosphatases.  

Various analytical methods are available to determine the concentration and speciation 

of P in solution. Phosphorus measured by colorimetry is usually assumed to correspond to 

orthophosphate concentration; however, there is ample evidence that other P species 

(colloidal P and organic P compounds) can hydrolyse during the acidification step and be 

erroneously detected as orthophosphate by this method (Baldwin, 1998; Sinaj et al., 1998; 

Van Moorleghem et al., 2011). In addition, membrane filtration, typically over membrane 

filters with 0.20- or 0.45-µm pore size, has been used to discriminate between dissolved and 

particulate P in water samples, but this distinction is arbitrary. Small colloidal species can 

pass through the membrane and be identified as dissolved P. This may give an unrealistic 

impression of P availability if the P in the small colloids is strongly held and unavailable to 
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plants. Moreover, filter membranes usually clog during filtration, which can result in a strong 

reduction of the effective pore size, and hence the pore size of the membrane is not 

necessarily a good indication of the separation size (Hassellöv et al., 2008). Membranes of 

smaller pore size (1 kDa ~ 1 nm) have also been used to separate “truly dissolved” P in 

natural samples (Zhang and Oldham, 2001) but even this kind of separation may still include 

small colloidal species. Filtration of samples prior to chemical analysis is a standard 

procedure in laboratories and is justified and encouraged because of its simplicity, the 

reduction in the chemical complexity of the filtrate, preservation of the samples by removal 

of bacteria and other microorganisms that can promote biological transformations, and 

improved data quality obtained with analytical techniques (Doucet et al., 2007). However, 

filtration also removes the colloidal pool, the importance of which has been recognized as it 

affects the speciation, bioavailability, and transport of elements in soils (Lead and Wilkinson, 

2006).  

 

Soil solid phase P 

Most P in soils (> 90%) is present in the solid phase either as adsorbed forms bound to 

soil particles or organic matter through metal cations, precipitated as phosphate minerals, and 

as organic forms (Hesterberg, 2010). The main processes that control the distribution of P 

between solid and liquid phase are adsorption and precipitation. Sorption is a collective term 

that is used to describe the transfer of P from solution to the solid phase, when the mechanism 

is unknown (Barrow, 1999). In acidic soils, adsorption is considered the most important 

mechanism of P sorption. Adsorption can either be non-specific (outer-sphere) or specific 

(inner-sphere) through ligand-exchange reactions on hydroxylated mineral surfaces 

(Goldberg and Sposito, 1985; McBride, 1994). It is generally accepted that P sorption in 

acidic oxide-rich soils occurs primarily by the formation of inner-sphere complexes which are 
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characterized by strong adsorption forces that are not readily reversible (Fig. 2.1) (Sims and 

Pierzynski, 2005). The extent of the sorption reactions is determined by the abundance and 

type of oxide minerals that are present in the soil. For example, amorphous hydrous oxides of 

Al and Fe are more efficient sorbents than more crystallite forms (Borggaard, 1983; Parfitt, 

1979).  

 

 

Fig. 2.1 Diagrammatic representation of the adsorption of phosphate to an Al oxide and the 

formation of the inner-sphere complex (Sims and Pierzynski, 2005).  

 

Precipitation reactions involve the removal of ions in solution to form a new solid-

phase compound. Several studies have demonstrated the presence of Ca-P minerals (e.g. 

hydroxyapatite, octacalcium phosphate) (Beauchemin et al., 2003; Hesterberg et al., 1999; 

Lombi et al., 2006). It has been suggested that P may also precipitate in acidic soils with Al 

and Fe to form Al-P and Fe-P mineral phases (Hedley and McLaughlin, 2005; Lindsay et al., 

1962). Saturated conditions that facilitate precipitation reactions are expected near the 

fertilizer application site, but the high concentrations of the ions (Al, Fe and P) are likely to 

persist only for a short period of time after fertilizer dissolution and hence it is uncertain 

whether Al/Fe-P minerals (e.g. strengite or variscite) form and/or persist. Earlier work 

indicated that P in soils was associated with Al, Fe, Si in mixed precipitates more similar to 

plumbogummite minerals rather than stoichiometrically pure Al-or Fe-phosphate minerals 

(Norrish and Rosser, 1983). Although it is more widely believed that adsorption is the main 

sorption mechanism in acid soils (Hesterberg, 2010; Kizewski et al., 2011), recent studies 
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using x-ray absorption near-edge structure spectroscopy (XANES) have indicated the 

presence of Al- and Fe-P precipitates in bulk soils (Beauchemin et al., 2003; Khatiwada et al., 

2012; Sato et al., 2005) suggesting that precipitation reactions may also play a role in 

controlling P availability in acidic soils, though it should be kept that differentiation between 

precipitated Al/Fe-P species or P adsorbed to Al/Fe oxides with spectroscopic techniques is 

difficult. Moreover, the distinction between adsorption and surface precipitation is not 

straightforward (Li and Stanforth, 2000). 

 

Availability of P to plants - concepts and measurement 

Concepts 

From the fertility standpoint, soil P can be conceptualized in a series of forms 

differing in availability, with the most available forms being termed “labile” and the least 

available forms termed “non-labile” (Fig. 2.2). Labile P includes orthophosphate-P in the soil 

solution and the reversibly adsorbed P on the surfaces of the soil components. These two 

pools are considered in equilibrium, so when P is removed from the solution (e.g. by plant 

roots), the equilibrium is disturbed and the reversibly adsorbed P desorbs into soil solution. 

The non-labile P corresponds to P that is not reversibly bound and which is strongly adsorbed 

to soil particles or in precipitated form. These P forms eventually become available but in a 

much longer time frame (months, years). Hence, lability as a concept is kinetically defined.  

This distribution of P between different pools is often simplified with the Q/I 

(quantity/intensity) concept. The quantity corresponds to the amount of P in the solid phase 

that replenishes the soil solution and the intensity to the P concentration in the soil solution. 

The relationship between quantity and intensity is expressed by the phosphorus buffer 

capacity (PBC), with a high PBC indicating strong P buffering by the solid phase (Holford, 

1997). Phosphorus intensity can be directly measured in the soil solution or estimated by 
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extraction of the soil with a dilute salt (0.01 M CaCl2) or water (Ziadi et al., 2013). 

Conceptually, isotopic dilution is the most attractive method to determine the quantity or P-

buffering pool, but chemical extraction methods are the most common way to estimate the P 

quantity because of their simplicity (Fardeau, 1995). However, the amount of P extracted is 

operationally defined by the extractant used, and extracts may mobilize P that is not likely to 

be plant available in the short term (Demaria et al., 2005).  

 

Fig. 2.2 Conceptual diagram for the forms of soil P categorized in terms of plant availability. 

Reproduced from (Syers et al., 2008).  

 

Measurement 

Various soil tests have been developed for measurement of plant available P in soils 

including chemical extractant methods, ion sink methods, and the 
33

P isotopic dilution 

technique. As previously stated, chemical extraction methods (e.g. Olsen, Melich 3, Colwell) 

are common routinely used in laboratories and have been calibrated to make P fertilizer 

recommendations, but there are drawbacks to these methods.  

In order to more accurately determine soil available P, anion exchange resin 

membranes (Saggar et al., 1990), Fe-oxide impregnated paper (Menon et al., 1990), and 
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diffusive gradient in-thin films (DGT) (Mason et al., 2008) have been promoted as alternative 

methods. The principle underlying these methods is that they act as a sink for P and 

potentially mimic the uptake of P by plant roots. The main advantage of these methods is that 

the extraction of available P occurs without chemical alteration or change in the pH of the 

soil, as opposed to the chemical extracts. Recently, Six et al. (2012) showed that in acidic 

oxide-rich soils conventional soil extracts including, oxalate, Olsen, Colwell, Bray-1, and 

Mehlich 3 and even the anion exchange membranes measured significant amounts of P that 

was not accessed by plants (as determined through isotopic dilution), whereas the DGT 

technique sampled only from the plant-accessible P pool.  

The isotopic dilution principle is a widely accepted method that allows discriminating 

between labile and non-labile soil P pools. In this method, radioactively labelled 

orthophosphate (
33

P or 
32

P) is added to a soil suspension (water or dilute salt extract) and set 

to an equilibration time to allow exchange of the radioisotope with the most accessible 

phosphate ions in the soil. In laboratories, operationally defined equilibration times between 1 

and 7 days are employed. The isotopically exchangeable P is a function of time, and hence it 

increases with the exchange time (Fardeau, 1995), but the changes in the amount of available 

P pool are usually small (Buhler et al., 2003; Pypers et al., 2006). The isotopically 

exchangeable P (E-value) is then determined by measuring the specific activity (ratio of 

radioactive P over stable P) of P in the solution. Alternatively, the labile pool can also be 

determined by measuring the specific activity of P in plants grown in a radiolabeled soil (L-

value) (Larsen, 1952; Russell et al., 1954). E- and L-values usually agree (Frossard et al., 

1994); however, differences have been reported when L-values were determined with plants 

that can access non-isotopically exchangeable P likely by secretion of organic acids that can 

solubilize P from the non-labile pool (Hocking et al., 1997).  

16



Isotopic methods have also been used to measure the fraction of P taken up by plants 

from fertilizer (Pdff) (Morel and Fardeau, 1991). Two approaches can be used: i) direct 

labeling in which the P source (e.g., fertilizer) is radiolabeled (tracing) and ii) indirect 

labeling in which the soil is labelled (isotopic dilution). In the latter approach, the Pdff is 

calculated from the specific activity of the plants grown in soil with and without added P. 

This indirect approach has been used to determine Pdff from water-soluble fertilizers and 

sparingly soluble P sources (Bertrand et al., 2003; Kato et al., 1995; Zapata and Axmann, 

1995). 

 

Strongly P-sorbing soils: Andisols and Oxisols 

Although P retention is not a criterion for the classification of soils according the Soil 

Taxonomy, there are soil orders which are characterized by their high P retention capacity, 

specifically Andisols and Oxisols. Andisols cover about 1% of the world’s land area, of 

which 60% occur in tropical countries (Takahashi and Shoji, 2002). Andisols are dominated 

by short-range-order aluminosilicate clay-size minerals (allophane, imogolite) and Al/Fe-

humus complexes (Buol et al., 2011). Allophane and imogolite are characterized by small 

particle size (3–6 nm in diameter), high specific surface area (700–1500 m
2
 g

-1
), permanent 

and variable charge, and strong affinity for anions such as phosphate (Parfitt, 2009). 

Although allophane and imogolite are most commonly found in soils derived from volcanic 

ash, they can occur in any environment where sufficient Al and Si exist in solution for 

precipitation and formation of these noncrystalline minerals (Harsh et al., 2002). For 

management purposes, Andisols can be distinguished as allophanic (dominated by allophane 

and imogolite) and non-allophanic forms (dominated by Al-humus complexes and 2:1 layer 

silicates) (Dahlgren et al., 2004). Non-allophanic Andisols are formed preferentially under 

more acidic conditions (pH < 5) and in an abundance of organic matter (Dahlgren et al., 
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2004). It has been observed that allophanic Andisols sorb less P than the non-allophanic 

Andisols that contain large amounts of Al/Fe-humus complexes (Matsuyama et al., 1998). 

Oxisols occupy approximately 8% of the world’s land and the largest extents of land 

containing Oxisols are found in South America and parts of Central Africa (Buol and 

Eswaran, 1999). Oxisols are formed under processes of intense weathering and leaching that 

caused disilication and accumulation of Al and Fe oxides. The clay fraction of Oxisols is 

primarily dominated by 1:1 type silicate minerals (kaolinite), gibbsite (Al(OH)3), hematite 

(Fe2O3), goethite (FeOOH), and other Al/Fe (hydr)oxides (Buol and Eswaran, 1999). 

As previously stated, the Al/Fe compounds found in Andisols and Oxisols are mainly 

responsible for the sorption of phosphate. It is generally accepted that phosphate is adsorbed 

by initial adsorption reactions through ligand exchange, followed by further slow reactions. 

In the case of (hydr)oxides, this slow reaction has been attributed to migration of the 

phosphate ion further into the particles or within the pore spaces of aggregated small particles 

(Willett et al., 1988). In the case of allophanes, the slow reaction has been linked to the 

disruption of the allophane structure exposing more reactive sites and possible precipitation 

of aluminium phosphates (Parfitt, 1989; Rajan, 1975).  

Because of the high capacity of these soils to sorb P through adsorption or 

precipitation reactions, soil available P is very low and should be supplemented by the use of 

P fertilizers. Given that Andisols and Oxisols are extensively present in regions with limited 

access to P fertilizers (e.g. countries of Africa), agronomic management practices (e.g. 

fertilizer placement or the use of crops tolerant to low P soils) have been investigated and 

implemented to improve the efficiency of added P and to reduce the application rates 

(Sanchez and Uehara, 1980). These practices are discussed in the next section. 
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Management of P in strongly P-sorbing soils 

Increasing the efficiency of added P has been for long time the main goal of nutrient 

management research. The main approach to improve fertilizer efficiency has been the 

implementation of best management practices for fertilizers - the 4Rs principle - that involves 

the use of right rate, right source, right time, and right place (IPNI, 2014). However, for 

strongly P-sorbing soils, integrating plant species that are tolerant to low levels of soil P is 

also an important strategy to enhance P use efficiency (Sanchez and Uehara, 1980). 

 

Plant mechanisms to improve P acquisition  

Plants that are genetically adapted to low P soils are often characterized by low P 

requirement and/ or increased efficiency in taking up P from the soil (Rao et al., 1999). A key 

trait to efficiently acquire P from the soil is the enhancement of the root system through 

greater root growth, modification of root architecture and development of root hairs (Lynch 

and Brown, 2008). There is evidence that plants that are able to produce more roots and more 

root hairs are likely to be better adapted to grow in soils with low P status (Gahoonia and 

Nielsen, 1998; Vandamme et al., 2013). Indeed, this is a desirable phenotypical trait for 

selecting genotypes in breeding programs (Lynch and Brown, 2008).  

Another adaptive response of certain plants to P deficiency is the exudation of low-

molecular weight organic acids especially malic and citric acids from the root into the 

rhizosphere (Jones, 1998; Vance et al., 2003). Hocking et al. (1997) showed that white lupin 

and pigeon pea grown in a P-deficient Oxisol accessed soil P from a pool that was 

inaccessible to other species (e.g. wheat) most likely by the ability of these species to secrete 

organic acids that can solubilize inorganic bound P.  
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Management practices to improve fertilizer efficiency 

Selecting right place 

Broadcast and banding are fertilizer placement options that have been investigated for 

enhancing plant response to added P. In strongly P-sorbing soils, banding of the P fertilizer 

near the root zone is in general a more efficient placement option than broadcasting 

application (McLaughlin et al., 2011; Randall and Hoeft, 1988). Banding concentrates the 

fertilizer in a small volume of soil resulting in saturation of sorption sites and therefore higher 

P solution concentrations for plant uptake (Havlin et al., 2006). In a long term field study, 

Smyth and Cravo (1990) reported greater yields for initial corn and cowpea grown in an 

Oxisol, when triple superphosphate was banded than when applied broadcast at equal P rates. 

Conversely, in calcareous soils where precipitation reactions most likely control P availability 

banding may reduce fertilizer P efficiency (McLaughlin et al., 2011).  

Given that added P can react with the soil components and be transformed into forms 

no longer available to the plants, applying P to the leaves may be an option to enhance 

fertilizer efficiency (Fernández and Brown, 2013; McLaughlin et al., 2011). A recent review 

by Noack et al. (2010) on research on foliar P fertilization found that mixed results have been 

reported on literature regarding the effectiveness of foliar P on grain yield. Variables such as 

soil P level, soil water status, crop type, fertilizer formulation and climatic conditions may 

influence a response to foliar P application (Noack et al., 2010). 

 

Selecting right source 

The most common inorganic P fertilizers are water-soluble ammonium phosphates and 

superphosphates and sparingly soluble reactive phosphate rock (see further). The selection of 

the right fertilizer source will depend on the soil chemical properties (e.g. pH, P sorption 

capacity), crop type, and the environmental conditions. For example, slow release P fertilizers 
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such as the sparingly soluble P sources may be preferred P fertilizers where P is susceptible 

to loss by leaching (Hart et al., 2004). Fluid P sources have been reported to be more 

effective than granular P fertilizers in calcareous soils (Holloway et al., 2001) (see further). 

 

Behaviour of P fertilizers in soils 

The chemical characteristics of the soil and the form of P applied determine the 

reactions that occur when fertilizer is added to soil, which ultimately determine the 

availability of P to the plants. When granular P fertilizers are applied to the soil, the first 

process that takes place is wetting of the granule mostly by mass and capillary flow of water 

from the moist soil toward the hygroscopic granule, forming a saturated phosphate solution at 

the granule surface (Lawton and Vomocil, 1954; Williams, 1969). Opposite to this movement 

of water, there is outward movement of P from the saturated solution to the soil by an 

osmotic pressure gradient which continues as long as the concentrated salt remains (Hedley 

and McLaughlin, 2005). The initial high P concentrations around the fertilizer granule may 

favour P precipitation reactions.  

Benbi and Gilkes (1987) conceptualized three zones that form adjacent to a fertilizer 

granule as it dissolves, which are represented in Fig. 2.3 (as revised by Hedley and 

McLaughlin, 2005).  
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Fig. 2.3 Diagrammatic representation of the movement of phosphate by mass flow and 

diffusion from the granule of water-soluble P fertilizer, figure not to scale. (Hedley and 

McLaughlin, 2005). 

 

The first zone is the immediate fertilizer-soil interface and residual granule. In this 

zone the amount and type of P compounds that form depends primarily on the chemical form 

of P applied. For example, when monocalcium phosphate is applied to the soil it dissolves 

forming a saturated solution that Lindsay and Stephenson (1959) described as having similar 

Ca and P concentrations to the metastable triple point solution they obtained in a pure system. 

As the solution moves away from the granule, precipitates of dicalcium phosphate dihydrate 

and anhydrous dicalcium phosphate remain at the granule site (Lehr et al., 1959). 

Experimental studies have indeed shown that some P is retained at the site of application and 

does not move into the soil. For instance, Lombi et al. (2004) showed that about 12% of P 
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applied as monoammonium phosphate (MAP) in a calcareous soil remained in the granule 

after 5 weeks of incubation. Based on results of X-ray diffraction analysis, these authors 

concluded that the incomplete dissolution of the granule occurred in part because of the 

presence of insoluble crandallite-like minerals [CaAl3(PO4)2(OH)5·(H2O)] in the granule, and 

in part because in situ precipitation of Ca-P compounds probably due to Ca diffusion from 

the soil into the granule. 

The second zone corresponds to P-saturated soil next to the granule where 

precipitation reactions control the fate of P. In this zone, the pH of the saturated solution and 

the concentration of P and of the accompanying cation control the reaction with the soil. For 

example, the saturated solution of the monocalcium phosphate fertilizer is strongly acidic (pH 

1.5) and in acid and neutral soils can cause the dissolution of aluminosilicates and hydrous 

oxides of Al and Fe, increasing the concentration of Al and Fe in solution and causing its co-

precipitation with the saturated P solution as Al-P or Fe-P (Hedley and McLaughlin, 2005; 

Lindsay, 1979). In contrast, the saturated P solution of diammonium phosphate with a pH of 

8 may cause less solubilisation of Al and Fe, but can favour the precipitation of Ca and Mg 

phosphates (Moody et al., 1995). Direct evidence that precipitation is an important process 

that may control P availability in the vicinity of the fertilizer site has indeed been found for 

calcareous soils. Lombi et al. (2006) reported that octacalcium phosphate (OCP) and apatite-

like minerals were the predominant P reaction products when MAP was applied in granular 

form, whereas forms similar to monocalcium phosphate (more soluble than OCP and apatite) 

were reported when P was applied as fluid MAP. In contrast, few spectroscopic studies have 

reported on the presence of Al/Fe-P precipitates in soils (Kizewski et al., 2011) suggesting 

that precipitation of P with Al and Fe is generally not an important process, but that 

adsorption reactions are more likely to control P solubility in acidic soils.  
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The third region corresponds to the unsaturated P zone, where principally soil 

properties affect fertilizer P availability. In this zone, adsorption processes dominate as the P 

sorption maximum is not exceeded and the concentrations of P and other ions do not exceed 

the solubility product of possible mineral phases (Hedley and McLaughlin, 2005). The extent 

of P sorption is usually related to the abundance and nature of Al/Fe oxyhydroxides in acidic 

soils (McLaughlin et al., 1981), whereas in alkaline soils the presence of carbonates and Fe 

oxides may control P retention (Ryan et al., 1985). Benbi and Gilkes (1987) reported less P 

sorption and greater mobility of P out of the zone near the fertilizer granule in a soil with 2% 

sesquioxides than in a soil with 60% sesquioxides. The generally higher P sorption capacity 

of Andisols than of Oxisols has been related to the presence of allophane and imogolite and 

organometallic complexes which sorb more P than the Al/Fe oxides from the Oxisols (Parfitt, 

1989; Sanchez and Uehara, 1980; Violante and Pigna, 2002). 

 

Phosphorus fertilizers 

Current P fertilizer formulations 

In soils with low status of available P, the application of P fertilizers is necessary for 

optimal crop production. Water-soluble P fertilizers such as superphosphates and ammonium 

phosphates are the dominant P sources used in agricultural production systems worldwide 

(Table 2.1). The superphosphates include: single superphosphate (SSP, 9%P, 19%Ca, 11%S) 

and triple superphosphate (TSP, 20%P, 15%Ca), which are produced by the reaction of rock 

phosphate with sulphuric acid to obtain SSP, or by reaction of phosphoric acid with rock 

phosphate for TSP. The ammonium phosphates, monoammonium phosphate (MAP, 22%P, 

11%N) and diammonium phosphate (DAP, 20%P, 18%N), are produced by the reaction of 

phosphoric acid with anhydrous ammonia. Because transportation, handling, and storage can 

constitute a relatively high fraction of the final fertilizer cost, the phosphate fertilizer industry 
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mainly produces these high analysis P fertilizers (Leikam and Achorn, 2005). Currently, 

about 75% of the phosphate rock produced worldwide is used to produce phosphoric acid as 

this is the precursor for production of high analysis fertilizers (e.g. ammonium phosphates) 

(Van Kauwenbergh, 2010).  

 

Table 2.1 Global use of common phosphate fertilizers (Hedley and McLaughlin, 2005). 

Product Typical %P % of fertilizer used 

  1973/1974 1998/1999 

Phosphate rock direct application 9-15 5.5 1.7 

Single superphosphate 7-10 24.6 20.9 

Triple superphosphate 20 11.1 6.5 

NPK mixtures  34.6 20.9 

Ammonium phosphates 20-23 13.8 42.2 

Other NP compounds†  3.2 4.7 

Others†  7.3 3.0 

†Other NP compounds include nitrophosphates and ammonium phosphates other than 

monoammonium phosphate (MAP) and diammonium phosphate (DAP).  

 

Phosphorus fertilizers are available in granular or fluid form. Granular P forms 

constitute the most commonly used fertilizer type, but fluid P is the preferred option in 

certain agricultural systems due to ease of handling and versatility of application (Havlin et 

al., 2006).  

Direct application of phosphate rock has been used as an alternative to supply P to 

acidic soils in low-input agricultural systems as this is a cheaper P source than manufactured 

fertilizers (Hammond et al., 1986; Rajan et al., 1996; Sanchez and Salinas, 1981). Phosphate 

rock is sparingly soluble, hence the potential to supply plant available P is determined by the 

rate of dissolution in soils. As described in the reaction for fluorapatite (Eq. 1), the supply of 
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protons favors the congruent dissolution of phosphate rock (Hammond et al., 1986; 

Khasawneh and Doll, 1979): 

      Eq. 1 

The rate of dissolution can be enhanced by reducing the particle size of the phosphate 

rock as this ensures more surface area is in contact with the soil (Hedley and McLaughlin, 

2005; Khasawneh and Doll, 1979). This is demonstrated by data from pot and field trials 

where plant dry matter and P uptake increased when the applied phosphate rock was ground 

to finer particle sizes (Alston and Chin, 1974; Cooke and Widdowson, 1959). However, 

grinding to a particle size less than 150 µm was observed to offer little further advantage 

(Kanabo and Gilkes, 1988; Khasawneh and Doll, 1979). 

Despite its lower price, phosphate rock is not widely used as a P source to fertilize 

soils (Table 2.1). Phosphate rock is a less efficient P fertilizer than water-soluble P sources 

because of the slow rate of dissolution (Bolland and Gilkes, 1990; Hammond et al., 1986) 

which makes it unsuitable for short-term crops with an initial high demand of P, but it is 

potentially more appropriate for perennial crops and pastures (Bolan et al., 1990; Hedley and 

McLaughlin, 2005). 

 

Modifying current fertilizer formulations to improve fertilizer P efficiency  

A potential strategy to reduce P sorption by soils and thereby improve the efficiency 

of P fertilizers is through the modification of fertilizer formulations. The strategies that have 

been evaluated and/or suggested include altering the soil pH near the fertilizer granule 

(Owino-Gerroh and Gascho, 2005) , the use of polymers and organic chelating agents 

(Gordon and Tindall, 2006; Urrutia et al., 2014), and the use of fluid P fertilizers (Holloway 

et al., 2001; Khatiwada et al., 2012). More recently, it has been suggested that the use of 

nanofertilizers may have potential for improving fertilizer efficiency (DeRosa et al., 2010). 

  F2POH6Ca10H12F)PO(Ca 42
2

26410
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The selection of the most appropriate technology will depend on the particular chemical 

properties of the soils.  

Because soil pH can affect P retention reactions, methods have been developed to 

modify soil pH near the fertilizer application point to enhance P solubility (McLaughlin et al., 

2011). Owino-Gerroh and Gascho (2005) reported for instance that the application of sodium 

silicate to an acidic Ultisol significantly increased the shoot P concentration from 0.55 mg g
-1

 

to 0.91 mg g
-1

. The authors concluded that sodium silicate increased the soil pH and most 

likely the solubility of added P was enhanced as precipitation reactions of P with Al and Fe 

were diminished.  

It has been also suggested that cation-chelating compounds may reduce P sorption 

because of complexation of the P-sequestering cations Ca, Al, and Fe (Gordon and Tindall, 

2006). An example of a product with such properties is maleic-itaconic acid copolymer which 

has been marketed as an enhancer of P fertilizers (Gordon and Tindall, 2006). In a laboratory 

study, Degryse et al. (2013) evaluated the effect of coating granular MAP with the 

copolymer. The authors concluded that even at very high (unrealistic) application rate (100%) 

of the copolymer little effect on P diffusion was observed in a strongly P-sorbing Oxisol. 

These results are consistent with evidence from a large number of field trials where the 

response of plant yield to the copolymer was 1.2% ± 1% relative to the control treatment. 

This lack of effect is also expected based on theoretical calculations, and such compounds 

should hence not be recommended as an approach to increase the efficiency of fertilizer 

added P (Chien et al., 2014).  

Another approach that has been investigated is the use of fluid P fertilizers instead of 

solid granular forms. Earlier studies that compared the effectiveness of fluid and granular P 

fertilizers in acidic to neutral soils did not find differences in plant response (Miner and 

Kamprath, 1971; Rhue et al., 1981; Subbarao and Ellis, 1975). However, in these studies 
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comparisons were made between fertilizers containing different chemical compounds (e.g. 

polyphosphate vs. orthophosphate), which may have confounded the results (Engelstad and 

Terman, 1980). As previously mentioned, the effectiveness of fluid fertilizers in calcareous 

alkaline soils of Australia was investigated in field and greenhouse studies. Higher plant P 

uptake and dry matter yield were observed when P was applied in fluid than in granular form 

for fertilizers of the same chemical composition (granular MAP vs. fluid MAP) (Bertrand et 

al., 2006; Holloway et al., 2001). The higher fertilizer efficiency with the fluid form was 

explained by the enhanced P diffusion resulting in less concentrated P environments and 

hence less formation of Ca-P precipitates (Lombi et al., 2006). A recent study in a non-

calcareous soil (pH 5.9) also reported greater available P measured by a resin exchange 

membrane technique with fluid than with granular MAP (Khatiwada et al., 2012). There has 

been little evaluation of the effect of fertilizer type (fluid or granular) on P diffusion and 

bioavailability in strongly P-sorbing acidic soils (Andisols and Oxisols). 

High expectations have been placed on the potential use of nanotechnology in 

fertilizer development. In nanofertilizers, nutrients (e.g. N, P, K) can be encapsulated in 

nanotubes or nanoporous materials, or coated with a thin protective polymer film, or 

delivered as nanoparticles or emulsions (DeRosa et al., 2010). To date, nanofertilizers have 

been mainly prepared for the slow-release of nutrients and various materials have been 

investigated (Gogos et al., 2012). For example, Corradini et al. (2010) explored the used of 

chitosan nanoparticles obtained by polymerizing methacrylic acid for the incorporation of N, 

P, K nutrients as a potential slow release fertilizer. In another study, Kottegoda et al. (2011) 

investigated the release of nitrogen (N) from urea-modified hydroxyapatite nanoparticles 

encapsulated into the cavities of soft wood Gliricidia sepium. The authors reported that the 

nanofertilizer exhibited a sustained slow-release of N that continued even 60 days after the 

application in the soil, in contrast to the conventional urea fertilizer that released an initial 
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large quantity of N. In another study, zeolite NaP1/hydroxyapatite composites containing 

ammonium, potassium and phosphate ions were prepared and claimed as a novel slow-release 

N, P, K nanofertilizer (Watanabe et al., 2014). Recently Liu and Lal (2014) investigated in a 

pot trial the potential use of hydroxyapatite nanoparticles (15 nm) as a novel P fertilizer of 

enhanced efficiency and of lower eutrophication risk than conventional water-soluble calcium 

dihydrogen phosphate. The authors concluded the plants that received the nanofertilizer 

produced greater plant biomass and soybean seeds yield compared to the plants fertilized 

with the regular water-soluble P source, though their statistical tests showed no significant 

differences between the treatments.  

 

Nanomaterials 

General properties 

Nanomaterials are commonly defined as particulate material with at least one 

dimension that is smaller than 100 nm (Borm et al., 2006; Christian et al., 2008). 

Nanoparticles are widely present in the environment derived from natural sources (e.g. 

colloids in soil and aquatic systems, aerosols from volcanic eruptions) or as a consequence of 

anthropogenic activities (e.g. industrial emissions, vehicle exhausts). In recent years, there 

has been much interest in manufactured nanoparticles which are intentionally produced and 

have increasingly been used in commercial applications (Navarro et al., 2008; Tourinho et al., 

2012). The unique characteristics of very small particle size and hence high surface area to 

volume ratio provide the nano-sized materials with unique physico-chemical properties that 

make them suitable for numerous applications (Christian et al., 2008; Handy et al., 2008). 

Manufactured nanoparticles are mainly used in the fields of electronics, pharmaceuticals, 

energy, medicine, and environmental remediation (Nowack and Bucheli, 2007). Recently it 
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has been proposed nanotechnology can be used as a tool to enhance crop yield while reducing 

the negative environmental effects of agricultural production (Chen and Yada, 2011).  

 

Behaviour of manufactured nanoparticulate nutrients in soils 

The fate and behaviour of manufactured nanoparticles when released to the 

environment depend on the intrinsic properties of the particle (e.g. size, surface charge and 

coating) and the physico-chemical properties of the surrounding media (e.g. pH, ionic 

strength, organic matter) (Petosa et al., 2010). If nanoparticulate nutrients are intended to be 

used as fertilizers, soils and plants will be the direct exposure pathway, either through direct 

application to the soil or as foliar fertilizers to the plants. Soils are complex media that 

provide a large sink of reactive surfaces that may interact with the applied nanoparticles 

influencing their mobility and bioavailability (Batley and McLaughlin, 2010). The key 

processes that affect nanoparticle fate and bioavailability in soils are aggregation, dissolution, 

transport, direct uptake, and bioaccumulation (Fig. 2.4) (Klaine et al., 2008). 
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Fig. 2.4 Key processes affecting nanoparticle fate and bioavailability in soils: (1) Dissolution; 

(2) Transport; (3) Aggregation; (4) Particle direct uptake; (5) Plant/soil biota 

bioaccumulation. Reproduced from Klaine et al. (2008) 

 

Aggregation 

Nanoparticles in suspension move randomly by Brownian motion, but eventually 

collisions between particles can occur resulting in aggregation (Hotze et al., 2010). In soils, 

aggregation of manufactured nanoparticles may occur as homoaggregation by attachment of 

similar particles and heteroaggregation by attachment of dissimilar particles (e.g. 

manufactured nanoparticles attached to natural colloids) (Cornelis et al., 2014). Coating the 

surface of the nanoparticles with polymers or surfactants is a common approach to prepare 

stable (i.e. not aggregating) nanoparticle suspensions, as these compounds can provide an 

electrostatic or steric barrier that prevent nanoparticles aggregation (Lin et al., 2010). 

However the stabilizing effects may be reduced as some capping compounds can be easily 

degraded in soils (e.g. organic acids) (Cornelis et al., 2014).  
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The soil properties that mainly affect aggregation of nanoparticles are ionic strength, 

pH, and organic matter content (Hotze et al., 2010). For example, a higher ionic strength in 

the soil solution reduces the thickness of the electrostatic double layer and hence promotes 

nanoparticle aggregation (Handy et al., 2008; Jiang et al., 2009). Natural colloids, like Al and 

Fe oxyhydroxides which are commonly present in soils, have a relatively high point of zero 

charge (pHPZC =7-9) (Qafoku et al., 2004); therefore at soil pH values below their isoelectric 

point the positively charged surfaces will provide favourable electrostatic conditions for 

attachment of negatively charged nanoparticles (i.e. heteroaggregation). However, the 

presence of organic matter may enhance nanoparticle stability by masking the charges of soil 

minerals that would otherwise facilitate attachment (Wang et al., 2012a).   

 

Dissolution 

Particle dissolution kinetics are size-dependent, consequently nanoparticles are 

expected to dissolve faster than larger particles of the same material (Borm et al., 2006), as 

has been experimentally shown in pure systems (Ma et al., 2011; Zhang et al., 2010). 

However, despite this faster dissolution, nanoparticles may not necessarily behave differently 

from their bulk counterpart. For instance, Milani et al. (2012) studied the dissolution kinetics 

Zn from MAP coated with ZnO nanoparticles or bulk ZnO and found that there was no 

difference in the dissolution rate, likely because in both cases the ZnO had transformed to the 

same chemical form.  

 

Transport 

The mobility of nanoparticles in soils is affected by its interaction with the soil matrix. 

Aggregation is the main process that restricts the transport of nanoparticles in soils. For 

example, homoaggregation leads to particle entrapment in soil pores if these are smaller than 
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the size of the aggregates. Darlington et al. (2009) found that aluminium oxide nanoparticles 

of different sizes (50, 80, and 120 nm) had similar, limited mobility in saturated soil columns 

because of nanoparticle aggregation. Heteroaggregation may also lead to reduced 

nanoparticle mobility in natural soils. Cornelis et al. (2013) studied the transport of 

polyvinylpyrrolidone coated-silver (Ag) nanoparticles of particle size 40 nm in flow-through 

column experiments in 11 soils. In all soils, the mobility of Ag nanoparticles was restricted as 

evident from the low mass recovery of Ag in the leachates (0.2 – 9%). Attachment of the 

negatively charged Ag nanoparticles to the positively charged soil colloids was most likely 

the reason for the low mobility.  

 

Potential mechanisms to improve fertilizer efficiency with nanotechnology 

The potential mechanisms by which nanofertilizers may enhance nutrient uptake is 

through the controlled release of nutrients to synchronize with crop uptake, enhanced 

transport through the soil potentially reaching plant roots, or even direct uptake by the plant 

(DeRosa et al., 2010). 

 

Direct uptake by plants  

Direct uptake of nanofertilizers by plant roots can occur if the nanoparticles are very 

small, as the pore diameter of plant cell walls (5–20 nm) limits the uptake of large particles 

(Nair et al., 2010). A few studies have indeed reported direct uptake of nanoparticles by roots 

of plants grown in nutrient solutions (Lin and Xing, 2008; Wang et al., 2012b; Zhu et al., 

2008) and even in soil (Zhao et al., 2012a). For example, Wang et al. (2012b) exposed maize 

seedlings for two days to a solution containing copper oxide (CuO) nanoparticles of size 

range 20–40 nm and showed, using transmission electron microscopy (TEM) that the CuO 

nanoparticles were not only present inside the root cell wall, but also in the intercellular space 
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and the cytoplasm of the cortical cells. In a similar way, ZnO nanoparticles were observed in 

the root epidermis and cortex and within the xylem cells of soil-grown plants (Zhao et al., 

2012a). It is not very well established which route plants use for nanoparticle uptake as there 

are examples in the literature that support both apoplastic (Wang et al., 2012b; Zhao et al., 

2012a; Zhao et al., 2012b) and symplastic (Lin et al., 2009; Zhao et al., 2012a) pathways. 

Translocation from the root to the shoot may occur through translocation of the nanoparticle 

itself or because of dissolution of the nanoparticle inside the root and subsequent 

translocation of the ionic element. Translocation of particles was reported by Zhu et al. 

(2008) who used magnetization to determine the presence of iron oxide (Fe3O4) nanoparticles 

in roots and shoots of Cucurbita maxima (pumpkin) grown in solution culture. However, no 

magnetic signals in the shoots were detected when the plants were grown in soil (Zhu et al., 

2008).  

Direct uptake of nanofertilizers is also possible through foliar application; in which 

case nanoparticles may enter through the stomatal openings or through the bases of trichomes 

and then be translocated to various tissues (Nair et al., 2010). Few studies have reported foliar 

uptake of engineered nanoparticles (Birbaum et al., 2010; Corredor et al., 2009; Wang et al., 

2013). Corredor et al. (2009) investigated the penetration and transport of iron-carbon 

nanoparticles in pumpkin plants by injecting the nanoparticle suspension into the pith cavity 

of the leaf petiole and by placing droplets on the leaf surface close to the insertion point of 

the petiole. Electron microscopy results showed intracellular localization of the nanoparticles 

and displacement from the application point possibly through the vascular system. In another 

study, Wang et al. (2013) reported aerosolized nanoparticles sprayed onto leaf surfaces of 

watermelon plants were able to penetrate the stomata via gas uptake translocated through the 

phloem and reach the roots. However, other studies reported no translocation of the 

nanoparticles in the plants after incorporating into the leaves (Birbaum et al., 2010). It is 
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likely that the particle size and number concentration are important factors for the 

translocation of nanoparticles inside the plants (Wang et al., 2013).  

 

Enhanced transport through the soil 

Provided that nanoparticles are not retained in the soil’s solid phase, nanoparticles in 

the soil solution can potentially reach plant roots through mass flow as a result of 

transpirational water uptake by the plant (Asli and Neumann, 2009). In this case, 

nanoparticles can be directly taken up by the roots of the plants. Furthermore, transport of the 

nanoparticles with mass flow could potentially be a strategy to fertilize impoverished 

subsoils. Studies on semiarid cropping systems of Australia showed significant increments in 

crop yields with deep placement of P fertilizers, but this is an expensive practice. Fertilizing 

subsoils with mobile nanoparticles may be an economically sound alternative.  

 

Aim and specific objectives of this thesis 

The aim of this work was to investigate possible strategies to improve the efficiency of 

added P and soil P in Andisols and Oxisols.  

Specifically, the objectives of this thesis were:  

1. to investigate the effect of fertilizer type (granular vs. fluid) on the chemical processes 

that control the fate of fertilizer P when applied in acidic and strongly P-sorbing soils;  

2. to evaluate the agronomic effectiveness of granular and fluid P fertilizers for wheat grown 

in Andisols and Oxisols;  

3. to evaluate the potential use and efficiency of hydroxyapatite nanoparticles as P fertilizer 

in Andisols and Oxisols; and  

4. to evaluate the contribution of colloidal P from the soil-water extracts of Andisols and 

Oxisols to plant P nutrition. 
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CHAPTER 7  

Conclusions and future outlook 

Phosphorus is the main nutrient that limits productivity in Andisols and Oxisols. In 

these soils, where strong adsorption reactions control P availability, enhancing the 

availability of fertilizer P or of P already present in the soil is very challenging. Current 

management practices have mainly focused on increasing the levels of soil P through large 

fertilizer applications which is certainly an unsustainable practice in the long term. Even 

though there is no doubt that P fertilizers will continue to be indispensable for modern 

agricultural production, the selection and application of P fertilizers needs to be more targeted 

and should consider the physical and chemical properties of the soils. However, in order to 

develop new management practices and fertilizer formulations to increase the availability of 

soil and added P, it is necessary to better understand the chemical behaviour of P in these 

soils. This thesis represents a substantial contribution in this direction. The main conclusions 

that can be drawn from this thesis are detailed below: 

 

1. Fluid fertilizers enhanced P diffusion but not lability in Andisols and Oxisols. 

A significantly greater diffusion of P was observed with fluid MAP than with granular 

MAP in the four strongly P-sorbing soils that were used in this study (two Andisols and two 

Oxisols). Differences in the physical and chemical processes that occur after the application 

of either fertilizer type mainly explain these results. In the case of granular fertilizers, the 

diffusion of P outward from the point of application is restricted by the movement of water 
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from the soil toward the hygroscopic granule by mass and capillary flow (Lawton and 

Vomocil, 1954). Such an event does not occur with the fluid source but only an outward mass 

flow of the solution (Miner and Kamprath, 1971). The greater diffusion of P in the soil with 

the fluid fertilizer also reduces the formation of highly P concentrated zones, where P 

availability can be reduced due to precipitation reactions. This has been identified as the main 

reason why fluid P fertilizers are more effective than granular forms in calcareous soils 

(Hettiarachchi et al., 2006; Lombi et al., 2004).  

In terms of lability (i.e. the amount of P from the fertilizer that remained isotopically 

exchangeable after 24 h of equilibration time), a greater percentage of added P remained 

labile when added as granular MAP (41% labile) than when added as fluid MAP (25% labile) 

in the Oxisols. In the Andisols, no significant difference was observed in the percentage of 

labile P between the two fertilizer types (circa 25% labile). These results suggest that in soils 

where strong adsorption rather than precipitation reactions limit P availability, the greater 

diffusion of fertilizer P in the soil with the application of fluid forms does not reduce – and 

may even enhance – the transformation of P to less available forms. The dilution effect of P 

with the fluid fertilizer is therefore counterproductive in strongly P-sorbing soils as P is in 

contact with more adsorption sites with high energies of bonding.  

 

2. The application of fluid P fertilizer to Andisols and Oxisols did not provide any 

additional agronomic benefit over conventional granular P fertilizer.  

Results from the plant growth experiment showed no significant differences in plant 

dry matter yield, shoot P concentration or P uptake between fluid or granular MAP applied to 

Andisols and Oxisols. In contrast, significantly higher plant growth was observed with fluid 

MAP than with its granular counterpart in the calcareous soil, in agreement with previous 

work (Bertrand et al., 2006; McBeath et al., 2005). The results from the pot trial are also in 

140



line with the results from the incubation experiment, where a similar or even lower amount of 

P remained in labile form when added as fluid fertilizer than as granular fertilizer in the 

Andisols and Oxisols, in contrast with the calcareous soil where a higher proportion of P 

remained in labile form with the fluid fertilizer.  

The isotopic dilution approach was used to calculate the percentage of P in the shoots 

that was derived from the applied fertilizers (%Pdff). In general, the %Pdff values were 

relatively high for Andisols and Oxisols and ranged from 65% up to 88%. No significant 

difference was observed in the %Pdff between fluid and granular MAP applied to Andisols 

and Oxisols, while the %Pdff was significantly higher for fluid than for granular MAP in the 

calcareous soil. These data indicate that in soils where adsorption reactions control P 

sorption, fluid fertilizers have no agronomic benefit over granular fertilizers. Furthermore, 

due to the very low soil-available P in Andisols and Oxisols, plants rely mainly on added P; 

however, because of the very low fertilizer P efficiency, much effort needs to be put in the 

development of new fertilizer formulations and management practices for these strongly P-

sorbing soils.  

 

3. Nanohydroxyapatite was a more efficient P source than bulk hydroxyapatite for wheat 

grown in Andisols and Oxisols, but water-soluble P fertilizer was still more efficient. 

Nanohydroxyapatite (n-HAP) was evaluated as P fertilizer based on the hypothesis 

that the nano-sized particles can potentially move in the soil and reach the roots of the plants 

through the mass flow produced by the transpiration of the plants. Once close to the roots, P 

depletion could promote the dissolution of n-HAP or if the particles are very fine they could 

even be directly taken up by the roots. The advantage of n-HAP over conventional water-

soluble P fertilizers would be less contact of free orthophosphate with the soil, thus 

minimizing opportunities of P being strongly adsorbed to the soil.  
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Results from the column experiment conducted to evaluate the transport of 

nanoparticles showed some movement (5%) of n-HAP in the Andisol, but very limited 

transport of the nanoparticles was observed in the Oxisol (0.4%). The limited transport of the 

nanoparticles in both soils might be related to aggregation of the nanoparticles in the soil. 

Indeed one of the main challenges of working with nanoparticles is to keep the nanoparticles 

dispersed in suspension by inhibiting aggregation. The greater mobility of n-HAP in the 

Andisol could be related to the higher organic C content that may have acted as an 

electrostatic barrier hindering the attachment of the negatively charged n-HAP particles to the 

soil particles. Alternatively, the greater mobility of n-HAP in the Andisol could also due to 

that soil’s higher porosity. In contrast to the n-HAP treatment, practically no movement of 

bulk hydroxyapatite (HAP) particles was observed in either of the soils.  

Results from the pot experiment showed higher plant P uptake from the n-HAP than 

the bulk HAP in the Andisols and Oxisols, most likely due to faster dissolution of the 

nanoparticles. In all the soils, the highest plant P uptake was observed with the water-soluble 

P fertilizer. It can be concluded from the results of this study that n-HAP was a more 

effective P source than bulk HAP in Andisols and Oxisols, but water-soluble P fertilizer was 

still more effective.  

 

4. Colloidal phosphorus from Andisols contributes to P uptake by plants 

The effect of natural colloidal P to plant P uptake was investigated in short-term 

hydroponic experiments using radiolabeled non-filtered and filtered soil-water extracts from 

the Andisols and Oxisols. Wheat seedlings were exposed to non-filtered solutions (containing 

colloidal P) and to 3-kDa-filtered solutions (colloid-free). For the Andisols, the 
33

P activity in 

the plant was significantly higher when the plants were exposed to the non-filtered solutions 

than to the 3-kDa filtered solutions. In contrast, no significant difference was observed for the 
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Oxisol. Quantitative analysis indicated the contribution of the colloids relative to that of the 

free ion was approximately 10%, but because of the high abundance of colloidal P relative to 

P present as the free ion, the flux was increased up to seven-fold.  

Possible reasons for the contribution of colloidal P to plant P uptake could be i) direct 

uptake of the colloid and ii) enhanced P diffusion. In the first scenario, the colloids would 

have to be small due to the very fine pore size diameter of the plant cell wall. Analysis of the 

particle size of the colloids using a high speed disk centrifuge showed that the size of the 

colloids was between 30 to 240 nm for the Andisols and 10 to 60 nm for the Oxisol. It was 

not possible to determine the size of the colloids that contributed most to the uptake, so the 

possible contribution of very small colloids through direct uptake cannot be disregarded. 

Nevertheless, it seems more likely that the higher P uptake in the non-filtered solutions was 

mainly due to enhanced diffusion. The calculated thickness of the diffusion layer (~ 1000 

µm) in the 3-kDa filtered solutions fell within the range for diffusion-limited uptake (100-

1000 µm) (Santner et al., 2012). In case of diffusion-limited uptake, P will desorb from labile 

colloids (i.e. colloids from which P can easily be released) within the diffusive boundary 

layer, thus enhancing the diffusive supply of free orthophosphate to the plant roots. This 

hypothesis was supported by the fact that diffusion fluxes as measured with the DGT 

technique were higher for the non-filtered than for the 3-kDa filtered solutions.  

The differences in the contribution of colloidal P in the Andisols and Oxisols may be 

related to the different nature of the colloids. The P-containing colloids in the Oxisols are 

likely most (hydr)oxide particles. In Andisols rich in organic matter, P bound to humic-Al/Fe 

complexes is often an important species (Buol et al., 2003; Gerke, 2010) and it can be 

speculated that the colloid-enhanced uptake in the Andisols was related to this type of 

colloid. The results from this study provide clear evidence that natural colloidal P from the 

Andisols are not inert and can contribute to plant P uptake. This is an interesting finding for 
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the area of plant nutrition that may open new possibilities to enhance soil P management in 

these problematic soils.    

 

Future outlook 

Enhancing the availability of soil P and the efficiency of fertilizer P in Andisols and 

Oxisols is very challenging and difficult to address, as proven in the present work as well as 

from previous research on this topic. There is no doubt that P fertilizers will continue to be an 

essential component for agricultural production to maximize crop yields. However, to 

enhance the efficiency of applied P, fertilizers should be designed considering the soil 

chemical properties, crop type and environmental conditions. The development of new 

fertilizer formulations is therefore a strategy where much work is still needed and which can 

possibly bring more positive outcomes.  

In strongly P-sorbing soils, complexed P could be a more efficient P source than free 

orthophosphate because complexed P is protected from fixation. For example, humic-metal-

phosphate complexes could be a new type of P fertilizer for these soils (Urrutia et al., 2014). 

Research is needed to design stable humic-metal-P complexes that can easily diffuse through 

the soil pores and from which P can be desorbed for plant uptake. Moreover, nanotechnology 

may also provide numerous possibilities for creating fertilizers where P is maintained in an 

available form. In this work, nanohydroxyapatite was not a more effective P source than 

conventional soluble fertilizer, but the idea of applying nanoparticulate P instead of free 

orthophosphate in strongly P-sorbing soils still merits further investigation. One of the 

challenges of working with nanoparticles is their inherent propensity to aggregate; therefore 

research is needed to design capping agents that can maintain the nanoparticles stable in 

suspension. These dispersion agents should also be non-toxic and degradable as they will be 
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released widely into the environment. In this context, research is also needed to evaluate the 

consequences of exposing soil microorganisms, microfauna, and plants to nanofertilizers. 

The results from Chapter 6 that demonstrated the contribution of colloidal P to plant P 

uptake are intriguing. Further research is needed to understand the implications and relevance 

of colloidal P to plants in in situ soil solutions of Andisols. Management practices that 

enhance the release of colloids may be an appropriate complimentary management practice to 

P fertilization for strongly P-sorbing soils and this can be further investigated. For a 

sustainable management of P resources an integrated approach is needed that involves new 

fertilizer formulations as well as management practices to enhance the availability of soil P. 
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