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Abstract

Fine-grained object recognition is an important task in computer vi-

sion. The cross-convolutional-layer pooling method is one of the sig-

nificant milestones in the development of this field in recent years.

Based on the method, we conducted a number of experiments on

a new fine-grained car dataset - CompCars. The corresponding ex-

periments illustrate its applicability and effectiveness on this newly-

designed dataset. Meanwhile, based on the experiments, we found

out that pooling the most distinguishable regions like car logos and

headlights areas in the indicator maps, which usually have higher

activations, with the local features in the same regions can achieve

better results than those by pooling the whole indicator maps with

the corresponding local features. Therefore, we conjecture that bet-

ter performance may be achieved if we have more powerful indicator

maps or pooling channels that can better highlight these distinguish-

able regions.

Based on the above hypothesis and inspired by the cross-convolutional-

layer pooling, next we propose the Spatially Weighted Pooling (SWP)

method, which is a simple yet effective pooling strategy to improve

fine-grained classification performance. SWP learns a dozen of pool-

ing channels or spatial encoding masks that aggregate local convolu-

tional feature maps with learned spatial importance information and

produce more discriminative features. It can be seamlessly integrated

into existing convolutional neural network (CNN) architectures such

as the deep residual network. It also allows end-to-end training. SWP

has few parameters to learn, usually in several hundreds, therefore

does not introduce much computational overhead.



SWP has shown significant capability to improve fine-grained visual

recognition performance by simply adding it before fully-connected

layers in off-the-shelf deep convolutional networks. We have con-

ducted comprehensive experiments on a number of widely-used fine-

grained datasets with a variety of deep CNN architectures such as Alex

networks (AlexNet), VGG networks (VGGNet) and the deep residual

networks (ResNet). By integrating SWP into ResNet (ResNet-SWP),

we achieve state-of-the-art results on three fine-grained datasets and

the MIT67 indoor scene recognition dataset. With ResNet152-SWP

models, we obtain 85.2% on the bird dataset CUB-200-2011 without

bounding-box annotations and 87.4% with bounding-box, 91.2% on

FGVC-aircraft, 94.1% on Stanford-cars with bounding-box informa-

tion and 82.5% on the MIT67 dataset.
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Chapter 1

Introduction

1.1 Overview of fine-grained Visual Recognition

Fine-grained recognition tasks such as recognizing the models of cars or aircrafts,

or the species of birds are very challenging due to the subtle differences among

categories. For example, apart from length, other aspects of Boeing 737-400 and

737-500 are almost identical. In addition, the pose and viewpoint of objects, or

the cluttered background makes the task even more challenging. For example,

even human being cannot easily distinguish the birds standing on the branch

from the background in some images from the CUB-200-2011 birds dataset [1]

(see Fig. 1.1). We can also observe from Fig. 1.2 that although two SUV models

are similar in the side view, but are very different in the front view. Meanwhile,

the number of training and testing samples in fine-grained image classification

datasets are relatively small compared with generic visual recognition datasets.

This makes the task more difficult. However, fine-grained visual recognition is

a very significant area in computer vision and has a wide range of applications.

For instance, the authors of [6] proposed a new and interesting problem named

fine-grained image search. They introduced a baseline system based on fine-

grained classification scores to represent and co-index images so that the semantic

attributes are better incorporated in the online querying stage, which means

better fine-grained classification performance can produce more promising search

results that contain more semantically matched or similar images. Fig. 1.1 also
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shows some examples from other three fine-grained datasets on which we carry

out a range of experiments with our proposed pooling method.

Figure 1.1: Examples from (first row) the birds dataset [1], (second row) the
Stanford-Cars dataset [2], (third row) the Aircraft dataset [3], and (last row) the
CompCars dataset [4] used in our experiments.

Compared to generic object recognition, the critical parts or regions of objects,

such as the heads of birds or the logos of cars that can help discriminate among

different categories [7, 8, 9, 10, 11], play a more significant role in the tasks of

fine-grained visual recognition. Some works [12, 13] require part annotations to

train models in a supervised manner. However, annotating parts is dramatically

more expensive than collecting image labels. Thus the work of [14] proposed a
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method that is based on generating parts using co-segmentation and alignment.

They achieved an accuracy of 82.0% without bounding box annotations on the

CUB-200-2011 birds dataset [1].

Figure 1.2: Two SUV models are similar in side view, but are very different in
the front views.

Early works also made efforts to localize various parts of the objects and train

the part detectors with hand-crafted features in a supervised manner. Other

methods attempted to use more robust image representations that pool local fea-

tures in a sophisticated way. For example, VLAD [15] or Fisher vector [16] with

SIFT local features. Recently, convolutional neural networks (CNNs) [17, 18, 19]

have shown breakthrough performance on various tasks in computer vision such

as object detection, localization and recognition. Recent efforts [20, 21, 22, 23]

with adapting or utilizing CNNs have been devoted to solving fine-grained ob-

ject recognitions. For instance, the authors of [22] proposed a DeepBag CNN

model to recognize handbag models. The proposed model is also called feature

selective joint classification-regression CNN model. It performed favourably for

recognizing handbags with 94.48% in accuracy on their newly built branded hand-

bag dataset. Based on the recent work of Spatial Pyramid Pooling [24] in deep

convolutional networks (SPP-net), the authors of [23] proposed a task-driven
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progressive part localization (TPPL) approach for fine-grained object recogni-

tion. They took the predicted boxes of a part-based SPP-net as an initial guess

and progressively search for more discriminative image regions. The proposed

approach is an iterative manner to progressively improve the joint part detec-

tion and object classification performance. They achieved an accuracy of 81.69%

without bounding box annotations on the CUB-200-2011 birds dataset.

Initially, the studies in generic visual recognition like [25] use the feature

vectors of the fully-connected layers in a CNN (FC-CNN) to replace hand-crafted

local features such as SIFT. FC-CNN can be considered an object descriptor of

a specific region or an entire image as it captures the overall shape of the object

contained in the region or the image. Later, cross-convolutional-layer pooling [20]

advocates that compared to fully-connected (FC) layer activations, convolutional

layer activations can be turned into a more powerful image representation by

pooling the extracted features of one convolutional layer with the guidance of

feature maps of successive convolutional layer. By pooling the features of two

consecutive convolutional layers, they achieved better performance than FC-CNN

image representations. Next, the authors of [26] proposed FV-CNN, which is

obtained by Fisher Vector pooling of a CNN filter bank. Fisher Vector [16] pools

local features densely within the described regions and removes the global spatial

information of the regions. FV-CNN is simply computed on the output of a single

convolutional layer rather than two convolutional layer as [20]. Here the output

feature of a convolutional layer takes the role of local features.

Based on these studies, the work of [21] proposed Bilinear CNN models for

fine-grained visual recognition. Bilinear CNN generates bilinear vectors by mul-

tiplying two feature vectors of convolutional layers extracted from two different

CNNs. It can model local pairwise feature interactions in a translationally in-

variant manner. They achieved the accuracy of 84.1% without bounding box

annotations on the CUB-200-2011 birds dataset. The work of [27] employs the

recent Class Activation Mapping (CAM) method [28] to shift the center of atten-

tion to increasingly discriminative regions. By alternating stages of classification

and re-examination of informative image regions, they obtained an accuracy of

84.48% without bounding box annotations on CUB-200-2011. Recently, the au-

thors of [29] obtained state-of-the-art top-1 accuracy of 92.8% without using any

4



annotated training data, merely training on publicly-available noisy web image

search results.

Cross-convolutional-layer pooling [20] and Bilinear CNN [21] take the fine-

tuned model trained on a specific dataset as the feature extractor and then pool

the extracted features into image-level feature descriptors. Next, the descriptors

pass through a linear or non-linear classifier (e.g., SVM) to perform final image

classification. The final image descriptors are generally in a very high dimension

(e.g., 512× 512). This leads to the requirement of dimensionality reduction such

as PCA to alleivate the burden of computation and memory cost. In addition,

they achieved the best performance on fairly large size of the input image (e.g.,

448× 448). Bilinear CNN [21] combines the feature extraction stage and bilinear

pooling stage together and allows end-to-end training of two CNNs.

Inspired by [20] and [21], we propose a simple yet effective pooling strategy

that works on the output features of CNN layers with global spatial information

such as the last max pooling layer or the last convolutional layer. Both the

methods in [20] and [21] extract local features from one convolutional layer and

obtain pooling feature channels from another convolutional layer (for example,

512 feature channels for VGG). Local features are pooled with one pooling channel

to form one vector. By concatenating all vectors for all feature maps, we obtain

final image-level representations. In the proposed pooling method, we learn a pre-

defined number of spatial encoding masks or pooling channels. We show that this

spatially weighted pooling significantly improves fine-grained object recognition.

Our proposed pooling strategy and all experiments based on it are described in

great detail in chapter three.

1.2 Overview of contributions

Our work involves one important topic in the vision community - fine-grained

visual recognition. Here, we propose a simple yet effective pooling strategy in-

spired by cross-convolutional-layer pooling and Bilinear CNN model. Our main

contributions to fine-grained visual recognition are as follows.

1. We propose Spatially Weighted Pooling (SWP) that can be seamlessly inte-
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grated into existing convolutional neural network (CNN) architectures such

as the deep residual network (ResNet). It also allows end-to-end training

with image labels only. SWP has few parameters to learn, usually in sev-

eral hundreds, therefore does not introduce much computational overhead.

Testing one image can be done simply by going through the trained or

fine-tuned models into which an SWP layer is integrated. It has shown sig-

nificant capability to improve fine-grained visual recognition performance

by simply adding it before fully-connected layers in any off-the-shelf deep

convolutional networks.

2. We have conducted comprehensive experiments on three widely-used fine-

grained datasets with a variety of deep CNN architectures such as AlexNet,

VGGNet and ResNet. We have achieved state-of-the-art results on three

fine-grained datasets and the MIT67 indoor scene recognition dataset. With

ResNet152-SWP models, we obtain 85.2% on the CUB-200-2011 birds with-

out bounding-box annotations and 87.4% with bounding-box.

1.3 Outline

This thesis will process as follows:

Chapter 2: Deep learning techniques for fine-grained visual recogni-

tion. This chapter will cover some background knowledge on both deep learning

and fine-grained visual recognition. Specifically, we will first introduce convolu-

tional neural networks in Section 2.1. The basic structure, composition and the

training procedure of CNNs will be reviewed. Meanwhile, We will give outlines of

three widely used CNNs architectures - AlexNet, VGGNet and ResNet. Finally,

two significant studies based on CNNs for fine-grained visual recognition will be

introduced.

Chapter 3: Spatially Weighted Pooling in deep CNNs for fine-

grained visual recognition. In this chapter, we will present Spatially Weighted

Pooling strategy for fine-grained visual recognition. Specifically, we will first re-

port our cross-convolutional-layer pooling experiments on the CompCars dataset

in Section 3.1. The experiments indicate that pooling the most distinguishable

regions like car logos and headlights areas in the indicator maps, which have
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higher activations, with the local features in the same regions can achieve better

results than those by pooling the whole indicator maps with the corresponding

local features. Therefore, we conjecture that if having more powerful indicator

maps or pooling channels that can better highlight these distinguishable regions

rather than those off-the-shelf pooling channels from one convolutional layer, bet-

ter performance may be achieved.

Based on above hypothesis, next we propose our pooling strategy in Sec-

tion 3.2. SWP learns a predefined number of weighted pooling channels or spatial

encoding masks that can aggregate local convolutional feature maps with learned

spatial importance information and produce more discriminative features. Then

we will illustrate the process of forward and backward propagation of an SWP

layer, which is similar to that of a convolutional layer.

We will report all experimental results of the proposed method and discussion

in Section 3.3. Firstly, three fine-grained image recognition datasets - birds [1],

Stanford-Cars [2], aircrafts [3] and one indoor scene recognition dataset - MIT67

[5] are introduced as all experiments are conducted on above four datasets. Sec-

ondly, the experiments will illustrate that compared to baseline CNNs structures,

CNN architectures with SWP consistently achieve better performance. Further-

more, the state-of-the-art results on all datasets are achieved with ResNet152-

SWP fine-tuned on the image size of 293 × 293 and the crop size of 256 × 256.

Thirdly, we will plot training and validation errors curves of some experiments

for all training epochs. Finally, we will show some sample test images that are

mistakenly predicted as another model for the birds and CompCars datasets and

visualize learned Conv1 and SWP filters. Meanwhile, image patches with highest

activations for several convolutional filters and a number of convolutional feature

maps will be showed.
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Chapter 2

Deep learning techniques for

fine-grained visual recognition

2.1 Convolutional Neural Networks

2.1.1 Overview of CNNs

For decades, conventional machine-learning techniques require careful engineering

and considerable domain expertise to design a feature extractor that can trans-

form the raw data into an internal representation or feature vector, and then

classifiers could be applied on these learned representations or vectors. How-

ever, the manual choice of the feature extraction algorithm and the features to

classify is often empirical and therefore sub-optimal. A possible solution would

be to apply multi-layer feed-forward Neural Networks (NN) on the input data

and let the training algorithm find the best feature extractors by adjusting the

weights accordingly. Before the prevalence of CNNs, NN has been proved to be a

very powerful machine learning technique as they can be trained to approximate

complex non-linear functions from high-dimensional inputs.

The problem with NN is that when the input dimension is high, the number

of connections is also high because each hidden unit would be fully connected to

the input layer. This means the number of free parameters is also high. Con-

volutional Neural Networks are an approach that tries to alleviate the above

mentioned problems. The approach utilizes the principle of weight sharing which
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can drastically reduces the number of model parameters. Thus this will increase

their generalization capacity and reduce the risk of over-fitting.

The authors of [30] indicate that there are two underlying reasons behind

the principle of weight sharing. Firstly, local groups of values are usually highly

correlated in image patches. Secondly, the local statistics of images are invariant

to location. In other words, if a local image pattern appear in one part of the

image, it could appear anywhere. Therefore, units at different locations can share

the same weights and detect the same pattern in different parts of the image. The

role of the convolutional layer in a CNN is to detect local feature conjunctions

from the previous layer.

The first implementation of a CNNs was Neocognitron, which is proposed in

[32, 33, 34, 35]. It has been originally applied to the problem of handwritten

digit recognition. The Neocognitron makes use of receptive fields in which each

neuron is only connected to a sub-region corresponding to a certain number of

neighbouring neurons in the preceding layer. A significant breakthrough of CNNs

in the early 1990s came with the widespread use of Back-propagation learning al-

gorithm. In 1990, LeCun et al. [36] trained the first CNNs with Back-propagation

to solve the problem of handwritten digit recognition.

As long as one module’s functions with respect to its inputs and its internal

weights are relatively smooth, one can compute gradients using the backprop-

agation procedure. Then multilayer architectures like CNNs can be trained by

simple Stochastic Gradient Descent. The goal of the backpropagation algorithm

is to compute the gradient of an objective function with respect to the parame-

ters in CNNs. As the decision function h(x) of the neural network is a function

of functions, we need to use the chain rule to compute its gradient. The back-

propagation algorithm is indeed an implementation of the chain rule specifically

designed for neural networks. It can be applied repeatedly to propagate gradients

through all modules, starting from the output to the input. Once these gradients

have been computed, it is straightforward to compute the gradients with respect

to the weights in CNNs.

Stochastic gradient descent (SGD) works according to the same principles as

standard gradient descent, but proceeds more quickly by estimating the gradient

from just a few examples at a time instead of the entire training set. The use

9



of SGD in the neural network setting is motivated by the high cost of running

back propagation over the full training set. SGD can overcome this cost and still

lead to fast convergence. The standard gradient descent algorithm updates the

parameters θ of the objective J(θ) as,

θ = θ − α∇θE[J(θ)] (2.1)

where the expectation in the above equation is approximated by evaluating the

cost and gradient over the full training set. Stochastic Gradient Descent simply

does away with the expectation in the update and computes the gradient of the

parameters using only a single or a few training examples. The new update is

given by,

θ = θ − α∇θJ(θ;x(i), y(i)) (2.2)

with a pair (x(i), y(i)) from the training set. Generally each parameter update

in SGD is computed with respect to a few training examples or a mini-batch

rather than a single example. The reason for this is twofold: first this reduces

the variance in the parameter update and can lead to more stable convergence,

second this allows the computation to take advantage of highly optimized matrix

operations that should be used in a well vectorized computation of the cost and

gradient. A typical mini-batch size is 256 in training ImageNet, although the

optimal size of the minibatch can vary for different applications and architectures.

The learning rate α in SGD is typically much smaller than a corresponding

learning rate in standard gradient descent because there is much more variance

in the update. Choosing the proper learning rate and schedule (i.e., decreasing

the value of the learning rate as learning progresses) can be very difficult. One

standard method in practice is to use a small enough constant learning rate

that gives stable convergence in the initial epochs (one epoch means one full

pass through the training set) and then halve the value of the learning rate as

convergence slows down. During SGD training, if the training data is given in

some meaningful order (e.g., all images in one mini-batch belong to the same

category), this can bias the gradient and lead to poor convergence. Therefore,

the training data are required to be randomly shuffled prior to training.
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If the objective has the form of a long shallow ravine, standard SGD will

tend to oscillate across the narrow ravine since the negative gradient will point

down one of the steep sides rather than along the ravine towards the optimum.

The objectives of deep architectures have this form near local optima and thus

standard SGD can lead to very slow convergence particularly after the initial

steep gains. Momentum is one method for pushing the objective more quickly

away the shallow ravine. The momentum update is given by,

v = γv + α∇θJ(θ;x(i), y(i)) (2.3)

θ = θ − v (2.4)

where v is the current velocity vector which is of the same dimension as the

parameter vector θ. Generally the momentum γ is set to 0.9.

CNN was widely applied into various fields in the early 1900s (e.g., time-

delay neural networks for speech recognition [37] and document reading [38]).

Since the early 2000s, it has been successfully applied to image segmentation,

object detection and recognition, particularly in the tasks of the segmentation

of biological images [39], face detection and recognition, pedestrian and human

body detection [40, 41, 42, 43, 44, 45]. In these research areas, labelled data

were becoming relatively abundant. Despite these successes, CNNs were largely

forsaken by the mainstream computer-vision and machine-learning communities

until the ImageNet competition in 2012 [46]. Krizhevsky et al. applied a deep

convolutional neural network (AlexNet) to the ImageNet dataset, which consists

of about a million images from 1, 000 different categories and achieved spec-

tacular results in the competition. This success came from the efficient use of

GPUs, a non-linearity activation function called Rectified Linear Unit (ReLU),

a new regularization technique called dropout [47], and effective data augmenta-

tion techniques. The success has precipitated the rapid adoption of deep learning

by the computer-vision community. Now CNNs are the dominant approach for

almost all recognition and detection tasks [48, 45, 49, 50, 51, 18].

CNNs are designed to process data in the form of multiple arrays, for instance

a colour image that contains three colour channels, and each channel is a 2D arrays
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containing pixel intensities. The architecture of a typical CNN is structured as a

series of stages. The first few stages are usually composed of two types of layers:

convolutional layers and pooling layers. After the convolution operation through

a set of weights called a filter bank, we obtain a number of feature maps within

which each unit is connected to local patches in the feature maps of the previous

layer. Different filter banks produce different feature maps in one convolutional

layer. The units in the feature maps are then passed through a non-linearity such

as a ReLU. At present, ReLU is the most popular non-linear activation function.

It is simply the half-wave rectifier f(z) = max(z, 0). In past decades, smoother

non-linearities like tanh(z) or 1/(1 + exp(−z)) were widely used. But the ReLU

has been proved to learn much faster in deep CNNs with many layers.

Different from the role of the convolutional layer that is to detect local conjunc-

tions of features from the previous layer, the role of the pooling layer in CNNs is

to merge semantically similar features into one. Average pooling fa(v) = 1
N

N∑
i=1

vi

and max pooling fm(v) = maxivi are the two most popular pooling approaches.

They can reduce the dimension of the feature maps and create an invariance to

small distortions and shifts. The authors of [52] argue that max pooling is par-

ticularly well suited to the separation of features that are very sparse (i.e., have

a very low probability of being active). A typical convolutional neural network

is comprised of a number of stages of convolution, ReLU non-linearity (often

with a max pooling step after each stage) and then followed by one or more

fully-connected layers as in a standard multilayer neural network.

Deep CNNs with a large number of parameters are very powerful machine

learning systems. However, overfitting is a serious problem in such networks.

In order to remedy this issue, Srivastava et al. [47] propose a technique called

Dropout, which can prevent units from co-adapting too much. The key idea

is to randomly drop units from the CNNs training. This significantly reduces

over-fitting and gives major improvements over other regularization approaches.

At the present, Dropout is commonly used in fully-connected layers since the

parameters in these layers generally account for the vast majority of the total

parameters in a CNN like AlexNet. Finally, a softmax layer is added on top of

the fully-connected layer to produce final prediction output for image recognition.
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Recent deep CNNs have an enhanced modelling capacity as the model depth

becomes increasingly deep. The authors of [53] indicate that they are particu-

larly dependent on the availability of large quantities of training data in order to

learn a non-linear function from input to output that generalizes well and yields

high classification accuracy on unseen data. A possible explanation for the lim-

ited exploration of CNNs and the difficulty to improve on simpler models is the

relative scarcity of labelled data for fine-grained visual recognition. An elegant

solution to this problem is data augmentation. It is the application of one or

more deformations to a collection of annotated training samples which result in

new, additional training data.

There are many ways to do data augmentation, such as the popular horizon-

tally flipping, random crops and color jittering. In 2012, Krizhevsky et al. [17]

proposed fancy PCA when training the famous AlexNet. Fancy PCA alters the

intensities of the RGB channels in training images. They perform PCA on the

set of RGB pixel values throughout the ImageNet training set. To each training

image, they add multiples of the found principal components, with magnitudes

proportional to the corresponding eigenvalues times a random variable drawn

from a Gaussian with mean zero and standard deviation 0.1.

The second form of data augmentation in their work consists of generating

image translations and horizontal reflections. They do this by extracting random

224 × 224 patches (and their horizontal reflections) from the 256 × 256 images

and training the network on these extracted patches. This increases the size

of the training set by a factor of 2048, though the resulting training examples

are, of course, highly interdependent. Without this scheme, the network suffers

from substantial over-fitting. At test time, the network makes a prediction by

extracting five 224× 224 patches (the four corner patches and the center patch)

as well as their horizontal reflections (hence ten patches in all), and averaging the

predictions made by the networks softmax layer on the ten patches. We call this

approach of image crop “random-crop”. In our all AlexNet and VGGNet-related

experiments, we employ the random-crop method to do data augmentation.

GoogLeNet [48] proposed one image sampling method which is inspired by

[54]. They sample various sized patches of the image whose size is distributed

evenly between 8% and 100% of the image area with aspect ratio constrained
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to the interval [3/4, 4/3]. We call this data augmentation technique “random-

sized-crop”. In our all ResNet-related experiments, we use the random-sized-crop

method to do training sample augmentation.

Nowadays, many state-of-the-arts deep networks models like AlexNet, VG-

GNet and ResNet are released publicly by famous research groups to facilitate

further research. These models are all trained on ImageNet, which consists of

more than one million training samples with about 1, 000 categories. Thanks

to the wonderful generalization abilities of these pre-trained deep models, we

can fine-tune them on our relatively small-scale fine-grained image classification

datasets. Different strategies of fine-tuning can be utilized in different situations.

For instance, a good case is that your new data set is very similar to the data

used for training these pre-trained models. In this case, one can only fine-tune a

few top layers of pre-trained models with a small learning rate. We consider our

fine-grained datasets like birds, cars and aircraft are quite different from the data

used in above pre-trained models for generic image classification, therefore, we

organize all our experiments by fine-turning the entire pre-trained models, not

just a few layers, with a small learning rate for improving performance.

2.1.2 Batch Normalization

With the convolutional neural network depth increasing, training the network

on large-scale image datasets like ImageNet is becoming more and more com-

plicated and time-consuming. For instance, it takes approximately two weeks

to train a VGG model with 16-layer on ImageNet with more than one million

training images when running at a Tesla K40c GPU. The authors of [55] indicate

that the training process is complicated by the fact that the distribution of each

layer’s inputs changes during training, as the parameters of the previous layers

change. This slows down the training process by requiring smaller learning rates

and careful parameter initialization. They refer to this phenomenon as internal

covariate shift. Batch Normalization addresses the problem by normalizing layer

inputs, which allows us to use much higher learning rates and be less careful

about parameter initialization.

Batch Normalization [55] draws its strength from making normalization a part
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of the model architecture and performing the normalization for each training mini-

batch. It also acts as a regularizer, in some cases eliminating the need for Dropout.

By applying Batch Normalization to some state-of-the-art image classification

models, it achieves the same accuracy with 14 times fewer training steps, and

beats the original models by a significant margin. In our all ResNet-related

experiments, we also adopt batch normalization in all weight layers including all

convolutional layers, fully-connected layers and the layer of our proposed pooling

method, which is introduced in Section 3.2.

2.1.3 AlexNet, VGGNet and ResNet

In next two sections, we will briefly review a few well-known CNN architectures

as well as two recent studies based on them for fine-grained image recognition.

AlexNet [17] consists of five convolutional and three FC layers with a final 1000-

way softmax. It has more than 60 million parameters and 650, 000 neurons. Con-

volutional layer one, two and five are followed by a max-pooling layer. To make

training faster, they used non-saturating neurons (ReLU Nonlinearity) and a very

efficient GPU implementation of the convolution operation. Dropout [47] is used

in the first two FC layers in order to alleviate overfitting. Apart from Dropout,

they also employed a couple of data augmentation skills to reduce overfitting.

The first form of data augmentation consists of generating image translations

and horizontal reflections, and the second one is to alter the intensities of the

RGB channels in training images. It has been proved that these two forms of

data augmentation are considerably effective, and they are widely used in train-

ing deep CNN models. It also employed local response normalization that aids

generalization in the first and second convolutional layers. It achieved the best

classification accuracy in the 2012 ImageNet competition. OverFeat [50] is an

well-known integrated CNN framework for classification, localization and detec-

tion. Like AlexNet, OverFeat also has a total of eight layers. But its architecture

has two versions - fast and accurate. For the architecture for fast version, there

are five convolutional and three FC layers. Its accurate model consists of six

convolutional layers and two FC layers.

In the 2014 ImageNet competition, VGGNet [18] obtained the best perfor-
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mance with a conventional CNN architecture with substantially increased depth

(e.g., 16-19 layers). It employs a relatively small 3× 3 receptive field with a fixed

stride 1. As very small (3 × 3) convolution filters are used in all convolutional

layer, this allows them to address another important aspect of CNN architecture

design - its depth. To this end, they fixed other parameters of the architecture,

steadily increased the depth of the network by adding more convolutional layers.

Five different convolutional neural network configurations are set up with an in-

creasing depth from 11 to 19. In addition to small receptive fields, VGGNet also

removes the layer of local response normalization, which plays an important role

in improving performance for AlexNet. It has the same structures as AlexNet

in the last three FC layers. Dropout still plays a significant role in reducing

ovefitting for the first two fully-connected layers with 4096 dimensions.

They have demonstrated that convolutional networks with substantially in-

creased depth (e.g., 16 weights layers as CNN config. D and 19 weights layers

as config. E) can achieve astounding performance for large-scale image classifi-

cation, and the representation depth is beneficial for the classification accuracy.

However, in the paper [18] one can observe that the trained model E with 19

weight layers performs not better than the trained model D with 16 weight lay-

ers, and even worse in some cases. There is no discussion about this phenomenon

in their work, and this has revealed some indications about the facts that simply

adding more convolutional layers does not necessarily mean better performance.

This has also been proved by the Deep Residual Network (ResNet) [19] in their

experiments with more deeper convolutional networks (e.g., 20-layer, 34-layer and

56-layer).

Recently, the Deep Residual Network (ResNet) [19] made a forceful impres-

sion in the computer-vision and machine-learning communities, for it increases

the depth of CNNs to more than 100 and achieved state-of-the-art performance

on recognition, detection, localization and segmentation tasks. The depth of

representations is of central importance for many visual recognition tasks, but

deeper neural networks become more difficult to train. The authors carried on

experiments on CIFAR-10 [56] with 20-layer and 56-layer networks. They dis-

covered that the deeper network has higher training error and test error. Similar

phenomena also occurred while training 18-layer and 34-layer networks on Ima-
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geNet. They [19] argue that when deeper networks are able to start converging,

a degradation problem has been exposed. It is that with the network depth in-

creasing, accuracy gets saturated and then degrades rapidly. The problem is not

caused by overfitting, and adding more layers leads to higher training error. To

overcome the problem of degradation in training very deep CNNs, ResNet adopts

residual learning to every few stacked layers by adding shortcut connections. Cou-

pled with a good weights initialization method [57] and batch normalization [55],

ResNet attains better performance with fewer parameters and lower complexity

compared to VGGNet as it removes the first two FC layers and dropout as well.

2.2 Cross-convolutional-layer pooling

Inspired by the parts-based pooling strategy [10] used in fine-grained image classi-

fication, cross-convolutional-layer pooling [20] employs feature maps of the (t+1)-

th convolutional layers as Dt+1 indicator maps. The local features extracted from

the t-th convolutional layer are pooled with Dt+1 pooling channels to obtain final

image representations. The method is based on the observation that a feature

map of a deep convolutional layer is usually sparse and contains some regions

which are semantically meaningful. Cross-convolutional-layer pooling [20] argues

that although the filter of a convolutional layer is usually not directly task-relevant

compared to the parts detector learned from human-specified parts annotations,

cross-convolutional-layer pooling can benefit from combining a much larger num-

ber of indicator maps, e.g., 512 for VGG as opposed to 20-30 (the number of

parts usually defined by human). It is analogous to applying bagging to improve

the performance of multiple weak classifiers. Most previous studies adopts acti-

vations of the fully-connected layer of a deep CNN as the image representation

and it is believed that convolutional layer activations are less discriminative. But

cross-convolutional-layer pooling has illustrated that if used appropriately, con-

volutional layer activations can be turned into a powerful image representation

which enjoys many benefits over fully-connected layer activations. They achieved

comparable or in some cases significantly better performance than existing fully-

connected layer based image representation on a number of different types of

datasets, including a fine-grained image classification dataset -The CUB-200-2011
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Figure 2.1: The overview of cross-convolutional-layer pooling. Pooling
local features extracted from Conv. Layer t with pooling channels from Conv.
Layer t+1.

dataset [1].

Formally, the image representation extracted from cross-convolutional-layer

pooling can be expressed as follows:

P t = [P t
1
T
, P t

2
T
, ..., P t

k
T
, ..., P t

Dt+1

T
]
T

where, P t
k =

Nt∑
i=1

X t
ia
t+1
i,k ,

(2.5)

where P t denotes the pooled feature for the t−th convolutional layer, which is

calculated by concatenating the pooled features of each pooling channel P t
k, k =

1, ..., Dt+1. X
t
i denotes the i-th local feature in the t-th convolutional layer. Note

that feature maps of the (t+1)-th convolutional layer are obtained by convolving

the feature maps of the t-th convolutional layer with a m× n-sized kernel. So if

we extract local features X t
i from each m×n spatial unit in the t-th convolutional
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layer then each X t
i naturally corresponds to a spatial unit in the (t+1)-th convo-

lutional layer. Let us denote the feature vector in this spatial unit as at+1
i and the

value at its k-th dimension as at+1
i,k . Then we use at+1

i,k to weight local feature X t
i in

the k-th pooling channel. See Fig. 2.1 for an overview of cross-convolutional-layer

pooling.

Cross-convolutional-layer pooling is inspired by the parts-based pooling strat-

egy. Recent work of [31] is also based on object parts. In their work, the basic

idea is to represent an object by a collection of parts arranged in a deformable

configuration. The appearance of each part is modeled separately, and the de-

formable configuration is represented by spring-like connections between pairs of

parts. These models allow for qualitative descriptions of visual appearance, and

are also suitable for generic recognition problems. Although the above two meth-

ods are both based on object parts, but there is a big difference between them.

Cross-convolutional-layer pooling is a novel pooling strategy based on convolu-

tional features, whereas [31] is a method based on deformable parts configuration.

2.3 Bilinear CNN model

Figure 2.2: The overview of Bilinear CNN model. Bilinear CNN architec-
ture consists of two feature extractors whose outputs are multiplied using outer
product at each location of the image.

Bilinear CNN models [21] can be seen as a generalization of the cross-convolutional-
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layer pooling using separate CNNs. Cross-convolutional-layer pooling extracts lo-

cal features and indicator maps from two consecutive convolutional layers in one

CNN model, whereas bilinear CNN architecture consists of two feature extractors

whose outputs are multiplied using outer product at each location of the image.

See Fig. 2.2 for an overview of Bilinear CNN model. At the stage of training, the

generated bilinear vector passes through FC layers and a softmax layer to obtain

predictions. This allows a bilinear CNN architecture to do end-to-end training

or fine-tuning, which plays a critical role in boosting the final classification ac-

curacy. Bilinear CNN models [21] can model local pairwise feature interactions

in a translationally invariant manner which is particularly useful for fine-grained

categorization.

One significant difference between bilinear CNN models and cross-convolutional-

layer pooling is that the former is a complete CNN architecture which consist of

two CNN streams (only contain convolutional and pooling layers), a bilinear vec-

tor generation layer and other fully-connected and softmax layers, whereas the

latter is only a pooling method that utilizes existing CNN models to generate

image representations by extracting local features and indicator maps from two

consecutive convolutional layers. The whole architecture of bilinear CNN models

can be fine-tuned on a specific domain using two CNN streams initialized from

the ImageNet dataset. Both the resulting bilinear vector and the image repre-

sentation of cross-convolutional-layer pooling are passed through a signed square

root step (y ← sign(x)
√
|x|), followed by `2 normalization (z ← y/||y||2). After

that, they are trained on one-vs.-all linear SVMs for the final image category

predictions.
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Chapter 3

Spatially Weighted Pooling in

deep CNNs for fine-grained

visual recognition

In this chapter, we will elaborate on our proposed Spatially Weighted Pool-

ing strategy for fine-grained visual recognition. We will first report our cross-

convolutional-layer pooling experiments on the CompCars dataset in Section 3.1.

The authors of [20] have evaluated the proposed cross-convolutional-layer pool-

ing method on four datasets: MIT indoor scene-67 [5], Caltech-UCSD Birds-200-

2011 [1], PASCAL VOC 2007 [58] and H3D Human Attributes dataset [59]. Here

we are interested in evaluating its applicability and effectiveness on a entirely

different fine-grained dataset - CompCars [4]. Based on these experiments, we

introduce the proposed Spatially Weighted Pooling method in Section 3.2. To

verify its effectiveness, we carried out a range of SWP-related experiments on

three fine-grained image classification datasets and the MIT67 dataset.

We consider integrating the proposed pooling strategy into three widely used

convolutional neural network architectures - AlexNet, VGGNet and ResNet. Firstly,

We take these CNN architectures in which it is a max pooling layer before the

first fully-connected layer as the baselines. Next, the aforementioned max pooling

is replaced with an SWP layer. Experimental results will show that the modified

architectures with SWP not only always perform better than the baselines, but
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also achieve the state-of-the-art results on all datasets using ResNet152-SWP.

Finally, we will visualize learned Conv1 and SWP filters, image patches with

highest activations for several convolutional filters and a number of convolutional

feature maps to gain a deep insight into the learned models.

3.1 Cross-convolutional-layer pooling experiments

on CompCars

3.1.1 CompCars dataset

The CompCars dataset [4] contains images from web-nature and surveillance-

nature. The images of the web-nature are collected from web-based forums, public

websites and search engines. The web-nature data contains 163 car makers with

1, 716 car models. There are 136, 727 images in total capturing the entire cars.

Fig. 3.1 illustrates some examples of the web-nature images. The car models can

be organized into a large tree structure that consists of three levels. They are

car make, car model and the year of manufacture from top to bottom. We can

observe from Fig. 3.2 that there is subtle difference in appearance for the cars

belonging to the same model but produced in different years. For instance, three

versions of “Audi A4L” were manufactured between 2009 to 2011 respectively.

Viewpoint F R S FS RS
No. in total 4974 3791 5722 9434 7034

No. per model 11.5 8.8 13.3 21.9 16.3

Table 3.1: Quantity distribution for five viewpoints.

For the fine-grained classification task, the authors of [4] only use 30, 955 of

a total of 136, 727 web-nature images and classify them into 431 car models.

For each car model, the cars manufactured in different years are classified into

the same category. Each car image is also labelled as one of five viewpoints,

including front (F), rear (R), side (S), front-side (FS) and rear-side (RS). The

quantity distribution of five viewpoints for a total of 30, 955 images is shown in

Table 3.1 and the examples from five viewpoints are shown in Fig. 3.1. There

are in total 16, 016 training images and 14, 939 testing images for the task of
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fine-grained classification. Note that as an extension to their CVPR paper, the

authors of [4] conducted experiments for fine-grained car classification, attribute

prediction, and car verification with the entire dataset and different deep models.

For fine-grained car classification, they achieved much higher accuracies with a

different train/test splits from the original one. There are in total 36, 456 training

images and 15, 627 testing images in the new splits, which means training samples

are twice as ours.

Figure 3.1: Examples from the CompCars dataset [4]. The images in the five rows
illustrate front viewpoint (F), rear viewpoint (R), side viewpoint (S), front-side
viewpoint (FS) and rear-side viewpoint (RS).
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Figure 3.2: The tree structure of car model hierarchy. Several car models of Audi
A4L in different years are also displayed.

3.1.2 Experimental settings

The authors of [20] evaluated the proposed cross-convolutional-layer pooling method

on four datasets: MIT indoor scene-67 [5], Caltech-UCSD Birds-200-2011 [1],

PASCAL VOC 2007 [58] and H3D Human Attributes dataset [59]. Previous

studies [25, 60] have shown that activations from the fully-connected layer of a

pre-trained deep CNN achieve surprisingly good performance on those datasets.

Taking the experimental results of [25, 60] as baselines, the authors of [20] has

demonstrated that cross-convolutional-layer pooling can achieve or in some cases

significantly better performance by pooling local features extracted from one con-

volutional layer with the guidance of the feature maps of the successive convolu-

tional layer. They conducted their experiments only on one fine-grained dataset

- birds [1]. In order to investigate the effectiveness of their proposed method, we

carried out some experiments on another fine-grained dataset - CompCars [4] for

the cross-convolutional-layer pooling.
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The authors of [4] fine-tuned the OverFeat [50] model, which is pre-trained on

ImageNet classification task [46], on the CompCars dataset. The corresponding

classification results for five viewpoints and All-View are shown in Table 3.2. In

terms of model depth, VGG is much deeper than OverFeat, and it has shown

superb performance on ImageNet and many other datasets. Therefore, we con-

sider fine-tuning this more widely-used pre-trained VGG model to obtain initial

results that can be used to make a comparison with the results in Table 3.2.

Next, we can take these initial experimental results as our baselines to investi-

gate the performance of cross-convolutional-layer pooling when it works on the

VGG models. In the initial works of cross-convolutional-layer pooling, all exper-

iments are based on Alex models rather than VGG models. Therefore, we can

further investigate the effectiveness of cross-convolutional-layer pooling when it

works on deeper CNN models.

Viewpoint F R S FS RS All-View
Top-1 [4] 52.4 43.1 42.8 56.3 59.8 76.7
Top-5 [4] 74.8 64.7 60.2 76.9 77.7 91.7

Table 3.2: Fine-grained classification results reported by the authors of CompCars
[4].

We organized our experiments on the CompCars dataset into four parts.

Firstly, we conducted experiments on extracting local features from different lay-

ers after fine-tuning the VGG model (e.g., conv53, pool5 and fc6). These local

features serve as final image representations and are trained with a linear or

non-linear classifier (e.g., SVM). To fine-tune the VGG model on the CompCars

dataset, we simply replace the ImageNet specific 1, 000-way final classification

layer with a randomly initialized 431-way classification layer, and the rest of the

layers keep unchanged. We report the results of first category in Table 3.4. Sec-

ondly, we experimented with different combinations of convolutional layers for

cross-convolutional-layer pooling (e.g., conv42&conv43, conv52&conv53). The

results are illustrated in Table 3.6. Thirdly, we compared the classification accu-

racy with fine-tuning and without fine-tuning for cross-convolutional-layer pool-

ing. For the experiments without domain fine-tune on the CompCars dataset, we

directly utilize the off-the-shelf VGG models pre-trained on ImageNet to extract
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local features and pooling channels to perform cross-convolutional-layer pooling

for the car images. The corresponding experimental results are shown in Ta-

ble 3.7. Finally, we performed experiments on the CompCars dataset with our

proposed method of Spatially Weighted Pooling in Section 3.2, and the results

are shown in Table 3.14.

3.1.3 Experimental details

For the experiments without fine-tuning, we adopt the pre-trained VGG model

provided in the caffe [61] package to extract CNN activations. To fine-tune the

pre-trained VGG model on the CompCars dataset, we replace the original 1, 000-

way classification layer with a new 431-way layer specific for CompCars. It is

initialized by random weights drawn from Gaussian distributions with fixed stan-

dard deviations of 0.01 and trained from scratch with a large learning rate. Other

layers are trained from the learned distributions on ImageNet with a relatively

small learning rate. We fix the input size of training images at 256 × 256 when

fine-tuning the models on CompCars. We do not use scale and color augmenta-

tion during the training process. A 224× 224 crop is randomly sampled from an

image or its horizontal flip, with the per-pixel mean subtracted.

After the completion of fine-tuning the VGG model on the car dataset, we

carried out all experiments in relation to cross-convolutional-layer pooling by

following [20]. But we take the image resolution of 342×342 at testing, and a 300×
300 center crop is sampled from a testing image. Next, the center image crops

will pass through the fine-tuned VGG model. After that, we can readily extract

local features from the different layers in the fine-tuned VGG net (e.g., conv53

and FC6). Once these local features are available, one can perform the cross-

convolutional-layer pooling on them to obtain image representations or directly

carry out final image classification based on them.

The image representations of cross-convolutional-layer pooling pass through

a signed square root step (y ← sign(x)
√
|x|), followed by `2 normalization (z ←

y/||y||2). After that, they are trained on one-vs.-all linear SVMs for the final

image category predictions. If we take the local features extracted from one

specific layer directly as the image representations, it also goes through the same
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process as the image representations of cross-convolutional-layer pooling does.

For the experiments based on the local features extracted from the fully-connected

layers, the resolution must be the same for training and testing images. But

if utilizing the local features extracted from convolutional layers, we may use

different image resolutions. For instance, we fine-tune the VGG model with the

training images of 256 × 256, but perform experiments for cross-convolutional-

layer pooling based on the local features extracted from conv53 and conv54 on

the testing images of 342× 342.

3.1.4 Experimental results and discussions

Viewpoint F R S FS RS All-View
OverFeat fine-tuning [4] 52.4 43.1 42.8 56.3 59.8 76.7

AlexNet fine-tuning 50.2 41.3 40.9 55.1 58.3 75.6
VGGNet fine-tuning 77.2 79.1 69.1 79.8 81.1 90.8

Table 3.3: Comparison of classification accuracy on CompCars between OverFeat
fine-tuning [4] and VGG fine-tuning.

Table 3.3 compares the fine-tuned results for the OverFeat model reported

in [4] with the results by fine-tuning the Alex and VGG models. All results in

the table come from counting the number of correctly classified images, and the

final classification result for one test image is to identify which dimension has

the largest value in the output of the softmax layer in the model. It is easy to

observe that fine-tuning the VGG model achieves much better performance than

the OverFeat model does. AlexNet models obtained similar results in comparison

with the OverFeat models. Compared to AlexNet and OverFeat with 8 layers in

total, VGGNet has a total of 16 layers in depth and is much deeper. Next, we

will take these fine-tuned results as our baselines to compare them with a number

of experiments based on the cross-convolutional-layer pooling.

After completing the fine-tuning process, we can easily extract local features

from one specific layer and take them as image representations to be trained on

a classifier. We apply SVM on these image representations. Since, the FC8 layer

of the fine-tuned VGG model can directly predict the car model class, there is

no need to perform SVM on FC8. Firstly, we carried out the experiment on the
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first fully-connected layer (FC6). The extracted local features from FC6 has 4096

dimensions, and the input size of testing images is 256 × 256. To extract local

features from one fully-connected layer using the fine-tuned VGG model, we have

to maintain the same resolution for training and testing images. Table 3.4 shows

that classification accuracy of FC6 (the fourth row) is lower than that of VGGNet

fine-tuning, which is our baseline (the last row). However, it is not necessary to

maintain the same resolutions for training and testing images if local features are

extracted from the layers before the fully-connected. This is clearly evident in

the case of Convolutional and Pooling layers because their forward function is

independent of the input volume spatial size. For example, the size of the feature

maps in conv53 for a 224× 224 image crop is 14× 14. If we obtain an image crop

with the size of 304× 304 by resizing testing images, the size of the feature maps

in conv53 will be 19× 19 (see the first row in Table 3.4).

Viewpoint F R S FS RS All-View
Conv53 (19× 19× 512) 68.1 69.7 59.7 70.5 71.7 79.8

Pool5 (9× 9× 512) 75.5 77.9 67.8 78.3 79.4 87.9
FC6 (4096) 76.3 78.2 68.4 78.9 80.2 88.7
FC7 (4096) 76.6 78.7 68.8 79.2 80.4 89.2

VGGNet fine-tuning (FC8) 77.2 79.1 69.1 79.8 81.1 90.8

Table 3.4: Comparison of classification accuracy for different layers of the fine-
tuned VGG model on CompCars.

Some works like [24, 62] also achieved similar experimental results to ours.

The work of SPP-net [24] also extracts the representations from the images in

the target datasets - Pascal VOC 2007 [58] and re-train SVM classifiers. The

extracted image representations are l2-normalized for SVM training. From the

results in Table 3.5, one can easily observe that fc7 performs better than all other

layers before it. The layer of fc6 achieves better results than conv4 and conv5.

The authors of [62] fine-tuned the pre-trained model of AlexNet on two-class

weather dataset [63]. They also performed similar experiments to test classifica-

tion accuracies for different layers (e.g., conv4, conv5 and fc6). The results they

obtained are consistent with those in Table 3.5. As far as image classification

concerned, the later layers like fc6 and fc7 in a deep CNN perform much better

than the earlier layers like conv3 and conv4. In order to gain a better under-
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standing of CNNs, some studies attempted to dig out underlying explanations of

the previous observation by visualizing them. The work of [64] indicates that the

earlier features of a deep CNN contain more generic features (e.g. edge detectors

or color blob detectors) that should be useful to many tasks, but later layers of

the deep CNN becomes progressively more specific to the details of the classes

contained in specific datasets.

Layer conv4 conv5 pool5 fc6 fc7
Classification accuracy [24] 59.96 66.34 69.14 74.86 75.90

Table 3.5: Comparison of classification accuracy on VOC2007 for different layers
in [24].

Next, we carried on experiments based on cross-convolutional-layer pooling

using above fine-tuned VGG models on CompCars. After taking local features ex-

tracted from one layer like conv53 as indicator maps, we pool these indicator maps

with local features extracted from its previous layer (conv52) and obtain cross-

convolutional-layer pooling features. Then the cross-convolutional-layer pooling

features are passed through a signed square root step (y ← sign(x)
√
|x|), fol-

lowed by `2 normalization (z ← y/||y||2). After that, they are trained on one-

vs.-all linear SVMs for the final image category predictions. Table 3.6 illustrates

corresponding results for different layer combinations

Viewpoint F R S FS RS All-View
OverFeat fine-tuning [4] 52.4 43.1 42.8 56.3 59.8 76.7

VGGNet fine-tuning 77.2 79.1 69.1 79.8 81.1 90.8
conv42&conv43 80.9 83.6 73.7 84.4 84.9 92.9
conv52&conv53 84.3 87.4 79.4 88.8 89.5 94.6

Table 3.6: Comparison of classification accuracy on CompCars for different layer
combinations of cross-convolutional-layer pooling.

Table 3.6 shows that cross-convolutional-layer pooling improves classification

accuracy dramatically compared to our VGGNet fine-tuning baseline. For in-

stance, we obtain 84.3% accuracy for F-View by pooling conv52 with conv53

in comparison with the baseline’s 77.2%. Furthermore, the pooled features of

conv52&conv53 achieve much better performance than those of conv42&conv43.

All above experiments are based on the fine-tuned CompCars VGG model. We
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also conducted experiments without domain fine-tune for cross-convolutional-

layer pooling and report the results in Table 3.7. Without domain fine-tune on

CompCars, we obtained slightly worse results for cross-convolutional-layer pool-

ing. Some studies like [25, 21, 20, 62, 26, 24, 65] also reported consistent results

on other image classification datasets.

Viewpoint F R S FS RS All-View
conv52&conv53 without fine-tune 78.9 82.2 74.7 82.8 84.1 90.2

conv52&conv53 with fine-tune 84.3 87.4 79.4 88.8 89.5 94.6

Table 3.7: Comparison of classification accuracy on CompCars with or without
domain fine-tune for cross-convolutional-layer pooling.

We have mentioned that the method of cross-convolution-layer pooling is in-

spired by the parts-based pooling strategy used in fine-grained image classification

in Section 2.2. In the works of parts-based strategy like [10], multiple regions-of-

interest (ROI) are detected and each of them corresponds to specific parts (e.g.,

the tail of birds and the logo of cars). Next, local features falling into each ROI

are pooled together to get image level representations. By accumulating 512 fea-

ture maps of conv53 in the fine-tuned CompCars VGG model, we get the left

image in Fig. 3.3. One can easily observe that the significant car body parts like

the logos and the headlights have highest activations in feature maps of conv53.

In other words, the regions near the logos and the headlights are ROI regions.

Indeed in terms of distinguishing one car model from the other, they are more

discriminative than other regions.

In original cross-convolutional-layer pooling method, suppose that one local

feature map extracted from one convolutional layer have the size of H × W ,

the pooling channel extracted from next convolutional layer has the same size

of H ×W , where H,W denote the height and width of one local feature map

or one pooling channel. The pooling process between the local features and one

pooling channel is performed at all H×W locations. This means that all regions

are equally treated and the concept of ROI is not taken into consideration in the

pooling process. Moreover, a feature map or a pooling channel is usually sparse

(see Fig. 3.4). If the process of pooling is performed at all H ×W locations, we

conjecture that this will not only lead to extra computational overhead, but also

impair the discriminative ability of pooled features.
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Figure 3.3: Visualizing of ROI regions by accumulating 512 feature maps of
conv53 in the fine-tuned CompCars VGG model. Right: the original image.
Left: the indicator map.

Next, we conducted some experiments based on the concept of ROI regions.

Instead of taking whole Conv52 local features (19× 19× 512) and whole Conv53

indicator feature maps (19 × 19 for one map), we use fewer points with high

activations in indicator maps, as most discriminative car parts like car Logos

and headlights have higher activation response. For instance, we take 12× 12 =

144 locations with highest activations in all indicator maps and pooled with

corresponding local features (12×12×512). The experimental results are reported

in Table 3.8. From the table, one can see that the best result of 85.98% is achieved

when the top 12 × 12 = 144 locations with higher activations are chosen. Even

though the cross-convolutional-layer pooling is performed on only 36 locations

with highest activations, we can still achieve the same performance as that of

the whole indicator map in which there are 19× 19 = 381 points. The results in

Table 3.8 indicate that pooling the most distinguishable regions like car logos and

headlights areas, which have higher activations, in the indicator maps with the

local features in the same regions can achieve better results than those by pooling

the whole indicator maps with the corresponding local features. Therefore, we

conjecture that if having more powerful indicator maps or pooling channels that

can better highlight these distinguishable regions rather than straightforward

using those off-the-shelf pooling channels from one convolutional layer, better

performance may be achieved.
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Based on above hypothesis, we propose a new pooling strategy in which a

dozen of pooling channels or masks are learned to replace the roles of extracted

local convolutional pooling channels. After carrying out above experiments on

CompCars with the cross-convolutional-layer pooling, we have proved that the

cross-convolutional-layer pooling strategy also works well on this fine-grained car

dataset. In the meantime, we also have gained a deeper understanding of the

method. Based on above works and inspired by cross-convolutional-layer pooling,

we proposed a simple yet effective pooling strategy called Spatially Weighted

Pooling that can improve fine-grained classification performance significantly. We

elaborate on the proposed pooling strategy and corresponding experiments in

Section 3.2.

Number of Points in indicator maps F-View
19× 19 = 381 (whole feature map) 84.28

17× 17 = 289 85.09
15× 15 = 225 85.22
13× 13 = 169 85.55
12× 12 = 144 85.98
11× 11 = 121 85.93

9× 9 = 81 85.09
7× 7 = 49 85.01
6× 6 = 36 84.29

Table 3.8: Comparison of classification accuracy on CompCars for different num-
ber of interesting points in indicator maps. The cross-convolutional-layer pooling
is performed between conv53 and conv54 layers for the fine-tuned CompCars
VGG model.

3.2 The proposed method

3.2.1 Spatially weighted pooling

Cross-convolutional-layer pooling [20] and bilinear CNN [21] possess a number of

similarities in the process of training and testing. For instance, they both extract

local features and pooling channels from different convolutional layers, which

pass through similar pooling processes. Besides, they both use linear SVMs as
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classifiers to train the pooled image representation or the bilinear vector, and both

obtain the best performance on a large size of input images. Among them, the

most significant one is that they use a similar pooling strategy to generate image

representations or bilinear vectors. They both encode the local features extracted

from one convolutional layer with indicator maps or pooling channels extracted

from another convolutional layer. Cross-convolutional-layer pooling extracts the

pooling channels and the local features from the adjacent convolutional layers in a

single CNN, whereas bilinear CNN employs two CNNs to extract them separately.

fffff

Figure 3.4: The first 81 of total 256 feature maps extracted from the last convo-
lutional layer in AlexNet (left), and the corresponding input image (right).

Suppose that the local features extracted from one convolutional layer have

the size of H ×W × D, where H,W denote the height and width of each local

feature map and D denotes the number of local feature maps. The pooling

channel extracted from another convolutional layer has the same size of H ×W ,

the pooling process between the local features and one pooling channel can be

seen as a linear combination of all local features at all H ×W locations to form

one D-dimensional pooled feature. If there are 512 pooling channels (e.g., the

last convolutional layer in VGG), we can obtain 512 linear combinations of local

features. Concatenating all 512 pooled D-dimensional feature produces a 512×D
dimensional image representation or a bilinear vector.

A feature map or a pooling channel is usually sparse (see Fig. 3.4) and indi-

cates some semantically meaningful regions (see the first row in Fig. 3.5). Ad-
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Figure 3.5: Visualizing of some feature maps extracted from the last convolutional
layer in AlexNet. Three feature maps in the first row indicate some semantically
meaningful regions and three feature maps in the second row illustrate the char-
acteristic of similarity.

ditionally, a large number of feature maps in one convolutional layer are similar

to each other (see the second row in Fig. 3.5). The characteristic of sparsity

in one feature map and similarity among many feature maps may result in the

dimension redundancy of the pooled image representation or the bilinear vec-

tor. Compact bilinear pooling [66] derived through a novel kernelized analysis

has proved that with only a few thousand dimensions, it can maintain the same

discrimination power as the full bilinear representations with several hundreds

thousand dimensions.

Instead of using off-the-shelf feature maps extracted from one convolutional

layer as pooling channels to do linear combinations or encodings for local fea-

tures extracted from another convolutional layer, we argue that a number of

spatial encoding maps or masks can be learned from the end-to-end training pro-

cess to replace these off-the-shelf feature maps or pooling channels. Therefore,

we propose the spatially weighted pooling (SWP) method that can improve clas-

sification performance by adding it after either the last convolutional layer for
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Figure 3.6: The overview of the proposed method. An SWP layer is added
after the last convolutional layer or the last max pooling layer and before the first
FC layer.

ResNet or the last max pooling layer for AlexNet and VGGNet. Then the pooled

SWP features pass through one or several FC layers and a softmax layer to get the

final image category predictions. In an SWP layer, we learn a predefined number

of weighted pooling channels or spatial encoding masks that can aggregate local

convolutional feature maps with learned spatial importance information and pro-

duce more discriminative features (see Fig. 3.6 for an overview of the proposed

method and see Fig. 3.7 for an more detailed illustration). Formally, SWP can

be expressed as follows:

P = [P1
T , P2

T , ..., Pk
T , ..., Pd

T ]
T

where, Pk =
H×W∑
i=1

fiw
k
i ,

(3.1)

where P denotes the pooled SWP feature for the last convolutional layer or the

last max pooling layer, which is calculated by concatenating the pooled feature of

each learned pooling channel Pk, k = 1, ..., d and d refers to the number of learned

pooling channels or spatial masks. fi denotes the i-th D dimensional feature in

the size of H×W (D is the number of feature maps). wki denotes the i-th learned
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Figure 3.7: The illustration of SWP in more detail. An SWP layer is added
after the last convolutional layer or the last max pooling layer and before the first
FC layer.

weight in the k-th pooling channel or spatial mask of the same size of H ×W .

By comparing Fig. 2.1 with Fig. 3.7, one can observe that the proposed SWP

is very similar to cross-convolutional-layer pooling, for they both employ nearly

identical pooling strategy. However, the latter differs from the former in one

significant fact that SWP learns a predefined number of pooling channels, but

cross-convolutional-layer pooling takes extracted local features from one convo-

lutional layer as pooling channels. This allows SWP to be seamlessly integrated

into any existing CNN architectures (e.g., VGGNet and ResNet). We can effort-

lessly apply an SWP layer to those deep CNNs with some slight modifications

of their structures. The new CNN architectures with SWP can be end-to-end

trained from scratch or fine-tuned from some pre-trained models. Furthermore,

the number of the learned SWP pooling channels (16 for VGGNet-SWP and

ResNet-SWP) is much smaller than that of the off-the-shelf pooling channels

(the numbers are 512 and 2048 in the last convolutional layer for VGGNet and

ResNet50-152 respectively). This makes the output features of an SWP layer have
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16× 512 dimensions, whereas the bilinear vector or the cross-convolutional-layer

pooling features have 512×512 dimensions for VGGNet, which means the vector

dimension of SWP is only 3% of that of Bilinear CNN models. In the meantime,

one can imagine that it is quite hard to apply cross-convolutional-layer and Bi-

linear CNN models to ResNet because ResNet has not only very high dimensions

in the last convolutional layer (2048 dimensions), but also different number of

feature channels for any two successive convolutional layers (512 dimensions for

the second-to-last convolutional layer and 2048 for the last convolutional layer)

3.2.2 Forward and backward propagation of SWP

The process of forward and backward propagation of SWP is similar to that of a

convolutional layer. For example, the input of a convolutional layer or an SWP

layer can be formulated as a tensor of size H × W × D, where H, W denote

the height and width of each feature map and D denotes the number of feature

maps. The learned pooling channels or spatial masks of an SWP layer can be

formulated as a tensor of the size H ×W × d, where d denotes the number of

pooling channels. The learned pooling channels and the input feature maps of

an SWP layer have the same height and width (e.g., 7 × 7 for VGG), whereas

one learned filter of convolutional layers usually has a relatively small size (e.g.,

3× 3 receptive field for VGG). Forward propagation of SWP can be formulated

as follows:

f = wTx (3.2)

where wT denotes the transpose of learned SWP channels with the size of d ×
H×W . x denotes the input of the SWP layer with the size of H×W ×D. After

multiplication of two tensors, the pooled SWP features have d×D dimensions.

Backward propagation of SWP can be calculated by following the chain rule

of back-propagation. To compute gradients with respect to input data x and

learned weights w, we have:

∂u

∂x
=
∂u

∂f
∗ ∂f
∂x

=
∂u

∂f
w (3.3)
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∂u

∂w
=
∂u

∂f
∗ ∂f
∂w

=
∂u

∂f
x (3.4)

where ∂u/∂f denotes the computed gradient of previous layer with respect to the

output of the SWP layer f . The SWP layer output f is also the input of that

layer. We do not use bias term b in the SWP layer.

The output features of an SWP layer have d × D dimensions, whereas the

bilinear vector or the cross-convolutional-layer pooling features have D × D di-

mension. The number of local feature maps D is 512 in VGGNet and 2048 in

ResNet50-152 respectively. Here d is much smaller than D. In the following

experiments, we achieved the best performance on all datasets by setting the

number of SWP channels d to 16 for ResNet and VGGNet and 9 for AlexNet.

In AlexNet and VGGNet architectures, an SWP layer is added between the last

max pooling layer and the first FC layer. The feature map size after the max

pooling layer is 6 × 6 for AlexNet and 7 × 7 for VGGNet. Then it is further

reduced to 3× 3 by the SWP layer if d is equal to 9 (3× 3 = 9 for AlexNet). It

means that by applying the SWP layer before the FC6 layer, we can reduce the

parameters of the FC6 layer significantly. For the SWP layer, it only has several

hundreds of weights to learn(e.g., 6×6×9 for AlexNet architecture). In AlexNet

and VGGNet, the parameters of three FC layers account for the majority of the

model parameters and FC6 also has much more parameters compared with the

other two FC layers. Therefore, the modified MAX-SWP-FC architecture has

much fewer parameters to learn compared to the original MAX-FC architecture.

3.3 Experimental results of the proposed method

and discussions

3.3.1 Datasets

We evaluate the proposed method on three fine-grained image recognition datasets

- birds [1], Stanford-Cars [2], aircrafts [3] and one indoor scene recognition dataset

- MIT67 [5]. Birds are relatively smaller than aircrafts and cars in the images.

Cars and birds appear in a more cluttered way compared with aircrafts. Air-
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crafts has few viewpoints in comparison with cars and birds. Fig. 3.8 shows some

examples for the four datasets.

The CUB-200-2011 dataset [1]: It contains 11,788 images of 200 bird species.

There are 5,994 training images and 5,794 testing images in total. The dataset

also provides bounding-box annotations for both training and testing. We eval-

uate our methods in two protocols - “birds” where the object bounding-box is

not provided both at training and testing phase, and “birds + box” where the

bounding-box is provided for both stages. A large number of images in the

dataset are not aligned in terms of the proportion and location of bird objects in

the images.

The Stanford Cars Dataset [2]: The Cars dataset contains 16,185 images

of 196 classes of cars. It is split into 8,144 training images and 8,041 testing

images. The dataset also provides bounding-box annotations for both training

and testing. We evaluate our methods in two protocols as well - “cars” where

the object bounding-box is not provided both at training and testing phase, and

“cars + box” where the bounding-box is provided for both stages. Different from

the CUB-200-2011, the car objects in [2] usually occupy one entire image.

The FGVC-aircraft Dataset [3]: The Aircraft dataset consists of 10,000 images

of 100 aircraft variants. It is split into 6,667 training images and 3,333 testing

images. Aircraft models are organized in a four-levels hierarchy. The four levels,

from finer to coarser, are Model, Variant, Family and Manufacturer. Since certain

models are nearly visually indistinguishable, the “model” level is not used in the

evaluation. A variant collapses all the models that are visually indistinguishable

into one class. The Aircraft dataset has fewer viewpoints compared to other

datasets. The majority of planes are horizontal in the images.

The MIT67 Indoor Scene Recognition [5]: The MIT67 dataset contains 67

indoor scene categories, for example, the scene in libraries and kitchens. There are

5,353 training images and 1,338 testing images. Unlike other three fine-grained

objects datasets in which one image usually contains one object in a well-aligned

position, the images in MIT67 usually contain a number of objects in a more

cluttered way. No bounding-box annotations are provided in this dataset.
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Figure 3.8: Examples from (first row) the birds dataset [1], (second row) aircraft
dataset [3], (third row) cars dataset [2], and (last row) the MIT67 dataset [5] used
in our experiments.

3.3.2 Experimental settings

We consider three widely-used and well-known CNN architectures - AlexNet,

VGGNet and ResNet to illustrate the performance improvement of the proposed

method. For the residual network, we also conducted comprehensive experi-

ments on different depth of models such as ResNet-34, ResNet-50, ResNet-101

and ResNet 152.

At first, we replace the 1000-way classification layer trained on the ImageNet

dataset with a randomly initialized N -way classification layer, where N is the
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category number of a specific dataset and train this layer from scratch with a

high learning rate. Other layers of the pre-trained models are fine-tuned with a

relatively small learning rate. AlexNet and VGGNet have three FC layers after

the combinations of a number of convolutional layers, max-pooling layers and

other layers (e.g., Local Response Normalization). The first two FC layers of

AlexNet and VGGNet models with a dimension of 4096 are followed by ReLU

non-linear activations and a drop-out with a rate of 0.5. The above setting is

devised to train a CNN model on the ImageNet, which comprises more than

one million training images. However, the aforementioned four datasets only

contain training images in the order of thousands. To some extent, we have

observed the phenomenon of over-fitting with this setting during the training

process. Therefore, we reduce the dimension of first two FC layers from 4096

to 512 and keep the drop-out rate of 0.5. This modification can help alleviate

over-fitting and achieve better performance for the aircrafts and cars datasets.

ResNet has a different network architecture from AlexNet and VGGNet.

Firstly, ResNet only has one FC classification layer after several convolutional

blocks and a global average pooling. The global average pooling down-samples

all 2048 feature maps from 7× 7 to 1× 1, and all spatial information is discarded

in this process. The output features of the global average pooling with 2048 di-

mensions are passed through a softmax layer to obtain final image classification.

For achieving better classification results, we replace the global average pooling

of ResNet with a max-pooling layer and then followed with a 1024 FC layer. Sec-

ondly, ResNet employs batch normalization [55] to accelerate the training process

and get better performance. With batch normalization, it allows to train a CNN

with a high global learning rate and to be less sensitive about initialization. It

also acts as a regularizer and eliminates the need for dropout in some cases. In

ResNet, all convolutional layers are followed with batch normalization in order

to address the phenomenon of internal covariate shift. We similarly add batch

normalization after the newly added 1024 FC layer.

In our all AlexNet and VGGNet-related experiments, we do not adopt batch

normalization into our modified models because these experiments are all based on

fine-tuning the pre-trained AlexNet and VGGNet models, but these pre-trained

models were trained prior to the appearance of batch normalization. Nevertheless,

41



all pre-trained ResNet models are trained with batch normalization. Therefore,

when fine-tuning the modified ResNet models, such as adding a fully-connected

layer or our proposed pooling layer, we have to integrate batch normalization

into all newly added weight layers. Otherwise, the modified models cannot be

properly trained.

3.3.3 Improved architectures as baselines

In our initial experimental setting, we simply replace pre-trained models’ ImageNet-

specific 1000-way classification layer and fine-tune them to obtain initial exper-

imental results. However, these revised CNN architectures are not optimal for

these relatively small fine-grained datasets. Hence, we reduce the dimension of

the first two FC layers from 4096 to 512 in order to alleviate over-fitting. For

AlexNet and VGGNet, we keep all convolutional layers, max-pooling layers and

other auxiliary layers (e.g., local response normalization) before the FC layers

unchanged. For ResNet, all layers before the original global average pooling re-

main unchanged, and the global average pooling is replaced by a down-sampling

max pooling (e.g., down-sampling from 7 × 7 to 4 × 4) followed by a 1024 FC

layer and the batch normalization.

We take these revised CNN architectures as baselines to illustrate the per-

formance enhancement by integrating an SWP layer into them. For ResNet, we

replace the last max pooling layer with an SWP layer and add batch normaliza-

tion and ReLU activations after it. The SWP layer also reduces the dimension

of output of the previous layer from 7 × 7 to 4 × 4 for 2048 feature channels as

the last max-pooling does exactly. Thus the SWP layer and the last max-pooling

layer have the exactly same output features dimension. However, the SWP layer

has several hundreds additional parameters to learn compared to the last max-

pooling layer without learned parameters. This is also why after the SWP layer,

we have to employ batch normalization and ReLU activations. For AlexNet-MAX

and VGGNet-MAX, we add an SWP layer after the last max-pooling layer, and

the SWP layer further down-samples feature map from 7× 7 to 3× 3 and 4× 4

before the FC 512 layer respectively.

The feature map size of the outputs of the last convolutional layers is different
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for ResNet, VGGNet and AlexNet (e.g., 14×14 for VGGNet, 13×13 for AlexNet

and 7 × 7 for ResNet). VGGNet is twice as large as that of ResNet. Thus we

integrate SWP into these three CNN architectures with two different strategies.

After down-sampling feature maps with max pooling from 14 × 14 to 7 × 7 for

VGGNet or from 13 × 13 to 6 × 6 for AlexNet, we add an SWP layer after the

max pooling layer. For ResNet, the size of feature maps is already 7 × 7 and

we simply replace the max-pooling layer with an SWP layer and insert a FC

layer after the SWP layer. We report experimental results in Table 3.10, which

compares classification results with or without SWP. We also compare our best

results with the state-of-the-art results in Table 3.11.

3.3.4 Implementation details

All training and testing procedures of ResNet architectures generally follow [19].

We fix training and test image size with 256 × 256. Then a 224 × 224 crop

is randomly sampled from an image or its horizontal flip. But our process of

cropping images is slightly different from that in [19]. We follow the process

of training GoogleNet [48], which includes sampling of various sized patches of

the image whose size is distributed evenly between 8% and 100% of the image

area with aspect ratio constrained to the interval [3/4, 4/3]. Next, we apply

color jitter that randomly varies brightness, contrast and saturation of the image

with a constant of 0.4, following [19]. Finally, we subtract a mean value and

divide by standard deviation for three RGB channels. During the testing, we

only subtracted mean values and divided by standard deviation for the image

crops. We also adopt batch normalization (BN) [55] after the SWP layer and

the first FC layer before ReLU activations. The SWP layer and the following FC

layers are initialized by random weights drawn from Gaussian distributions with

fixed standard deviations of 0.005 and trained from scratch. We use stochastic

gradient descent (SGD) solver with a mini-batch size of 20-60 (varies according

to the model size) for all four datasets. The learning rate starts from 0.001 and

is divided by 10 after 40 training epochs. The whole training process completes

after 90 epoch. We use a weight decay of 0.0005 and a momentum of 0.9.

For fine-tuning AlexNet and VGGNet architectures, we follow the exactly
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# weighted masks AlexNet-SWP VGG16-SWP ResNet50-SWP ResNet101-SWP

K = 4 82.9% 89.3% 91.6% 92.9%

K = 9 84.3% 90.7% 91.8% 93.0%

K = 16 83.9% 91.0% 92.1% 93.4%

K = 25 83.4% 90.5% 92.0% 93.2%

K = 36 82.5% 89.8% 91.9% 92.9%

Table 3.9: Comparison of classification results with different mask numbers on
the Stanford Cars-196 dataset.

same implementation as ResNet architectures but with a small learning rate of

0.0005. Additionally, we do not use scale and color augmentation during training

and testing. A 227 × 227 crop for AlexNet or a 224 × 224 crop for VGGNet is

randomly sampled from an image or its horizontal flip, with the per-pixel mean

subtracted. A dropout layer with a ratio of 0.5 is added after the FC layers, and

no batch normalization is used in AlexNet and VGG architectures. In testing,

we adopt the standard 10-crop testing [17] and report all experiments with a

single model at a single scale (images are resized to 256× 256). We do not adopt

multiple GPU implementation and all experiments run at a Tesla K40c GPU.

3.3.5 Discussion

Before we set up all SWP-related experiments, one important prerequisite is to

figure out what the best predefined numbers of SWP pooling channels are for

different models. Then we firstly carried out experiments in relation to this

predefined number on the Stanford Cars-196 dataset. Table 3.9 shows the com-

parison of classification results for different mask numbers. For the AlexNet-SWP

and VGG16-SWP, one can observe that the accuracies generally improve as we

increase the number of weighted masks up to 9. However, setting the number of

masks to be too large (e.g., K = 36) may hurt the performance. By observing

the 36 learnt masks of AlexNet-SWP, we found out that some masks have similar

weighted distributions. It means that these masks focus on the same parts of cars

and generate redundant pooled features. For ResNets-SWP, the performance is

not very sensitive to the number of weighted masks. We conjecture that these

deep architectures can learn more semantically meaningful information for each
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CNN architectures birds birds + box aircrafts aircrafts + box cars cars + box MIT67

AlexNet-4096 58.7 70.3 74.1 78.0 68.5 79.4 63.7
AlexNet-MAX 58.6 71.2 77.0 82.2 71.3 81.9 58.7
AlexNet-SWP 62.9 72.6 77.2 82.3 76.6 84.3 62.3

VGG16-4096 74.1 80.4 84.2 87.5 84.8 89.2 74.5
VGG16-MAX 73.6 80.3 86.1 88.9 86.1 90.2 73.0
VGG16-SWP 76.4 81.2 86.3 89.0 88.5 91.0 73.1

ResNet101-GLOBAL-AVE 82.0 84.8 87.1 89.2 90.4 91.0 79.8
ResNet101-MAX 83.4 86.4 88.3 89.9 91.7 92.9 80.4
ResNet101-SWP 83.8 86.7 89.4 91.0 92.1 93.4 81.6

Table 3.10: Comparison of classification results. The table compares
the classification results of three variants of AlexNet, VGG-16 and ResNet101.
VGG16-4096 refers to the VGG-16 model that only changes the last ImageNet
specific 1000-way classification layer, and VGG16-MAX is the CNN architecture
that further replaces the first two FC 4096 dimension layers with two 512 dimen-
sion layers. VGG16-SWP is the model that adds an SWP layer between the last
max-pooling layer and the first FC 512 layer of VGG16-MAX. ResNet-GLOBAL-
AVE is the ResNet variant that keeps the global average pooling and only changes
the last ImageNet specific 1000-way to corresponding N-way cclassification layer,
where N is the categories of specific dataset. ResNet-MAX is ResNet architec-
tures that further replace global average with max-pooling (down-sampling fea-
ture map from 7× 7 to 4× 4). Then a 1024 FC layer is added after max-pooling.
ResNet-SWP replaces max-pooling with SWP for ResNet-MAX.

mask. We can also observe that the accuracies decline with theN increasing in the

AlexNet-SWP and VGGNet-SWP. The large N value may lead to a under-fitting

issue since the SWP layer will have more parameters to learn from scratch, but

learning samples are relatively insufficient on a small-scale fine-grained dataset.

The highest accuracy of 93.4% is achieved by the ResNet101-SWP with setting

K = 16. The highest accuracy for VGGNet-SWP and AlexNet-SWP are achieved

by setting K = 16 and K = 9 respectively. Therefore, we set the number of SWP

masks d to 16 for ResNet and VGGNet and 9 for AlexNet for the rest of our

experiments.

We compare the classification results of three variants of AlexNet, VGG-16

and ResNet-101 in Table 3.10. AlexNet-MAX and VGG16-MAX refer to baseline

CNN architectures that reduce the number of neurons the first two FC layers

from 4096 to 512. We get better results by fine-tuning them on aircrafts and
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CNN architectures birds birds + box aircrafts aircrafts + box cars cars + box

FC-CNN[D] [21] 70.4 76.4 74.1 − 79.8 −
FV-CNN[D] [21] 81.3 83.6 77.6 − 85.7 −

B-CNN[D,M] [21] 84.1 85.1 83.9 − 91.3 −
B-CNN[D,D] [21] 84.0 84.8 84.1 − 90.6 −
STANFORD [14] 82.0 82.8 − − 92.6 92.8

VCRLII [27] 84.5 − 80.89 − − −
ResNet152-SWP 85.2 87.4 91.2 92.5 93.4 94.1

Table 3.11: Comparison of classification results. We report classification
accuracy on three fine-grained datasets without (e.g., birds) and with bounding-
boxes (e.g., birds + box). FC-CNN uses features from the last FC layer of a
CNN, and FV-CNN uses FV pooling of CNN filter banks [26]. B-CNN [21] is
the bilinear model consisting of two CNNs shown in brackets. M-Net refers to
[67] and D-Net is [18]. VCRLII refers to [27], which combines Class Activation
Mapping and CNN to shift its center of attention to increasingly discriminative
regions. STANFORD [14] is based on generating parts using co-segmentation
and alignment.

cars datasets and obtain slightly poor performance on birds dataset. Table 3.10

also shows that there is a large decline in performance if reducing FC layers

dimensions for AlexNet and VGGNet on the MIT67 dataset. Next, we add an

SWP layer after the last max pooling and before the first FC layer to make a

comparison with baselines. Likewise, ResNet101-MAX refers to ResNet baseline

CNN architecture that replaces global average pooling with max pooling followed

with a 1024 FC layer. Next, we replace the max pooling layer with an SWP layer

and get ResNet101-SWP. Table 3.10 illustrates that the proposed SWP works on

all three CNN architectures. Compared to three baselines, CNN architectures

with SWP consistently achieve better performance.

Table 3.11 compares our best results with the state-of-the-art approaches. We

achieve the best results on all six datasets with ResNet152-SWP trained on the

image size of 293 × 293 and the crop size of 256 × 256. We only use this image

resolution on the experiments in Table 3.11 and other experiments are conducted

with the image size of 256 × 256 and the crop size of 224 × 224. We merely

report the works without using extra data (e.g., Web data). All methods are

only trained on one specific dataset from scratch or fine-tuned with the models
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CNN architectures birds birds + box aircrafts aircrafts + box cars cars + box MIT67

ResNet34-MAX 79.1 81.1 84.6 87.0 87.4 89.0 77.0
ResNet34-SWP 80.1 82.2 85.4 87.9 88.1 90.2 78.7
ResNet50-MAX 82.1 84.4 86.8 88.4 90.8 91.6 79.0
ResNet50-SWP 82.5 84.7 87.1 88.9 91.1 92.1 79.5

ResNet101-MAX 83.4 86.4 88.3 89.9 91.7 92.9 81.3
ResNet101-SWP 83.8 86.7 89.4 91.0 92.1 93.4 82.5
ResNet152-MAX 83.9 86.6 90.0 91.2 92.1 93.4 80.8
ResNet152-SWP 84.2 87.0 91.0 92.1 92.6 93.8 81.9

Table 3.12: Comparison of classification results for ResNet 34-152. The
table compares the classification results between ResNet-MAX and ResNet-SWP
for four variants of Residual Networks architectures.

pre-trained on the ImageNet, and no extra data are involved.

We can see that ResNet152-SWP with the crop size of 256×256 achieves best

performance on all six datasets. In particular, we significantly improve the best

result from previous 84.1% to 91.2% on the aircrafts dataset. The vast majority

of aircraft objects occupy the entire image. Furthermore, aircrafts in images

are generally horizontal. It means that most aircrafts have a simple side view,

while cars and birds are photographed from multiple viewpoints. In other words,

aircrafts are more well-aligned than birds and cars dataset. This may indicate

that SWP could be able to enhance the performance significantly on well-aligned

datasets.

Table 3.12 reports the classification accuracies of all ResNet architectures and

Table 3.13 illustrates how much accuracy rate is improved by incorporating SWP

into baseline CNN architectures. We can observe according to Table 3.12 that

regardless of the depths, ResNet-SWP consistently performs better than ResNet-

MAX, and ResNet34-SWP can improve the performance more than other ResNet-

SWP architectures. This indicates that the effectiveness of SWP decreases as the

depth of CNNs increases. The columns of birds and cars in Table 3.13 can clearly

demonstrate this trend. By integrating SWP into AlexNet, we can get additional

4.3% performance gain, and 2.8% for VGGNet, 1.0% for ResNet34, 0.4% for

ResNet50 and ResNet101.

Table 3.13 also shows that SWP works on all six different CNN architectures.

However, it is more effective on AlexNet and VGGNet than ResNet. In AlexNet-
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CNN architectures birds birds + box aircrafts aircrafts + box cars cars + box MIT67

AlexNet-SWP 4.3 1.4 0.2 0.1 5.3 2.4 3.6
VGGNet-SWP 2.8 0.9 0.2 0.1 2.4 0.8 0.1

ResNet34-SWP 1.0 1.1 0.8 0.9 0.7 1.2 1.7
ResNet50-SWP 0.4 0.3 0.3 0.5 0.3 0.5 0.5

ResNet101-SWP 0.4 0.3 1.1 1.1 0.4 0.5 1.2
ResNet152-SWP 0.3 0.4 1.0 0.9 0.5 0.4 1.1

Table 3.13: Performance improvement results. The table illustrates the
improvement of results for six different CNN architectures that add an SWP
layer to AlexNet and VGGNet baselines or replace max-pooling with an SWP
layer in all ResNets baselines.

MAX and VGGNet-MAX baselines, last max pooling layers down-sample all

feature maps from 13×13 to 6×6 or 14×14 to 7×7 respectively. Its counterpart

in ResNet-MAX baseline reduces the size of feature maps from 7× 7 to 3× 3. In

other words, AlexNet and VGGNet keep more spatial information in the feature of

the last max pooling layer than ResNet. We know that after the last max pooling

operation, all features are fed into the FC layers to learn non-linear functions in

that space. All spatial and local information is discarded after that.

We can observe from Table 3.13 that SWP can enhance the performance in the

birds and cars without bounding-box much more significantly than on these two

datasets with bounding-box. As the object size and location of the birds and the

cars without bounding-box vary enormously, their features in last max pooling

layer in AlexNet or VGGNet contains more complicated spatial information than

those of birds and cars with bounding-box. After adding the SWP layer after the

max pooling layer, the features after the SWP layer become more general and

contain less spatial information. Therefore, SWP can better enhance performance

for AlexNet and VGGNet on these two datasets without bounding-box. We argue

that this is also the reason behind the performance drop by replacing 4096 FC

layers with 512 FC layers for the MIT67 and birds dataset in Table 3.10, for the

images in these two datasets have more complicated viewpoints, background and

object size variation.

Fig. 3.9 shows learned SWP channels for AlexNet-SWP on the birds dataset.

We can observe that each learned pooling channel encodes the features of last
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Figure 3.9: Nine SWP channels learned on the birds dataset [1] with AlexNet-
SWP architecture.

max pooling layer from different spatial locations and viewpoints. Global aver-

age pooling can be seen as a spatial pooling with equal weights at all locations,

whereas SWP pooling encodes the features of the previous layer with different

weights distribution. SWP benefits from aggregating local convolutional feature

maps with learned spatial importance information and producing more discrimi-

native features that are fed into the fully-connected layers.

Weighted masks in an SWP layer can be treated as a set of various pooling

kernels. These weighted masks can indicate some discriminative image regions

used by deep CNNs to identify the categories of the objects. The features ex-

tracted from these regions contribute significantly to the pooled features. This

observation is showed in Fig. 3.10. We show 9 weighted masks learned from the

SWP layer in Stanford-Cars VGG-SWP and overlay them on the original images

for better visualization. As can be observed from the figure, the activated regions

of the weighted masks are actually semantically meaningful. For example, the

activated region of the upper left graph indicates that both the front lights and

fog lights are discriminative parts of the car. The bottom right graph in the
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figure corresponds to the front face of the car. The bottom left graph shows that

the activated region corresponds to the log area of the car. Hence, these learnt

weighted masks serve as a similar role as the part-region indicator maps. Com-

pared to the human-specified part annotations, these masks can be optimized in

training without any domain-specific knowledge.

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

Figure 3.10: Visualization of 9 weighted masks learnt from Stanford-Cars VGG16-
SWP.

Fig. 3.11 visualizes six feature maps of the last convolutional layer with the

highest activations for birds ResNet101-SWP. The images in the left column are

original 224 × 224 crops and the feature maps in the middle column and the
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right column are those with the highest activations by pooling with the SWP

channels of the 14-th and the 16-th respectively. We can see the learned the

14-th SWP channel mainly encodes the body part of heads and the 16-th channel

more focuses on the main body or the wing of birds. This shows that the pooling

channels of SWP indicate some semantic meaningful regions of input images.

Figure 3.11: Visualizing of six feature maps with the highest activations by pool-
ing with two learned SWP channels for birds ResNet101-SWP.

Fig. 3.12 visualizes six feature maps of the last convolutional layer with the

highest activations for Stanford-Cars ResNet101-SWP. The images in the left

column are original 224× 224 crops and the feature maps in the middle column
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and the right column are those with the highest activations by pooling with the

SWP channels of the 8-th and the 12-th respectively. We can see the learned the

8-th SWP channel mainly encodes the body part of headlights and tail-lights,

and the 12-th channel more focuses on the front or rear face of the car.
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Figure 3.12: Visualizing of six feature maps with the highest activations by pool-
ing with two learned SWP channels for CompCars ResNet101-SWP.

We also carried out experiments with the proposed ResNet-SWP method on

the CompCars dataset. The corresponding results are illustrated in Table 3.14.

One can see from the table that by fine-tuning the pre-trained VGGNet models

on the CompCars dataset, we obtain much better results than those by fine-
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Viewpoint F R S FS RS All-View
OverFeat fine-tuning [4] 52.4 43.1 42.8 56.3 59.8 76.7

AlexNet fine-tuning 50.2 41.3 40.9 55.1 58.3 75.6
VGGNet fine-tuning 77.2 79.1 69.1 79.8 81.1 90.8

CCL pooling conv52&conv53 84.3 87.4 79.4 88.8 89.5 94.6
ResNet101 fine-tuning 84.7 87.7 79.8 89.1 89.8 94.8

ResNet101-SWP fine-tuning 86.7 89.8 81.6 91.3 91.9 96.8

Table 3.14: Comparison of classification accuracy on CompCars between Over-
Feat fine-tuning [4], VGG fine-tuning, cross-convolutional-layer pooling and the
proposed ResNet-SWP (CCL pooling refers to cross-convolutional-layer pooling).

tuning the pre-trained OverFeat and AlexNet models. The better results have

been obtained by fine-tuning the pre-trained ResNet-101 model in comparison

with the pre-trained VGGNet model. By integrating the proposed SWP pool-

ing into ResNet architecture, ResNet101-SWP achieves the best performance us-

ing a single fine-tuned model trained on 224 × 224 image crops. The results of

the fourth row in the table are obtained by performing cross-convolutional-layer

pooling between the local features of conv53 and the indicator maps of conv54

both extracted from the fine-tune VGGNet model. The input test image resolu-

tion of above extracting process is 342× 342, and the corresponding crop size is

300 × 300. Although compared to straightforward results from softmax layer in

the fine-tuned VGGNet model, cross-convolutional-layer pooling can enhance the

performance considerably. Its improvement is built upon the cost of increasing

the resolution of test images and consequent computational overhead.

During the training of ResNet-related experiments, we saved training and

validation errors of each epoch to have a clear understanding of the whole training

process. Note that the training process has 90 epochs, and the initial learning

rates of all ResNet-related experiments all start from 0.001 and are divided by 10

after 40 training epochs. This means there are two drops for the learning rates,

one is from 0.001 to 0.0001, and another one is from 0.0001 to 0.00001. We can

only observe one significant decrease in training and validation errors when the

learning rates drop from 0.001 to 0.0001 at the 41-th epoch (see Fig. 3.13). The

left graph in Fig. 3.13 compares the top-1 training and validation errors of 90

epochs for All-View and F-View CompCars. There are in total 16, 016 training
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Figure 3.13: Training on CompCars All-View and F-View with ResNet-SWP.

images and 14, 939 testing images for All-View and 2, 593 training images and

2, 381 testing images for F-View.

All-View has much more training and testing images than F-View as the

latter is only one of the five views of the former. The thin and bold curves in

the left graph in Fig. 3.13 denote All-View and F-View training and validation

errors respectively. Red curves represent training errors, and blue curves refer to

validation errors. From the left graph in the figure, one can obtain two significant

observations. The first is that the training and validation errors of All-View

decrease much faster than those of F-View. After 10-epochs training, both errors

of All-View drop to around 20%, whereas the errors of F-View are still more than

40%. The second observation is that the validation errors of F-View are much

higher than training errors while two types of errors for All-View are almost equal.

This indicates that F-View training suffers from over-fitting issue to some extent.

We argue that it is caused by the fact that such a large model is fine-tuned on

such a small-scale dataset with only around 2, 600 training images. Conversely,

All-View training never incur the same issue as it is performed on more than

16, 000 images. To explain the first observation, we believe that compared to All-

View training, the F-View training process is more complicated and difficult due

to less distinguishable features for one single view. In the right graph, All-View

training and validation errors with or without random-sized-crop are plotted. One
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can observe that the training process does benefit from random-sized-crop, which

is a data augmentation technique that randomly crops various sized patches whose

size is distributed evenly between 8% and 100% of the image. With random-

sized-crop training, we achieved the accuracy of 96.1% on All-View CompCars,

compared to the result of 94.9% without random-sized-crop.
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Figure 3.14: Plotting training and validation errors training on CompCars and
Stanford-Cars.

Fig. 3.14 compares the top-1 and top-5 training and validation errors of 90

epochs for four different training. The upper left graph (graph-1) in the figure

shows the errors of fune-tuning ResNet-SWP on F-View CompCars. The upper

right graph (graph-2) refers to the erros in fin-tuning ResNet-MAX without SWP.
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The graph in the bottom left corner (graph-3) plots the errors in fune-tuning

ResNet-SWP on Stanford-Cars. The bottom right one (graph-4) plots the errors

in fine-turning ResNet-SWP on F-View CompCars without random-sized-crop.

Note that our process of cropping images is to follow the process of training

GoogleNet [48], which crops various sized patches of the image whose size is

distributed evenly between 8% and 100% of the image area with aspect ratio

constrained to the interval [3/4, 4/3]. This process is called “random-sized-crop”.

“No random-sized-crop” refers to the process that a fixed sized 224× 224 patch

is cropped randomly from the 256 × 256 whole image. This process is called

“random-crop”.

By comparing graph-1 and graph-4, we can recognize that fine-tuning ResNet-

SWP on F-View CompCars without random-sized-crop suffers from more serious

over-fitting issue than its counterpart with random-sized-crop. The classification

accuracy obtained by the former model is 84.1% while the latter model can achieve

86.7% on F-View CompCars. This shows this data augmentation method is really

effective in alleviating over-fitting and enhancing performance when a relatively

large model is fine-tuned on a small dataset. Comparing graph-1 with graph-2

illustrates that the proposed ResNet-SWP does perform better than ResNet-

MAX. Note that ResNet-SWP is a model that replaces an SWP layer with the

max-pooling layer in ResNet-MAX. The SWP layer generate more discriminative

pooling vectors than those produced by original max-pooling layer, which can

make the proposed model converge faster and better on the fine-grained datasets.

After 10-epochs training, both errors of ResNet-SWP decrease to around 40%,

whereas the errors of ResNet-MAX are still around 50%.

Graph-1 and graph-3 plot errors on different dataset with the same model -

ResNet-SWP. The Stanford-Cars dataset contains 16, 185 images of 196 classes

of cars. It is split into 8, 144 training images and 8, 041 testing images. The

number of its training samples is much higher than F-View’s, but still only half

of All-View’s. Therefore, we can observe from graph-3 that over-fitting issue on

Stanford-Cars is not so serious compare to it on F-View. Only All-View Comp-

Cars training does not suffers from over-fitting issue, and we achieved 96.8% top-1

accuracy on it. This implies that if there are more powerful and effective training

data augmentation techniques available, better performance can be achieved with
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the proposed SWP pooling strategy on small-scale fined-grained datasets.

Viewpoint F R S FS RS All-View
ResNet101 fine-tuning 84.7 87.7 79.8 89.1 89.8 94.8

ResNet101-SWP fine-tuning 86.7 89.8 81.6 91.3 91.9 96.8
Testing results 95.9 96.3 93.9 96.4 97.6 96.8

Table 3.15: Comparison of classification accuracy on CompCars.

Table 3.15 shows the test results for each single view using fine-tuned All-View

CompCars ResNet101-SWP. This means the model was trained on the entire

CompCars with five views and tested on one of the five views. The results are

reported in the bottom line of the table, and we can see that the test results have

been improved enormously. For instance, the test result of F view is 86.7%, and

if the model is fine-tuned on five views, the test result on F view can reach 95.9%.

Although there is no increase in the number of F view training samples, we do

introduce more other views samples (see Fig. 3.15). The training can benefits

from two aspects. Firstly, this helps to remedy over-fitting issue. Secondly, the

model can learn more discriminative features from other views images.

Figure 3.15: Other views training samples.
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3.3.6 Feature maps and learned filters visualization

Several challenging cases are given in Fig. 3.16 and Fig. 3.17, whre the images

on the left hand side are the testing images and the images on the right hand

side are the examples of the wrong predictions. Most of the wrong predictions in

Fig. 3.17 belong to the same car makes as the test images, and it is even hard

for human beings to distinguish one test image from its wrong prediction. In the

same way, most of the wrong predictions in Fig.3.16 look very similar to the test

images.

Test image

California_Gull

Test imageWrong prediction Wrong prediction

Western_Gull Anna_Hummingbird Rufous_Hummingbird

Mangrove_Cuckoo Long_Tailed_Jaege Tree_Sparrow Field_Sparrow

Rufous_Hummingbird Acadian_Flycatche Least_Flycatcher

Caspian_Tern Artic_Tern Brandt_Cormorant Pelagic_Cormorant

Scissor_Flycatcher

Figure 3.16: Sample test images that are mistakenly predicted as another model.
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Figure 3.17: Sample test images that are mistakenly predicted as another model
in their makes. Each row displays two samples and each sample is a test image
followed by another image showing its mistakenly predicted model.

Fig. 3.18 and Fig. 3.19 visualize the learned first convolutional layer filters for

the birds and Stanford-Cars datasets respectively. We can see that two sets of

convolutional filters learned from two different fine-grained datasets are almost

identical. However, they do have different values for each pair of convolutional

filters. In the work of [64], it is illustrated that the first two convolutional layers

respond to corners and other edge/color conjunctions, and the third convolutional

layer has more complex invariances, capturing similar textures. Although two sets
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of filter banks are fine-tuned on two different datasets, but they are from the same

initializations learned from ImageNet, and they both have the same functionality

to respond to edge, color and blob. Therefore, we argue that they are why two

sets of filter banks are nearly identical.

Figure 3.18: Visualizing Conv1 filters in birds ResNet101-SWP.

Fig. 3.20 and Fig. 3.21 visualize the learned 16 SWP filters in birds ResNet101-

SWP and CompCars ResNet101-SWP respectively. Fig. 3.26, Fig. 3.27, Fig. 3.28,

Fig. 3.29, Fig. 3.30 and Fig. 3.31 show patches with highest activations for filters
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in the first, 6-th and 69-th layer in the fine-tuned CompCars ResNet101-SWP

and birds ResNet101-SWP. Fig. 3.32, Fig. 3.33, Fig. 3.34, Fig. 3.35 and Fig. 3.36

visualize the feature maps of the first, 6-th, 18-th, 69-th and 99-th layer in Com-

pCars ResNet101-SWP. Fig. 3.22 and Fig. 3.24 visualize feature maps in the last

convolutional layer with highest activations after pooling with the first 8 filters in

the SWP layer in CompCars and birds ResNet101-SWP. Fig. 3.23 and Fig. 3.25

are for the 9-th to 16-th filers.

Figure 3.19: Visualizing Conv1 filters in Stanford-Cars ResNet101-SWP.
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Figure 3.20: Visualizing learned 16 SWP filters in birds ResNet101-SWP. The
learned weights are between −0.0348003358 and 0.0481069833.
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Figure 3.21: Visualizing learned 16 SWP filters in CompCars ResNet101-SWP.
The learned weights are between −0.0566353425 and 0.124176443.
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Figure 3.22: Visualizing feature maps in the last convolutional layer with highest
activations after pooling with the first 8 filters in the SWP layer in CompCars
ResNet101-SWP. Each row refers to one learned SWP filter. Six images in one
row represent the top six feature maps with the highest SWP pooling activations
for all 14, 939 test images. We obtain six plot images by overlaying the six feature
maps on their original images.
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Figure 3.23: Visualizing feature maps in the last convolutional layer with highest
activations after pooling with from the 9-th to 16-th filters in the SWP layer
in CompCars ResNet101-SWP. Each row refers to one learned SWP filter. Six
images in one row represent the top six feature maps with the highest SWP
pooling activations for all 14, 939 test images. We obtain six plot images by
overlaying the six feature maps on their original images.
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Figure 3.24: Visualizing feature maps in the last convolutional layer with high-
est activations after pooling with the first 8 filters in the SWP layer in birds
ResNet101-SWP. Each row refers to one learned SWP filter. Six images in one
row represent the top six feature maps with the highest SWP pooling activations
for all 5, 794 test images. We obtain six plot images by overlaying the six feature
maps on their original images.
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Figure 3.25: Visualizing feature maps in the last convolutional layer with highest
activations after pooling with from the 9-th to 16-th filters in the SWP layer in
birds ResNet101-SWP. Each row refers to one learned SWP filter. Six images
in one row represent the top six feature maps with the highest SWP pooling
activations for all 5, 794 test images. We obtain six plot images by overlaying the
six feature maps on their original images.
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Figure 3.26: Patches with highest activations for several filters in the first convo-
lutional layer (in total 64 filters) in the fine-tuned CompCars ResNet101-SWP.
Each row refers to one learned convolutional filter. Six patches in one row repre-
sent the top six highest activations among all 14, 939 test images. From the top
row to the bottom are for the 5-th, 7-th, 17-th, 30-th, 34-th, 51-th, 54-th and
64-th filters.

68



Figure 3.27: Patches with highest activations for several filters in the first convo-
lutional layer (in total 64 filters) in the fine-tuned birds ResNet101-SWP. Each
row refers to one learned convolutional filter. Six patches in one row represent
the top six highest activations among all 5, 794 test images. From the top row
to the bottom are for the 6-th, 7-th, 19-th, 25-th, 28-th, 45-th, 46-th and 57-th
filters.
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Figure 3.28: Patches with highest activations for several filters in the 6-th layer
(in total 64 filters) in the fine-tuned CompCars ResNet101-SWP. Each row refers
to one learned convolutional filter. Six patches in one row represent the top six
highest activations among all 14, 939 test images. From the top row to the bottom
are for the 1-th, 9-th, 13-th, 14-th, 15-th, 18-th, 49-th and 51-th filters.
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Figure 3.29: Patches with highest activations for several filters in the 6-th layer
(in total 64 filters) in the fine-tuned birds ResNet101-SWP. Each row refers to
one learned convolutional filter. Six patches in one row represent the top six
highest activations among all 5, 794 test images. From the top row to the bottom
are for the 3-th, 5-th, 16-th, 29-th, 48-th, 57-th, 59-th and 60-th filters.

71



Figure 3.30: Patches with highest activations for several filters in the 69-th layer
(in total 512 filters) in the fine-tuned CompCars ResNet101-SWP. Each row refers
to one learned convolutional filter. Six patches in one row represent the top six
highest activations among all 14, 939 test images. From the top row to the bottom
are for the 42-th, 55-th, 79-th, 86-th, 107-th, 204-th, 283-th and 446-th filters.
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Figure 3.31: Patches with highest activations for several filters in the 69-th layer
(in total 512 filters) in the fine-tuned birds ResNet101-SWP. Each row refers to
one learned convolutional filter. Six patches in one row represent the top six
highest activations among all 5, 794 test images. From the top row to the bottom
are for the 24-th, 40-th, 43-th, 50-th, 92-th, 229-th, 311-th and 465-th filters.
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Figure 3.32: Visualizing 64 Conv1 feature maps in CompCars ResNet101-SWP.
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Figure 3.33: Visualizing 64 feature maps of the 6-th layer (convolution) in Com-
pCars ResNet101-SWP.
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Figure 3.34: Visualizing 128 feature maps of the 18-th layer (convolution) in
CompCars ResNet101-SWP.
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Figure 3.35: Visualizing 256 feature maps of the 69-th layer (convolution) in
CompCars ResNet101-SWP.
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Figure 3.36: Visualizing 512 feature maps of the 99-th layer (convolution) in
CompCars ResNet101-SWP.
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Chapter 4

Conclusions

This thesis has presented a detailed study of one important topic in the compute-

vision and machine-learning communities, deep learning for fine-grained visual

recognition. In order to gain a deep insight into the domain of fine-grained vi-

sual recognition. Firstly, we conducted a number of experiments based on the

cross-convolutional-layer pooling on the CompCars dataset. The corresponding

experiments illustrate its applicability and effectiveness on this newly-designed

fine-grained dataset. Meanwhile, based on above experiments, we found out that

that pooling the most distinguishable regions like car logos and headlights areas,

which have higher activations, in the indicator maps with the local features in the

same regions can achieve better results than those by pooling the whole indicator

maps with the corresponding local features. Therefore, we conjecture that if hav-

ing more powerful indicator maps or pooling channels that can better highlight

these distinguishable regions rather than those off-the-shelf pooling channels from

one convolutional layer, better performance may be achieved.

Based on the above hypothesis, next we have developed and proposed a sim-

ple yet effective pooling strategy - Spatially Weighting Pooling to enhance fine-

grained visual recognition performance. The proposed method can considerably

improve the robustness and effectiveness of the feature representation of deep

CNNs. More specifically, the SWP is a novel pooling strategy which contains a

predefined number of spatially weighted masks or pooling channels. The SWP

pools the extracted features of deep CNNs with the guidance of its learnt masks,

which measures the importance of the spatial units in terms of discriminative
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power. It can be seamlessly integrated into any existing convolutional neural

network architectures by simply adding it before fully-connected layers in them.

It also allows end-to-end training with only image labels. SWP has few pa-

rameters to learn, usually in several hundreds, therefore does not introduce much

computational overhead. Testing one image can be done simply by going through

the trained or fine-tuned models into which an SWP layer is integrated.

We have conducted comprehensive experiments on three widely-used fine-

grained datasets with a variety of deep CNN architectures such as AlexNet,

VGGNet and ResNet. State-of-the-art results have been achieved on three fine-

grained datasets and the MIT67 indoor scene recognition dataset. Finally, we

visualize learned Conv1 and SWP filters, image patches with highest activations

for several convolutional filters and a number of convolutional feature maps to

gain a deep insight into the learned models.
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