
 

 

[Monitoring of Coal Seam Gas 

Depressurisation using Geophysical 

Methods] 

  

 

 

Thesis submitted in accordance with the requirements of the University of 
Adelaide for an Honours Degree in Geophysics 

 

Joseph Rugari 

November 2013 



Geophysical Monitoring of Coal Seam Gas   3 

 

 
 

MONITORING OF COAL SEAM GAS DEPRESSURISATION WITH GEOPHYSICS 

GEOPHYSICAL MONITORING OF COAL SEAM GAS 

ABSTRACT 

 

Coal seam gas has emerged as a major industry in Australia over little more than a decade. 

Resource production inevitably relies on the extraction of groundwater from coal seams to 

depressurise coal measures, and allow natural gas flow. Current groundwater monitoring of a 

coal seam gas project uses expensive borehole sampling programs that can only provide point 

information, and improved monitoring of water extraction is suggested for existing and future 

wells.  

 

This paper is a first stage feasibility study for surface magnetotelluric, and surface self-

potential monitoring of a coal seam gas depressurisation event. The monitoring techniques 

used in this study directly measure fluid connectivity and dynamics to estimate the degree of 

porosity and permeability in a coal seam. In combination, the monitoring can provide both 

large scale and localised sub-surface fluid-flow modelling potential. The processes and its 

equipment are a practical, inexpensive and mobile solution for the expanding coal seam gas 

industry. 

 

In this study synthetic modelling has been used with coal seam conditions, prototype self-

potential monitoring equipment is constructed, and various monitoring equipment are tested 

in the field. Synthetic modelling has provided encouraging results, showing that a 

depressurisation event based in a Surat Basin Walloon Measures, southern Queensland, 

Australia geological model could be successfully monitored using magnetotelluric and self-

potential methods. The prototype self-potential logger operated with a high level of precision, 

successfully mapping localised electrodes change of electric field at an aquifer pump test site; 

and the E-Logger instrument successfully recorded electric field data for magnetotelluric 

monitoring. 

 

Overall, results present a great deal of potential for the combined effectiveness of 

magnetotelluric and self-potential monitoring methods in a coal seam gas depressurisation 

setting. Further studies, in particularly on-site depressurisation monitoring testing, is required 

to draw on more conclusive evidence. 
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follow order of the electrode line. b) SP Logger’s Spatially corrected envelope of natural 
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