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PHYSICAL REVIEW C VOLUME 56, NUMBER 6 DECEMBER 1997

Pionic decay of a possiblel’ dibaryon and the short-range NN interaction

I. T. Obukhovsky'? K. Itonaga®? Georg Wagnef,A. J. Buchmanrf,and Amand Faessfer
Ynstitute of Nuclear Physics, Moscow State University, 119899 Moscow, Russia
2Institute for Theoretical Physics, University of Bingen, Auf der Morgenstelle 14, D-72076blngen, Germany
3Laboratory of Physics, Miyazaki Medical College Kiyotake, Miyazaki 889-16, Japan
(Received 15 July 1997

We study the pionic decay of a possible dibargr-N+ N+ 7 in the microscopic quark shell model. The
initial d’ dibaryon wave functiondJP=0", T=0) consists of one Aw six-quark shell-modek®p[51]y
configuration. The most important final six-quark configuratie}{$]y, s*p?[42]x, and *p?>—s°2s)[6]x
are properly projected onto tHéN channel. The final statdN interaction is investigated by means of two
phase-equivalent—but off-shell different—potential models. We demonstrate that the decal/ yvidépends
strongly on the short-range behavior of tR&l wave function. In addition, the widthy, is very sensitive to
the mass and size of thE dibaryon. For dibaryon masses slightly above the experimentally suggested value
Mgy =2.065 GeV, we obtain a pionic decay width Bf,~0.18—0.32 MeV close to the experimental value
I'yy~0.5 MeV. [S0556-281@7)04811-5

PACS numbegps): 14.20.Pt, 13.30.Eg, 13.75.Cs

[. INTRODUCTION a wNN system withS waves in each particle pajrl,4].
Because the’ massM is only =50 MeV above therNN
During the last decade much attention has been devoted threshold, thed’ decay widthI"y, should be anomalously
theoretical and experimental investigations of the pionicsmall owing to a very small phase volume of three-particle
double charge exchangeDCX) process on nuclei. Because final states. We recall that the currently available experimen-
this reaction 7" +(A,Z)—(A,Z+2)+7 involves (at  tal evidence of dibaryon excitations in nuclei is very limited
leasy two nucleons in the nucleus, theDCX cross section  [g]. This is due to very largdN-N decay widths of most
depends sensitively on short-rariyél correlations in nuclei.  ginaryon resonances, which renders them undetectable on
Therefore, it provides a good testing ground for the nucleons,e packground of other hadronic processes at intermediate
nucleon interaction at short range. Experiments on dlfferenénergy. At present, the experimental evidence for narrow
nuclear targets have un_ambiguously_ confirmed the eXiSte”%’baryons is reduced to a single candidate, dh€2065). In
of a narrow resonancelike structure in thBCX Cross Sec- o yract 10 the deuteron, which consists of two on the aver-

tion_gt small_incident pion energiek,~50 MeV [1]. The ge widely separated nucleons, there are indicatj6rg
position of this peak turned out to be largely independent Ocihat thed’ is a rather pure compound six-quark system.

the studied nucleus. The height and width of this peak coul herefore, the dynamics of its hadronic decay into 4N
not be explained by standard calculations based on the tV"‘%;'ystem should be sensitive to the overlap region of the two

+ 0 -
step procesg2] (n+n+m" —n+p+m —p+pta ). SO q6ing nucleons, a situation that is ideal for understanding
far, these data could only be explained with the assumptiog o~ ole of quark degrees of freedom in the short-range

of a non-nucleonic reaction mechani$i4| proceeding via nucleon-nucleon interactiotsee, e.g., Ref10] and refer-
an intermediate dibaryon resonance, henceforth called o .og therein ' '
The quantum pum?ers of the dibaryon candidate were — gianing from this pointfor alternative approaches see in
determined ag”=0", T=0, and its free mass and hadronic petq 12 11,12) we consider thel’ decay as &quark shell-
decay width were suggested to B&y =2.065GeV and  nqgel transition from one six-quark configuration to another
I'q/=0.5 MeV." More than a decade ago Muldessal.[S]  4ne by emitting a pion. The quark line diagram of the decay
predicted a dibaryon resonance with quantum numBérs g syetched in Fig. 1. The calculation of the transition matrix
=0, T=0 and a mas#1~2100 MeV within the MIT bag  glementsd’ —N+ N+ 7 is similar to the calculation of\-
model. Recently, this dibaryon candidate has been '”VeSt'gaféobar-decay matrix elements—N+ 7 (spin and isospin
edy in a series of workf6—8] within the Tuebingen chiral flip of a quark. In the case of thel’ decay only the initial
constituent quark model. These works emphasize the CrUCi%‘ibaryon state is a definite six-quark configuratidme low-
role of the confinement mechanism for the existence of the,g; shell-model configuration with quantum numbef
d’. _ , =07, T=0), whereas the final state consists of a continuum
The quantum numbed’=0", T=0 of thed’ resonance ¢\ states which have to be projected onto a basis of
prevent the decay into two nucleons and the only allowe ix-quark configurations with quantum numbefs=0", T
hadronic decay channel of tioé is the three-body decay into _ 1 ¢ the NN 15, wave. The main difficulty in comp:amring

the calculated widti 4, with experimental data is its sharp
dependence on the energy gap betwdkp and thewNN
This value is uncertain by a factor of[2]. threshold. A reliable result ohiy: can be obtained only if the
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Our first calculation forl"y, was published in Ref(8].
The aim of the present work is to improve mainly on three
important effects which were neglected in R&]:  (a) an-
tisymmetrization of the finaNN state on the quark level
taking into account the effect of quark exchange between the
two nucleons at short rangé) insertion of a complete basis
of final six-quark states including besides the nonexcifed
shell-model state all Pauli-allowed excited configurations
s*p? ands®2s, which have a nonvanishing overlap with the
final NN state and can be populated via the emission of the
pion from the initiald’ dibaryon, and(c) inclusion of the
final state interactiofFSI) for the two-nucleon system.

FIG. 1. Quark line diagram of the pionic dibaryon decay. The Il. DECAY DYNAMICS IN TERMS OF QUARK DEGREES

elementary pion is produced on a single quark, leaving the remain- OF FREEDOM
ing six quarks in a relativéS, nucleon-nucleon scattering state. A. Initial state

As in Ref.[8] we consider only the simplest six-quark
exact masd 4 in vacuum is knowr(e.g., from electroexci- configurations®p[51]x in the initial state[the energetically
tation of thed’ on the deuteron at large momentum transferdowest J’=0", T=0 translationally invariant shell-model
[13]). At present, we have only indirect data in the nuclear(TISM) state which satisfies the Pauli exclusion princjple
medium [1]. Because of the absence of vacuum data, wédias been shown if6,7] that thed’ wave function may be
investigate the problem of th#' decay width starting from considered as a compound six-quark state, for which a single
theoretical quark-model resulf§,7] for My, and the had- shell-model vector provides an adequate description. This

ronicd’ size parametels. state vector is defined by
|d")=|s°p(be)[51]x, [2°1c[3%11([2°1%]cp[42]s:[21 ]crs, LST=110, JP=07). ()
|
The characteristic oscillator parameter in the six-quark wave _ f exid —ik-(r;~Rem)]

6

functionbg may, for example, be determined from the mini- O_,(k)= > (oK) (7 )

mization of thed’ mass for a given microscopic quark-quark ! = ¢ V2E (2m)*
Hamiltonian[6,7]. The Young schemégsfp], D=X,C,S,T ©)

in orbital, color, spin, and isospin space, as well as for the

coupled space€T, CTS are necessary for the unambigious

classification of shell-model basis vectors in terms of irre-Here,rj' o, and7-j are coordinate, Spin’ and isospin of the
ducible representatior(§R) of the following reduction chain  jth quark,k is the pion momentum in the center-of-mass

for unitary groups: system(c.m.s) of the d’, and E,=m2+k2. fq is the
7qq coupling constant. Its value is connected with #&N

SU(24 SSU(2)v X SU(12) O SU(2)w X SU(E couplingf . (we usef2,/4m=0.0749] through the known
(24)xcsT2 SU(2)x X SU(12) cs1o SU(2)x X SU(6)ct relation (N(123)52_,0/ 79|N(123)) = §(N| @ 7D |N),
XSU(2)sDSU2)xX SUB)cXSU2)rXSU2)s.  (2)  giving f,,=2f,y. Because we neglect isospin-breaking ef-
. o ] fects in this work, we chose the average pion mass
The fractional parentage coefficientFPQ technique _ 138 Mev.
[14—17 based on scalar factok$SF's) of Clebsch-Gordan
coefficients of the above groyp6-19, sketched in the fol-
lowing section, is used for the calculation of matrix elements C. Final states
and overlap integrals.

_m
m7T

In Ref. [8] the wave function of the finaNN state was
antisymmetrized and normalized on the nucleon level, as-
suming a plane wave with wave vectgrin the relative co-

The pionic decay width of thd’ is calculated, as in Ref. ordinater between the two nucleons. The coordinate repre-
[8], assuming a direct coupling of constituent quarks with thesentation of the nucleon-nucleon state vedtbg\(q)) was
isotriplet of pion fields¢ through the operator then written as

B. Transition operator
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1 1 three-quark cluster nature of the nucleons
(r|®nn(@))=Pyn(a,r) = W/?E

X[eiq~l’_(_1)(S+T)e—iq~r]' S=0, T=1. <r|{erN(q1123456>:CDNN(qu){N(123)N(456)}ST1

4
@ i.e., the nucleon wave functioN(123) was given by trans-
The full wave function of the final state took into account thelationally invariant shell-modelTISM) configurations

N(123 =[s%(bn)[31x.[1%]1c[21]([21]cr)[21]s:[1%]crs, LST=0,1/2,1/27i5m
— q)N(123) . XCZO' Xg: 12, XT: 1/2. (6)

T,

X0, XS 12 andXT 12 3re color- -singlet, spin, and isospin the initial state of Eq(1) is fully antisymmetric. However,

2_
three-quark statesb(123) is the orbital part of the wave the antisymmetrizer projecto (A°=.A) contained in the
function, expressed in terms of the internal Jacobi coordiinitial state.A|d’)=|d’) reduces considerably the normaliza-

natesp=r,;—r, andA=rg;—(r,+r,)/2, tion of the final statgit cuts all nonantisymmetrized parts of
the cluster function of Eq(5) which contain about 90% of
1 /1 2 the wave function—see beldwTherefore, it is important to
- 2\=32q0H — 2 2 '
P (123 =(v3mby) exp{ Zbﬁ (zp + 3)‘ ” substitute from the beginning a final state wave function

(7)  Which is normalized() and antisymmetrized.A) on the
quark level:
with a characteristic nucleon oscillator paramdigr. This )
parameter does not have to be the same as the harmOﬂiC|\PNN(q,123456):/\/A{<I>NN(q,r)N(123)N(456)}ST,
oscillator parametdng for the dibaryon wave function of Eq.
(1), as has been discussed in R¢657]. The relative Jacobi ST=01. (9)
coordinate between the clusters is given by

The normalization factoyV is determined by the standard

_Mtre¥rs r4+r5+r6. (8  orthonormalization condition

3 3

’ — ’ — s3)(q’ —
Note that the six-quark final staté) is antisymmetrized (¥ (@)W () =(Pun(a) [ Prn(a)) = 570" —a),

(10)
automatically when the state ’yecdoIfNN(g» is substituted
into the decay matrix elemefi¥y\(q); 7| O,4/d"), because which leads to
|
N2 ({Pnn(a’ )N(123)N(456)}sHA|{®NN(Q)N(123)N(456)}sr> 11)
(Pnn(a")|Pan(a))
The antisymmetrizer projectoi is
3 6
~_ 31312 XCST XCST, A2 7
5 1—21 _24 P (1 PSS, A=A (12)
i=1j=

PXCST|S the pair-permutation operator for quaikandj in orbital, color, spin, and isospin space. It is instructive to calculate

the normalization factor11) algebraically by factorization of th&€€ ST and X parts of the pair permutatlorl?XCST
=PS$SP%5. The matrix element oPSS " between twa\N states in thés T=01 (or 10) channel is very well knowiisee, e.g.,

[18)):
({N(123)N(456)}s 701 PS5 1{N(123)N(456)}s7-01) = — 35 (13)

Inserting this value into Eq.11) reduces its right-hand side to
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1 i<q)NN(q,)q)N(123)q)N(456)|P>3(6|q)NN(q)(DN(123)(DN(456)>

_2:_
N"=16" 90 (@ (@) Prn()) ’

(14)

whered(123) is the orbital part of the nucleon wave func- [24]). It plays an important role for the projection of six-
tion (6) given in Eq.(7). The numerator in Eq14) depends quark configurations onto baryon-baryon channg2g].

on the form of®\\(q,r), but for the plane wave in Ed4) From now on we shall omit the antisymmetrizérin front of

(or for any continuum wave function including FSI'sis a  the final state in the decay matrix element, but the identity
finite value: i.e., it has to be zero compared with thiainc-  factor (15) may not be omitted:

tion in the denominator. Therefore, in our case the second

term in Eq.(14) vanishes and we obtain (A0 (K[ W (@), 7Y = (A" O 1q(K) VI0A| Wy \(Q), )
N=\10. (15 = V(0" Org(K) [ Wpin(@), 7).
Note that the expression (a7
x . The inclusion of this factor, due to the antisymmetrization of
(P39 =(PNNPNDPN|P3g PPN ) (PN P the final two-nucleon wave function on the quark level, im-

proves considerably the agreement of the results obtained in

receives its maximal valuel in the special case of a Gauss- po¢ [8] with the experimentally suggested width

ian @\ (r)=(2mb3/3)%* exp(—3r¥4bZ). Therefore, for
any relativeNN wave function®yy we have the following  p_ Transition amplitude including intermediate states with up
constraints: to two harmonic oscillator quanta

0s<p>3<6>s1 or 9=M\?2<10. (16) As in Ref.[8], we calculate the decay matrix element of
Eqg. (17) by inserting a complete set of six-quark configura-
The value (15 is equal to the usual identity factor tions with quantum numbers of the findB, two-nucleon
\6!/31312, well known in nuclear cluster physic¢see, e.g., state(LST=001,J°=0")

<‘IfNN<q),wl(5wq(k)ld’>=@(E (PR {N(123N(456)} 51— 04| (N, bg) {F},LST=001)

n){f}

x{(n,bg),{f},LST=001 @,Tq(k)|35p(b6)[51]x [221%]c{LST=110)"=0"). (19

Here,{f}={[fx].[fct]} and (n) defines quark states with  one-particle operato(3) can excite(or deexcit¢ only one
harmonic oscillator (HO) excitation quanta, i.e., n( quark of the initials®p state. Therefore, the complete set of
=s0""p", $872M(25)™, (n=2m), etc., andbg is the HO  states in Eq(18) is reduced to the configuratiors§, s*p?,
parameter for the six-quark system. The summation in Egand s°2s, knowing that higher one-particle excitations can
(18) extends over a limited set of Young scheniég] and  pe omitted because of a very small overlap with the il
[fcr]l:  The possible representations[dtr] in the sumin  state. Summarizing, the following intermediate states are
Eq. (18) are given by the series of inner products of thetaken into account in Eq18): (i) the energetically lowest

[2°]c color andT=1[42] isospin Young schemes (n=0) spatially symmetric stats®[6]y[2%]cr, (ii) the ex-

5 3 3 cited (n=2) translationally invariantorthogonalized to the
[2°]ce[42]r=[42]cT+[32Ucr+[27]cr+[3T ]cr 2S excitation of the six-quark c.mstate §*p2—s°2s) with
+[21%cr. (19) identical Young schemd$]y, [ 23], and(iii) five excited

(n=2) states*p?[42]y[ f 7] with CT Young schemes from

Only two spatial Young schemd$]y and[42]y are com-  the inner product of EQ(19). _ _
patible with the even-parityl(=0) N-N partial wave. Fur- It is interesting to note that all these configurations are

ther constraints follow from the Pauli exclusion principle, 8/S0 important for explaining the short-range nucleon-
ie., [fx]o[33]s[ fer]=[18]xcst. In the case of full spatial hucleon interaction. This was pointed out almost two de-

symmetry[6]y, only one color-isospin statg2®].y is al- cades agpl4,15,2] and thereafter discussed in many papers
lowed, but the Young schem@l2]y of the excited shell- (see, e.9.[28] and references thergirNow we believe that
model configurations is compatible with each state from thed possibled’ dibaryon has much potential for providing ad-
inner product given in Eq(19). Our choice of a one-body ditional information on the innermost part of the nucleon-
transition (pion-production operator defined in Eq3) fur-  nucleon interaction, i.e., in the region where the nucleons
ther restricts the number of relevant intermediate states. Theverlap.
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1.0 — S T lent, but differ in their off-shell behavior. In the following
|—— Ueda , AN ] we will demonstrate that the results fby. differ consider-
- 8 7 \\ ably for both models, especially if the dibaryon madsg:
= 05T / RN | comes close to the'NN threshold.
S /
G'% / \\\\
5 0.0 a o
‘\ / Ill. EXPLICIT CALCULATION USING THE FRACTIONAL
"\ / ] PARENTAGE COEFFICIENT (FPC) TECHNIQUE
-0.5 == . .
0.0 1.0 2.0

Our approximation for the decay amplitude in E48)
leads to a sum over products of two factors. The first factor is

FIG. 2. Wave functions of the findiS, state for twoNN inter-  the so-called overlap integral of the intermediate six-quark
action modeld22,23 at fixed laboratory energiyy=100 MeV.  configuration with the outgoing two-nucleon state. The sec-
The projection of thes® six-quark configuration onto thédN chan-  ond factor is a shell-model transition matrix element that
nel is also shown. describes the production of the pion on a single quark in the
dibaryon and the subsequent transition to an intermediate
six-quark configuration. Both factors can be calculated with
the standard fractional parentage coeffici€RPC tech-

To take into account the FSI for the two outgoing nucle-nique, which was developed for quark-model calculations,
ons, we consider separable-potential representations of thier example, in Refs[14—-20.
N-N interaction, namely, the phenomenological potential of
Tabakin[22] and the separable model of Uedaal. [23],
which is equivalent to the one-boson exchange potentialA. Overlap integral of intermediate six-quark configurations
(OBEP. The wave functions of théS, NN final states for with the NN continuum
the Tabakin potential are of the form

r [fm]

E. Final state interaction

In this subsection, we calculate the overlap integral of an
intermediate six-quark configuratiom,bg){f} with the (an-

dL=0(q,r) = (27) " ¥%coss [ ) —tandana(ar tisymmetrized and normaliz¢d'S, partial wave of the final
N (4r)=(2m) o] Jolar) oNolar) NN state introduced in E(9):

—pr —ar
+A(Q) S+ By(q) *— comar
(WRR(@)](n,be){f}) = VIX @Ry(a){N((00by) 123
+ Bz(q) r Sinar} y (20) X N((OO,bN)456)}ST:01
x| (n,bg) [ fx].[fcr],LST=001).
while the separable potential model of Uegliaal. leads to (22)

the 1S, NN wave function

Beginning with Eq.(22) we denote from now on the nucleon

(I)k,i,o(q,r)z(Zw)*’zcoséO jo(gr) —tandong(qr) wave function of Eq(6) of the translationally invariant shell
model as
- e N - ef.Bnr
FA@) =~ 2 Bo(a) (@)

N(123=N((n'l’=00by)123. (23
Here, 5o(q) is the phase shift oNN scattering in the'S,
wave, and the functioné, A, B;, andB; depend on the L ) ) )
choice of parameters, B, v, and3; for the two modeldsee Hert_al is the total_ orblta! angular momen.tum contamed in
the Appendiy. the internal Jacobi coordinatgs N, andby is the HO size

We use the nonstandard Tabakin potential because &rameter for the three-quark system.

short range th&!N wave functions obtained with this poten-  The overlap integral22) is calculated using the standard
tial differ qualitatively from OBEP wave functions. In Fig. 2, FPC technique for the quark shell modgl5,17-2Q.
the wave function$20) and(21) for both models are shown For this purpose we use a FPC decomposition of the
at anNN laboratory energy oEy,=100 MeV. The relative Six-quark configuration r{,bg){f} into two three-quark
wave function of Eq.(20) has a node at distances clusters with CST quantum numbers of baryons
~0.4-0.5 fm(a stable position of the node in a large interval {B,((n’1’,bg) 123B,((n"1",be)456)}c57. Note that for this
of NN energies produces the sanhN-scattering phase procedure, the size parameter in the decompositjodiffers
shifts as a repulsive coreThe two models are phase equiva- from the nucleonic size parametey;:
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nf’nf"
(N[ fxl[ferlLST=000= X 3 \[——" U C(n',n"){ ¢Ri(r,V2/306) YTiu(F)
By(n") By(n") fx
X{B1(n'l" )bs) 129B,((N"1",b6) 456} s7-o1}t ~o- (24

In expansion24), N7 (r,urg) is a HO wave function in the The sum over all possible terms gives a negligible contribu-
relative coordinate of the two baryons with angular mo- tion to the final result because the different terms interfere
= destructively(see next sectignBecause of these restrictions,

_)_ —)_ ’r rn ~: _ ! n H : .
mentum L=L—(1"+1") and N=n—(n"+n") excitation we are led to the expression

quanta(ur = \2/3bg is the HO size parameterAs usual,
N, is the dimension of the IRf«] of the permutation sym-

t for si ticles[25]. n;; and ng» th =
me ry qroupsﬁ (’)r S,IX par |c”es[ ] Ny, an nfx, are ,e CD(Ln){Of}(r)~<N((00,bN)123)|N((00b6)123)>
dimensions of IR'§ fy] and[ fy] of the subgroup$; andS;

in the reductionSsDS;XS;. The coefficientsU{Bfl}BZ and X(N((00by)456)|N((00bg)456)) V10
C%’)‘()(n’,n”) are FPC's in theCSTandX subspaces, respec- T
. .
tively. For simplicity, we omit in Eq(24) the indices for the “\n, Uity Ct, (0,00 @no(r, V2/306) YooT),
B,B X

dependence oU{f}

Young scheme$isg =11, flg="1%, fir, fig, T4, T4, £5,
f1, f¢, andf¢ occurring for our chosen reduction chain of
Eq. (2).

With the help Eq{(24), we can calculate the overldp2).
The three-quark-three-quark decomposition is, of course, the

2 and C{?(n",n") on the intermediate

(27)

where

most adequate expansion for projecting onto k¢ chan- 1, if n=0, [fx]=[6],
nel. The projection for a given intermediate statg{f}, 1
o cmo0={ \[5 n=2, [fx]=[6],
D (1) = VIO{N((00by) 123N((00)0y)456)}s7- 01 fx
X |(n,be)[ fx][ fcT]LST=002), (25) - \[g, n=2, [fx]=[42].

receives nonvanishing contributions only frddN compo-

gen;z énBqui(gg) becausfhnon_nlljilgog_]iZC3Cl\lluit58éingS'CSSu'(I:'h @ he coefficient<{"(n’,n") are calculated by general meth-
1(123)B,(456), are orthogonal tBI(123)N(456) in Qds from the TISM(see, e.g., Ref24]). The values oU?f'}“

space. Furthermore, the overlap of excited nucleonic clu , . A ,
ters, e.g.,N((20pg)123, with the ground state nucleon &€ given in Table I. The general rule for calculatln?3 EPCS
1°2

N((00)py)123) can be neglected if we assume that the sizén the CST subspace is the factorization of the vallg,

parameterb, of the six-quark configuratioi24) does not [14-18 (symbolically,

differ considerably from the quark core radibg of the

nucleon. In fact, becaudm;# by, the nonzero overlap inte-

gral between excited and nonexcited nucleons is U?fl}BZZSFCT-SSFC-Tv (28)
(N((2006)123|N((00by) 123)

_(bg/bﬁ—l) 2bg/by |2
~ (1+b3/by) | 1+b¥/bg

in terms of scalar factors @k.s and Sk.r of Clebsch-
26 Gordan coefficients of the unitary groups SU(dg) and
(28)  5y(6)ey for the reductions SU(12)rD SU(6)erx SU(2)s

and SU(6}1DSU(3)-XSU(2);, respectively[which are
TABLE I. The CST part of the FPC three-quark—three-quark links of the common reduction chaif®)]. The necessary

decomposition for the projection onto teN channelUjy', {f} SF’s are tabulated in Ref§15-20. With expression27),
{[ferd[forl) the overlap integral of Eq22) reduces to

[fers) [1°crs [2°2%]crs (R (D) (n,be){f}) =( PR (DI P )

[fer]  [2%er [42lcr [328er [2%0er [3Ter [21%er 2bg /by 6 1
~+/10 — yUNNg(m
1+b2b%) Nng ~i0x

T G E
9 V20 V45 V36 V18 z

x<o,0>( 3 ) @, (29
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Equation(29) contains a simple radial integral eratoro{*) 7{*) . The remaining five quarks act as spectators

2\ 314 for the transition. Chosing the sixth quark, we write the ma-
(87Tb6> o trix element for the emission of a:

o _ P_n+ 1 ’
_ mfo (2 dr OL=0(qur ) gno(r\2T308), (30 ((n,bg){f}LST=001)"=0"T,=1;7|O4(k)|d")
frq
which can be calculated analytically for a plane wave =6 m, W«n’bﬁ){f}'—g—
&k (a,r)=(27) "¥3,(qr), as well as for the Tabakin FSI K
wave functions of Eq(20) and for the Ueda FSI wave func- =001T,=1|(0og-k) 75"
tions given in Eq.(21). Results forl {}(q) are listed in the
Appendix. The large brackets in E@9) involving the ratio Xex;{ i §k~ )|d’
. pe|ld’). (31

of the two HO size parametebg /bg come from the overlap 6

of the two nucleon clusters . . :
Here,pg=rg— %Eleri , Is the Jacobi coordinate, aw and

76 are spin and isospin of the sixth quark. The momentum of
(N((00hy)123]N((00h) 123) the pion isk=kk, and the factor of 6 in front of the one-

X (N((00)y)456)|N((00pg)456)). particle matrix element contains the summation over all six
quarks. The natural choice for a FPC decomposition is
clearly the separation of the last quagk—q°xq (one-
particle FPQ, which allows one to exploit the orthogonality

The shell-model matrix element of the pion-productionconstraints for the five spectator quarks. With the one-
operatorOWq defined in Eq.(3) [the second factor in the particle FPC expansion of the shell-model states, the right-
decay amplitude introduced in E@L8)] is proportional to hand side of Eq(31) reduces to a sum of one-particle spin-
the one-particle matrix element of the spin-isospin-flip op-isospin-flip amplitudes with algebraic coefficients:

B. Shell-model transition matrix element

<(nab5){f}LST=001,Tz=1|(0'6-|2)7-23+)e*i5k'P6/6|d’>
nf'
=2 Vi= 2 Vi, ) Ui(ST! S5= Te—1/2>2 Upn(S'T' S=Te=1123 (1M 1M[00)
X fx 1y xs.T
X {80.2Clsy (S4P,S)C(sz(s4p,p)x6(k;11M,00)+Cfgl,)l]x(ss,p)[5n,0CEg%X(Ss,S)
+5n2C[6] 35,25)]X6(k;11M,n0)}

X 3i(S',S5:5=0|(05-K)|S',S5:S=LMXT' , Te:T=T,=1| 7| T', T¢:T=0), (32

where the function¥g(k;11M,n0) are spatial integrals:

Xe(killM,nO)—J (k Ps)Y1-m(pe)d PGJ p2adpe@no(pe, V6/506) @11 pe, 6/506) j1(5/6kpe) . (33

HereS' andT’ (S’ andT’) are the spin and isospin of the particle FPC’ sU((S'T",SsTe) andC{V((n"),(n")) as be-
five spectator quarks after the separation of the sixth quarkgre for the three-particle FPC'’s in qu4) Note that the
The first term in the curly brackets on the right-hand side ofone-particle FPQJ 1(S'T',S6Te) in the CSTsubspace can
Eq. (32) corresponds to the quark transition from an inisal be calculated W|th one-particle scalar factors ®F Eq.
state to a finap state. The second term corresponds to thg28)], which can be found for example in R¢1.9].

quark transition from an initigh state to a finas or 2s state. Because of the orthogonality restrictions for the five spec-
In Eqg. (32), we use almost the same notation for the onetator quarks, the summations oviy, fy, S', T', S', and
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T collapse t0d¢; 1, ds1s+ Osi,s, 7,17, and o7/ 1, =(=1)"0,7, (34

and the only nonvanishing elementary spin- and isospin-flip

amplitudes in Eq(32) are C. Decay amplitude after summation over allowed

intermediate states

(S'=S5=1/2:5=0|0)|S' = S4=1/2:S=1,— M) Collecting the shell-model matrix element of Eq81)
and(32) for pion production and the overlap integrals of Eqg.
== (=D%éum, (29 for all intermediate six-quark configurations, and per-

forming the remaining radial integrals in Eq80) and(33),

L — = leads to the following result for the full decay amplitude
(T'=Te=12T=1T,|7°|T' =T¢=1/2:.T=0) defined in Eq(18):

" ey 10 (2% [bs [ 2bg/by
(Un(), 7 [|Oq(K)[d")= 272m 37) m, VE, |17 0202

5 \F
_ = Kk2h2 (0)
X ex;{ 24k b6) Iun(a) + >7

6
) (kbg)?

k?bZ
1- —) &(q )} (35

The overlap integralsﬁ’,&(q) andllff,zl(q) can be found in the B . s K g
Appendix. Note that the inclusion of overlap terms with ex- I'r-pp=2m | d°q | d°ké| Mg —2My— 4M - M_N
cited nucleon configurations in the intermediate six-quark

states, originating from the different harmonic oscillator pa- >
rametershg# by, given in Eq.(26), leads to a nonessential —Vmz+k
renormalization factor of the decay amplitu(gs),

(T (@), 7| Og(K)[d)]2, (38)

whereq= (g;—q,)/2 is the relative momentum of the two
1 (bZ/b3—1) S L final protons and is the momentum of emitted pion in the
T E 2 (1+b2/b2) ( —gkb ) (36) c.m. of thed’ dibaryon. Thes function conserves the energy
5\/6 (1+bg/by) . A .
in the decay, while integration over the momentum-
_ © _ _ conservings®) (g, +g,+k) has already been exploitd8]
in front of the terml y3(q) on the right-hand side of E35). i Eq. (38). The integration over three-particle phase space
This factor(36) can be omitted for smakbs. Thek? behav-  |eads to the following result for the partidl — 7~ pp decay
ior of the decay amplitude is due 10 a factork in the  width:
transition operator of Eq3) and (ii) due to the fact that a

p-wave quark is involved either in the initial or the final state 5 2 12
of the one-particle transition matrix element on the right- _ 2°10°6 1% 2bs /by )
hand side of Eq(32). We recall that in the case of the- PP 38\/— 477 m2 \ 1+ bZ/bZ,

isobar decay into therN channel, the transition matrix ele-
ment is proportional only tok!, corresponding to the dmax  2My(Kobg)® 5 22
o;-k term in Eq.(3). The k? behavior of thed’ decay am- X 0 2My+ W &P~ 12

plitude (35) leads to a very strong dependence of thle
2 k3ba
K@)+ \/2:7( - ﬂ)lm(q)

decay width on the value dfl 4, , as we will see in the next 2
The total hadronic decay width of the possibtg Here, energy conservation relates the pion momerkgitio

section. g dq.

(39
IV. NUMERICAL RESULTS AND DISCUSSION

dibaryonT'y, contains three partial widths the NN relative momentung via
Tg=T oot Tropnt T rinn=30,- 2
d T~ pp wopn 7tnn 3 T pp! (37) ko(Q):(‘lMN[(Md'_'\j—)
N
which are equal to each othEr, -, =1 opn=1"7+,,, When R R 112
we neglect isospin-breaking effects. The partialpp decay \/( My — q_) _ ( Mg —2My— a +m2 ,
width I' .-, is defined by the standard expressj@i My My N
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TABLE Il. Calculated7™~ decay widthl" -, and the total hadronic decay width, of thed" dibaryon
for five differentd’ masses and wave functiofis; is the characteristid’ size parameter, artul, is the quark
core radius of the nuclepnMasses and wave functions of thiewere obtained in Ref$6,7] within different
models for the microscopig-q interaction.

I -pp [MeV] 'y [MeV]
Set by [fm] bg [fm] My [MeV] PW T U PW T U
1 0.45 0.59 2705 56(84.1) 7.85.2 41.246.0 1705 23.3 123.6
2 0.47 0.65 2680 44(35.7) 8.37.0 32.636.5 1325 249 97.8
3 0.6 1.24 2162 0.2R.17) 0.270.18 0.250.22 0.67 0.81 0.76
4 0.595 0.78 2484 28(32.6 10.98.9 21.821.9 84.8 32.6 65.4
5 0.595 0.95 2092 0.0%8.036 0.0610.049 0.1070.07) 0.173 0.183 0.321

and for gma=VMn(Mg:—2My—m,) all available decay =2065 MeV, we obtain a very strong reduction Bf, as
energy is converted to kinetic energy in the relaf® sys-  compared with the quite realistic variantsets 3 and bin
tem, and none to the piog,=m_, ky=0. Table II:

The calculated decay widths are shown in Table Il, where
we have introduced the abbreviations PW, T, and U. Here,
PW refers to a calculation employing a plane-wave flnaII‘dyV—O 032 MeV, Fd,—O 046 MeV, Fd,—O 083 MeV,
N-N state(4), while T and U refer to calculations using the )
Tabakin [22] (T) and Uedaet al. [23] (U) separableNN if by=0.595 fm andbg=0.95 fm;
potentials for the final state interaction.

In parentheses we give the results obtained in the apprOX|
matlon of using only one intermediate six-quark configura-I'q =0.018 MeV, T =0.045 MeV, T'y,=0.040 MeV,
tion s® (n=0). With the exception of the results for the _ _
UedaNN potential for sets 1, 2, and @or which thed’ if by=0.6fm andbs=1.24 fm.

mass is 400—650 MeV above the\N threshold, the inclu- This strong dependence @ on the value ofM is a

sion of all Pauli-principle-allowed intermediatéi@ shell- consequence of the high power &b in the integrand of
model configurations tends to increase the decay width béq (39). The origin of thiskg behavi(fr(compared with akg

— 0, i i . . . .
Sot?:e 2? 30t/oihThehIa|:jgest effelct 'IIS oEtameSdbm:as?)ses q é)ehawor in case of tha-isobar decaycomes, as explained
rather close fo threshold, exempiarily shown for Sets 5 an above, from the necessity to excifer deexcite¢ a p-wave

It can be seen from Table Il and Fig. 3 that the pionic
: L . . quark for the production of a pion. Note that for small.,
decay width of thed’ is very sensitive to the dibaryon mass when My, is close to thewNN threshold the function

My, which determines the available phase space of th L . o> .
three-bodywNN decay. The sensitivity grows dramatically o(9) is linear in the fac2:t0r2 Gmax—0" and can be written as
near thewNN threshold(2016 Me\). If we extrapolate the Ko(@) = Gmax/4M(1— 0/ Q)M Therefore, for small

results of Table Il to the experimental value ®,  Omax the integral in Eq(39) behaves asjy,,. The second
high-power factor in Eq(39) is the scale factor

25 ———————T 2b6/bN)12
20 F — PW . 1+bg/by/)
———- Tabakin
1.5 F —— Ueda . which depends sensitively on the rakig/by, . However, this

sensitivity is considerably reduced by the fach% in the
integrand. The product

T, [MeV]

1.0

0.5

2bg /by, )12
0.0 ol 2z
2020 2070 2120 2170 1+bg/by

M, [MeV] is a quite smooth function dby/bg. For by=0.6 fm this

FIG. 3. Pionic decay width'y, of thed’ as a function of the product varies from 0.078 fito 0.158 frﬁ’, if bg varies from

dibaryon masdM, for different final state interactiongSl’s) be- 0.6 fm to 1.24 fm. , . L

tween the outgoing nucleon@) plane wavePW, dotted curvg (ii) For smallgmay, FSI's make an important contribution to
with FSI's using the Tabakif22] potential(dashed curve and(iii) thed’ decay width because of the large scattering length in
with FSI's using the Uedat al. [23] potential (plain curve. The  the 'S, wave a;=—23.7 fm. The FSI enhances the decay
harmonic oscillator parametebs,=0.595 fm andog=0.95 fm are ~ Width for example by about 85% for set 5 in Table II. At the
those of set 5 in Table Il. TherNN threshold for the decay is at experimental massVl4, =2065 MeV, the hadronic decay
2016 MeV, while the experimentally suggested resonance positiowidth is more than doubled by the final state interaction. It is
of thed'’ is at 2065 MeV. interesting that in the case of the Tabakin model with a nodal
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TABLE lll. Radial integralsl f\,”,z,(q) for plane wave¢PW) and FSI functions given in Eq§20) and(21)
for the Tabakin22] and Uedd 23] separable potential formulation of the relatiM&N wave function.

Model 1@ = IR =

PW HOIGTS! 2 (qbs)

Tabakin cosa fO(qbg) +tansg®(qbe) cosy A (gbg) +tangg®(qbe)

Eq. (20 +A(q) aF O (abg) + B, (q) BG”(Bbs) +A(q) aF @ (abg) +B,(q) BG(Bbe)
+B,(q) G (8be)] +B,(q) BGY(Bbg)]

Ueda cossy fO(qbg) +tans,g®(abs) cossy F@(qbg) +tand,g(qbs)

EA.(2)  +A(@) yFO(ybe) = =Bn(d) BaF @ (Babe)]  +A(A) YF P (7be) — =Bn() BaF P (Babe)]

NN wave function at short range, the contribution from FSI’'ssome 20—30%. Furthermore, the final state interaction for the
is smaller than for the Ueda model and can even decrease tiwo outgoing nucleons also increases the decay width con-
width compared to the plane wave redalt set 4. Thisisa siderably, if thed’ mass is close to therNN threshold.
direct consequence of an approximate orthogonality of th&ecause of these three effects, the calculated pionic decay
nodal wave function of the Tabakin model to the projectionwidths lie betweerd ;. =0.18-0.32 MeV for the most real-

of the intermediates® configuration(i.e., the HO function istic set 5, having a’ mass close to the experimentally
¢@oo) Of Eq. (27) onto theNN channel. This can easily be suggested one and a characteristic hadronic size of the
seen from Fig. 2, where both wave functions are shown. Thelibaryon ofbg~1 fm. This qualitatively agrees with the ex-
approximate orthogonality of the functiorg, and ® 222" perimentally suggested valug;, =0.5 MeV.

in the integrand of Eq(29) reduces considerably the overlap  Despite the fact that both the Tabakin and Ueda FSI mod-
factor13,(q), which gives the dominant contribution to the els, are unsuitable for largN energies(as in parameter

d’ decay width(see values in parentheses in Table As  sets 1, 2, and }4 the two models demonstrate the strong
can be seen in Fig. 3, the disagreement between the Tabakiffluence of the short-range behavior of tNé&l wave func-

and Ueda models grows with increasing dibaryon migs  tion on thed’ decay width(see, e.g., Figs. 2 and.Recall

(the influence of the large scattering lengih, which is  that these two models are typical representatives of qualita-
common for both models, becomes negligible compared tdively different classes oRN phenomenology. Whereas the
the effect of the larger phase spacEor sets 1, 2, and 4 in Ueda separable potential is an approximation of the OBEP,

Table II, the Tabakin model leads again to values'gf,  i-e., @ model with short-range repulsion, the Tabakin poten-
which are even smaller thdny, in the plane wave approxi- tial can be considered as a unitary-pole approximation
mation neglecting FSI's. (UPA) [26] of a Moscow-type potential modgR7] with

short-range attraction and forbidden states. The Moscow
model proceeds from the assumption of a six-quark origin of
the short-rangeNN interaction and pretends to give an ad-
In this work we have studied the pionic decay of a pos-equate description of the nonlocal character ofti¢ force.
sibled’ dibaryon within the microscopic quark shell model. The main conclusion to be drawn here is that these two mod-
We use a single-quark transition operator which describesls, which are phase equivalent, differ considerably in their
the production of the pion on a single quark. The dibaryoreffect on thed’ decay width. Therefore, a possibi
wave function is given as a single six-quark translationallydibaryon would provide a natural laboratory for detailed
invariant shell-model configuration, which has been found tcstudies of the short-rangeN interaction.
provide an adequate description of tHé [6,7]. Previous An interesting continuation of this work would be to go
results from[8] have been improved mainly in three points, beyond phenomenologicdN potential models and use a
leading to a complete calculation in the sense fliathe  completely microscopic quark model approadee, e.g.,
calculation is performed consistently on the quark level, i.e.[28] and references therginFor example, one could calcu-
the final two-nucleon state is normalized and antisymmelate the pionic decay of thd’ dibaryon using a final'S,
trized on the quark levelji) all important intermediate six- NN-scattering wave function that is based on the same mi-
quark states with nonvanishing overlaps with the final twocroscopic quark Hamiltonian which simultaneously describes
nucleons are included, artil ) the strong final state interac- the massMy, and structure of the’ dibaryon. However,
tion for the two nucleons is taken into account on the basis ofuch a calculation is complicated by the fact that we have
the separable Tabak|22] and Uedq23] NN potentials. used two different Hamiltonians, i.e., two different confine-
Not surprisingly, the small available phase space in thenent strengths, for three-quark baryons and the six-gdark
three-body decay is the dominant mechanism for the narrowlibaryon[7]. Thus, thed’ dibaryon could not be explained
width of thed’. The large identity factof15), on the other in terms of the standard constituent quark model, using a
hand, enhances the results of previous evaluations disregardemmon Hamiltonian for any number of quarks. On the
ing the identity of quarks from different nucleons. The inclu- other hand, if thed’ exists, this may be taken as an indica-
sion of all Pauli-principle-allowed intermediatéi@ shell-  tion that the effectivénonperturbativequark-quark interac-
model configurations tends to increase the decay width byion depends on the state of the system.

V. SUMMARY
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APPENDIX B (q)—a? 9(q) ch B2+92
In this appendix we present the analytical expressions for ntd 1-G(a) \ y*— B2\ B2+q?)’

the radial integrald &”@,(q) defined in Eq.(30), which are

needed to calculate the overlap integral of E2p) between where a?=2m2myM /42, G(q)=(2/m)a? 5[ (g*(K)k?
different intermediate six-quark shell-model configurations—g?(q)q%)/(k*—qg?)]dk, and a value ofy, which is not
and the two outgoing nucleons. We recall, that the relativdixed in Ref.[23], is fitted to the singlet scattering length
NN wave function may be described by a simple plane wavéa,= —23.7 fm), y=11.114 fm!

(PW) @K °(g.r)=(27)*?jo(qr) or by FSI wave func- In Table 11l we introduced the following abbreviations:

9(2)(X)=—\/§
V3 2
(0) — _ X3
F™(x) e e M[1-d(x/3)],
3| V3
(2) :_\/: _
P9 Z[X\/;

0 \/3 P2 2 H Ho 2 H
GY'=——+ (sinx?/3— cox?/3)[ 1— Red ((1+i)x/v3)]— (sinx?/3+ cosc?/3) Im®D ((1+1)x/V3),
XN

ﬁ(l— ixz) —(1— ﬂxz)e"‘z’3 Im & Z)
3 9

1 4 4\,
4 — _ XI3rq —
3+9X2) (1+9x2)e 1 (I)(x/3)]],

) = (sinx?/3+ cosx?/3)[ 1— Red (1 +i)x/V3)]+ (sinx¥/3— cosx?/3) ImP (1 +1)x/v3),

3| v3
G?P=_ \[
1 { X\/—

{3

1

9

4.\, (1 4 _
37 g% )smx /3—(5——xz)cos@/?)}[l—Re(b((1+|)x/\/§)]

3 9 39

cos<2/3}lm<b((1+|)x/f)}
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1 4
sinx?/3— (— - §x2) cos<2/3} Im®((1+i )xh/?)] .

1
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1 4
—— —xz) cos<2/3}[1— Red ((1+i)x/v3)]
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