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ABSTRACT

An outcrop of meta-pelitic schist from near the township of Kanmantoo,
South Australia, was chosen to demonstrate the effect that increased bulk MnO content
has on metamorphic assemblage development.

From bulk composition and petrological analyses it is observed that the
presence of small amounts of MnO in high Xpe pelitic rocks correspond with the
development of garnet. The incorporation of Mn into the KFMASH model system
describes the existence of garnet with andalusite and staurolite that KFMASH does not
predict.

Furthermore it shown that modal abundances of garnet are proportional to
bulk MnO rock contents, enhancing the prediction that MnO causes an expansion of all
garnct-bearing assemblages. This allows for the description of the numerous
appearances of the garnet mineral in rocks that have calculated tempei‘atures and
pressures, for which it is not predicted to exist at.
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CHAPTER 1

INTRODUCTION

The analysis of metamorphic mineral assemblages is made simpler by the
use of model systems. For example, pelitic rocks are often described in the model
system K-O, FeO, MgO, Al203, 5107 and HoO (KFMASH). Models are used to
describe metamorphic rocks for two reasons; firstly, thermodynamic data is limited and
not available for many trace element and minor components and secondly, to reduce the
overall complexity of the systems being studied. For pelitic rocks, the model system
(KFMASH) encompasses >95% of the rock forming components and is therefore
generally considered as sufficient for describing their occurence.

Importantly model systems have to be tested for their “appropriateness”,
and this is performed through the comparison of the predicted phase relations with
natural rock assemblages. Failure of these models to account for natural metamorphic
assemblages can be attributed to the influence of components neglected in the model

design.

Dymoke and Sandiford (1992) have shown that the model KFMASH
system accounts for many of the observed mineral associations in pelitic schists of the
Mount Lofty Ranges, South Australia. However, this system fails to account for
occurrence of garnet with andalusite and staurolite (+biotite+quartz+muscovite+H»O)
- that are seen in rocks of the Southern Adelaide Fold Belt (Mount Lofty Ranges).

The aim of this thesis is to examine the influence of the minor "neglected”
components on mineral development, such as MnQ on the stability of garnet in pelitic
rocks during regional metamorphism. Principally rocks that exist close together
experience identical pressures and temperatures so bulk composition can be considered
to be the only variable factor influencing the development of mineral assemblages. To
do this a small section of rock of greenschist grade was sampled from a locality near
Kanmantoo, South Australia.
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Three mineral assemblages exist in the sampled space, they are;
staurolite+garnet (+biotite+muscovite+quartz+H,0)
andalusite+staurolite (+biotite+muscovite+quartz+Ho()

andalusite+staurolite+garnet (+biotite+muscovite+quartz+HO)

The spatial relationship and modal abundances of the minerals in the above
assemblages provide a basis for the consideration of bulk composition influence on their
formation.

Bulk composition proportions of samples are compared to the modal abundance
of minerals. It will be shown that MnO is preferentially partitioned into the garnet phase
(Howell, 1991) and the development of garnet correlates with variations in bulk rock MnO
content,
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CHAPTER 2

GEOLOGY OF THE KANMANTOO AREA

2.1. Geological Background

The Kanmantoo Group metasediments form part of the Southern Adelaide
Fold Belt (figure 1.), which comprises Neoproterozoic to early Palaeozoic sedimentary
rocks that were deformed and metamorphosed during the Cambro-Ordovician
Delamerian Orogeny, (Mancktelow,1990; Jenkins,1990). Overall the metamorphic
grade of the belt is low (green schist facies), however the metamorphic grade increases
substantially towards the east (Dymoke and Sandiford, 1992), see figure 2. This
zonation correlates with the roughly linear NNW-SSE trending outcrops of felsic
intrusives between Murray Bridge and Angaston. The heat dissipated from the
intrusions is responsible for the development of biotite, andalusite-staurolite, fibrolite,
prismatic sillimanite and migmatite zones that are observed in the Mount Lofty Ranges,
{Dymoke and Sandiford, 1992).

2.2. Metasediments of the Kanmantoo Area

The field area (Map 1, contained in Appendix A} occupies an area of 20
km? West of the township of Kanmantoo which is Iocated approximately 20km WNW
of Murray Bridge, South Australia. Descriptions of lithology and structural
relationships have been performed by others for the Kanmantoo area, Fleming (1971);
Lingvist (1969); Mancktelow (1979); Marlow and Etheridge (1977). What is presented
is a simplified view of field observations, concentrating on the implications for mineral
development.

The field area provides a composition contrast between the pelitic units and
the quartz rich units of the Brukunga Formation (after Miriams, 1969), in which
outcrops of the Paringa Andalusite Horizons (after Miriams', 1969) occur, see Map 1,
Appendix A. Outcrops of varying proportions of biotite, muscovite and quartz-rich
units, inter-finger with the andalusite and staurolite bearing schists. Poor outcrop
coupled with complex microstructure and composition variations makes any correlation
between individual outcrops over a large scale difficult. Thus allowing each of the
outcrops to be treated as a separate equilibrium assemblage, defined by their own P, T
and X.
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2.2.1. Structure

The site of investigation lies within the Kanmantoo Syncline (see figure 3),
which is one of a set of major folds which plunge South with fold axes plunging
shallowly South. The macroscopic structure of the area appears very simple with an Sy
cleavage (010 east) dominating the nature of the rocks, overprinted by a later stage (Do)
more steeply dipping crenulation cleavage (S3), parallel to S1. However very complex
inclusion trail geometries in poikiloblasts indicate a complex microstructural evolution
involving repeated crenulation of the fabric. This is an indication of a complex
macroscopic history.

2.2.2. Metamorphic considerations for the Kanmantoo

The Kanmantoo Group sediments have under gone extensive
metamorphism in the Cambro-Ordovician Delamerian Orogeny, (Fleming; 1971,
Jenkins; 1990, Mancktelow; 1979). Intrusions located at Murray Bridge and Palmer are
the probable source for the heat supply for metamorphism in the Kanmantoo Area
during the deformation period.

Mineral assemblages outlined in the introduction were derived from
petrological analyses of thin sections, (Appendix B). Inclusion patterns contained
within andalusite, staurolite and garnet show continual mineral development with
deformation. The peak of metamorphism is related to the second phase of deformation
(D7) (Dymoke and Sandiford (1992), this is seen where inclusion patterns of andalusite
porphyroblasts mimic the S7 crenulation in thin section.

Mapping in the Kanmantoo area (Map 1, Appendix A) has revealed rocks
that are not described by the KFMASH system of Dymoke and Sandiford (1992) for
“Buchan Style” metamorphism. Rocks are found to have assemblages containing the
minerals garnet-andalusite-staurolite in close proximity with garnet "free” assemblages.
These relationships provide the necessary assemblage relationships needed to
demonstrate the influence of non-KFMASH components on mineral development.
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2.3 KFMASH Model Predictions for mineral assemblages

Dymoke and Sandiford (1992) present calculated P-T pseudo-sections (Figures
4 and 5) and T-XFe diagrams (Fig. 11, section 3.4) for the KFMASH system , assuming
an a(H20)=1. These pseudo-sections of P-T and T-XFe were constructed for the
assemblage chlorite, aluminosilicate, staurolite, cordierite, and/or garnet, with
biotite+muscovite+quartz+H20 in excess in the KFMASH system . The pseudo-sections
were generated with the internally consistent data set of Holland and Powell (1990) and
version 2b.1. of the computer program Thermocalc.

Mineral abbreviations used in figures

and andalusite mu muscovite

gt garnet q quartz

st staurolite als  Al2SiO5 phase
bi  biotite chl  chlorite

cd  cordierite sill  sillimanite

The P-T pseudo-sections that were created for Xpe=0.7 and XFe=0.8 are
based upon the calculated P-T grid of Fig 2, Dymoke and Sandiford; (1992). The P-T
pseudo-section calculated at XpFe=0.7 predict that assemblages containing garnet and
staurolite occur above P 5kb and T 575° C, above the andalusite "out" field, figure 4. It
also predicts that the divariant assemblage containing staurolite and andalusite exists over a
temperature range of 565-595° C, at pressures 4.0-4.25 kb. This prediction implies that
assemblages containing gamet must occur at much higher P and T than those devoid of
garnet.

The pseudo-section calculated for XFe=0.8 shows changes in the predictions
of the assemblage fields, in response to an increase in XFe. The predicted field of staurolite
and garnet has a lower P and T than that of XFa=0.7 , where the lowest P of formation is
4.75kb and lowest T of formation 560° C. These P and T are still above the andalusite
"out” field, implying that the phase andalusite would not be seen in rocks at these
conditions.
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Figures 4 and 5 (next page)

Calculated P-T pscudo-sections at constant T-Xge for the asemblage
staurolite+cordierite+gamet+chloﬁte+andalusite+si11imanite+kyanite
(biotite+muscovite+quartz+HzO in excess) based on Fig. 2 of Dymoke and
Sandiford (1992).

Figure 4 (Xge =0.7) predicts a small range of existence for the staurolite-
andalusite divariant assemblage, also that the divariant assemblage garnet-
staurolite exists at much higher P and T than andalusite.

Figure 5 (Xpe =0.8), next page, predicts a greater range of P and T of
existence for the divariant assemblage staurolite-andalusite. It also predicts
that the assemblage containing garnet is displaced to lower P and T, due to
an increase in Fe content.
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Figure 5 predicts that increasing XFe will expand the andalusite-staurolite field
to higher and lower T (525->600" C) as well as increasing the pressure range (3.4->4.2kb)
that it is expected to occur over. Both the pseudo-sections for Xpe=0.7 and XFe=0.8
predict that the assemblages gamet-staurolite and andalusite-staurolite do not occur together
at similar pressures and temperatures.

Applications of this model system correlate well to the general assemblage
variations (Dymoke and Sandiford, 1992} in the Southern Adelaide Fold Belt (see Fig 2).
However, assemblages containing garnet-staurolite and andalusite-staurolite do occur
together at close proximity's in the Southern Adelaide Fold Belt (Map 3, Appendix A).
Indicating the need for reconsideration of the KFMASH system for these assemblage
relationships

For mineral assemblage development equlibrium is assumed to have occurred
in the system. This requires consideration of the minimization of Gibbs Free Energy, (G)
where G is a function of (Pressure, Temperature and Composition). Mineral assemblages
develop that attempt to minimize the local G.

Where small distances are considered pressure and temperature can be
eliminated as variables of G minimization, so composition becomes the only variable. As
stated the compositional system (KFMASH) is not sufficient to describe the existence of
garnet with staurolite and andalusite, so other composition components not considered
must be incorporated to describe the assemblage relations, and to minimize G for the

composition present.
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CHAPTER 3

Mineral Assemblages and Bulk Compositions of Meta-pelitic
Rocks of Kanmantoo, South Australia. .

3.1. Introduction

Chapter 2 introduced the importance of composition variation and the bearing that
it may have on small scale (cm) mineral assemblage development. To develop this notion
an outcrop 60 cm wide of meta-pelitic schist (Map 2, Appendix A) of Kanmantoo Group
was divided into 18 separate samples (Map 3, Appendix A) perpendicular to the S;

cleavage plane. This division was based upon small scale (cm) variations in the mineral

abundances observed at the locality. The presence of garnet with staurolite signified this

site as being representative of a change in bulk composition, which is transposed as a
variation in mineral proportions. Distinction between the samples was made from
assemblage variations noted in the field.

For each of these samples, bulk composition analyses were performed, as well as
thin sections created for each of the samples. Table 1 presents the results for the bulk rock
analyses in terms of weight percent (WT%), methods of analysis are outlined in Appendix
D. All FepO3 was recalculated to FeO by use of a gravimetric standard of 0.89981.

The modal proportions of mineral assemblages were derived from point counting
of thin-sections (Appendix B) and are shown in table 2. Mineral assemblages were defined
for the samples by the existence of certain minerals within thin sections of the samples.

The discussion of the data received from analyses is conducted in three parts, as
follows;

1. bulk composition variations in the samples are presented.
2. discussion of observed mineral assemblages.

3. comparison of mineral assemblages and MnO bulk composition

variations.
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3.2 Bulk Composition of sample space.

The bulk composition (Table 1) shows that there are significant variations in
the components across the sample space, particularly in MnQO, FeO and Al,O3. Low
totals for the data are attributed to the water content and OH groups that are associated
with the minerals. Two samples (104b and 107c¢) have totals too low for comparison,
and are ignored, those totals above 95% are considered for comparisons to mineral
proportions. The sample space reflects an East-West transition, where components
MnO, FeO and S03 increase towards the middle, minerals AlpO3 and TiO7, show a
reverse trend by decreasing towards the middle of the sample space. Clarity on
component variation across the sample space is given in the following section.

3.2.1. Variations in the sample space

Outlined is the calculated compositional variation (of key samples) from an
outcrop.of Kanmantoo schist. All further considerations are in reference to the
proportions of Al, Fe, Mg and Mn (Appendix D), since mineral chemistry and probe
analyses indicate that these are the major influential components in garnet development.
Below are the calculated average proportions of the four elements for the entire sample
space.

X Al average =0.509
Xre average =0.330
XMn average=0.005

Xmg average=0.103

Fe
F"Fe + Mg + Mn

0.74, with a number of samples exhibiting values in the range of 0.8-0.82, see table 1,

The Xge (X ) value of the samples lie in the range of 0.69-

demonstrated in fig.6 below.
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X Fe across sampled space
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Fig.6 The XFe value for the sample space calculated from bulk composition

The Xpe range allows for the consideration of certain divariant mineral

asemblages (of pseudo-sections of fig.4 and 5) to be applied these rocks, thus
discussions on implications of assemblage formation can be performed. Other bulk
components (MnQO) can be shown to be influential, since the pseudo-sections do not

predict the assemblage relations observed.
The variation across the sample space of the MnO component is shown by the

), represented by fig.7 below.

calculation for Xy (X, = Fe + Mg + Mn

The majority of values, shown in fig. 7 lie in the range of 0.006-0.009, three
samples however show much greater X1, values, (these are highlighted by fig. 10).
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X Mn across sampled space
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Fig.7 The Xy for the sample space calculated from bulk composition.

Figure 8 highlights the fact that AlpO3 content decreases for the “middle”
samples, and that its content is much higher in samples deficient in the garnet phase

(See table 2).
X Al across sampled space

109 |
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106b +
107a
107b |
107¢ |-

108 |
108s |

0.3

104a |
104b
104c
104d |
105i |
105ii |
105e
106a [

Fig.8 The XAl for the sample space calculated from bulk composition.

Figure 9 reflects a similar trend as figure 8, where the MgO content decreases steadily
from the “outside” samples until the greater gamet bearing samples are reached, where

significant fluctuations are seen.
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X Mg across sampled space
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Fig. 9. The XMg value for the sample space calculated from bulk composition.

e
rom a comparison of XMn versus Fo + Mg (fig. 10 below) a constant

Fe
————— ratio is seen for the sample space. However it can be seen that the three
Fe + Mg
samples (106a, 107a and 107¢) stand out distinctly from the rest of the sample space in

terms of their Mn contents. The significance of these samples is discussed in light of

the rest of the sample space in further sections.

Plot of Mn against Fe/Fe+Mg
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Mn against Fe/Mg
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Fig, 10 Plot of Xpy against Fe/Mg to highlight the variations in Mn in the sample space.
Summary

Predictions after Dymoke and Sandiford (1992) that additional components ie.
MnO stabilise garnet at the expense of other minerals in Fe-rich bulk compositions are
tested on real rock assemblages. The Xy, values (Appendix D) of samples taken from
schists are similar to those of the calculated P-T pseudo-sections and hence allow for
the application of the model to real rocks. With this in mind further relationships
between "minor” bulk compositional variation and mineral assemblage can be readily
exposed.

3.2.2. Composition Variation within the Assemblages

Observations are discussed starting with the "simplest" assemblage, since this is the
basis for all comparisons, other assemblages are presented in order of increasing gamet
content. All discussion below is in referral to figs. 6, 7, 8 and 9, which represent the
variation of the contents of the above mentioned components. The discussion highlights
the samples which show the greatest compositional variation and provides a basis for
the comparison in section 3.4.

The samples are discussed in an East to West fashion according to the assemblages that
they contain. The minerals muscovite, biotite and quartz are not discussed since they are
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considered to be in "excess" in the system and are involved in all mineral reactions.
However, a few samples show interesting compositional relationships that require mention
of the minerals muscovite and biotite.

Andalusite-staurolite assemblages

Sample 104a

From figs. 6, 7, 8 and 9 it can be seen that there is little deviation in the calculated
component proportions from the "average" contents. Except that a higher than
average X j is recorded, which is common with most of the samples. Lower than
average Xpe (0.243) and Xy, (0.002) values are recorded, which appear to be
typical for the extremities of the sampled area.

Andalusite-staurclite-garnet assemblages

Sample 104b will not be discussed since the bulk composition total (table 1} is below an
"acceptable” level, even though it is the first sample (from the East) in which garnet

appears.

Sample 104¢

X1 (0.584) is similar to those of 104a, however slight increases in both Xymp
{0.003) and X, (0.287) relative to 104a are recorded. Importantly this is the Xmn
value of the first recorded occurrence of gamet in the system sampled.

Sample 105¢

X A1 (0.453) drops below the average value for the first time from the eastern side of
the sample space, similar to slide 109 (western side). However the Xpyn (0.006)
value has increased above the average, similar to the Xp. (0.384) which has also
increased above the average to one of its maximums.

Sample 109

XAl (0.531) drops to a value close to the average, whereas the Xpe (0.352) for the
first time on the western side of the sample space is greater than the average. Xmn
(0.003) has not varied from that of samples 111 and 104c.
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Sample 111

X a11s similar to many other calculated X ] values, as it is greater than the average.
Calculated XMn (0.003) is greater than that of sample 104a (0.002) and can be seen
to correspond with Xyp of sample 104c. The Xge (0.299) is much greater than
sample 104a, but is still lower than the average value.

Staurolite-garnet assemblages

Sample 107b is not discussed here since the bulk compositional total is below an
"acceptable” level.

Sample 106b

Aluminium content decreases at this locality with X a3 (0.535), to a value close to the
average. Significant decreases are seen in the Fe and Mn contents where both Xy
(0.003) and Xge (0.343) show a sharp reversal relative to the samples (106a and
107a) surrounding it .

Sample 108

The Al, Mn, Fe and Mg contents return to what could be called a "normal", relative to
the sample space. The Xy, value drops below the average, remaining consistent with
the western side of the sample space, similarly Xpe, XA| and Xpg values remain
fairly consistent with other samples (108s-111) from the western side.

Sample 110

Component contents are consistent with the western side, except for Xge which
drops below the average, similar to sample 111.

Sample 108s

Has similar compositional contents to that of sample 109, except for minor
fluctuations (0.05) in Xpe and Xa1.
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Sample 106a

This sample records the one of the lowest X3 (0.428), in a continuing trend of
declination from sample 105e. The calculated Xpe =0.464 is one of the largest
values recorded for the sample space so to is Xy (0.014) which reaches its peak
for the sample space at this site. X)pp shows an appreciable variation in value
from those samples to its east.

Sample 107a

The aluminium content drops in this sample, to X a1 (0.428) with respect to the
average, similarly the magnesium content drops as well. The manganese content
shows an increase, with X, peaking at 0.013.

Sample 107¢

Is similar in compositional contents to sample 107a, except for a slight increase in
XMg , from 0.89 (sample 107a) to 0.109.

Summary

From the data presented a number of comparisons can be made between different
assemblages based upon their compositions. Comparisons are presented that
show how proportions of components influence mineral abundance. These
relationships are discussed in section 3.4.

3.3. Mineral Chemistry

3.3.1.. Mineral Variations across sample space

Three mineral assemblages occur across the sampled space,they are listed below;
staurolite+garnet (+biotite+muscovite+quartz+feldspar+H20)
andalusite+staurolite (+biotite+muscovite+quartz+feldspar+H20)

andalusite+staurolite+gamet (+biotite+muscovite+quartz+feldspar+HpO)
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Detailed petrological descriptions of the sample texture and microstructure are
given in Appendix B, since they are not necessary for the description of compositional
variations within the phases. And so only simple mineral abundances are discussed in the

following sections,

Plagioclase feldspars presence is ignored, since it does not participate in any
relevant exchange reactions that need consideration, due to its non-existent Fe, Mn or Mg

proportions.

The modal proportions of key metamorphic minerals (ie. garnet, staurolite and
andalusite) contained in the above assemblages vary greatly across the sample space, see
Table 2, graphs 1(a-c). It can be seen from table 2 and graph 1a, that the garnet phase is
poorly represented in samples 104a-105e and 111, whereas samples 106a-110 have
appreciable garnet content =~15-40%. The modal proportion of the garnet phase can be seen
to increase towards the centre of the sampled space (from the East and West), occupying
nearly 40% of the rock in places.

50 Distribution of garnet across the sample space
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D
o
D
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oooogﬁooegggv—ev—vw
samples

Graph 1a. The distribution of garnet across the sample space in terms of percent occupation of the

individual sample.

Contra to this, the modal proportions of andalusite (Graph 1b) can be observed
to decrease from the "outside” samples (104a and 111) to the inner samples (106a-108s),
where it is not represented at all.
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Graphs 2-a and b.

Graph 2-a. Bulk MnO composition variation across the sample space.

Graph 2-b. Vanation in the modal abundance of the garnet phase across the

sample space. b

F g
A comparison of these two graphs indicates zi\linea@ relationship between

bulk MnO composition and garnet abundance
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Graph 2-a. Distribution of bulk MnO across sample space.
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Graph 1b. The graph of andalusite distribution across the sample space in terms of percent occupation of the

individual sample.

The staurolite phase proportion also varies from east to west (Graph 1¢) across
the sample space, with generally lower proportions observed in the eastern samples (104a-

d) to higher proportions in the western samples (110-111).
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Graph Ic. The graph of staurolite distribution across the sample space in terms of the percent occupation of

the individual sample.
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3.3.2. MnO partitioning amongst minerals

The topic of interest is the role that MnO has on the development of garnet
in mineral assemblage, so the distribution of the components amongst the minerals is an
important point that must be highlighted before any further discussion of bulk
composition.

Mineral formulas listed in table 3 below outline the distribution of
components amongst the phases of consideration.

Support for this is provided by micro-probe analysis (performed on
minerals of selected samples, Appendix C), where it can be seen that the MnO
component is preferentially partitioned into the garnet phase occupying =1-7 WT%.
Probed staurolites show that MnO accounts for less than 0.643 weight percent (WT%),
most values are recorded in the range of 0.04 -0.2 (WT%). Biotite analysis show that
MnO accounts for less than 0.25 (WT%) with most values in the range 0 -0.15
(WT%). Muscovite shows a similar trend, with MnO values in the range 0 -0.191
(WT%), with the greater number in the range 0- 0.1 (WT%).

Because of this partitioning, all MnO in the system is considered to be
incorporated into the garnet phase only and all further treatments of MnO are in accord
with this assumption.

Andalusite AbSiOs
Staurolite (Fe2+ Mg)q Alqg
Si75 048 Hy
Gamet (Mg, Fe2+ Mn)3ALSi30g
Muscovite KoAl4[SigAlzO20(OH,F)4
Biotite Kz(Mg,Fei+)6-4(Fe3+,AI,Ti)0-2

[Si5.6,Al3.2,020](0H,F)4

Plagioclase Feldspar Na[AlSi30g]-Ca[Al»Sir0g]

Table 3 Mineral formulas of muscovite, biotite and plagioclase feldspar are after Deer, Howie and
Zussman, 1992, those of gamet, staurolite and andalusite are after Holland and Powell, 1990.
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When comparing bulk composition to the observed mineral assemblages,
(graph 2a-b) it can be seen that MnO WT% corresponds closely to the garnet
assemblage representation. This initial observation is examined in greater detail.
Selected samples are examined to establish a correlation between variations in MnQO

content and garnet prescence and proportions.

3.4. Comparison of mineral assemblages and bulk
composition

As the compoSition profiles (discussed in the next chapter) are a result of
growth processes, comments can be made in light of the effect that various components
may have had on influencing mineral growth, ie. MnO on garnet crystalisation. To do
this, a comparison is made between assemblages containing garnet and those devoid of
garnet. So a "normal assemblage” is defined, ie. a garnet "free" and MnQO "absent”
assemblage is used as a basis for comparison of all other garnet "bearing" assemblages.

A comparison is made between bulk composition and mineral assermblage.
More precisely the relationship between garnet and bulk MnO composition can be
highlighted. This is performed via ternary diagrams constructed for the system A, F
and Mn, by projecting from biotite, muscovite, quartz and H>O (KMSH).

3.4.1 Discussion of Data

Predictions from a T-Xpe pseudo-section calculated by Dymoke and
Sandiford (1992}, (fig. 11) form a basis for a comparison of mineral assemblages
sampled. Garnet bearing mineral assemblages are predicted to occur above Xpe >0.8
(due to the strong partitioning of Fe2+ into the garnet crystal). This is not the situation
for this sampled section, as outlined previously as gamet assemblages are found below
Xre >0.8. By considering the component MnO a better description of the mineral
assemblage relationship at this locality can be performed.
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Figure 13.

APMn diagrams (+biotite+muscovite+quartz+HO) are presented for
samples created from data contained in Appendix C. They demonstrate that
small amounts of MnO influence the development of garnet with
assemblages (andalusite and staurolite) that the KFMASH system (AFM)
can not account for. The diagrams show that apparent crossing tie-lines in
AFM are not what they appear. The addition of the Mn component
perpindicular to AFM shows that the tie-lines do not cross, and that small
amounts of Mn are sufficient to permit the formation of garnet with
andalusite-staurolite assemblages.

The diagrams b-j (next page), show that bulk composition (square box)
reflects the assemblage proportions for the individual samples, which is a
consequence of the bulk MnO content.

a.

A

SAMPLE 104a A andalusite b.  SAMPLE10dc ° " . site

staurolite staurolite

Mn
F Mn
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¢. SAMPLE 105e andalusite ¢c. SAMPLE 105
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e. SAMPLE 106a
SA f. SAMPLE 106b
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Figure 13 a-f. AFMn diagrams for samples, constructed from AFM déagrams-
all assemblages projected from bi + mu + H2O -




h. SAMPLE 107c

_g. SAMPLE 107a
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Figure 13 g-j. AFMn diagrams for samples, constructed from AFM diagramy 35 of 92
all assemblages projected from bi + mu + gtz +H20



The following section presents the relationships between the mineral
proportions, bulk compositions and mineral compositions (represented as ternary
diagrams) for the minerals in the separate samples. The “normal assemblage” ie.
andalusite-staurolite, is used as a basis for comparison for other assemblages that differ to
it. Comparisons are made between different samples to show the relative assemblage
dependence on bulk composition. Phase diagrams constructed (from data in Appendix C)
for the system AFM (+muscovite-+quartz+H0) are shown in fig.12. These form a basis
for the projection through biotite onto the AF plane allowing for the addition of Mn (fig.
13)to the system (+biotite+muscovite+quartz+HO)for description of the garnet phase.

Andalusite-staurolite assemblages

This assemblage is considered to be the most simple represented in the sample space.
The bulk composition is considered as a basis for comparison of other assemblages
for the sample space.

Sample 104a

Ternary diagram construction in the system AFM (fig.12-a) reveals a simple 3-phase
mineral assemblage(+muscovite+quartz+H,0), further projection into AFMn (fig.13-
a) space was performed for comparison of other assemblages. The lack of garnet
agrees with the predictions of fig.11 for Xpe values of this magnitude. This is
reflected by the simple tie-line relationship in fig. 12a.

Andalusite-staurolite-garnet assemblages

Primary variations in the proportions of minerals present in other samples is shown
by comparison to sample 104a. A new phase (garnet) has developed in the system,
which provides complications for projecting the new mineral assemblage in AFM.
Crossing tie-lines become apparent between staurolite-garnet and staurolite-biotite
phases (fig. 12a-e), these conjectures in the AFM projection can be "explained” by
the incorporation of another component (ie.MnO) to the system. By projecting the
minerals through biotite onto the AF plane a new component Mn can be used to
describe mineral relationships more clearly. Predictions by fig.11 for rocks with Xpe
of this range can not describe the mineral assemblage observed at this Xpe (in
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KFMASH), however, with the introduction of small amounts of MnO to the
system, these divariant fields are displaced to lower Xg, values.

Selected samples representeed by AFM diagrams presented in Figure 12b-e
highlight the necessity for the introduction of another component to describe the
mineral assemblage present. The introduction of another component (Mn)
perpindicular to the AFM plane describes the mineral relationships without the
occurance of crossing tie-lines.

A sufficient Mn content in sample 104c (fig.13-b) is able to describe the
crossed tie-lines in fig.12b, where the garnet is observed to reside "above" the
AFM plane. Similarly sample 105e (fig.13-c) shows this relationship as well, as
do samples 105, 110 and 111 (figs. 13-d,13-k and 13-1 respectively). The
formation of the garnet phase can be seen to be a function of an incremental
increase in bulk MnO content. This notion is supported by changes in garnet
proportion as a response to variations in bulk MnO content, shown by
comparisons between assemblages devoid of the andalusite phase.

Staurolite-garnet assemblages

The prediction that garnet crystalization is assisted by the prescence of small
amounts of MnO is shown above. This relationship is further developed and
supported by the variations in modal abundance of garnet with bulk MnO content,
seen in samples of this assemblage. This is best observed in a comparison
between samples 106a and 106b, where significant variations in MnO content
(fig. 13-e and f) are reflected in the modal abundance of the garnet mineral (graph
2-b). In sample 106a (fig.13-e) it can be seen that the bulk composition
approaches the garnet phase in accordance with an increased modal proportion of
garnet. This relationship is reversed in sample 106b (fig.13-f) where the "low"
MnO content is reflected in the poor representation of the garnet phase, thus the
bulk composition plots further away from the garnet phase in AFMn.

Similarly these assemblage relationships are supported by the sample series
107 a-c, where variations in bulk MnQ are proportional to the modal abundance of
the garnet mineral (graph 1). The bulk compositions of these samples reflect this
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relationship, where in samples 107a and 107¢ (Fig. 13-g and h) it can be seen to
approach the garnet phase in AFMn.

3.4.2. conclusions

An inverse relationship is presented (graph 3) between the MnO WT% of
garnets and the bulk compositions of the samples. This inverse relationship is
attributable to the size of the garnet population, and hence the bulk MnO composition
at the onset of crystallisation. It is proposed that sites of crystallisation were fewer in
these assemblages, so the MnO was partitioned between less individual garnets, so
more MnO was incorporated into the garnet phase than samples with greater garnet
proportions. This is reflected in MnQ profiles for garnets, which are higher in the
core and decrease towards the rim, this trend implies a change in the availability of
the MnO during garnet growth. The bulk compositional availability of MnQO,
controlled garnet growth. Garnet growth ceased once the MnQO available within a
certain radius of the surrounding matrix became depleted, this radius was defined by
matrix diffusional processes.
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Graph 3.

The weight percent MnO of the garnets for the sample space are represented
together to highlight the differences between the garnets of the samples. The
garnets in samples at the extremities generally have higher MnO contents than
the "inner" samples, this is a reflection of bulk MnO composition on their
content. Samples that have higher bulk MnO contents have lower Mn contents
in the garnet phase, the reverse applies for low bulk MnO samples
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Graph 3. The distribution of MnO in probed garnets across the sampie space.

Page 42 of 92



CHAPTER 4

Distribution of MnO in garnet across the sample space.

Consideration must be made of how the components are distributed amongst
the minerals of the assemblages in the samples.

It has been shown in both theory (Howell, 1991) and in real systems
(Symmes and Ferry, 1992) that the fields of mineral assemblages of KFMASH are
displaced by the addition of small amounts of MnQO. Variation in the distribution of
MnO, FeO, MgO and AlyOs3 in the minerals is shown by selected probe analyses
(Appendix C). Late stage diffusion processes are ignored so all profiles can be
considered to be due to growth.

What is presented below is the trend from selected MnO profiles across
garnets from samples of the different assemblages. This shows the distribution of MnO
amongst the garnet populations of variable bulk MnO compositions.

The Mineral Assemblages
4.1, Andalusite-staurolite assemblages

No garnets were observed in the sample to be analysed.
4.2. Andalusite-staurolite-garnet assemblages

Samples of this assemblage demonstrate the important feature that a relationship
exists between the distribution of MnQ in garnets and the bulk MnO composition
of the garnet bearing assemblage. |

Sample 105¢e

The MnO content of garnet (graphs 4a and 4b) is slightly lower (=4.5 WT%)
when compared to gamets of sample 111 (graph 4c¢). Implying that MnO 1is
dispersed further amongst the garnet crystals, this is due to the higher bulk MnG
content which allows for greater garnet development, hence MnQO is partitioned
further between the developing garnet crystals.
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Graph 4a MnO profile across garnet #1, data listed in Appendix D.
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Graph 4b MnO profile across garnet #2, data listed in Appendix D,

Sample 111

These analyses reveal that MnO typically occupies a greater WT% (=5.30) of the
garnets here than in samples of other assemblages ie. 106a and 108s (=3.5 and 4.0
WT% respectively), which have greater modal proportions of garnet. This is due to
its Bulk MnO content, which is sufficient for garnet development. The content
permitted garnet development up until a point in time where Mn was consumed, after
which the Fe and Mg was incorporated into the developing staurolite phase. This
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reflected in the textures, where staurolite is seen to envelope garnet crystals
(Appendix B).

MnO profile across gamet in;’%éamp!e 111
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Graph 4c MnO profile across garnet from sample 111, data listed in Appendix D

Sample 109

Probe results for garnets have higher MnO contents (6.7-7 WT%) (Graphs 4d-4e)
than those of sample 105¢, which is in accord with relationships described before in
sample 111. This "lack" of variation is typical for the samples with low bulk MnO

content,
7 ' 0 /’B\‘_—_—M

50

MnO WT%
w
o

ritn : core ' rim

Graph 4d. Profile across garnet #1, data contained in Appendix C.
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Q4.0 MnO profile across garnet 2 in sample 109

10 [| (] [ 1 1 1 ]
o fitn ' core “transition rim '

Graph 4e. Profile across garnet #2, data contained in Appendix C.

SUMMARY

The inverse relationship presented (graph 3) between the MnO WT% of garnets and
the bulk compositions of the samples is highlighted by samples of this assemblage.
This inverse relationship is attributable to the bulk MnO composition at the onset of
crystallisation. MnQ content was sufficient to initiate garnet development, so Mn was
partitioned quickly into the garnet, though low bulk Mn content controlled garnet
development, so garnet growth was not prolific. Garnet growth ceased once the MnO
available within a certain radius of the surrounding matrix became depleted, this
radius was defined by matrix diffusional processes. Once garnet development
stopped Fe became available for other minerals to develop (Wthh staurolite was the
next, see Appendix B). This is reflected in the textures described in Appendix B.

4.3. Staurolite-garnet assemblages

Sample 106a

Of importance is the magnitude of MnO WT% depletion from the core to the rim in
garnets (as seen in previous samples), which appears to be commeon to the samples
with higher MnO compositions, graphs 4f and 4g.
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MnO profile across garnet in sample 106a

6 —
5’ =
a
=
Q 3
=
2 -
I 1 ] [ 1
) core transition rifn '

Graph 4f, MnO profile across garnet #2, data from Appendix D,

MnO profile across garnet in sample 106a

5 -
Q
= 3-
H 1 1 ]
2= rim : core : fim '

Graph 4g. MnO profile across garnet #1, data from Appendix D.

Garnet profiles (graphs 4 f-g) show a depletion in MnO towards their rims,
which indicates that the availability of MnO was depleted towards the end of its
growth. Muscovite present in the matrix is distanced from garnet in the matrix,

suggesting that MnO availability controlled growth rates and not the muscovite

(predicted from the reaction below).
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staurolite + muscovite

= garnet + aluminosilicate + biotite (+ quartz,H20).

The MnO content in garnets varied throughout the sample (as shown by graph
3) indicating that some garnets incorporated more MnO in the early stages of their
development than others. A decrease in MnO content occurs towards the rim of the
garnet, similar to garnets in samples 111, 108s and 109 (graphs 4c, 4d, 4¢ and 41),
implying Mn exhaustion caused the cessation in gamet growth, (Table 2).

The density of the garnet population is high as the modal proportion indicates, hence
the overall MnO contents in the gamnets is lower than those samples with considerably
smaller garnet populations.

Sample 106b

The only garnet core probed gave a low MnO WT% (3.766 WT%), which
corresponds with the results from sample 106a. It is not inconceivable that the
garnets in both samples are in fact part of the one "population” that was divided
during sampling. But the fact remains, that the bulk MnO composition of the rock
(defined by the sampling boundary) is reflected in the garnet growth.

Sample 108

Importantly these profiles (4i and 4j) reflect an decrease in magnitude of MnO
variation across garnets within the sample space, whilst still maintaining relatively
small overall MnO WT%.
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5 MnQO profile across garnet in sample 108
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Graph 4i MnO profile across garnet from sample 108, data contained in Appendix D

§ 3.0 7
Q . .
§ 2.0 MnO profile across garnet in sample 108
10 . ] 1 1 1 1 i

rim ’ care ) rim

Graph 4i MnO profile across garnet from sample 108, data contained in Appendix D

Sample 110

The MnO WT% profile (rim-core-rim) from a small matrix garnet (not shown) is
higher ie. 6.175-5.198-5.443, than those of the "central" samples. The variation in
the garnet profile, relative to the garnet of sample 106a is small, and is constant with
the low variations in the profiles of the "low" MnQO samples.
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Sample 107b

The lack of data does not serve to highlight the relationship of MnO and garnet at this
site. The important relationship observed here is a different morphology of staurolite

from the rest of the sample space, described as "relict”. The MnO content here is
lower than sample 107¢ (0.23 WT%), and the garnet phase is far less represented in
the sample space (=15%) when compared to sample 107¢ (=40% garnet). Garnet
growth continued until Mn was exhausted, the high Fe allowed for the development
of a later phase of staurolite which grew and deformed the rest of the fabric, see
Appendix B.

Sample 107¢

These analyses are consistent with previous results, in that the magnitude of MnO
variation across the garnet profile is greater than "low bulk" MnO garnet profiles.

Profiles in gamét (Graph 4k) show greater differences from the rim to core (1-2
WT%), a magnitude that was not seen in profiles of other samples ie. 109,110 and

105e.
MnO profile across garnet in sample 107¢
4 -
@]
=
= 27
1 . 1 1 1 1 ]

rim " transition core

Greater profile differences are due to the high and probably rapid consumption of
MnO by many garnet crystals in the early stages of crystalization. The MnO became
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depleted from the matrix quickly (Graph 4k) as conditions for formation were
favourable, so the garnet profile became depleted from the core to the rim in
MnO. Crystal growth was relatively large (relative to samples 109, 105¢ and 111)
due to the greater availability of MnO for gamet growth, but growth ceased due to
the exhaustion of MnQ bycrystal development.

Sample 108s

Garnets were probed (Appendix D) that revealed MnO profiles which show a
decrease in magnitude of MnQO variation across the profile, similar to sample
108s. One garnet MnO profile (fig. 41); 3.912-3.870-3.817-3.065-2.773, shows
little variation in MnO across the profile. However the last value is complemented
by an increase in CaO at this site.

MnO profile across gamet in sample 108s
4.0 7

3.8 7

core ' ' rim

Graph 41 Mno profile across garnet 108s, data in Appendix D

Sample 107a

Probe analyses for this sample were unavailable for discussion. Results from
107b are used for the construction of ternary diagrams, since it is the bulk
composition variation that is important. The composition and assermblage
proportions are similar to sample 107c, so assemblage development can be
considered to be influenced by processes that created the assemblage in 107c.
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SUMMARY

Appreciable differences are noticed between samples of this assemblage and those

assemblages containing andalusite (section 4.2). Importantly the modal
abundance of garnet increases with increasing bulk MnO contents. The
distribution of the MnQ within the garnet minerals is in accord with the inverse
relationship outlined in the summary of the section a'bbve, and shown in graph 3.
Garnets reveal "lower" MnQO WT%'s in probe profiles, but occupied higher
proportions of the samples. These lower values are due to the higher
"competition" for MnO between the developing crystals. The fact that there is a
greater difference between the rim and core values of the probe analyses implies
that competition for MnO was high amongst the individual minerals.

The mineral assemblage is likewise described by the exhaustion of bulk MnO.
Since Fe is incorporated into garnet before staurolite, staurolite growth was

hampered till Mn was consumed to a level where garnet growth ceased. This
decreased the competition for Fe, allowing for textures described in Appendix B

to develop between minerals garnet, staurolite and andalusite.
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CONCLUSION

Only from chemical analyses and petrological descriptions can the
relationships between mineral assemblages be exposed, for small scale assemblages.

Accurate sampling of the mineral assemblage and its corresponding composition
provide data which permit the application of theoretical models, if these models are not
sufficient for decribing the minerals then further considerations must be made. The
influence of neglected components must be incorporated into model systems to make

them adequate for describing “real” rocks.

The failure of pseudo-sections (figs 4, 5 and 11) of Dymoke and Sandiford
(1992) to describe the prescence of garnet bearing pelitic rocks with garnet absent rocks
is attributable to small amounts of MnQ present in the systems, that was not accounted
for in their calculations.

Projections of mineral assemblages onto AFM planes demonstrate the
necessity for the involvement of neglected components. From bulk rock chemical
analyses and petrology a relationship is observed between the component MnO and
garnet. This relattonshiip is highlighted by projections into the AFMn system, which

clarify mineral assemblage congectures that arise from AFM projections.

This relationship is exposed further from the comparison of MnO profiles

across garnet crystals of selected samples. This demonstrates that small amounts of
MnOQ are able to displace assemblage predictions for particular bulk Fe contents.

The data support predictions by Dymoke and Sandiford (1992) that the
prescence of small amounts of bulk MnQ are able to stabilize garnet bearing rocks with
garnet absent rocks.

Thus with the consideration of minor components and their proportions
many small scale mineral assemblage relationships not described by models can be
sufficiently described.
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Appendix A-

Maps are provided that show the location of the assemblages and their
relationship to each other. Exerts from a general mineral assemblage map
demonstrate the complexity of the mineral assemblages in the field. The
diffuculty of mapping these terrains is demonstrated by the exerts from
Map 1. Outcrops appear far and distanced from each other in the field,
making correlation of “continuous” outcrop over a large scale difficult.

Page 57 of 92




I dVIA

BEOH e

wayshs sanY

L7 ;1 ¥ p—

Kemaviq

uiises-ynos abere2in Y
puan

[eo1BojOuK] PRMBFUY ~w.

dousno pasodxa oy E
AUy oouEWIUEY @W d0J2N0 JWeUMIOP ZUEND D

LWEDER

sBuBBIp sumy nh- SUUN JBUILOP 3)|ShRpUY .

1y [4)

I 0oL o =

/

v3dv aiaid

wy 2

F0S

N,

»

.Nn_Sa_IlII'\.
311§ A1dAYS e

_—

~
Y
Do

LT T T T N

S

b

L R Y N
shes s s R s e N
VR L S A

o on w
P TR LN
L A L L

LR

bV W L L N

"l.'\."\.\."l.\\.\\

OOLNYRINV

L1k

SO ST T S A

VIvHLSNY HLNOS
‘VIHY OOLNVINNY
dH1 40 S3OVIENISSY
“IVHANIN

Page 58 of 92




Cross section of assemblages near sample site,
showing broad variation in mineral proportions
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APPENDIX B
PETROLOGY OF THE SAMPLES

The dominant mineral assemblage for the sample space is;
andalusite+staurolite+garnet+biotite+muscovite +quartz

The mineral proportions vary across the sample space in response to variable

compositions, these proportions were calculated from point counting of solid mineral

appearances.

The sample space is 60cm wide and was divided up into 18 different sections based upon

mineral assemblage variations observed in the field. Petrological examination of samples

as thin sections was essential for the determination of the equilibrium relationships

between the minerals present (Appendix B).

Timing of the porphyroblast growth relative to previous deformation events can be

observed in the mineral inclusion patterns.

General mineral relationships

The garnet phase can be seen to be texturally early, from comparison of the
inclusion patterns contained within the boundaries of the minerals in the samples. The
staurolite is the next mineral to appear, where it grows with the garnet. Andalusite is the
last of the minerals to develop, this is indicated by the inclusion patterns that mimic the

enveloping foliation.
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SLIDE 104a
The minerals present are;
and st bi mu qtz.
The modal proportions of minerals present are;
andalusite=20%
staurolite=~5%
quartz=25%
biotite=25%
muscovite=~25%
H.S. Light grey, fine quartz-biotite-muscovite matrix, with large (1.0cm)
andalusite porphyroblasts and small (3mm) regular shaped staurolite crystals.
T.S. The andalusite and staurolite growth appear synchronous with deformation.
The staurolite appears to have grown first, since its inclusion patterns are
slightly different to the surroundings. Whereas inclusion patterns in the
andalusite are very similar to the cleavage giving the implication that cleavage
controlled the porphyroblast growth. The size of andalusite are greater than

lcm.,
SLIDE 104b

The minerals present are;

st and gt bi gtz

The modal proportions of the minerals present are;
andalusite=20%
staurolite=5%
garmet=1%
biotite=20%
muscovite=25%
quartz=25%

opaques=1-2%
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H.S. Light grey, fine quartz-biotite-muscovite matrix, with large (1.5cm)

andalusite porphyroblasts and staurolite (0.5 cm) crystals.

T.S. The garnet growth appears early and associated with the matrix, the andalusite
and staurolite phases appear to have formed early in the deformation, since
the biotite and muscovite matrix is folded around them. Late stage chlorite is
observed to grow off of the andalusite rims, it is also observed to grow

across the biotite-muscovite matrix, in no orientation. Late stage muscovite is
seen to replace the andalusite.

SLIDE 104c
The minerals present are;

st and gt bi gtz.

The modal proportions of the minerals present are;
andalusite=15%
staurolite=5%
gamet=1%
biotite=25%
muscovite=2%
quartz=25%

H.S. Large andalusite (<1.0 ¢cm) porphyroblasts dominate the sample, they are
contained within a strongly foliated biotite matrix. Staurolite porphyroblasts
(=0.5cm) are distributed amongst the andalusite in random orientation.

T.S. Andalusite appears to be late stage mineral development since the inclusion
patterns are similar to those of the surrounding matrix. The staurolite exhibit
variable inclusion pattern morphologies indicating that growth occurred over
a much longer period of deformation, and earlier in deformation. The garnet
is “small” (>0.05cm) and located amongst the matrix, close to the andalusite
porphyroblasts.
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SLIDE 104d

The minerals present ate;

st and gt bi qtz.

The modal proportions of the minerals present are;
andalusite=20%
staurolite=10%
gamet=1%
quartz=10%
biotite=15%
muscovite=40%
opaques=3%

H.S. Andalusite (=1.0cm) is the dominating porphyroblast in the sample section,
staurolite (>0.7cm) is distributed amongst the andalusite. A quartz vein (late
stage) cuts through the sample area but does not appear to have altered the
minerals in any way. Garnet does not appear to be present, however thin-
sections disprove this.

T.S. Like all samples of this series the fabric development demonstrates periods of
intense deformation, with heavily crenulated to warped fabric. These periods
of deformation are preserved in the developing porphyroblasts. The timing of
the mineral growth is reflected in the textural relationships between the
minerals, ie. garnet “inside” the boundaries of andalusite, or reside next to
staurolites of different inclusion patterns.

SLIDE 105i

The minerals present are;

st and gt bi gtz.

The modal proportions of the minerals present are;
andalusite=10%
staurolite~=10%
gamet=4%

Page 67 of 92



quartz=55%
biotite=7%
muscovite=12%

H.S. The modal proportion and size of staurolite can be seen to increase relative to
the previous samples. Andalusite porphyroblasts are still quite large, and
garnet is not evident.

T.S. The andalusite porphyroblasts are replaced by a large percent of retrograde
muscovite, the andalusite still exhibits inclusion patterns similar to the
surrounding fabric. The staurolite, similar to the previous samples has
variable inclusion patterns which represent its syn-deformational growth.
Garnet is small (>0.0.05cm) and located in and amongst the rest of the
mineral assemblage, often with either andalusite or staurolite.

SLIDE 105ii

The minerals present are;

st and gt bi gtz.

The modal proportions of the minerals present are;
staurolite=25%
gamet=5%
quartz=30%
biotite=25%
muscovite=5%

H.S. The distinct lack of andalusite and the increase in staurolite in conjunction
with the biotite make the appearance of this rock very different to those
described before. It is a highly crenulated rock defined by biotite, in which
crystals of staurolite and garnet have developed.

T.S. Many stages of growth are reflected by the variable inclusion patterns
contained within the staurolite and garnet. The timing of growth, as outlined
in the text, is a function of the bulk rock composition. Garnets have inclusion
patterns oblique to the fabric, and at high angles to the inclusion patterns in

Page 68 of 92



staurolite. This mineral growth reflects the bulk composition dependency as

garnet develops early, before staurolite (as shown by its inclusion patterns).

SLIDE 105e

The minerals present are;

st and gt bi gtz.

The modal proportions of the minerals present are;
stanrolite~35%
andalusite=5%

garnet=6%
quartz=25%
biotite=25%

H.S. Very similar to the previous sample, except that there is a minor amount of
andalusite present. Otherwise the rock is very dark (due to the biotite) and
quite dense, the staurolite porphyroblasts appear randomly orientated
amongst the fabric.

T.S. The staurolite growth was synchronous with late garnet growth, andalusite
growth appears late. The timing of the andalusite growth can be gauged by
the inclusions in the andalusite since they are all parallel to the external
foliation. The gamet present appears associated with the matrix and not with
other phases, the size of the garnet porphyroblasts is approximately 1mm, the
andalusite size is about Smm.
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SLIDE 106a
The minerals present are;

g st bi gtz

Modal proportions of minerals present are;
staurolite~5%
garnet=40%
quartz~25%
biotite=25%

H.S. Appears as a dark highly “laminated” rock due to the intense biotite fabric
development, the garnet which is nearly 1.5mm in diameter resides in
between the biotite “laminations”. Biotite cleavage dominates the matrix of
this sample, with quartz occurring between the biotite foliations, garnet
appears associated with the biotite foliation. The minor amount of staurolite
occurs in and amongst the matrix. _

T.S. Staurolite growth appears early, with the inclusion morphology opposing that
of the external foliation. The most distinguishing feature of this sample is the
modal proportion of the garnet, which is greater than other samples. The
sizes of garnet crystals range between 1.5mm and 2mm.

SLIDE 106b

The minerals present are

g st bi gtz mu

Modal proportions of the minerals are;
st=40%
gt=53%
qtz=30%
bi=20%
mu=15%
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H.S. Staurolite growth is most prolific in this sample, late stage biotite foliation is
wrapped around the earlier formed porphyroblasts. Garnet is not seen in the
hand specimen.

T.S. A number of different growth stages are observed for both the garnet and
staurolite, which are defined by the inclusion morphologies of the minerals.
Early phases recording inclusion patterns different to the present matrix
foliation are seen, garnets that developed later contained inclusion patterns
stmilar to the present foliation.

SLIDE 107a

The minerals present are;

g st bi gtz

The modal proportions of the minerals are;
staurolite=20%
garent=40%
biotite=25%
quartz=20%

H.S. The rocks overall appearance is one of dissemination, where biotite fabric is
“broken” up by the developing phases of garnet and staurolite. The garnet
crystals become obvious in the hand specimen at this sample, a they reach
sizes around 2mm. The staurolite does not appear “well” developed and is a
reduced phase in this sample.

T.S. The gamnet lack any inclusion patterns and appear morphologically different o
those previously described, the staurolites contain minor inclusion patterns
which reflect the stress field in which they developed. The mineral
development appears to be confined along the biotite laminations and so the
phases do not grow uncontrolled.
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SLIDE 107b

The minerals present are;

g st bi gtz

The modal proportions of the minerals are;
staurolite=35%
garent=15%
biotite=20-25%
quartz=20%
opaques=5%

H.S. The hand specimen is very dark in colour , owing to the strong biotite fabric
development and the garnet contained in the fabric. The distinguishing feature
of this sample is the staurolite mineral contained in it, which is different to
those previously discussed.

T.S. Late stage staurolite development has deformed the previously existing biotite
fabric during its growth. Its growth occurred after the garnet formed and is
separated from the gamet by the biotite fabric. A growth rim of biotite occurs
inside the rim of the staurolite which indicates at least two phases of growth.

SLIDE 107¢
The minerals present are;
g st bi gtz
The modal proportions of minerals are;
staurolite~12%
garnet=40%
quartz=25%
biotite=25%
H.S. Biotite foliation is a dominant feature of this sample, in which gamet appears
to have grown, (a feature similar to 107a). Garnet appears large (2-2.5mm)
and is quite visible in the hand specimen.
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T.S. .Gamnet appears associated with the biotite foliation, which dominates the
fabric of the rock. The garnet sizes are at their largest in the sample space, but
seem to be confined by the biotite foliation. Chlorite and muscovite overgrow
the matrix, the chlorite occurring with a radial texture.

SLIDE 108

The minerals present are;

g st bi gtz mu

The modal proportions of minerals are;
staurolite=25%
garnet=10%
quartz=35%
biotite=25%
muscovite=10%

H.S. The staurolite and biotite are the most distinguishing features of this sample
giving it its dark colour. Staurolite is contained in amongst the biotite-quartz
fabric.

T.S. The staurolite shows variable inclusion patterns, often at completely different
angles to the fabric owing to its syn-deformational development. The garnet
appears texturally early in comparison to the staurolite interpreted from its
inclusion pattern variation.

SLIDE 108s

The minerals present are;

g st bi gtz mu

The modal proportions of minerals are;
staurolite~40%
garnet=15%
quartz=30%
biotite=25%
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H.S. Very similar to 108, however the staurolite crystals are much larger and
deform the fabric to a greater extent.

T.S. The staurolite porphyroblasts exhibit variable inclusion patterns, so to do the
garnets, this indicates syn-deformational growth. A number of crystals have
inclusion patterns that are folded directly into the fabric, mimicking it
identically. Garnet grew before the staurolite and were later enveloped by the
staurolite a it grew, this is implied by garnets within the rims of staurolite.

SLIDE 109

The minerals present are;

st g bi gtz mu

The modal proportions of the minerals are;
staurolite=35%
garnet=15%
quartz=25%
biotite=~15%
retro-mu=10%
retro-chl7=10%

H.S. Similar to samples 108 and 108s though the staurolite porphyroblasts are
smaller, variable inclusion patterns are exhibited in the crystals, indicating
syn-deformational growth. An alteration zone can be seen to cross cut the
sample.

T.S. Morphology of the crystals is no different to those of samples 108 and 108s,
except for the above mentioned alteration zone. This zone is noted on a large
scale by Lindqvist (1969) as a chlorite alteration zone, in thin section this part
is devoid of staurolite, late stage muscovite overgrows the matrix. The garnet
size 1s about “average” (=1 mm), and has some inclusion patterns, though not
indicative of early growth.

Garnet appears to have rims devoid of inclusion trails which implies later
stages of growth. Reaction textures infer that some retrograde phases formed
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at the expense of other phases. It appears as though late muscovite may have
replaced andalusite porphyroblasts in places, and in doing so has adopted its
poikiloblastic texture.

SLIDE 110
The minerals present are;
and g st bi mu qtz
The modal proportions of minerals are;
andalusite=5%
staurolite=15-20%
gamet=5%
quartz=25%
biotite=25%
muscovite=10%
feldspar=5%
opaque=1%
H.S. Appears similar to samples described before, however the presence of
andalusite is noted
T.S. The andalusite appears has been overgrown by muscovite, this is possibly one
of the transition stages in the formation of the porphyroblast of muscovite
seen in the previous slide. Matrix muscovite is dominant in places,
particularly between staurolite crystals, inferring that it was not consumed
during phase production (reaction Chapter 3). Garnets appear to have
nucleated in muscovite rich areas, some of these garnet are now included in
staurolite.
Garnet displays distinct inclusion-free rims, which implies that the reaction
producing staurolite changed in some way so that garnet continued to grow
after its original formation. The modal proportions of muscovite, biotite and
quartz vary throughout the matrix. Overall the proportions of muscovite
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biotite and quartz are equivalent. The garnet sizes are around Imm in
diameter, andalusite porphyroblasts size is around Smm across.

SLIDE 111
The minerals present are;
and + st + g + bi + qtz + mu + fsp
The modal proportions of minerals observed,
andalusite=20%
staurolite=25%
garnet=2%
quartz=20%
biotite=20%
muscovite=15%
potassium feldspar=5%

H.S. The andalusite and staurolite assemblages comprise approximately 50% of the
sample. The andalusite porphyroblasts occupy the greatest percentage of the
slide. Quartz inclusions make-up over 70% of andalusite porphyroblasts. The
andalusites are approximately lcm in diameter and most of the
staurolites=5mm in diameter.

T.S. Garnet and feldspar appear amongst the matrix, many of the garnets bearing
different inclusion patterns to the matrix foliation demonstrating
syndeformational growth.

The garnet size is approximately 0.05mm, the andalusite size is 10mm
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Appendix C

Electron Microprobe Analysis:

. Seventeenf/:;iﬁn sections were coated with approxiamately 250 microns of
! L/

cmboﬁfor micro-probe analyses that were carried out using KEVEX 7000 Series
energy &ispersive system (E.D.S.) attached to a JEOL 733 Superprobe.

An accelerating voltage of 15KV and a beam current of 3nA were used during
the analysis of the samples and each spectrum was collected over a 60sec time period.
Callibration of the KEVEX EDS system was carried out using pure rhodonite sample.

Detection limits for the analysed elements are quite variable and depend upon
several factors. The best estimate for all elements analysed is 0.1%.

Samples Analysed

sample 104a

sample 104b

sample 1051

sample 105¢

sample 106a

sample 107¢

sample 107b

sample 108

sample 108s

sample 109

sample 110

sample 111
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APPENDIX D

1. Sample Preparation for XRF:

The method of preparation is as follows;

a. Weathered surfaces were removed from the rock prior to crushing in the
jaw crusher.

b. The crushed sample was then milled in a tungsten carbide mill for 45->60
seconds, depending on the samples mica content,

c. Approximately 2 grams of milled powder was ignited to 960 degrees for 12
hours to determine percentage loss of volatiles.

d. Approximately 1 gram of ignited powder was weighed out with
approxiamately 4 grams of flux. This mixture was fused into discs for
whole rock analysis using X.R.F. techniques.

e. Approximately 5 grams of unignited rock powder was mixed with 0.7ml of
P.V.A. solution and made into pressed pellets, using boric acid as a
support medium, for trace element determination.

2. Analytical Method
Whole rock analyses were determined by X-ray fluorescence
Major Elements
The following major elements were analysed for using a programmable
Phillips PW 1480 X-ray spectrometer: SiO3, Al03, Fe203, MnO, CaO, Na0, K20,
TiO,, P205 and SOs.
Trace Element Analysis
The following trace elements were analysed for using a programmable
Phillips PW 1480 X-ray spectrometer; Y, Sr, Nb, Zr, Pb, U, Ga, Zn, Ba, Sc, Cr, V, Co,
Ce, Nd, La, Cu and Ni. *

3. Results

A number of samples give low results, this can be attributed to the presence of
H,0 and OH in the minerals, i¢. the proportion of these components in staurolite is not
certain. Thus the samples with significant modal abundances of staurolite ie.107b, may
have low bulk chemical totals.
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NEW BULK 4/11

104a 104b 104c 104d 105i 105ii 105¢e 105w 106a 106b
Si02 [ 61.91 57.07 61.59 62.2 66.42 64.17 62.91 62.66 56.69 61.67
Al203 | 17.96 1717 17.2 18.92 16.44 16.97 13.23 18.35 14.85 15.98
FeQ 6.89 7.46 846 7.72 735 8.18 11.21 8.95 16.08 10.24
MO 0.07 0.08 0.1 c.08 0.12 0.11 018 0.11 0.5 0.09
MO 3.43 345 3.7 312 272 2.89 461 3.05 3.24 3.54
Ca0 1.05 0.66 042 042 0.21 0.24 024 025 0.52 0.21
Na20 | 1.38 0.83 051 038 0.17 0.2 0.5 019 0.34 0.18
K20 3.64 367 382 32 263 3.05 38 3.16 3.23 3.46
TiO2 | 0.76 0.77 0.77 0.84 071 077 063 0.84 0.63 0.75
pP205 | 0.15 0.14 0.15 0.018 0.13 0.16 0.13 0.17 0.1 0.14
SO3 0 0 0 0 0 0 0 0 0.01 0
Lo 1.65 169 147 178 1.68 1.6 1.76 111 2.36 1.35
TOTAL%| 98.89 92.99 98.19 98.68 98.58 958.34 98.65 98.84 98.55 97.61
Y 30.5 33.1 158 29.8 27.7 30 346 32.2 335 30.3
Sr 111.8 74.6 38.7 245 156 16.5 9 143 783 17.3
Rb 177.4 182.2 185.6 166.6 122.7 138.6 189.2 152.4 1926 175.3
Nob 156 17.1 161 16.6 11.4 13.9 14.2 15 15.2 15.2
Zr 143.8 147.7 170.8 172.8 137 1758 150 192.6 136.6 167.8
Th 151 158 152 174 146 16.3 111 16.6 14.1 17
Pb 5.1 3.5 0.3 2.6 1.8 2 2.1 1.5 3.3 1
u 1.7 1.4 5.2 3.8 3.1 2.9 3.8 4.2 2 5.7
Ga 28 29.4 278 31.7 26.9 26.7 19.5 283 24 27.2
Cu 3 2 1 29 41 48 55 52 274 70
Zn 45 53 60 75 8% 75 34 93 47 63
Ni - 64 66 61 58 45 43 61 51 25 56
Ba 969 969 1112 1089 842 10981 723 1163 913 8997
Sc 18.8 19.9 18 22.4 159 175 111 20.3 10.6 18.5
v 132.2 139.8 130 150.1 113.2 1217 101.4 139.1 122 127.2
Co 3568 31.9 394 414 48.6 48.4 48.2 36.1 17 411
Ce 64 72 25 63 80 62 50 77 68 67
Nd 27 29 7 28 29 26 18 33 16 27
La 30 31 10 32 35 30 21 38 26 28
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NEW BULK 4/11

107a 107b 107c 108 108 s 109 110 111

Sioz2
Al203
FeO
MO
MgO
Ca0
Na20
K20
Tio?2
P205
S03

LOI

61.61 49.95 62.14 58.05 58.19 58.5 59.19 58.71
13.11 12.33 12.67 16.73 19.64 16.79 18.92 19.37
14.37 20.80 14.20 11.29 11.63 11.14 10.02 9.86
0.4 026 041 009 0.1 0.09 0.12 0.1
273 239 3.32 369 358 3.61 347 3.64
0.38 0.22 0.36 0.27 0.21 027 025 0.21
0.19 0.13 0.14 0.34 0.25 033 0.28 0.29
2.82 242 3.03 353 3836 3.47 372 412
0.46 0.45 049 0,76 079 076 076 0.79
0.1 0.3 0.09 0.07 009 0.07 0.14 0.14
0.02 0.03 0.02 0 0 0 o 0

2.7 4.13 217 138 1.14 119 1.256 1.31

TOTAL%

98.89 93.41 99.04 96.20 98.98 96.22 98.12 98.55

30.2 20.5 23.7 259 27.7 28.8 29.4 284
61.8 88.4 727 745 66.6 18.4 20.8 18.8
148.2 141.1 164.4 195.6 179.7 177.2 178.2 182.7
115 10,9 127 17.2 156 165 157 16.7
107.7 211.3 96.4 137.7 1253 137.4 139.5 127.4
8.8 10.6 101 16.5 17.2 16.¢ 15.7 13.5
3.1 4.3 3.2 5.5 0.2 6.2 0.4 1.2
2.2 8.9 4.5 3.6 2.9 5.3 3.5 3.8
229 246 19.6 284 313 26.9 28.4
260 703 203 83 146 62 27.3 41
33 85 29 95 112 100 56 72
17 22 19 57 53 60 83 64

703 597 820 914 900 862 1229 1353
8.1 9.9 10,8 19.2 21 19.2 194 2041
86.8 141.1 110.2 137 143.5 139.5 145.1 145
19.5 32 29 2.5 355 24.8 30 25.9
61 62 62 85 89 86 71 59
18 14 18 33 33 32 29 22

26 27 28 40 43 40 32 25
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