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65 years of meteor radar research at Adelaide 
Iain M. Reid1,2 and Joel Younger1,2 

1 ATRAD Pty Ltd, Adelaide, Australia, 5031 
ireid@atrad.com.au 

2 School of Chemistry and Physics, University of Adelaide, Australia, 5005 

Over 65 years of radar research using meteor radar at Adelaide University in Australia is very briefly reviewed. 
 

1 Early days 

Radio studies of meteors began at Adelaide in 1949, and 
like many radio and radar based research efforts of that 
era, grew out of wartime radar research. Lenard Huxley 
arrived at Adelaide University from the University of 
Birmingham in 1948 to take the Elder Chair of Physics, 
and began revitalizing the Department, and establishing a 
number of research areas (Crompton, 2007)1. He was 
supported in this by the new Vice Chancellor, A.P. Rowe. 
Both Rowe and Huxley had been at the 
Telecommunications Research Establishment (TRE) 
during the Second World War. Rowe had been Chief 
Superintendent, and Huxley had established and headed 
the radar training school for both civilian and service 
personnel in the TRE.  In another interesting connection 
to wartime research, Adelaide graduate Sir Mark 
2OLSKDQW� KDG� GUDZQ� +X[OH\¶V� DWWHQWLRQ� WR� WKH�

advertisement for the position (Blake, 2010)2. 

One of the new research areas to be initiated in physics 
was radar meteor astronomy, and Huxley asked Graham 
Elford to pursue this topic. After the first measurements 
of upper atmosphere winds inferred by the drift of meteor 
trails were reported by Manning et al. (1950) at Stanford, 
the Adelaide effort was broadened out to include the 
study of the upper atmosphere.  This became Graham 
(OIRUG¶V� PDLQ� UHVHDUFK� DUHD�� ,Q� ������ WZR� Honors 
students, Des Liddy and Alan Weiss, joined the group, 
followed by PhD student David Robertson at the 
beginning in 1951.  Robertson had previously worked 
with Oliphant at Birmingham, and brought considerable 
technical expertise to the group (Blake, 2010)2. 

Robertson was an amateur radio ham, and it was his 
personal 500W transmitter located at his home at Mount 
Lofty, together with receivers in Adelaide, Burra and 
Kulpara, that was used to make the first observations of 
meteor trails by the group in 1951. Subsequently, he 
developed the Adelaide meteor wind radar together with 
Elford and Liddy, the basic design concepts of which 
continued to be used at Adelaide until the mid-����¶V��

and which were also used later for the meteor radar at 
Atlanta by Bob Roper (Roper, 1984). This system 

                                                           
1 http://adb.anu.edu.au/biography/huxley-sir-leonard-george-
holden-516/text22851 
2 https://physsci.adelaide.edu.au/about/physics/history/document
s/physics-in-adelaide-the-1950s.pdf 

operated at 27 MHz and used a 240 W continuous wave 
(CW) approach. Robertson submitted his PhD thesis on 
µ5HIOHFWLon of radio waves from meteor trails, with 
applications to the measurement of upper atmosphere 
ZLQGV¶��LQ�$XJXVW��������*UDKDP�(OIRUG�IROORZHG�ODWH�LQ�

1954 with his thesis on the investigation of winds in the 
upper atmosphere.  Robertson and Elford (1953) 
published the first  

 

Figure 1 ± the Upper Atmosphere Group 1962. Back row: R. 
Roper, J. Welsby, C. Nilsson, A. Bastian, B. Stone. Front row: 
Dr. E. Murray, Miss J. Allister, Miss M. Chapman, Dr. G. 
Elford. 

 
observations of upper atmosphere winds using the meteor 
technique after those of Manning et al. (1950). In March 
1955, this version of the Adelaide Meteor wind radar was 
decommissioned. 

Beginning in early 1954, with funding from the 
Australian Antarctic Division, effort was directed to the 
development of a new radar to measure upper atmosphere 
winds in the Antarctic. The new pulsed radar system for 
this work (see Figure 2) was developed by Eric Murray. 
In December 1956, Carl Nilsson, a very recent BSc 
graduate, took the equipment to Mawson Base and 
operated it there during the International Geophysical 
year. Murray analyzed the data for his PhD thesis. 

The work on meteor astronomy continued along with the 
upper atmosphere winds work.  Nilsson later completed a 
PhD on meteor orbits which used some of the Mawson 
radar data.  With support in the form of radar equipment 
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provided by Sir Bernard Lovell at the University of 
Manchester, Alan Weiss set up an independent radar 
system to study meteor showers. This work formed part 
of his PhD thesis, which he submitted in May 1954. He 
published his work on the distribution of the orbits of 
sporadic meteors in Weiss (1957). 

2 New field sites 

St Kilda 

The Mawson meteor radar was very difficult to maintain, 
and it was decommissioned in 1959. Effort had shifted to 

 

Figure 2 ± The Mawson meteor radar. The first upper 
atmosphere wind measurements on the Antarctic Continent 
were made using this equipment. 

 
the development of a new dedicated field site at St Kilda, 
north of Adelaide, and a new radar, with the transmitter 
located in Adelaide, and the main receiving station at St 
Kilda was completed in 1958.  The arrangement is shown 
in Figure 3, and one of the remote receiving sites is 
shown in Figure 5. The Upper Atmosphere Group in 
1962 is shown in Figure 1. 

Highlights of the work produced using this radar included 
the determination of meteor orbits, measurements of 
µWXUEXOHQFH¶� LQWHQVLW\�� DQG� ORQJ� WHUP� PHDVXUHPHQWV� RI�

upper atmosphere winds. Nilsson¶s work (Nilsson, 1964) 
resulted in the first set of measurements of meteor orbits 
in the southern hemisphere (2200 in total). Most orbits 
were found to lie close to the plane of the ecliptic.  Bob 
Roper was the first person to measure upper atmosphere 
variability at small scales (< 2 km). His measurements 
were interpreted as being related to the turbulent 
dissipation rate at 93 km, but are more likely due to small 
scale wave motions rather than actual turbulence. 
Nevertheless, they were a valuable contribution to better 
understanding the dynamics of this region. 
Interferometric measurements of the mean wind field (see 

Figure 4 and Figure 6) continued using this radar until 
the mid-����¶V�� DOWKRXJK� LW� ZDV� UXQ� LQ� campaign mode 
after 1972.  Work at the St Kilda field site ceased in the 
mid-����¶V� DQG� ZDV� UHORFDWHG� WR� WKH� QHDUE\� %XFNODQG�
Park field site. 

 

Figure 3 ± The multi-station system in 1958. The receiving 
main site at St Kilda had two supplementary receiving sites 
about 5 km East and North and the data were sent to the main 
station via FM links. 

 

Figure 4 ± The interferometer used for wind measurements at 
the St Kilda field site. Each antenna was a half-wave dipole and 
the direction cosines of the sky wave were deduced from the 
relative phases on the five antennas. 

Buckland Park 

Basil Briggs joined the Department in 1962. He had been 
a Junior Scientific Officer at the TRE between 1942 and 
1946 before joining the Radio Research Group at the 
Cavendish Laboratory, Cambridge, where he worked 
from 1946 to 1961. Together with Graham Elford, he 
developed the large MF/HF radar array at Buckland Park 
(Briggs et al., 1969). This versatile array was used for 
investigations of the ionosphere, the neutral atmosphere 
and of meteors observed at both 2 and 6 MHz.  Examples 
of the latter work include observations of 2 MHz meteor 
echoes (Brown, 1976), their height distribution (Olssen-
Steel and Elford, 1987), and the measurements of winds 
using 2 MHz meteor trails (Tsutsumi et al., 1999). 
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3 Decline and rebirth of meteor wind 

radars 

 

Figure 5 ± Bob Roper and Carl Nilsson with receiving 
equipment at one of the St Kilda remote receiving sites. 

 

Figure 6 ± Six years of upper atmosphere winds measured using 
the St Kilda radar. 

Decline of meteor wind radars 

The closure of the St Kilda site and the dedicated meteor 
radar in the mid-����¶V�ZDV� W\SLFDO�RI�D�JHQHUDO�GHFOLQH�
of radar meteor upper atmosphere wind research around 
the world, and the measurement of upper atmosphere 
winds became more common by using partial reflection 
radars (see e.g., Reid, 2015). But some new meteor radars 
were developed in this period. For example, in the early 
����¶V�� WKH� 6RYLHW�9(7$� UDGDUV�ZHUH� GHYHORSHG� E\� WKH�

Kharkov Institute of Radio Electronics. These formed the 
basis of an extensive network, albeit one with no height 
information. This is briefly discussed by Roper (1984). A 
new meteor radar was also developed in Kyoto by Aso et 
al. (1979), but generally the technique fell from favor 
until the lDWH�����¶V� 

Rebirth of meteor wind radars 

Increased interest in using meteor trails for the 
measurements of upper atmosphere winds came 

following the advent of ST and MST radars. These 
powerful radars operating in the lower VHF band were 
designed to measure winds using the Doppler technique 
in the Stratosphere and Troposphere (ST), and for the 
most powerful radars, the Mesosphere (M) as well.  By 
piggybacking a dedicated data acquisition system onto 
these pulsed radars, their narrow beams could be used for 
meteor studies. One such system, MEDAC, was 
developed at the University of Colorado (e.g., Valentic et 
al., 1996) and used with a number of ST radars. 

 

Figure 7 ± The Camelopardalids 2014 Activity Map. The 
diamond is the pre-infall radiant, the solid contour is the full 
width half maximum (further details in Younger et al., 2015a). 

 
One issue with this approach is that because most meteor 
trails occur low in the sky, most meteor trails are detected 
in the radar sidelobes, and without interferometry, their 
actual location is indeterminate.  At Adelaide, the main 
beam of the radar was directed at 60° off±zenith, 
successfully avoiding this issue (e.g., Cervera and Reid, 
1995). 

A variation of this approach using an additional receiving 
only interferometer together with an MST radar was 
pioneered on the MU MST radar in Japan (e.g., Tsutsumi 
et al., 1994).  This was followed by the development of a 
new class of dedicated all-sky meteor radars using an 
interferometric approach and producing real-time winds 
LQ� WKH� ODWH� HDUO\� ����¶V� �H�J��� +ROGVZRUWK� HW� DO��� �������

This development was made possible by the ready 
availability of cheap powerful computers, and 
development of solid state transmitters and better data 
acquisition systems. These radars have now largely 
displaced the previously more common partial reflection 
radars used for measuring upper atmosphere winds. 

4 Recent work 

The 21st centrury has seen meteor radar become a 
standard tool for the routine measurement of upper 
atmospheric winds, with radars developed by ATRAD 
achieving detection rates in excess of 30000 meteors per 
day.  Ongoing wind observations continue to provide 
deep insights into the structure and dynamics of the 
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atmosphere and how the motions of air masses are 
coupled between the upper and lower atmosphere 
(Bossert et al., 2015). The ability to measure atmospheric 
conditions in the meteor region at higher temporal 
resolutions has facilitated the studies of mesospheric 
meteorology, exotic plasma behaviours, and detailed 
astronomical observations. A substantial breakthrough 
has been the implementation of the Fresnel transform 
technique, which provides high-accuracy meteoroid 
speeds, in addition to producing images of radar 
reflectivity along meteor trails (Elford, 2004; Holdsworth 
et al., 2007). 

Astronomy has followed a similar path to atmospheric 
observations, as broad surveys of shower activity 
(Younger et al., 2009) have given way to detailed 
investigations of individual showers. Individual showers 
have enabled the performance of radar techniques to be 
tested with known populations, further refining 
established practices (Younger et al., 2012).  The 
unprecedented detection of the Camelopardalids shower 
of 2014 (Younger et al., 2015b) was the first time that a 
new shower had been predicted prior to its first 
occurrence and demonstrated the ability of meteor radar 
data to be rapidly analysed in response to unusual events 
(see also Younger et al., 2016). 

New fields of research have been opened, as old 
assumptions have given way to a better understanding of 
meteor trail plasma.  Meteor radar echo durations have 
been found to be strongly affected by plasma 
neutralization at lower altitudes (Lee et al., 2013; 
Younger et al., 2014), which allows observation of the 
chemistry of the D-region of the ionosphere.  Inconsistent 
temperature estimates can now be explained (Cervera and 
Reid, 2000; Holdsworth et al., 2006), and new methods 
of using meteor radar to measure atmospheric density 
have been developed (Younger et al., 2015a). 

Moving forward, the future of meteor radar lies in the 
establishment of networks of radars to observe not just 
the conditions above a single site, but the motions of the 
atmosphere across large areas.  Together with Chinese 
colleagues, the utility of small meteor radars to 
investigate non-specular echoes and some aspects of 
plasma irregularities has been explored (Li et al., 2013).  
Advances in radar sensitivity and echo interpretation are 
allowing meteor radars to also be used to study the lower 
portion of the ionosphere, including sporadic E layers.  
The use of remote receiving sites, such as those used in 
the St Kilda radar is being reinvestigated using GPS 
locking, and is a promising new development for the 
measurement of wind fields over large regions.  
Astronomical applications will also benefit, as complete 
coverage of the celestial sphere is achieved, with the 
observations of multiple sites being assimilated into 
large-scale virtual observatories. 

5 Conclusion 

We have very briefly reported on more than 65 years of 
meteor radar research at Adelaide University.  A feature 

of the work has been observations both in Australia and 
Antarctica over that period, and of continuing innovation. 
The group is continuing to exploit the observations for 
measurements of temperature, density and scale heights 
in the upper atmosphere, and the use of remote GPS-
locked receiving sites. The Adelaide all-sky meteor 
radars have been commercialized, and there are an 
increasing number of meteor radars in China. 
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meteor radaŕ. Geophysical Research Letters, 42, 
6106±6111. 

Younger J. P., Reid I. M., Li G., Ning B. and Hu L. 
(2015b). ³Observations of the new 
Camelopardalids meteor shower using a 38.9 MHz 
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