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“Dreaming when Dawn’s Left Hand was in the Sky

I heard a voice within the Tavern cry,

’Awake, my Little ones, and fill the Cup

Before Life’s Liquor in its Cup be dry.’ ”

Omar Khayyam

Translated into English in 1859 by Edward FitzGerald
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Evolutionary algorithms are general problem solvers that have been successfully used

in solving combinatorial optimization problems. However, due to the great amount of

randomness in these algorithms, theoretical understanding of them is quite challeng-

ing. In this thesis we analyse the parameterized complexity of evolutionary algorithms

on combinatorial optimization problems. Studying the parameterized complexity of

these algorithms can help us understand how different parameters of problems influ-

ence the runtime behaviour of the algorithm and consequently lead us in finding better

performing algorithms. We focus on two NP-hard combinatorial optimization prob-

lems; the generalized travelling salesman problem (GTSP) and the vertex cover prob-

lem (VCP). For solving the GTSP, two hierarchical approaches with different neigh-

bourhood structures have been proposed in the literature. In this thesis, local search

algorithms and simple evolutionary algorithms based on these approaches are investi-

gated from a theoretical perspective and complementary abilities of the two approaches

are pointed out by presenting instances where they mutually outperform each other.

After investigating the runtime behaviour of the mentioned randomised algorithms on

GTSP, we turn our attention to the VCP. Evolutionary multi-objective optimization for

the classical vertex cover problem has been previously analysed in the context of pa-

rameterized complexity analysis. We extend the analysis to the weighted version of

the problem. We also examine a dynamic version of the classical problem and analyse

evolutionary algorithms with respect to their ability to maintain a 2-approximation.

Inspired by the concept of duality, an edge-based evolutionary algorithm for solving

the VCP has been introduced in the literature. Here we show that this edge-based EA

is able to maintain a 2-approximation solution in the dynamic setting. Moreover, us-

ing the dual form of the problem, we extend the edge-based approach to the weighted

vertex cover problem.
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Chapter 1

Introduction

Bio-inspired computing techniques such as evolutionary algorithms [41] are general

problem solvers that have been widely used in the last decades. Evolutionary algo-

rithms (EAs) are inspired from natural evolution that makes creatures suit their en-

vironment during generations. The main idea of these algorithms is to (randomly)

generate a number of solutions as the initial population, evolve some of them and re-

place the worst solutions of the population with new solutions that are better in terms

of fitness. The variation operators that make the new solutions from old solutions are

crossover and mutation and will be performed based on defined probabilities. This pro-

cess will make the next generation and repeating the whole steps for many times can

result in having a population with some solutions close to the optimum solution. These

algorithms have been used very successfully during last decades for a wide range of

applications such as combinatorial optimization problems.

Combinatorial optimization problems are the problems in which the solutions com-

prise a discrete set of variables and the goal is to find the optimal solution among the

feasible set of solutions. The travelling salesman problem (TSP) and the vertex cover

problem (VCP) are two well-known combinatorial optimization problems with sev-

eral applications. Many combinatorial optimization problems such as TSP and VCP

are NP-hard problems and need exponential time to be solved by a deterministic al-

gorithm unless P = NP . Therefore, metaheuristics, which are problem-independent

optimization techniques such as evolutionary algorithms, are usually used for solving

instances of these problems with large inputs.

In spite of the vast practice of evolutionary algorithms and other bio-inspired strate-

gies in different applications, the theoretical understanding of these algorithms is not

advanced. These metaheuristics [49] are introduced to find acceptable solutions for

difficult problems in reasonable time while they provide no guarantee for finding the

1



Introduction 2

optimal solution. They are based on large amount of randomness, which to a great

extent makes them able to search different parts of the search space. The great amount

of randomness involved in these algorithms makes their theoretical analysis challeng-

ing. Despite the research that has taken place in this field in the last two decades, the

working principle of these algorithms is not fully understood theoretically, and more

progress is needed to clarify how they can be improved. Most of the theoretical research

performed so far for bio-inspired algorithms, is on complexity analysis of evolutionary

algorithms and ant colony optimization. Results have been achieved for classical poly-

nomially solvable problems such as sorting, shortest path, minimum spanning trees

and maximum matching as well as for some of the best known NP-hard combinatorial

optimization problems such as vertex cover, makespan scheduling, and the travelling

salesman problem. [6, 69, 77, 88, 91, 111, 112, 114].

Computational complexity analysis deals with the runtime behaviour of the algorithms

with respect to the size of the problem instance. In some problems, the impact of

the value of other parameters that are defined in different instances of the problem

can also be investigated, in addition to the size of the input. This approach is called

parametrized complexity analysis [36] and helps measuring the hardness of a problem

instance in dependence of the studied additional structural parameters. In recent years,

a parameterized complexity analysis has been carried on evolutionary algorithms solv-

ing several combinatorial optimization problems [18, 36, 76, 77, 88, 112]. For example,

in [88], where the parameterized complexity analysis of the Euclidean TSP is studied,

all the nodes are divided into two groups: Outer nodes (convex hull nodes) and in-

ner nodes, and it is shown that when the number of inner nodes is not large, finding

the optimal solution takes polynomial time with respect to the total number of nodes.

Moreover, the authors of that paper have proven that under some reasonable geometric

constraints, a simple EA can also solve a convex instance of the problem in polynomial

time. In another work on parameterized complexity analysis [18], two evolutionary

approaches for solving the generalized minimum spanning tree are investigated. In

both approaches, the problem is split into two layers where the upper layer suggests

a sub-solution by means of an evolutionary algorithm, and the lower layer completes

the solution using a deterministic algorithm. In the presented analysis, it is shown that

one of the approaches can find the optimal solution in polynomial time, if the number

of clusters is small.

Theoretical understanding of metaheuristics such as evolutionary algorithms is impor-

tant for several reasons. First, understanding the potentials and limitations of EAs in

dealing with a problem helps us decide on selecting the proper solver for that problem.

Moreover, rigorous analysis can help in adapting the EA parameters and designing
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a better solver in a way that reduces the optimization time for our problem. Addi-

tionally, analysing different parameters of problem instances, can help us understand

which algorithm is more suitable for a specific instance of the problem and lead to new

identifications on the hardness of problem instances based on their parameters.

In this thesis, we conduct theoretical analyses of using local search and evolutionary

algorithms for two combinatorial optimization problems, namely the generalized trav-

elling salesman problem (GTSP) and the vertex cover problem (VCP). Hierarchical ap-

proaches (see Section 3.4 for a definition of hierarchical approaches) are quite popular

for solving the GTSP. We investigate local search methods and provide parameterized

analysis for simple evolutionary algorithms based on hierarchical approaches for this

problem. In order to find a lower bound for one of the approaches, we present a Eu-

clidean class of instances of the problem that cannot be solved in less than exponential

time. Showing lower bounds for the Euclidean travelling salesman problem has been

shown to be quite difficult. Englert et al. [42] have shown that there are instances of

the Euclidean TSP for which finding a local optimal solution takes exponential time by

means of a deterministic local search algorithm based on 2-opt. To our knowledge, an

exponential lower bound for solving TSP by a stochastic search algorithm is available

only for ant colony optimization in the non-Euclidean case [75].

After the analysis of GTSP, this thesis continues with investigating the behaviour of lo-

cal search and evolutionary algorithms on the vertex cover problem. Theoretical anal-

ysis of evolutionary algorithms on this problem has been carried on in the last decade

to an extent, with results for single-objective as well as multi-objective approaches (see

Section 2.4 for a definition of multi-objective evolutionary algorithms). Friedrich et

al. [48] have shown that the single-objective evolutionary algorithm (1+1) EA can not

achieve a better than trivial approximation ratio in expected polynomial time. Further-

more, they have shown that a simple multi-objective evolutionary algorithm gives a

factor O(log n) approximation for the wider classes of set cover problems in expected

polynomial time. Further investigations regarding the approximation behaviour of

evolutionary algorithms for the vertex cover problem have been carried out in [47, 95].

Kratsch and Neumann [77] have studied evolutionary algorithms and the vertex cover

problem in the context of parameterized complexity. They have shown that a sim-

ple multi-objective evolutionary algorithm with a problem specific mutation operator

is a fixed parameter evolutionary algorithm (see Section 4.6.1 for a definition of fixed

parameter evolutionary algorithm) for this problem and finds 2-approximations in ex-

pected polynomial time. Jansen et al. [70] have shown that a 2-approximation can also

be obtained by using an edge-based representation in a simple evolutionary algorithm
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combined with a specific fitness function which is formulated based on matchings (Sec-

tion 3.3.1 includes the definition of a matching and how to derive a 2-approximation

vertex cover from a maximal matching).

In this thesis, the investigations on multi-objective evolutionary algorithms carried out

in [77] are extended to the weighted vertex cover problem with integer weights. Fur-

thermore, we investigate the edge-based representation of Jansen et al. [70] in connec-

tion with different fitness functions according to their approximation behaviour in the

dynamic setting. The edge-based representation for this problem is inspired by the

matching problem which is the dual problem of the vertex cover problem. The concept

of duality is used in this thesis in a more general form to introduce an evolutionary

algorithm that finds 2-approximations for the weighted vertex cover problem.

The outline of the thesis is as follows. We introduce evolutionary computation and lo-

cal search methods in Chapter 2. A general definition of combinatorial optimization

problems and the exact definition of the problems that are investigated in this thesis

are presented in Chapter 3. The methods of analysing bio-inspired computing that are

used in our theoretical analysis are presented in Chapter 4. Chapters 5 to 9 include the

results of our theoretical analysis. Local search methods and evolutionary algorithms

for GTSP are investigated in Chapters 5 and 6 respectively. The investigations on multi-

objective evolutionary algorithms for the weighted vertex cover problem is presented

in Chapter 7. We analyse the edge-based representation of Jansen et al. [70] with dif-

ferent fitness functions in the dynamic setting in Chapter 8. The concept of duality is

used in an evolutionary algorithm for finding 2-approximations of the weighted vertex

cover problem in Chapter 9. Finally, Chapter 10 presents the highlights of the study

and concludes the thesis.



Chapter 2

Randomised Local Search and

Evolutionary Computation

2.1 Introduction

Randomised local search and evolutionary computation are general problem solving

methods that are widely used for NP-hard combinatorial optimization problems. The

aim of using these methods is to provide good solutions for a problem that cannot be

solved to optimality in polynomial time with existing algorithms. These methods are

two of the broader class of stochastic search algorithms which search the decision space

based on random selections.

As general problem solvers, these two approaches can be adapted to different prob-

lems, and this adaptation is easier when the search space of the problems are similar.

We denote the search space (the decision space) of the problem by S. Randomised lo-

cal search and evolutionary computation are iterative approaches that start with one (or

more) solution(s) which are usually chosen at random, and come up with one (or more)

new solution(s) in each iteration. The new solutions which are search points in S need

to be evaluated to guide the algorithm in searching good regions of the search space.

The evaluation of a search point x ∈ S, is done by a fitness function f(x) : S → R,

with R being the set of all possible values. This fitness function has to use the problem

domain knowledge for giving sound and useful evaluations.

In this thesis, randomised local search and simple evolutionary algorithms are inves-

tigated from a theoretical perspective. This chapter, includes the definition of these

approaches. We first describe local search in a general sense and introduce randomised

local search in Sections 2.2 and 2.2.1 respectively. Then we give a brief description of

5



Randomised Local Search and Evolutionary Computation 6

evolutionary algorithms, their components, and their subclasses in Section 2.3. We go

into more details of a simple evolutionary algorithm called (1+1) EA, which is analysed

for solving a couple of combinatorial optimization problems in this thesis. Moreover,

we give an introduction to multi-objective evolutionary algorithms, together with a di-

versity mechanism that helps the algorithm search different parts of the search space.

2.2 Local Search

Local search is a widely used heuristic method for solving different kinds of optimiza-

tion problems such as combinatorial optimization problems. A local search algorithm

is an iterative algorithm that starts with an initial random solution, or a solution that

is found by a heuristic. As the name suggests, the algorithm considers the local neigh-

bourhood of the current solution x, and searches for a new solution x′ that is better than

(or at least as good as) x with respect to the fitness function. If such a solution is found

in the neighbourhood of x, the algorithm replaces x by x′, and the process of searching

the neighbourhood of x for a better neighbour starts over. The local neighbourhood

of a search point needs to be predefined and should not be too large. The algorithm

stops when it fails to find improvements in the neighbourhood of the current solution.

At this point, either the optimal solution is found, or the algorithm is stuck to a local

optimum.

The randomized local search is a local search in which at each iteration the new solution

x′ is selected randomly among the solutions in the neighbourhood of x. This random-

ness makes the algorithm a stochastic search algorithm. The detailed description of the

algorithm together with an example is presented in Section 2.2.1.

2.2.1 Randomized Local Search

Randomized local search (RLS) is one of the simplest stochastic search algorithms. Con-

sidering the current solution x, RLS chooses one solution x′ at each iteration in the

neighbourhood of x at random. The current solution x is replaced by x′ at each it-

eration, if the fitness value of x′ is at least as good as the fitness value of x. Strict

improvement can also be considered as the condition of accepting the new solution for

this algorithm, where the fitness value of x′ needs to be better than the fitness value of

x. The size of the neighbourhood that is defined to be used in RLS is very important. A

neighbourhood that is too small results in fast convergence to a local optimum, and a

neighbourhood that is too large makes it possible to choose a new solution that is very
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Algorithm 1: RLS for a maximization problem with a bit-string representation

1 Choose x ∈ {0, 1}n uniformly at random;
2 while termination condition not satisfied do
3 x′ = x;
4 Choose i ∈ {1, · · · ,m} uniformly at random;
5 Flip x′i;
6 if f(x′) ≥ f(x) then
7 x = x′;

different from the current solution; therefore, the algorithm can not guide the search

properly.

We here define a simple combinatorial optimization problem named OneMax, and de-

scribe a RLS algorithm for solving it. The OneMax problem consists of n binary vari-

ables where the goal is to maximize the number of ones among those variables. A solu-

tion is represented by a bit-string of size n, e.g. x = (x1, · · · , xn) where xi ∈ {1, 0} ∀i ∈
{1, · · · , n}, and the fitness function is the number of ones in that bit-string:

f(x) =
n∑
i=1

xi

We consider the neighbourhood of Hamming distance 1 for a solution x of this problem,

which comprises all solutions that are different from x in only one bit. Algorithm 1

presents a randomised local search on this problem, and in general on maximization

problems with a bit-string representation. The algorithm starts with a random solution

and iterates the main while loop until a desired condition is satisfied. This can be finding

the optimal solution or an approximation of it, or exceeding the maximum number of

fitness evaluations that the algorithm is allowed to perform. Lines 3-5 choose a new

solution x′ from the defined neighbourhood of x uniformly at random. Line 6 performs

a fitness evaluation on the new solution to compare it with the current solution. Finally,

the new solution replaces the current one if its fitness value is at least as good as that of

the current solution.

2.3 Evolutionary Algorithm

Evolutionary Algorithms are stochastic search algorithms inspired by Darwin’s prin-

ciple of survival of the fittest in the nature. These general problem solvers work on a

population of solutions or individuals, construct new solutions in an iterative manner,
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and keep some of the fittest solutions and remove the others in each iteration depend-

ing on their survival policy. These algorithms have become quite popular since 1960s

and have been used in real-word optimization applications.

Here we describe the main procedure of evolutionary algorithms as well as the termi-

nology that is used for referring to important concepts of these methods. We use the

OneMax problem, defined in Section 2.2.1, for presenting examples of each component

that we explain.

The first step in using evolutionary algorithms for a problem is to define a solution

representation. Depending on the problem and the variables that need to be adjusted in

the optimization process, the representation can be a bit-string, or a string of integer

or float variables or a combination of them. For the OneMax problem, similar to what

we had in Section 2.2.1, an obvious representation is a bit-string of size n, such as x =

(x1, · · · , xn), where xi corresponds to the value of the ith variable in the problem. Each

solution x needs to be evaluated somehow, so that the algorithm can compare different

solutions. As explained briefly in Section 2.1, this evaluation is done by a function

named the fitness function, denoted by f(x) : S → R, where S is the search space and

R is the set of all possible values of the fitness function. For OneMax, a simple and

obvious fitness function can be f(x) =
∑n

i=1 xi which counts the number of ones in

the bit-string. Here S = {0, 1}n and R = {0, 1, · · · , n}. In practice, a fitness evaluation

is usually costly; therefore, an optimization algorithm should find a good or close to

optimum solution while minimizing the number of fitness evaluations.

In each iteration of the evolutionary process, some changes need to be done on the cur-

rent solution(s) to produce new solution(s) (offspring). These changes are performed

by variation operators which are mainly crossover and mutation in an evolutionary algo-

rithm, and should be adjusted to the solution representation. Crossover is done on two

selected parents and produces one or more offspring, while mutation is performed on

one parent and produces one child. For example, in the case of OneMax, one crossover

operator that can be considered is the single-point crossover, in which one position in

the two parents is selected and the parent bit-strings are split into two substrings from

that position. The substrings are then combined to produce two new solutions as chil-

dren. If x = (x1, · · · , xn) and y = (y1, · · · , yn) are the two parents and the selected po-

sition in the bit-string is p, then the two children can be x′ = (x1, · · · , xp, yp+1, · · · , yn)

and y′ = (y1, · · · , yp, xp+1, · · · , xn).

A simple mutation operator for the bit-string representation could also be defined as

flipping each bit of the parent with probability 1
n . This mutation operator flips one bit

at each step on average, but can also make several changes on the given solution with a
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smaller probability at each step. This is one of the main differences between evolution-

ary algorithms and local search methods, i. e. in a local search algorithm only solutions

in the predefined local neighbourhood of the current solution can be considered, while

the mutation operator in an evolutionary algorithm makes it possible to jump to far-

ther search points in the search space. In case of a discrete search space, it is possible to

move from any search point to any other search points with a positive probability. This

property makes evolutionary algorithms less likely to stick to a solution that is a local

optimum for a randomised local search algorithm.

The other main difference between local search and evolutionary algorithms is that in

local search the algorithm keeps only one solution at each iteration and produces only

one new solution, while in an evolutionary algorithm usually a population of more than

one solution is kept and more than one solutions are produced as offspring. This al-

lows having a diverse set of solutions, i. e. different solutions from different parts of the

search space. A (µ+ λ)EA denotes an evolutionary algorithm in which the population

size is µ and the offspring size is λ. Although evolutionary algorithms usually have

µ > 1 and λ > 1 in practice, it is also possible to work with µ = 1 and λ = 1 which

results in (1+1) EA, defined in Section 2.3.1.

After the offspring are produced, in order to choose µ solutions from the current µ+ λ

solutions as the next generation, and also in order to choose some solutions among

the current population as parents, evolutionary algorithms need selection methods. One

of the most important selection methods is the fitness-proportional selection method. As-

suming that the fitness function needs to be maximized and all values it returns are

positive, in this method the probability of choosing a solution x among k solutions

xj , j ∈ {1, · · · , k} is
f(x)∑k
j=1 f(xj)

.

This results in selecting fitter solutions with a higher probability compared to the solu-

tions that have a small value of fitness.

The other selection method that is widely used is tournament selection in which a num-

ber of solutions are chosen uniformly at random to comprise each tournament, and the

fittest solution in each tournament is selected for parent selection or next generation.

The number of tournaments that are made is equal to the number of individuals that

are selected by this method.

Depending on the problem and the search space, there are different types of evolu-

tionary algorithms that differ in some implementation details such as the representa-

tion that is used. For example, in the case of problems with continuous (real-valued)
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Algorithm 2: (1+1) EA for a maximization problem with a bit-string representation

1 Choose x ∈ {0, 1}n uniformly at random;
2 while termination condition not satisfied do
3 x′ = x;
4 ∀i ∈ {1, · · · ,m} flip x′i with probability 1

n ;
5 if f(x′) ≥ f(x) then
6 x = x′;

search space, evolutionary strategies (ES) are used for optimization; whereas, for a dis-

crete search space where bit-strings or strings of integer values can be used as the rep-

resentation, genetic algorithms (GA) are used. Another type of evolutionary algorithm

that has gained some attention in recent decades is genetic programming (GP) in which

computer programs (or graphs in general) for given tasks are tried to be constructed as

solutions. For a comprehensive description of different types of evolutionary algo-

rithms, refer to the text book of Eiben and Smith [41]. In this thesis, we only analyse

simple evolutionary algorithms on discrete search spaces. The rest of this section in-

cludes the description and the pseudo-code of the (1+1) EA for a maximization problem

as a simple evolutionary algorithm. Moreover, multi-objective evolutionary algorithms

are defined together with a method that helps them with the diversity of the popula-

tion.

2.3.1 (1+1) EA

(1+1) EA is possibly the simplest evolutionary algorithm that can be defined. In this

algorithm, the population consists of one solution, and only one solution is generated

as the offspring at each iteration. The current solution x is replaced by the new solution

x′, if x′ is better than or at least as good as x with respect to the fitness function. The

only difference between this algorithm and the RLS of Section 2.2.1 lies in constructing

the new solution. In RLS a solution in the defined neighbourhood of x is selected,

while in (1+1) EA each part of the representation (e.g. each bit of the bit-string in the

OneMax example) is mutated with a small probability. A pseudo-code of (1+1) EA for

the OneMax problem is presented in Algorithm 2. In this algorithm, constructing the

new solution is done in lines 3-4.
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2.4 Multi-Objective EA

Evolutionary algorithms are quite popular for multi-objective optimization where the

quality of solutions is assessed using more than one objective. If we denote the num-

ber of objectives by k, in these problems we deal with an objective space of k di-

mensions and the fitness function returns an objective vector of k values, i. e. f(x) =

(f1(x), · · · , fk(x)). In a maximization problem, we say that a solution x (weakly) dom-

inates another solution y and denote it by f(x) � f(y), if f(x) 6= f(y) and fi(x) ≥
fi(y),∀i ∈ {1, · · ·n}. A solution x that is not dominated by any other solutions is called

a Pareto optimal search point.

In a multi-objective optimization problem, we are interested in the set of Pareto optimal

search points and their objective vectors. The set of Pareto optimal search points is

called the Pareto set, whereas the set of objective vectors of them is called the Pareto

front. Note that each point in the objective space can be the objective vector of more

than one search point in the search space. The goal of the optimization algorithm is to

find the Pareto front or a set of objective vectors that are close to it, together with at

least one search point from the Pareto set for each objective vector. Since it is desirable

to obtain a range of trade-offs between objectives, the diversity of the found objective

vectors is an important point in the optimization process.

As a simple example, we describe the multi-objective OneMax-ZeroMax problem which

is defined on a bit-string of size n, and the goal is to maximize the number of ones and

the number of zeros in the bit-string. Note that the objectives are conflicting in this

problem: f1(x) denotes the number of ones, and f2(x) denotes the number of zeros.

The Pareto front in this problem consists of the set {(i, n − i) | 0 ≤ i ≤ n}, and any

search point with i ones and n− i zeros corresponds to the objective vector (i, n− i) for

0 ≤ i ≤ n.

Several multi-objective evolutionary algorithms have been introduced in the literature,

starting with vector-evaluated genetic algorithm (VEGA), which was presented in 1984

by Schaffer [106]. In this algorithm, the survival selection is as follows. For each of

the k objectives that need to be optimised, a subset of the best existing solutions with

respect to that objective is selected by proportional selection. Then these subsets are

combined to make the new population. With this approach, the diversity is preserved

to a good extend by including good solutions for each objective. However, solutions

that are moderately good for all objectives and can be very useful do not survive, if

they are not very good for any single objective.

Other multi-objective evolutionary algorithms were introduced later which guide the

search towards finding non-dominated solutions explicitly. These algorithms include
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Fonseca and Fleming’s multi-objective genetic algorithm (MOGA) [46] which consid-

ers the number of solutions in the population that are dominated by an individual

plus one, as the individual’s fitness value. Non-dominated sorting genetic algorithm

(NSGA) [107] and its improved version, NSGA-II [25] are also two other well-known

multi-objective evolutionary algorithms that focus on the diversity as well as finding

near optimal solutions. In NSGA, the population is divided into subsets as the follow-

ing. The first subset is the Pareto front solutions of the whole population. Eliminating

these solutions from the population, the next Pareto front solutions is found from the

population which form the second subset and so on. For each solution, the algorithm

assigns the number of solutions in inferior subsets, as the fitness. By performing a se-

lection method that is likely to choose solutions with higher fitness, solutions of subsets

with lower numbers are selected, which directs the search towards the Pareto optimal.

Furthermore, using a parameter, σshare, that indicates the neighbourhood size, a fitness

sharing strategy is applied to change the fitness of solutions based on how close they are

positioned in the objective space. This strategy helps in maintaining the diversity by

decreasing the fitness of some individuals that are too close to each other.

One issue in MOGA and NSGA is that good solutions can be lost in their survivor

selection procedure. In order to fix this, NSGA-II [24] was proposed, in which solutions

of subsets (or fronts) with lower numbers are selected in an elitist approach, to perform

a (µ + λ) survivor selection. If some solutions need to be selected and others need

to be eliminated from the last considered subset, then the distance of solutions from

their nearest neighbours in the same subset is considered as a metric, to help with

the selection. The aim of using this new metric is to maintain the diversity when some

solutions are positioned very close to each other. This method does not need specifying

the sharing parameter that was used in NSGA. It is worth to mention that NSGA-II also

outperforms NSGA with respect to computational complexity.

Global SEMO is another multi-objective evolutionary algorithm, which we describe in

more detail in the rest of this section. This algorithm is later analysed for the vertex

cover problem in Chapter 7.

2.4.1 Global SEMO

Here we describe a simple multi-objective evolutionary algorithm called Global SEMO

which is presented in Algorithm 3 for a multi-objective maximization problem. In this

algorithm we have a population of solutions, P , which is initialized with one randomly

selected solution. At each iteration, one solution is randomly selected from this popula-

tion, the variation operator is performed on it (line 6 describes the mutation operator),
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Algorithm 3: Global SEMO for a multi-objective maximization problem

1 Choose x ∈ {0, 1}n uniformly at random;
2 P ← {x};
3 while termination condition not satisfied do
4 Choose x ∈ P uniformly at random;
5 x′ = x;
6 ∀i ∈ {1, · · · ,m} flip x′i with probability 1

n ;
7 if @y ∈ P | f(y) � f(x′) then
8 P ← {x′};
9 delete all other solutions z ∈ P where f(x′) � f(z) from P ;

and the survival selection procedure is done afterwards (lines 7-9). In the survival se-

lection procedure, the new solution, x′, is checked whether it is dominated by at least

one other solution in the population. If x′ is not dominated by any other solutions in

P , then it is added to P , and all other solutions that are dominated by x′ are removed

from P . In other words, the algorithm keeps the non-dominated solutions that are

discovered so far in P .

In the problem of OneMax-ZeroMax, the size of the population grows to the size of

Pareto front, which is at most n + 1 and is linear with respect to the input size. If the

size of the Pareto front is too large (e.g. exponential), usually a diversity mechanism is

used to keep the population size within a polynomial range, while making it diverse

enough to cover most parts of the Pareto Front. One such mechanism is described in

the following section.

2.4.2 ε-Dominance: A Diversity Mechanism

In multi-objective optimization problems where the size of the Pareto front is exponen-

tial with respect to the input size, an optimization algorithm would better find a set

of solutions that has a polynomially bounded size, and is a good approximation of the

Pareto Front. In this situation, evolutionary algorithms need a diversity mechanism to

help their limited population cover most parts of the Pareto front.

One approach for dealing with this problem is using the concept of ε−dominance [78].

The concept of ε−dominance has previously been proved to be useful for coping with

exponentially large Pareto fronts in combinatorial optimization problems [64, 90]. Hav-

ing a maximization problem and two search points x and y with objective vectors

f(x) = (f1(x), · · · , fm(x)) and f(y) = (f1(y), · · · , fm(y)), f(x) ε−dominates f(y), de-

noted by f(x) �ε f(y), if for all i ∈ {1, · · · ,m}we have (1 + ε)fi(x) ≤ fi(y).
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The goal of this approach is to find an approximation of the Pareto front. Here, recalling

that S is the search space, the ε−Pareto front, denoted by PF ∗ε , is defined as a subset of

the Pareto front where

∀x ∈ S, ∃v ∈ PF ∗ε | v �ε f(x).

Moreover, the corresponding Pareto set of PF ∗ε is called the ε−Pareto set. Note that

there can exist several ε−Pareto fronts and ε−Pareto sets.

In order to find an approximation of the Pareto front in this approach, the objective

space is partitioned into a polynomial number of boxes in which all solutions ε−dominate

each other, and at most one solution from each box is kept in the population. The par-

titioning of the objective space is done by placing a hyper-grid in that space such that

the number of partitions is logarithmic with respect to the maximum value that each

objective can take. In this approach, the population size is polynomially bounded, and

the solutions that are kept in the population comprise an ε−Pareto set of the search

points that the algorithm has found so far. For details of the partitioning and the proof

of the last two statements refer to [78].

The boxing of [64] which we describe here, presents such a partitioning. There, each

objective vector is mapped to the index of the box that it is placed in. Assuming that the

objective space is positive and normalised, i. e. ∀i ∈ {1, · · · ,m}, fi(x) > 1, the mapping

is done as:

b(x) = (b1(x), · · · , bm(x)) , bi(x) =
⌊ log(fi(x))

log(1 + ε)

⌋
and b(x) is called the box index vector of the search point x.

In the evolutionary algorithm that uses the concept of ε−dominance in [64], a non-

dominated offspring that its box index vector is not dominated by any other existing

box index vectors is accepted, and at each iteration, all solutions that their box index

vector is dominated are deleted from the population. Inspired by this partitioning and

algorithm, a similar boxing and multi-objective evolutionary algorithm is defined and

analysed for the vertex cover problem is Chapter 7.

2.5 Conclusion

In this chapter, we presented an introduction to two of the well-studied general prob-

lem solver methods, namely local search and evolutionary algorithms. We went into

more details of the randomised local search and (1+1) EA, which is possibly the sim-

plest existing evolutionary algorithm. Comparing the randomness that is used in these
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two algorithms when making new solutions, RLS is more likely to get stuck in local

optimums than (1+1) EA.

After describing evolutionary algorithms and presenting a simple algorithm from this

class of algorithms, we turned our attention to multi-objectiveness, and described Global

SEMO as a multi-objective evolutionary algorithm. Moreover, we presented ε−dominance,

a diversity mechanism that helps the algorithm find solutions from different parts of

the search space.



Chapter 3

Combinatorial Optimization

Problems

3.1 Introduction

A combinatorial optimization problem consists of finding the best feasible solution

(with either minimum or maximum value of an objective function) when the solution

space of the problem is discrete and the feasibility is determined by satisfying some

given constraints. For any instance of a problem a specified parameter setting is given.

The formal definition of a combinatorial optimization problem is as follows. Given a

triple (S, f,Ω), where S is the search space, f is the objective function, and Ω is the set of

constraints, the goal is to find a globally optimal solution that fulfils all constraints [91].

The optimization time of an algorithm, i. e. the time that the algorithm needs to find the

optimal solution, is analysed with respect to the input size. The input of the problem,

which is often a graph or a set of integers for a combinatorial optimization problem,

has to be represented as a sequence of symbols of a finite alphabet. The input size

is the length of this sequence, for any instance of the problem. The search space of a

combinatorial optimization problem is most of the times exponential with respect to the

size of the problem, and for many of these problems, a polynomial-time algorithm that

finds the optimal solution can not be found unless P = NP . As a result, finding good

approximations of the optimal solutions are of great importance, and approximation

algorithms are widely considered for these problems.

The obtained solutions of approximation algorithms should be close to the optimal

solution in terms of cost. In order to clearly specify how close they should be, we use

the term approximation ratio, which is defined in [16] as follows.

16
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Definition 3.1 (Approximation Ratio [16]). An algorithm for a problem has an approx-

imation ratio of ρ(n) if for any input of size n, the cost C of the solution produced by the

algorithm is within a factor of ρ(n) of the cost C∗ of an optimal solution:

max

(
C

C∗
,
C∗

C

)
≤ ρ(n)

Knapsack problem, vertex cover problem, travelling salesman problem and makespan

scheduling are some well-known combinatorial optimization problems for which exact

and approximation algorithms have been introduced [115]. In this chapter we describe

two of the well studied combinatorial optimization problems, the travelling salesman

problem and the vertex cover problem. Then we define the concept of hierarchical

approaches for solving combinatorial optimization problems, and describe the gener-

alized travelling salesman problem as an example of problems that hierarchical ap-

proaches are popular for solving them.

3.2 The Travelling Salesman Problem

The travelling salesman problem (TSP) is a well-known NP-hard combinatorial opti-

mization problem. The problem is to find a Hamiltonian cycle of minimum cost in a

complete graph. The formal definition of the problem follows.

Definition 3.2 (The travelling salesman problem (TSP) [115]). Given a complete graph

with non-negative edge costs, find a minimum cost cycle visiting every vertex exactly

once.

TSP has many applications in logistics, scheduling and manufacturing such as the ve-

hicle routing [4] and the computer wiring [68]. There are some exact algorithms devel-

oped for this well-studied problem among which one of the most important ones is the

cutting plane method, introduced by Dantzig et al. [22] in 1954.

This method suggests a relaxation on the main problem and uses integer-linear pro-

gramming to solve the relaxed problem. The solutions for this relaxed problem may

or may not denote a tour on the given graph, i. e. it may be in the feasible space of the

TSP problem or not. If the optimal solution of the relaxed problem is a tour, then it is

also an optimal solution for the original TSP problem. If it is not a tour, then it gives a

lower bound on the cost of the optimal solution of the TSP problem, and can be elimi-

nated from the feasible space of the relaxed problem by an additional linear constraint

or a cut. Dantzig et al. [22] add such constraints, which they call sub-tour elimination
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constraints, in an iterative fashion and solve the LP problem again, until a tour with no

structural problems is found. The heart of the TSP solver ’Concorde’ [3] is an efficient

implementation of this method; although, other successful techniques and heuristics

are also used in different modules of this powerful tool. For details of the techniques

and algorithms that are used in Concorde, refer to [5].

During 1960s, a different exact method was emerged for solving TSP that Little et al.

[82] named the branch-and-bound method. Similar to the cutting plane method, in the

branch-and-bound method the optimization problem is relaxed. Moreover, the prob-

lem is split into some (possibly more than two) sub-problems with additional con-

straints, branching the feasible space of the relaxed problem. Improvements of this

method were made by Held and Karp [60, 61] in 1970, beating the results of [22]. More-

over, an integration of the cutting plane method into the branch and bound framework

has been introduced by Hong [63] and used in [84]. This method is named the branch

and cut method in [96] which was the first computational success of this approach [5].

Another important exact approach for TSP is the dynamic programming approach studied

in [10, 11, 50, 59]. Held and Karp [59] have shown that an n-city TSP can be solved in

time proportional to n22n.

Assuming that α(n) is a polynomial function of n, it is proved that the general TSP can

not be approximated within a factor of α(n) in polynomial time, unless P = NP [115].

Nevertheless, there are some approximation algorithms for Metric TSP in which trian-

gle inequality is satisfied. One such algorithm [14] finds an approximation of ratio 3
2 in

time O(n4).

In addition to exact and approximate algorithms for solving TSP, a lot of heuristic meth-

ods were also introduced for this problem. One of the most successful ones is the Lin-

Kernighan heuristic [81], built based on the classical 2-opt operator for the TSP, which

replaces 2 edges of a given tour. This heuristic considers a sequence of a variable num-

ber of 2-opt moves, performed one after another. In other words, a variable number

of changes are performed on the tour in each iteration of the heuristic for finding im-

provements.

The other approach for solving TSP is using metaheuristics such as evolutionary al-

gorithms and ant colony optimization. Theoretical results on a number of these algo-

rithms for the TSP have been presented in [42, 75, 87, 113]. Despite this progress and the

advancement of methods for analysing these algorithms, understanding and analysing

the run of even simple metaheuristics on classical problems such as run of local search
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on TSP remains challenging, and obtaining theoretical results that match practical ex-

perience is to a large extend an open problem. For more details on theoretical analysis

of these algorithms when solving TSP, refer to Nallaperuma’s PhD thesis [87].

3.3 The Vertex Cover Problem

The vertex cover problem is another well-known NP-hard combinatorial optimization

problem with various applications in scheduling, networking, bioinformatics, compu-

tational biology and detection of race conditions [1, 8, 51, 92, 97]. The input of the

problem is a graph and the goal is to select a minimum subset of nodes, VC , that cov-

ers all edges, i. e. every edge has at least one endpoint incident at VC . This problem is

defined on undirected graphs in which each edge e is denoted by a set of two vertices,

i. e. e = {u, v}where u and v belong to the set of nodes.

The cardinality (or classical) vertex cover problem can be formally defined as:

Definition 3.3 (The Cardinality Vertex Cover Problem [115]). Given an undirected

graph G = (V,E) with vertex set V = {v1, . . . , vn} and edge set E = {e1, . . . , em},
find the minimum cardinality vertex cover, i. e. a subset of vertices, VC ⊆ V , such that

∀e ∈ E, e ∩ VC 6= ∅.

In the general form of the problem or the weighted vertex cover problem, defined be-

low, weights or costs are assigned to the vertices and the goal is to find a cover of

minimum weight:

Definition 3.4 (The Vertex Cover Problem [115]). Given an undirected graph G =

(V,E) with vertex set V = {v1, . . . , vn} and edge set E = {e1, . . . , em}, and a positive

weight function on vertices w : V → Q+, the goal is to find the minimum cost vertex

cover, i. e. a subset of vertices, VC ⊆ V , such that ∀e ∈ E, e ∩ VC 6= ∅.

Approximation algorithms have been presented for the vertex cover problem. One

simple 2-approximation algorithm for the cardinality vertex cover problem is based on

finding a maximal matching. This approach is presented in Section 3.3.1. In a more gen-

eral approach, the linear programming formulation and the dual problem of the vertex

cover problem are considered, and a 2-approximation is found based on a maximal

dual solution. We present this approach in Section 3.3.2.
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Algorithm 4: Cardinality Vertex Cover 2-Approximation Algorithm

1 EM ← ∅;
2 while E 6= ∅ do
3 Pick an edge e = {p, q} ∈ E;
4 EM ← EM ∪ {e};
5 for ∀e′ ∈ E where e′ ∩ e 6= ∅ do
6 E ← E \ e′;

7 C ← ∅;
8 for ∀e = {p, q} ∈ EM do
9 C ← C ∪ {p, q}.

10 return C

3.3.1 A 2-approximation algorithm for the cardinality vertex cover problem

One approximation algorithm with an approximation ratio of two for the cardinal-

ity vertex cover problem, represented in Algorithm 4, is based on finding a maximal

matching. Given a graph G = (V,E), a matching is a subset of edges, M ⊂ E so that no

two edges of M share an endpoint [115]. A matching that is maximal under inclusion

is called a maximal matching, and can be computed in polynomial time by a greedy al-

gorithm that picks a random edge at a time and removes its endpoints from the graph,

until there are no edges left. Here we show that the output of Algorithm 4 which is the

set of matched vertices of a maximal matching, form a vertex cover with approxima-

tion ratio of 2. First we prove that the set of vertices, C, returned by the algorithm is a

vertex cover. Then we show that the approximation ratio of this solution is 2.

The while loop in the algorithm finds the maximal matching EM . Since this matching

is maximal, all other edges of the graph have at least one common endpoint with one

or two of the edges in EM ; otherwise, they could be added to the matching. In other

words, the set of vertices included in the matching, C, form a vertex cover.

Now we show that the vertex cover C, is a 2-approximate solution. Observe that C

includes two vertices for each edge of EM . Let |EM | = k, which implies |C| = 2k.

Since EM is a matching, the including edges do not have shared nodes; therefore, in

order to cover all edges of EM , k vertices are required. This means that an optimal

solution that covers all edges of the given graph needs at least k vertices, implying that

the approximation ratio of solution C is at most 2; since |C| = 2k.
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3.3.2 Linear programming formulation of the vertex cover problem and its
dual problem

Consider an optimization problem whose requirements can be represented by linear

relationships. These problems are referred to as linear programming (LP) problems, and

the standard formulation of them with a goal of minimizing the objective function is

represented as

min

n∑
i=1

cixi

s.t.

n∑
i=1

ajixi ≥ bj j = 1, · · · ,m

xi ≥ 0, i = 1, · · · , n

where ci, aji and bj are given rational numbers.

Any LP problem (which we refer to as the primal problem) has a dual form, which is

also an LP problem and helps with finding bounds on the objective values of the pri-

mal problem. When the primal problem is a minimization problem, the dual problem

considers a positive linear combination of the constraints, and looks for lower bounds

on the minimum possible value of the primal objective function. In the above formula-

tion of the primal problem, there are m constraints of this form:

aj1x1 + aj2x2 + · · ·+ ajnxn ≥ bj j = 1, · · · ,m

If we multiply both sides of each of these m constraints by a coefficient yj , we have:

aj1yjx1 + aj2yjx2 + · · ·+ ajnyjxn ≥ bjyj j = 1, · · · ,m

Consider the sum of all these constrains: m∑
j=1

aj1yj

x1 +

 m∑
j=1

aj2yj

x2 + · · ·+

 m∑
j=1

ajnyj

xn ≥
m∑
j=1

bjyj

If we manage to set the values of yj so that the left side of this inequality is less than

the objective function, then the right side of the inequality gives a lower bound on the

minimum value that the primal objective function can take. Finding the greatest lower

bound under this condition is the definition of the dual problem, which is formulated

as:
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max
m∑
j=1

bjyj

s.t.
m∑
j=1

ajiyj ≤ ci i = 1, · · · , n

yj ≥ 0, j = 1, · · · ,m

In contrast to what we have for a primal minimization problem, when the primal prob-

lem is a maximization problem, the dual problem finds upper bounds of the value of

the primal objective function. For more explanations on primal and dual forms of an LP

problem, and how to derive the dual form from the primal form refer to [115]. Consid-

ering these formulations, the Weak Duality Theorem described below, helps with finding

lower bounds of any feasible solution of the primal problem. The reader can find the

proof of this theorem in [115].

Theorem 3.5 (The Weak Duality Theorem [115]). If x = (x1, · · · , xn) and y = (y1, · · · , ym)

are feasible solutions for the primal and dual problem respectively, then

n∑
i=1

cixi ≥
m∑
j=1

bjyj .

When some or all of the variables in an LP problem are restricted to be integers, the

problem is referred to as an integer linear programming (ILP) problem. Here we de-

fine the ILP and LP formulation of the vertex cover problem which help us in finding

2-approximations of the optimal solution. The 2-approximation algorithm for the clas-

sical vertex cover problem in which a maximal matching is found (Section 3.3.1), can

be considered as a special case of the approach that we describe in this section.

The common representation that is used for solutions of the vertex cover problem is the

standard node-based representation, in which a solution x = (x1, . . . , xn) is a bitstring

of size n, where xi = 1 iff the node vi is chosen. With this representation, the ILP

formulation for this problem is:

min

n∑
i=1

w(vi) · xi

s.t. xi + xj ≥ 1 ∀(i, j) ∈ E

xi ∈ {0, 1} ∀i ∈ {1, · · · , n}
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In the linear programming relaxation of the problem, the fractional weighted vertex cover

problem, the constraint xi ∈ {0, 1} is relaxed to xi ∈ [0, 1]. We denote the cost of the op-

timal solution for the original problem and the relaxed version of the problem by OPT

and OPT ∗ respectively. Observe that OPT ∗ ≤ OPT .

Using the concept of duality and the Weak Duality Theorem, 2-approximations of the

vertex cover problem can be obtained. Here we explain the situation where the weights

in the vertex cover problem are restricted to be integer values. The dual of the relaxed

covering problem in which the weights can only take integer values, is a packing prob-

lem formulated as the following, where sj ∈ N+ denotes a weight on the edge ej :

max
m∑
j=1

sj

s.t.
∑

j∈{1,··· ,m}|ej∩{v}6=∅

sj ≤ w(v) ∀v ∈ V

In other words, the dual problem is to maximize the sum of weights on all edges, pro-

vided that for each vertex, the sum of weights of edges incident to that vertex is at most

equal to the weight of that vertex.

Let s = (s1, · · · , sm), be a maximal feasible solution for the dual problem with a cost

of CostD. Since s is a maximal solution, none of the edges can be assigned a greater

weight without violating a constraint. Therefore, for at least one vertex of each edge, v,

we have

w(v) =
∑

j∈{1,··· ,m}|ej∩{v}6=∅

sj

As a result, the set of nodes for which the above equality holds, C = {v ∈ V |
w(v) =

∑
j∈{1,··· ,m} | ej∩{v}6=∅ sj}, is a vertex cover. The cost of this vertex cover, CostP ,

is at most twice the weight of all edges in the dual solution. Therefore, CostP ≤
2 · CostD. Moreover, since s is a feasible solution, according to Weak Duality Theo-

rem (Theorem 3.5), CostD ≤ OPT , which results in CostP ≤ 2 · OPT , i. e. set C is a

2-approximation for the weighted vertex cover problem.

Constructing maximal solutions for the dual problem has been used in a number of

algorithms for finding 2-approximations of the weighted vertex cover problem, e.g.

Bar-Yehuda and Evan’s greedy algorithm [9] and Clarkson’s greedy algorithm [15].

Bar-Yehuda and Evan’s greedy algorithm is presented in Algorithm 15 in which C rep-

resents the vertex cover that the algorithm finds. A formal proof of the approximation

ratio of the solution obtained by this approach can be found in Theorem 8.4 of [39] (rep-

resented in Theorem 3.6 below). There, the output of a specific algorithm is studied as
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Algorithm 5: Bar-Yehuda and Evan’s greedy algorithm

1 forall the v ∈ V do W (v)← w(v);
2 forall the j ∈ {1, · · · ,m} do sj ← 0;
3 C ← ∅;
4 while E 6= ∅ do
5 Pick an edge ej = (p, q) ∈ E;
6 Suppose W (p) ≤W (q);
7 sj ←W (p);
8 W (q)←W (q)−W (p);
9 for ∀e = (p, v) ∈ E do

10 E ← E \ e;
11 end
12 C ← C ∪ {p}.
13 end
14 return C

the maximal dual solution, but the presented proof is valid for Theorem 3.6 with any

given maximal solution s.

Theorem 3.6. Consider s, a maximal feasible solution for the dual problem of the relaxed

weighted vertex cover problem. The vertex set

C = {v ∈ V | w(v) =
∑

j∈{1,··· ,m} | ej∩{v}6=∅

sj}

is a 2-approximation for the original weighted vertex cover problem.

3.4 Hierarchical Approaches for Solving Combinatorial Opti-

mization Problems

One important strategy in constructing efficient algorithms for complex problems is to

split the problem into some (usually two) layers and solve each layer by considering the

sub-solution that its upper layer is suggesting. The upper layer can fix a sub-solution

independent of the lower layer, but the sub-solutions of all layers affect the cost of the

eventual complete solution. This approach, which is called hierarchical approach, is

studied in different single-objective [72, 79] as well as multi-objective problems [26, 27].

The generalised minimum spanning tree (GMST) and the generalised travelling sales-

man problem (GTSP) are two of the combinatorial optimization problems that hierar-

chical approaches are quite popular for solving them. Hu and Raidl [65] have presented

two hierarchical approaches for GMST. In both approaches, the upper layer is solved by
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means of an EA and the lower layer uses a deterministic algorithm. The parameterized

complexity analysis of these approaches is carried out in [18] which is the first paper

on runtime analysis of evolutionary algorithms for hierarchical optimization problems.

In the presented analysis, upper and lower bounds are found for both algorithms and

it is shown that one of the approaches is a fixed-parameter evolutionary algorithm

(Section 4.6.1) with respect to the number of clusters. Hu and Raidl [66] have also pre-

sented two hierarchical approaches for GTSP by which we investigate in this thesis.

Our goal is to analyse these hierarchical approaches theoretically to give us a better

understanding of the behaviour of them when solving the GTSP. We have conducted a

parameterized computational complexity analysis on these two approaches with sim-

ple evolutionary algorithms. The formal definition of the problem and an illustration

of the two hierarchical approaches for this problem follow.

3.4.1 The Generalised Travelling Salesman Problem

The generalised travelling salesman problem is an example of combinatorial optimiza-

tion problems, for which hierarchical approaches are presented to solve the problem.

This problem has applications in several fields such as planning and routing. Defini-

tion 3.7 gives a formal definition of this problem.

Definition 3.7. Given a complete undirected graph G = (V,E, c) with cost function

c : E → R+ on the edges, and a partitioning of the set of nodes V into m clusters Vi,

1 ≤ i ≤ m such that V =
⋃m
i=1 Vi and Vi ∩ Vj = ∅ for i 6= j. The aim is to find a tour of

minimum cost that contains exactly one node from each cluster.

A candidate solution for this problem consists of two parts. The set of spanning nodes,

P = {p1, . . . , pm} where pi ∈ Vi, and the permutation of the nodes, π = (π1, . . . , πm),

which is also a Hamiltonian cycle on G[P ] = G(P, {e ∈ E | e ⊆ P}). Here, G[P ] is

the sub-graph induced by P consisting of all nodes in P and all edges between them.

Following [66], we represent a candidate solution as S = (P, π). Let pπi be the chosen

node for cluster Vπi , 1 ≤ i ≤ m. Then the cost of a solution S = (P, π) is given by

c(S) = c(pπm , pπ1) +

m−1∑
i=1

c(pπi , pπi+1).

Different heuristic approaches for the GTSP have been presented in recent years [44,

52, 66, 98]. Moreover, two hierarchical approaches for solving this problem, the Cluster-

Based approach and the Node-Based approach, are presented in [66]. Both approaches con-

struct an overall solution based on an upper and lower level.
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FIGURE 3.1: Cluster-Based approach for GTSP

The Cluster-Based approach, illustrated in Figure 3.1, uses a permutation on the clus-

ters in the upper layer and finds the best node selection based on that permutation,

on the lower layer. In other words, a tour on the clusters is suggested on the upper

layer, and based on that tour, the lower layer selects one node for each cluster with the

aim of minimizing the total cost. The permutation and the node selection form a so-

lution for the whole problem. This solution is changed in an iterative fashion, starting

in the the upper layer, i. e. the upper layer suggest another tour and the lower layer

finds a (possibly) optimal node selection with respect to that tour. This new solution

(new permutation together with the new node selection) is then compared to other

solution/solutions that are found for the problem.

In contrast to the Cluster-Based approach, the Node-Based approach, illustrated in Fig-

ure 3.2, selects a spanning node for each cluster and then works on finding the best

permutation of the chosen nodes. This means that the node selection is done in the

upper layer in this approach, while the permutation is decided in the lower layer with

respect to this node selection.

Hu and Raidl [66] have studied local search neighbourhood structures for the sub-

problems of GTSP, and have suggested that a variable neighbourhood search performs

better that each of the local search approaches, as it performs a search on both neigh-

bourhood structures. The two local search algorithms that they have studied, in ad-

dition to a variable neighbourhood search algorithm, are presented and investigated

theoretically in Chapter 5.
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FIGURE 3.2: Node-Based approach for GTSP

3.5 Conclusion

In this chapter, we introduced the combinatorial optimization problems and presented

the formal definition of two of the most well-known problems of this kind, namely the

travelling salesman problem (TSP) and the vertex cover problem (VCP). The travelling

salesman problem is one of the most studied combinatorial optimization problems for

which a various number of methods have been suggested to solving the problem. In

this chapter we only mentioned a few important methods that have achieved great

success in dealing with TSP.

The vertex cover problem has also been studied well in the literature. We presented

well-known approximation algorithms for the classical and weighted VCP. In order to

explain the approximation algorithm for the weighted VCP, we needed the concept of

duality. Therefore, we presented a brief introduction on LP problems and their dual

form in Section 3.3.2.

Then we turned our attention to the concept of hierarchical optimization for combina-

torial optimization problems, and defined the generalised travelling salesman problem

(GTSP) as an example of problems for which hierarchical approaches can used.



Chapter 4

Methods of Algorithm Analysis in

Bio-Inspired Computing

4.1 Introduction

The area of runtime analysis for bio-inspired computing techniques such as evolution-

ary algorithms and ant colony optimization started in 1992, with the first runtime anal-

ysis of an EA, given by Muhlenbein [86] . Since mid-1990s this area has provided many

rigorous new insights into the working behaviour of bio-inspired computing methods

for solving combinatorial optimization problems [6, 69, 91, 109, 110]. The computa-

tional complexity analysis of these algorithms studies the runtime behaviour with re-

spect to the input size and plays a major role in their theoretical understanding. In this

section we introduce some of the techniques that are of great importance in the field

of runtime analysis for combinatorial optimization problems. Some of the strong tech-

niques that can be applied to evolutionary algorithms, have been already used in the

field of randomised algorithms [85]. Examples of these techniques are large deviation

inequalities such as Markov’s inequality and Chernoff bounds, and also the random

walk problem and its variants. These techniques, in addition to the new techniques for

analysing evolutionary algorithms such as fitness based partitions and drift analysis,

are presented in this section.

4.2 Deviation Bounds

Large deviation inequalities are being used in analysing the behaviour of bio-inspired

computing methods as well as randomized search algorithms. These inequalities bound

28
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the probability that a random variable deviates from its expected value. Two of the

mostly used techniques for finding these bounds, namely Markov’s inequality and

Chernoff bounds, are presented in this section.

4.2.1 Markov’s Inequality

Markov’s inequality is a simple and widely used deviation inequality which can be

applied to any non-negative random variable X with expected value of E(X). As pre-

sented in Proposition A.4 of [91], this inequality says:

Let X be a random variable which can take non-negative values. Then for all k ∈ R+,

Prob (X ≥ k · E(X)) ≤ 1

k
.

Here we present an example of how this inequality can be used. Let X be the time that

is required by a randomised algorithm to perform a job. For example, let the algorithm

select one item among n2 items uniformly at random at each step, where n denotes the

input size. Also let X be the number of steps that is required by the algorithm to select

one specific item among those items. We here want to use Markov’s inequality to show

that the probability ofX > n3, is bounded by e−Ω(n), i. e. with high probability, the item

is selected by the algorithm in at most n3 steps.

Since the selection is performed uniformly at random, the expected value ofX isE(X) =

n2. Considering 2n2 steps, from Markov’s inequality we get:

Prob
(
X ≥ 2 · n2

)
≤ 1

2

Now consider n
2 phases of 2n2 steps, making a total of n3 steps. The probability that

the item is not selected in none of these phases is at most (1
2)n/2 = e−Ω(n).

4.2.2 Chernoff Bounds

Chernoff bounds gives exponentially decreasing bounds on the probability that the

sum of some independent random variables deviate from their expected value. Com-

paring to Markov’s inequality, it is a sharper bound but it requires the random variables

to be independent. The following is the formulation of Chernoff bounds, presented in

Proposition A.5 in [91].

Let X1, X2, · · · , Xn be independent Poisson trials such that Prob(Xi = 1) = pi for

1 ≤ i ≤ n, where 0 < pi < 1. Let X =
∑n

i=1Xi and µ = E(X) =
∑n

i=1 pi. Then the
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following inequalities hold.

Prob(X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)(1+δ)

)µ
δ > 0

Prob(X ≥ (1 + δ)µ) ≤ e−µδ2/3 0 < δ ≤ 1

Prob(X ≤ (1− δ)µ) ≤ e−µδ2/2 0 < δ ≤ 1

Since the variables Xi have to be independent Poisson trials, Chernoff bounds are usu-

ally used for initial solutions that are formed of a number of random independent selec-

tions, and find the probability that these solutions have a specific feature. For example,

consider an initial solution that is a bit-string of size n, and each bit is independently

set to 0 or 1 uniformly at random. Let Xi denote the value of bit i and X =
∑n

i=1Xi

be the number of ones in the bit-sting. Observe that E(X) =
∑n

i=1 1/2 = n/2. Using

Chernoff bounds with parameter δ = 1/2, we can find the probability that the initial

solution has at least 3n
4 1-bits as:

Prob
(
X ≥ (1 + 1/2)

n

2

)
≤ e−(n

2
)( 1

2
)2/3 = e−n/24

Therefore, we can claim that with high probability, the number of 1-bits in the initial

solution is less than 3n/4.

4.3 Fitness Based Partitions

For this simple method, we assume that the considered algorithm is a stochastic search

algorithm working with one solution that produces one offspring in each iteration. RLS

and (1+1) EA that we have described in Sections 2.2.1 and 2.3.1 are examples of these

kind of algorithms. Let S be the search space and f : S → R be the fitness function that

should be maximised. Also, let S be partitioned into disjoint sets A1, · · · , Ap such that

for all solutions x ∈ Ai and y ∈ Aj where i < j, it holds that f(x) < f(y). Moreover,

let Ap contain only optimal search points. For a search point x ∈ Ai, the probability

that in the next step a solution y ∈ Ai+1 ∪ · · · ∪ Ap is produced, is denoted by p(x).

Also, the smallest probability of producing a solution with a higher partition number

is denoted by pi = minx∈Ai p(x). With the assumptions described above, it is proved in

Lemma 4.1 of [91] (presented here as Lemma 4.1), that the expected optimization time

is upper bounded by
∑p

i=1(1/pi). The idea of the proof is that from a solution in Ai,

the expected time of moving to a partition Aj where j > i, is at most 1/pi, as pi is the

smallest probability of such a move. Since there are a total of p partitions,
∑p

i=1(1/pi)

gives an upper bound on the expected time of reaching Ap.
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Lemma 4.1 (Lemma 4.1 of [91]). The expected optimization time of a stochastic search algo-

rithm that works at each time step with a population of size 1 and produces at each time step a

new solution from the current solution is upper bounded by
∑p

i=1(1/pi).

To use this method for finding a good upper bound, a partitioning of the search space

needs to be suggested such that for the current search point, there is a good probability

of leaving the current partition and producing a search point in a better one. Moreover,

there should not be too many partitions. To illustrate how to use this method, we here

present a simple example. Consider a (1+1) EA that tries to find a matching on a given

graph G = (N,E), starting with a solution that is chosen uniformly at random. Let a

solution x be represented by (x1, x2, . . . , xm), a bit-string of size m = |E|, where xi = 1

(or xi = 0) indicates that the edge ei is selected (or not selected) to be in the matching

set. Also, let the fitness function be

f(x) = m−
∣∣∣{ei ∣∣ xi = 1 ∧ (∃j | xj = 1 ∧ ei ∩ ej 6= ∅)

}∣∣∣
i. e.mminus the number of selected edges that share a node with another selected edge.

Note that the fitness function should be maximized and the maximum value it can take

is m which denotes a matching. Also note that the maximum number of selected edges

that share a node is upper bounded by m; therefore, the fitness function can only take

discrete values between 0 and m. With partitioning the search space into p = m + 1

partitions A0, · · · , Ap where Ai consists of all solutions x with f(x) = i, we here use

the method of fitness based partitions to show that the expected optimization time of

(1+1) EA for this problem is upper bounded by O(n ·m).

A solution in partition Ai, i < m has at least one edge that shares nodes with other

edges, and can move to a partition Aj , j > i if that the edge is deselected from the

matching set. The probability of such an improvement is at least 1/(en) at each step.

Therefore, the expected time until an improvement happens is upper bounded by en.

Summing up the times for different partitions untilAm, the expected optimization time

is O(n ·m).

For analysing algorithms with larger population, an individual with the highest par-

tition number in the population can be considered and the time until this individual

reaches the optimal partition can be analysed.
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Algorithm 6: Random Walk [91]

1 Start at a vertex v ∈ V ;
2 repeat
3 Choose a neighbor w of v in G uniformly at random;
4 Set v := w

5 until stop;

4.4 Random Walk and the Gambler’s Ruin Theorem

In the following, the random walk problem on a given graph is described and one of

its important theorems is presented. The classical results on the random walk problem

can be used for analysing stochastic search algorithms, particularly when dealing with

plateau functions [91]. Moreover, in this section, a closely related theorem, known as

the gambler’s ruin theorem is explained which is used in proving exponential lower

bounds, when the problem deals with unfair random walks.

4.4.1 Fair Random Walk

Given a connected graphG = (V,E), the random walk problem is to start at a vertex v ∈
V and in each step move to a neighbour of the current vertex that is chosen uniformly

at random among all neighbours. Algorithm 6 describes this procedure.

The cover time of a random walk on its graph is the number of steps until all vertices

have been visited at least once. The following theorem, obtained by Aleliunas et al. [2],

gives an upper bound for the cover time of a random walk on a graph.

Theorem 4.2. Given an undirected connected graph G = (V,E) with n vertices and m edges,

the cover time is upper bounded by 2|E|(|V | − 1).

4.4.2 The Gambler’s Ruin Theorem

The gambler’s ruin theorem, introduced by Feller [43], is closely related to the dis-

cussion of random walks, but this time the probability of selecting a neighbour is not

necessarily fair. The game is formulated as a Markov process on a space with z+1 states

si, 0 ≤ i ≤ z, where s0 and sz are absorbing states. From any state si, 1 ≤ i ≤ b − 1, it

is only possible to move to states si−1 and si+1, and the probability of these moves are

denoted by p and q = 1 − p, respectively. These transition probabilities are the same

for all non-absorbing states. Starting in state sx, 1 ≤ x ≤ z − 1, the goal is to find the
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absorbing state that is eventually reached. Interpreting the whole process as a gam-

bling game where x is the capital of a gambler and z is the capital of the bank, the goal

is to find the probability that the gambler wins. Here the gambler either wins or loses

one unit of money in each step with a certain probability until either the bank or the

gambler is ruined. We present a variant of the gambler’s ruin theorem (Theorem 4.3)

presented in [56].

Theorem 4.3 (Gambler’s Ruin Theorem). [56]

Let p be the probability of winning one dollar and q = 1 − p be the probability of loosing one

dollar in a single bet and let δ = q/p. Starting with x dollars, the probability of reaching z > x

dollars before attaining zero dollars is

Px =
δx − 1

δz − 1

If the initial capital of the gambler is low compared to the capital of the bank and the

probabilities of the game are in favour of the bank, then the probability of the gambler’s

ruin is high. This theorem can be used for analysing stochastic search algorithms that

tend to move towards a local optimum or a state that is hard to leave. In these situ-

ations, the Gambler’s Ruin Theorem, as can be observed from the above expression,

helps in proving an exponential lower bound, with respect to the parameter z, on the

optimization time.

4.5 Drift Analysis

One of the most important tools for proving upper and lower bounds on the expected

optimization times of evolutionary algorithms is drift analysis, introduced by He and

Yao [57]. This method uses an auxiliary potential function to track the behaviour of

the algorithm. In general, to use this method, one has to find the appropriate auxiliary

function which its value is expected to be improved by at least a constant amount at

each step of the algorithm. This method, which is known as the additive drift analysis,

is explained in Section 4.5.1. While this method is very powerful and has gained great

success, a variation of it is recently introduced in [34], that is quite straight forward to

use, when the auxiliary function is improved by a portion of its current value at each

step. This version of drift analysis is called maltiplicative drift analysis and is described

in Section 4.5.2. The other drift theorem that we describe in this chapter is the simplified

drift theorem [93, 94] (or the negative drift analysis) which is presented in Section 4.5.3.

Considering a random variable with a positive expected improvement in an interval,
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this theorem shows that with high probability, the whole interval is not passed towards

the lower limit of the interval in an exponential time.

4.5.1 Additive Drift Analysis

Here we present a definition of drift as well as the first formal drift theorem, introduced

by He and Yao [57]. The definition of the additive drift theorem below, is the version

presented in [80] is which the discrete search space and the Markov property of the

original definition are removed for simplicity.

Definition 4.4 (Drift [80]). Consider a non-negative random variable Xt, t ≥ 0 and a

natural filtration Ft = (X0, · · · , Xt), i. e. the information available up to time t. The

expected one-step change δt = E(Xt −Xt+1|Ft) for t > 0 is called drift.

Definition 4.5 (Additive Drift [80], following He and Yao [57]). Let (Xt)t≥0, be a stochas-

tic process over some bounded state space S ⊆ R+
0 . Assume that E(T0|X0) <∞where

Ta = min{t|Xt ≤ a} is the first hitting time for threshold a ≥ 0. Then:

• if E(Xt −Xt+1|Ft;Xt > 0) ≥ δu then E(T0|X0) ≤ X0
δu

• if E(Xt −Xt+1|Ft) ≤ δl then E(T0|X0) ≥ X0
δl

By applying the law of total expectation, the first statement implies E(T0) ≤ E(X0)
δu

and

analogously for the second statement.

4.5.2 Multiplicative Drift Analysis

In the following theorem, the value of the random variable that is studied over time,

X(t), is improved by a portion of its current value at each step. Using this theorem,

runtime bounds have been found for evolutionary algorithms on several combinatorial

optimization problems such as minimum spanning tree and shortest path problem [34].

Theorem 4.6 (Multiplicative Drift [34]). Let S ⊆ R be a finite set of positive numbers with

minimum smin. Let {X(t)}t∈N be a sequence of random variables over S ∪ {0}. Let T be the

random variable that denotes the first point in time t ∈ N for which X(t) = 0. Suppose that

there exists a real number δ > 0 that

E
[
X(t) −X(t+1) | X(t) = s

]
≥ δs

holds for all s ∈ S with Prob[X(t) = s] > 0.
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Then for all s0 ∈ S with Prob[X(0) = s0] > 0, we have

E[T |X(0) = s0] ≤ 1 + ln(s0/smin)

δ

4.5.3 Negative Drift Analysis

Consider a random variable Xt, t ≥ 0 with positive values that is changed in a stochas-

tic process. Also consider an interval of [a, b], a ≥ 0. The following theorem shows that

the lower limit of the interval is not reached by Xt with high probability, if the starting

point is above b, the average drift of the value of the random variable is positive, and

the probability of having big changes on it is small.

The simplified drift theorem (Theorem 4.7) is presented in [93, 94], but the idea behind

it goes back to [53]. In this theorem, Ft denotes a filtration on states.

Theorem 4.7 (Simplified Drift Theorem [94]). Let Xt , t ≥ 0, be real-valued random

variables describing a stochastic process over some state space. Suppose there exist an interval

[a, b] ⊆ R, two constants δ, ε > 0 and, possibly depending on l := b − a , a function r(l)

satisfying 1 ≤ r(l) = o(l/ log(l)) such that for all t ≥ 0 the following two conditions hold:

1. E[Xt+1 −Xt | Ft ∧ a < Xt < b] ≥ ε,

2. Prob(|Xt+1 −Xt| ≥ j | Ft ∧ a < Xt) ≤ r(l)
(1+δ)j

for j ∈ N.

Then there is a constant c∗ > 0 such that for T ∗ := min{t ≥ 0 : Xt ≤ a|Ft ∧X0 ≥ b} it holds

Prob(T ∗ ≤ 2c
∗l/r(l)) = 2−Ω(l/r(l)).

4.6 Parameterized Complexity Analysis

In recent years, the parameterized analysis of bio-inspired computing has gained addi-

tional interest [37, 76, 77, 88, 111–113]. Here the runtime of bio-inspired computing is

studied in dependence of the input size and some additional parameters which mea-

sure the hardness of a given instance, such as the solution size and structural parame-

ters of the given input. This helps us gain an understanding on the problem hardness

and find the parameters of a given NP-hard optimisation problem that make it hard

or easy to solve by randomised search methods. Parameterized complexity analysis

has been carried out for some NP-hard problems such as the computation of maximum

leaf spanning trees [76], vertex cover problem [77], makespan scheduling [112] and the

Euclidean travelling salesman problem [88, 111].
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There are general algorithmic techniques for solving parameterized problems such as

kernelization, integer linear programming (ILP), the method of bounded search trees,

color coding, and dynamic programming on tree decompositions. Here we only give an

introduction to kernelization and integer linear programming techniques and provide

examples of how they can be used in parameterized analysis (Sections 4.6.2 and ??

respectively). We start with definition of fixed-parameter tractability (FPT) which is an

important concept in the area of parameterized complexity analysis.

For a deeper review on parameterized complexity, refer to the textbook of Downey and

Fellows [37] and Cygan et al. [20], both of which provide a comprehensive overview of

important state of the art techniques in this field. Also, the book of Flum and Grohe [45]

is suggested for an overview of the area, with a focus in complexity and hierarchies of

intractable parameterized complexity classes.

4.6.1 Fixed-Parameter Tractable Algorithms

Assuming that k is a relevant secondary measurement that encapsulates some aspect of

the input instance, i. e. a structural parameter of a combinatorial problem, an algorithm

is a fixed-parameter algorithm or a fixed-parameter tractable (FPT) algorithm if the

expected runtime of the algorithm is bounded from above by f(k).nc, where n is the

input size, c is a constant independent of n and k, and f(k) is a function depending on k

only. An evolutionary algorithm that is an FPT is called a fixed-parameter evolutionary

algorithm.

For giving a more formal definition of FPT problems and algorithms, we denote a pa-

rameterized problem by a language L ⊆ Σ∗ × Σ∗, where Σ is a fixed, finite alphabet.

For most parameterized problems, the parameter is a positive integer and the language

can be represented by L ⊆ Σ∗ ×N. Given that in an instance (x, k) ∈ Σ∗ ×N, k denotes

the parameter, the formal definition of an FPT problem is as the following.

Definition 4.8 (Fixed-Parameter Tractable (FPT) Problem [20]). A parameterized prob-

lem L = Σ∗ ×N is called fixed- parameter tractable (FPT) if there exists an algorithm A

(called a fixed-parameter algorithm), a computable function f : N→ N, and a constant

c such that, given (x, k) ∈ Σ∗ ×N, the algorithm A correctly decides whether (x, k) ∈ L
in time bounded by f(k) · |(x, k)|c.

4.6.2 Kernelization

Kernelization is the process of reducing the size of an NP-hard problem instance. This

process aims at solving the easy parts of the problem efficiently and find an equivalent
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smaller instance which may still need exponential time to be solved. The output of

a kernelization algorithm is called the reduced equivalent instance or a kernel. The

kernelization process needs to be done in polynomial time with respect to the size of the

original problem, and a solution for this problem needs to be derived, from a solution

that is later found for the kernel.

Denoting a parameterized problem by a language L ⊆ Σ∗ × Σ∗, the formal definition

of kernelization is as the following.

Definition 4.9 (Kernelization [37]). Let L ⊆ Σ∗ × Σ∗ be a parameterized language. A

reduction to a problem kernel, or kernelization, replaces an instance (x, k) by a reduced

instance (x′, k′), called a problem kernel, such that

• k′ ≤ k,

• |x′| ≤ g(k), for some function g depending only on k, and

• (x, k) ∈ L if and only if (x′, k′) ∈ L.

The reduction from (x, k) to (x′, k′) must be computable in time polynomial in |x|+ |k|.

If there exists a kernelization algorithm for a problem, then an instance (x, k) can be

reduced to an instance (x′, k′) with a size of at most g(k) + k. Therefore, if there is an

algorithm to solve the instance (x′, k′), even of it requires exponential time with respect

to the instance size, the run time of solving the instance (x′, k′) is a function of k only.

Recalling Definition 4.8, it is clear that the problem is FPT with parameter k.

On the other hand, it also holds that if a parameterized problem is FPT, then it admits

a kernelization algorithm (Lemma 2.2 in [20]). This implies that a decidable problem

admits a kernel if and only if it is an FPT problem. The idea behind this lemma is

that since the problem is FPT, there exists an algorithm A that solves an instance (x, k)

in time f(k).|x|c. If the the actual run time is less than or equal to |x|c+1, then A can

be assumed as a kernelization algorithm that returns the result in polynomial time.

Otherwise, f(k).|x|c ≥ |x|c+1, which implies f(k) ≥ |I|. Therefore, the size of the

instance (x, k) is bounded by f(k) + k, and the the whole instance can be returned as

the kernel. For the detailed proof of this lemma refer to [20].

As a simple example for kernelization, consider the decidable version of the classical

vertex cover problem, in which a parameter k is given in addition to the input graph,

and the goal is to decide whether a vertex cover of size at most k can be found for the

given instance. We here show that Algorithm 7 is a kernelization algorithm for this

problem.
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Algorithm 7: Kernelization for the vertex cover problem

1 Given is the parameter k and the graph G = (V,E);
2 Initialize k′ ← k and G′ = (V ′, E′)← G;
3 Initialize C ← ∅;
4 repeat
5 Rule 1: delete isolated vertices of G′;
6 Rule 2: if there exists a vertex v with degree greater than k′ then
7 C ← C ∪ {v};
8 k′ ← k′ − 1;
9 V ′ ← V ′ \ v;

10 for ∀e ∈ E′ where v ∈ e do
11 E′ ← E′ \ e;

12 until neither Rule 1 nor Rule 2 can be applied;
13 if |V ′| > k′2 or |E′| > k′2 then
14 There is no vertex cover of size at most k for G;
15 else
16 Return k′ and G′ as the kernel to be investigated;

Observe that Algorithm 7 goes through its repeat loop at most |V | times and the time

that each iteration requires is bounded by O(|V | · |E|). Therefore, the algorithm is

performed in polynomial time with respect to the input size. Since k′ is initialized to k

and can only be decreased in the process of the algorithm, we have k′ ≤ k.

Rule 1 removes the isolated vertices since they do not play a role in making a cover.

Moreover, Rule 2 is applied because a vertex of degree greater than k′ has to be in the

cover set; otherwise, the cover set would need to include all adjacent vertices of that

vertex which exceed its maximum allowable size. After each iteration of the repeat

loop, a vertex cover of size k′ for G′, in addition to the set of vertices C found so far by

the algorithm, forms a vertex cover of size k for the original graph G. In other words,

there is a vertex cover of size at most k′ for G′ if and only if there is a vertex cover of

size at most k for G.

The main repeat loop terminates when there are no isolated vertices and no vertices

have a degree greater than k′. At this point, if there exists a vertex cover of size at

most k′ for G′, then the number of edges in G′ is upper bounded by k′2, because this is

the maximum number of edges that can be covered by a set of k′ vertices of degree at

most k′. Also, since there are no isolated vertices in G′, the number of vertices is upper

bounded by k′2 + 1. This implies that if |V ′| > k′2 + 1 or |E′| > k′2, then there is no

vertex cover of size at most k′ for G′. Otherwise, the size of the graph G′ is bounded by

a function of k′ (and also k; since we have k′ < k), and (G′, k′) can be considered as the

kernel for instance (G, k).
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4.6.3 Integer Linear Programming Technique

Using Integer Linear Programming (ILP) is another technique for solving parameter-

ized problems. Many combinatorial problems can be presented in the form of an ILP,

where a set of integer-valued variables is given together with a set of linear inequali-

ties (constraints) and a linear objective function. As we explained in Section 3.3.2, the

goal of an ILP is to find integer values of the variables that satisfies all constraints, and

minimizes or maximizes the value of the objective function.

While an ILP problem can be NP-hard, the relaxed version of that problem is a linear

programming problem which can be solved in polynomial time. The information ob-

tained by solving a relaxed version of some of the NP-hard combinatorial problems

can be used is finding solutions for the ILP version of the problem. An example of

this, is the use of LP to find a kernel for the vertex cover problem on a given graph

G = (V,E). The ILP formulation of the vertex cover problem and the relaxation on that

are explained in Section 3.3.2. Recall that a solution of the ILP problem is represented

by a bitstring x = (x1, · · · , xn), and the constraint xi ∈ {0, 1} is relaxed to xi ∈ [0, 1]

in the relaxed version of the problem. Using an optimal solution of the LP problem x,

consider the following partitioning on V .

• V0 = {vi ∈ V | xi < 1/2, i ∈ {1, · · ·n}}

• V 1
2

= {vi ∈ V | xi = 1/2, i ∈ {1, · · ·n}}

• V1 = {vi ∈ V | xi > 1/2, i ∈ {1, · · ·n}}

With this partitioning, the following theorem is proved [20].

Theorem 4.10 (Nemhauser-Trotter theorem as presented in [20]). There is a minimum

vertex cover S of G such that

V1 ⊆ S ⊆ V1 ∪ V 1
2

The idea of the proof is to consider a minimum vertex cover S∗ of G, define S = (S∗ \
V0) ∪ V1, and prove that S is also a minimum vertex cover of G. It is easy to show

that S is a vertex cover, because every vertex in V0 can only have a neighbour in V1.

What remains is to prove that S is a minimum vertex cover. In order to prove this,

one can assume the contrary, i. e. |S| > |S∗| and use the values of xi to obtain another

feasible solution for the relaxed version of the problem, with a lower cost than x. This

contradicts with x being an optimal solution of the LP problem. For the details of the

proof, refer to Theorem 2.19 of [20].
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Theorem 4.10 implies that if we include all vertices of V1 in the cover set, and define k′

and G′ = (V ′, E′) as k′ = k− |V1| and V ′ = V 1
2
, E′ = {e ∈ E | e ⊆ V ′}, then we obtain a

(possibly) smaller equivalent instance of the problem (G′, k′). Note that if
∑n

i=1 xi > k,

then the answer to the original problem (G, k) is no, i. e. there is no vertex cover of size

at most k for G. Therefore, we only need to consider the case where
∑n

i=1 xi ≤ k. This

implies that |V 1
2
| ≤ 2k. In other words, the size of the graph G′ is a function of the

parameter k; therefore, the vertex cover problem (G, k) is an FPT problem with respect

to parameter k.

4.7 Conclusion

In this chapter we presented some of the strong techniques that are widely used in the

field of runtime analysis for combinatorial optimization problems. We started by de-

viation bounds such as Markov’s inequality and the Chernoff bounds which help us

in finding the maximum probability that a random variable deviates from its expected

value. Then we presented the fitness-based partition technique where the proper parti-

tioning of the solution space plays an important role in the final results that is obtained

by this technique. We also presented the fair random walk problem and the Gambler’s

Ruin Theorem which can be used in proving upper bounds on the expected time and

the probability of reaching a state, respectively. Moreover, we included important theo-

rems of the field of drift analysis, which provide strong tool in finding upper and lower

bounds on the expected optimization times of stochastic search algorithms. At the end

of this chapter, we presented a brief description on parameterized complexity analysis

and FPT algorithms.



Chapter 5

Local Search and the Generalized

Travelling Salesman Problem

5.1 Introduction

In this chapter we present the theoretical understanding of local search methods for the

generalized travelling salesman problem (GTSP). The problem is given by a set of cities

with distances between them. Furthermore, the cities are divided into clusters and

the goal is to find a tour of minimal cost that visits one city from each cluster exactly

once. The formal problem definition can be found in Section 3.4.1. Here we investigate

the two hierarchical approaches for solving the GTSP presented in [66] (Section 3.4.1)

from a theoretical perspective. Our aim is to show situations where one of the ap-

proaches gets stuck in a local optimum and the other approach is able to perform well

and achieve an optimal solution. This gives a deeper insight into the working prin-

ciples of these two common approaches and highlights their complementary abilities.

Furthermore, we present an instance where both local search approaches are not able to

achieve an optimal solution, but a combination of them into a variable-neighbourhood

search reaches an optimal solution. To gain these structural insights, our instances

should be simple enough for theoretical treatment. As we are considering hierarchical

approaches working with two solution layers, it is very difficult to argue in general

about the run of metaheuristics on these problems. The only runtime analysis in the

context of parameterized complexity for a hierarchical optimization problem that we

are aware of, is the analysis of simple evolutionary algorithms for the generalized min-

imum spanning tree problem [19], which shows that evolutionary algorithms using a

cluster-based approach perform well for this problem if the number of clusters is small.

41
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The contents of this chapter are based on a GECCO conference paper [101] and a paper

submitted to a journal [102]. Section 5.2 of this chapter introduces the algorithms that

are subject to our investigations. In Section 5.3, we introduce a hard instance for the

Cluster-Based approach which is easy to solve for Node-Based approach. Section 5.4

includes an instance easy for Cluster-Based approach and difficult for Node-Based ap-

proach and Section 5.5 introduces the third instance which is difficult for both of them

but an algorithm that combines the two approaches can solve it easily. Existence of

such an instance strengthens the idea that combining the two approaches is beneficial

due to searching different neighbourhoods of the problem. Finally, we finish with some

concluding remarks in Section 9.6.

5.2 Local Search Algorithms for the Generalised Travelling Sales-

man Problem

In this section we describe the local search algorithms based on the two hierarchical

approaches of solving GTSP, the Cluster-Based approach and the Node-Based approach

(Section 3.4.1), and also the variable neighbourhood search of [66].

5.2.1 Cluster-Based Local Search

In the Cluster-Based approach, constructing the permutation of clusters constitutes the

upper layer and the node selection is done in the lower layer [66]. Let π = (π1, · · · , πm)

be a permutation of the m clusters and P = {p1, p2, · · · , pm} be the set of selected

nodes. Also, let pπi be the chosen node for cluster Vπi , 1 ≤ i ≤ m. Then, as mentioned

in Section 3.4.1, the cost of a solution S = (P, π) is

c(S) = c(pπm , pπ1) +

m−1∑
i=1

c(pπi , pπi+1),

Furthermore, the 2-opt neighbourhood of π is given by

N(π) = {π′ | π′ = (π1, · · · , πi−1, πj , πj−1, · · · , πi, πj+1, · · · , πm), 1 ≤ i < j ≤ m}

The Cluster-Based local search (CBLS) working with this neighbourhood structure,

given in Algorithm 8, starts with an initial permutation of clusters. At each step, a new

permutation π′ is selected from the 2-opt neighbourhood of π, the current permutation

of clusters. Then the lower layer finds the best spanning node set for that permutation,
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Algorithm 8: Cluster-Based local search (CBLS)

1 Choose a permutation π = (π1, . . . , πm);
2 Find the optimal set of spanning nodes P with respect to π to obtain the solution
S = (P, π);

3 for π′ ∈ N(π) do
4 Find an optimal set of nodes P ′ = {p′1, . . . , p′m}with respect to π′ to obtain the

solution S′ = (P ′, π′);
5 if c(S′) < c(S) then
6 S = S′;
7 GO TO 3

and the new solution S′ = (P ′, π′) replaces the old one if it is less costly. The algorithm

terminates if no better solution can be found in the 2-opt neighbourhood of π.

The lower layer uses a shortest path algorithm to find the best spanning node set. Hu

and Raidl [66] have applied an incremental bidirectional shortest path calculation for

this purpose. The shortest path algorithm of [71] is another option, which is an im-

proved version of dynamic programming algorithm of [44] for finding an optimal set

of spanning nodes for a given permutation in time O(n3). Section 5.2.1.1 describes this

algorithm which is presented in Algorithm 9.

5.2.1.1 Cluster Optimisation Algorithm

This section describes the polynomial algorithm Cluster Optimisation (Algorithm 9) pro-

posed initially by Fischetti et al [44] and improved by Karapetyan and Gutin [71]. Con-

sidering a given order of clusters, the algorithm finds the optimal set of nodes to visit

for GTSP. The main idea of this algorithm is to represent the problem as a layered net-

work in which each layer is a cluster of nodes and the last layer is a copy of the first

cluster (Figure 5.1). This representation is possible since the cluster permutation is im-

posed by some other component.

At the beginning we assume that the first cluster has a fixed node to start the tour and

from that node we move through the network layer by layer. In each layer we find the

FIGURE 5.1: Layered network of nodes
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Algorithm 9: Cluster Optimization [71]

1 Get tour T = (T1, T2, · · · , Tm) from input;
2 Let τi = Cluster(Ti), 1 ≤ i ≤ m;
3 for v ∈ τ1 and r ∈ τ2 do
4 Set the shortest path from v to r: pv,r ← (v, r);

5 for i ∈ {3, ·,m} do
6 for v ∈ τ1 and r ∈ τi do
7 pv,r ← pv,u ∪ (u, r) where u ∈ τi−1 is selected to minimize w(pv,u ∪ (u, r))

8 return pv,r ∪ (r, v) where v ∈ τ1 and r ∈ τm are selected to minimize w(pv,r ∪ (r, v))

minimum cost to reach each of the nodes. When we are done with the last layer, the

shortest path from the initial node to the corresponding node in the last layer is found.

In order to make sure that no path is missing, we need to do the whole procedure for

each of the nodes in the first cluster. As a result, the cardinality of the first cluster

plays an important role in the eventual complexity of the algorithm. Therefore, the

first cluster is better to be the smallest cluster in terms of number of the nodes. If

we represent the total number of nodes, the minimum cardinality of clusters and the

maximum cardinality of them by n, γ and s respectively, then the time complexity of

the algorithm is γns = O(n3). Here we explain how this time bound is obtained. The

minimum cost should be found for all of the nodes in the network which is n. To find

the minimum cost at each node, every node at the previous layer should be considered

and the sum of their cost and the weight of the edge between them and the current node

should be calculated. Therefore, the number of nodes in the previous layer (which is at

most s) is multiplied by n. Finally, we see γ in the formula because the whole described

procedure is repeated for every nodes of the first layer.

5.2.2 Node-Based Local Search

In the Node-Based approach [66], selection of the spanning nodes is done in the upper

layer and the lower level consists of finding a shortest tour on the spanning nodes.

Given a spanning nodes set P , in the nodes based local search algorithm, the upper

layer performs a local search based on the node exchange neighbourhood N ′(P ) that is

defined as

N ′(P ) = {P ′ | P ′ = {p1, · · · , pi−1, p
′
i, pi+1, . . . , pm}, p′i ∈ Vi \ {pi}, 1 ≤ i ≤ m}

Note that the lower level involves solving the classical TSP; therefore, it poses in gen-

eral an NP-hard problem on its own. For our theoretical investigations, we consider

two algorithms NEN-LS (Node Exchange Neighbourhood local search) and NEN-LS*



Local Search and the GTSP 45

Algorithm 10: Node Exchange Neighbourhood local search (NEN-LS)

1 Choose P = {p1, p2, . . . , pm}, pi ∈ Vi;
2 Let π be the permutation of clusters obtained by performing a 2-opt local search on
G[P ] and S = (P, π) be the resulting solution;

3 for P ′ ∈ N ′(P ) do
4 Let π′ be the permutation of clusters obtained from π by performing a 2-opt local

search on G[P ′] and S′ = (P ′, π′) be the resulting solution;
5 if c(S′) < c(S) then
6 S = S′;
7 GO TO 3

Algorithm 11: Node Exchange Neighbourhood local search* (NEN-LS*)

1 Choose P = {p1, p2, · · · , pm}, pi ∈ Vi;
2 Find a minimum-cost permutation π for G[P ] and let S = (P, π) be the resulting

solution;
3 for P ′ ∈ N ′(P ) do
4 Find a minimum-cost permutation π′ for G[P ′] and let S′ = (P ′, π′) be the resulting

solution;
5 if c(S′) < c(S) then
6 S = S′;
7 GO TO 3

presented in Algorithm 10 and Algorithm 11 respectively. NEN-LS computes a per-

mutation on the lower level using 2-opt local search and is therefore not guaranteed

to reach an optimal permutation π for a given spanning node set P . NEN-LS* uses an

optimal solver to find an optimal permutation π for a given spanning node set P . Such

a permutation can be obtained in time O(m22m) using dynamic programming [58] and

is practical if the number of clusters is small. We use NEN-LS* and show where it

gets stuck in local optima even if the travelling salesman problem on the lower level is

solved to optimality.

NEN-LS and NEN-LS* start with a spanning node set P and search for a good or op-

timal permutation with respect to P . Then each solution P ′ ∈ N ′(P ) together with its

permutation π′ is considered and S′ = (P ′, π′) replaces the current solution S = (P, π)

if it is of smaller cost. The definition of cost of a solution S is similar to that of Sec-

tion 5.2.1. Both algorithms terminate if there is no improvement possible in the neigh-

bourhood N ′(P ) of the current solution P .
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Algorithm 12: Variable Neighborhood Search (VNS)

1 Choose an initial solution S = (P, π);
2 l = 1;
3 while l ≤ 2 do
4 for S′ ∈ Nl(S) do
5 if c(S′) < c(S) then
6 S = S′;
7 l = 1;
8 GO TO 3

9 l = l + 1

5.2.3 Variable Neighbourhood Local Search

Hu and Raidl [66] have also introduced the combination of the two approaches into

a variable neighbourhood search algorithm and shown that this leads to a high per-

forming algorithm for the GTSP. Two neighbourhood structures of CBLS and NEN-LS

are used in their algorithm. For the combination of these two approaches, the Variable

Neighbourhood Search (VNS) scheme is used with embedded Variable Neighbourhood

Descent (VND) as proposed in [55]. The variable neighbourhood search of [66] uses the

NEN-LS structure only when the algorithm is in a local optimum with respect to the

CBLS structure. Motivated by their algorithm, we define another version of variable

neighbourhood local search (Algorithm 12) which explores different neighbourhood

structures until they stick to a local optimum.

Let S = (P, π) be a solution to the GTSP. We define the two neighbourhoods N1 and N2

based on the 2-opt neighbourhood N and the node exchange neighbourhood N ′ as

• N1(S) = {S′ = (P ′, π′) | π′ ∈ N(π), P ′ = optimal set of nodes with respect to π′}

• N2(S) = {S′ = (P ′, π′) | P ′ ∈ N ′(P ), π′ = order of clusters obtained by 2-opt

from π on G[P ′]}

Combining the two local searches of Cluster-Based approach and Node-Based approach

is done by alternating betweenN1 andN2. N1 is the first neighbourhood to be searched.

When a local optimum has been found with respect to N1, then neighbourhood N2 is

being searched. The process continues by searching N1 again, when a local optimum is

found with respect to N2.
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5.3 Benefits of Cluster-Based Local Search

We now consider a situation where NEN-LS* finds it hard to obtain an optimal solution

and CBLS with the same starting solution obtains an optimum in polynomial time. The

instance G2 = (V,E) is illustrated in Figure 5.2. There are m clusters where m > 2, and

all the clusters contain only 2 nodes; one white and one black. We refer to the white and

black nodes of cluster i, 1 ≤ i ≤ m, by viW and viB , respectively. We call cluster V1 the

costly cluster as edges connecting this cluster are more costly than edges connecting

the other clusters. The edge set E of this complete graph is partitioned into 4 different

types.

• Type A: Edges of this type have a weight of 1. All connections between white

nodes of different clusters except cluster V1 are of this type.

A = {{viW , vjW } | 2 ≤ i, j ≤ m}

• Type B: Edges of this type have a weight of 2. All connections between black

nodes of different clusters are of this type.

B = {{viB, vjB} | 1 ≤ i, j ≤ m}

• Type C: Edges of this type have a weight of m. All edges between white node of

the costly cluster and white nodes of other clusters are of this type.

C = {{v1W , viW } | 2 ≤ i ≤ m}

• Type D: Edges of this type have a weight of m2. All other edges in this complete

graph, which consist of all edges between a white and a black node, are of this

type.

D = E \ {A ∪B ∪ C} = {{viW , vjB} | 1 ≤ i, j ≤ m}

We first claim that the optimal solution consists of only black nodes. Then we bring

our main theorems on the runtime behaviour of solving this instance with the two

mentioned approaches.

Property 5.1. For the graph G2 any solution containing all black nodes is optimal.

Proof. A solution that contains only black nodes has m edges of type B and therefore

total cost of 2m.
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FIGURE 5.2: Graph G2

Choosing a combination of black and white nodes implies a connection of type D and

therefore a solution of cost at least m2. Choosing all white nodes implies 2 edges of

cost m connected to cluster V1 and m − 2 edges of cost 1. Hence, the total cost of such

a solution is 2m + (m − 2) which implies that a solution selecting all black nodes is

optimal.

We now show that CBLS always finds an optimal solution due to selecting an optimal

spanning nodes in time O(n3).

Theorem 5.2. Starting with an arbitrary permutation π, CBLS finds an optimal solution for

G2 by choosing the optimal spanning node set P for π in time O(n3).

Proof. As mentioned in Property 5.1, visiting black nodes of the graph in any order is a

globally optimal solution. For each permutation π the optimal set of nodes is given by

all black nodes and found when constructing the first spanning node set. Such a set P

is constructed in time O(n3) by the shortest path algorithm given in [71].

In contrast to the positive result for CBLS, NEN-LS* is extremely likely to get stuck in

a local optimum if the initial spanning node set is chosen uniformly at random. Note,

that NEN-LS* even uses an exact solver for the lower layer.

Theorem 5.3. Starting with a spanning node set P chosen uniformly at random, NEN-LS*

gets stuck in a local optimum of G2 with probability 1− e−Ω(n).

Proof. Selecting P = {p1, · · · , pm} uniformly at random, the expected number of white

nodes is n
2 . Using Chernoff bounds, the number of white nodes is at least n/4 with

probability 1− e−Ω(n). The same applies to the number of black nodes.

Since connecting white nodes to black nodes is costly, the lower layer selects a permu-

tation which forms a chain of white nodes and a chain of black nodes connected to form

a cycle by only two edges of type D.
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FIGURE 5.3: The initial solution for G2 if a) A white node is selected for the costly
cluster. b) A black node is selected for the costly cluster.

Let p1 be the selected node of the costly cluster V1. If p1 is initially white, the lower layer

places it at one border between the black chain and the white chain to avoid using one

of the edges of type C. This situation is illustrated in Figure 5.3-a. If p1 is initially

black, then the initial solution would look like Figure 5.3-b, in which the costly cluster

is placed somewhere in the black chain.

Claim 5.4. Starting with a random initial solution, with probability 1− e−Ω(n) for all the

clusters Vi, 2 ≤ i ≤ m; a change from black to white is improving while no change from

white to black is improving.

Proof. As mentioned earlier, a random initial solution has both kinds of nodes with

probability 1− e−Ω(n); therefore, it contains a chain of black nodes and a chain of white

nodes. Changing a black node pi, i 6= c to white results in shortening the chain of black

nodes by removing an edge of type B and cost 2, while the chain of white nodes gets

longer by adding an edge of type A and cost 1. The new solution is hence improved in

terms of fitness and accepted by the algorithm. On the other hand, the opposite move

increases the cost of the solution; therefore in a cluster Vi, i 6= c a change from white to

black cannot happen.

The number of selected white nodes for clusters Vi, i 6= 1 never decreases; therefore, at

all time during the run of the algorithm we have both chains of black nodes and white

nodes, until all the black nodes change to white.

Claim 5.5. As long as there is at least one cluster Vi, i 6= 1 for which the black node

is selected, a change from white to black is accepted for cluster V1 and the opposite

change is rejected.

Proof. Since there is at least one cluster Vi, i 6= 1, for which the black node is selected,

we know that the current solution and the new solution both have a chain of black

nodes and a chain of white nodes. If the white node of cluster V1 is selected in the

current solution, changing it to black shortens the chain of white nodes with removing

the edge of type C while increases the number of black nodes by adding an edge of

type B. This move is accepted because the new solution is improved in terms of cost.
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FIGURE 5.4: a) All other clusters change to white one by one. b)Local Optimum forG2

The result is illustrated in Figure 5.3-b. Using similar arguments, if the black node of

cluster V1 is selected in the current solution, changing it to white is rejected because it

increases the cost.

Using Claim 5.4 we can conclude that all nodes pi, i 6= 1 gradually are changed to white

in NEN-LS. For p1:

• If p1 is initially black, it remains black until all other pis change to white. At

this point p1 is the only black node in the solution and is connected to two white

nodes with edges of typeD and costm2 as illustrated in Figure 5.4-a. If it changes

to white, these two edges are removed and two edges of type C and cost m are

added to the solution (Figure 5.4-b). This change is accepted because two edges

of cost m are less costly than two edges of cost m2.

• If p1 is initially white,

– If it happens to change to black, it remains black until all other pis change to

white, at which point p1 also changes to white.

– If all other pis change to white before trying a black node for p1, then it never

changes to black.

This eventually results in a local optimum with all white nodes selected. The algorithm

only needs to traverse the clusters on the upper layer only twice which gives O(m)

iterations on the upper layer for the algorithm to get stuck in a local optimum. In the

first traversal, for all the clusters the white node will be selected except for the costly

cluster V1 for which the black node will be selected. In the second traversal, that only

black node will also change to white.

This completes the proof of Theorem 5.3.
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5.4 Benefits of Node-Based Local Search

In this section, we present an instance of the problem that can not be solved by CBLS.

In contrast to this, NEN-LS finds an optimal solution in polynomial time.

FIGURE 5.5: G1, an easy instance for NEN-LS and a hard instance for CBLS

We consider the undirected complete graph, G1 = (V,E) which is illustrated in Fig-

ure 5.5. The graph has n nodes and 6 clusters Vi, 1 ≤ i ≤ 6. Cluster V1 contains n/12

white and n/12 grey nodes. We denote by V1W the subset of white nodes and by V1G

the subset of grey nodes of cluster V1. Each other cluster Vj , 2 ≤ j ≤ 6, consists of

n/6 white nodes. The node set V = ∪6
i=1Vi of G1 consists of nodes of all clusters. For

simplicity, Figure 5.5 shows only one node for each group of similar nodes with similar

edges in the picture. The edge set E consists of 4 types of edges which we define in the

following.

• Type A: Edges of this type have a cost of 1. All edges between clusters 2 and 3,

and between clusters 4 and 5 and also between clusters 6 and 1, are of this type.

A = {{vi, vj} | (vi ∈ V1W ∪ V1G ∧ vj ∈ V6) ∨ (vi ∈ V2 ∧ vj ∈ V3) ∨ (vi ∈ V4 ∧ vj ∈ V5)}

• Type B: Edges of this type have a cost of 3. All edges connecting the nodes

of cluster 1 to cluster 2 are of this type. So are the edges that connect nodes of

cluster 3 to 4 and cluster 5 to 6.

B = {{vi, vj} | (vi ∈ V1W ∪ V1G ∧ vj ∈ V2) ∨ (vi ∈ V3 ∧ vj ∈ V4) ∨ (vi ∈ V5 ∧ vj ∈ V6)}

• Type C: Edges of this type have a cost of 4. All edges between nodes of cluster 2

and 5 and also between clusters 3 and 6 are of this type. All edges that connect

white nodes of the first cluster to nodes of the forth cluster are also of this type.

C = {{vi, vj} | (vi ∈ V1W ∧ vj ∈ V4) ∨ (vi ∈ V2 ∧ vj ∈ V5) ∨ (vi ∈ V3 ∧ vj ∈ V6)}
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• Type D: Edges of this type have a large cost of 100. All edges other than those of

type A or B or C in this complete graph, including the edges between grey nodes

of the first cluster and the nodes of the forth cluster, are of Type D.

D = E \ {A ∪B ∪ C}

We say that a permutation π = (π(1), . . . , π(n)) visits the cities in consecutive order iff

π(i+ 1) = (π(i) mod n) + 1, 1 ≤ i ≤ n and say that π = (π(1), . . . , π(n)) visits the cities

in reverse-consecutive order iff π(i) = (π(i+ 1) mod n) + 1, 1 ≤ i ≤ n.

Property 5.6. For the instance G1, each solution visiting the clusters in consecutive or

reverse-consecutive order is optimal.

Proof. The graph consists of 6 clusters which implies that 6 edges are needed for a tour.

The least costly edges are of typeA, which are available only between 3 pairs of clusters.

Therefore, the maximum number of edges of this type that can be used in a tour is 3.

The second least costly type of edge is B with weights of 3. This implies that no tour

can be shorter than 3 · 1 + 3 · 3 = 12. Each solution with a permutation in consecutive

or reverse-consecutive order uses exactly three edges of weight 1 and three edges of

weight 3 which implies a cost of 12 and is therefore optimal.

Theorem 5.7. Starting with the solution consisting of all the white nodes and the permutation

π = (1, 4, 5, 2, 3, 6), CBLS is not able to achieve any improvement.

Proof. Starting with all white nodes and a permutation π = (1, 4, 5, 2, 3, 6), the solution

contains three Type-A edges of cost 1 and three Type-C edges of cost 4. This implies a

total cost of 15 which is not optimal. The edges belonging to this tour are marked solid

in Figure 5.5. We claim that this solution is locally optimal, i.e. can not be improved by

a 2-opt step.

When a 2-opt move is performed, depending on the different types of edges that are

removed from the current tour, we show that the resulting tours have costs greater than

15.

Note, that all 3 edges of cost 1 are already used in the current permutation which im-

plies no additional edge of cost 1 can be added. We inspect the different 2-opt steps

with respect to the edges that are removed.

• If two edges of type A which have cost of 1 are removed, two other edges need

to be added and the least costly edges that can be added have a weight of 3. This

makes the total cost of the resulting solution to be at least 15 − 2 · 1 + 2 · 3 = 19

which is greater than 15.
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• If one edge of type A (weight 1) and one edge of type C (weight 4) are removed,

again with the minimum two edges of cost 3 that are added, the total cost is at

least 15− 1− 4 + 2 · 3 = 16 which is greater than 15.

• For removing two edges of Type C, there are three options:

– Remove the edge between cluster 1 and cluster 4 and also the edge between

cluster 2 and cluster 5. This 2-opt results in permutation π′ = (1, 5, 4, 2, 3, 6)

which adds two edges of typeD to the solution, making the total cost greater

than 15.

– Remove the edge between cluster 1 and cluster 4 and also the edge between

cluster 3 and cluster 6. This 2-opt results in permutation π′ = (1, 3, 2, 5, 4, 6)

which also adds two edges of type D to the solution, making the total cost

greater than 15.

– Remove the edge between cluster 2 and cluster 5 and also the edge between

cluster 3 and cluster 6. This 2-opt results in permutation π′ = (1, 4, 5, 3, 2, 6)

which also adds two edges of type D to the solution, making the total cost

greater than 15.

We have shown that no 2-opt step is accepted, which completes the proof.

In contrast to the negative result for CBLS, we show that NEN-LS is able to reach an

optimal solution when starting with the same solution.

Theorem 5.8. Starting with π = (1, 4, 5, 2, 3, 6), NEN-LS finds an optimal solution for the

instance G1 in O(nm2) steps.

Proof. Starting with a solution with only white nodes and the permutation of π =

(1, 4, 5, 2, 3, 6), the lower level is already locally optimal using the arguments in the

proof of Theorem 5.7. This implies that the solution does not change unless a grey note

in cluster V1 is selected.

Let P = {p1, · · · , p6} be the current set of spanning nodes. Selecting a grey node p′1 for

cluster V1 leads to the set of spanning nodes P ′ = {p′1, p2, · · · , p6}. P ′ in combination

with the the current permutation π = (1, 4, 5, 2, 3, 6) has a total cost of 111 as there is

one edge of type D with cost 100. We now show that starting from this solution and

performing a 2-opt local search on the lower level results in an optimal solution.

In order to accept a new permutation on the lower level a solution of cost at most 111

has to be obtained. We do a case distinction according to the different types of edges

that are removed in a 2-opt operation. If we only remove edges of type A and C, we
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reach a solution with total cost of greater than 111 using the arguments in the proof

of Theorem 5.7. Hence, we only need to consider the case where at least one edge of

type D is removed.

• There are two possibilities of removing one edge of type D and one of the edge of

type C leading to the permutations π′ = (1, 5, 4, 2, 3, 6) and π′′ = (1, 3, 2, 5, 4, 6).

Both have two edges of type D which implies a total cost of greater than 111 and

are therefore rejected.

• Considering the case of removing the edge of type D and one of the edges of

type A, the only applicable 2-opt move leading to a different permutation results

in the permutation π′ = (1, 2, 5, 4, 3, 6). The resulting solution has cost 16 and is

therefore accepted.

Considering π′ = (1, 2, 5, 4, 3, 6), the only acceptable 2-opt move leads to the global op-

timum πopt = (1, 2, 3, 4, 5, 6). The runtime is bounded by O(nm2) as it takes O(n) time

on the upper level to selected a grey node. Furthermore, each lower level optimiza-

tion is bounded byO(m2) as either permutations are locally optimal with respect to the

spanning nodes or there are at most two improvements of the permutation in the case

that a grey node of cluster V1 is selected.

5.5 Benefits of Variable Neighbourhood Local Search

In this section we introduce an instance of the problem for which both of the mentioned

neighbourhood search algorithms fail to find the optimal solution. Nevertheless, the

combination of these approaches as described in Algorithm 12 results in finding the

global optimum.

We consider the undirected complete graphG3 shown in Figure 5.6 which has 6 clusters

each containing n/6 nodes. There are three kinds of nodes in this graph: white, grey

and black. The first cluster consists of n/12 black, n/24 white, and n/24 grey nodes. All

other clusters contain n/12 white and n/12 black nodes. We refer to the set of white,

black and grey nodes of cluster Vi by ViW , ViB , andViG, respectively.

There are 5 types of edges in this graph, 4 of which are quite similar to the 4 types of

the instance in Section 5.3. The other type, named type D below, includes the edges

between two consecutive black nodes with a cost of 1.5.
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FIGURE 5.6: Graph G3 showing one node of each type for each cluster and omitting
edges of cost 100.

• Type A: Edges of this type have a cost of 1.

A = {{vi, vj} | (vi ∈ V1W ∪ V1G ∧ vj ∈ V6W ) ∨

(vi ∈ V2W ∧ vj ∈ V3W ) ∨ (vi ∈ V4W ∧ vj ∈ V5W )}

• Type B: Edges of this type have a cost of 3.

B = {{vi, vj} | (vi ∈ V1W ∪ V1G ∧ vj ∈ V2W ) ∨

(vi ∈ V3W ∧ vj ∈ V4W ) ∨ (vi ∈ V5W ∧ vj ∈ V6W )}

• Type C: Edges of this type have a cost of 4.

C = {{vi, vj} | (vi ∈ V1W ∧ vj ∈ V4W ) ∨

(vi ∈ V2W ∧ vj ∈ V5W ) ∨ (vi ∈ V3W ∧ vj ∈ V6W )}

• Type D: Edges of this type have a cost of 1.5.

D = {{vi, vj} | (vi ∈ VkB ∧ vj ∈ V(k+1)B , 1 ≤ k ≤ 5) ∨ (vi ∈ V6B ∧ vj ∈ V1B)}

• Type F : Edges of this type have a large cost of 100. All edges other than those of

type A or B or C or D in this complete graph are of Type F . Note that the edges

between grey nodes of the first cluster and the white nodes of the forth cluster are

also of this type.

F = E \ {A ∪B ∪ C ∪D}
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We now show that an optimal solution visits a black node from each cluster in consec-

utive or reverse-consecutive order. Then in Theorem 5.10, we show that the algorithms

CBLS and NEN-LS may get stuck in local optimums.

Property 5.9. The optimal solution for the graph G3 is visiting all black nodes with the

consecutive or reverse-consecutive order.

Proof. There are three kinds of nodes in this graph; white, grey and black. Any solution

that contains black and one other kind of node has at least two edges of type F and

weight 100 which makes the total cost of that solution more than 200. A solution that

visits all black nodes in consecutive or reverse-consecutive order has 6 edges of type

D and a total cost of 9. On the other hand, if we consider only white and grey nodes,

our graph is the same as the instance of Section 5.3 with the optimal solution of cost 12.

Therefore, visiting all black nodes with the cost of 9 is the optimal solution.

Theorem 5.10. Starting with a spanning node set P consisting of only white nodes and the

permutation π = (1, 4, 5, 2, 3, 6), CBLS and NEN-LS get stuck in a local optimum of G3.

Proof. We first show that the mentioned initial solution is a local optimum for CBLS.

The cost of this solution is 15 which is less than any of the edges between black nodes

and white or grey nodes which are of type F . Therefore, any solution consisting of

two kinds of nodes, black and another kind, cannot be accepted after this solution.

Considering only white and grey nodes, the permutation π′ = (1, 2, 3, 4, 5, 6) is better

than the current one, but as we saw in Theorem 5.7 of Section 5.3 this order can not be

achieved with Algorithm 8. A solution consisting of all the black nodes is less costly

only if they are visited in the optimal order of π′ = (1, 2, 3, 4, 5, 6) which is exactly

the same permutation that is better for white nodes as well. As we discussed, this

permutation is not achievable by searching the 2-opt neighbourhood of the current

solution and the Cluster-Based approach can not find it.

Now we investigate the behaviour of NEN-LS which performs a local search based on

the Node-Based approach for this instance. We show that this algorithm finds another

locally optimal solution. Starting with the initial solution that is specified in the the-

orem, all black nodes can not be selected in one step and trying any one of the black

nodes is rejected, because using two edges of type F are inevitable which makes the

solution worse than the initial solution. The only spanning node set left in the NEN

has the grey node of the first cluster. For this selection of nodes, the 2-opt TSP solver

of the lower layer finds the optimal order of clusters similar to what we described in

Theorem 5.8 of Section 5.3 which form a solution of cost 12. From this point any Node-

Exchange-Neighbourhood search fails to find a better solution.
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Using the combination of the two hierarchical approaches by variable-neighbourhood

search allows us to escape these local optima. As a result VNS obtains an optimal

solution when starting with the same solution as investigated in Theorem 5.10.

Theorem 5.11. Starting with a spanning node set P consisting only of white nodes and the

π = (1, 4, 5, 2, 3, 6), VNS obtains an optimal solution in time O(n3).

Proof. This approach is supposed to start with Cluster-Based algorithm and alternate

between the two algorithms whenever CBLS is stuck in a locally optimal solution. As

we saw, from the initial solution, Algorithm 8 can not find any better solutions, because

the initial solution is a local optimum for that algorithm. Finding this out requires

searching all the 2-opt neighbourhood which can be done in constant time, because the

number of clusters is fixed. Then NEN-LS manages to find another solution with the

permutation of π′ = (1, 2, 3, 4, 5, 6). This can also be done in polynomial time as we

described in Theorem 5.8 of Section 5.3. Then CBLS uses this as a starting solution. As

π′ = (1, 2, 3, 4, 5, 6) is an optimal permutation the optimal set of nodes P consisting of

all black nodes is found in time O(n3) on the lower layer.

The investigations of this section have pointed out where a combination of the two hi-

erarchical approaches into variable neighbourhood search gives a clear benefit to the

optimization process as it is crucial for escaping local optima of the two single ap-

proaches.

5.6 Conclusion

Local search approaches have been shown to be very successful for solving the general-

ized travelling salesman problem. Two hierarchical local search approaches have been

introduced in [66] for solving this problem, which we have investigated in this chapter

from a theoretical perspective. The two approaches search different neighbourhoods

in each layer. By presenting instances where they mutually outperform each other, we

have gained new insights into the complimentary abilities of the two approaches. We

have proved that there are instances that can be solved in polynomial time with one

approach, while the other approach fails to find an optimal solution.

Furthermore, Hu and Raidl [66] have introduced a combination of the two approaches

into a variable neighbourhood search algorithm. They have claimed that this algorithm,

which searches both neighbourhoods, performs better for solving different instances of

the GTSP. Supporting their idea, we have presented and analysed a class of instances
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where combining the two approaches into a variable-neighbourhood search helps to

escape from local optima of the single approaches.



Chapter 6

Simple Evolutionary Algorithms

and the Generalized Travelling

Salesman Problem

6.1 Introduction

In this chapter, we investigate the behaviour of simple evolutionary algorithms solving

the generalized travelling salesman problem in the context of parameterized analysis.

Similar to the previous chapter, we concentrate on Hu and Raidl’s [66] two hierarchical

approaches for GTSP which is defined in Section 3.4.1. We analyse a (1+1) EA based

on the Cluster-Based approach and a (1+1) EA based on the Node-Based approach by

presenting upper and lower bounds for optimization time. We show that the Cluster-

Based approach gives us a Fixed-Parameter evolutionary algorithm while this is not the

case for the Node-Based approach. However, we also show that the worst case instance

presented for the Cluster-Based approach, can be solved in polynomial time by means

of the Node-Based approach; hence, there are instances of the problem which the latter

approach can solve more efficiently.

For finding the lower bound on the optimization time of the Node-Based (1+1) EA, we

introduce a Euclidean class of instances which requires exponential time with respect

to the number of clusters. To our knowledge currently an exponential lower bound for

solving TSP by a stochastic search algorithm is available only for ant colony optimiza-

tion in the non-Euclidean case [75]. Our instance for the GTSP places nodes on two

different circles with radius r and r′ of a given centre. Exploiting the geometric proper-

ties of this instance class, we show by Multiplicative Drift Analysis (Theorem 4.6) that

59
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the evolutionary algorithm under investigation ends up in a local optimum which has

different chosen nodes for almost all clusters. Leaving such a local optimum requires

exponential time for many mutation-based evolutionary algorithms and leads to an

exponential lower bound with respect to the number of clusters for the investigated

algorithm.

The work of this chapter is based on an ECJ paper [19] and another paper that is sub-

mitted to a journal [102]. The outline of this chapter is as follows. Section 9.2 introduces

the algorithms that are subject to our investigations in this chapter. The runtime analy-

sis for the Cluster-Based (1+1) EA, which includes introducing a hard instance for this

algorithm, is presented in Section 6.3. Then in Section 6.4 we show that the introduced

hard instance of the Cluster-Based (1+1) EA can be solved in polynomial time with the

Node-Based (1+1) EA. Section 6.5 continues analysis on the Node-Based (1+1) EA by

finding lower and upper bounds for the optimization time of this algorithm. Finally,

we finish with some concluding remarks in Section 9.6.

6.2 Simple Evolutionary Algorithms for the Generalised Trav-

elling Salesman Problem

This section contains the description of two simple evolutionary algorithms that are

analysed in this chapter in the context of parameterized complexity. The algorithms,

namely Cluster-Based (1+1) EA and Node-Based (1+1) EA, are based on two hierar-

chical approaches for GTSP introduced by Hu and Raidl [66] and presented in Sec-

tion 3.4.1.

6.2.1 Cluster-Based (1+1) EA

Similar to the Cluster-Based local search algorithm of Section 5.2.1, the upper layer

solution in the Cluster-Based (1+1) EA is a permutation of clusters, π, and the lower

layer solution is a set of nodes P = {p1, . . . , pm} with pi ∈ Vi that minimises the cost

of a tour that respects π. Given the restriction imposed by π, finding the optimal set

of nodes P can be done in time O(n3) by using any shortest path algorithm. One such

algorithm is presented in Section 5.2.1.1. Assuming that pπi is the chosen node for

cluster Vπi , 1 ≤ i ≤ m, similar to Section 3.4.1 and Section 5.2, the cost of the solution

S = (P, π) is

c(S) = c(pπm , pπ1) +
m−1∑
i=1

c(pπi , pπi+1).
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Algorithm 13: Cluster-Based (1+1) EA

1 Choose a random permutation π of the m given clusters;
2 Let P = {p1, . . . , pm} be the optimal set of nodes for π and S = (P, π) be the resulting

solution;
3 while termination condition not satisfied do
4 π′ = π;
5 for i ∈ {1, · · · ,K}, where K ∼ 1 + Pois(1) do
6 Choose two nodes in π′ uniformly at random;
7 Perform the Jump with the chosen nodes on π′;

8 Let P ′ = {p′1, . . . , p′m} be the optimal set of nodes for π′ and S′ = (P ′, π′) be the
resulting solution;

9 if c(S′) < c(S) then
10 S = S′;

Our proposed algorithm (Algorithm 13) starts with a random permutation of clusters.

In each iteration, a new solution π′ of the upper layer is obtained by the commonly used

jump operator which picks a node and moves it to a random position in the permuta-

tion. The number of jump operations carried out in a mutation step is chosen according

to 1 + Pois(1), where Pois(1) denotes the Poisson distribution with expectation 1. Al-

though we are using the jump operator in these investigations, similar results can be

obtained for other popular mutation operators such as exchange and inversion.

6.2.2 Node-Based (1+1) EA

In Node-Based approach, selecting the spanning nodes is done in the upper layer and

the corresponding shortest Hamiltonian cycle is found in the lower layer. The Node-

Based (1+1) EA is presented in Algorithm 14. In contrast to Node-Based local search

algorithm of Section 5.2.2, the upper layer uses the (1+1) EA to search for the best span-

ning set instead of a local search method; hence, more than one change on the spanning

set is possible on the upper layer at each iteration of the algorithm. The condition for

accepting the new solution is a strict improvement and the definition of cost of a solu-

tion S is similar to that of Section 6.2.1.

We analyse this algorithm with respect to the (expected) number of iterations on the

upper layer, until it has found an optimal solution and call this the (expected) optimiza-

tion time of the algorithm. Note that the lower layer consists of an NP-hard problem;

hence, when showing polynomial upper bounds, we only consider instances where the

lower layer can be solved in polynomial time. For general case, there exist very effec-

tive solvers for TSP such as Concorde [3], that can be used in the lower layer. Note

that the lower layer does not need to solve an NP-hard problem in the Cluster-Based
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Algorithm 14: Node-Based (1+1) EA

1 Let P = {p1, p2, . . . , pm}, where pi ∈ Vi are chosen uniformly at random;
2 Let π be the optimal permutation for G[P ] and S = (P, π) be the resulting solution;
3 while termination condition not satisfied do
4 P ′ = P ;
5 for i ∈ {1, · · · ,m} do
6 with probability 1/m, sample p′i ∼ Unif(Vi);

7 Let π′ be the optimal permutation for G[P ′] and S′ = (P ′, π′) be the resulting
solution;

8 if c(S′) < c(S) then
9 S = S′;

approach. Nevertheless, we prove that there are instances that can be solved in poly-

nomial time with Node-Based (1+1) EA, while the Cluster-Based (1+1) EA [19] needs

exponential time to find an optimal solution for them.

6.3 Analysis on Cluster-Based (1+1)EA

In this section we provide the analysis on the behaviour of the Cluster-Based (1+1) EA

on the GTSP. Upper and lower bounds on the optimization time of the algorithm are

presented in Sections 6.3.1 and 6.3.2.

6.3.1 Upper Bound for Optimization Time

Theorem 6.1 below, presents an upper bound for the expected optimization time of the

Cluster-Based (1+1) EA solving GTSP.

Theorem 6.1. The expected optimisation time of the Cluster-Based (1+1) EA is O(m!m2m).

Proof. We consider the probability of obtaining the optimal tour π∗ on the global graph

H from an arbitrary tour π. The number of Jump operations required is at most m (the

number of clusters). The probability of picking the right node and moving it to the right

position in each of those m operations is at least 1/m2. We can obtain an optimal solu-

tion by carrying out a sequence of m jump operations where the ith operation jumps

element π∗i in π to position i. Since the probability of Pois(1) + 1 = m is 1/(e(m − 1)!),

the probability of a specific sequence of m Jump operations to occur is bounded below

by
1

e(m− 1)!
· 1

m2m
.
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Therefore, the expected waiting time for such a mutation is

(
1

e(m− 1)!
· 1

m2m

)−1

= O(m!m2m)

which proves the upper bound on the expected optimisation time.

Note that this upper bound depends on the number of clusters. Since the computa-

tional effort required to assess the lower layer problem is polynomial in input size,

O(n3), this implies that the proposed algorithm is a fixed-parameter evolutionary algo-

rithm for the GTSP problem and the parameter m, the number of clusters.

6.3.2 Lower Bound for Optimization Time

In this section we find a lower bound for the optimisation time of the proposed al-

gorithm. Figure 6.1 illustrates an instance GG of GTSP, for which finding the optimal

solution is difficult by means of the presented hierarchical evolutionary algorithm with

Cluster-Based approach. In this graph, each cluster has two nodes. On the upper layer

a tour for clusters is found by the EA and on the lower layer the best node for that tour

is found within each cluster. All white nodes (which represent sub-optimal nodes) are

connected to each other, making any permutation of clusters a Hamiltonian cycle even

if the black nodes are not used. All such connections have a weight of 1, except for

those which are shown in the figure and have a weight of 2. All edges between a black

node and a white node and also all edges between black nodes have weight m2, except

for the ones presented in the figure which have weight 1/m. An optimal solution of
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FIGURE 6.1: GG, a hard instance of GTSP for Cluster-Based (1+1) EA.
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cost 1 uses only edges of cost 1/m whereas local optimal solutions use only edges of

cost 1. The tour comprising all black nodes in the same order as illustrated in Figure 6.1

is the optimal solution. Note that there are many local optimal solutions of cost m. For

our analysis it is just important that they do not share any edge with the global optimal

solution.

The clusters are numbered in the figure, and a measure S for evaluating cluster orders

is based on this numbering: Let π = (π0, . . . , πm−1) represent the permutation of clus-

ters in the upper layer, then S(π) defined below, indicates the similarity of π with the

optimal permutation. Observe that S(π) ≤ m.

S(π) = |{i | π(i+1 mod m) = πi + 1 ∧ (πi < m)

∨ (π(i+1 mod m) = 1) ∧ (πi = m)

∨ (π(i+1 mod m) = πi − 1) ∧ (πi > 1)

∨ (π(i+1 mod m) = m) ∧ (πi = 1)}|

A large value of S(π) means that many clusters in π are in the same order as in the

optimal solution. Note that S(π∗) = m for an optimal solution π∗. A solution π with

S(π) = 0 is locally optimal in the sense that there is no strictly better solution in the

neighbourhood induced by the jump operator. The solutions with S(π) = 0 form a

plateau where all solutions differ from the optimal solution by m edges.

We first introduce a lemma that will later help us with the proof of the lower bound on

the optimisation time.

Lemma 6.2. Let π and π′ be two non-optimal cluster permutations for the instance GG. If

S(π′) > S(π) then c(π′) > c(π).

Proof. In the given instance, all white nodes are connected to each other with a maxi-

mum weight of 2. These connections ensure that any permutation of the clusters, can

result in a Hamiltonian cycle with a cost of at most 2m. Moreover, all connections be-

tween white nodes and black nodes have a weight of m2. So the lower layer will never

choose a combination of white and black nodes because the cost will be more than m2

while there is an option of selecting all white nodes with the cost of at most 2m. On the

other hand, for any permutation of clusters other than the global optimum, the lower

layer will not choose any black nodes, because it will not be possible to use all the 1/m

edges and some m2-weighted edges will be used again. Let a = S(π) in a solution π be

the number of clusters that their right neighbour is one of their adjacent clusters in the

optimal solution. Then b = m− a of clusters have a different neighbour on their right.

If π is not the optimal solution, then the lower layer will choose all white nodes. As a



Simple Evolutionary Algorithms and the GTSP 65

result, a edges with weight 2 and b edges with weight 1 will be used in that solution;

therefore, the total cost of solution π will be c(π) = 2a+b = 2a+m−a = m+a. Consider

a solution π′ with a′ = S(π′) and S(π′) > S(π). We have c(π′) = m+ a′ > m+ a = c(π)

which completes the proof.

Lemma 6.2 shows that any non-optimal offspring π′ of a solution π is not accepted

if it is closer to an optimal solution π∗. This means that the algorithm finds it hard

to obtain an optimal solution for GG and leads to an exponential lower bound on the

optimisation time as shown in the following theorem.

Theorem 6.3. Starting with a permutation of clusters chosen uniformly at random, the opti-

misation time of the Cluster-Based (1+1) EA on GG is (m2 )
2m
3 with probability 1− e−Ω(m).

Proof. Considering GG illustrated in Figure 6.1, the optimal solution is the tour com-

prising all edges with weight 1
m . We consider a typical run of the algorithm consisting

of a phase of T = Cm3+δ steps where C is an appropriate constant. For the typical run

we show the following:

1. A local optimum π with S(π) = 0 is reached with probability 1− e−Ω(m)

2. The global optimal solution is not obtained with probability 1−m−Ω(m)

Then we state that only a direct jump from the local optimum to the global optimum is

possible, and the probability of this event is O(m−m/2).

First we show that with high probability S(πinit) ≤ εm holds for the initial solution

πinit, where ε is a small positive constant.

We count the number of permutations in which at least εm, ε > 0 a small constant, of

cluster-neighbourhoods are correct. We should select εm of the clusters to be followed

by their specific neighbour, and consider the number of different permutations of m−
εm clusters: (

m

εm

)
(m− εm)! (6.1)

Some solutions are double-counted in this expression, so the actual number of different

solutions with S(π) ≥ εm is less than (6.1). Therefore, the probability of having more

than εm clusters followed by their specific cluster, is at most

(
m

εm

)
(m− εm)!

m!
= ((εm)!)−1 = O

((εm
2

)− εm
2

)
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Hence, with probability 1 − O(( εm2 )−
εm
2 ), S(πinit) ≤ εm holds and the initial solution

has at most εm correctly ordered clusters.

Now we analyse the expected time to reach a solution π with S(π) = 0. For this pur-

pose, we first consider the exchange operation and find the minimum number of differ-

ent exchanges at each step, that reduce the number of good orderings in a solution.

If we show the permutation of clusters for the current solution by π = (π1, ..., πm), then

there are l = S(π) clusters in this permutation that are followed by their consecutive

cluster. Note that for any solution other than the local optimum, l > 0 holds. Let j be

one of these clusters which is followed by cluster j + 1. In order to destroy this good

ordering, cluster j should be exchanged with a cluster r which fulfils the following

requirements:

1. cluster r can not be a consecutive cluster of j’s current neighbours, i.e. if we name

j’s neighbours i and k, then r can not be i − 1, i + 1, k − 1, k + 1 because these

nodes will introduce a new good ordering to the solution if replace j.

2. the current position of cluster r’ in the permutation should not be before or after

clusters j − 1 or j + 1, because replacing r with j would introduce new good

orderings in that case.

Therefore, the total number of positions in the permutation which should not be se-

lected as r is at most 8, meaning that there arem−8 choices for r that result in reducing

the number of good orderings. Since there are l choices for j and m − 8 choices for

r, the total number of possible exchange operations to reach a permutation π′ with

S(π′) < S(π) is:

l · (m− 8)

On the other hand, it is possible to simulate each exchange operation with two jumps.

For any j and r, exchange(j, r) can be implemented by performing jump(j, r) and

jump(r, j + 1). The first jump will place j before r, and the second one will place r

before j + 1. Now we find the probability that two jumps happen at one step and

simulate one of the possible exchange operations as:

P = l · (m− 8) · 1

e
· 1

m2
· 1

m2

In the above formula, l · (m − 8) is the number of different choices for exchange oper-

ation, 1
e is the probability of performing two mutation operations at one step and each
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1
m2 is the probability of selecting the two specific nodes for a jump operation. Using

this probability, the expected time until l decrease by one is

E(T ) =
1

P
= γ · m

3

l

where γ is an appropriate constant. The maximum value of l is S(πinit) which we have

already proved that is at most εm. Therefore, with summing up the expected time of

reducing l gradually from its maximum value to 1, we can find the expected time to

reach the local optimum π with S(π) = 0 as

E(TLO) =
1∑

l=εm

γ · m
3

l
= O(m3 logm)

If γ′ denotes the appropriate constant that E(TLO) = γ′ · m3 logm then by Markov’s

inequality we have:

Pr
(
TLO > 2 · γ′ ·m3 logm

)
≤ 1

2

If we repeat phases of 2 · γ′ ·m3 logm iterations for mδ

logm times, the probability that the

local optimum is not reached in any of them is at most:

Pr

(
TLO > 2 · γ′ ·m3 logm · mδ

logm

)
≤ (

1

2
)

mδ

logm

= e−Ω(mδ)

As a result, with probability 1 − e−Ω(mδ) the algorithm will reach a local optimum in

a phase of 2γ′ · m3+δ steps which, if we consider C = 2γ′, is actually the same as the

phase of T = C ·m3+δ iterations that we mentioned previously.

To prove that with high probability, the global optimum is not reached during the con-

sidered phase, first note that by Lemma 6.2, any jump to a solution closer to the opti-

mum other than directly to the global optimum will be rejected. Furthermore, for the

initial solution S(πinit) ≤ εm. Therefore, only non-optimal solutions π with S(π) ≤ εm
are accepted by the algorithm. In order to obtain an optimal solution the algorithm has

to produce the optimal solution from a solution π with S(π) ≤ εm in a single mutation

step. We now upper bound the probability of such a direct jump which changes at least

(1− ε)m clusters to their correct order. Such a move needs k ≥ (1−ε)m
3 operations in the

same iteration because each Jump can change at most 3 edges. Taking into account that

these Jump operations may be acceptable in any order, the probability of such a direct

jump is at most
1

e(k)!
· 1

m2(k)
· (k)! = m−Ω(k) = m−Ω(m). (6.2)
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So in a phase of O(m3+δ) iterations the probability of having such a direct jump is by

union bound at most m−Ω(m)+3+δ = m−Ω(m).

So far we have shown that a local optimum π with S(π) = 0 is reached with probability

1 − e−Ω(mδ) within the first T = Cm3+δ iterations. The probability of obtaining an

optimal solution from a solution π with S(π) = 0 is at most

1

e
(
m
3

)
!
· 1

m
2m
3

·
(m

3

)
! = e−1 ·m−

2m
3

We now consider an additional phase of (m2 )
2m
3 steps after having obtained a local

optimum. Using the union bound, the probability of reaching the global optimum in

this phase is at most

(m
2

) 2m
3 · e−1 ·m−

2m
3 ≤

(
1

2

) 2m
3

.

As a result, the probability of not reaching the optimal solution in these (m2 )
2m
3 itera-

tions is 1− 2−
2m
3 = 1− e−Ω(m). Altogether, the optimisation time is at least (m2 )

2m
3 with

probability 1− e−Ω(m).

6.4 Benefit of Nodes-Based (1+1)EA

In this section, we show that the hard instance for Cluster-Based (1+1) EA introduced

in [19] can be solved in polynomial time by the Node-Based approach. In order to do

so, we first analyse how an optimal TSP tour can be found for this instance on the lower

layer of the Node-Based approach in Section 6.4.1. Then in Section 6.4.2 we analyse the

behaviour of Node-Based (1+1) EA on GG.

6.4.1 Finding the Optimal Lower Layer Solution for GG

The lower layer of the Node-Based approach needs to find an optimal TSP solution

with respect to the node selection that has been done on the upper layer. Although

solving TSP in general is NP-hard, it can be solved in polynomial time for the instances

induced by picking one node of each cluster of the graph GG. Algorithm 15 provides

such a method. In step 4 of this algorithm, if the number of white nodes is at most

3, finding the shortest path can be done by checking all configurations. If the number

of white nodes is more than 3, only edges of cost 1 will be used in the shortest path,
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Algorithm 15: A Lower Layer TSP Solver
1: Consider G[P ], the graph induced by the given spanning set P
2: Consider G′ a graph consisting of nodes of G[P ] with no edges
3: Add the edges of G[P ] that have a cost of 1/m to G′

4: Find a shortest path visiting all white nodes in G[P ] and add the edges of that to
G′.

5: Use edges of cost m2 to make a Hamiltonian cycle out of the paths that are formed
in G′ and the disconnected black nodes

and finding it can be done by a depth-first-search and checking all configurations of

connecting the last 4 nodes of the path. Therefore step 4 needs time O(m) to find the

shortest path on white nodes. Since the required time for other steps of the algorithm

is also at most O(m), we can conclude that Algorithm 15 runs in time O(m).

To prove that Algorithm 15 finds the optimal tour with respect to the spanning set fixed

on the upper layer, we first present a property on the solutions of lower layer. Then in

Lemma 6.5 we show that Algorithm 15 finds the optimal tour.

Property 6.4. Let C(S) denote the total cost of a solution S. Also, let Y and X be two

solutions with r and s edges of weight m2 respectively. If r > s then we have C(Y ) >

C(X).

Proof. For a solution Y with r edges of weight m2, the minimum total cost Cmin(Y ) is

at least r · m2. On the other hand, the cost of the solution X with s edges of weight

m2, is maximised if all other m − s edges have a cost of 2, as 2 is the second largest

weight of the input. Therefore, the maximum cost Cmax(X) of solution X is at most

s ·m2 + 2(m− s) and we have C(X) ≤ Cmax(X) ≤ s ·m2 + 2(m− s).

Since r > s, we also have: s ·m2 + 2(m − s) < r ·m2 ≤ Cmin(Y ) ≤ C(Y ). Therefore,

C(X) < C(Y ).

Lemma 6.5. Let w ≥ 4 and r = m−w be the number of white and black nodes selected on the

upper layer, respectively. Moreover, let s be the number of black nodes where the selected node

in proceeding cluster with respect to the optimal solution is also black. Algorithm 15 finds an

optimal tour with total cost of s · 1
m + (m− r − 1) + (r − s+ 1) ·m2.

Proof. Consider a black node, for which one (or two) of the edges of cost 1/m is possible

to be selected. If the lower layer does not select that edge, then it must select some other

edge connected to that black node, to arrange a complete Hamiltonian cycle. Since all

other edges of black nodes have a cost of m2, refusing to select any one of 1/m-edges

results in increasing the number of m2-edges by at least one. By Property 6.4, we know

that solutions with greater number of m2-edges are more costly; therefore, selecting s
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FIGURE 6.2: Blocks of black nodes

edges of kind 1/m on the lower layer is a must. This explains step 3 of the algorithm

which forms a number of chains consisting of black nodes and 1/m-edges.

On the other hand, in order to minimise the number of white-black connections which

are of cost m2, all white nodes need to form one chain which is done is step 4 of the

algorithm, using edges of cost 1. This chain will be connected to two black nodes from

its two ends.

So far, we have formed some chains of black nodes and one chain of white nodes. In

order to connect these chains together, we can only use edges of weightm2, because we

have already used all 1
m edges and all other connections to black nodes have a cost of

m2. The number of these edges, which are added in step 5 of the algorithm, is r− s+ 1.

Overall, the optimal tour on the selected set of nodes consists of s edges of weight 1
m ,

r− s+ 1 edges of weight m2 and m− s− (r− s+ 1) edges of weight 1. Summing up the

weight of the edges, we can find the total cost of the tour as stated in the lemma.

6.4.2 Behaviour of Node-Based (1+1) EA on GG

In the analysis of this section, we only consider the number of steps that the upper layer

needs. Note that the lower layer uses Algorithm 15 which adds only a factor of O(m)

to our analysis. We start this section with a definition that helps us in describing a TSP

tour that the lower layer forms. Then we present the lemmata which help us prove

that with high probability the Node-Based (1+1) EA finds the optimal solution of GG
in time O(m2). In the following, w denotes the number of white nodes in the solution.

Lemmata 6.9 and 6.11 show that the optimal solution will be reached in time O(m2) if

we don’t face a situation where w ≤ 3, while Lemma 6.12 investigates the behaviour of

the algorithm if we face that situation.

Definition 6.6. A black block of size l, l > 0 an integer, is a path on exactly l consecu-

tive black nodes, which consists of l − 1 edges of cost 1/m.

The two end nodes of a black block are connected to edges of cost m2. Black blocks of

size 1, 2 and 3 nodes are illustrated in Figure 6.2. If all the black nodes of a block mutate
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to white, in the new solution that Algorithm 15 finds, there would be l more nodes in

the chain of white nodes, l − 1 less edges of cost 1
m and one less edge of cost m2. As a

result, the total tour cost decreases by m2 + l−1
m − l. Note that, in order to improve the

cost, all these black nodes have to mutate in one step; otherwise, two edges of cost m2

will remain in the sub-tour and the total cost increases.

Lemma 6.7. If w ≥ 4, then w can only increase in the same steps that the number of m2-edges

decreases.

Proof. From Lemma 6.5 we know that the total cost of a solution that has more than

3 white nodes is s · 1
m + (m − r − 1) + (r − s + 1) · m2, in which r is the number of

black nodes, s is the number of edges of weight 1
m , m − r − 1 is the number of edges

that connect white nodes, and (r − s + 1) is the number of m2-edges. Therefore, if

the number of white nodes increases, only a decrease in the number of m2-edges can

prevent an increase in the total cost. As a result, the number of white nodes can only

increase in the same steps that the number of m2-edges decrease.

Lemma 6.8. During a phase of O(m2) steps, if we do not face a situation where w ≤ 3, with

probability 1− o(1), the sum of all increments on the number of white nodes is at most 5m.

Proof. Since w > 3, from Lemma 6.7 we know that the number of white nodes can

increase only when the number of blocks reduces. The probability that a block of size

at least 4 mutates to white in one step is at most 1
(2m)4

. There are at most m
6 block of

this size or more in a solution; therefore, the probability that one of them mutates to

white at one step is at most 1
12(2m)3

. Hence, the probability that one of them mutates in

a phase of C ·m2 steps is O( 1
m). Therefore, with probability at least 1 − o(1), no black

block of size 4 or more mutates to white. In other words, all blocks that mutate to white

in a phase of C ·m2 steps are of size at most 3. The number of blocks can reduce at most

m times, implying at most 3m mutations from black to white.

However, at each step that the number of blocks is reduced, some additional nodes,

other than the nodes of that block, may also mutate to white. Let Xij be a random

variable such that Xij = 1 if node j is selected for mutation at step i. The expected

value of X =
∑m

i=1

∑m
j=1Xij is E[X] =

∑m
i=1

∑m
j=1

1
m = m and by Chernoff bounds

we get Prob(X ≥ 2m) ≤ e−Ω(m). Therefore, with probability 1 − e−Ω(m) at most 2m

additional nodes mutate during the steps at which a black block is changed to white.

As a result, at most 3m+ 2m black nodes mutate to white in a phase of m2 steps.

Lemma 6.9. If we do not face a situation where w ≤ 3 or a situation with no black nodes, then

with probability 1− o(1), the optimal solution is reached in time c ·m2, where c = 24e.
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Proof. Since the number of black nodes is at least one, there is always at least one white

node that, if it mutates to black, increases the length of a black block. This move is

accepted by the algorithm, because it shortens the white path by eliminating an edge

of cost 1, while adds one edge of cost 1
m to the black block. The probability of this move

is at least 1
2·m ·

(
1− 1

m

)m−1 ≥ 1
2·m ·

1
e , where 1

2·m is the probability of deciding to mutate

the proper white node and also to select the black node from its cluster. Moreover,(
1− 1

m

)m−1 is the probability that no other mutations happen at the same step for the

other nodes.

Since the number of white nodes in the initial solution is at most m, and with probabil-

ity 1−o(1) duringm2 steps at most 5m black nodes turn into white (Lemma 6.8), at most

6m steps of increasing the number of black nodes is sufficient for reaching the optimal

solution. Let X =
∑T

i=1Xi, where Xi is a random variable such that Xi = 1 if a white

node mutates to black at step i, and Xi = 0 otherwise. At each step i, before reaching

the optimal solution, Prob(Xi = 1) ≥ 1
2em . Considering a phase of T = 24em2 steps,

by linearity of expectation we get E [X] ≥ 24em2 · 1
2em = 12m. Using Chernoff Bounds

we get Prob
(
X ≤ (1− 1

2)12m
)
≤ e−Ω(m). As a result, with probability 1 − e−Ω(m), 6m

white nodes mutate to black which results in reaching the optimal solution in a phase

of 24em2 steps. Overall with probability 1 − o(1), the optimal solution is reached in

time 24em2.

Lemma 6.10. The initial solution chosen uniformly at random, has at least m
48 single black

nodes with probability 1− e−Ω(m)

Proof. Considering the consecutive clusters with respect to their optimal permutation,

for any specific cluster, a black (or white) node may be selected for its following cluster

with a probability of 1/2. As a result, any selection of nodes in 3 consecutive clusters

can happen with probability (1/2)3. There are at least m/3 separate sets of consecutive

clusters; therefore, the expected number of single black nodes is at least m
3·8 . Using

Chernoff bounds and considering X to be the number of single black nodes in the

initial solution, we have: P (X < (1− 1/2) m3·8) ≤ e−
m
3·8 ·

1
8

As a result, with a probability 1− e−Ω(m) the initial solution has at least m
48 single black

nodes as described.

In the proof of next lemma, we use the Simplified Drift Theorem presented in Theo-

rem 4.7. In this theorem, as described in Section 4.5.3, Ft denotes a filtration on states.

In the proof of Lemma 6.11, we analyse the changes on the size of one large black block,

and the filtration is done according to the steps where an accepted change happens on

the size of that block.
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Lemma 6.11. With probability 1−o(1), the number of black nodes is at least one during c ·m2

steps of the Node-Based (1+1) EA, where c = 24e.

Proof. Let r be the number of all black blocks in the solution. From Lemma 6.10 we

know that with high probability, the initial solution consists of at least m
48 single black

nodes. As a result, in the initial solution r = Ω(m).

In order to reach a solution in which all nodes are white, the number of black blocks

need to reduce. Let’s consider the step when for the first time r ≤ mε, where ε > 0

is a small constant. At this step, r ≥ mε

2 ; otherwise, at least mε

2 mutations have had

happened at one step which is exponentially unlikely.

We first show that we either have a block of size greater than one at this stage, or we will

reach such a situation. Let us assume that all of the blocks at this stage are of size one.

For a single black node, there is a probability of P+
1 ≥ 2

2·e·m that a white node mutates

to black and extends the size of that block. On the other hand, the probability that this

single black node mutates to white is P−1 ≤ 1
2·m . Therefore, if a change happens on the

size of this block, it would be an increase with probability at least

P+
1N =

P+
1

P+
1 + P−1

≥
1
em

1
em + 1

2m

≥ 2

2 + e

Therefore, the probability that none of these blocks experience an increase in the size

when they change for the first time, is
(

1− 2
2+e

)mε
2

= e−Ω(mε). As a result, with prob-

ability 1 − e−Ω(mε), we reach a stage (in a phase of at most m1+ε steps) at which there

are r ≤ mε blocks and one of the blocks is of size at least 2. We refer to this block as the

large block.

For a black block of size l ≥ 2, there is a probability of P+
l ≥

2
2·e·m that a white node

mutates to black and extends the size of that block. But to decrease the size of the block,

either the whole block needs to mutate at one step, or one improving move needs to

happen somewhere else at the same step that a black node of the large block is mutating

to white. An improving move can be a mutation on a white node that extends a black

block, which happens with probability at most 2
2m for each block, or a mutation on all

black nodes of a block, probability of which is upper bounded by 1
2m for each block.

Since the number of blocks is at most mε, the probability of an improving move to

happen, is at most 2·mε
2m + mε

2m . Overall, the probability of decreasing the size of the large

block is

P−l ≤
1

(2m)l
+

2

2m
·
(

2 ·mε

2m
+
mε

2m

)
≤ 1

(2m)l
+

1

m
· 3 ·mε

2m
≤ 4mε

2m2
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Now consider a phase of m
3
2 steps. With probability at most 4mε

2m2 ·m
3
2 = 2mε√

m
the size of

the large block is decreased at least once. Therefore, with probability 1 − O(mε−1/2) =

1− o(1) its size is not decreased in the mentioned phase.

On the other hand, there is a probability of at least P+
l ≥

1
e·m at each step, that the size

of the block is increased. Let Xi be a random variable such that Xi = 1 if the size of

large block is increased at step i, and Xi = 0 otherwise. The expected increase in the

size of that block in a phase of m
3
2 steps is

∑m3/2

i=0 Xi ≥
√
m
e . Moreover, by Chernoff

bounds (Section 4.2.2) we have
∑m3/2

i=0 Xi ≥
√
m

2e with probability at least 1− e−Ω(
√
m).

Overall, with probability 1− o(1), the size of the large block is at least
√
m

2e after a phase

of m
3
2 steps.

After this phase, we consider a phase of c ·m2, c = 24e, steps and show that with high

probability, the large black block does not lose more than half of its nodes. In order to

show this, we use the Simplified Drift Theorem (Theorem 4.7). Let t0 be the first step

after the previous phase has finished and let L be the largest block at that time. We

define Xt, t ≥ 0, as

Xt := size of L at t0

+ the number of steps increasing size of L from t0 until t0 + t

− the number of nodes removed from L from t0 until t0 + t.

Note that Xt always represents a lower bound on the size of L at time t + t0. We filter

the steps and only consider the relevant steps, i. e. the steps in which a change happens

on the size of L. Moreover, we set a = X0
2 , b = X0, r = 1, ε = 1

4e and δ = 1.

Earlier, we found an upper bound on P−l and a lower bound on P+
l . An upper bound

on the latter is P+
l ≤

2
2m , because in order to increase the size of a black block, at least

one of the two white neighbours of it need to mutate to black. Using these bounds, we

get upper and lower bounds for Prel = P+
l + P−l , the probability of each step to be a

relevant step:

1

e ·m
≤ Prel ≤

1

m
+

4mε

2m2
≤ 2

m

At each step, with probability at least 1
em , an increase happens on the size of L; hence,

the positive drift on Xt is 1
em , and the positive drift on Xt in the relevant steps is:

∆+ ≥ 1

em
.

1

Prel
≥ 1

em
· m

2
≥ 1

2e



Simple Evolutionary Algorithms and the GTSP 75

Also, the expected decrease in the number of black nodes of that block, in the relevant

steps is

∆− ≤

(
l

(2m)l
+

(
m∑
k=1

k · k + 1

(2m)k

)
·
(

2 ·mε

2m
+
mε

2m

))
· 1

Prel

≤
(

1

(2m)l
+

2

m
· 3 ·mε

2m

)
· 1

Prel
≤ 4mε

m2
· 1

Prel
≤ 4mε

m2
· em ≤ 4emε

m

where k is the number of black nodes that are removed from the large block, and k+1
(2m)k

is the probability of such mutations to happen in one step. Here, k + 1 is the number

of possible ways that L can lose k nodes, and 1
(2m)k

is the probability that those nodes

mutate to white. Moreover,
∑m

k=1 k ·
k+1

(2m)k
≤ 2

m holds for m ≥ 3. Using ∆− we find the

total expected difference of

E[Xt+1 −Xt | Ft ∧ a < Xt < b] = ∆+ −∆− ≥ 1

2e
− 4emε

m

Therefore, the first condition of the simplified drift theorem holds. The second condi-

tion also holds because at each stepXt can be increased by at most 1 and the probability

of decreasing it by j is

Prob(Xt −Xt+1 | Ft ∧ a < Xt < b) ≥ j) ≤ j + 1

(2m)j
· 4 ·mε

2m
.

1

Prel
≤ 1

2j
.

Therefore, the conditions of simplified drift theorem hold and we get

Prob(T ∗ ≤ 2c
∗·X0/2) = 2−Ω(X0/2),

As a result, with probability 1 − 2−Ω(
√
m), the size of the large block does not decrease

to less than a, in a phase of c ·m2 steps. Overall, with probability 1− o(1), the number

of black blocks is at least one during the mentioned phase.

Lemma 6.12. From the situation where w ≤ 3, with probability 1− o(1), the optimal solution

is reached in time O(m1+ε), where ε > 0 is a constant.

Proof. In the situation where there are only w ≤ 3 white nodes in the solution, there can

be at most 3 blocks of black nodes. At most 2 of these blocks can contain only one node.

We first show that all single black blocks (if any exist) either mutate to white or become

larger, in a phase of O(m1+ε) steps, resulting in a solution with w ≤ 5 and no single

black block. Then we show that with high probability, from that solution the optimal

solution is found in O(m1+ε).

While there exists a single black block, there exists a black to white mutation that de-

creases the number of blocks, and there exist 2 white nodes that can mutate to black
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and extend the single black block. These moves happen with probability at least 3
2·e·m

at each step, and reduce the number of single black blocks by at least one. Therefore, in

a phase of 4·e·m
3 steps, with probability at least 1

2 , at least one of the single black blocks

is destroyed. As a result in a phase of 4·e·m1+ε

3 steps, with probability at least 1− (1
2)m

ε
,

at least one single black block is destroyed. Therefore, in a phase of 8·e·m1+ε

3 steps, with

probability 1− e−Ω(mε), all initial single black blocks are destroyed.

Now we need to show that in that phase, the algorithm does not produce any new

single black blocks. To create a single black block, either a white node should mutate to

black, or a black block of size k should lose k−1 black nodes, k ≥ 2. Both of these moves

need to happen at the same step where another improving move has happened, which

can be reducing the number of black blocks, or extending a black block by mutating a

white node to black. There are at most 3 white nodes and at most 2 single black blocks

in this situation. Therefore, the probability of an improving move at each step is at

most 5
2m + 3

(2m)2
. As a result, the probability of producing a new single black block is

( 3
2m + k

(2m)k−1 )( 5
2m + 3

(2m)2
), which implies that in a phase of O(m1+ε), this move does

not happen with probability 1− o(1).

Now we investigate the situation where w ≤ 5, and there is no single black block.

While there is at least one white node in the solution, there is a probability of at least
1

2·e·m to decrease the number of white nodes at each step. This implies that in a phase

of 20 ·e ·m1+ε steps, with probability 1−e−Ω(mε), at least 5 white nodes mutate to black.

Now we show that with high probability, no black node is mutated to white in this

phase which completes the proof.

In order to accept mutating a black node to white, either all black nodes of a block have

to mutate at the same step, or a black node at one end of a block should mutate to

white at the same step that another improving mutation has happened. At each step,

the probability of the former is at most 3
(2m)2

, because there are at most 3 blocks and

we have assumed that the size of each of them is at least 2; and the probability of the

latter is at most 6
2m ·

5
2m , because there are at most 6 black nodes at one end of a block,

and 3 white nodes. In a phase of 20 · e ·m1+ε steps, the probability that at least one of

these happens is at most O(m1−ε). Therefore, with probability 1 − o(1), no black node

is mutated to white in this phase.

Theorem 6.13. Starting from an initial solution chosen uniformly at random, the Node-Based

(1+1) EA finds the optimal solution of GG in time O(m2) with probability 1− o(1).

Proof. Lemma 6.11 shows that in a phase of c ·m2, c = 24e, steps, the number of black

nodes doesn’t decrease to 0 with probability 1 − o(1). Therefore, due to Lemma 6.9, if

we never face a situation where w ≤ 3, the optimal solution is found in time O(m2)
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with probability 1 − o(1). Moreover, if we face a situation where w ≤ 3, according to

the Lemma 6.12, with probability 1− o(1) it takes O(m1+ε) additional steps to find the

optimal solution where ε > 0 is a constant. Overall, with probability 1 − o(1), in time

O(m2), the optimal solution is found by the Node-Based (1+1) EA.

Considering only 1-bit flips, we get the following result for NEN-LS*.

Corollary 6.14. Starting with a solution chosen uniformly at random, NEN-LS* finds with

probability 1− o(1) the optimal solution of GG in time O(m2).

6.5 Analysis on Nodes-Based (1+1)EA

In this section we provide the analysis on the behaviour of the Node-Based (1+1) EA

on the GTSP. We present upper and lower bounds on the optimization time of the al-

gorithm in Sections 6.5.1 and 6.5.2 respectively.

6.5.1 Upper Bound for Optimization Time

The lower layer in this approach is responsible for finding a Hamiltonian cycle which

is an NP-hard problem and in the general case, takes exponential time to be solved. We

here find an upper bound of the expected optimization time of the upper layer of our

algorithm without taking into account the time needed for the lower layer. Then for the

lower layer we restrict our analysis to the case where the problem is a Euclidean TSP

with a number of inner points (k).

Theorem 6.15. The expected optimization time of Node-Based (1+1) EA described in Algo-

rithm 14 is O(nm).

Proof. The proof of this theorem is to a great extent similar to the proof of Theorem

1 in [18] which finds an upper bound for the bi-level GMSTP with Node-Based Ap-

proach. Here we just describe the proof briefly.

Any arbitrary solution has at most m clusters with a suboptimal selected node. The

probability that the algorithm decides to change the selected node of those clusters in

one step is at least (1/m)m. Moreover, the probability that the new selected nodes in all

clusters are the optimal nodes is

m∏
i=1

1

|Vi|
≥
(m
n

)m
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Therefore, the probability of reaching the optimal spanning set in the upper layer in

one step is in Ω(n−m) and the expected time for that is in O(nm).

Now we describe the case where the problem is a Euclidean TSP with k inner points

as studied by [88]. A Euclidean TSP instance can be partitioned into two sets of points:

outer points, which are the vertices that comprise a convex hull of all the points, and

inner points, which are the points that lie interior of the convex hull. Besides, since an

optimal tour does not intersect itself, all outer points appear in the shortest Hamiltonian

cycle in the same order as they appear in the boundary of convex hull [105]. This order

can be found in O(n log n) [23] and can be merged with any fixed permutation of inner

points in O(kn) [28] to find the shortest Hamiltonian cycle with respect to the orders

in both subsets, where k is the number of inner points. If we try all the permutations

of the inner points, then the overall optimization time of this layer will be in O(k!kn).

For large k where it could take too much time to try all k! permutations, one can use

an evolutionary algorithm for finding the optimal permutation of inner points as well.

For a (1+1) EA described in [88] and mutation operations of jump and inversion, it has

been shown that an optimal solution is obtained in time O(k!k2k) and O((k − 1)!k2k−2)

respectively. Taking into account the time needed for merging inner and outer points,

the expected optimization time of that algorithm for jump and inversion is O(knk!k2k)

and O(kn(k − 1)!k2k−2) respectively. With the upper bound for the expected time of

finding the optimal spanned set in the upper layer that we found in Theorem 6.15,

the overall expected time of our (1+1) EA would be O(nmknk!k2k) and O(nmkn(k −
1)!k2k−2) for jump and inversion respectively.

6.5.2 Lower Bound for Optimization Time

In the previous section we found an upper bound for our Node-Based (1+1) EA. In

this section we work on the lower bound analysis. In Section 6.5.2.1 we introduce an

instance of the Euclidean GTSP, GS , that is difficult to solve by means of our algorithm

and discus some geometric properties of it. In Section 6.5.2.2 we show how the algo-

rithm reaches a local optimum in our instance and discus how it can reach the global

optimum after reaching the local optimum. Consequently we find a lower bound for

the optimization time of the algorithm.

6.5.2.1 A Hard Instance and its Geometric Properties

The hard instance presented in this section, which is partly illustrated in Figure 6.3,

is composed of m clusters. Let a > 1 be a constant. Only m
a of these clusters have
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FIGURE 6.3: Euclidean hard instance, GS , for Node-Based (1+1) EA

one node. Other clusters contain m nodes which makes the total number of nodes

n = m(m − m
a ) + m

a . All nodes are connected to each other and the cost of travelling

between them is their Euclidean distance.

In the clusters that have m nodes, m − 1 nodes are placed on the small circle and are

shown by a star in the picture. We refer to them as white nodes or inner nodes. For sim-

plicity we assume that the inner nodes of each cluster all lie on the same position. The

same result can be obtained by placing the nodes within a small circle having an arbi-

trarily small radius ε. The remaining node of each cluster, shown black in the picture, is

placed on the larger circle. Other m
a clusters do not have any nodes on the small circle

and have only one black node on the larger circle. The figure demonstrates how the

clusters are distributed on the two circles. The arc between black nodes of two consec-

utive clusters subtend an angle of 2π
m , while the arc between two consecutive one-node

clusters subtend an angle of a · 2π
m .

If we represent the radius of inner and outer circles by r and r′ respectively, then a black

node and a white node have distance at least r′ − r and the length of edges between

two adjacent black nodes is 2r′ sin( πm). The minimum length of edges between two

black nodes of one-node clusters is also quite similar to previous formula with a greater

angle: 2r′ sin( πm
a

). We now prove that if

r <
1

2

(
2 sin

( π
m

)
− sin

(
2π

m

))
r′ (6.3)

then for m ≥ 8a, the best tour on any spanning set that has at least one white node,
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FIGURE 6.4: Left side: Case 1, Right side: Case 2

contains only 2 edges between outer and inner circles. We also show that the opti-

mal solution consists of all the black nodes, but with high probability, the Node-Based

(1+1) EA reaches a plateau of local optimums with m
a black nodes and m − m

a white

nodes. Note that in such local optimums, selecting m
a black nodes is a must, since

there’s no other choice for those clusters.

Property 6.16. The best tour on a spanning set that has at least one white node, contains

only two edges between nodes on the inner and outer circle for m ≥ 8a.

Proof. We first take into account the tour on a node set consisting of only the black

nodes of one-node clusters. There is no other choice except selecting those nodes be-

cause their clusters have no other node. For such a node set, due to Theorem 2 of [105],

the optimal tour is to visit all the nodes is the order they appear on the convex hull.

This order will be respected in an optimal tour even if there are some inner nodes to

visit as well, because according to Theorem 1 in [105] the optimal solution cannot in-

tersect itself. In other words, if some white nodes are selected in the upper layer, while

visiting the outer nodes with respect to their convex hull order, a solution occasionally

travels the distance between outer circle and inner circle to visit some inner nodes, and

then travels roughly the same distance back to the outer circle, to continue visiting the

remaining outer nodes. As illustrated in Figure 6.4, this can be done generally in two

ways:

1. Case 1: Leaving the outer circle only once and visiting all inner nodes together.

2. Case 2: Leaving the outer circle more than once and visiting some of the inner

nodes each time.

We now show that there exists a solution for Case 1 that is less costly than all the solu-

tions of Case 2. As a result, the best tour on a spanning set with at least one white node

travels the distance between two circles only twice.

If we represent the number of times a tour leaves the outer circle to visit some nodes

in the inner circle with k, then for the solutions of Case 1, k = 1 and for solutions of
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Case 2, k ≥ 2. For both cases the number of edges connecting the two circles is 2k. The

picture at the left side of Figure 6.4 illustrates a solution with k = 1 for which we find

an upper bound of the tour cost as the following:

C(1) < 2πr′ + 2πr + 2(r′ − r) (6.4)

The last part of this formula is two times of the length of edge AB which is a direct

line from the inner circle to the outer circle along their radius. The lengths of edges

A′B′ and A”B” are actually more than that because their ends are not from same clus-

ters. Nevertheless, formula 6.4 presents an upper bound of the total cost of the tour,

because we are considering the complete circumference of both circles. In other words,

the distance between A and A′ is included in the circumference of the large circle and

the distance between B and B′ is included in that of the small circle and according to

quadrilateral inequality |A′B′| < |A′A|+ |AB|+ |BB′|.

On the other hand, a lower bound of the tour cost in all solutions of Case 2 is:

C(k) >
(m
a
− k
)

2 sin

(
π

m/a

)
r′ + 2k(r′ − r) (6.5)

In the above formula, 2 sin( π
m/a)r′ is the length of the edges connecting two consecutive

clusters with one black node. These edges are the longest edges that can be removed

from the tour when we add two edges connecting inner and outer circles. There are

initially at leastm/a of these edges and in this formula we have omitted k of them from

the tour.

We can rewrite the right side of inequality 6.5 as:

C(k) >
(m
a

)
2 sin

(
π

m/a

)
r′ − k · 2 sin

(
π

m/a

)
r′ + 2k(r′ − r).

Since for m > 8a, sin( π
m/a) < 0.39 and (ma ) sin( π

m/a) > 3.06 the above expression is at

least:

2(3.06)r′ − 2k · 0.39r′ + 2k(r′ − r)

This expression is monotone increasing in k when r ≤ 0.61r′; therefore, setting k = 2

we get the smallest lower bound of C(k) for k ≥ 2:

C(k) > 4.56r′ + 4(r′ − r)

Now if we prove that the upper bound we found for C(1) in Inequality 6.4 is less than

the above expression, we can then conclude that C(1) < C(k) for k ≥ 2. Therefore, we
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should prove that:

2πr′ + 2πr + 2(r′ − r) ≤ 4.56r′ + 4(r′ − r)

⇔ 2πr′ + 2πr ≤ 4.56r′ + 2r′ − 2r

⇔ (π + 1)r ≤ (−π + 3.28)r′

⇔ r ≤ −π + 3.28

π + 1
r′ ≈ 0.033r′

The latest inequality holds, because the constraint we introduced on the value of r in

Equation 6.3 is quite tight and we can see that for m ≥ 8 it gives us r < 0.03r′ which is

a tighter bound for r than what the right side of equation above gives us.

Property 6.17. An optimal solution chooses all black nodes and visits them in clockwise

or anti-clockwise order when m ≥ 7a.

Proof. The tour comprising all black nodes has a cost strictly less than 2πr′ which is

the length of the circumference of the circle with radius r′. Therefore, we can state that

2πr′ is an upper bound on the cost of the optimal solution. Besides, in Property 6.16

we saw that the best tour when at least one white node is selected has only two edges

connecting the two circles. Therefore, as a lower bound on the cost of a solution with

any spanning set other than all black nodes, we can use Formula 6.5 with k = 1 and get

C(1) ≥
(m
a
− 1
)

2 sin

(
π
m
a

)
r′ + 2(r′ − r).

We here show that with the assumptions we have on the value of r, this lower bound is

greater than the upper bound we found for the cost of optimal solution. By replacing r

with its maximum value from Equation 6.3 we have:

C(1) ≥
(

2
(m
a
− 1
)

sin

(
π
m
a

)
+ 2−

(
2 sin

( π
m

)
− sin

(
2π

m

)))
r′

since for m ≥ 7a (m
a
− 1
)

sin

(
π
m
a

)
> 2.60

and for m ≥ 4 (
2 sin

( π
m

)
− sin

(
2π

m

))
≤ 0.42

we can conclude that for m ≥ max{4, 7a}

C(1) ≥ (2(2.60) + 2− (0.42))r′ = 6.78r′ > 2πr′
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As a result, for m ≥ 7a the minimum cost of such tours, is greater than 2πr′ which

is the maximum cost when all black nodes are selected. Hence the tour consisting of

all black nodes is the optimal solution and since they comprise the convex hull the

optimal Hamiltonian cycle on them would be visiting them in the order they appear in

the convex hull.

Property 6.18. Let P and P ′ be non-optimal spanning sets and Pout ⊂ P and P ′out ⊂ P ′

be their subset of outer nodes. Moreover, let S and S′ be optimal solutions with respect

to P and P ′ respectively. If Pout ⊂ P ′out and |P ′out| = |Pout|+ 1 then C(S) < C(S′).

Proof. The main idea behind this lemma is that distances in the inner circle are signif-

icantly shorter than distances in the large circle and if r is sufficiently smaller than r′,

any single mutation that replaces an inner node with the outer node of the same cluster,

increases the cost of the whole tour.

According to Property 6.16, the permutation chosen in the lower layer, has all the inner

nodes listed between two black nodes. If one inner node is removed and one outer

node is added, the part of total tour that includes all inner nodes gets shorter and the

part that connects black nodes gets longer. The maximum decrease for removing an

inner node would be 4r. In the following, we find the minimum increase for adding a

black node.

We analyse the increase in two cases. The first case is illustrated in the left picture of

Figure 6.5 in which the new black node is placed between two black nodes in the tour.

N is the new node and M and O are its neighbours. The edge connecting M and O

will be removed from the tour and the two other edges in the triangle will be added. If

we show the length of these edges by C, A and B respectively and the cost of the tour

before and after this change by Cold and Cnew, then:

Cnew = Cold − C +A+B

So the increase caused by this change would be:

d = Cnew − Cold = A+B − C

By splitting C with an orthogonal line from N we can write d as:

d = (A− C1) + (B − C2) (6.6)

We claim that when A and B have their smallest values, d has also its smallest value.

We assume A′ ≥ A and B′ ≥ B and show that the corresponding d′ will be at least d.



Simple Evolutionary Algorithms and the GTSP 84

FIGURE 6.5: Left: Case 1, adding a new outer node between two outer nodes. Right:
Case 2, adding a new outer node just before inner nodes

WhenA′ ≥ A the arc betweenO′ andN ′ is also greater than or equal to the arc between

O and N . Therefore, the angle y′, facing that arc, would be also greater than or equal to

y. Besides, C2 = B · cos(y), and all the things we said about C2 and y hold for C1 and

x too. Altogether, we can write d′ as:

d′ = A′ −A′ · cos(x′) +B′ −B′ · cos(y′)

since y′ ≥ y and x′ ≥ x, and all of them are acute angles

d′ ≥ A′ −A′ · cos(x) +B′ −B′ · cos(y)

If we represent A′ by αA and B′ by βB where α and β are real numbers greater than

one, then we have:

d′ ≥ α (A−A · cos(x)) + β(B −B · cos(y))

⇒ d′ ≥ α(A− C1) + β(B − C2)

By comparing d′ with the value of d in Equation 6.6 it holds that d′ ≥ d.

The shortest edges on the outer circle are from two consecutive clusters and have a

length of A = B = 2 sin(π/m)r′. C has similarly the value of 2 sin(2π/m)r′. As a result,

the minimum increase in the convex tour will be:

d = A+B − C = 4 sin
( π
m

)
r′ − 2 sin

(
2π

m

)
r′ (6.7)

The second case is when the new node is added just before or after visiting the inner

nodes, as illustrated in the right picture of Figure 6.5. In this case, comparing to the

previous case, edge B is longer and the angle between A and B is closer to the right

angle. The minimum length of A is also the same as the minimum length of that in

previous case. Altogether, with quite similar explanation to what we had for Case 1,

the minimum increase in this case is larger than that in Case 1. Therefore the minimum

increase in the convex tour, d, which is found in 6.7 is also less than the minimum

increase in Case 2 and can be used for both cases.
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On the other hand, as mentioned earlier the maximum decease caused by removing an

inner node is 4r. Therefore the total increase of the tour cost is at least

4 sin
( π
m

)
r′ − 2 sin

(
2π

m

)
r′ − 4r

From our assumption on the value of r in Equation 6.3 we can find that the above

expression has a positive value; therefore, C(S) < C(S′).

6.5.2.2 Runtime Analysis

In this section, we give a lower bound on the runtime of Node-Based (1+1) EA. We start

by presenting a Lemma about the initial solution that is chosen uniformly at random.

Then using the Multiplicative Drift Theorem, which is presented in Section 4.5.2, we

prove an upper bound for the time of reaching a locally optimal solution in Lemma 6.20.

Then we discuss the main theorem of this section.

Lemma 6.19. The initial solution with a spanning set that is chosen uniformly at random, has

at least 0.9
(
1− 1

a

)
(m− 1) white nodes with probability 1− e−Ω(m).

Proof. For m − m
a clusters that have m nodes, the probability of selecting one of white

nodes is m−1
m . Therefore the expected number of selected white nodes is

E[X] =
(
m− m

a

)(m− 1

m

)
=

(
1− 1

a

)
(m− 1)

By Chernoff bounds we can have:

Prob

(
X < (0.9)(1− 1

a
)(m− 1)

)
≤ e−0.005(1− 1

a
)(m−1) = e−Ω(m)

Therefore, the probability that the initial solution has at least (0.9)(1− 1
a)(m− 1) white

nodes is 1− e−Ω(m).

Lemma 6.20. Starting with an initial solution chosen uniformly at random, with probability

1 − e−Ω(m), the Node-Based (1+1) EA reaches a local optimum on GS in expected time of

O(m lnm).

Proof. For a solution x(t) at time t, we define X(t) to be the number of m-node clusters

for which the outer node is selected. Note that this function, as required in Theorem 4.6,

maps the local optimum to zero and all other solutions to positive numbers.

If we assume that the number of m-node clusters that their outer node is chosen in

solution x(t) is k, we can find the expected number of that for x(t+1) as follows:
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As mentioned in Property 6.18, if only one mutation operation happens to increase the

number of outer nodes, it will increase the cost and the algorithm will refuse it. There-

fore, if only one mutation happens that is accepted by the algorithm, it has to change a

node from the outer circle to the inner circle and decrease Xt by 1. The probability of

this event is at least

p1 = k

(
1

m

)(
m− 1

m

)(
1− 1

m

)m−1

≥ k

m

(
m− 1

m

)(
1

e

)
.

In the above formula, 1
m is the probability of mutation for any of the nodes in the span-

ning set and m−1
m is the probability that the new selected node for the mutated cluster

is a white node. We need one of k clusters to mutate and all others to stay unchanged.

In other words, (1− 1
m)m−1 in the above formula is the probability of m− 1 clusters to

stay unchanged.

On the other hand, in some situations, some (one or more) mutations in the opposite

direction can happen beside a mutation from outer circle to inner circle. If we want

Xt to increase by one, then at least two mutations must happen to change a node from

inner circle to outer circle. The probability of this event is at most

p−1 =
k

m

(
m− 1

m

)(
m− m

a − k
2

)(
1

m

)2( 1

m

)2

≤ k

m

(
1

2!m2

)
.

In the above formula, ( km)(m−1
m ) is the probability of one node to change from outer

circle to inner circle. Then we have the number of different ways we can select two

clusters that their selected nodes lies on the inner circle. The first ( 1
m)2 is the probability

that the 2 selected clusters mutate and the second ( 1
m)2 is the probability that after

mutation the node on the outer circle is selected in those 2 clusters.

Generally, for Xt to increase by q, we need at least one mutation from outer circle to

inner circle and q + 1 mutations in opposite direction and the probability of this even

would be at most

p−q =
k

m

(
m− 1

m

)(
m− m

a − k
q + 1

)(
1

m

)q+1( 1

m

)q+1

≤ k

m

(
1

(q + 1)!mq+1

)
As a result, the difference made in Xt by the next step would be at least

E[X(t) −X(t+1) | X(t) = k] ≥ p1 −
m∑
q=1

q · p−q
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By replacing the lower bound of p1 and upper bounds of p−q, we get

E[[X(t) −X(t+1) | X(t) = k] ≥ k

m

(
m− 1

m

)(
1

e

)
− k

m

(
1

2!m2

)
− . . .

−m k

m

(
1

(m+ 1)!mm+1

)
≥ k

m

(
m− 1

em
− 1

m2
− . . .− 1

mm+1

)
≥ k

m

(
m− 1

em
−m · 1

m2

)
≥ k

m

(
m− 1− e

em

)

For m ≥ 4 the expression (m−1−e
em ) is at least 3−e

4e . So setting δ = 3−e
4em and using the

Multiplicative Drift Theorem (Theorem 4.6) we find the expected time of reaching the

local optimum as:

E[T | X(0) = 0.1m] ≤ 1 + ln(0.1m/1)
3−e
3em

= O(m lnm)

In the above formula we have assumed X(0) ≤ 0.1m because from Lemma 6.19 we

know that with probability 1 − e−Ω(m), the initial solution has less than 0.1m black

nodes other than the fixed black nodes.

Theorem 6.21. Starting with an initial solution chosen uniformly at random, if m ≥ 8a,

then the optimization time of the Node-Based (1+1) EA presented in Algorithm 14 on GS is

Ω
(

(n2 )m−
m
a

)
with probability 1− e−Ω(mδ), δ > 0.

Proof. In order to prove this theorem, we introduce a phase P in which

1. The algorithm reaches a local optimum with high probability

2. The algorithm does not reach the global optimum with high probability

Then we show that after this phase, only a direct jump from the local optimum to the

global optimum will help the algorithm improve the results, probability of which is(
1
m2

)m−m
a .

As we saw in Lemma 6.20, the expected time of Node-Based (1+1) EA to reach the lo-

cal optimum is O(m lnm). Let c be the appropriate constant, so that c · m lnm is the

expected time for reaching that local optimum. Now consider a phase of 2c · m lnm
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steps. If T is the actual time at which the local optimum is reached, by Markov’s in-

equality (Section 4.2.1) we have: Prob(T > 2c ·m lnm) ≤ 1
2 . If we repeat this phase for

mε

lnm
times, ε > 0 a constant, then we get a phase of P = 2c ·m1+ε steps in which the

probability of not reaching the local optimum is:

Prob(T > 2c ·m1+ε) ≤
(

1

2

)− mε

lnm

= e−Ω(mδ),

where 0 < δ < ε. As a result, the algorithm reaches the local optimum in phase P with

probability 1− e−Ω(mδ). We here prove that in this phase, the algorithm does not reach

the global optimum with probability 1− e−Ω(mε).

From Lemma 6.19 we know that with high probability the initial solution has not too

many black nodes other than the fixed black nodes. Here we show that with high prob-

ability the number of these nodes does not increase significantly during the phase P ;

hence, the global optimum will not be reached. The probability of selecting each of the

clusters for a mutation is 1/m and for clusters with m nodes, the probability of chang-

ing the selected node to the black node is 1
m ; therefore, at each step, the probability that

each cluster’s node is changed from one of its inner nodes to its outer node is 1
m2 . For

m− m
a clusters, at each step the expected number of clusters that face such a mutation

is at most 1
m and in a phase of 2cm1+ε steps, is 2cmε. If we define X as the number of

clusters that will have a mutation like this, then by Chernoff bound (Section 4.2.2) we

have

Prob(X ≥ 3cmε) ≤ e−2cmε(0.5)2/3 = e−Ω(mε).

Therefore, with high probability, during the mentioned phase, at most 3cmε clusters

will happen to have a mutation with the result of selecting their black node. Besides,

from Lemma 6.19 we know that with probability 1 − e−Ω(m), the initial solution has at

least 0.9(1− 1
a)(m−1) white nodes. Hence, with probability e−Ω(mε), the algorithm will

not reach a state with less than 0.9(1− 1
a)(m− 1)− 3cmε white nodes during phase P .

As a result, the probability of having a direct jump to the global optimum in phase P is

at most

2c ·m1+ε

(
1

m2

)0.9(1− 1
a

)(m−1)−3cmε

= m−Ω(m).

Consequently, with high probability, the global optimum will not be reached during

phase P . According to Property 6.18, no mutation from the inner circle to the outer

circle can decrease the tour cost when the resulting solution is not the optimal solution.

Hence, such a change may only be accepted by the algorithm when another mutation

on the other direction happens at the same step. At the local optimum, there is no

black node other than the fixed black nodes and no mutation from the outer circle to
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the inner circle can happen; therefore, a mutation from the inner circle to the outer cir-

cle can not happen either. As a result, after reaching a local optimum, only a direct

jump to the global optimum can help moving towards the global optimum and the

probability of such a jump is
(

1
m2

)m−m
a . We now consider (m

2

2 )m−
m
a steps following

phase P . The probability of reaching the optimum solution is by union bound at most:(
m2

2

)m−m
a ( 1

m2

)m−m
a = (1

2)m−
m
a . Hence the probability of not reaching the global opti-

mum in the mentioned phase is 1− (1
2)m−

m
a = 1− e−Ω(m). Altogether, with probability

1− e−Ω(mδ), the optimization time is at least
(
m2

2

)m−m
a .

6.6 Conclusion

Evolutionary algorithms and local search approaches have been shown to be very suc-

cessful for solving the generalized travelling salesman problem. In this chapter we

have investigated two common hierarchical representations together with simple evo-

lutionary algorithms from a theoretical perspective. We prove lower and upper bounds

for optimization time of (1+1) EA with both approaches. Our analyses show that the

Cluster-Based (1+1) EA is a fixed parameter evolutionary algorithm with respect to the

number of clusters, while the same thing does not hold for the Node-Based (1+1) EA.

However, we have proved that there are instances which Node-Based (1+1) EA solves

to optimality in polynomial time, while Cluster-Based (1+1) EA needs exponential time

to find an optimal solution for them.

In order to prove an exponential lower bound for the optimization time of the Node-

Based (1+1) EA, we have presented a Euclidean instance of the GTSP. Our lower bound

analysis for this geometric instance shows that the Euclidean case is hard to solve even

if we assume that the lower layer TSP is solved to optimality in no time.



Chapter 7

Multi-Objective Evolutionary

Algorithms for the Weighted Vertex

Cover Problem

7.1 Introduction

In this chapter, we consider the weighted vertex cover problem (Definition 3.4 in Sec-

tion 3.3) with integer weights on the nodes, where the goal is to find a vertex cover

of minimum weight. We extend the investigations carried out in [77] to this problem.

In [77], multi-objective models in combination with a simple multi-objective evolu-

tionary algorithm called Global SEMO are investigated. They have shown that Global

SEMO, with a problem specific mutation operator is a fixed parameter evolutionary al-

gorithm for the classical vertex cover problem and finds 2-approximations in expected

polynomial time. Kratsch and Neumann [77] have also introduced an alternative mu-

tation operator and have proved that Global SEMO using this mutation operator finds

a (1 + ε)−approximation in expected time O(n2 log n+OPT ·n2 +n ·4(1−ε)OPT ), where

OPT is the cost of the optimal solution. One key argument for the results presented for

the classical vertex cover problem is that the population size is always upper bounded

by n+ 1. This argument does not hold in the weighted case. Therefore, we study how

a variant of Global SEMO using appropriate diversity mechanisms is able to deal with

the weighted vertex cover problem.

The focus of this chapter is on finding good approximations of an optimal solution.

The time complexity analysis is performed with respect to n, Wmax, and OPT , which

denote the number of vertices, the maximum weight in the input graph, and the cost of

90
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the optimal solution respectively. We first study the expected time until Global SEMO

with standard mutation operator has found a 2-approximation in dependence of n and

OPT . Afterwards, we consider DEMO, a variant of Global SEMO, which incorporates

ε-dominance (Section 2.4.2) as a diversity mechanism. It is shown that DEMO finds a

2-approximation in expected polynomial time.

The work of this chapter is based on parts of two papers, which were written in col-

laboration with other authors. One of the papers has been presented at conference

PPSN’16, and the other is submitted to a journal [103, 104]. The outline of this chapter

is as follows. In Section 7.2, the problem definition is presented as well as the classical

Global SEMO algorithm and DEMO algorithm. Runtime analysis for Global SEMO for

finding a 2-approximation is presented in Section 7.3. Section 7.4 includes the analysis

that shows DEMO can find 2-approximations of the optimum in expected polynomial

time. At the end, in Section 7.5 we summarize and conclude.

7.2 Preliminaries

We consider the weighted vertex cover problem defined in Definition 3.4 of Section 3.3.

We assume that all the weights are integers and consider the standard node-based ap-

proach, i.e. the search space is {0, 1}n and for a solution x = (x1, . . . , xn) the node vi is

chosen iff xi = 1.

As discussed in Section 3.3.2, this problem can be formulated as an ILP problem and

by relaxing the constraint xi ∈ {0, 1} to xi ∈ [0, 1], the LP formulation of the fractional

weighted vertex cover is obtained. Hochbaum [62] has shown that we can find a 2-

approximation using the LP result of the relaxed weighted vertex cover. This can be

done by including any vertex vi for which xi ≥ 1
2 .

We consider primarily multi-objective approaches for the weighted vertex cover prob-

lem. Given a multi-objective fitness function f = (f1, . . . , fd) : S → R where all d

objectives should be minimized, we have f(x) ≤ f(y) iff fi(x) ≤ fi(y), 1 ≤ i ≤ d. We

say that x (weakly) dominates y iff f(x) ≤ f(y). Furthermore, we say that x (strongly)

dominates y iff f(x) ≤ f(y) and f(x) 6= f(y).

We now introduce the objectives used in our multi-objective evolutionary algorithm.

Let G(x) be the graph obtained from G by removing all nodes chosen by x and the

corresponding covered edges. Formally, we have G(x) = (V (x), E(x)) where V (x) =

V \ {vi | xi = 1} and E(x) = E \ {e | e ∩ (V \ V (x)) 6= ∅}. Kratsch and Neumann [77]
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Algorithm 16: Global SEMO

1 Choose x ∈ {0, 1}n uniformly at random;
2 Determine f(x);
3 P ← {x};
4 repeat
5 Choose x ∈ P uniformly at random;
6 Create x′ by flipping each bit xi of x with probability 1/n;
7 Determine f(x′);
8 if @y ∈ P | f(y) ≤ f(x′) then
9 P ← {x′};

10 delete all other solutions z ∈ P with f(x′) ≤ f(z) from P ;

11 until termination condition satisfied;

investigated a multi-objective baseline algorithm called Global SEMO using the LP-

value for G(x) as one of the fitness values for the (unweighted) minimum vertex cover

problem.

Our goal is to expand the analysis on behaviour of multi-objective evolutionary algo-

rithms to the weighted vertex cover problem. In order to do this, we modify the fitness

function that was used in Global SEMO in [77], to match the weighted version of the

problem. We investigate the multi-objective fitness function f(x) = (Cost(x), LP (x)),

where

• Cost(x) =
∑n

i=1w(vi)xi is the sum of weights of selected vertices

• LP (x) is the value of an optimal solution of the LP for G(x).

We analyse Global SEMO (Algorithm 16) with this fitness function using the standard

mutation operator flipping each bit with probability 1/n.

In the fitness function used in Global SEMO, both Cost(x) and LP (x) can be exponen-

tial with respect to the input size; therefore, we need to deal with exponentially large

number of solutions, even if we only keep the Pareto front. One approach for dealing

with this problem is using the concept of ε−dominance described in Section 2.4.2. Re-

call that in this approach, the objective space is partitioned into a polynomial number

of boxes and at most one solution from each box is kept in the population.

Motivated by this approach, DEMO (Diversity Evolutionary Multi-objective Optimizer)

has been investigated in [89, 90]. In Section 7.4, we analyze DEMO (Algorithm 17) in

which only one non-dominated solution can be kept in the population for each box

based on a predefined criteria. In our setting, among two solutions x and y from one

box, y is kept in P and x is discarded if Cost(y) + 2 · LP (y) ≤ Cost(x) + 2 · LP (x).
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Algorithm 17: DEMO

1 Choose x ∈ {0, 1}n uniformly at random;
2 Determine b(x);
3 P ← {x};
4 repeat
5 Choose x ∈ P uniformly at random;
6 Create x′ by flipping each bit xi of x with probability 1/n;
7 Determine f(x′) and b(x′);
8 if ∃y ∈ P | (f(y) ≤ f(x′) ∧ f(y) 6= f(x′)) ∨ (b(y) = b(x′) ∧ Cost(y) + 2 · LP (y) ≤

Cost(x′) + 2 · LP (x′)) then
9 Go to 4;

10 else
11 P ← {x′};
12 delete all other solutions z ∈ P where f(x′) ≤ f(z) ∨ b(z) = b(x′) from P ;

13 until termination condition satisfied;

To implement the concept of ε−dominance in DEMO, we use the parameter δ = 1
2n and

define the boxing function b : {0, 1}n → N2 as:

b1(x) = dlog1+δ(1 + Cost(x))e,

b2(x) = dlog1+δ(1 + LP (x))e,

Analysing the runtime of our evolutionary algorithms, we are interested in the ex-

pected number of rounds of the repeat loop until a solution of desired quality has been

obtained. We call this the expected time until the considered algorithm has achieved

its desired goal.

7.3 Analysis of Global SEMO

In this section we analyse the expected time of Global SEMO to find approximations for

the weighted vertex cover problem in dependence of the input size and OPT. Before we

present our analysis for Global SEMO, we state some basic properties of the solutions

in our multi-objective model. The following theorem shown by Balinski [7] states that

all basic feasible solutions of the fractional vertex cover, which are the extremal points

or the corner solutions of the polyhedron that forms the feasible space, are half-integral.

Theorem 7.1. Each basic feasible solution x of the relaxed vertex cover ILP is half-integral, i.e.,

x ∈ {0, 1/2, 1}n. [7]

As a result of Theorem 7.1, there always exists a half integral optimal LP solution for

a vertex cover problem. In several parts of this paper, we make use of this result. We
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establish the following two lemmata which we will use later on in the analysis of our

algorithms.

Lemma 7.2. For any x ∈ {0, 1}n, LP (x) ≤ LP (0n) ≤ OPT .

Proof. Let y be the LP solution of LP (0n). Also, for any solution x, letG(x) be the graph

obtained from G by removing all vertices chosen by x and their edges. The solution 0n

contains no vertices; therefore, y is the optimal fractional vertex cover for all edges of

the input graph. Thus, for any solution x, y is a (possibly non-optimal) fractional cover

for G(x); therefore, LP (x) ≤ LP (0n). Moreover, we have LP (0n) ≤ OPT as LP (0n) is

the optimal value of the LP relaxation.

Lemma 7.3. Let x = {x1, · · · , xn}, xi ∈ {0, 1} be a solution and y = {y1, · · · , yn}, yi ∈ [0, 1]

be a fractional solution for G(x). If there is a vertex vi where yi ≥ 1
2 , mutating xi from 0 to 1

results in a solution x′ for which LP (x′) ≤ LP (x)− yi · w(vi) ≤ LP (x)− 1
2w(vi).

Proof. The graph G(x′) is the same as G(x) excluding the edges connected to vi. There-

fore, the solution y′ = {y1, · · · , yi−1, 0, yi+1, yn} is a fractional vertex cover forG(x′) and

has a cost of LP (x)− yiw(vi). The cost of the optimal fractional vertex cover of G(x′) is

at most as great as the cost of y′; thus LP (x′) ≤ LP (x)− yiw(vi) ≤ LP (x)− 1
2w(vi).

We now analyse the runtime behaviour of Global SEMO (Algorithm 16) with the stan-

dard mutation operator, in dependence of OPT. For our analysis, we start by giving

an upper bound on the population size of Global SEMO. Then we consider the ex-

pected time of Global SEMO to reach a population which contains the empty set of

nodes. Once included, such a solution will never be removed from the population as it

is minimal with respect to the cost function. At the end of this section, in Theorem 7.6

we present a pseudo polynomial upper bound on the expected optimization time of

Global SEMO.

Lemma 7.4. The population size of Algorithm 16 is upper bounded by 2 ·OPT + 1.

Proof. For any solution x there exists an optimal fractional vertex cover which is half-

integral (Theorem 7.1). Moreover, we are assuming that all the weights are integer

values. Therefore, LP (x) can only take 2LP (0n) + 1 different values, because LP (0n) is

an upper bound on LP (x) (Lemma 7.2). For each value of LP , only one solution is in P ,

because Algorithm 16 keeps non-dominated solutions only. Therefore, the population

size of this algorithm is upper bounded by 2 · LP (0n) + 1 which is at most 2 ·OPT + 1

due to Lemma 7.2.
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Lemma 7.5. The search point 0n is included in the population in expected time of O(OPT ·
n(logWmax + log n)).

Proof. From Lemma 7.4 we know that the population contains at most 2 · OPT + 1

solutions. Therefore, at each step, there is a probability of 1
2·OPT+1 that the solution

xmin is selected where Cost(xmin) = minx∈P Cost(x).

If Cost(xmin) > 0, there must be k ≥ 1 vertex such as vi in xmin where xi = 1. Let

∆t be the improvement that happens on the minimum cost in P at step t. If all the

1-bits in solution xmin flip to zero, at the same step or different steps, a solution 0n

will be obtained with Cost(0n) = 0, which implies that the expected improvement that

flipping each 1-bit makes is ∆t = Cost(xmin)
k at each step t. Note that flipping 1-bits

always improves the minimum cost and the new solution is added to the population.

Moreover, flipping the 0-bits does not improve the minimum cost in the population

and xmin is not replaced with the new solution in that case.

At each step, with probability 1
e only one bit flips. With probability k

n , the flipping bit is

a 1-bit, and makes an expected improvement of ∆t = Cost(xmin)
k , and with probability

1 − k
n , a 0-bit is flipped with ∆t = 0. We can conclude that the expected improvement

of minimum cost, when only one bit of xmin flips, is

k

n
· Cost(xmin)

k
=
Cost(xmin)

n

Moreover, the algorithm selects xmin and flips only one bit with probability 1
(2·OPT+1)·e ;

therefore, the expected improvement of minimum cost is

E[∆t | xmin] ≥ Cost(xmin)

(2 ·OPT + 1) · e · n

The maximum value that Cost(xmin) can take is bounded by Wmax · n, and for any

solution x 6= 0n, the minimum value of Cost(x) is at least 1. Using Multiplicative Drift

Analysis (Section 4.5.2) with s0 ≤ Wmax · n and smin ≥ 1, we can conclude that in

expected time O (OPT · n(logWmax + log n)) solution 0n is included in the population.

We now show that Global SEMO is able to achieve a 2-approximation efficiently as long

as OPT is small.

Theorem 7.6. The expected number of iterations of Global SEMO until the population P

contains a 2-approximation is O(OPT · n(logWmax + log n)).
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Proof. Let x be a solution that minimizes LP (x) under the constraint that Cost(x) + 2 ·
LP (x) ≤ 2 ·OPT . Note that this constraint holds for solution 0n since LP (0n) ≤ OPT ,

and according to Lemma 7.5, solution 0n exists in the population in expected time of

O (OPT · n(logWmax + log n)).

If LP (x) = 0, then all edges are covered and x is a 2-approximate vertex cover, because

we have Cost(x) + 2 · LP (x) ≤ 2 · OPT as the constraint. Otherwise, some edges are

uncovered and any LP solution of G(x) assigns at least 1
2 to at least one vertex of any

uncovered edge. Let y = {y1, · · · , yn} be a basic LP solution for G(x). According to

Theorem 7.1, y is a half-integral solution.

Let ∆t be the improvement that happens on the minimum LP value among solutions

that fulfil the constraint at time step t. Also, let k be the number of nodes that are

assigned at least 1
2 by y. Flipping only one of these nodes by the algorithm happens

with probability at least k
e·n . According to Lemma 7.3, flipping one of these nodes, vi,

results in a solution x′ with LP (x′) ≤ LP (x) − 1
2w(vi). Observe that the constraint

of Cost(x′) + 2 · LP (x′) ≤ 2 · OPT holds for solution x′. Therefore, ∆t ≥ yi · w(vi),

which is in expectation at least LP (x)
k due to definition of LP (x). Moreover, at each

step, the probability that x is selected and only one of the k bits defined above flips is
k

(2·OPT+1)·e·n . As a result we have:

E[∆t | x] ≥ k

(2 ·OPT + 1) · e · n
· LP (x)

k
=

LP (x)

en(2 ·OPT + 1)

According to Lemma 7.2 for any solution x, we have LP (x) ≤ OPT . We also know

that for any solution x which is not a complete cover, LP (x) ≥ 1, because the weights

are positive integers. Using the method of Multiplicative Drift Analysis [34] with s0 ≤
OPT and smin ≥ 1, in expected time ofO(OPT ·n logOPT ) a solution y withLP (y) = 0

and Cost(y) + 2LP (y) ≤ 2OPT is obtained which is a 2-approximate vertex cover.

Overall, since we have OPT ≤ Wmax · n, the expected time of finding this solution is

O(OPT · n(logWmax + log n)).

7.4 Analysis of DEMO

Due to Lemma 7.4, with Global SEMO, the population size is upper bounded byO(OPT ),

which can be exponential in terms of the input size. In this section, we analyse the

other evolutionary algorithm, DEMO (Algorithm 17), that uses some diversity han-

dling mechanisms for dealing with exponentially large population sizes. The following

lemmata are used in the proof of Theorem 7.10.
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Lemma 7.7. Let Wmax be the maximum weight assigned to a vertex. The population size of

DEMO is upper bounded by O (n · (log n+ logWmax)).

Proof. The values that can be taken by b1 are integer values between 0 and dlog1+δ(1 +

Cost(1n))e and the values that can be taken by b2 are integer values between 0 and

dlog1+δ(1 +LP (0n))e (Lemma 7.2). Since n ·Wmax is an upper bound for both Cost(1n)

and LP (0n), the number of rows and also the number of columns are bounded by

k =
(
1 + dlog1+δ(1 + n ·Wmax)e

)
≤

(
1 +

⌈ log(1 + n ·Wmax)

log(1 + δ)

⌉)
= O (n · (log n+ logWmax))

The last equality holds because δ = 1
2n .

We here show that the size of the population is Psize ≤ 2k − 1. Since the dominated

solutions according to f are discarded by the algorithm, none of the solutions in P

can be located in a box that is dominated by another box that contains a solution in P .

Moreover, at most one solution from each box is kept in the population; therefore, Psize
is at most the maximum number of boxes where none of them dominates another.

Let k1 be the number of boxes that contain a solution of P in the first column. Let r1

be the smallest row number among these boxes. Observe that r1 ≤ k − k1 + 1 and

the equality holds when the boxes are from rows k down to k − k1 + 1. Any box in

the second column with a row number of r1 + 1 or above is dominated by the box of

the previous column and row r1. Therefore, the maximum row number for a box in

the second column, that is not dominated, is r1 ≤ k − k1 + 1. With generalizing the

idea, the maximum row number for a box in the column i, that is not dominated, is

ri−1 ≤ k − k1 − · · · − ki−1 + i − 1, where for 1 ≤ j ≤ k, kj is the number of boxes that

contain a solution of P in column j.

The last column has kk ≤ rk−1 boxes which gives us:

kk ≤ rk−1 ≤ k − k1 − · · · − kk−1 + k − 1

This implies that

k1 + · · ·+ kk ≤ rk−1 ≤ 2k − 1

which completes the proof.

Lemma 7.8. The search point xz = 0n is included in the population in expected time of

O(n3(log n+ logWmax)2).
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Proof. From Lemma 7.7 we know that the population containsPsize = O (n · (log n+ logWmax))

solutions. Therefore, at each step, there is a probability of at least 1
psize

that the solution

xmin is selected where b1(xmin) = minx∈P b1(x).

If b1(xmin) = 0, we have Cost(xmin) = 0, which means xmin = 0n since the weights are

greater than 0.

If b1(xmin) 6= 0, there must be at least one vertex vi in xmin where xi = 1. Consider vj
the vertex that maximizes w(vi) among vertices vi where xi = 1. If Cost(x) = C, then

w(vj) ≥ C
n , because n is an upper bound on the number of vertices selected by xmin.

As a result, removing vertex xj from solution xmin results in a solution x′ for which

Cost(x′) ≤ C · (1− 1
n). Using this value of Cost(x′), we have

(1 + δ)(1 + Cost(x′)) ≤ 1 + δ + C(1− 1

n
)(1 + δ)

≤ 1 + δ + C + C(δ − 1

n
− δ

n
)

≤ 1 + Cδ + C + C(δ − 1

n
− δ

n
)

≤ 1 + C + C(2δ − 1

n
− δ

n
)

≤ 1 + C

The third inequality above holds because C ≥ 1 and the last one holds because δ = 1
2n .

From (1 + δ)(1 + Cost(x′)) ≤ 1 + C we observe that

1 + log1+δ(1 + Cost(x′)) ≤ log1+δ(1 + C)

which implies b1(x′) ≤ b1(x)− 1. Note that x′ is obtained by performing a 1-bit flip on

x and is done at each step with a probability of at least

1

Psize
· 1

n
· (1− 1

n
)n−1

= Ω

(
1

n(log n+ logWmax)
· 1

n

)

Therefore, in expected time of at most O
(
n2(log n+ logWmax)

)
the new solution, x′

is obtained which is accepted by the algorithm because it is placed in a box with

a smaller value of b1 than all solutions in P and hence not dominated. There are

O (n(log n+ logWmax)) different values for b1; therefore, the solution xz = 0n with

b1(xz) = 0 is found in expected time of at most O
(
n3(log n+ logWmax)2

)
.
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Lemma 7.9. Let x ∈ P be a search point such that Cost(x) + 2 · LP (x) ≤ 2 · OPT and

b2(x) > 0. There exists a 1-bit flip leading to a search point x′ with Cost(x′) + 2 · LP (x′) ≤
2 ·OPT and b2(x′) < b2(x).

Proof. Let y = {y1 · · · yn} be a basic half integral LP solution for G(x). Since b2(x) =

LP (x) 6= 0, there must be at least one uncovered edge; hence, at least one vertex vi has

a yi ≥ 1
2 in LP solution y. Consider vj the vertex that maximizes yiw(vi) among vertices

vi, 1 ≤ i ≤ n. Also, let x′ be a solution obtained by adding vj to x. Since solutions x and

x′ are only different in one vertex, vj , we have Cost(x′) = Cost(x) + w(vj). Moreover,

according to Lemma 7.3, LP (x′) ≤ LP (x)− 1
2 · w(vj). Therefore,

Cost(x′) + 2 · LP (x′) ≤ Cost(x) + w(vj) + 2

(
LP (x)− w(vj)

2

)
≤ Cost(x) + 2 · LP (x) ≤ 2 ·OPT

which means solution x′ fulfils the mentioned constraint. IfLP (x) = W , then yjw(vj) ≥
W
n , because n is an upper bound on the number of vertices selected by the LP solution.

As a result, using Lemma 7.3, we get LP (x′) ≤ W · (1 − 1
n). Therefore, with similar

analysis as Lemma 7.8 we get:

(1 + δ)
(
1 + LP (x′)

)
≤ 1 + δ +W

(
1− 1

n

)
(1 + δ)

≤ 1 +W

This inequality implies

1 + log1+δ(1 + LP (x′)) ≤ log1+δ(1 +W )

As a result, b2(x′) < b2(x) holds for x′, which is obtained by performing a 1-bit flip on

x, and the lemma is proved.

Theorem 7.10. The expected time until DEMO constructs a 2-approximation vertex cover is

O
(
n3 · (log n+ logWmax)2

)
.

Proof. Consider solution x ∈ P that minimizes b2(x) under the constraint thatCost(x)+

2 · LP (x) ≤ 2 · OPT . Note that 0n fulfils this constraint and according to Lemma 7.8,

the solution 0n will be included in P in time O
(
n3(log n+ logWmax)2

)
.

If b2(x) = 0 then x covers all edges and by selection of x we have Cost(x) ≤ 2 · OPT ,

which means that x is a 2-approximation.
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In case b2(x) 6= 0, according to Lemma 7.9 there is a one-bit flip on x that results in

a new solution x′ for which b2(x′) < b2(x), while the mentioned constraint also holds

for it. Since the population size is O (n · (log n+ logWmax)) (Lemma 7.7), this 1-bit

flip happens with a probability of Ω
(
n−2 · (log n+ logWmax)−1

)
and x′ is obtained in

expected time of O(n3 · (log n + logWmax)2). This new solution will be added to P

because a solution y with Cost(y) + 2 · LP (y) > 2 · OPT can not dominate x′ with

Cost(x′) + 2 · LP (x′) ≤ 2 · OPT , and x′ has the minimum value of b2 among solution

that fulfil the constraint. Moreover, if there already is a solution, xprev, in the same box

as x′, it will be replaced by x′ because Cost(xprev) + 2 ·LP (xprev) > 2 ·OPT ; otherwise,

it would have been selected as x.

There are at most A = 1 + d logn+logWmax

log(1+δ) e different values for b2 in the objective space,

and since δ = 1
2n , A = O(n · (log n + logWmax)). Therefore, the expected time until a

solution x′′ is found so that b2(x′′) = 0 and Cost(x′′) + 2 · LP (x′′) ≤ 2 ·OPT , is at most

O(n3 · (log n+ logWmax)2).

7.5 Conclusion

The minimum vertex cover problem is one of the classical NP-hard combinatorial op-

timization problems. In this chapter, we have generalized previous results of Kratsch

and Neumann [77] for the unweighted minimum vertex cover problem to the weighted

case where in addition weights on the nodes are given. We have proved upper bounds

for the expected optimization time of Global SEMO with standard mutation operator;

showing that this algorithm efficiently computes a 2-approximation as long as the value

of an optimal solution is small. Furthermore, we have studied the algorithm DEMO

using the ε-dominance approach and proved that the population size is polynomially

bounded with this technique. Consequently, we proved that this algorithm reaches a

2-approximation in expected polynomial time.



Chapter 8

Maintaining 2-Approximations for

the Dynamic Vertex Cover Problem

8.1 Introduction

In this chapter we contribute to the theoretical understanding of evolutionary algo-

rithms for the classical vertex cover problem which is defined in Section 3.3. Several

algorithms are known for this problem that have approximation ratio of 2. The goal

of our investigations in this chapter is to contribute to the understanding of how evo-

lutionary algorithms can maintain a 2-approximation when dynamic changes such as

edge addition and deletion are applied to the current graph.

Evolutionary algorithms in the dynamic optimization have previously been theoreti-

cally analysed in a number of papers for a simple (1+1) EA and the OneMax problem

or a variation of it [38, 73, 108]. The paper by Droste [38] presents an interesting analysis

for dynamically changing problems, where the maximum degree of dynamic changes

is found such that the expected optimization time of (1+1) EA is still polynomial for

the studied problem. One bit of the objective bit-string in that paper changes at each

timestep with a probability p′; which results in the dynamic changes of the fitness func-

tion over time. The author of the paper has proved that the (1+1) EA has a polynomial

expected runtime if p′ = O(log(n)/n), while for every substantially larger probability

the runtime becomes super polynomial. The results of that paper hold even if the ex-

pected re-optimization time of the problem is larger than the expected time until the

next dynamic change happens. In our analysis, we are considering a simpler dynamic

setting where the rate of dynamic changes is small enough, to re-optimize the problem

after a dynamic change, before the following change happens.

101
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We study different variants of the classical randomised local search (RLS) and (1+1) EA

that have already been investigated for the static vertex cover problem in the context of

approximations. This includes a node-based representation examined in [48, 77, 95] as

well as different edge-based representations analysed in [70].

For both of the representations there are hard instances introduced [48, 70] in which

with high probability a 2-approximation solution can not be found in less than expo-

nential time by means of (1+1) EA. Nevertheless, inspired by the approximation algo-

rithms for the vertex cover problem using maximal matchings, Jansen et al. [70] have

suggested that evolutionary algorithms using edge-based representation instead of the

node-based representation can solve the problem faster. They have studied the node-

based approach in addition to two edge-based approaches which differ in the fitness

function, and have shown that using the edge-based representation with a fitness func-

tion that penalizes the edges that share nodes, the algorithm can find a 2-approximate

solution in O(m logm) where m denotes the number of edges in the given graph.

We adapt the three approaches of Jansen et al. [70] to the dynamic vertex cover prob-

lem [67] where edges may be added or deleted from the graph. For the first two ap-

proaches, we point out where they are not able to maintain 2-approximations for the

dynamic vertex cover problem. In contrast to this, we show that the third approach

maintains solutions of that quality very efficiently.

This chapter is based on a GECCO conference paper ([100]) and is structured as fol-

lows. In Section 8.2 the problem definition is given and the algorithms are introduced.

Section 8.3 and 8.4 include hard instances of the dynamic vertex cover problem for the

node-based and edge-based approaches respectively. Run time behaviour of the edge-

based approach with the complex fitness function is analysed in Section 8.5 and the

conclusion is presented in the last section.

8.2 Algorithms and the Dynamic Vertex Cover Problem

In dynamic version of vertex cover problem, the given instance is subject to the addi-

tion and deletion of edges. We assume that these changes happen one by one each τ

iterations where τ ∈ poly(n) and poly(n) is a polynomial function in n.

In most of the work on the vertex cover problem using evolutionary algorithms, the

natural node-based representation is used [48, 77, 95]. In this representation the search

space is {0, 1}n where n is the number of nodes in the graph. A potential solution is a

search point s ∈ {0, 1}n describing a selection of nodes, i. e. the 1-bits identify the nodes
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Algorithm 18: Node-Based RLS (RLSNB)
1: The initial solution, s, is given: a bit-string of size n which used to be a

2-approximate solution before changing the graph.
2: Set s′ = s
3: Select i ∈ {1, . . . , n} uniformly at random and flip ith bit of s′

4: If f(s′) ≤ f(s) then s := s′

5: If stopping criteria not met continue at line 2

Algorithm 19: Node-Based (1+1) EA ((1+1) EANB)
1: The initial solution, s, is given: a bit-string of size n which used to be a

2-approximate solution before changing the graph.
2: Set s′ = s
3: Flip each bit of s′ with probability 1

n
4: If f(s′) ≤ f(s) then s := s′

5: If stopping criteria not met continue at line 2

that are in the cover-set for that solution:

VC(s) = {vi ∈ V | si = 1}.

In the work of Jansen et al. [70] the edge-based representation is introduced for this

problem. In this representation the search space is {0, 1}m where m is the number

of edges in the graph, and a search point s ∈ {0, 1}m describes a selection of edges

E(s) = {ei ∈ E | si = 1}. The cover set then is the subset of all vertices that are on

either side of the selected edges:

VC(s) = {v ∈ V | ∃e ∈ E(s) : v ∈ e}.

Note that in the dynamic version of the problem, the size of the bit-string correspond-

ing to a search point increases and decreases when edges are added or removed respec-

tively. In our analysis, m is the largest number of edges in the graph at all stages.

Jansen et al. [70] have suggested that this representation can help evolutionary algo-

rithms solve the problem faster. They first investigated the fitness function

f(s) = |VC(s)|+ (|V |+ 1) · |{e ∈ E | e ∩ VC(s) = ∅}|. (8.1)

The first part of this fitness function is the cardinality of the cover set which needs to

be minimised. The second part is a penalty for the edges that this set does not cover.

For f(s) of Equation 8.1, they have managed to show that a (1+1) EA performs equally

poor in worst cases for both defined representations. Furthermore, Jansen et al. [70]
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Algorithm 20: Edge-Based RLS (RLSEB)
1: The initial solution, s, is given: a bit-string of size m which used to be a

2-approximate solution before changing the graph.
2: Set s′ = s
3: Select i ∈ {1, . . . ,m} uniformly at random and flip ith bit of s′

4: If f(s′) ≤ f(s) then s := s′

5: If stopping criteria not met continue at line 2

Algorithm 21: Edge-Based (1+1) EA ((1+1) EAEB)
1: The initial solution, s, is given: a bit-string of size m which used to be a

2-approximate solution before changing the graph.
2: Set s′ = s
3: Flip each bit of s′ with probability 1

m
4: If f(s′) ≤ f(s) then s := s′

5: If stopping criteria not met continue at line 2

have shown that with adding a penalty for adjacent edges to the fitness function, the

(1+1) EA with edge-based representation can solve the vertex cover problem inO(m logm).

The fitness function with an extra penalty that they have used is defined as

fe(s) = f(s) + (|V |+ 1) · (m+ 1)

·|{(e, e′) ∈ E(s)× E(s) | e 6= e′, e ∩ e′ 6= ∅}|. (8.2)

The fitness function fe(s) is inspired by the well-known approximation algorithm that

finds a 2-approximation for the vertex cover problem based on a maximal matching [17].

In this chapter, we analyse the behaviour of RLS and the (1+1) EA on the dynamic

vertex cover problem with similar approaches that were studied in [70] on vertex cover

problem. These algorithms are supposed to modify the given solution if needed to

make it keep its quality of 2-approximation, after an edge has been added to or deleted

from the graph. In our runtime analysis, we measure runtime by the number of fitness

evaluations to reach a certain goal. The expected runtime refers to the expected number

of fitness evaluations to reach the desired goal. In our case, the goal is to recompute a 2-

approximation after one or more sequentially applied dynamic changes have occurred.

The Node-Based RLS (RLSNB) and Node-Based (1+1) EA ((1+1) EANB) are defined in

Algorithm 18 and Algorithm 19, respectively. Similarly, Edge-Based RLS (RLSEB) and

Edge-Based (1+1) EA ((1+1) EAEB) using the fitness function f(s) are presented in Al-

gorithm 20 and 21, respectively. The definition of the algorithms for the third approach

is quite similar to the second approach except that for comparing two solutions in line
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FIGURE 8.1: G1, a hard instance for node-based approach

4, the fitness function with the extra penalty of Formula 8.2 is used instead of the sim-

ple fitness function f(s). In the following sections, we denote the RLS and (1+1) EA

variants of the third approach by RLSe and (1+1) EAe, respectively.

8.3 Hard Instance for Node-Based Approach

In this section, we introduce a bipartite graph for which it is hard to maintain a 2-

approximate solution by means of RLSNB and (1+1) EANB . We go even further by

showing that for our instance and a sequence of dynamic changes, only a very bad

approximation will be found by these two algorithms. In our instance, both of the

algorithms stick to a local optimum with a bad approximation ratio of Ω(n1−ε), ε > 0

a small constant, if the graph is subject to a polynomial number of changes. In this

section we assume that τ ≥ n(3+δ) and δ > 0 is a small constant. An Illustration of our

instance, G1, is given in Figure 8.1.

G1 = (V,E) is a bipartite graph and the set of nodes, V , is partitioned into two sets

W = {a1, . . . , ag′} and U = {b1, . . . , bk}. If n denotes the total number of nodes, then we

assume that k = 1
3n

ε and g′ = n− 1
3n

ε. Initially, g = 2k nodes from partW are connected

to all the nodes of part U , i. e. the sub-graph consisting of nodes U ∪{a1, . . . , ag} and all

edges between them, which we denote by G1
′, is a complete bipartite graph. The other

nodes, {ai | g+1 ≤ i ≤ g′}, are initially not adjacent to any edge, but will be connected

to the nodes of part U one by one. In other words, the dynamic changes that the graph

is subject to, are adding edges {{ai, bj} | g+1 ≤ i ≤ g′, 1 ≤ j ≤ k}. Among these, edges

{e | ai ∈ e} are added prior to edges {e | ai+1 ∈ e}; and edge {ai, bj}, is added prior to

edge {ai, bj+1}. The number of these edges is (g′ − g) · k = (n− nε) · (1
3n

ε) = O(n1+ε).

Property 8.1. The optimal solution for G1 at all stages of dynamic changes, is the set U

of size k.

Proof. At all stages, the sub-graph G′1 is a complete bipartite graph; and a vertex cover

for a complete bipartite graph, contains at least all of the nodes of one of the parts.



Maintaining 2-Approximations for the Dynamic Vertex Cover Problem 106

Therefore, either all the nodes of U need to be in the solution or all the nodes {ai | 1 ≤
i ≤ g}. Since g = 2k, any cover set containing {ai | 1 ≤ i ≤ g}, has a size of at least

2k; whereas any cover set containing U has a size of at least k. Therefore, the optimal

solution has a size of at least k.

On the other hand, the set U is a complete cover forG1 at all the stages because it is one

of the partite sets of G1. Therefore, the optimal cover set at all the stages of the graph is

U with a size of k.

The initial 2-approximate solution that is given consists of {ai | 1 ≤ i ≤ g}. This is

a 2-approximate solution because g = 2k and the optimal solution has a size of k as

we saw in Property 8.1. In Sections 8.3.1 and 8.3.2 we show that algorithms RLSNB
and (1+1) EANB find a locally optimal solution consisting of all nodes of W when the

dynamic changes are done and G1 is a complete bipartite graph.

Based on the fitness function f(s) that is used in the node-based approach, we bring 6

lemmata here that hold for both RLSNB and (1+1) EANB , and help us with the proofs

in Section 8.3.1, and 8.3.2.

Lemma 8.2. If the number of uncovered edges by the current solution s is A, then any solution

s′ with B uncovered edges is rejected by RLSNB and (1+1) EANB if B > A.

Proof. Recalling Equation 8.1, f(s) = |VC(s)|+(n+1)·A. SinceB > A, f(s′) ≥ |VC(s′)|+
(n + 1) · (A + 1). Moreover, the maximum and minimum value of |VC(s)| and |VC(s′)|
are n and 0 respectively. As a result f(s) ≤ n+(n+1) ·A and f(s′) ≥ 0+(n+1) ·(A+1).

Since (n + 1) · (A + 1) > (n + 1) · A, this upper and lower bounds on f(s) and f(s′)

imply that f(s′) > f(s) and s′ will be rejected by RLSNB and (1+1) EANB .

Lemma 8.3. If the current solution s, is a cover, any solution s′ where |VC(s′)| > |VC(s)|, is

rejected by RLSNB and (1+1) EANB .

Proof. For any solution s′ the following inequality holds:

f(s′) ≥ |VC(s′)|

Since solution s is a cover, we have f(s) = |VC(s)|. Therefore, |VC(s′)| > |VC(s)| implies

that f(s′) > f(s), which results in rejecting s′ by RLSNB and (1+1) EANB .

Lemma 8.4. If the solution s is a cover, with probability 1−e−Ω(nε), RLSNB and (1+1) EANB

find a solution s′ which is a minimal cover, in time O(n1+ε log n).
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Proof. According to Lemma 8.2, any solution that is accepted by RLSNB or (1+1) EANB

after solution s, is a cover. Assume s′ to be a cover with |VC(s′)| < |VC(s)|. According

to Lemma 8.3, s′ is better in terms of fitness and will replace solution s. Since s is not

a minimal cover, there are some extra nodes in it, removing which does not uncover

any edges while reduces the size of the cover set. The process of removing extra nodes

from the solution is similar to optimizing OneMax [70] and is expected to be done in

time O(n log n) by RLS and (1+1) EA since |VC(s)| ≤ n.

If the expected time until all of extra nodes are removed is Cn log n, where C is a

constant, and if X is the first time that they are removed from the solution, then by

Markov’s inequality (Section 4.2.1) we have

Prob(X ≥ 2Cn log n) ≤ 1

2

Considering nε phases of 2Cn log n steps, then

Prob(X ≥ 2Cn1+ε log n) ≤
(

1

2

)nε

As a result, with probability 1−e−Ω(nε) a minimal cover will be found in timeO(n1+ε log n).

Lemma 8.5. If the solution s is a cover before the new edge e is added, then with probability

1 − e−Ω(nε) starting with s, (1+1) EANB and RLSNB find a solution s′ which is also a cover

after e is added, in time O(n1+ε).

Proof. Since s had been a cover before ewas added, the only edge that might not be cov-

ered by s is e. Therefore, the number of uncovered edges is at most 1. This number does

not increase according to Lemma 8.2 during the process of RLSNB and (1+1) EANB . On

the other hand, there are always two nodes (included in the uncovered edge itself)

that adding at least one of them to the solution s, results in a cover. This move is ac-

cepted according to Lemma 8.2 and has the probability of Ω(n−1) for both RLSNB and

(1+1) EANB . Therefore, the expected time until this improvement is found is Cn, C a

positive constant, and using Markov’s inequality and nε phases of 2 · Cn steps (simi-

lar to proof of Lemma 8.4), with probability 1 − e−Ω(nε), a cover will be found in time

O(n1+ε).

Lemma 8.6. Consider the given solution s, a cover which does not include bj′ ; 3 ≤ j′ ≤ k,

before new edge e = {ai, bj} is added to the graph. With probability 1− e−Ω(nε), the resulting

solution of (1+1) EANB and RLSNB after e is added, includes at least all nodes ai′ ; 1 ≤ i′ ≤
i− 1.
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Proof. As s does not include bj′ ; 3 ≤ j′ ≤ k, it must contain all ai′ ; 1 ≤ i′ ≤ i − 1;

otherwise, it is not a cover before e = {ai, bj} is added. Therefore, the only edge that

might not be covered after e is added, is e itself. The number of uncovered edges does

not increase during the process of (1+1) EANB and RLSNB (Lemma 8.2); therefore, none

of a-nodes can be removed from the solution unless all b-nodes are added at the same

step. This move is not possible with RLSNB because only single-bit flips can be done in

that algorithm. (1+1) EANB also needs to flip at least k − 2 bits at one step which has

the probability of at most e−Ω(k) = e−Ω(nε). As a result, starting from s, with probability

1− e−Ω(nε), any solution accepted by (1+1) EANB and RLSNB after e is added, includes

at least all nodes ai′ ; 1 ≤ i′ ≤ i− 1.

Lemma 8.7. Consider g < i ≤ g′ and two stages of the graph G1: stage X at which {ai, b2}
is added, and stage Y which is before {ai+1, b1} is added. At all stages from X to Y , a solution

consisting of {a1, . . . , ai} is a locally optimal solution for RLSNB . Moreover, with probability

of 1− e−Ω(nε), (1+1) EANB can not improve this solution in a polynomial number of steps.

Proof. Since edges connected to ai′ ; i
′ > i have not been added to the graph yet, s,

consisting of {a1, . . . , ai}, is a cover. Therefore, any solution that has at least one un-

covered edge (Lemma 8.2) or has a larger number of nodes in the cover set(Lemma 8.3)

is rejected by RLSNB and (1+1) EANB .

Since the sub-graph consisting of the nodes {a1, . . . , ai}∪U and all edges between them,

is a complete bipartite graph, any solution which is a cover, must contain either U or

{a1, . . . , ai}. Similar to Lemma 8.6, jumping to any solution which contains U , in one

step by RLSNB is not possible and by (1+1) EANB has a probability of e−Ω(nε). More-

over, among solutions containing the set {a1, . . . , ai}, s has the minimum number of

nodes in the cover set. Therefore, s is a local optimum for RLSNB and with probability

e−Ω(nε), (1+1) EANB can not improve it in a polynomial number of steps.

8.3.1 Analysis of RLSNB on G1

In this section, we first bring two lemmata that help us identify local optimums. Using

them, we analyse the behaviour of RLSNB on G1.

Lemma 8.8. Any solution s which is a minimal cover, is a locally optimal solution for RLSNB .

Proof. Only single-bit flips can be preformed by RLSNB which can be either adding a

new node to s or removing one from it. Since s is a cover, adding new nodes to it is

rejected according to Lemma 8.3 because it increases |VC(s)|. Moreover, any move that
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removes a node, uncovers at least one edge as s is a minimal cover. Therefore, according

to Lemma 8.2 deleting nodes from s also is rejected; hence, s is a local optimum.

Lemma 8.9. Consider g < i ≤ g′ and two stages of the graph G1: stage X at which {ai, b1} is

added, and stage Y which is before {ai+1, b1} is added. If the given solution of RLSNB at stage

X is {a1, . . . , ai−1}, then with probability 1 − e−Ω(nε), the resulting solution of the algorithm

at stage Y is {a1, . . . , ai}.

Proof. After stage X, when the edge {ai, b1} is added to the graph, the current solution,

{a1, a2, . . . , ai−1}, is not a cover any more.

The RLSNB flips bits of search point s, one bit at a time, to achieve an improvement on

the fitness f(s). Flipping a 1 to 0 indicates removing a node from the solution; which

uncovers k edges and according to Lemma 8.2, is rejected. Flipping a 0 to 1 increases

|VC(s)|, but if the corresponding node covers the new edge; then the fitness is improved

by n. If not, the fitness is increased by 1. Therefore, the only flips that are accepted by

RLSNB are the ones that add a node that covers the new edge. The only such nodes are

ai and b1. Note that in both cases the resulting solution is worse than a 2-approximation,

because it contains i ≥ 2k + 1 nodes.

At each step, the probability of selecting one of these two nodes is 2
n . Therefore, the

expected time until one of them is selected is n
2 . Let X be the first time that one of

them is selected. Using Markov’s inequality and nε phases of n steps (similar to proof

of Lemma 8.4) with probability 1− e−Ω(nε), the solution is improved in n1+ε steps.

If ai is added, then according to Lemma 8.7 the solution is a local optimum until edge

{ai+1, b1} is added. Here we consider adding b1 to the cover set.

At this stage, i.e. before the next edge is added to the graph, the solution {a1, a2, . . . , ai−1, b1},
is a minimal cover and a local optimum according to Lemma 8.8.

Similar to the first one, when the edge {b2, ai} is added to the graph, the current solution

is no more a complete cover. Either b2 or ai need to be added to the cover set. The

situation is similar to what we had for the first change and will be repeated in the next

stages while the b-node is selected.

For each of the k edges {ai, bj}; 1 ≤ j ≤ k, the probability that the b-node is added

to the cover set instead of ai is 1
2 . Therefore, with probability 1 − (1

2)k = 1 − e−Ω(nε),

at least one of these changes results in adding ai to the selected set of nodes. Let us

assume that the {ai, bj} is the first edge for which ai is added to the cover set. The new

solution {a1, . . . , ai, b1, . . . , bj−1} is a cover, but not a minimal cover, because removing

b-nodes from the set does not uncover any edges. According to Lemma 8.4, they will be
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FIGURE 8.2: A solution consisting of set W

removed from the solution and with probability 1−e−Ω(nε) the locally optimal solution

of {a1, . . . , ai} (Lemma 8.7) will be found in time O(n1+ε log n).

Theorem 8.10. ForG1, with probability 1−e−Ω(nε), the eventual resulting solution of RLSNB
is the set W . The approximation ratio of this solution is in Ω(n1−ε).

Proof. Since the initial solution is {a1, . . . , ag}, according to Lemma 8.9, the resulting

solution of RLSNB before edge {ag+2, b1} is added is {a1, . . . , ag+1}, with probability

1 − e−Ω(nε). This satisfies the requirement for Lemma 8.9 again, and the algorithm

repeats the whole process for each of (n− nε) a-nodes. As a result, after node is added,

the algorithm finds a solution consisting of W with probability 1 − (n − nε)e−Ω(nε) =

1− e−Ω(nε) (Figure 8.2).

There are g = n− 1
3n

ε nodes in this solution, which gives the approximation ratio of:

g

k
=
n− 1

3n
ε

1
3n

ε
= Ω(n1−ε)

8.3.2 Analysis of (1+1) EA on G1

We here introduce a lemma using which the main theorem of this section about the

behaviour of (1+1) EANB on G1 is proved.

Lemma 8.11. Consider g < i ≤ g′ and two stages of the graph G1: stage X at which {ai, b1}
is added, and stage Y which is before {ai+1, b1} is added. If the given solution of (1+1) EANB

at stage X is s = {a1, . . . , ai−1}, then with probability 1 − e−Ω(nδ), the resulting solution of

the algorithm at stage Y is s′ = {a1, . . . , ai}.

Proof. The given solution {a1, . . . , ai−1} is a cover for the graph before stage X . Ac-

cording to Lemma 8.5, after {ai, b1} is added, the algorithm finds s1 which is a cover,
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in polynomial time. Similarly, after {ai, b2} is added, a solution s2 that is also a cover is

found in polynomial time.

On the other hand, according to Lemma 8.6, s1 contains all nodes ai′ ; 1 ≤ i′ ≤ i − 1.

And according to Lemma 8.4, it is a minimal cover because τ > O(n1+ε log n), meaning

that in addition to {a1, . . . , ai−1}, it only includes one other node to cover {ai, b1} i. e.

either ai or b1. Therefore, s1 does not include bj′ ; 3 ≤ j′ ≤ k; which satisfies the

condition of Lemma 8.6 for the next stage. In other words, s2 also includes all nodes

ai′ ; 1 ≤ i′ ≤ i − 1. According to Lemma 8.4 it is also a minimal cover. Any minimal

solution including all nodes ai′ ; 1 ≤ i′ ≤ i − 1 which also covers {ai, b1} and {ai, b2},
contains either ai or b1 and b2. So far, we have proved that (1+1) EANB finds s2 which

consists of either V1 = {a1, . . . , ai} or V2 = {a1, . . . , ai−1, b1, b2}. We here show that

(1+1) EANB finds the solution which includes V1.

Since both V1 and V2 are covers and |V1| < |V2|, the solution consisting of V1 is less

costly. Therefore, (1+1) EANB does not accept a change from V1 to V2 but accepts the

opposite move. The probability of flipping only the bits corresponding to ai, b1 and b2

is (
1

n

)3(
1− 1

n

)n−3

≥ 1

en3

As a result, a move from V2 to V1 can be performed at expected time of at most E(T ) =

en3, where T is the first step that this move happens. Using Markov’s inequality (Sec-

tion 4.2.1),

Prob(T ≥ 2 · en3) ≤ 1

2

Considering n(3+δ)

2en3 phases of 2en3 steps,

Prob(T ≥ n3+δ) ≤
(

1

2

)n(3+δ)

2en3

This implies that with probability 1 − e−Ω(nδ) the (1+1) EANB finds s2 consisting of V1

in a phase of τ steps.

From this point according to Lemma 8.7, s2 is a local optimum until {ai+1, b1} is added.

Theorem 8.12. ForG1, with probability 1−e−Ω(nδ), the eventual resulting solution of (1+1) EANB

is the set W . The approximation ratio of this solution is in Ω(n1−ε).

Proof. Since the initial solution is {a1, . . . , ag}, according to Lemma 8.11, the resulting

solution of (1+1) EANB before edge {ag+2, b1} is added is {a1, . . . , ag+1}, with probabil-

ity 1− e−Ω(nδ). This satisfies the requirement for Lemma 8.11 again, and the algorithm
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repeats the whole process for each node ai, g < i ≤ g′. As a result, after the last

change of the graph, the algorithm finds a solution consisting of all nodes of W with a

probability of at least 1− (n− nε)e−Ω(nδ) = 1− e−Ω(nδ).

Similar to Theorem 8.10 the approximation ratio of this solution is Ω(n1−ε).

8.4 Hard Instance for Standard Edge-Based Approach

In this section, we assume that τ ≥ m(4+δ), where δ > 0 is a small constant. The

graph of instance G2 that we introduce in this section as a hard instance for edge-based

approach is exactly the same as G1 with one slight difference. The difference is that

g = 2k − 1 instead of 2k.

Property 8.13. The optimal solution for G2 at all stages of dynamic changes, is the set U

of size k.

Proof. The proof is similar to the proof of Property 8.1 on G1.

Since we are using the edge-based representation in this section, the initial solution

needs to be a search point in {0, 1}m, representing the set of selected edges. We assume

that {{ai, b1} | 1 ≤ i ≤ g} is the given initial set of selected edges. The cover set

induced from this set is {b1} ∪ {ai | 1 ≤ i ≤ g} which has a size of 2k; therefore, is a

2-approximation because according to Property 8.13 the size of the optimal solution is

k. In what follows, we analyse the behaviour of RLSEB and (1+1) EAEB on G2 with the

given initial solution.

Note that Lemma 8.2 and Lemma 8.3 of Section 8.3 are also valid in this section, because

they are based on the fitness function f(s) and not the representation. We bring three

other lemmata here which hold for both RLSEB and (1+1) EAEB .

Lemma 8.14. Starting with the given solution s which is a cover before edge e is added, with

probability 1 − e−Ω(mε), RLSEB and (1+1) EAEB find a solution s′ which is also a cover in

O(n1+ε) after e is added.

Proof. The proof of this lemma is similar to the proof of Lemma 8.5 except that we are

using the edge-based approach and we should use the probability of finding the proper

edge instead of the probability of finding the proper node.

There always exists an edge (the uncovered edge itself) adding which to s results in

a cover. This move has the probability of Ω(m−1) for both RLSEB and (1+1) EAEB .
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Therefore, similar to Lemma 8.5, with probability 1− e−Ω(mε), a cover will be found in

O(m1+ε).

Lemma 8.15. For the instance G2 starting with the given initial solution, with probability

1− e−Ω(mε), RLSEB and (1+1) EAEB result in a solution which is a cover at all stages.

Proof. Using Lemma 8.14 as inductive steps and the initial solution as the base of in-

duction, we can conclude that with probability 1 − e−Ω(mε), RLSEB and (1+1) EAEB

result in a solution which is a cover at all stages.

Lemma 8.16. Before new edge e = {ai, bj} is added to the graph, consider the given solution

s, a cover which does not include bj′ ; 4 ≤ j′ ≤ k. With probability 1− e−Ω(mε), the resulting

solution of (1+1) EAEB and RLSEB after e is added, includes at least all nodes ai′ ; 1 ≤ i′ ≤
i− 1.

Proof. The proof is similar to proof of Lemma 8.6. However, notice that with edge-

based representation, adding and removing nodes from the cover set of solution s can

be done by adding and removing edges from s. Since G2 is a bipartite graph, adding

all nodes bj′ ; 4 ≤ j′ ≤ k at one step, requires at least k = 3 flips.

8.4.1 Analysis of RLSEB on G2

In this section, we analyse the behaviour of RLSEB onG2 and show that there is a stage

at which this algorithm fails to find a solution with a better approximation ratio than
3k−1
k . We first bring a lemma that helps us with the proof.

Lemma 8.17. With probability 1 − e−Ω(mε), the node bk can only be added to the solution by

RLSEB , at a stage in which {ai, bk} has been added to the graph, where g + 1 ≤ i ≤ g′.

Proof. Consider stage X in which node bk is added to the solution. If adding an edge

e = {ai′ , bk}; 1 ≤ i′ ≤ g′ is accepted, it must cover an uncovered edge; otherwise, this

move will be rejected because it increases the cardinality of the cover set. On the other

hand, according to Lemma 8.15, the solution obtained by the algorithm before stage X ,

is a cover; therefore the only uncovered edge is the one that is added in stage X which

we denote by en. As a result, e is covering en; i. e. en = {ai, bk}; g + 1 ≤ i ≤ g′ which

is what the lemma claims, or, en = {ai′ , bk′}; 1 ≤ k′ ≤ k. In this case, k′ = k because

otherwise, the edge {ai′ , bk} has not been added to the graph yet. This completes the

proof.
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Theorem 8.18. Before edge {a3k, b1} is added to G2, with probability 1 − e−Ω(mε), there is a

stage at which RLSEB does not find any solution better than 3k−1
k -approximation.

Proof. Before {a3k, b1} is added to the graph, all edges connected to nodes ai; 2k ≤ i <
3k, are added. We partition these stages into k phases so that in phase i (2k ≤ i < 3k),

edges {ai, bj | 1 ≤ j ≤ k} are added.

We analyse the situation based on containing or not containing the node bk in the ob-

tained solution of at least one stage.

• If an edge containing nodes bk is added to the solution, according to Lemma 8.17,

it must have been added after edge en = {ai, bk}; 2k ≤ i < 3k is added to G2.

Furthermore, adding bk to a solution s increases |VC(s)|. If s was a cover, accord-

ing to Lemma 8.3 this move was rejected. Therefore, bk must have covered a new

edge. According to Lemma 8.15, before en is added; the algorithm has managed

to find a cover; therefore, the only edge that may not be covered after adding en,

is en itself. Therefore, the edge containing bk, that is added to the solution, must

cover en = {ai, bk}, to be accepted. This implies that the node ai has not been

previously added to the solution. Otherwise, en was already covered.

Consider stageX , at which {ai, bk−1} has been added. According to the above ex-

planation, the solution obtained at this stage (before en is added) must not contain

ai. Moreover, according to Lemma8.15, this solution is a cover. Since ai has been

connected to all other b-nodes in the past stages, all the nodes bj ; 1 ≤ j ≤ k − 1,

must be included in that solution as it does not contain ai. Similarly, all the nodes

al; 1 ≤ l ≤ i − 1 must be included in that solution because bk is connected to all

of them and is not included in the cover set yet.

As a result, the achieved solution by the end of stage X , contains nodes al; 1 ≤
l ≤ i − 1 and bj ; 1 ≤ j ≤ k − 1. Since i ≥ 2k, the total number of nodes in the

cover set is at least 3k − 1.

• If bk is not included in the solution of any stage; then the cover set must include

all of the nodes that are connected to bk. At the last stage of phase 3k−1, all nodes

al, 1 ≤ l ≤ 3k − 1 are connected to bk; therefore, the cover set that the algorithm

finds at that stage contains at least 3k − 1 edges.

In both cases, we proved that there is a stage at which the achieved cover set contains

at least 3k− 1 nodes; while the size of the optimal cover set is k at all stages. Therefore,

the approximation ratio of the mentioned solutions is 3k−1
k .
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FIGURE 8.3: A solution including the set W

8.4.2 Analysis of EA on G2

Here we introduce two lemmata that helps us with the proof of the main theorem about

the behaviour of (1+1) EAEB on G2. Lemma 8.19 is obtained similar to Lemma 8.7.

Lemma 8.19. Consider g < i ≤ g′ and two stages of the graph G1: stage X at which {ai, b3}
is added, and stage Y which is before {ai+1, b1} is added. At all stages from X to Y , a solution

s, consisting of {a1, . . . , ai, bj}; 1 ≤ j ≤ k is a locally optimal solution for (1+1) EAEB .

Lemma 8.20. Consider g < i ≤ g′ and two stages of the graph G1: stage X at which {ai, b1}
is added, and stage Y which is before {ai+1, b1} is added. If the given solution of (1+1) EAEB at

stage X , s, includes the nodes {a1, . . . , ai−1}, then with probability 1− e−Ω(mδ), the resulting

solution of the algorithm at stage Y also includes {a1, . . . , ai}.

Proof. The given solution s is a cover for the graph before stage X . According to

Lemma 8.14, after {ai, b1}, {ai, b2} and {ai, b3} are added, the algorithm finds s1, s2

and s3 which are also covering solutions, in polynomial time.

On the other hand, according to Lemma 8.16, s1, s2 and s3 contain all nodes ai′ ; 1 ≤
i′ ≤ i − 1. A covering solution that contains the three new edges, must contain either

ai or b1, b2 and b3. Among solutions with these properties, s3 = {{al, bj} | 1 ≤ l ≤ i}
has the minimum cost and is achievable from others at each step with a probability of

at least ( 1
m)4(1− 1

m)(m−4) because at most 4 bits of s need to be flipped. Similar to proof

of Lemma 8.11, we can conclude that with probability 1−e−Ω(mδ) the (1+1) EAEB finds

s3 = {{al, b1} | 1 ≤ l ≤ i} in a phase of τ steps which is due to Lemma 8.19, a local

optimum until {ai+1, b1} is added.

Similar to Theorem 8.12 we obtain the following result.

Theorem 8.21. For G2, with probability 1 − e−Ω(mδ), the (1+1) EAEB finds a locally opti-

mal solution containing the set W (Figure 8.3). The approximation ratio of this solution is in

Ω(n1−ε).
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8.5 Edge-Based Approach with extra penalty

In this section, we analyse the impact of using the fitness function fe(s), defined in

Equation 8.2, on the behaviour of RLSe and (1+1) EAe. It is already proved [70] that

starting from any initial solution, both of these algorithms find a maximal matching in

timeO(m logm), which induces a 2-approximate solution for the vertex cover problem.

As a result, considering τ ≥ m(1+δ), both algorithms find a 2-approximate solution for

the dynamic vertex cover problem with probability 1 − e−Ω( mδ

logm
). We aim to analyse

the behaviour of the two algorithms when an initial solution with that quality is given.

Both kind of dynamic changes on the graph, add and delete, are analysed in this section.

The following two lemmata are proved based on the fitness function fe(s) that RLSe
and (1+1) EAe use.

Lemma 8.22. Consider a search point s ∈ {0, 1}m which is a matching. Any move that results

in search point s′ is rejected by RLSe and (1+1) EAe if s′ is not a matching.

Proof. We here show that for any swhich is a matching and any s′ which is not a match-

ing, fe(s′) > fe(s); therefore, both algorithms reject s′.

If s′ is not a matching, fe(s′) ≥ (|V |+ 1) · (m+ 1) = (n+ 1) · (m+ 1). Moreover, if s is a

matching fe(s) = f(s) ≤ n + (n + 1)(m) because the maximum number of uncovered

edges is m. On the other hand, (n + 1) · (m + 1) > n + (n + 1)(m) which implies that

fe(s
′) > fe(s)

Lemma 8.23. Consider a search point s ∈ {0, 1}m which is a matching. Any move that results

in search point s′ is rejected by RLSe and (1+1) EAe if |{e ∈ E | e∩ VC(s′) = ∅}| > |{e ∈ E |
e ∩ VC(s) = ∅}|.

Proof. For any search point s′, fe(s′) ≥ f(s′) holds. Since solution s is a matching,

fe(s) = f(s). Therefore, if f(s′) > f(s), fe(s′) > fe(s) also holds. Moreover, according

to Lemma 8.2, if the number of uncovered edges of solution s′ is larger than that of

solution s, f(s′) > f(s) holds which completes the proof.

8.5.1 Analysis of RLS

In this section, using the following lemma, we prove that RLSe maintains a 2-approximate

solution in O(m) on expectation. This gives the probability of 1− e−Ω(mδ) for maintain-

ing the quality of the problem with τ = m(1+ε).
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Lemma 8.24. Any search point s ∈ {0, 1}m which is a maximal matching, is a locally optimal

solution for RLSe.

Proof. By RLSe only single-bit flips can be performed: adding one edge to s, or deleting

one edge from it. We show that both kinds are rejected; hence s is a local optimum.

Since s is a matching, removing an edge from it uncovers at least one edge, and accord-

ing to Lemma 8.23, is rejected. And since it is a maximal matching, adding any edge

to it will result in a solution which is not a matching, and according to Lemma 8.22, is

rejected.

Theorem 8.25. Starting with a 2-approximate solution s, which is also a maximal matching

for an instance of the problem, RLSe maintains the quality of the solution for dynamic changes

of adding or deleting an edge on the graph in expected time of O(m).

Proof. We investigate the situation for adding an edge or deleting an edge separately.

When an edge is added to the graph, s is still a matching, but it might be or not

be a maximal matching. If s is still a maximal matching then it is a local optimum

(Lemma 8.24) and a 2-approximation, because all maximal matchings induce a 2-approximation

cover set.

If s is not a maximal matching, then only the new edge, e, might not be covered. Ac-

cording to Lemma 8.22 and Lemma 8.23, s remains matching during the process of

the algorithm and the number of uncovered edges does not increase. Moreover, while

there is an uncovered edge, there is a probability of at least 1
m to make an improvement,

because adding the uncovered edge to s reduces the number of uncovered edges to 0.

This means that in expectation, it takes m steps for RLSe to find this improvement.

When an edge, e = {v1, v2}, is deleted from the graph, if e /∈ E(s) then s is still a

maximal matching and corresponds to a 2-approximate solution. If e ∈ E(s), then it is

deleted from the solution as well. The new s is still a matching but might be or not be a

maximal matching. If s is still a maximal matching then it is already a 2-approximation

and we are done.

We examine the case where s does not constitute a maximal matching anymore. If s is

not a maximal matching, then there is a non-empty set E′ such that:

E′ = {e1 | e1 ∈ E ∧ (∀e2 ∈ E(s)⇒ e1 ∩ e2 = ∅)}.
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Consider the set E′′:

E′′ = {e1 | e1 ∈ E ∧ (∀e2 ∈ E(s), e1 ∩ e2 = ∅) ∧ e1 ∩ e 6= ∅}

The definition implies that E′′ ⊆ E′. Here we show that E′ = E′′. If not, ∃e′′ ∈ E′ \ E′′

which means that e′′∩e = ∅ and swas not covering e′′ before removing e, and therefore

was not a maximal matching which is in contrast to the given assumption on s.

Now we can define U1 = {e1 | e1 ∈ E′′ ∧ v1 ∈ e1} and U2 = {e1 | e1 ∈ E′′ ∧ v2 ∈ e1}.
We know that U1 ∩ U2 = ∅ because the edge containing both v1 and v2 was e which is

deleted from the graph. Therefore, U1 and U2 define a partition over E′′ and in order

to cover edges in E′′, edges from both of these sets need to be covered. All edges in

U1 include the node v1 which implies that selecting any edge from U1 covers all other

edges from this set. Similarly selecting any edge from U2 covers all edges from this set.

Therefore, using RLSe, at each step there is a probability of |U1|
m to cover all edges of U1

and a probability of |U2|
m to cover all edges of U2.

Note that any other move is rejected: No edge can be deleted from s, because s is

a matching and deleting any edge from it increases the number of uncovered edges;

therefore is rejected (Lemma 8.23). Furthermore, all edges other than e′′ ∈ E′′ are cov-

ered by s and adding them to s results in a solution which is not a matching; hence, is

rejected (Lemma 8.22).

With the mentioned probabilities of covering U1 and U2 in one step, each of them will

be covered in expected time of Cm, where C is a constant. Using Markov’s inequality

(Section 4.2.1) and mε phases of Cm, with probability 1 − e−Ω(mε) all the uncovered

edges will be covered in O(m1+ε). The new solution is a maximal matching which

induces a 2-approximate solution.

8.5.2 Analysis of (1+1) EA

In this section, we consider the (1+1) EAe and analyse maintaining a 2-approximate

solution for the dynamic vertex cover problem for that. We have obtained new results

for the dynamic change of adding an edge; but deleting an edge is more complicated

to analyse. The reason is that the number of uncovered edges can be as large as O(m)

and when more than one flip can happen at each step, some uncovered edges can get

covered but a smaller number of covered edges get uncovered. The best expected op-

timization time for this situation known so far is O(m logm) which is the same as the

expected time of (1+1) EAe starting from scratch.
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The following theorem, gives the result of our analysis for (1+1) EAe when edges are

dynamically added to the graph.

Theorem 8.26. Starting with a 2-approximate solution s, which is also a maximal matching

for an instance of the problem, (1+1) EAe maintains the quality of the solution when one new

edge is dynamically added to the graph in expected time of O(m).

Proof. The proof is quite similar to the proof of the first part of Theorem 8.25. When an

edge is added to the graph, s is still a matching, but it might be or not be a maximal

matching. If s is still a maximal matching then according to Lemmata 8.22 and 8.23 the

algorithm can only replace s by solutions that are also maximal matchings (solutions

that are matchings and do not have uncovered edges); hence, a 2-approximate solution

is induced from the solutions that the algorithm produces.

If s is not a maximal matching, then only the new edge, e, might not be covered. Once

again, according to Lemmata 8.22 and 8.23, the algorithm only accepts solutions that are

matchings and have at most one uncovered edge. Moreover, while there is an uncov-

ered edge, there is a probability of at least 1
m(1− 1

m)(m−1) to make an improvement by

adding that edge to s, which results in a complete cover and a 2-approximate solution.

In other words, it takes expected time of at most 1
1
m

(1− 1
m

)(m−1) = O(m) for (1+1) EAe to

maintain 2-approximation when dynamic changes only include adding new edges.

8.6 Conclusion

In this chapter, we have carried out rigorous runtime analyses on how the different

evolutionary approaches already examined by Jansen et al. [70] for the static vertex

cover problem, can deal with the dynamic version of the problem. We have inves-

tigated their three approaches together with (1+1) EA and simple randomised local

search algorithms. For the first two examined approaches, we have presented classes

of instances of bipartite graphs where adding edges lead to bad approximation be-

haviours even if the algorithms started with a 2-approximation. This shows that edge-

based representation does not in general help with maintaining 2-approximations of

the vertex cover problem, if the simple fitness function of the node-based approach is

used. For the third approach in which the edge-based representation is used together

with a fitness function that includes a large penalty for adjacent edges, we have shown

that 2-approximations are maintained easily by recomputing maximal matchings of the

dynamically changing graph.



Chapter 9

Obtaining 2-Approximations for the

Weighted Vertex Cover Problem by

Finding a Maximal Dual Solution

9.1 Introduction

In this chapter, we consider the weighted minimum vertex cover problem and inves-

tigate how its dual formulation can be exploited to design evolutionary algorithms

that provably obtain a 2-approximation. Inspired by the work of Jansen et al. [70], we

investigate a different way of approximating the minimum vertex cover problem by

evolutionary algorithms. While Jansen et al. [70] considered the classical vertex cover

problem, we analyse the weighted version of the problem. Although no direct connec-

tion to the use of dual formulations was made in [70], our investigations can be seen

as a generalization of the approach based on matchings investigated in that paper. We

study an edge-based encoding together with a multi-valued representation that works

on the dual of the minimum vertex cover formulation. We are only aware of four pre-

vious theoretical works with multi-valued representations. Doerr et al. [33, 35] regard

the optimization of multi-valued linear functions via a variant of the (1+1) EA. More

recently, static and dynamically changing variants of multi-valued OneMax functions

have been considered [31, 74].

Working with the dual formulation, our encoding assigns a weight to each edge. Dur-

ing the evolutionary process the weight of the edges may be increased or decreased

and vertices whose constraints become tight are selected as vertices for the cover. We

first study the situation where each weight can only increase or decrease by 1 at each

120
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step and present pseudo-polynomial upper bounds on the expected time until our ap-

proaches have obtained a 2-approximation for the minimum vertex cover problem.

In order to deal with potentially large weights of the given graph, we incorporate step

size adaptation into our algorithms. Step size adaptation is a popular mechanism to steer

the progress of an evolutionary algorithm to the right level. Step size adaptation is a

form of parameter control [40], where a parameter is changed during the execution of the

algorithm. Adaptive parameters are very essential in continuous search spaces [12] and

popularly used for covariance-matrix adaptation [54]. There are only few theoretical

studies on adaptive parameters in discrete spaces. Dynamically choosing the number

of parallel instances in parallel evolutionary algorithms is studied in [83], and self-

adjusting of the number of bits to be flipped instead of a standard bit mutation is shown

to improve the performance of the optimization process [32]. In other works it is shown

that changing the mutation rate [13, 21, 29] can reduce the asymptotic runtime. In [29],

the (1 + (λ + λ)) GA (proposed in [30]) is regarded, in which the mutation rate and

the population size are correlated and the focus is on choosing the best population

size during the process of optimization. Although their work is on discrete settings,

Doerr and Doerr [29] have used the one-fifth success rule of step-size adaptation in

evolutionary strategies. The one-fifth success rule says that if the probability of finding

an improvement is greater than 1/5 then the step-size should be increased; otherwise

it should be decreased. Doerr and Doerr [29] have proved that when some conditions

hold for the population size λ, the probability of finding an offspring of better fitness is

larger than 1/5. They reduce λ by a constant factor F > 1 after finding an improvement,

and increase it by a factor of F 1/4 after an iteration that did not improve the fitness.

They have proved that with this settings, their genetic algorithm solves the One-Max

problem in linear time.

In this chapter, defining c1 > 1 and c2 > 1 as two constants, we show that the use

of step size adaptation where the step size is multiplied by c1 in the case of a success

and multiplied by 1/c2 in case of failure, leads to a polynomial upper bound on the

expected runtime of the RLS algorithm to achieve a 2-approximation. Furthermore,

we present a pseudo-polynomial lower bound for the (1+1) EA using this step size

adaptation when c1 = c2. The proof uses the insight that the considered (1+1) EA is not

able to achieve a sufficiently large step size during the optimization process in order to

reach a 2-approximation. Note that this lower bound is proved under the condition that

c1 = c2. The work of Doerr and Doerr [29] suggest that choosing these two constants

in a way that the one-fifth rule holds may result in finding a polynomial upper bound

on the optimization time of (1+1) EA. This problem is open for future work.
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Algorithm 22: RLS

1 Initialize s := 0m and σ := 1m;
2 while termination condition not satisfied do
3 s′ := s;
4 Choose i ∈ {1, · · · ,m} uniformly at random;
5 Choose b ∈ {0, 1} uniformly at random;
6 if b = 0 then
7 s′i := s′i + σi;
8 else
9 s′i := max(s′i − σi, 0);

10 if
∑m

i=1 si <
∑m

i=1 s
′
i and

∑
j∈{1,··· ,m}|ej∩{v}6=∅ s

′
j ≤ w(v), ∀v ∈ V then

11 s := s′;

12 return C := {v ∈ V | w(v) =
∑

j∈{1,··· ,m} | ej∩{v}6=∅ sj};

This chapter is based on the paper that has been submitted to a conference [99] and is

structured as follows. In Section 9.2, we present our edge-based approach based on a

dual formulation for solving the minimum vertex cover problem. We analyze RLS and

(1+1) EA with a step size of 1 in Section 9.3. Afterwards, we show a polynomial upper

bound for RLS with Step Size Adaptation in Section 9.4 and a pseudo-polynomial lower

bound for (1+1) EA with Step Size Adaptation in Section 9.5. Finally, we finish with

some concluding remarks.

9.2 Preliminaries

In the weighted vertex cover problem, weights are assigned to vertices and the goal is

to find a subset of nodes that covers all edges and has minimum weight. The formal

definition of this problem is given in definition 3.4 of section 3.3. Here we consider the

case where weights can only take integer values.

In this chapter, we analyse the behaviour of four evolutionary algorithms which find

a 2-approximation for the weighted vertex cover problem using the concept of duality

for this problem, that is explained in Section 3.3.2. It is worth to recall from Section 3.3.2

that 2-approximations of the VCP can be found by means of maximal solutions for the

dual problem, which is a packing problem formulated as:

max

m∑
j=1

sj

s.t.
∑

j∈{1,··· ,m}|ej∩{v}6=∅

sj ≤ w(v) ∀v ∈ V
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Algorithm 23: (1+1) EA

1 Initialize s := 0m and σ := 1m;
2 while termination condition not satisfied do
3 s′ := s;
4 for i := 1 to m do
5 with probability 1/m do
6 Choose b ∈ {0, 1} uniformly at random;
7 if b = 0 then
8 s′i := s′i + σi;
9 else

10 s′i := max(s′i − σi, 0);

11 if
∑m

i=1 si <
∑m

i=1 s
′
i and

∑
j∈{1,··· ,m}|ej∩{v}6=∅ s

′
j ≤ w(v), ∀v ∈ V then

12 s := s′;

13 return C := {v ∈ V | w(v) =
∑

j∈{1,··· ,m} | ej∩{v}6=∅ sj};

where sj ∈ N+ denotes a weight on the edge ej .

All the algorithms that we investigate in this chapter, find a 2-approximation vertex

cover by means of a maximal dual solution that they find. A simple randomized local

search (RLS) is presented in Algorithm 22, where a solution s = (s1, · · · , sm), is rep-

resented by a string of m integers, denoting the weights of the m edges of the input

graph. This algorithm starts with the initial solution s = 0m, and selects one edge at

each step to increase or decrease the weight corresponding to that by one. The new so-

lution replaces the old one, if the sum of weights of edges is increased, and the weight

constraint of the packing problem is not violated for any of the vertices. At the end, the

algorithm returns the set of nodes for which the constraint has become tight.

One other algorithm that we analyse in this paper is the (1+1) EA, presented in Al-

gorithm 23, which is quite similar to the RLS of Algorithm 22 except for selecting the

edges for mutation. In (1+1) EA, at each step a mutation happens on the weight of all

edges with probability 1/m for each of them, while in RLS one edge is selected and the

mutation takes place on the weight of that edge. Note that in (1+1) EA more than one

mutation may happen on the current solution.

In both RLS and (1+1) EA (Algorithms 22 and 23) the increment size of one on the

weights of the edges might be too small and make the algorithm slow. Motivated by

step size adaptation in evolution strategies [12] in RLS with Step Size Adaptation and

(1+1) EA with Step Size Adaptation (Algorithms 24 and 25), a step size for each edge is

kept in an auxiliary vector σ = (σ1, · · · , σm). The initial step size for all edges is set to

1. The algorithms work with two constant parameters c1 > 1 and c2 > 1. If a mutation
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Algorithm 24: RLS with Step Size Adaptation

1 Initialize s := 0m and σ := 1m;
2 while termination condition not satisfied do
3 s′ := s;
4 I := ∅;
5 Choose i ∈ {1, · · · ,m} uniformly at random;
6 Choose b ∈ {0, 1} uniformly at random;
7 if b = 0 then
8 s′i := s′i + σi;
9 else

10 s′i := max(s′i − σi, 0);

11 I := I ∪ {i};
12 if

∑m
i=1 si <

∑m
i=1 s

′
i and

∑
j∈{1,··· ,m}|ej∩{v}6=∅ s

′
j ≤ w(v), ∀v ∈ V then

13 s := s′;
14 σi := c1 · σi, ∀i ∈ I ;
15 else
16 σi := max

(
σi
c2
, 1
)
, ∀i ∈ I ;

17 return C := {v ∈ V | w(v) =
∑

j∈{1,··· ,m} | ej∩{v}6=∅ sj};

with that size is accepted, the step size is increased by a factor of c1; otherwise, it is

decreased by a factor of c2 with a minimum accepted size of one.

Analysing the runtime of our algorithms, we find the number of iterations of the while

loop, until a maximal packing solution is found, which induces a complete vertex cover.

We call this the expected time of obtaining the desired goal by the considered algorithm.

It should be noted that the edge-based approach for the unweighted minimum vertex

cover investigated by Jansen et al. [70] can be seen as a special case of our formulation

as the use of maximal matchings is equivalent to the dual problem if all edges have a

weight of 1.

9.3 RLS and (1+1) EA

In this section, we present the analysis on finding 2-approximations for the weighted

vertex cover problem by RLS and (1+1) EA.

Theorem 9.1. The expected time of RLS and (1+1) EA (Algorithms 22 and 23) to find a 2-

approximation is O(m ·OPT ).

Proof. In order to prove this theorem, we show that the algorithms find a maximal

solution for the dual problem in expected time O(m · OPT ). Having achieved that
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Algorithm 25: (1+1) EA with Step Size Adaptation

1 Initialize s := 0m and σ := 1m;
2 while termination condition not satisfied do
3 s′ := s;
4 I := ∅;
5 for i := 1 to m do
6 with probability 1/m do
7 Choose b ∈ {0, 1} uniformly at random;
8 if b = 0 then
9 s′i := s′i + σi;

10 else
11 s′i := max(s′i − σi, 0);

12 I := I ∪ {i};
13 if

∑m
i=1 si <

∑m
i=1 s

′
i and

∑
j∈{1,··· ,m}|ej∩{v}6=∅ s

′
j ≤ w(v), ∀v ∈ V then

14 s := s′;
15 σi := c1 · σi, ∀i ∈ I ;
16 else
17 σi := max

(
σi
c2
, 1
)
, ∀i ∈ I ;

18 return C := {v ∈ V | w(v) =
∑

j∈{1,··· ,m} | ej∩{v}6=∅ sj};

maximal solution, the algorithms return the set

C := {v ∈ V | w(v) =
∑

j∈{1,··· ,m} | ej∩{v}6=∅

sj}

as the solution for the weighted vertex cover problem which, according to Theorem 3.6,

is a 2-approximation of the optimal solution.

If a solution s is not a maximal solution for the dual problem, then there exists at least

one edge for which the assigned weight can be increased. The probability of selecting

only that edge for mutation and choosing b = 0 is at least 1
2·m for RLS and 1

2·e·m for

(1+1) EA at each step, and according to the Weak Duality Theorem (Theorem 3.5), the

cost of any maximal solution is upper bounded by OPT . Therefore, using the method

of Fitness Based Partitions [116], we find the expected time O(m · OPT ) for finding a

maximal solution for the dual problem by both algorithms.

Note that the presented upper bound in Theorem 9.1 is a pseudo polynomial time,

because OPT can be exponentially large with respect to the input size. In the remainder

of this section, we introduce an instance of the problem for which a pseudo polynomial

time is required for finding a 2-approximation. This instance is also used in Section 9.5,

as a hard instance for the (1+1) EA with Step Size Adaptation.
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FIGURE 9.1: G, a hard instance for RLS and (1+1) EA
The hard instance of the problem,G, illustrated in Figure 9.1, containsm edges, e1, · · · , em,

none of which share a node with another. One of the edges, e1, is adjacent to two nodes

of weightWmax while all other edges are adjacent to vertices of weight 1. The dual prob-

lem of this instance has only one maximal solution: s1 = Wmax and si = 1, 2 ≤ i ≤ m.

In this instance, we assume that Wmax > 2m.

Theorem 9.2. With probability 1 − e−Ω(2m), the required time for RLS and the (1+1) EA

(Algorithm 22 and 23) to find a 2-approximation of G is lower bounded by Ω(m ·Wmax).

Proof. Consider a phase of m·Wmax
4 steps. LetX be the number of times that e1 is selected

for mutation by RLS or (1+1) EA in this phase. Since the probability of selecting e1 is
1
m for both algorithms, the expected value of X is Wmax

4 . As these probabilities are

independent of each other at each step, by Chernoff bounds we get

Pr(X >
Wmax

2
) ≤ e−

Wmax
12 = e−Ω(2m)

At each step that e1 is selected for mutation, s1 can be increased by at most 1. Therefore,

with probability 1 − e−Ω(2m), in a phase of m·Wmax
4 = Ω(m ·Wmax) steps, we have s1 ≤

Wmax
2 , i. e. s1 does not reach its maximal value of Wmax. Therefore, with probability 1−

e−Ω(2m), the RLS and the (1+1) EA find a 2-approximation ofG in time Ω(m ·Wmax).

9.4 RLS with Step Size Adaptation

In this section, we analyse the behaviour of RLS with Step Size Adaptation for finding

2-approximations of the weighted vertex cover problem. We prove that the RLS with

Step Size Adaptation finds a 2-approximation for the weighted vertex cover problem

in expected polynomial time with respect to the input size, provided that c1 = c2. This

also holds for c1 ≥ c2, which is stated in Corollary 9.6. The two lemmata below are

used in the proof of the main result stated later.

Lemma 9.3. If c1 = c2, the step size σi for each edge ei in RLS with Step Size Adaptation, can

only take a value from

{c1
k | 0 ≤ k ≤ dlogc1 Wmaxe},
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where Wmax is the largest weight assigned to any vertex.

Proof. The algorithm starts with initial value of σi = 1 for all edges. This value is

increased by a factor of c1 each time a mutation is accepted for edge ei, and is divided

by the same factor with a minimum accepted value of one if the mutation is rejected

(lines 15 and 17 of Algorithm 24). Therefore σi is always a power of c1. Moreover,

in order to fulfil the constraints on the vertices, none of the edges can be assigned a

weight larger than Wmax. Therefore, any mutation that increases the current weight of

an edge by at least Wmax, is rejected. Therefore, σi can be increased to at most ck1 where

k = dlogc1 Wmaxe.

Lemma 9.4. For an edge ei, let D(si) = MAXi − si where s is the solution obtained so far by

the algorithm and MAXi is the maximum acceptable value for si in the current solution s. In

expected time O(m log2
c1 Wmax) a solution s′ with D(s′i) ≤

c1·D(si)
c1+1 is found by RLS with Step

Size Adaptation when c1 = c2.

Proof. Note that since at any step only one mutation happens, for any solution s′ ob-

tained after s, we have D(s′i) ≤ D(si), otherwise the algorithm would have rejected

s′. We divide the analysis into two phases. The first phase, consists of all steps until

the algorithm reaches a situation in which si is selected for an increasing mutation and

σi ≤ D(si). In this phase σi decreases. The second phase begins when σi starts increas-

ing. We show that by the end of the second phase, we have reached a solution s′ with

D(s′i) ≤ c1 ·D(si)/(c1 + 1).

In the first phase, whenever si is selected for an increase, we have σi > D(si); therefore,

σi is decreased. If σi ≤ D(si) at a step in which si is selected for an increase, then we are

already in the second phase and σi is added to si, resulting in decreasing D(si). Note

that it is not only increasing si that decreases D(si). Instead, increasing the weight

of other edges that are adjacent to ei can also decrease D(si). If we reach a solution s′

whereD(s′i) = 0 in Phase 1, then we already haveD(s′i) ≤
c1·D(si)
c1+1 (stated in the lemma)

without going to Phase 2.

Here we show that Phase 1 is over in expected time O(m · logc1 Wmax). At each step,

with probability 1
m , si is mutated. Since σi > D(si), increasing mutations on si are

rejected as well as decreasing mutations, and σi is divided by c1 with each rejection.

This needs to be done at most logc1 Wmax times until we reach σi ≤ D(si), which in

expectation takes O(m · logc1 Wmax).

The second phase starts when we reach a step with an increasing mutation on si in

which 1 ≤ σi ≤ D(si). This move is accepted and σi is increased by a factor of c1.

Note that D(si) might be far larger than σi. Since σi is always a power of c1, we define
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a ∈ N+ as a = logc1 σi to make the proof easier. Due to Lemma 9.3, we have 0 ≤ a ≤
dlogc1 Wmaxe. Here, an increase on si is accepted by the algorithm and a is increased to

a+ 1, while a decrease is rejected and a is decreased to a− 1. The increase and decrease

happen with equal probability; therefore, a fair random walk happens for a on integer

values in [0, dlogc1 Wmaxe], with initial value of at least 0.

It is proved that the expected number of required steps for a fair random walk to visit

all vertices in a graph with v vertices and e edges is bounded by 2e(v − 1) [2]. In

the fair random walk that happens on a, there are dlogc1 Wmaxe + 1 vertices to visit

with dlogc1 Wmaxe edges between them. This gives us the expected number of steps

k = 2dlogc1 Wmaxe2 = O(log2
c1 Wmax) for our random walk, to reach any possible value

of a. As a result, as long as σi ≤ D(si) holds, in k mutations on si, a reaches its maxi-

mal possible value which is upper bounded by dlogc1 Wmaxe after which the inequality

does not hold. This implies that k is an upper bound on the number of mutations

that can happen on si before this phase ends, which is in expectation done in time

O(m · log2
c1 Wmax). At the end of this phase, σi > D(s′i), whereas the last accepted

mutation has increased s′i by at least 1
c1
σi. This implies that

D(s′i) ≤ D(si)−
1

c1
σi ≤

c1

c1 + 1
D(si),

which completes the proof.

Theorem 9.5. The RLS with Step Size Adaptation with c1 = c2 and the initial solution s =

0m, finds a vertex cover that is at least a 2-approximation in expected time O(m · log3
c1 Wmax).

Proof. Similar to the proof of Theorem 9.1, we show that the algorithm finds a maximal

solution for the dual problem in expected time O(m · log3
c1 Wmax).

For each edge ei, the distance of si to its maximal value, Di, is decreased by at least
Di
c1+1 by RLS with Step Size Adaptation, in expected time O(m log2

c1 Wmax) according

to Lemma 9.4. Since the initial value of Di is upper bounded by Wmax, according

to Multiplicative Drift Theorem [34], si reaches its maximal value in expected time

O(m log3
c1 Wmax).

In the proof of Lemma 9.4, setting c1 > c2, is in favour of increasing the value of σi;

therefore, the lemma holds in that situation as well, resulting in the following corollary.

Corollary 9.6. The RLS with Step Size Adaptation with c1 ≥ c2 and the initial solution

s = 0m, finds a vertex cover that is a 2-approximation in expected time O(m · log3
c1 Wmax).
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9.5 (1+1) EA with Step Size Adaptation

In this section we prove a pseudo polynomial lower bound on the time that (1+1) EA

with Step Size Adaptation requires for finding a 2-approximation of the weighted ver-

tex cover problem, when c1 ≤ c2. To prove this lower bound, we investigate the be-

haviour of (1+1) EA with Step Size Adaptation on G (Figure 9.1), the hard instance of

the problem presented in Section 9.3, with the assumption that Wmax ≥ c1
m. We show

that with high probability, the (1+1) EA with Step Size Adaptation needs exponential

time with respect to the input size for finding a maximal dual solution for G.

In the following, A(s) = {si | si = 1, 2 ≤ i ≤ m}. Moreover, Phase 1 indicates the steps

starting from the initial step until finding a solution s, with |A(s)| ≥ 3m
4 , and Phase 2

consists of c1
mε/2 steps, where 0 < ε ≤ 1

3 , starting by the end of Phase 1. We also define

Property 9.7 below, which is used in Lemmata 9.9 and 9.11, and Theorem 9.12.

Property 9.7. For current solution s, we have |A(s)| ≥ m
2 .

In order to prove the main theorem of this section, we make use of Lemmata 9.8, 9.9,

9.10 and 9.11, which follow.

Lemma 9.8. For sufficiently largem, with probability 1−e−Ω(mε), Phase 1 needs at mostm1+ε

steps, where ε > 0 is a constant.

Proof. Let Z(s) = {si | si = 0, 2 ≤ i ≤ m}. Note that |Z(s)| + |A(s)| = m − 1. At

each step, if one of the edges of set Z(s) is selected for a mutation of increase, and no

other mutations happen, the new solution is accepted by the algorithm. Therefore, the

probability of producing a solution s′ with |A(s′)| = |A(s)|+ 1 is at least

|Z(s)|
2 · e ·m

=
m− 1− |A(s)|

2 · e ·m
.

This implies that, the positive drift on |A(s)|, denoted by ∆+, is at least m−1−|A(s)|
2·e·m at

each step.

Moreover, to obtain a solution s′ with |A(s′)| = |A(s)| − k from s, k mutations should

happen on edges of A, and in order to make these changes acceptable, a mutation of

increase should happen on s1. The probability of increasing s1 at each step is 1
2m , and

the probability of k other mutations to happen at the same step is upper bounded by

(
m− 1

k

)
·
(

1

m

)k (
1− 1

m

)m−1−k
≤ 1.06

k!e
,
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for sufficiently large m. Here, it suffices if we assume m ≥ 20. Overall, the probability

of finding a solution s′ with |A(s′)| = |A(s)| − k is at most 1.06
k!e·2m . As a result, for the

negative drift on |A(s)|, denoted by ∆−, we have

∆− ≤
|A(s)|∑
k=1

k · 1.06

k!e · 2m

=
1.06

e · 2m

|A(s)|∑
k=1

1

(k − 1)!

≤ 1.06

e · 2m
· 3 =

3.18

e · 2m
.

Summing up, the total drift on |A(s)| is

∆ = ∆+ −∆− ≥
m− 4.18− |A(s)|

2 · e ·m
.

We now analyse the time to find a solution with |A(s)| ≥ 3m
4 . For any solution s with

|A(s)| < 3m
4 , we have ∆ ≥

m
4
−4

2·e·m ≥ 0.0075, since we have assumed m > 20. By additive

drift argument [57], we can see that a solution with |A(s)| ≥ 3m
4 is found in expected

time 1
0.0075 ·

3m
4 = 100m. By Markov’s inequality, with probability at least 1

2 , the time

until finding that solution is at most 200m. Therefore, in a phase of m1+ε steps, the

probability of not finding that solution is (1
2)

mε

200 = e−Ω(mε).

Lemma 9.9. For sufficiently large m, with probability 1 − e−Ω(m), Property 9.7 holds during

Phase 2.

Proof. For proving this lemma, we use the Simplified Drift Theorem (Theorem 4.7) pre-

sented in Section 4.5.3. We analyse the changes on the size of A(s), and no filtration is

applied on the steps.

Phase 2 starts with the solution s with |A(s)| ≥ 3m
4 , found by the end of Phase 1. Using

Simplified Drift Theorem with parameters δ = 1, r(l) = 1 and interval [a, b] = [m2 ,
3m
4 ],

we show that with high probability, a solution s′ with |A(s′)| ≤ m
2 is not found by the

algorithm until end of Phase 2.

Let Xt = |A(s)|, where s is the solution obtained at time t. The total drift on the value

of Xt is ∆ of the proof of Lemma 9.8, which is at least 0.0075 when Xt ≤ 3m
4 . Therefore,

the two conditions of the Simplified Drift Theorem hold:

1. E(Xt+1 −Xt | a ≤ Xt ≤ b) = E(Xt+1 −Xt | m2 ≤ Xt ≤ 3m
4 ) ≥ 0.0075, and
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2. Pr(|Xt+1 −Xt| ≥ j | a ≤ Xt) ≤ 1
j!e ≤

1
2j

= r(l)
(1+δ)j

The inequality regarding the second condition holds, because the probability of mutat-

ing j edges at one step follows the Poisson distribution and is 1
j!e . Having these two

conditions satisfied, the Simplified Drift Theorem says that the probability of finding a

solution with |A(s)| ≤ m
2 in time 2

c∗m
4 , c∗ > 0 a constant, is at most 2−Ω(m

4
). This im-

plies that with probability 1− e−Ω(m), such a solution is not found by the end of Phase

2 which consists of c1
mε/2 = 2log2 c1·mε/2 steps.

Lemma 9.10. Let ε ≤ 1/3 be a positive constant. In Phase 1, with probability 1 − e−Ω(mε),

the (1+1) EA with Step Size Adaptation does not reach a solution where s1 > 2 ·mε · c1
2·mε .

Moreover, the step size of s1 does not exceed c1
2·mε , i. e. σ1 ≤ c1

2·mε .

Proof. From Lemma 9.8, we know that this phase is at most m1+ε steps. Let X be the

number of times that the first edge is selected for mutation during Phase 1. Since the

probability of selecting each edge at each step is 1
m , the expected value of X is at most

mε. Moreover, since probability of selecting edges are independent of each other, by

Chernoff bounds we have:

Pr(X ≥ 2 ·mε) ≤ e−mε/3.

Therefore, with probability 1− e−Ω(mε) the first edge is not selected for mutation more

than 2 ·mε times, which means that the step size for that edge is at most c1
2·mε after that

phase. This implies that 2 ·mε ·c1
2·mε is an upper bound for the value of s1 by the end of

Phase 1. Note that s1 and σ1 have not reached their maximal values, since ε ≤ 1/3.

In the following lemma, we show that when |A(S)| ≥ m/2, the probability of decreas-

ing the step size σ1 is larger than the probability of increasing it. This lemma is used in

Theorem 9.12 to show that we do not reach large values of σ1 in polynomial time.

Lemma 9.11. Assuming that Property 9.7 holds, and also assuming that σ1 > m and s1 ≤
Wmax, at any step where σ1 is changed by (1+1) EA with Step Size Adaptation, it is increased

with probability Pinc < 0.4 and decreased with probability Pdec > 0.6.

Proof. The value of σ1 changes at the steps where e1 is selected for mutation. All other

steps make no change on σ1. Here we only consider the steps at which e1 is selected for

a mutation.

The value of σ1 increases when a mutation on e1 is accepted. Since σ1 > m and s1 ≤
Wmax, any mutation that decreases the value of e1 is rejected. Since we have assumed
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that Property 9.7 holds, there are at least m
2 edges other than e1, with a weight of one.

A mutation of increase on these edges is rejected. Therefore, an increase on e1 is also

rejected if one of those edges is selected for an increase in addition to ei at the same

step. The probability that an increase is selected to be done on e1, while none of those

edges are selected for increase, is:

1

2
·
(

1− 1

2m

)m−m
2

≤ 1

2
·
(

1

e

) 1
4

< 0.4

This probability is an upper bound for the probability that an acceptable increase on e1

happens, which is denoted by Pinc. In other words:

Pinc < 0.4

Since Pinc + Pdec = 1 at steps where a mutation happens on e1, we have Pdec > 0.6.

Theorem 9.12. For sufficiently large m and a positive constant ε ≤ 1
3 , with probability 1 −

e−Ω(mε/2), the required time for (1+1) EA with Step Size Adaptation (Algorithm 25) to find a

2-approximation on G with Wmax = c1
m is lower bounded by 2m

ε/2 , when c1 = c2.

Proof. According to Lemma 9.10, during Phase 1, with probability 1− e−Ω(mε), we have

σ1 ≤ c1
2·mε . Using Lemma 9.11 and the Gambler’s Ruin Theorem (Theorem 4.3 of

Section 4.4.2), we prove that with high probability, in Phase 2, we always have σ1 ≤
c1
m2ε

.

Due to Lemma 9.9, with probability 1 − e−Ω(m), Property 9.7 holds during Phase 2

which is a requirement of Lemma 9.11. However, Lemma 9.11 can only be used for the

steps where σ1 > m, while Phase 2 may start with σ1 ≤ m. Nevertheless, in order to

reach large values of c1
m2ε

or greater, at some point of Phase 2, we need to deal with

a situation where m < σ1 ≤ c1m, since σ1 increases at each step at most by a factor

of c1. According to Lemma 9.11, at the steps in which e1 is selected for mutation, the

probability of increasing σ1 is p ≤ 0.4 and the probability of decreasing it is q ≥ 0.6.

Let σ0
1 be the value of σ1 at the first point in Phase 2 where m < σ1 ≤ c1m. If σ1 ≤ c1m

holds, then for sufficiently large m we also have σ1 ≤ c1
2·mε . Starting from that point

wherem < σ1 ≤ c1
2·mε , we investigate whether the algorithm reaches a situation where

σ1 ≤ m earlier than a situation where σ1 ≥ c1
m2ε

.

Every time σ1 is increased, it is increased by a factor of c1 and every time that it is

decreased, it is decreased by a factor of c2. Since we have assumed that c1 = c2,

one increasing step and one decreasing step cancel each other and the problem can
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be mapped to the problem of Gambler’s Ruin Theorem (Theorem 4.3) with parameters

p and q described above and δ = q
p ≥

0.6
0.4 > 1. The number of times that σ1 = σ0

1 needs

to be decreased to reach σ1 ≤ m is at most

dlogc2(σ0
1/m)e ≤ logc2

(
c1

2·mε

m

)
+ 1 ≤ 2 ·mε + 1

Also, the number of times that σ1 ≤ m needs to be increased to reach σ1 ≥ c1
m2ε

is at

least

dlogc1(c1
m2ε

/m)e ≥ m2ε − blogc1 mc

Therefore, other parameters of the Gambler’s Ruin Theorem would be x ≤ 2 ·mε + 1

and z ≥ m2ε − blogc1 mc. Using that theorem, we get Px, the probability of reaching a

state where σ1 ≥ c1
m2ε

before reaching a state where σ1 ≤ m as:

Px =
(δ)x − 1

(δ)z − 1
≤ (δ)2·mε+1 − 1

(δ)m
2ε−blogc1 mc − 1

= e−Ω(mε).

Consider a phase of 2m
ε/2

steps. We here show that with probability e−Ω(mε/2), σ1 ≥
c1
m2ε

during this phase.

We saw that with probability 1− e−Ω(mε) we reach a state where σ1 ≤ m before a state

where σ1 ≥ c1
m2ε

. If σ1 never increases to cm
ε

1 after that, then we never reach a state

where σ1 ≥ c1
m2ε

. Otherwise, it spends at least

dlogc1(c1
mε/m)e = mε − blogc1 mc

steps to reach cm
ε

1 . In a phase of 2m
ε/2

steps, there are at most

k =
2m

ε/2

mε − blogc1 mc

times that σ1 increases to cm
ε

1 , and probability of reaching c1
m2ε

from there is only

e−Ω(mε). Therefore, the probability of σ1 to reach c1
m2ε

at least once in a phase of 2m
ε/2

steps, is at most

k · e−Ω(mε) = e−Ω(mε/2).

So far we have proved that with probability 1 − e−Ω(mε/2), σ1 ≤ c1
m2ε

during Phase 2

which consists of c1
mε/2 steps. Moreover, according to Lemma 9.10, with probability

1− e−Ω(mε), we have s1 ≤ 2 ·mε · c1
2mε by the end of Phase 1. Therefore, the value of s1
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during both phases is always upper bounded by

2 ·mε · c1
2mε + c1

mε/2 · c1
m2ε

which is less than Wmax, since ε ≤ 1/3. Therefore, with probability 1 − e−Ω(mε/2), the

(1+1) EA with Step Size Adaptation does not find a 2-approximation in time 2m
ε/2

.

Note that for c1 < c2, the probability of reaching a situation where σ1 ≥ c1
m2ε

before

reaching σ1 < m is even smaller, since the number of increasing steps that are required

to cancel one decreasing step is greater than one. Therefore, this situation is in favour

of reaching σ1 ≤ m, resulting in the following corollary.

Corollary 9.13. For sufficiently large m and a positive constant ε ≤ 1
3 , with probability 1 −

e−Ω(mε/2), the required time for (1+1) EA with Step Size Adaptation (Algorithm 25) to find a

2-approximation of G is lower bounded by 2m
ε/2 , when c1 ≤ c2.

9.6 Conclusion

In this chapter, we have considered how to solve the minimum vertex cover prob-

lem by its dual formulation based on a multi-valued edge-based encoding. We have

proven pseudo-polynomial upper bounds for RLS and the (1+1) EA until they have

achieved a 2-approximation. Furthermore, we have investigated the use of step-size

adaptation in both algorithms and shown that RLS with step size adaptation obtains

a 2-approximation in expected polynomial time; whereas the corresponding (1+1) EA

still encounters a pseudo-polynomial lower bound.



Chapter 10

Conclusion

In this thesis, we have performed theoretical analyses of using local search and evolu-

tionary algorithms for two combinatorial optimization problems, namely the general-

ized travelling salesman problem and the vertex cover problem.

We started by introducing local search and evolutionary algorithms in Chapter 2, to-

gether with describing multi-objectiveness and ε−dominance, a diversity mechanism

that helps the algorithm keep the population size polynomial. In Chapter 3 we pre-

sented the formal definition of the generalised travelling salesman problem and the

vertex cover problem, as well as an introduction to the concept of duality and hierarchi-

cal optimization. We have continued with Chapter 4 in which we have presented some

of the state-of-the-art techniques that are widely used in the field of runtime analysis

for combinatorial optimization problems. We have also presented a brief description

on parameterized complexity analysis and FPT algorithms.

In Chapter 5, we have investigated local search methods and provided parameterized

complexity analysis for simple evolutionary algorithms based on two hierarchical ap-

proaches for the generalized travelling salesman problem. We have gained new in-

sights into the complimentary abilities of local search algorithms based on the two

hierarchical approaches. We have proven that there are instances that can be solved

in polynomial time with one approach, while the other approach fails to find an opti-

mal solution. Furthermore, we have presented and analysed a class of instances where

combining the two approaches into a variable-neighbourhood search helps to escape

from local optima of the single approaches. After investigating local search algorithms,

we have proven lower and upper bounds for optimization time of (1+1)EA with both

approaches in Chapter 6. Our analyses show that the (1+1)EA with the first approach is

a fixed parameter tractable evolutionary algorithm with respect to the number of clus-

ters, while the same does not hold for the second approach. However, we have proven
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that there are instances that (1+1)EA with the second approach solves to optimality in

polynomial time, while the first approach needs exponential time.

After the analyses of generalized travelling salesman problem, we have investigated

the behaviour of local search and evolutionary algorithms on the vertex cover prob-

lem. It had already been shown that a simple multi-objective evolutionary algorithm

with a problem specific mutation operator is a fixed parameter evolutionary algorithm

for the classical version of this problem and finds 2-approximations in expected poly-

nomial time [77]. We have extended this analysis to the weighted version of the vertex

cover problem in Chapter 7. We have proven upper bounds for the expected opti-

mization time of Global SEMO; showing that this algorithm efficiently computes a 2-

approximation as long as the value of an optimal solution is small. Furthermore, we

have studied the algorithm DEMO, a simple multi-objective evolutionary algorithm

that uses the ε-dominance technique as a diversity mechanism, and proven that the

population size is polynomially bounded with this technique. Consequently, we have

proven that this algorithm reaches a 2-approximation in expected polynomial time.

Theoretical analysis of simple evolutionary algorithms on the vertex cover problem has

continued in this thesis with Chapter 8, in which the dynamic version of the problem is

investigated. It had already been shown in the literature that a 2-approximation can be

obtained by using an edge-based representation in a simple evolutionary algorithm

combined with a specific fitness function that includes a large penalty for adjacent

edges [70]. We have investigated the node-based representation with a simple fitness

function, and the edge-based representation with simple and specific fitness functions

according to their approximation behaviour in the dynamic setting. For the node-based

and edge-based approach with standard fitness function, we have presented classes

of instances of bipartite graphs where adding edges lead to bad approximation be-

haviours even if the algorithms started with a 2-approximation. This shows that edge-

based representation does not in general help with maintaining 2-approximations of

the vertex cover problem, if the simple fitness function of the node-based approach is

used. For the third approach in which the edge-based representation is used together

with a specific fitness function, we have shown that 2-approximations are maintained

easily by recomputing maximal matchings of the dynamically changing graph.

The edge-based representation for this problem is inspired by the matching problem,

which is the dual problem of the vertex cover problem. The concept of duality is used

in Chapter 9 in a more general form to introduce simple randomised algorithms with

a multi-valued edge-based encoding that finds 2-approximations for the weighted ver-

tex cover problem. We have proven pseudo-polynomial upper bounds for RLS and the
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(1+1) EA until they have achieved a 2-approximation. Furthermore, we have investi-

gated the use of step-size adaptation in both algorithms and found that this technique

improves the upper bound of RLS to polynomial time; while a pseudo-polynomial

lower bound is still found for the (1+1) EA.
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