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Abstract

This thesis contains a series of journal papers focused on the development of
the model-based approach for damage identification using guided waves. The
proposed approach requires no baseline data. It can identify multiple damages
such as characterising the number, location and the size of cracks in isotropic
beams and delaminations in composite beams efficiently and accurately with
quantifying the associated uncertainties using linear guided waves. It also
investigate the plausibility of using the nonlinear guided wave for damage
identification. Based on the modelling ability, this approach is able to extend

to different kinds of structures with various types of damages.

In utilising the linear guided wave for damage detection, the efficient spectral
finite element (SFE) method is used to simulate the guided wave propagation
in beams for both isotropic and composite materials. An SFE crack element is
developed to simulate crack-wave interaction and the guided wave mode-
conversion effect resulted from an asymmetric open crack in the isotropic
beam. The delamination is simulated by duplicated the nodes of SFE elements
in the delaminated regions. The proposed SFE model is verified using three-
dimensional (3D) finite element (FE) method and good agreements are found

in the results.

Stochastic methods are applied for the proposed model-based approach in the
identification of multiple damages. The Bayesian model class selection
algorithm is employed to determine the number of damages. The Bayesian
model updating method implemented with efficient transitional Markov Chain
Monte Carlo (TMCMC) sampler is proposed to identify the location and size
of the crack. The Bayesian updating with structural reliability method (BUS)
using the efficient and robust algorithm, Subset simulation, is proposed to
identify the location, delaminated layer and length of the delaminations. The
uncertainties of the identification are provided. For validation, the proposed
methods are experimentally executed using Laser vibrometre and good

agreements are obtained in the results.
vii



The proposed SFE model is extended to simulate the nonlinear guided waves
resulted from both classical and contact nonlinearity. Numerical case studies
and parametric study highlight the potential of the SFE model in simulating
nonlinear guided waves. This suggests that the model-based approach
employed the nonlinear feature of guided waves to identify damages in further

research.
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