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Abstract

The Appalachian Orogen in Atlantic Canada, and its extension into the Variscan Orogen
of Europe, are crucial locations for the development of some of the earliest ideas associated with
plate tectonic theory. The recognition of a boundary that separated rocks of Gondwanan faunal
affinity from those of Laurentian faunal affinity in the northern Appalachians was fundamental in
defining a Wilson cycle; the process of opening and closing an oceanic basin that pre-dated the At-
lantic Ocean. Tectonic models for the Appalachian Orogen have become increasingly complex as
more geological data have become available resulting in the subdivision of distinct exotic terranes
(Avalonia, Ganderia and Meguma) and putative multiple subduction/accretion events. These ter-
ranes, collectively referred to as “peri-Gondwanan”, are generally interpreted to have been rifted
from the northern Gondwanan margin in the early Paleozoic and sequentially accreted to the
Laurentian margin via the closure various oceans, thereby suggesting successive Wilson cycles
during the mid-late Paleozoic. A viable method for testing the model of multiple Wilson cycles
is to investigate the hafnium isotopic arrays from zircon grains, which are capable of recording
the evolution of complex accretionary orogenic systems. This thesis presents a comprehensive
hafnium data set from igneous and sedimentary rocks in the Appalachian and Variscan orogens to
assess the isotopic signature of sequential Wilson cycle tectonics.

Hafnium isotopic (¢Hf) arrays allow the provenance of exotic terranes in the Appalachi-
an-Variscan orogenic system to be established. Ganderia and Avalonia, and probably Meguma,
were built on a Mesoproterozoic basement that must have formed along the former Grenvillian
suture-zone. In Variscan Europe, eHf arrays show that Iberia was derived from the Saharan metac-
raton and Armorica from the West African Craton. The Upper Allochthon of Iberia is often linked
to the West African Craton, but it is more similar to the eHf array of Avalonia. Hafnium isotopes
of magmatic and detrital zircons from Ganderia indicate the terrane hosted a long-lived magmatic
arc that began between 800-750 Ma and continued until 450 Ma. The arc initially formed on ju-
venile Grenvillian crust, but a transition toward more evolved Hf isotopic compositions between
650-600 Ma coincides with accretion of Ganderia to the Gondwanan margin. Increasing amounts
of juvenile crustal inputs between ~550-500 Ma are interpreted to reflect subduction roll-back and
eventual rifting of Ganderia from the margin, associated with opening of the Rheic Ocean. Juven-
ile zircons from the leading-edge arc system of Ganderia, the Penobscot-Popelogan-Victoria arcs,
indicate that they were exclusively oceanic by ~500 Ma. By contrast, evolved Hf values confirm
that the coeval Notre Dame arc developed on the Laurentian margin between ~515-430 Ma. The
preservation of very evolved (¢Hf =-15 to -25) Notre Dame arc zircons in Ganderian overstep
sequences confirm the arrival of the leading edge of Ganderia to Laurentia by ~450 Ma.

The Dover Fault separates Ganderia from Avalonia. Monazite geochronology and mineral
phase equilibria modelling of amphibolite facies rocks from within the fault system help constrain
the younger tectonic evolution of Ganderia. The metamorphic rocks record two major stages of
Ganderia evolution: (1) a low pressure (P), high temperature (T) (3-4 kbar, 600°C) event recorded
by 460 = 7 Ma monazites, associated with formation of the adjacent Tetagouche-Exploits back-arc
basin, and (2) a higher P, lower T event (5-6 kbar, ~600-650°C) characterised by migmatisation
and formation of garnet-sillimanite bearing metamorphic assemblages at 409 = 6 Ma, interpreted
to reflect a short interval of compression associated with the widespread Acadian orogeny.

The Hf isotopic arrays show that Avalonia records a history of arc magmatism dating back
to 800-750 Ma, when it formed on Grenvillian-aged crust. A shift to more juvenile (+eHf) values
by 700 Ma indicates it had evolved to an oceanic terrane at that stage, but like Ganderia, it also
records the transition toward more evolved Hf isotopic compositions between 650-600 Ma, coin-
ciding with accretion onto the Gondwanan margin.
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Thereafter, it also records the shift back toward juvenile values as the terrane rifted from

Gondwana to open the Rheic Ocean. The isotopic array of Meguma overlaps with those of Gan-
deria and Avalonia, indicating that it travelled the same journey. Accordingly, the three terranes
are combined and referred to as “composite Avalonia”.
The characteristic Hf array of composite Avalonia, and comparison with Hf data compilations
from cratonic Amazonia, Baltica and Laurentia, allow Neoproterozoic to Paleozoic paleogeo-
graphic models to be reassessed. Avalonian continental arc magmatism began at ~800 Ma near
the former Grenville suture-zone, most likely along the Laurentian margin. It is proposed that
arc magmatism is the southern extension of the Valhalla arc in east Greenland. Propagation of an
ocean spreading ridge behind the developing Valhalla Orogen opened the Asgard Sea, separating
Baltica and Amazonia from Laurentia, possibly as early as 900 Ma. Subduction was initiated
along the Laurentian margin between ~800-750 Ma, and the uniform shift toward juvenile (Hf)
values between 750-650 Ma suggests the arc retreated from Laurentia to form the microcon-
tinental ribbon of composite Avalonia by 700 Ma, opening proto-lapetus as a back-arc basin
between the ribbon and Laurentia. Migration of the composite Avalonian ribbon and its accretion
to Gondwana by 650 Ma closed the Asgard Sea, as shown by the reversal of e¢Hf data to
progressively negative values between 650-600 Ma.

Reversal of the isotopic trend to +eHf values between 600-450 Ma for composite Ava-
lonia, along with the Iberian and Amorican terranes of Europe, shows that all developed as a
retreating oceanic arc off the north Gondwanan margin. As the ribbon separated the Rheic Ocean
formed, with Meguma as the trailing passive margin. Composite Avalonia migrated northward,
initially closing the Tornquist Sea as it collided with Baltica, then closing lapetus at ~450 Ma
during protracted collision with Laurentia. Following the final accretion of composite Avalonia
by ~440 Ma, subduction stepped outboard into the trailing Rheic Ocean, placing composite Ava-
lonia in an upper plate, suprasubduction zone setting. The eHf array for the northern Appalachian
Orogen shows a progressive homogenisation toward CHUR. This “arrow-head” ¢Hf array is in-
terpreted to indicate crustal reworking during tectonic switching, between retreating (e.g. Salinic
and Neoacadian orogenies) and advancing (e.g. Acadian orogeny) subduction episodes, which
exclusively reworked the juvenile (Late Neoproterozoic) and Grenvillian-type basement.

The Variscan European hafnium array is remarkably similar to the Appalachian array
between ~600-450 Ma in that both transition towards increasingly radiogenic values, indicating
all the terranes along the northern Gondwanan margin developed into retreating magmatic arcs
during subduction rollback. After ~450 Ma, the European arrays also record continual recycling
of the former Neoproterozoic arc basement along a typical crustal evolutionary path, with limited
input from the depleted mantle and no recycling of ancient Gondwanan crust. Intermittent back-
arc opening and closing events, including the Variscan orogeny at ~360 Ma, occurred throughout
the Paleozoic and early Mesozoic of Europe. The Mesozoic-Cenozoic ¢Hf array of Variscan
Europe simply reflects ongoing subduction-related magmatic activity in Europe associated with
opening and closing of basins in the Tethyan oceanic realm, following Pangean amalgamation. A
strong negative eHf excursion at 30 Ma indicates subduction and melting of Gondwanan cratonic
lithosphere for the first time since 600 Ma, suggesting the arrival of former Gondwana into the
subduction zone.

Hf isotopic arrays indicates that the completion of the type-Wilson cycle in the northern
Appalachians is marked only by termination of magmatism as the eHf array converged on CHUR
at ~300 Ma. Similarly in Europe the collision of Gondwana with Laurentia to form Pangea is not
reflected in the eHf array and also reflects only the reworking of composite Avalonia. Therefore,
the assembly of Pangea could form only part of a larger, longer-term supercontinental cycle.
Accordingly, Hf isotopic arrays provide an opportunity to reassess Precambrian supercontinent
reconstructions at a cratonic scale, but are less likely to recognise individual Wilson cycles unless
they involve reworking of cratonic crust at the beginning and end of each cycle.
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INTRODUCTION AND THESIS OUTLINE

1. PLATE TECTONICS AND THE WILSON CYCLE CONCEPT

Plate tectonics is perhaps the most important and fundamental theory in geology, of
which the Wilson cycle forms an integral part. The Wilson cycle is coined after Tuzo Wilson
(Wilson, 1966), based on his understanding of the Appalachian Orogen. The first stage of a
Wilson cycle involves splitting a tectonic plate apart, culminating in the opening of an ocean
basin and the generation of oceanic crust as the two plates diverge (Fig. 1a-d). This is the classic
“Atlantic-style ocean-opening process. The second phase involves the reversal of plate motion,
subduction initiation, consumption of the oceanic plate, and eventual collision of continental
margins and subsequent orogenesis (Fig. le-g). A complete Wilson cycle, simply put, is the
opening and closing of an oceanic basin (Fig. 1).

The northern Appalachian Orogen in Atlantic Canada (Nova Scotia, Newfoundland and
New Brunswick) formed an important location for the early stages of defining plate tectonics and
the key stages of a Wilson cycle. Crucial for recognising the process of oceanic basin opening
and closing was the identification of a suture zone that ran through Atlantic Canada and into
Western Europe, separating rocks of Laurentian affinity from those of Gondwanan affinity (Fig.
2, Wilson, 1966; Williams, 1979; Williams et al., 1988). Over the last four decades, technological
advancements have further refined the fundamental principles of the Wilson cycle, with much
of the work taking place in the type section of Atlantic Canada (Fig. 1). Building on Wilson’s
(1966) concept, Williams (1979; 1988) recognised important contrasts in the lithology, fauna,
metamorphic and igneous record of the Neoproterozoic-Paleozoic rocks of Newfoundland and
Nova Scotia (Atlantic Canada), and subdivided them into distinct tectonostratigraphic zones.
These are: Ganderia, Avalonia and Meguma, which preserve continental affinity with Gondwana;
and two distinct “oceanic”” domains that have affinities to Laurentia (Notre Dame Subzone) and
Ganderia (Exploits Subzone) and represent vestiges of the closure of the ancient [apetus Ocean
(Fig. 2). The complex geology preserved in the Appalachian Orogen is commonly is now
interpreted to be the result of a culmination of multiple Wilson cycles (see van Staal et al., 1998;
van Staal et al., 2007; van Staal et al., 2009; Barr et al., 2014 and references therein), and thus
represents an ideal natural laboratory to investigate the isotopic record of Wilson cycles and the
implications for plate tectonics.

2. GEOLOGICAL FRAMEWORK OF THE APPALACHIAN OROGEN

The three distinct continental blocks in the northern Appalachian Orogen, Ganderia,
Avalonia and Meguma (Fig. 2), have been called “peri-Gondwanan™ (O’Brien et al., 1983;
Nance and Murphy, 1994; Barr and White, 1996; O’Brien et al., 1996), based on their apparent
Gondwanan affinity. Avalonia and Ganderia are commonly interpreted to have occupied a
location along the Amazonian margin of Gondwana in the latest Neoproterozoic (Nance et
al., 2008), whereas the paleogeography of Meguma is more enigmatic. Sparse detrital zircon
data suggests an affinity with Avalonia and the West African Craton throughout the late
Neoproterozoic-early Cambrian (Waldron et al., 2009). Subtle differences in the geological
records of the peri-Gondwanan terranes have resulted in contrasting interpretations for the
evolution of the terranes during the late Neoproterozoic-early Paleozoic, as discussed below.

These so-called peri-Gondwanan terranes, and their counterparts in Variscan Europe
(Iberia, Armorica, Cadomia and the Pontides of Turkey), are frequently interpreted to have
formed by one of two tectonic evolutionary models. The first requires the closure of up to five
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The Wilson cycle

A)
"
.

D
) Mid-Ocean ridge

Ocean crust

E) I@ Subduction zone
F)

Continental collision
G)

Figure 1

Simplified schematic showing the major stages in an idealised Wilson cycle. a) A single stable craton.
b) early-stages of rifting and extension including normal faulting and half-graben development. c¢) The
initiation of plate divergence during the development of a proto-oceanic basin. d) An oceanic basin at
its fullest width. e) Subduction of oceanic crust commences along one margin of the ocean-continent
boundary, reversing the plate motions. f) Spreading has ceased in the oceanic basin as the mid-ocean
ridge is eventually subducted. g) The two continents are drawn together as the ocean closes, completing
the Wilson cycle.
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ocean basins (see van Staal et al., 1998; van Staal et al., 2007; van Staal et al., 2009; Barr et al.,
2014 and references therein) during the protracted accretionary assembly of the peri-Laurentian
margin, thus involving five potential Wilson cycles. In this model, Ganderia, Avalonia and
Meguma were separate terranes that were diachronously rifted from the Gondwanan margin
during the late Cambrian to Silurian (Landing, 2004; Pollock, 2007; Pollock et al., 2009; van
Staal et al., 2012; White and Barr, 2012). The leading edge of Ganderia is interpreted to have
arrived at the Laurentian margin by ~452 Ma (Pollock et al., 2007; van Staal et al., 2012),
and the trailing passive margin at ~435-422 Ma (Pollock et al., 2011), after the closure of
the Tetagouche-Exploits back-arc basin (van Staal, 1994; Zagorevski et al., 2007). Avalonia
is considered to have arrived almost immediately after following the closure of the Acadian
seaway (Zagorevski et al., 2007; van Staal et al., 2014). The arrival of Meguma is contentious,
but in the separate terranes model, it arrived during the later stages of the Acadian orogeny or
during the Neoacadian orogeny at ~390-370 Ma (Robinson et al., 1998; Moran et al., 2007;
Stampfli et al., 2011).

The second model proposes that a contiguous continental terrane (composite Avalonia)
closed a single oceanic basin (lapetus) as it assembled with Laurentia, and opened a second
ocean (Rheic) during its departure of Gondwana (Murphy et al., 1999; Stampfli and Borel, 2002;
Murphy et al., 2004; Murphy and Keppie, 2005). The latter model requires the completion of
a Wilson cycle during the closure of the lapetus Ocean and the completion of a second cycle
during the closure of the Rheic Ocean.

3. THE ZIRCON HAFNIUM METHOD AND ISOTOPIC ARRAYS

Zircon can host up to 1% hafnium in its crystal structure and, because of its very low Lu/
Hf ratio, it essentially preserves the initial 176H{/177Hf ratio (expressed as ¢Hf) of its source
magma at the time of crystallisation (Kinny and Maas, 2003). The Hf isotopic composition of
a zircon grain can be used as a geochemical tracer of a host rock’s origin in the same way that
whole-rock Nd isotopes are used. However, the greatest advantage of the Lu/Hf method over
the Sm/Nd method is that it allows for greater resolution and detail regarding the source of
magmas, with the eHf array generating at least two end-member source components from the
population of analysed zircons, whereas the Nd data only provides a single isotopic value, based
on a weighted average for the whole rock. The differences between hatnium data from zircons
and whole rock Nd data is particularly evident in sedimentary rocks where the sources can be
highly varied and Nd data alone are not able to identify the individual components (e.g. Howard
et al., 2009). Even in granites, which are commonly considered to have a single source, zircon
hosted hafnium isotopes are able to identify mixed sources and inheritance within a single
sample (Griffin et al., 2002; Villaros et al., 2011; Zhou et al., 2012), detail that may be lost using
whole rock Nd data alone (Hawkesworth and Kemp, 2006).

Hafnium isotope analysis of the zircon grains provides an important second dimension
to U-Pb zircon geochronology, allowing the age-data to be presented in statistically robust,
composite epsilon hafnium (e¢Hf) arrays. Hafnium isotopes in zircons can be used for a
single crystallisation event to describe the crustal and/or mantle contribution to magmatism in
individual granitic suites (Griffin et al., 2002; Jiang et al., 2012), in regional studies to describe
the tectonomagmatic evolution of cratons (Belousova et al., 2009) or at global scale to describe
the nature of supercontinent cycles (Kemp et al., 2006; Condie and Aster, 2010) or crustal
growth during the Earth’s history (Kemp et al., 2007). Comprehensive hafnium isotopic arrays
permit rigorous comparisons to putative source cratons in provenance studies (Howard et al.,
2009; Wang et al., 2010; Linnemann et al., 2014), as well as allowing the geodynamic links
between dispersed continental blocks to be tested, which would otherwise show only weak
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geological connections (Henderson et al., 2016).

More recently, Hf arrays from detrital and magmatic zircons have been used to identify
the isotopic signature of the closure phase of Wilson cycles (Collins et al., 2011; Smits et al.,
2014). Shifts in hafnium isotopic arrays are indicators of a fundamental change in tectonic
conditions. Using Hf arrays from Phanerozoic orogens Collins et al., (2011) identified two
distinct orogenic systems that yield contrasting isotopic signatures; the “exterior” circum-
pacific orogens and the “interior” Alpine-Himalayan-Indonesian collisional orogens. Circum-
pacific orogens are characterised by extensional, accretionary processes and record a long-
term shift towards increasingly juvenile hafnium values, which reflect the progressive removal
of ancient lower crust and subcontinental lithospheric mantle (SCLM) during continuous
subduction processes. In contrast, interior orogens, like the Himalayas, are characterised by the
progressive accretion of continental fragments during successive Wilson cycles. Subduction-
related magmatism is restricted to periods of ocean closure (Collins et al., 2011) and records
an initial excursion towards the depleted mantle reflecting juvenile arc magmas derived from
the mantle wedge, followed by mixing with evolved magmas that mirror the composition of
the upper plate lithosphere. The result of a long-lived accretionary system is a ‘saw-tooth’ type
pattern in the Hf isotopic array (e.g. Fig. 4a).

A third Hf isotopic array has been recognised by Smits et al. (2014) in central Australia
during the Paleoproterozoic-Mesoproterozoic (Fig. 3). The oldest zircons of the orogen are
~1700 Ma and the large vertical array of eHf values, between +12 and -30, suggest a continental
arc was built on Archean crust, which can be identified as the West Australian Craton. The
isotopic contraction of negative epsilon hafnium values towards positive values during a ~100
myr interval between 1700-1600 Ma has been interpreted to reflect the initiation of subduction
retreat and the removal of vast continental ribbon from the West Australian Craton (Fig. 3). The
process is marked by the development of an inverted “U-shaped” array, reflecting the transition
from a continental arc to an extensional, accretionary orogen analogous to the circum-Pacific
array (Collins et al., 2011). The inflection in the Hf array from positive to negative values at
~1500 Ma suggests the continental ribbon then underwent crustal reworking. The next ~300
myr shows the array follows a typical crustal evolutionary path (Lu/Hf= 0.015), indicating that
working continued between 1500-1200 Ma, whereby little ancient or juvenile crust contributed
to the magmatism (Fig. 3). At ~1200 Ma, a major negative excursion to ¢Hf values of -30
indicates re-introduction of Archean crust into the magmatic system. Given the geological
constraints that this interval coincided with major compressive deformation of the Albany-
Fraser orogen against the adjacent West Australian Craton, the -eHf excursion was taken to
represent amalgamation of the Western and South Australian cratons (Smits et al., 2014). In
effect, this was the termination of a long Wilson cycle.

As Hf isotopic arrays are capable of recording complex orogenic systems involving
the closure of multiple oceanic basins, the method can be used to test the evolutionary models
proposed for the Appalachian-Variscan Orogen. By analysing the hafnium isotopic record of
the detrital and magmatic zircons associated with the opening and closure of the Iapetus and
Rheic oceans in the Appalachians, it is possible to investigate the presence and duration of
Wilson cycles during the assembly of the Apalachian Orogen. If the peri-Gondwanan terranes
are separated by a number of individual ocean basins (e.g. Zagorevski et al., 2007; van Staal
et al., 2009), then the hafnium isotopic array should record the cyclical nature of consecutive
ocean closure events (Fig. 4a), as the arrival of each crustal block should record the culmination
of an individual Wilson cycle (Fig. 3). The hafnium array should show a vertical spike that
records the development of a continental arc on the upper plate, where magmatism involves
mixing between the basement crust and juvenile arc magmas derived from the mantle wedge
(e.g. Mueller et al., 2008; Roberts et al., 2013; Linnemann et al., 2014) (Fig. 4a). Following the
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Figure 3

The hafnium isotopic array for the central Australian Musgraves Province, which is from Smits et al.
(2014). The numbers correspond to: 1) craton formation, 2) initial continental extension and passive
margin development, 3) ocean opening, 4) subduction initiation and back-arc formation, 5) oceanic
closure during slow accretion of arc-backarc system and recycling, 6) terminal continental collision

and, 7) post-collisional magmatism.

arrival of each terrane, subduction would step outboard into the next ocean basin and the same
process should start again with an arc developing on the newly accreted terrane. The overall
effect of this evolutionary model is a saw-tooth type pattern in the hafnium array (Fig. 4a).
However, if the peri-Gondwanan terranes formed a contiguous “composite Avalonia” terrane
(e.g. Murphy et al., 1999), then only a single Wilson cycle should be recorded in the hafnium
isotopic array (Fig. 4b) during the early Paleozoic, with a second Wilson cycle associated with
the closure of the Rheic Ocean prior to the Alleghenian Orogeny in the late Carboniferous
(Williams et al. 1979, Hatcher et al. 1988; Veevers, 2004; Stampfli et al., 2013).

To ensure consistency throughout this thesis, epsilon hafnium (¢Hf) and T, (DM=depleted
mantle) were calculated using the 176Lu decay constant after Scherer et al., (2001), where T
is the time of crystallization of the zircon. T and T, were calculated using the methods of
Griffin et al. (2002), with an average crustal composition of 176Lu/177Hf = 0.015. All data are
presented using the epsilon hafnium (eHf) notation, which refers to the deviation of the isotopic
composition from CHUR, which at any time yields a value of 0 (Patchett and Tatsumoto, 1980;
Blichert-Toft and Albarede, 1997).

Figure 4a (on the next page)

The expected hafnium isotopic record of the two main competing theories for the evolution of the north-
ern Appalachian orogen during the Paleozoic. A) The first model considers the peri-Gondwanan ter-
ranes to be separate entities that arrived at the Laurentian margin via the closure of multiple oceanic
basins (e.g. during consecutive Wilson cycles, see van Staal et al. 2009). The overall effect of this
evolutionary model is a “saw-tooth” type pattern in the hafnium array. B) The second model considers
the peri-Gondwanan terranes represented a single composite terrane that was accreted to Laurentia in
during the Silurian (e.g. Murphy and Keppie 2005). An Andean style continental arc was then built upon
the Laurentian margin during the closure of the Rheic Ocean, resulting in a fanning isotopic array that
represents the ongoing recycling of juvenile arc magmas with the basement of the continental terrane.
As subduction continues it strips the SCLM and replaces it with increasingly juvenile arc magmas, lead-
ing to an overall increasingly juvenile arc (see Collins et al., 2011).
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Juvenile components are recognised as (+) eHf(T) values (Fig. 4), falling between the estimated
value of the new continental crust from modern island arcs (Dhuime et al., 2011) and the
estimated depleted mantle array of Griffin et al. (2004). Evolved components are recognised as
negative eHf(T) values (0 to -40), interpreted to have been sourced from magmas that include
an ancient crustal component (Fig. 4).

4. PROJECT AIMS

The major aims of this project are:

1. To obtain a comprehensive hafnium isotopic record of the northern Appalachian Orogen,
which is the type area of the Wilson cycle (Wilson, 1966) and thus represents an appropriate
natural laboratory.

2. To test the test the sensitivity of the hafnium isotopic arrays in documenting complex
accretionary processes during continental ribbon transfer from one continental margin to
another.

3. To test the metamorphic record of continental ribbon transfer against the associated
hafnium isotopic record of magmatism.

4. To propose a geodynamic framework for the Neoproterozoic to late Paleozoic evolution
of the Appalachian Orogen (and to a lesser extent, the Variscan Orogen) that accommodates
both the hafnium isotopic and geological records.

5. THESIS OUTLINE

Chapter Two presents detrital zircon U-Pb-Hf isotopic data from Neoproterozoic-Silurian
sedimentary rocks of Avalonia in the northern Appalachians and Iberia, Spain, to demonstrate
that the provenance of the peri-Gondwanan terranes is relatively simple and can be traced
back to major cratons in Gondwana and Baltica. Comprehensive hafnium isotopic arrays
from Armorica, Baltica, Amazonia and the African cratons each have their own unique
signature. Avalonia is commonly considered to have been derived from the Amazonian margin
of Gondwana, but the hafnium isotopic characteristics of the detrital zircon grains in early
Neoproterozoic rocks bear much stronger similarities to Baltica. The hafnium isotopic array
also suggests the early Avalonian oceanic arc was built on a sliver of “Grenvillian-type crust”
(~2.0-1.0 Ga) possibly of Baltican affinity at ~800 Ma, prior to accretion with a continental
margin at ~640 Ma. Chapter two presents the framework for how hafnium isotopic data is
presented and interpreted throughout the remainder of the thesis.

This chapter is published as “Gondwanan basement terranes of the Variscan—Appalachian
orogen: Baltican, Saharan and West African hafnium isotopic fingerprints in Avalonia, Iberia
and the Armorican Terranes” Henderson, B.J., Collins, W.J., Murphy J.B., Gutierrez-Alonso,
G., Hand, M., 2016, Tectonophysics.

Chapter Three presents detrital and magmatic zircon U-Pb-Hf isotopic data from Ganderia
and peri-Laurentia in order to test the sensitivity of the hafnium isotopic arrays in documenting
complex accretionary orogenic processes. Ganderia hosted a long-lived magmatic arc that began
at least by 650 Ma and continued until 450 Ma, but the Hf isotopic record suggests it began
earlier, possibly at ~750 Ma. Ganderia appears to have formed on a sliver of “Grenvillian-type”
basement, and records a transition toward more evolved Hf isotopic compositions between
650-600 Ma, coinciding with its accretion to the Gondwanan margin. This was followed by
increasing amounts of juvenile crustal inputs between ~550-500 Ma, which is interpreted to
reflect subduction roll-back from the Gondwana and the opening of the Rheic Ocean. The
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Notre Dame arc evolved along the Laurentian margin between ~515-425 Ma, and was built on
Archean crust. Suprasubduction zone magmatism occurred at ~490-460 Ma during the closure
of the Taconic Seaway and was dominated by the recycling of Laurentian crust, with progressive
mixing of evolved and juvenile arc magmas over time. The preservation of very evolved Notre
Dame arc zircons in Ganderian overstep sequences confirm the arrival of the leading edge of
Ganderia to Laurentia by ~450 Ma.

Chapter three is under review as “A hafnium isotopic record of magmatic arcs and continental
growth in the lapetus Ocean: the contrasting evolution of Ganderia and the peri-Laurentian
margin”, Henderson, B.J., Collins, W.J., Murphy J.B., Hand, M., 2016, Gondwana Research.

Chapter Four presents monazite geochronology and mineral phase equilibria, calculated
for a series of amphibolite facies rocks within the Dover Fault Shear Zone; a brittle-ductile
structure that separates the Ganderia terrane from Avalonia in Newfoundland. The purpose of
the chapter is to investigate the timing and nature of metamorphism in the Gander Zone during
continental ribbon transfer across the lapetus Ocean. The metamorphic rocks along the Dover
Fault Zone record two major stages of the Ganderian evolution. The first is a low pressure,
high temperature (3-4 kbar, 600°C) event recorded by 460 + 7 Ma monazite within andalusite
bearing metamorphic assemblages. The second is both a higher pressure event (5-6 kbar, ~600-
650°C) and a lower pressure event (3-4 kbar) characterised by migmatisation and the formation
of garnet-sillimanite bearing metamorphic assemblages at 409 + 6 Ma; interpreted to reflect a
short interval of compression along the Dover Fault Shear Zone followed by the emplacement
of the Hare Bay Gneiss and other granite suites. Ganderia is interpreted to form the locus of
intermittent extension and contraction events between the early Ordovician-middle Devonian,
most likely relating to the opening and closing of back-arc basins, during the consumption of
the lapetus and the Rheic Oceans.

Chapter Five is a compilation of all the hafnium isotopic data collected throughout chapters
two, three and four and also presents new detrital and magmatic U-Pb and Hf isotopic data for
late Neoproterozoic-Cambrian and Silurian rocks from Meguma, Silurian-Carboniferous rocks
of Avalonia and Neoproterozoic-Devonian igneous rocks from Avalonia/Meguma. Similarity
of the eHf arrays for Avalonia, Ganderia and Meguma suggest that were all geodynamically
connected, so the term “composite Avalonia” is used.

A revised geodynamic framework for the northern Appalachian Orogen is proposed for the
following intervals: (1) the early-late Neoproterozoic evolution of the composite Avalonia and
the Iapetus Ocean, and 2) the early-Paleozoic assembly of the Appalachian Orogen and Pangea.
The hafnium isotopic array associated with the 800-750 Ma zircons from composite Avalonia
suggests it initiated as a continental-type arc between ~800-750 in the former Grenville Orogen,
along the Laurentian margin. The orogen is linked to the early Neoproterozoic Valhalla Orogen
of East Greenland, and it is suggested that the orogen propagated southward during this interval.
A uniform shift in the Hf isotope array toward juvenile values between 800-700 Ma suggests
the composite Avalonia retreated from Laurentia to form a microcontinental ribbon at least by
700 Ma. The intervening backarc basin became the proto-lapetus Ocean. Between ~750-650
Ma, the ribbon transferred by subduction retreat across the Asgard Sea, closing it and colliding
with the Gondwanan margin at ~650 Ma. Accretion of the ribbon is reflected in the reversal of
eHf data to progressively negative values between 650-600 Ma.

Composite Avalonia separated from Gondwana between 550-500 Ma, forming the Rheic
Ocean. All terranes within composite Avalonia show a eHf isotopic trend toward juvenile values,
consistent with the transition from continental to a retreating oceanic-arc. The ribbon migrated
northward, initially closing the Tornquist Sea as it collided with Baltica, then closing Iapetus
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northward, initially closing the Tornquist Sea as it collided with Baltica, then closing lapetus
at ~450 Ma as it finally re-amalgamated with Laurentia. Following the final accretion of to
Laurentia by ~430 Ma, subduction stepped outboard into the trailing Rheic Ocean. There is
little evidence for the existence of a Late Silurian magmatic arc on the continental ribbon, with
most of the magmatism recording rifting in a back-arc setting. This suggests that subduction
was initiated outboard, placing the Meguma and the other terranes in an upper plate, back-
arc setting. Subsequent Devonian-Carboniferous magmatism migrated inboard, then outboard
across the orogen, reflecting switching between a retreating and advancing orogen, resulting
in a predominantly extensional tectonic setting interspersed with shorter term compressional
and transtensional events. The hafnium isotopic record of magmatism during the Silurian-
Carboniferous reflects progressive homogenisation of the Neoproterozoic arc basement of
composite Avalonia, with no apparent input from the depleted mantle or ancient Laurentian
crust.

Chapter Six presents a comprehensive compilation of new and existing zircon hafnium
isotopic data from Phanerozoic Europe. The purpose of the compilation is to test the sensitivity of
the haftnium isotopic method against the successive Wilson cycles that have shaped the geology
of'the European continent. Rather than successive ‘U-shaped’ haftnium isotopic arrays associated
with multiple ocean closures, the European array records a single reworking array extending
from ~600 Ma until the Oligocene. Surprisingly, the Pangea defining Variscan orogeny at ~360
Ma also does not change the hafnium isotopic array, but rather reflects reworking of composite
Avalonia and the other peri-Gondwanan terranes in Europe. A strong negative eHf excursion at
30 Ma indicates subduction and melting of Gondwanan cratonic lithosphere for the first time
since 600 Ma. The inverted U-shaped European ¢Hf isotopic array records the 600 million year
closure phase of a supercontinental cycle. Lower and upper eHf model age limits on the post-
450 Ma Phanerozoic array corresponds to Nuna and Rodinia breakup events, suggesting that Hf
isotopic arrays provide temporal and spatial constraints on supercontinental cycles, which can
be reconstructed at a cratonic scale.

Chapter Seven concludes the thesis and summarises the major findings from the previous
chapters. The chapter also includes a brief discussion on the implication of the work, and future
research and knowledge gaps regarding hafnium isotopic arrays.
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Gondwanan basement terranes of the Variscan-Appalachian
orogen: Baltican, Saharan and West African hafnium isotopic
fingerprints in Avalonia, Iberia and the Armorican Terranes

ABSTRACT

Iberia, Avalonia and the “Armorican” terranes form key constituents of the Variscan-Appalachian
orogen, but their Neoproterozoic origins along the northern Gondwanan margin continue to be
strongly debated. Here, we present a new detrital zircon U-Pb-Hf dataset from Neoproterozoic-
Siluriansedimentary sequences in NW Iberiaand Avalonia, in conjunction with the comprehensive
existing datasets from potential source cratons, to demonstrate that the provenance of each
terrane is relatively simple and can be traced back to three major cratons. The enigmatic
Tonian-Stenian detrital zircons in autochthonous Iberian rocks were derived from the Saharan
metacraton in the latest Neoproterozoic-early Cambrian. Avalonia is commonly considered
to have been derived from the Amazonian margin of Gondwana, but the hafnium isotopic
characteristics of the detrital zircon grains in early Neoproterozoic rocks bear much stronger
similarities to Baltica. The hafnium isotopic array also suggests the early Avalonian oceanic arc
was built on a sliver of “Grenvillian-type crust” (~2.0-1.0 Ga) possibly of Baltican affinity at
~800 Ma, prior to accretion with a continental margin at ~640 Ma. The Upper Allochthon of
Iberia is frequently linked to the West African Craton in the late Neoproterozoic-early Cambrian,
however the hafnium isotopic array presented here does not support this connection; rather it is
more similar to the hafnium array from Avalonia. The Armorican terranes have strong detrital
zircon isotopic links to the West African Craton during the late Neoproterozoic-Cambrian.

1. INTRODUCTION

Modern provenance studies have routinely
focussed on obtaining the U-Pb crystallisation
age of individual detrital zircon grains to build
statistically significant populations that can
be “matched” to the age of tectonomagmatic
events recognised in potential source terranes
(Ireland et al., 1998; Kosler et al., 2002;
Anderson, 2005; Dickinson and Gehrels,
2009). The method becomes problematic if
the potential source terranes preserve coeval
tectonothermal events, because they yield
overlapping zircon age spectra. Hafnium
isotope analysis of the same zircons allows the
datato be presented in composite hafnium (¢Hf)
arrays, thereby allowing for more rigorous
comparisons with the evolution of putative
source areas (Howard et al., 2009; Wang et al.,
2010). Moreover, Hf arrays have the potential
to evaluate geodynamic links between
dispersed blocks that otherwise show only
weak geological connection. Comprehensive
hafnium isotope arrays define the nature of
the zircon-forming tectonomagmatic events at
the cratonic scale (Smits et al., 2014), and as
such generate an isotopic “fingerprint” for that

craton that can be directly compared to exotic
continental terranes.

The interval between the late
Neoproterozoic supercontinent Gondwana
and the Carboniferous assembly of Pangea
is shaped largely by the events surrounding
the development and subsequent destruction
of the Rheic Ocean and the evolution of the
‘peri-Gondwanan’ microcontinental terranes
that occupied the oceanic realm between
Gondwana and Laurussia (Pollock et al., 2011;
Nance et al., 2012; van Staal et al., 2012).
Closure of the Rheic Ocean was accompanied
by collision between Gondwana and Laurussia
forming the Appalachian-Variscan Orogen of
North America and western Europe (Scotese,
2004; Hibbard et al., 2010; Stampfli et al.,
2013). The events prior to the amalgamation
of Pangea are controversial essentially because
there are insufficient constraints on the late
Neoproterozoic-early Paleozoic provenance
and paleogeography of the microcontinental
terranes that form the basement of the
Appalachian-Variscan orogen. Robust
paleogeographic constraints for the Late
Neoproterozoic microcontinental terranes that
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are commonly thought to have formed along
the northern Gondwanan margin are required
to provide the framework for unravelling the
Paleozoic crustal evolution of the Pangean
amalgamation.

The late Neoproterozoic provenance
and paleogeography of the peri-Gondwanan
terranes has been previously constrained
by matching the U-Pb zircon age spectra in
clastic sedimentary and igneous rocks with
coeval tectonothermal events in the potential
source cratons of northern Gondwana (see
compilation in Eckelmann et al., 2014 and
references therein). The addition of hafnium
isotope analyses to these U-Pb zircon studies
provides a powerful tool in further defining
the isotopic “signature” of these terranes, the
nature of the tectonomagmatic events and
can distinguish between tectonic processes
dominated by the input of juvenile crust and
those that involve the reworking of older
crustal material (Hawkesworth and Kemp,
2006).

The basement terranes of the Variscan-
Appalachian orogen include (but are not
limited too) Avalonia, Iberia, “Armorican”
terranes and the Pontides of Turkey. Avalonia
is commonly subdivided into east and west
Avalonia, with eastern Avalonia located in
Europe and the United Kingdom and western
Avalonia underlying much of the eastern
seaboard of Atlantic Canada (Cocks et al.,
1997). Here, we present a new comprehensive
U-Pb-Hf detrital and magmatic zircon data
set from Neoproterozoic-Ordovician rocks
from NW Iberia and western Avalonia, which
we use in conjunction with published data
from Iberia and eastern Avalonia, to test the
provenance of Iberia and Avalonia during
the Neoproterozoic-Ordovician interval. We
compare these data against a wealth of hafnium
isotopic data published in the last decade from
cratonic domains within the Gondwanan
supercontinent including: the West African
Craton (WAC), Arabian-Nubian Shield (ANS,
Morag et al., 2012; Ali et al., 2013; Robinson

et al., 2014), Saharan Metacraton (SMC,
lizuka et al., 2013; Be’eri-Shlevin et al., 2014;
Meinhold et al., 2014), Amazonia (Hurai et
al., 2010; Matteini et al., 2010; Reimann et al.,
2010; McGee et al., 2015), the central African
region (Congo Craton and Mesoproterozoic
orogenic belts) (lizuka et al., 2013; Foster
et al., 2014), and Baltica (Kuznetsov et al.,
2010; Kristoffersen, 2011; Beranek et al.,
2013; Kuznetsov et al., 2014; Romanyuk et
al., 2014).

We use these comprehensive hafnium
isotopic arrays from Avalonia, Iberia and
Armorica, in addition to major cratonic
domains of Gondwana and Baltica, to
demonstrate that distinct hafnium isotopic
fingerprints are identifiable in the basement
terranes of the  Variscan-Appalachian
orogen. The data have direct implications
for late Neoproterozoic paleogeography, the
geodynamic evolution of the Rheic Ocean and
subsequent amalgamation of Pangea.

2. GEOLOGICAL BACKGROUND

2.1 The evolution of the Variscan-
Appalachian Orogen

The evolution of the Paleozoic
Variscan-Appalachian orogen is dominated
by the late Cambrian-early Ordovician
opening and Devonian closure of the Rheic
Ocean (Fig. 1). The Rheic Ocean opened
when Neoproterozoic arc-related terranes,
collectively termed the “peri-Gondwanan”
terranes, separated from the northern margin
(present coordinates) of West Gondwana in
the early Paleozoic (van Staal et al., 1998;
Stampfli and Borel, 2002; Pollock et al., 2011;
van Staal et al., 2012). These terranes are
presently distributed throughout the Paleozoic
Variscan and Appalachian orogens of Europe
and North America (Von Raumer et al., 2002;
Nance et al., 2008) (Fig. 1), and include
Avalonia, Iberia, the Pontides of Turkey, and
“Armorica”.

Vestiges of oceanic arc magmatism
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Figure 1

A) Map showing the distribution of the Appalachian, Variscan and Caledonian belts at the end of the
Paleozoic. Shown are the major cratonic and microcontinental components within the orogenic belts
including Iberia (IB), Amorican Massif (AM), Massif Centrale (MC), Bohemian Massif (BO) and the
West Afirican Craton (WAC). This represents the approximate configuration of Pangea following late
Paleozoic convergence between Laurentia and Gondwana. The figure is modified from Barreiro et al.

(2007) and Keppie et al., (2008).

B) Geology map illustrating the major tectonic subdivisions of Iberia. Upper Allochthon is high-

lighted in the box and is detailed further in Figure 2.

with ~760-650 Ma ages are recognised across
the majority of the peri-Gondwanan terranes
(Murphy and Nance, 1989; Murphy et al.,
2000; Murphy et al., 2008b), followed by
major ensialic continental arc magmatism
at ~650-540 Ma, with subduction directed
southward beneath the periphery of West
Gondwana (Nance et al., 2002; Keppie et al.,
2003).

In the late Cambrian-early Ordovician
a protracted rifting episode opened the Rheic
Ocean with the disputed separation of several
peri-Gondwana terranes (Avalonia-Cadomia)
from the northern margin of Gondwana
(Murphy, 2006; Nance et al., 2010; van Staal
etal., 2012).
rift-related

Widespread igneous

activity 1s recorded between 495-470 Ma
across all of the Iberian Variscides (see Nance
et al., 2010 and references therein), and the
coeval deposition of a thick passive margin
sedimentary sequence are interpreted to be
related to the initial rifting and early drift
interval associated with the Rheic Ocean
(Quesada, 1991; Sanchez-Garcia et al.,
2003).

The Iapetus Ocean was closed during a
series of accretion events in the late Ordovician
to Silurian, whereby the peri-Gondwanan
terranes (Ganderia, Carolinia and Avalonia
+ Meguma) were accreted to the Laurussian
margin (Murphy and Nance, 1991; van Staal
et al., 1998; Stampfli and Borel, 2002; Keppie
et al., 2003; van Staal et al., 2009; Hibbard
et al., 2010). The closure of the Rheic Ocean
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culminated in collision between Laurussia, the
peri-Gondwanan terranes, and Gondwana in
the middle-upper Devonian (Sacks and Secor,
1990; Scotese and McKerrow, 1990; Nance et
al., 2012; Arenas et al., 2014).

Some authors use paleomagnetic data
to suggest that NW Iberia and the Armorican
terranes formed part of a drifting continental
ribbon (referred to as the Galatian super
terrane, or Armorica) in the Late Silurian
(Tait, 1999; von Raumer et al., 2003; Stampfli
et al., 2013) that separated from Gondwana to
open a second Paleozoic ocean (Paleotethys).
In this hypothesis, the collision of the drifting
ribbon with Laurussia closes the Rheic Ocean,
defining the onset of the Variscan orogeny, and
involves either dual subduction of the Rheic
oceanic lithosphere beneath southern Laurussia
and northern Gondwana, or subduction of
the Rheic and Paleotethyan Ocean beneath
the Galatian ribbon continent (Stampfli et
al., 2013). According to this model, the
amalgamation of Pangea followed in the late
Carboniferous with the closure of the western
end on the Paleotethys and the collision of
the Gondwanan margin with Laurussia. In
contrast, on the basis of lithostratigraphic and
faunal data, many authors place autochthonous
and parautochthonous NW Iberia along
the northern Gondwanan passive margin
throughout the Paleozoic (Quesada, 1991;
Robardet, 2003; Linnemann et al., 2004;
Simancas et al., 2005; Gutiérrez-Alonso et
al., 2008; Linnemann et al., 2008; Martinez
Catalan etal., 2009; Arenas et al., 2013; Pastor-
Galan et al., 2013; Ballevre et al., 2014), with
Rheic Ocean closure predominantly driven by
northward subduction in the Early Devonian
(Arenas et al., 2007; Arenas et al., 2014).

2.2 Geological background of Avalonia

Avalonia is one of the largest peri-
Gondwanan terranes in the Appalachian-
Variscan orogen with Avalonian rocks
recognised on both sides of the Atlantic Ocean
(Fig. 1). Avalonian rocks located in southern
England, Ireland, Wales and parts of western

Europe (Belgium, France, northern Germany,
the Czech Sudetes) are deemed to represent
East Avalonia (Katzung et al., 1995; Verniers
et al., 2002), whereas Avalonian rocks are
recognised from Boston (USA) through
Maritime Canada to the Avalon peninsula
of eastern Newfoundland comprise West
Avalonia (Murphy and Nance, 2002; Hibbard,
2006; Thompson et al., 2007; Satkoski et al.,
2010).

Unequivocal basement is not exposed in
Avalonia. However, neodymium isotopic data
from late Neoproterozoic - Paleozoic igneous
suites suggest derivation from a 0.8 - 1.1 Ga
juvenile source in West Avalonia, and a 1.0
to 1.8 Ga continental source in East Avalonia
(Nance and Murphy, 1994; Kerr et al., 1995;
Hegner and Kroner, 2000; Murphy et al.,
2000). Neoproterozoic-early Cambrian rocks
of Avalonia preserve a record of early arc and
rift development (~760-635 Ma), main stage,
voluminous magmatic arc activity (~635
Ma), and late stage rift related volcanism and
sedimentation (~590-550 Ma) (Keppie et al.,
2003).

Paleomagnetic data indicate that West Avalonia
in the Avalon peninsula of Newfoundland had a
paleolatitude of 34°+8° at 575 Ma (McNamara
et al., 2001), compared to an equatorial
position for Laurentia at that time (Nance et
al., 2008). The paleogeographic location of
Avalonia during the latest Neoproterozoic-
early Paleozoic is uncertain. The increasing
faunal endemism of Avalonia in the Ordovician
has been interpreted to reflect the progressive
isolation of Avalonia from West Gondwana
(Lees et al., 2002; Fortey and Cocks, 2003),
and the subsequent gradual introduction
of Baltic and Laurentian fauna to indicate
a decreasing distance between Avalonia
and Laurussia during the latest Ordovician.
However, Landing (1996b) considered there
to be no geological or faunal evidence to
suggest that Avalonia was contiguous with
the West Gondwanan margin in the latest
Neoproterozoic-early Cambrian, favouring
Avalonia as a separate microcontinent during
this interval.

The protracted assembly of Laurussia is
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Figure 2

A)Simplified geology map of the Upper Allochthon modified from Arenas et al., (2009, 2013). B) Basic
stratigraphic column for the Upper Allochthon and parautochthon/autochthon showing the typical

relationships between the subdivided units.

interpreted to have occurred via collision
between Baltica and East Avalonia at ~450
Ma, at the expense of the Tornquist Ocean
(Torsvik and Rehnstrom, 2003; Murphy et
al., 2004a), prior to collision of composite
Avalonia/Baltica with Laurentia (to form
Laurussia) diachronously during the final
consumption of the Iapetus Ocean in the early-
mid Silurian (van Staal et al., 1998; van Staal
et al., 2009; Hibbard et al., 2010; van Staal et
al., 2012). West Avalonian clastic sedimentary
rocks record a Laurussian neodymium isotopic
signature in the Late Silurian (Murphy et al.,
1996), in broad agreement with the age of
lapetan suture rocks in East Avalonia that
indicate closure of Iapetus at ~420 Ma (Soper
et al., 1992).

2.3 Geological background of the Iberian
terranes

NW Iberia preserves a near complete
section of ancient Gondwanan margin in the
Variscan orogen. It is divided into several
zones that are defined by differences in
Lower Paleozoic stratigraphy, Variscan
structural  characteristics and magmatic

and metamorphic activity, all of which
broadly reflect the increasing distance
from the northern Gondwanan margin. The
autochthonous Cantabrian Zone (CZ), West-
Asturian-Leonese (WALZ), Central Iberian
Zone (CIZ), and Galicia-Tras-os-Montes
schistose Zone (GTOMZ)  represent the
proximal (platformal) coastal to increasingly
distal offshore facies, respectively (Fig. 1).
The most distal units considered to have been
deposited on northern Gondwanan margin are
those of the Basal Units of the allochthonous
complexes (Fig. 1, Arenas et al., 2014).

2.3.1 NW lIberian allochthonous complexes

The allochthonous complexes consist
of, from bottom to top, the “Basal Units”
(Gondwanan basement, Martinez Catalan et
al., 1996; Arenas et al., 2009; Diez Fernandez
et al., 2011; Arenas et al., 2013; Lopez-
Carmona et al., 2014), structurally overlain
by two “ophiolitic” units (Lower and Upper
Ophiolites) which yield Early Ordovician
(~495 Ma, Arenas et al., 2007; Martinez et al.,
2012),and Devonian ages, (~395 Ma, Martinez
et al., 2011; Arenas et al., 2013), respectively.
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Depositional age Sample No. Stratigraphic name Sample description
ACO-13-22 Ferrona Formation Ironstone
ACO-12-40 Redmans Formation Sandstone
Ordovician ACO-12-48 MacKinnons Brook Formation | Conglomerate
ACO-12-49 Black John Formation Coarse grained sandstone
Cambrian ACO-12-38 Malignant Cove Formation Gritty red conglomerate
ACO-12-29B Livingston Cove Formation Coarse, pebbly conglomerate
ACO-12-50 James River Formation Fine grained sandstone
ACO-12-54 Keppoch Formation Sandstone
ACO-12-52A Gamble Brook Formation Quartzite
Neoproterozoic ACO-12-52B Gamble Brook Formation Quartzite

Table 1

A list of the samples obtained from the Avalonia terrane in Nova Scotia and Newfoundland,

eastern Canada.

Early Ordovician ophiolites reflect Rheic
Ocean opening, and are not discussed further,
whereas Devonian ophiolites are interpreted to
have formed during Rheic Ocean consumption
(Fig. 2, Murphy et al., 2009; Martinez et al.,
2011; Arenas et al., 2014). These ophiolite
complexes are structurally overlain by
the upper units (or Upper allochthon) of
continental affinity, which comprise high-
pressure, high-temperature (HT-HP) rocks
structurally overlain intermediate pressure
(IP) units (Barreiro et al., 2007; Albert et al.,
2014 and references therein).

The “Basal Units” have a continental
affinity and contain  Ediacaran-Early
Ordovician metasedimentary rocks, which are
intruded by voluminous calc-alkaline (~493
Ma, Abati et al., 2010) to alkaline-peralkaline
(~475-470 Ma, Diez Fernandez et al., 2010)
granitic bodies. The Basal Units underwent
subduction beneath Laurussia during the onset
of the Variscan orogeny (Martinez Catalan et

al., 1996; Diez Fernandez et al., 2011; Lopez-
Carmonaetal.,2014),and were affected by high
pressure and low-intermediate temperature
metamorphism (Lopez-Carmona et al., 2013).
The “Basal Units” were subsequently exhumed
via crustal scale thrusting associated with
recumbent folding and subsequent extensional
tectonics (Martinez Catalan et al., 1996; Diez
Fernandez et al., 2011; Loépez-Carmona et al.,
2014).

The Lower and Upper Ophiolites (Fig.
2a) are collectively interpreted to preserve a
rootless suture zone between the Laurussian
and Gondwanan components (Arenas et al.,
2007; Martinez Catalan et al., 2009; Arenas
et al., 2013; Ballévre et al., 2014). The most
continuous ophiolite units in NW Iberia are
the ~395 Ma mafic series, which are also
traceable throughout Variscan Europe and
are interpreted to have been formed during
the final stages of closure of the Rheic
Ocean (Martinez et al., 2007). However, the
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Sample
Depositional age Sample No. Stratigraphic name description Reference for U-Pb data
) G7 Aljibe Quartzite Quartzite Gutierrez-Alonso et al., 2015
Devonian
Laz32 Base Quartzite Formation Quartzite Gutierrez-Alonso et al., 2015
Aluminous
ACO-14-01 Carreiro Shear Zone metasediment New data
Silurian PG14 Formigoso Formation Sandstone Pastor-Galan et al., 2013
Ordovician Cz702 Armorican Quartzite Quartzite Shaw et al., 2014
. ACO-14-02 Ordenes Complex Sandstone New data
Cambrian
ACO-12-57 Oville Formation Quarzite New data
ACO-12-60 Candana Formation Quartzite New data
Neoproterozoic 0OD4 Monterrubio Formation Sandstone Fernandez-Suarez et al., 2014
OD5 Allande Gp. Sandstone Fernandez-Suarez et al., 2014

Table 2

A list of the sedimentary rock samples taken from NW Iberia and the Upper Allochthon of
Iberia. Where existing detrital zircon mounts could be obtained (referenced samples), these
were used to analyse hafnium isotopic data from the dated zircon grains.

interpretation has been updated in light of
Sm-Nd whole rock (Murphy and Gutiérrez-
Alonso, 2008) and new U-Pb-Hf zircon
isotopic data that suggest that ophiolites were
generated by the mixing of juvenile material
with an older Mesoproterozoic continental
basement (Martinez et al., 2011; Arenas et al.,
2013).

The HP-HT wunits of the Upper
Allochthon are composed of ultramafic rocks,
mafic-felsic granulites, eclogites, orthogneisses
and paragneisses (Albert et al., 2014 and
references therein). The Upper Allochthon is
commonly considered to have been generated
in a volcanic-arc environment, which was part
of the early Paleozoic peri-Gondwanan arc
system (Abati et al., 1999; Abati et al., 2007;
Albert et al., 2014). The protolith ages for the
igneous rocks are upper Cambrian (~490 Ma),
and the age of metamorphism is ~400-390 Ma
(Abati et al., 2007; Fernandez-Suarez et al.,
2007). The IP units are comprised of a thick
series of greywacke, pelitic and conglomeritic
sequences, which  record maximum
depositional ages in the range of 530-500
Ma (Fernandez-Suarez et al., 2003). In the

Ordenes Complex, the sedimentary rocks
were intruded by gabbros and calc-alkaline
granitoids, which yield protolith ages of ~490-
500 Ma (Abati et al., 1999; Andonaegui et al.,
2012).

3. SAMPLE SELECTION
3.1 Avalonia: sample selection

Although some U-Pb-Hf detrital
zircon data are available for East Avalonia
(Willner et al., 2013; Zlatkin et al., 2014),
and West Avalonia (Willner et al., 2013;
Pollock et al., 2015), the data do not span the
pivotal Late Neoproterozoic-early Paleozoic
stratigraphic interval. Moreover, Sm-Nd data
(Nance and Murphy, 1994, 1996; Murphy et
al., 2000) suggest that East and West Avalonia
are underlain by different basements, and
the hafnium data that are available for West
Avalonia does not presently resolve this.
Accordingly, nine siliciclastic samples
were collected for U-Pb-Hf detrital zircon
analysis from unequivocal West Avalonian
rocks in Nova Scotia and Newfoundland,
Canada (Table 1, Fig. 3). The samples were
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selected to complement the existing data
(Willner et al., 2013; Pollock et al., 2015)
and to sufficiently cover the Neoproterozoic-
Ordovician stratigraphic record in West
Avalonia. Two samples were taken from
the early Neoproterozoic Gamble Brook
Formation (ACO-12-52A, ACO-12-52B), and
three samples from the late Neoproterozoic

Georgeville Group (Livingstone Cove
Formation (ACO-12-29B), James River
Formation (ACO-12-50, ACO-12-54).

U-Pb detrital zircon data was

previously obtained for the Gamble Brook
(Barr et al., 2003), Livingstone Cove (Keppie
et al., 1998) and Malignant Cove (Murphy et
al., 2004b) formations, but in each study, the
number of zircons analysed was insufficient

for a statistical analysis of populations and
Hf isotopic data are unavailable. The Gamble
Brook data yield a maximum depositional age
of ca. 1.0 Ga (Murphy, 2002). The deposition
of the Livingstone Cove Formation is tightly
constrained between the ages of the youngest
detrital zircon (613 + 5 Ma, Keppie et al.,
1998) and the 607 + 2 Ma age of an igneous
complex that intrudes the Georgeville Group
(Murphy et al., 1997).

Three samples were selected from
Cambrian redbeds in Nova Scotia (Malignant
Cove Formation, ACO-12-38, MacKinnon
Brook Formation, ACO-12-48, Black John
Formation, ACO-12-49), as well as from
correlative early Ordovician ironstone layers
inboth Nova Scotia (Ferrona Formation, ACO-
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13-22) and southern Newfoundland (Redmans
Formation, ACO-12-40). The Malignant Cove
sample is from the same location as that
of Murphy et al., (2004b) and is mapped as
the Bears Brook Formation by White et al.,
(2012), enabling direct comparison between
these studies. The depositional ages of these
formations are constrained by paleontological
evidence (Ranger et al., 1984; Landing and
Murphy, 1991). Recent U-Pb detrital zircon
and Lu-Hf isotopic data from the Redmans
Formation (Pollock et al., 2015) are included
in our synthesis.

In order to build a comprehensive U-Pb-Hf
zircon record for composite (west and east)
Avalonia, we have also included the published
eHf datasets from other parts of West Avalonia,
including  Ediacaran-Ordovician  cover
sequences in Nova Scotia and Newfoundland
(Pollock et al., 2015) and the Mira terrane
(Cape Breton, Willner et al., 2013). Equivalent
data from East Avalonia include the Stavelot-
Venn Massif (Belgium) (Willner et al., 2013),
and the Pelagonian zone of the Hellenides
(Greece, Zlatkin et al., 2014).

3.2 NW Iberia: sample selection

Four samples were collected for U-Pb-
Hf detrital zircon analysis (Fig. 2); an upper
Cambrian metasandstone from the Betanzos
Unit of the Ordenes Complex of the Upper
Allochthon and a Devonian amphibolite facies
schist from the Carreiro Shear Zone (Upper
Allochthon). A Lower Cambrian quartzite from
the Candana Formation (WALZ) and an Upper
Cambrian quartzite from the Oville Formation
(CZ) were sampled from the autochthonous
sequences. In addition, six zircon mounts were
obtained from published geochronological
studies in order for the zircon grains to be
analysed for hafnium isotopes (Table 2). The
hafnium isotope analyses were conducted on
the zircon mounts as close to, or over the top
of, the existing U-Pb isotope analyses. These
include: an Ordovician Armorican Quartzite
sample from the Cantabrian Zone (CZ02,
Shaw et al, 2014), two Neoproterozoic-
Cambrian samples from the Cantabrian

and Central Iberian Zones, (ODS5 and OD4,
Fernandez-Suarez et al., 2014) and two
Devonian samples from the Central Iberian
Zone (G7 and LAZ32, Gutiérrez Alonso et
al., 2015). The samples selected span the
Neoproterozoic-Devonian stratigraphic record
in NW Iberia, allowing for a reappraisal of the
provenance and paleogeography of the terrane
during this period.

U-Pb detrital zircon data have been

previously obtained from a greywacke in
the Betanzos Unit of the Ordenes Complex
(Fernandez-Suarez et al., 2003), where a
maximum depositional age of ~490 Ma was
interpreted. The maximum deposition of the
Céandana Formation is constrained by U-Pb
detrital zircon data to 532 + 10 Ma (Fernandez-
Sudrez et al., 2014). The deposition of the
Oville Formation is constrained to the mid-
Cambrian-Tremadocian by diverse trace fossil
occurrences including trilobites (Sdzuy, 1968;
Gamez Vintaned et al., 2000), echinoderms
(Wotte and Mergl, 2007 and references
therein), graptolites (Sdzuy, 1974) and
acritarchs (Fombella, 1979). Detrital zircon
data have not previously been obtained for
the Oville Formation. Similarly, the Carreiro
Shear Zone, which is located structurally
above the Purrido Ophiolite complex, has no
constraints on the age of the protolith.
Also included in the compilation of
autochthonous Iberian data are the eHf
zircon data from Ediacaran-Cambrian
sedimentary rocks of the CIZ (Orejana et
al., 2015). Presented in conjunction with the
allochthonous Iberian data are the published
eHf zircon data from mylonitic greenschists
of the Moeche ophiolite (Arenas et al., 2013)
and Devonian gabbros of the Purrido ophiolite
complex (Martinez et al., 2011). eHf data
from the Carifio gneisses of the Cabo Ortegal
Complex are also included in the data set for
the Upper Allochthon (Albert et al., 2014).

4. ANALYTICAL METHODS

4.1 U-Pb zircon methods
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Analytical techniques for U-—Pb analysis of zircons was conducted at Adelaide
isotopic dating of zircon follow those of Payne Microscopy, University of Adelaide, South
etal., (2008) and Payne etal. (2010). U-Th—Pb  Australia; using an Agilent 7500cs ICPMS,
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coupled to a New Wave 213 nm Nd-YAG
laser.

U-Pb fractionation was corrected
using the GEMOC GJ-1 zircon (TIMS
normalisation data 207Pb/206Pb = 608.3 Ma,
206Pb/238U = 600.7 Ma and 207Pb/235U =
602.2 Ma; (Jackson et al., 2004). A second
zircon standard (Plesovice, TIMS-ID U-Pb
age: 337.1 = 0.4 Ma, Slama et al., 2008) was
used to monitor the ongoing accuracy of the
instrument. GJ-1 produced a weighted average
206Pb/238U age of 600.48 +0.92 Ma (n=270,
MSWD = 0.83), and Plesovice a 206Pb/238U
age weighted average of 337.9 + 1.6 Ma (n =
73, MSWD = 1.1).

Data reduction was completed using
the program “GLITTER” (Griffin et al,
2008). Weighted average calculations use
207Pb/206Pb ages for zircon populations older
than 1000 Ma and 206Pb/238U ages for those
populations younger than 1000 Ma. A + 10%
discordancy threshold was applied to zircon
analysis during age interpretation (Payne et
al., 2006; Howard et al., 2009; Howard et al.,
2011).

In order to define the youngest zircon
population for each individual samples we
utilise the conservative method described by
Dickinson and Gehrels (2009) whereby the
youngest grain cluster (26) (n= >3) grains
overlap in age at 2c error. Where possible
at least eighty individual zircon grains were
analysed per detrital sample in order to
satisfy the minimum recommendation of
Anderson (2005). The zircon populations are
qualitatively classified by the population size
(%) per sample from accessory populations
(<5%) through minor (6-19% ), major (20-
49% ), large (50-79%) to dominant populations
(80>%) of the total (Anderson, 2005). A
population is considered to be greater than 3
grains (20) (Dickinson and Gehrels, 2009).

4.2 Lu-Hf isotope method

Zircon can host up to 1% hafnium in

its crystal structure and because of its very low
Lu/Hf ratio it essentially preserves the initial
176Hf/177Hf ratio of its source magma at
the time of crystallisation (Kinny and Maas,
2003). The Hf isotopic composition of a zircon
grain can be used as a geochemical tracer of a
host rock’s origin in the same way that whole-
rock Nd isotopes are used. However, Hf is a
more sensitive tracer than Nd, as Lu/Hf in the
depleted mantle has increased at approximately
twice the rate of Sm/Nd relative to CHUR
(chrondritic uniform reservoir, Patchett and
Tatsumoto, 1980; Patchett, 1983). The biggest
advantage of the Lu/Hf method over the
Sm/Nd method is that it allows for greater
resolution and detail regarding the source
of magmas that produced the dated zircons,
rather than providing a weighted average for
the whole rock.

The zircon mounts prepared for U-
Pb LA-ICPMS analysis were also used for
Lu-Hf isotopic studies undertaken with
Laser Ablation Multi-Collector Inductively
Coupled Plasma Mass Spectrometry (LA-
MC-ICPMS) at the University of Adelaide
— CSIRO joint facility, Waite Campus, South
Australia. To ensure the accuracy of the eHf
estimates, only grains with U-Pb LA-ICPMS
analysis between 95%-105% concordance
were analysed for Lu—Hf isotope composition
(e.g. Teale et al., 2011; Glorie et al., 2014;
Henderson et al., 2014). Analysis spots were
placed as close as possible to concordant U—
Pb LA-ICP-MS spots, and within the same CL
zone, including those zircon mounts analysed
by previous studies. Zircons were ablated
with a New Wave UP-193 Excimer laser (193
nm) using a spot size of 50 um, frequency of
5 Hz, 4 ns pulse length and an intensity of ~
10 J/em2. Confirmation of accuracy of the
technique was monitored using a combination
of the Plesovice, Mudtank and QGNG zircon
standards. The average 176Hf/177Hf value
for Plesovice for the analytical session was
0.282479 £+ 0.000022 (2SD, n = 37), which is
comparable to the published value of 0.282482
+0.000013 (2SD) by Slama et al., (2008).

eHf(T), TDM (DM=depleted mantle) and
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TDMc (TDMc= depleted mantle crustal)
were calculated using 176Lu decay constant
after Scherer et al., (2001), where T is the
time of crystallization of the zircon. TDM and
TDMc were calculated using the methods of
Griffin et al., (2002) with an average crustal
composition of 176Lu/177Hf=0.015. All data
are presented using the epsilon hafnium (¢Hf)
notation, which refers to a comparison of the
data from CHUR; which at any time is set at
a value of 0 (Patchett and Tatsumoto, 1980;
Blichert-Toft and Albaréde, 1997). Juvenile
components are recognized as eHf(T) values
that fall between the estimated value of the
new continental crust from modern island
arcs (Dhuime et al., 2011) and the estimated
depleted mantle array of Griffin et al. (2004).

S. RESULTS U-PB ZIRCON
GEOCHRONOLOGY

5.1 Avalonia

The results of the U-Pb zircon
geochronology from Neoproterozoic-
Ordovician Avalonian rocks are presented in
Figure 4 and the full data tables are included
in the supplementary data.

51.1 ACO-12-52A and ACO-12-52B
(Gamble Brook Formation)

Sample ACO-12-52a and ACO-12-
52b are fine grained, white quartzite taken
from outcrops approximately 25 metres apart.
ACO-12-52a had 80 analyses conducted on
80 detrital grains, of which 63 are 90-110%
concordant (Fig. 4). ACO-12-52b had 60
analyses conducted on 60 detrital zircon grains,
of which 40 grains are concordant. The two
samples contain zircon populationsrestricted to
the earliest Neoproterozoic-Mesoproterozoic
and the early Paleoproterozoic (~970-2100
Ma). The zircon spectra are dominated by
Mesoproterozoic zircons which form 73% of
the total population, with Paleoproterozoic,
Neoproterozoic and Archean zircons forming
the remaining 18%, 3% and 2%, respectively.
Within these populations the zircon distribution

patterns define major peaks at 1100-1200 Ma
(20%), 1220-1290 (20%) and minor peaks at
970-1070 Ma (12%), 1300-1360 Ma (6%,
1400-1500 Ma (9%), 1510-1600 Ma ( 6%),
1610-1690 Ma (6%), 1720-1790 Ma (7%,
1830-1880 Ma (6%), 1930-2030 Ma (6%) as
well as single grains at 2130 + 21 Ma, 2592
+ 22 Ma and 2640 + 22 Ma. The youngest
detrital zircon population is 975 + 33 Ma
(n=3, MSWD=0.34).

5.1.2 ACO-12-50/ACO-12-54 (James River
Formation)

Sample ACO-12-50 1is a grey,
coarse-grained sandstone and ACO-12-54
is a medium-grained sandstone. In sample
ACO-12-50 eighty analyses were conducted
on eighty detrital zircon grains, with 76
grains being concordant (Fig. 4). The zircon
distribution patterns define a major peak at
635-780 Ma (58%), minor peaks at 610-635
Ma (17%), 1000-1260 Ma (9%) and 1550-
1600 Ma (5%), and accessory peaks at 900
Ma (3%), 1630-1730 Ma (3%) and 2670-2690
Ma (3%). Single zircons at 2000 + 24 Ma
and 2801 £+ 22 Ma were also analysed. The
youngest detrital zircon population is 613 £ 13
Ma (n=4, MSWD= 0.51).

Sample ACO-12-54 also had eighty
analyses conducted on eighty detrital
zircon grains. Of these, seventy five are
concordant, and range from Neoarchean to
late Neoproterozoic in age (Fig. 4). The zircon
distribution patterns define major peaks at
~610-635 Ma (44%) and 635-790 Ma (41%),
an accessory peak at 1100-1250 Ma (8%) and
minor peak at 1400-1570 Ma (3%). Single
zircon grains at 1793 £ 24 Ma, 1941 + 22
Ma, 2073 + 20 Ma and 2652 + 21 Ma were
also analysed. The youngest detrital zircon
population is 612 + 6 Ma (n=4, MSWD= 0.8).

5.1.3 ACO-12-29B (Livingstone
Formation)

Cove

Sample ACO-12-29B is a coarse
grained, pebbly conglomerate. It had eighty
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one analyses conducted on eighty one detrital
zircon grains. Of these, sixty three analyses
are concordant, and range from Neoarchean
to late Neoproterozoic in age (Fig. 4). The
zircon distribution patterns define a large peak
at ~635-800 Ma (55%), a major peak at ~590-
635 Ma (27%) and minor 1400-1600 Ma
(11%) and accessory ~1850-1950 Ma (5%)
peaks. Single zircons were analysed at 1184 +
23 Ma, 2104 = 30 Ma and 2677 + 20 Ma. The
youngest detrital zircon population is 590 + 5
Ma (n=6, MSWD=0.78).

The youngest detrital zircon population
(590 Ma) contradicts the tightly constrained
depositional ages for the Georgeville Group.
The maximum depositional age is constrained
by lavas in the basal units of the Georgeville
Group whereby U-Pb zircon and monazite
ages of 628 and 617 + 1.6 Ma are recorded,
respectively (Murphy et al., 1997). The
minimum depositional age of the Georgeville
Group 1is tightly constrained by syn-tectonic
and late tectonic plutons at 606 = 1.16 Ma
(TIMS, U-Pb zircon) and 607 + 3 Ma (TIMS,
titanite). From these constraints it is possible
to interpret that the Georgeville Group was
deposited and deformed between ~617 Ma
and 607 Ma. The zircon grains analysed for
TIMS in Murphy et al., (1997) were abraded to
remove lead loss, we consider the small group
(n=9) of concordant zircon grains younger
than 607 Ma to likely be the product of minor
lead loss resulting from younger magmatic or
metamorphic events in Avalonia (i.e. at 570,
540, 360 Ma, Nance et al., 2002; Murphy and
Keppie, 2005) leading to slightly younger
apparently concordant ages that still sit along
the concordia. These data are not considered
in the interpretation that follows.

514 ACO-12-38
Formation)

(Malignant  Cove

Sample ACO-12-38 is a gritty, coarse
grained red conglomerate. It had eighty
analyses conducted on eighty detrital zircon
grains, of which seventy two grains are
concordant (Fig. 4). The zircon distribution

patterns define a large peak at 635-750 Ma
(52%), a major peak at 590-635 Ma (38%),
a minor peak at 1700 Ma (7%) and single
zircons at 1918 £ 22 Ma, 2002 + 27 Ma, 2224
+ 26 Ma and 2637 + 22 Ma. The youngest
detrital zircon population is 593 + 5 Ma (n=7,
MSWD=0.12).

5.1.5 ACO-12-49 (Black John Formation)

Sample ACO-12-49 is a coarse grained
conglomerate that had 80 analyses conducted
on eighty detrital zircon grains. Of these,
seventy eight grains are concordant (Fig. 4).
The zircon distribution patterns define a large
peak at 560-635 Ma (65%), a major peak at
635-780 Ma (23%) and accessory peaks at
~1200 Ma (6%) and 2000-2200 Ma (4%), and
single grains at 1369 + 27 Ma, 1554 + 25 Ma
and 2637 +22 Ma The youngest detrital zircon
population is 562 + 6 Ma (n=5, MSWD=0.95).

5.1.6 ACO-12-48 (MacKinnons Brook
Formation)
Sample ACO-12-48 is a coarse-

grained, red conglomerate. Eighty analyses
were conducted on eighty detrital zircon
grains; of these 62 grains were concordant
(Fig. 4). The zircon distribution patterns
define a large peak at 545-635 Ma (51%), a
major peak at 635-800 Ma (32%) and single
zircon populations at 512 + 8 Ma, 526 + 6 Ma,
1002 + 10 Ma, 1406 + 30 Ma, 2126 + 24 Ma,
2674 + 22,2709 + 25 and 3104 + 27 Ma. The
youngest detrital zircon population is 543 £ 6
Ma (n=4, MSWD=0.49).

5.1.7 ACO-13-22 (Ferrona Formation)

Sample ACO-13-22 is from an
ironstone layer of the Ordovician Ferrona
Formation. Fifty seven detrital zircon grains
were analysed, of which thirty seven grains
are concordant (Fig. 4). The zircon distribution
patterns define a large 560-635 Ma (54%)
peak, a minor 680-720 Ma peak and single
zircon grains at 1367 + 34, 1537 + 45 Ma,
2085 + 39 and 2249 + 48 Ma and 480 + 7 Ma.
The youngest detrital zircon population is 560
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+ 7 Ma (n=5, MSWD=0.14).

5.1.8 ACO-12-40 (Redmans Formation)
Sample ACO-12-40 is a medium grained,
white to grey quartz arenite. Sixty analyses
were conducted on sixty detrital zircon grains;
of these, forty nine are concordant (Fig.
4). The detrital zircon spectra are limited
to a large peak at 600-635 Ma (68%) and a
major 635-690 Ma peak (32%). The youngest
detrital zircon population is 598 + 6 Ma (n=6,
MSWD= 0.059).

5.2 NW lberia

The results of U-Pb zircon
geochronology from the autochthonous and
upperallochthonousIberianrocksarepresented
in Figure 5 and the tables with the analytical
data are included in the supplementary files.

5.2.1 Upper allochthon: ACO-14-01
(Carreiro Shear Zone) and ACO-14-02
(Ordenes Complex)

Sample ACO-14-01 is from a highly
deformed, amphibolite facies schist within the
Carreiro Shear Zone (Vogel, 1967; Azcarraga
et al., 2002). Eighty analyses were performed
on detrital zircon grains extracted from ACO-
14-01 of which 48 are concordant (Fig. 5).
The interpretation of detrital zircon data in
metamorphic rocks can be complex (see
Mezger and Krogstad, 1997), however it is
unlikely the zircons in sample ACO-14-01
reflect metamorphic ages as zircon disturbance
requires granulite facies conditions (Rubatto
et al., 2001). However, it is possible that new
zircon growth occurred during metamorphism
and partial melting at ~400 Ma (Martinez
et al., 2011); therefore, it is not plausible to
assign a maximum depositional age to the
protolith rock. This age is within error of the
age of the Purrido ophiolite (395 + 3 Ma,
Martinez et al., 2011). The zircon distribution
patterns (Fig. 5) define a major peak at 551-
635 Ma (23%), minor peaks at 1910-2060 Ma
(15%), 2620-2730 Ma (13%), 1400-1600 Ma
(11%), 500-530 Ma (11%), 391-404 Ma (11%)
and accessory peaks at 655 Ma (5%), 460 Ma
(5%) and 420-440 Ma (6%)) .

Sample ACO-14-02 is an upper
Cambrian sandstone from a turbiditic sequence
(Matte and Capdevila, 1978) in the upper part
of the Betanzos Unit of the Ordenes Complex.
Sample ACO-14-01 is stratigraphically
equivalent to OS-1 in Fernandez-Suarez et al.,
(2003). Eighty analyses were obtained from
detrital zircons of which 66 are concordant (Fig.
5). The youngest detrital zircon population for
ACO-14-02 is 528 + 5 Ma (n=8, MSWD=
0.89). The detrital zircon spectra yield a large
peak at 540-610 Ma (61%), a major peak at
521-540 Ma (23%) and a minor peak at 2000-
2086 Ma (15%). A single zircon at 671 +£ 8 Ma
was also analysed (Fig. 6).

5.2.2 West-Asturian-Leonese Zone: ACO-
12-60 (Candana Formation)

Sample ACO-12-60 comes from a

thickly bedded (~1 m) clean, white, lower-
middle Cambrian quartzite. Of the 80
detrital zircon analyses obtained, 74 grains
are concordant (Fig. 5). The maximum
sedimentation age is indicated by the youngest
population of zircon grains at 527 = 7 Ma
(n=3, MSWD=0.54).
The zircon distribution patterns define a large
peak at 550-615 Ma (55%), a major peak at
635-800 Ma (21%) and accessory peaks at
510-530 Ma (5%), 930 Ma (3%), 1670-1780
Ma (6%), 1950-2020 Ma (3%) and 2450 Ma
(3%). There is a single Archean grain (2624 +
24 Ma) (Fig. 5).

5.2.3 Cantabrian Zone: ACO-12-57

Sample ACO-12-57 comes from
the upper Cambrian Oville formation in the
Cantabrian Zone. It is a glauconite-bearing
quartzite, paleontologically constrained to be
late Cambrian in age (Lotze and Sdzuy, 1961).
Of the 80 detrital zircon analyses obtained,
74 are concordant (Fig. 5). The maximum
deposition age, as indicated by the youngest
population, is Ediacaran (559 + 7 Ma; n=3,
MSWD=0.57). The zircon distribution patterns
define major peaks at 635-825 Ma (34%) and
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550-635 Ma (20%), minor peaks at 850-1000
Ma (19%), 1000-1150 Ma (9%), 1670-1800
Ma (9%) and accessory peaks of 2550-2600
Ma (5%) and 490-511 Ma (4%). A single
grain at 2885 + 20 Ma was also analysed.

6. HAFNIUM ISOTOPE RESULTS
6.1 Avalonia

A total of 239 Lu-Hf isotopic analyses
were obtained from the Neoproterozoic-
Ordovician rocks of West Avalonia. The
zircon grains analysed have measured
176Hf/177Hf ratios of 0.280592-0.282793
and initial 176Hf/177HTf ratios of 0.280549-
0.282758. Approximately 60% of the zircon
grains have eHf values ranging between
CHUR and DM (eHf= 0 to +14). The
hafnium data are presented in Figure 6 and
Figure 7, and will be discussed according
to the depositional ages of the clastic rocks;
Early Neoproterozoic, Late Neoproterozoic-
Cambrian and Ordovician. Full analytical
data are included in the supplementary files.

6.1.1 Early Neoproterozoic Gamble Brook
Formation

The analyses from the Gamble Brook
Formation fall into a restricted detrital zircon
spectra that span the interval ~2000-1000
Ma, with the largest population of grains
at ~1200 Ma. In general, the zircon grains
predominantly cluster around eHf = 0.
However, between ~1050-950 and 1650-1550
Ma, a wider range of ¢Hf values extend to
more juvenile compositions (Fig. 6a, eHf=0
to +8). A period of crustal recycling is also
evident at ~2000-1750 Ma where the grains
are predominantly evolved (¢eHf= +1 to -8),
indicating reworking of Archean crust (~2.5-
2.6 Ga).

6.1.2 Late Neoproterozoic- Cambrian
rocks

The Late Neoproterozoic-Cambrian
samples are coeval with the interpreted

continental arc magmatic interval that defines
the main phase of magmatism in Avalonia
(Doig et al., 1991; Kerr et al., 1995; White
et al., 2001; Barr et al., 2012; Murphy et al.,
2013; Pollock et al., 2015). All the samples
contain abundant Cryogenian-Ediacaran
populations (Fig. 4). The mid-late Cryogenian
(~800-650 Ma) zircon grains span the
interval interpreted to represent the early
oceanic arc phase in Avalonia (Murphy et al.,
2000; Murphy et al., 2008a and references
therein; Pollock et al., 2015). The percentage
contribution of individual populations may
change between samples, but generally all
the Neoproterozoic-Cambrian rocks record
evidence of a dominant ~540-800 Ma source,
and subordinate Mesoproterozoic (~1.0, 1.2
and 1.6 Ga), Paleoproterozoic (1.9-2.2 Ga)
and Archean (2.6-2.8 Ga) sources. As their
hafnium isotopic arrays are also similar, these
rocks will be discussed collectively.

The mid-Neoproterozoic (~800-650
Ma) zircons record two periods of crustal
recycling and one of predominantly juvenile
magmatism (Fig. 7). Crustal mixing isrecorded
between ~800-750 Ma where negative
(evolved) zircon grains indicate the recycling
of a Paleoproterozoic crustal component
(eHf= +10 to -20). Between ~750-650 Ma,
increasingly juvenile processes dominate and
the majority of grains are positive (eHf=-7 to
+15). After ~650 Ma crustal mixing processes
are indicated by a vertical excursion to
evolved values (€Hf=+15 to -15) until at least
~590 Ma (Fig. 7). Detrital zircon hafnium data
from late Neoproterozoic-Cambrian classic
sedimentary rocks in west Avalonia (Cape
Breton Island, Nova Scotia and the Avalon
terrane, Newfoundland) and east Avalonia
(Belgium) consistently overlap with the data
presented here from northern Nova Scotia
(Willner et al., 2013; Pollock et al., 2015; Fig.
6, Fig. 7); suggesting similar source rocks
across Avalonia during the Neoproterozoic-
Cambrian interval.

The Mesoproterozoic-
Paleoproterozoic detrital zircons from the
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eHf values plotted against the U-Pb ages for individual zircon grains from the late Neoproterozoic
Georgeville Group, Cambrian and Ordovician sedimentary rocks from Avalonia. The data is restricted
to only the Paleozoic —early Mesoproterozoic interval (250-1200 Ma) to highlight the character of the

Avalonian arc system between ~800-550 Ma.

late Neoproterozoic-Cambrian rocks record
a similar U-Pb and hafnium isotopic array
to that of the early Neoproterozoic Gamble
Brook Formation (Fig. 6b). A juvenile input
is evident at ~1650-1550 Ma (eHf= +11
to -3). Subsequently, zircons crystallised
between ~1.5-1.0 Ga appear to have been
predominantly recycled from the juvenile
~1650-1550 Ma magmatism (eHf= +5 to -5).
A vertical array at ~1.95-2.1 Ga yields a wide
range of hafnium values (¢eHf= +5 to -10),
which include depleted mantle values in the
Mira Terrane (Willner et al., 2013). The ¢Hf
array indicates that crustal recycling at ~1.9-
2.1 Ga involved mixing of depleted mantle
material with an Archean source (~2.8-2.6 Ga).
All Archean grains (~3.1-2.6 Ga) analysed are
evolved (eHf= -1 to -10) and reflect recycled
Paleoarchean to Eoarchean crust (TDMC
=~3.0-3.9 Ga).

6.1.3 Ordovician rocks

The Early Ordovician samples (ACO-
12-40 and ACO-13-22) were deposited during
the initial stages of separation of Avalonia from
Gondwana (Scotese and McKerrow, 1990;
Prigmore et al., 1997; Pollock et al., 2009).
In contrast to the Neoproterozoic-Cambrian
rocks, the Ordovician samples record a single
period of record crustal recycling during the
Neoproterozoic), with a weak vertical mixing
array at ~650-600 Ma (Fig. 7) indicating
the recycling of a Mesoproterozoic-early
Paleoproterozoic source (TDMC ~1.2-
1.7 Ga). The few Cryogenian grains (~700-
650 Ma) analysed are all juvenile (eHf= +1
to +7), similar to those analysed in the Late
Neoproterozoic-Cambrian samples. Sample
ACO-12-40 did not have any grains older than

43



Chapter 2

Gondwanan basement terranes of the Variscan—Appalachian Orogen

the Mesoproterozoic. Mesoproterozoic grains
(~1.2-1.5 Ga) in ACO-13-22 straddle CHUR
(£ 3 eHf units), and a single ~1795 Ma grain is
highly evolved (eHf=-11). Two grains at ~2.0-
2.2 Ga also straddle CHUR (£ 3 eHf units).
The older zircon grains are not statistically
robust, but do overlap with the populations of
the same age identified in the Neoproterozoic-
Cambrian rocks (Fig. 6).

6.2 Iberian Terranes

A total of 260 Lu-Hf isotopic analyses
were obtained from detrital zircon grains
of Neoproterozoic- Devonian rocks of NW
Iberia. The zircon grains analysed have
measured 176Hf/177Hf ratios of 0.280569-
0.282863 and initial 176Hf/177Hf ratios of
0.280540-0.282833. Approximately 65% of
all grains are evolved, recording negative
epsilon hafnium values (0 to -37 €Hf).The
results are divided into the autochthonous and
upper allochthonous samples and are shown in
Figure 8.

6.2.1 Autochthonous zones: CZ, WALZ and
Clz

Neoproterozoic grains form the largest
population in all of the autochthonous Iberian
Neoproterozoic-Devonian rocks. Of these,
Ediacaran (635-542 Ma) zircons are the most
abundant. The Ediacaran zircon grains are
highly variable yielding eHf values between
-30 and +9; however the majority of the
population is between e¢Hf +8 and -16 (Fig.
8a).

A vertical spread of hafnium data is a
type of array that is traditionally interpreted as
aresult of ‘mixing’ and is commonly attributed
to continental arc magmatism (e.g. Mueller et
al., 2008; Roberts et al., 2013; Linnemann et
al., 2014). Projecting the lower limit of the
Ediacaran population (¢Hf = -37) back to
the depleted mantle along a typical crustal
evolution line (Lu/Hf= 0.015; Griffin et al.,
2000) indicates the zircons were crystallised
from a recycled ancient crustal component,

yielding a depleted mantle model age (TDMC)
of 3.7 Ga.

Cryogenian grains (850-635 Ma) yield
60% positive and 40% negative eHf values,
with the majority of the population falling
between eHf -15 and +10 (Fig. 8a). The
Cryogenian-Ediacaran zircons are bracketed
by two negative eHf excursions at ~650-600
Ma and ~1000-900 Ma. In the interval between
these events there is a pronounced inverted
U-shaped transition between ~900 Ma and
~700 Ma during which the zircon grains
are increasingly juvenile, and the previous
significant ancient crustal input is subordinate
(Fig. 8a). Zircons between ~900-1100 Ma are
highly variable (¢Hf -25 to +17) and define
a broad mixing array, between juvenile and
ancient sources. A single grain at 1100 Ma is
extremely evolved yielding an ¢Hf value of
-35. Six zircons aged between ~1200-1400
Ma were analysed for hafnium, recording
variable e¢Hf values between -10 and +5. A
single zircon at 1300 Ma is extremely evolved
with an ¢Hf value of -35. Overall, there are
very few Mesoproterozoic grains are recorded
in the CZ-CIZ-WALZ rocks.

The broad population of zircons
between ~2.1-1.75 Ga in the Ordovician-
Devonian rocks are predominantly evolved
with eHf values between +3 and -18 (Fig.
8a). The lower limit on the array suggests
reworking from a Paleoarchean crustal source.
A population at ~2.7-2.5 Ga is also evolved
(eHf0to-13) and yields a Paleoarchean TDMc
(~3.5 Ga) at the lowest limit of the array.

6.2.2 Upper Allochthon: ACO-14-01 and
ACO-14-02

Late Neoproterozoic-early Paleozoic
grains (~700-500 Ma) predominantly fall in a
restricted group between eHf +10 and -10 (Fig.
8b). However, two grains are significantly
more evolved (eHf -22 and -37). The lower
limit of the main 700-500 Ma population (eHf
-10) indicates that the zircons were crystallised
via the mixing of crustal sources with juvenile
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crust, yielding a lower TDMC limit of ~2.0 Ga.
The interval between ~750-1950 Ma marks
a lull in the detrital zircon record. However,
1050-1600 Ma zircons are recorded in
sample ACO-14-01, the Moeche and Purrido
complexes and the Carifio Gneisses and all but
one grain record positive eHf values. Zircons
with crystallisation ages of ~2.1-1.95 Ga are
all positive (€Hf +1 to +10). Minor populations
at 2.5 and 2.7 Ga are evolved (¢Hf -10 and -1
to -7, respectively), and yield the same TDMC
of ~ 3.5 Ga, indicating recycling of a similar
Paleoarchean source.

7. DEFINING HAFNIUM ISOTOPE
ARRAYS

7.1 Cryogenian-Ediacaran arc magmatism

Neoproterozoic (Cryogenian-
Ediacaran) zircon grains form the largest
detrital populations in all late Neoproterozoic-
Cambrian samples from NW Iberia, Avalonia
and the Armorican terranes (Linnemann
et al., 2007; Drost et al., 2011; Linnemann
et al,, 2014). These grains are commonly
attributed to a period of arc-magmatism along
the northern Gondwanan margin, referred to
as the peri-Gondwanan Avalonian-Cadomian
arc system (Murphy and Nance, 1989; Nance
and Murphy, 1994), which was active between
~750-550 Ma (Nance et al., 2008; Murphy et
al., 2013; Linnemann et al., 2014). Despite
similar ages of arc magmatism, Sm-Nd isotopic
data (Nance and Murphy, 1994, 1996) indicate
that Avalonia and Cadomia were developed on
isotopically distinct basements, and so their
origin is discussed separately. In addition, as
more hafnium isotopic data are produced, it is
apparent that the isotopic nature and timing of
magmatic activity within the arc system as a
whole is highly variable.

Neoproterozoic magmatism is also an
important process in the development of the
Arabian-Nubian Shield and in the Timanides
orogen of Baltica; therefore it is also necessary
to discuss the hafnium isotopic character of
these arc systems. Collectively, these arrays
make it possible to recognise hafnium isotope

signatures for different components of the
Neoproterozoic magmatic arc systems, and
thus trace the source of the zircons. The
hafnium isotopic character of components of
the Neoproterozoic magmatism is discussed
below (Fig. 9); however the crustal evolution
of the Avalonian arc-system will be discussed
separately.

7.1.1 Cadomian arc

Cadomian (~750-570 Ma) arc
magmatism preserved in the Schwarzburg
Antiform, Germany have e¢Hf values ranging
from near depleted mantle values (+11) to very
evolved (-40), including a distinct negative
spike of Hf isotopes (Fig. 9), suggesting that
Cadomian magmatism involved juvenile
magmas that were contaminated with varying
amounts of Eburnian and Archean crust
(Linnemann et al., 2014). Consequently, the
Cadomian arc is interpreted to have been built
on the NW margin of the Reguibat shield
of the West African Craton, where ancient
Archean rocks (3.5-3.4 Ga, 3.0-2.7 Ga) were
available for recycling and melting during the
Neoproterozoic events (Stern, 1994; Kroner et
al., 2001; Linnemann et al., 2014).

7.1.2 Arabian-Nubian Shield

The north-eastern Gondwanan margin
is dominated by the Neoproterozoic Arabian-
Nubian shield (ANS); located along the
eastern boundary of the Saharan Metacraton
in the northern East African Orogen. The
ANS is comprised of a collage of ~900-760
Ma (Morag et al.,, 2012; Robinson et al.,
2014) juvenile island arcs and back-arc basins
which accreted to the Saharan metacraton in
the Ediacaran. Cryogenian metasedimentary
and arc-metavolcanic rocks in eastern Egypt
reveal that arc magmatism was not entirely
juvenile and did involve reworking of some
pre-Neoproterozoic crust (Ali et al., 2013).
Post-collisional magmatism between ~660-
580 Ma, appears to have reworked only the
juvenile Tonian crust (Morag et al., 2012), as
the majority of zircon grains yield positive
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A) eHf values plotted against the U-Pb ages for individual zircon grains from late Neoproterozo-
ic-Devonian sedimentary rocks of the autochthonous zones Iberia. Also shown are the ¢eHf data from
detrital zircons in the Central Iberian Zone (Orejana et al., 2015). The inset illustrates the ‘U’ shaped
array with two strong vertical hafnium excursions that characterise the Neoproterozoic zircon data
at ~650-600 Ma and ~1000-900 Ma. B) ¢Hf values plotted against the U-Pb ages for individual zir-
con grains from the late Neoproterozoic- Cambrian sedimentary rocks from the Upper Allochthon, as
well as the metasedimentary sample from the Carreiro Shear Zone (ACO-14-01). Also shown are the
detrital zircon data from the Moeche ophiolite (1%, Arenas et al., 2013) and the Purrido ophiolite (2%,
Sanchez-Martinez et al., 2011) and the Carino Gneiss (3%, Albert et al., 2014). The inset highlights two
vertical mixing arrays in the allochthonous complex zircon data at ~600 Ma and ~400 Ma.
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eHf values (Fig. 9) (Morag et al., 2011; Morag
et al., 2012; Ali et al., 2013; Robinson et al.,
2014).

7.1.3 Timanides

The Timanide orogen of Baltica is an
Ediacaran-Cambrian orogenic belt developed
in a continental arc environment on either
the margin of Arctida prior to accretion with
the passive Timan-Ural margin of Baltica at
~550 Ma (Gee and Pease, 2004; Kuznetsov
et al.,, 2010), or on the margin of Baltica as
part of the peri-Gondwanan ‘“Avalonian-
Cadomian” arc system (Scarrow et al., 2001;
Linnemann et al., 2004) . Magmatism during
the development of the Timanide orogen have
both depleted mantle and crustal sources,
yielding a strong vertical array (Fig. 9),
with eHf values extending to -15, likely to
reflect development of a continental arc on
Paleoproterozoic crust. Minor mixing with
an Archean crustal component is suggested
by two extremely evolved (¢eHf=-25 to -30)
zircons (Kristoffersen, 2011; Beranek et al.,
2013), but was not the dominant magmatic
process.

7.2 Cratonic Gondwana and Baltica

A wealth of U-Pb zircon and hafnium
isotopic data has been published in the last
decade that defines the isotopic composition
of the basement rocks of northern African,
Arabian, Amazonian and the Baltican cratons
(Fig. 10 and Fig. 11). We summarise the
available data below in order to emphasise the
unique hafnium isotopic signatures recognised
in the cratonic domains of northern Gondwana,
as well as the cratonic nuclei of Baltica.

7.2.1 West African Craton

The West African Craton forms
a significant component of the northern
Gondwanan margin. The WAC is comprised
of two major Archean and Paleoproterozoic
metamorphic and magmatic shields, separated
by two sedimentary basins (Taoudeni and
Tindouf basins). Its cratonic components are
presently exposedinthetwomainareasofuplift;
the Man shield in the south and the Reguibat
shield in the north (Mauritania, Morocco and
Algeria). The WAC was amalgamated through
three orogenic cycles: 1) Leonian cycle (3.5-
3.0 Ga) and Liberian cycle (2.95-2.75 Ga), 2)
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the Eburnian cycle (2.2-1.75 Ga), and 3) the
Pan-African orogenesis (760-660 Ma) (see
Abati et al.,, 2012 and references therein).
Crucially, there is a distinct magmatic gap
between 1.7-1.0 Ga. During the ~1.7-1.0 Ga
interval of quiescence, the WAC underwent
cratonisation and was able to develop a thick
lithosphere (Black and Liegeois, 1993), prior
to remobilisation in the late Neoproterozoic.

The Leonian-Liberian cycles (3.5-2.75
Ga) do not form a distinct hafnium array, but
rather form two variable populations at ~3.4 Ga
(eHf=0to-3)and ~3.1-2.6 Ga(eHf=+3to-17),
followed by a period of juvenile magmatism at
~2.5-2.35 Ga. The “Eburnian” cycle (Fig. 10a)
extends over 400 myr (~2250-1800 Ma) and
is characterised by a period of predominantly
juvenile magmatism between ~2250 and 2100
Ma (eHf =+9 to -3), with minor crustal mixing
indicated by a small number of evolved grains
(eHf= -6 to -9). A vertical array (eHf= +10 to
-35) evident in the hafnium data indicate an
extended period of crustal recycling between
~2100 and 1800 Ma. During this interval,
juvenile material generated during the early
stages of the Eburnian and Leonian-Liberian
events was reworked.

The  Neoproterozoic  arc-derived
detrital zircon grains of the Anti-Atlas Belt of
Morocco (Abatietal., 2012) contrasts with that
of the Cadomian arc (Linnemann et al., 2014).
The Anti-Atlas records juvenile magmatism
at ~700-675 Ma (gHf= +13), prior to a period
of mixing with a Paleoproterozoic (Eburnian)
source (TDMC =~1.8-2.0 Ga) between ~650-
590 Ma (Fig. 9). Consequently, the oceanic
magmatic arc is interpreted to have been
accreted to the eastern part of the Reguibat
Shield at ~650 Ma, which is dominated by
Eburnian (~2.1-1.8 Ga) crust (see Walsh et al.,
2012).

Mafic-ultra mafic rocks in the Arar
Souttouf Massif of the Moroccan Sahara are
dated at ~700-550 Ma (Gértner et al., 2014),
and yield predominantly very juvenile eHf
values (¢Hf =+15 to +2), and minor crustal

mixing with a Paleoproterozoic source (¢eHf=
+12 to -9) at ~650-600 Ma (Fig. 10a). The
dominantly juvenile magmatism has been
interpreted to represent an occurrence of
oceanic arc magmatism coeval with the
main stages of magmatism in the Avalonian-
Cadomian arc system (Girtner et al., 2014).

7.2.2 Saharan Metacraton

The 500,000 km2 area of continental
lithosphere occupying the Africa between the
Arabian-Nubian shield in the east, the Tuareg
shield in the west, and the Congo Craton in
the south (Fig. 10b) has been classified as the
Saharan ‘metacraton’ (SMC), which is defined
as a ‘metacraton’ is a ‘“craton that has been
variably mobilized during an orogenic event
but is still recognisable through its rheological,
geochronological and isotopic characteristics”
(Abdelsalam et al., 2002; Abdelsalam et al.,
2011). The region is dominated by medium to
high grade gneisses, metasedimentary rocks,
migmatites and smaller outcrops of granulites
and low grade volcano-sedimentary rocks
(Abdelsalam et al., 2011). Geochronological
(Rb-Sr, whole rock) and Sm-Nd isotopic
data, indicate the heterogeneous nature of the
metacraton, with ages ranges between ~3100-
500 Ma (see Abdelsalam et al., 2002 and
references therein; Abdelsalam et al., 2011).
llzuka et al. (2013) and Be’eri et al. (2014)
analysed detrital zircons from the Nile river
system, producing a U-Pb-Hf dataset that
illustrates the isotopic nature of the Saharan
Metacraton and the ANS. The data set (Fig.
10b) yields a double vertical array; one at
~850-550 Ma and a second, distinct Tonian-
Stenian (0.85-1.20 Ga) population; an age
range not seen in the WAC. The juvenile
~850-550 Ma (eHf= +13) zircons overlap
with the mid-late Neoproterozoic juvenile
magmatism recorded in the ANS and are
conceivably sourced from the ANS. However,
the remainder of the hafnium array does not
match with the geologic record of the ANS.
Notably, the ~1150-850 Ma zircons in the
Nile data set are markedly different to those
found in the ANS (Fig. 10c) in that they form
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an extended vertical array (eHf= +7 to -25).
The recognition of similar ~1.2-0.9 Ga zircons
from Devonian sandstones in southern Libya
(Meinhold et al.,, 2014) suggest derivation
of the Tonian-Stenian (0.85-1.20 Ga) grains
from within the SMC. Therefore the Nile
River and southern Libya datasets are the most
representative of the hafnium isotopic record
of the SMC. The SMC is also characterised by
a gap in detrital zircon ages between ~1.15-
1.9 Ga (Fig. 11b). A period of crustal recycling
(vertical mixing array) of an Archean source is
evident at ~1.9-2.1 Ga and at ~2.5-2.7 Ga.

7.2.3 Central Africa (Congo Craton and
Mesoproterozoic belts)

The Congo Craton records a vertical
mixing array between ~900-1150 Ma
(Batumike et al., 2009; lizuka et al., 2013;
Foster et al., 2014), generated by mixing
Paleoarchean crust with juvenile material
(eHf=+15t0-27); comparable to the array seen
in the SMC (Fig. 10d). Detrital zircons from
the Neoproterozoic Damara Orogen (Foster et
al., 2014), which forms the boundary between
the Kalahari Craton and southern Congo
Craton, also feature a prominent Tonian-
Stenian (0.85-1.20 Ga) peak that overlaps
with that found in the Congo and Zambezi
River sediments (lizuka et al., 2013).

An important difference between
the SMC and Congo Craton is the presence
of zircons from the central African
Mesoproterozoic  Kibaran, Irumide and
Namaqua-Natel Belts in the Congo Craton
hafnium array (Foster et al., 2014). These
orogens contain magmatic and metamorphic
provinces that yield varying ages between
~1.6-1.0 Ga, with peaks at ~1.4-1.3 Ga (Linol
et al.; De Waele et al., 2003; Foster et al.,
2014 and references therein). The hafnium
record from the ~1.2-1.4 Ga interval in the
Congo Craton is characterised by zircons that
straddle CHUR (+ 3 ¢Hf units) with reworking
of an older crustal source at ~1.3 Ga indicated
by a negative spike down to ¢Hf -15 (Fig.
10d). These populations are not abundant in

the SMC record and are limited to the central
African region.

7.2.4 Baltica

Baltica is not commonly considered
as a detritus contributor to the late
Neoproterozoic peri-Gondwanan  terranes
as it is usually interpreted to have been
separated from the supercontinent Rodinia
during the final stages of break-up at ~650
Ma (Torsvik et al., 1996; Buchan et al., 2000;
Johansson, 2014). The model of protracted
amalgamation of Gondwana during the ~650-
550 Ma interval also did not include Baltica
or Laurentia (Johansson, 2014). However,
as there are still many unanswered questions
regarding its paleogeography (Cawood
and Pisarevsky, 2006; Levashova et al.,
2013; Meert, 2014) as well as the ultimate
provenance of Avalonia, it is necessary to
include it while reassessing provenance of the
peri-Gondwanan terranes. Whole rock Sm-
Nd data from late Neoproterozoic (610-600
Ma) granites of West Avalonia (New England,
USA; Thompson et al., 2012) yield early
Mesoproterozoic-mid-Paleoproterozoic (~1.0
to 2.2 Ga) model ages and are interpreted to
reflect mixing of Svecofennian Baltican crust
with juvenile material. A Baltican-Avalonian
connection during the Ediacaran is permissible
with the available paleomagnetic data, which
place both Baltica and Avalonia at moderate
south paleolatitude between ~615 and 575 Ma
(Thompson et al., 2012). Keppie and Keppie
(2014) also consider an Ediacaran connection
between Baltica and Avalonia on the basis of
550 Ma paleomagnetic data for Avalonia.

Baltica records an extensive tectonic
history that ranges from the Archean to the
Paleozoic. Archean rocks (~3.7-2.6 Ga) are
well exposed in all the Fennoscandian, Volgo-
Uralian and Sarmatian shields (for a detailed
review see Bogdanova et al., 2008), which
were amalgamated into a coherent craton (East
European Craton) during a series of collisions
between ~2.0-1.7 Ga. The hafnium record
of these events indicates that magmatism
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A compilation of the published ¢Hf zircon values for the major African cratons. A) The Saharan Metac-
raton; data are from Meinhold et al., (2014), llzuka et al., (2013) and Be’eri et al., (2014). B) Arabi-
an-Nubian Shield; data are from Robinson et al., (2014), Ali et al., (2013), Morag et al., (2011, 2012).
C) Congo craton; data are from llzuka et al., (2013) and Foster et al., (2014). D) the West African
Craton,; data are from Abati et al., (2012), Avigad et al., (2012), Linneman et al., (2014) and Gartner
etal, (2015).
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Figure 11

A compilation of the published ¢Hf zircon values for Baltica and Amazonia. A) Baltica, data are from
Beranek et al., (2013), Romanyuk et al., (2014), Kusnetskov et al., (2010), Kristofferson et al., (2011),

Kusnetskov et al., (2014) and Roberts et al., (2013)

. B) Amazonia; data are from Reimann et al., (2010)

McGee et al., (2014), lizuka et al., (2010), Ibanez-Mejia et al., (2015) and Matteini et al., (2010).

was initially juvenile at ~2.1-2.2 Ga, prior to
crustal mixing processes with a Paleoarchean
source until ~1.85 Ga (Andersson et al., 2011)
(Fig. 11a). The hafnium array for the late
Paleoproterozoic-Mesoproterozoic of Baltica
is distinct in that it records no evidence of
further recycling of Archean crust until the late

Neoproterozoic. Instead, juvenile magmatism
is recorded predominantly between ~1.6-1.4
Ga. Subsequently, most of the zircons appear
to have been produced from reworked ~1.6-
1.4 Ga juvenile crust, with minor input from
depleted mantle material (Fig. 11a). The
Sveconorwegian orogeny at ~1.2-0.90 Ga
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also recycled the 1.6-1.4 Ga Mesoproterozoic
crust, with minor additions of juvenile material
(Andersen et al., 2002; Andersen et al., 2009).

7.2.5 Amazonia

Amazonia occupies a  position
adjacent to the West African Craton in most
reconstructions of Gondwana (Cordani et
al., 2003; Collins and Pisarevsky, 2005).
Amazonia has been subdivided into six
provinces that range from Archean to early
Neoproterozoic in age (Cordani et al., 2009),
which were amalgamated during a series of
accretionary and collision events during the
Paleoproterozoic (Transamazonian Orogeny,
~2.25-2.05 Ga) and Mesoproterozoic
(Rio Negro-Juruena Belt, ~1.78-1.55 Ga;
Rondonian-San Ignacio orogeny, ~1.55-1.30
Ga; and the Sunsas orogeny, ~1.28-0.92 Ga).
The hafnium isotopic record features several
isotopic anomalies that distinguish it from the
other Gondwanan terranes (Fig. 11b).

The Archean record is dominated by
reworking of an initially juvenile Paleoarchean
crust (~3.2-3.5 Ga) along a typical crustal
evolution path (average Lu/Hf of 0.015;
Griffin et al.,, 2000) (Fig. 11b). A strong
vertical array at ~2.25-2.00 Ga corresponding
to the Transamazonian event indicates
significant recycling of a Paleoarchean crustal
source and limited juvenile material. Juvenile
magmatism was an important component
of the Sunsas Orogeny (1.3-1.0 Ga) and the
Goias magmatic arc (0.9-0.6 Ga; Matteini et
al., 2010), but both also involved the minor
recycling of Paleoproterozoic crust.

8. DISCUSSION

8.1 Provenance of the Gondwanan basement
terranes

The U-Pb-Hf isotopic data we present
highlight the power of hafnium isotope arrays
for defining the crustal evolution of ancient
cratonic regions. The comprehensive hafnium
arrays can be used to isotopically ‘fingerprint’

acraton, and we demonstrate that the arrays are
traceable through many stages in the evolution
of mobile microcontinental terranes.

Using the U-Pb detrital zircon spectra
of predominantly Cambrian sedimentary
rocks, Dorr et al., (2015) recently proposed
that four unique peri-Gondwanan components
comprise the majority of the European

basement; Amazonian-derived Avalonian
terranes, Baltican components, Minoan
components (Sicily, Sardinia, Northern

Spain and the Mediterranean) and Armorican
terranes derived from West Africa. Utilising
the addition of hafnium data we propose that
the provenance of the European basement
terranes is simpler, and can be linked back to
three basement components (Fig. 12); Baltica,
SMC and the WAC.

8.2 Avalonia

Avalonian components present on the
western and eastern margins of the Atlantic
Ocean, in the northern Appalachians and
Variscan orogens respectively, preserve
relatively consistent detrital zircon populations
in the late Neoproterozoic-early Palacozoic
sedimentary rocks. These populations are
dominated by mid-late Neoproterozoic (~800-
550 Ma) detrital zircons, with varying minor
percentages of Mesoproterozoic (~1.2-1.6
Ga), Paleoproterozoic (~1.7-2.2 Ga) and
Archean populations (~2.6-2.8 Ga).This
grouping has led to a consensus that Avalonia
resided along the NW margin of Gondwana in
the late Neoproterozoic (Pollock et al., 2011;
Linnemann et al., 2012).

The West African Craton is commonly
dismissed as a source of provenance for
Neoproterozoic-Ordovician Avalonian
rocks due to the complete absence of
Mesoproterozoic source rocks (Murphy et
al., 2002; Murphy et al., 2004b). Similarly,
the SMC and Congo Craton are also unlikely
candidates as they record a distinct Tonian-
Stenian vertical mixing array (0.85-1.2 Ga,
Fig. 10) that is not preserved in any of the
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Neoproterozoic-Ordovician Avalonian rocks.
The SMC also lacks ~1.4-1.6 Ga source rocks,
which form significant detrital populations in
Neoproterozoic-Ordovician Avalonian rocks.
The detrital =zircon spectra of late
Neoproterozoic Avalonian rocks are most
frequently matched to the Amazonian craton
(Nance and Murphy, 1994; Keppie et al., 1998;
Satkoski et al., 2010; Barr et al., 2012; Willner
et al., 2013). However, the tectonic provinces
of Baltica also yield significant overlaps with
the detrital zircon spectra of Avalonian rocks.
The comprehensive hafnium isotope arrays
presented here (Fig. 6, Fig. 10, Fig. 11) for
Avalonia, Amazonia and Baltica allow the
provenance of Avalonian rocks to be tested
beyond one dimensional U-Pb zircon age
spectra comparisons.

8.2.1 Amazonia versus Baltica:
differences in the hafnium arrays

key

There are two key differences
between the geological evolution of Baltica
and Amazonia that differentiate the hafnium
isotopic arrays. The first is the Goids
magmatic arc in the Tocantins Province in
Amazonia, a Brasiliano/Pan-African orogen
that formed during the complex accretion of
island and continental magmatic arcs on the
western margin of the Sao Francisco craton
during the Tonian-Ediacaran (~1.0-0.63 Ga)
(Cordani et al., 2009; Pimentel et al., 2011).
The arc underwent multiple magmatic events
and is recorded by a broad vertical- array that
indicates mixing between juvenile and Archean
crust eHf= +15 to -17) during the ~0.9-0.6 Ga
interval (Matteini et al., 2010). The hafnium
array from the same interval (~0.9-0.6 Ga)
in Baltica is distinct in that it is characterised
by a magmatic “gap” between ~0.9-0.8 Ga,
prior to continental arc-type mixing array at
~0.8-0.6 Ga. The vertical-array at ~0.8-06 Ga
is defined by ¢Hf values of +15 to -12 and is
related to the development of the Timanides
orogen (Kuznetsov et al., 2010).

The second distinction between the
Amazonian and Baltican hafnium arrays is

the timing and nature of Paleoproterozoic
magmatism. Paleoproterozoic magmatism in
the Amazonian Craton commences at ~2.25 Ga
and is characterised by a broad vertical array
(eHf= +5 to -22) until ~1.9 Ga (lizuka et al.,
2010). The vertical array (Fig. 11b) indicates
the mixing of Archean (~3.2 Ga) crust with
varying amounts of younger crustal material.
There are no purely juvenile (depleted mantle-
type) zircons generated during the ~2.25-1.9
Ga event. The nature of the array indicates
that crustal recycling was the dominant
process and was likely to be associated with
the cratonisation of Amazonia during the
~2.1-2.0 Ga Trans-Amazonian orogeny (see
Cordani and Teixeira, 2007 and references
therein). By contrast, the Paleoproterozoic
hafnium array in Baltica is characterised by
the commencement of juvenile magmatism at
~2.1 Ga prior to the evolution of a vertical-
mixing array at ~2.05-1.9 Ga (Fig. 1la),
whereby depleted mantle material was mixed
with Archean crust (~2.9-3.0 Ga).

8.2.2 Provenance of early Neoproterozoic
Avalonia (Gamble Brook Formation)

The hafnium isotope array for the
Gamble Brook Formation allows a more
precise resolution for the earliest history of
Avalonia. The maximum depositional age
of the early Neoproterozoic Gamble Brook
Formation is constrained by the youngest
detrital zircon population at 975 + 33 Ma
(present study, Murphy, 2002; Barr et al.,
2003). As the Gamble Brook Formation does
not contain any early Avalonian magmatic arc
populations (~760-730 Ma), it is interpreted
to have been deposited between ~970 Ma and
~750 Ma. Given the ~300 million year interval
in which the Gamble Brook Formation could
have been deposited it seems unlikely to have
taken place in an active arc environment, where
the youngest zircons commonly overlap with
the maximum age of deposition (i.e. Cawood
et al., 2012; Zlatkin et al., 2014).

Similar
successions to

early Neoproterozoic
the Gamble Brook are
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documented in New England (Westboro
Formation, Thompson et al., 2012) and
Pelagonia, Greece (Fontino schist, Zlatkin
et al., 2014). U-Pb-Hf analyses of detrital
zircons from the Fontino schist in Pelagonia
overlap with those of the Gamble Brook Fm
and indicate a similar source terrane (Zlatkin
et al.,, 2014). The compiled Gamble Brook
Fm and Fontino schist hafnium array is
restricted to Mesoproterozoic (~1.0-1.6 Ga)
to mid-Paleoproterozoic (1.6-2.2 Ga) zircons.
The ~2.1-1.75 Ga zircons form a cluster
around CHUR (£3 ¢Hf units); whereas ~1.5-
1.2 Ga zircons form a predominantly juvenile
grouping between ¢Hf +10 and -3. The ~1.2-
1.0 zircons are variably mixed between CHUR
and +8. The Gamble Brook Formation also
preserves very few Archean grains (<2%).

During the ~975-750 Ma window of
potential deposition of the Gamble Brook
Fm, Baltica and Amazonia are commonly
considered to have been contiguous (Nance et
al.,2002; Lietal.,2008 and references therein),
therefore rocks deposited adjacent to Baltica/
Amazonia could potentially yield a mixed
detrital signal. However, given the restricted
range of detrital zircons (~1.0-2.2 Ga) in the
Gamble Brook Formation (and its equivalents
in other regions of Avalonia), it seems more
feasible that deposition occurred adjacent to
Paleoproterozoic-Mesoproterozoic provinces,
and not the Archean nuclei of either Baltica or
Amazonia.

Crucially, the Gamble Brook
Formation does not record ~0.9-0.8 Ga
detritus that may be expected if Avalonia was
located near the active Goias arc region of the
Amazonian margin (Thompson et al., 2012).
Paleoproterozoic zircons in the Gamble Brook
Formation and the Fontino schist record
magmatism commencing at ~2.1 Ga, which is
later than that of the Amazonian hafnium array
(~2.25 Ga) and closer to the Baltican record
(~2.1 Ga). The increased juvenile composition
of the zircons at ~1.5-1.45 Ga in the Avalonia
array is also more comparable to the Baltican,
rather than the Amazonian, hafnium array

(Fig. 11).

Given the isotopic evidence presented
here that highlights a number of similarities
to Baltica and important differences to
Amazonia, we favour the interpretation
that Avalonia was located near Baltica in
the early Neoproterozoic (~975-750 Ma).
The interval coincides with the deposition
of the Gamble Brook Formation (and its
equivalents New England, Fig. 12), and
requires a paleogeographic position closest
to the Telemarkia province, Transcandinavian
Igneous Belt and the Osnitsk-Mikashevichi
Belt, whichare dominated by Paleoproterozoic-
Mesoproterozoic rocks. This is similar to
the location proposed by Thompson et al.
(2012) whereby Avalonia occupied a location
adjacent to western-end of the Timanides of
Baltica and along strike from the Cadomian
orogen outboard of West Africa (see Fig. &,
Thompson et al., 2012).

8.2.3 Crustal evolution of the Avalonian arc
system in the Cryogenian-Ediacaran

Previous interpretations of the earliest
evolution of the Avalonia microcontinent
are largely derived from whole rock Sm-Nd
isotopic data from vestiges of the early arc
magmatism (~760-730 Ma). These include
the Economy River Gneiss (734 Ma, Doig et
al., 1993) in Nova Scotia, the Burin Group
volcanic rocks (~763 Ma, Krogh et al., 1988;
Murphy et al., 2008b) in Newfoundland
and the Malverns Plutonic Complex (~675
Ma, Tucker and Pharoah, 1991; Strachan
et al.,, 1996) in the English Midlands. Early
Mesoproterozoic Sm-Nd model ages (~1.2-
1.0 Ga) for the 734 Ma Economy River Gneiss
and 675 Ma Malverns Plutonic Complex have
led to the interpretation that “proto-Avalonia”
developed as juvenile oceanic arcs in the peri-
Rodinian ocean in the late Mesoproterozoic
(1.2-1.0 Ga) (Murphy et al., 2000; Nance et
al., 2002). Consequently, the ~760 Ma arc
magmatism represents renewed subduction in
an oceanic arc environment, prior to accretion
to the Gondwanan margin and subsequent
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continental arc magmatism between ~630-570
Ma (Murphy et al., 2013). Hafnium data from
zircons crystallised in the Avalonia arc-system
provide a more detailed isotopic picture of the
arc system, compared to the average given by
whole rock Sm-Nd data.

The late Neoproterozoic Georgeville
Group and Cambrian samples are dominated
by Cryogenian-Ediacaran (~750-550 Ma)
zircons. A small number of ~800-760 Ma
zircons are also present, but form only
accessory populations (<5%) in the rocks.
However, the ~800-760 Ma zircons overlap
with the hafnium isotopic array of the
dominant ~760-650 Ma arc related zircons
indicating arc magmatism in Avalonia may
have commenced as early as ~800 Ma. The
hafnium isotopic array of the ~800-550 Ma
zircons describes the crustal nature of the
Avalonian arc system. Of these zircons 90%
fall into a cluster of ¢Hf values between -7
and +14, which corresponds to a TDMc range
of ~0.68 to 1.9 Ga. An interval of increased
ancient crustal reworking is apparent at ~640-
570 Ma, whereby a small number of zircons
record comparatively evolved crustal values
(eHf=-12 to -18); which corresponds to TDMc
range of ~2.2 to 2.6 Ga.

Previous  Sm-Nd  whole  rock
analyses of early arc rocks in West and
East Avalonia infer magmatism was a mix
of juvenile depleted mantle material with
Mesoproterozoic-Paleoproterozoic (~1.0-
1.30 Ga, ~1.3-1.8 Ga) crustal contamination
(Pharaoh et al., 1987; Thorogood, 1990; Barr
and Hegner, 1992; Nance and Murphy, 1994;
Whalen and Jenner, 1994; Murphy and Nance,
2002). However, the ~800-550 Ma hafnium
array identifies an older Paleoproterozoic
crustal component than that of the Sm-Nd
whole rock data (e.g. Murphy et al., 2000); and
indicates that the early Avalonian arc-system
was built on a basement of “Grenvillian-type”
crust that records mid-Paleoproterozoic-
Mesoproterozoic crustal model ages (~1.0-2.0
Ga) (Daly and McLelland, 1991; Rainbird et
al., 1997; Rivers, 1997).

Given that the deposition of the
early Neoproterozoic Gamble Brook Fm
is interpreted to have occurred adjacent to
Baltica, we propose that the early-Avalonian
basement originated along the Baltican
margin and was subsequently rifted away in
the mid-Neoproterozoic. The tectonic setting
of “Proto-Avalonia” could have been similar
to that of the late Cretaceous margin of eastern
Australia, whereby fragmentation and rifting of
the continental crust resulted in the separation
of a microcontinental ribbon (“Zealandia”,
Mortimer, 2004; Tulloch et al., 2009); which
subsequently formed the upper plate during
oceanic and continental arc subduction in the
mid-Palacogene (Kamp, 1999; Stern et al.,
2006). Oceanic-arc magmatism in Avalonia at
~800-760 Ma preferentially nucleated on the
thinned continental crust. A modern analogue
to this could be the Cenozoic oceanic arc
Vanuatu (Buys et al., 2014), whereby
hafnium isotopes from zircons in arc-related
magmas have identified significant crustal
contamination in the oceanic arcs of Vanuatu
and have allowed the basement to be traced
back to its origin along the Australian margin
(Buys et al., 2014).

The Avalonian hafnium array shifts
at ~640 Ma towards more evolved crustal
values and is interpreted to represent the
accretion of the Avalonian arc to a cratonic
margin (Nance et al., 2002 and references
therein). The shift towards crustally derived
magmatism also coincides with the onset
of continental arc magmatism (Murphy et
al., 2013) along the northern Gondwanan
margin. Instances of high-intermediate grade
metamorphism at ~650 Ma in east Avalonia
(Malverns Plutonic Complex, Strachan et al.,
1996) and west Avalonia (southern Maine,
Cape Breton Island, southern Newfoundland)
provide further evidence for the accretion of
the oceanic arcs to a continental margin prior
to ~640 Ma. Mesoproterozoic (~1.0-1.6 Ga),
Paleoproterozoic (~1.8-2.2 Ga) and Archean
(~2.5, 3.0 Ga) zircon inheritance during the
main stage of continental arc magmatism are
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reported in the ~615 Ma Keppoch rhyolite
in Nova Scotia (Murphy et al., 1997), Horse
Cove Complex, Newfoundland (Skipton et
al., 2013) and ~570-560 Ma granites in SW
Poland (Mazur et al., 2010). Neodymium
isotopic signatures of coeval, crustally derived
volcanic and plutonic rocks in Avalonia are
also testament to the transition to a continental
arc environment between ~650-600 Ma
(Nance and Murphy, 1994, 1996).

8.24 Provenance and paleogeography
of Avalonia during the late Ediacaran-
Ordovician

Continental reconstructions for the late
Neoproterozoic-early Paleozoic frequently
place Avalonia along the Amazonian margin
of Gondwana (Stampfli and Borel, 2002;
Scotese, 2004; Nance et al.,, 2008), with
some authors suggesting a Baltican or
insular location (Landing, 1996a; Thompson
et al, 2012; Keppie and Keppie, 2014).
The detrital zircon hafnium array from the
Ediacaran (Georgeville Group), Cambrian
and Ordovician sedimentary rocks allow the
paleogeographic scenarios to be tested.

The spread of detrital zircon ages (0.8-
0.6 Ga, 1.0-2.1 Ga, 2.5-2.8 Ga) preserved in
the Ediacaran Georgeville Group indicate that
the sequences are not likely to be recycled
solely from the underlying Avalonian rocks
(i.e. Gamble Brook Fm., Westboro Fm., Fotino
Schist). If this were the case, it is expected
that a similar U-Pb-Hf zircon spectra to that
of the Gamble Brook Fm would be evident
in the ~610-480 Ma sedimentary rocks.
Although an isotopically similar spread of
Mesoproterozoic-mid Paleoproterozoic (~1.0-
2.1 Ga) zircons are indeed found in the younger
(~610-480 Ma) Avalonian sequences, they are
accompanied by Archean zircons (~2.5-3.0
Ga) and the dominant Neoproterozoic (0.8-0.6
Ga) arc-related populations. The appearance of
the Archean zircons suggests the introduction
of an ancient cratonic source by the Ediacaran
deposition of the Georgeville Group (~620-
607 Ma). Therefore, the Georgeville Group

is interpreted to have been sourced from a
mixture of components, including recycling
of the underlying basement (i.e. the Gamble
Brook Fm), the adjacent active-arc system and
an Archean cratonic source.

An early Neoproterozoic “gap”
(~900-800 Ma) in the late Neoproterozoic-
Ordovician Avalonian isotopic array is
important, because it is an interval of zircon
generation associated with the Amazonian
Goids magmatic arc. A period of mixing
between juvenile and Paleoproterozoic (~2.4-
2.2 Ga) crust at ~1050-900 Ma typical of
Amazonia is also not evident in the Avalonian
array (Fig. 6). If the Avalonia continent docked
along the Amazonian margin during the late
Neoproterozoic it is necessary to explain
the absence of the ~1.1-0.8 Ga zircons that
characterise the Amazonian hafnium array
during this interval. A possibility is that the
Goids magmatic arc rocks were physically
obstructed from the arc-related basins. As the
northern Gondwanan margin is considered to
have hosted an Andean-style magmatic-system
during the ~640-550 Ma interval (Gutiérrez-
Alonso et al., 2003; Murphy et al., 2004b)
it is entirely possible that the topography of
the Neoproterozoic arc system restricted the
drainage into the basins. This is analogous to
the redirection of the ancestral Amazon River
system following the development of the
Andes (Mora et al., 2010; Sacek, 2014).

The hafnium isotopic array for the
Mesoproterozoic-Paleoproterozoic (~1.1-
2.2 Ga) detrital zircons found in the late
Neoproterozoic-Ordovician Avalonian rocks
is broadly comparable to both Amazonia
and Baltica. The Avalonian array contains
Paleoproterozoic detritus as old as ~2.25 Ga,
which can be linked to the Trans-Amazonian
array in Amazonia and not to the slightly
younger Svecofennian array at ~2.1 Ga.
However, the two intervals of increased
juvenile magmatism at ~1.50-1.45 Ga and
~2.0 Ga in the Avalonian array match closely
with events in Baltica; including anorogenic
Fennoscandian rapakivi-granitic intrusions
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(~1.6-1.45 Ga, references) and -early
Svecofennian (Sarmatian) juvenile granites
(~2.0 Ga, Lahtinen et al., 2002; Shchipansky
et al., 2007). Lastly, the hafnium isotopic
character of the Archean (~2.5-3.0 Ga) zircons
is such that derivation from either Baltica or
Amazonia is feasible (Fig. 11) and cannot be
used to distinguish a source craton.

Therefore, although the hafnium
isotopic record of arc-related zircons
support the collision of the Avalonia to a
continental margin at ~640 Ma (Fig. 6 and
Fig. 7), the hafnium isotopic arrays for the
Mesoproterozoic,  Paleoproterozoic  and
Archean detrital zircons in the Georgeville
Group, Cambrian and Ordovician rocks
cannot be used to confidently distinguish
which cratonic margin this was. The hafnium
isotopic evidence for provenance from either
Amazonia or Baltica is somewhat equivocal
due to the similarities between the Baltican
and Amazonian arrays. A further complication
is the recycling of the Baltican basement
inherited during the early Neoproterozoic
(~975-800 Ma Gamble Brook Formation,
present study), in the Ediacaran-Ordovician
rocks.

8.3 lberia

8.3.1 Saharan metacraton provenance for
autochthonous NW Iberia

Autochthonous NW Iberia (CZ, CIZ,
WALZ) rocks record a relatively consistent
detrital zircon spectrum between the Ediacaran
and Silurian, dominated by Ediacaran (635-
550 Ma), Cryogenian (850-635 Ma), Tonian-
Stenian (0.85-1.20 Ga), mid Paleoproterozoic
(~1.9-2.2 Ga) and early Archean (2.5-2.8 Ga)
sources (present study, Pastor-Galan et al.,
2013; Fernandez-Suarez et al., 2014; Shaw
et al., 2014; Gutiérrez Alonso et al., 2015).
However, an exception to this trend occurs
during the interval between the Ediacaran and
Cambrian and has been recognised in many
geodynamic and paleogeographic studies
in Iberia (Fernandez-Suarez et al., 2000;

Fernandez-Suarez et al.,, 2002; Gutiérrez-
Alonso et al., 2003; Diez Fernandez et al.,
2010; Diez Fernandez et al., 2012; Pereira et
al., 2012; Talavera et al., 2012; Fernandez-
Suarez et al., 2014; Orejana et al., 2015;
Zimmermann et al., 2015). Lower-middle
Cambrian rocks in the Cantabrian and Central
Iberian Zones (sample ODI1 and OD3,
Fernandez-Sudarez et al., 2014; upper Herreria
Formation, Zimmermann et al., 2015) record
comparatively minor to absent abundances
of Tonian-Stenian (0.85-1.20 Ga) zircons;
which is in contrast to the upper Ediacaran
rocks where these grains form a significant
population  (10-20%). Coeval Lower
Cambrian sedimentary rocks deposited in the
Upper Allochthon (Fig. 6, sample ACO-12-
60; Carino gneisses, Albert et al., 2014) also
yield similar detrital zircon records dominated
by mid-late Neoproterozoic (850-550 Ma) and
mid Paleoproterozoic zircons (1.8-2.2 Ga).

The anomalous upper Ediacaran-
Lower Cambrian change in provenance
recorded in some Iberian rocks coincides
with major adjustments in the geodynamics
of the northern Gondwanan margin. It follows
the opening of the Iapetus Ocean (~570 Ma,
Cawood et al., 2001), precedes the opening
of the Rheic Ocean, coincides with the
termination of magmatism in the Avalonian-
Cadomian arc and with the transition towards
a stable platform along northern Gondwana
(see Nance et al., 2008; Nance et al., 2012
and references therein). The apparent
shift in provenance has been tentatively
linked to extension-related exhumation on
the Gondwanan side of the active margin
exposing an older ~2.0 Ga basement terrane
(Fernandez-Suérez et al., 2014). As the present
study does not include any hafnium data from
the Lower Cambrian rocks (e.g. OD1, OD3,
Fernandez-Sudrez et al., 2014) that display
the anomalous shift in provenance, we cannot
contribute a new perspective to the ongoing
debate regarding this. We instead focus on
the hafnium isotopic array for the dominant
detrital zircon populations seen in the majority
of the Ediacaran to Silurian autochthonous
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Iberian rocks.

The hafnium isotope array for NW
Iberia (Fig. 8a) records evidence for two
periods of continental arc-type magmatism
during the Neoproterozoic. A vertical array at
~1100-900 Ma is indicative of mixing between
ajuvenile depleted mantle source and Archean
crust (TDMC = ~3.1 Ga). The shift towards
a comparatively juvenile population between
~850-700 Ma suggests the transition from a
continental arc to an oceanic arc (c.f. Smits
et al.,, 2014), although the trend is subtle.
Between ~700-550 Ma continental-arc type
magmatism was re-established and involved
reworking of significant portions of Archean
(eHf=+15 to -40, TDMC= 3.8-3.3 Ga) as well
as juvenile depleted mantle material.

The  NW Iberia hafnium array
favourably compares with the SMC or Congo
Craton (Fig. 10), as both record two vertical
mixing arrays during the Neoproterozoic.
However, the presence of additional
Mesoproterozoic ~ zircon populations in
the Congo Craton distinguishes the two
regions (Fig. 10d). Cryogenian passive
margin sequences on the SW Congo contain
predominantly ~1.1-1.0 Ga grains, and a
minor 1.4-1.2 Ga population. As the Iberian
Ediacaran rocks are devoid of ~1.4-1.2 Ga
zircon grains, the Congo Craton is a less
feasible option than the SMC for provenance
in the Ediacaran.

Our data support the interpretation
that autochthonous NW Iberia occupied a
paleoposition adjacent to the SMC in the
Late Neoproterozoic, reinforcing the models
proposed by Diez-Fernandez et al., (2010)
and Fernandez Suarez et al., (2014). Other
basement regions of Europe also record the
Tonian-Stenian (0.85-1.20 Ga) population,
so we propose that these terranes were also
derived from the SMC and may have also
occupied a position along the northeastern
Gondwanan margin (Fig. 12). Included are,
the Peloritani Mountains, Sicily (Williams
et al., 2012), the external Hellenides, Greece

(Kydonakis et al., 2014; Dorr et al., 2015), the
Serbo-Macedonian Massif (Meinhold et al.,
2010), the Alpine basement in Switzerland and
Austria (von Raumer et al., 2013), the Eastern
Carpathians (Balintoni and Balica, 2013) and
the Western Carpathians, Slovakia (Vozarova
etal., 2012).

8.3.2 Provenance of the Upper Allochthon,
Iberia

The relationship of the so called
‘exotic’ allochthonous complexes with the
autochthonous and parautochthonous zones
of NW Iberia is contentious (Barreiro et al.,
2007; Murphy and Gutiérrez-Alonso, 2008;
Catalan et al., 2009; Diez Fernandez et al.,
2010). The Basal Units of the allochthonous
complexes have been interpreted to represent
the most outboard region of the Gondwanan
margin, and the detrital zircon record of the
Basal Units (Diez Fernandez et al., 2010) is
comparable to the autochthonous Gondwanan
sequences (Fernandez-Suarez et al.,, 2002;
Gutiérrez-Alonso et al., 2003; Catalan et
al., 2004; Catalan et al., 2008) in that they
record similar Tonian-Stenian (0.85-1.20 Ga),
Paleoproterozoic (~2.2-1.8 Ga) and Archean
(~2.8-2.5 Ga) zircon populations. Accordingly,
they are likely to also have been derived from
the SMC as discussed above. However, the
zircon record from the Cambrian rocks in the
Upper Allochthon, and the Devonian ophiolite
complexes, provide a strong contrast with
those in the autochthonous zones.

The Upper Allochthon of Iberia is
generally interpreted to have developed as
part of the Cadomian-Avalonian arc/back arc
system in the late Neoproterozoic adjacent to
the West African Craton (WAC) (see Quesada,
1991; Abati et al.,, 2007 and references
therein; Albert et al., 2014). The varying but
small percentages of Mesoproterozoic detritus
in the Neoproterozoic-Cambrian rocks are
interpreted to have been derived from distant
cratons to the east, such as the SMC or ANS
(Albert et al., 2014).
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Figure 12

A schematic diagram of the Variscan-Appalachian orogen that indicates the hafnium isotopic affinity of
the basement rocks to the West African Craton, Saharan Metacraton or Baltica. “Avalonian” compon-
ents record an early Neoproterozoic (~975-800 Ma) Baltican history, which then formed the basement
to the main stage of the Avalonian arc in the later Neoproterozoic (~750-550 Ma). Autochthonous Iberia
records an affinity with the SMC from the late Ediacaran (~550 Ma) and the SMC isotopic signature
is recognisable in sequences as young as the Silurian. On the basis of the available detrital zircon
hafnium isotopic data for the Armorican terranes and parts of Mediterranean Europe, the late Neo-
proterozoic-early Cambrian affinity to the West African Craton or the Saharan Metacraton have been
interpreted. Where existing hafnium data is not available, detrital zircon geochronology has been used
to tentatively link the Neoproterozoic-Cambrian rocks to either the SMC or WAC on the basis of distinct
zircon populations. Sequences derived from the SMC are associated with Tonian-Stenian zircon popula-
tions (0.85-1.2 Ga) and those derived from the WAC record a magmatic gap between ~1.8-0.75 Ga. The
numbers refer to the following geochronological/isotopic studies: 1) Williams et al., (2012), 2) Dorr et
al., (2015), 3) Kydonakis et al., (2014), 4) Meinhold et al., (2010), 5) Ustaomer et al., (2012), 6) Car-
rigan et al., (2006), 7) Vozarova et al., (2012), 8) Balintoni et al., (2014), 9) Von Raumer et al., (2013),
10) Ustaomer et al., (2012), 11) Balintoni & Balica (2013), 12) Zlatkin et al., (2014), 13) Avigad et al.,
(2012), 14) Linneman et al., 2004, Drost et al., (2011), 15), Eckelmann et al., (2014) 16) Linneman et
al., 2012.

The compilation of hafnium data for al., 2011; Arenas et al., 2013) are similar to
the Upper Allochthon (Fig. 8b) cannot be the eHf arrays for the Mesoproterozoic detrital
easily reconciled with derivation from the data from both the Cabo Ortegal complex
WAC (Fig. 11a). The data from the Devonian (Albert et al., 2014) and the Carreiro shear
Moeche and Purrido ophiolites (Martinez et zone (Fig. 8b). They are likely to have all
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shared the same continental source, which
is distinct from the WAC and other northern
Gondwanan terranes.

Notable differences between the WAC
and the array from the Upper Allochthon
include: (1), the Mesoarchean hafnium
isotopic array (~3.0-2.4 Ga) that indicates
juvenile magmatism at ~3.0 Ga, followed by
reworking along a typical crustal evolution
array between ~3.0-2.4 Ga (Fig. 8b). The
equivalent interval (~3.0-2.4 Ga) in the
WAC is not comparable (Fig. 1la), and
suggests that juvenile magmatism occurred
sporadically between ~3.15 and 2.6 Ga, and
was the dominant process at ~2.5 Ga. (2),
The “Eburnian” zircon peak at ~2.0 Ga is
short-lived in the hafnium array from the
Upper Allochthon compared to the Eburnian
event recorded in the WAC. The total duration
recorded by the detrital zircon grains in the
Upper Allochthon occupies the interval
~2.18-1.97 Ga, and is characterised by early
juvenile, oceanic-arc magmatism (~2.18-2.1
Ga), followed by an episode of continental-
arc type magmatism at~2.1-1.97 Ga, recorded
by a distinct vertical mixing array (eHf= +12
to -17). In contrast, the Eburnian event in
the WAC extends from ~2.25 to ~1.8 Ga and
indicates a period of juvenile magmatism with
minor crustal mixing at ~2.25 Ga, followed
by recycling of the ~2.25 Ga juvenile material
with an increased crustal input between ~2.2-
1.8 Ga.

Perhaps the most distinguishing feature
of the hafnium array in the Upper Allochthon
is the presence of Mesoproterozoic zircons
in the sedimentary rocks and the Devonian
‘ophiolite’ complexes. The Mesoproterozoic
grains (~1.0-1.6 Ga) form ~4% of the total
detrital spectra of the Carifio Gneisses and
11% of the Carreiro Schist. They are present
in both the Purrido and Moeche ‘ophiolites’
and overlap in hafnium isotopic space with
equivalent zircons from the Carifio Gneisses
and Carreiro schist (Fig. 8b). The Carifo
Gneisses are also characterised by ~1.6-
1.8 Ga Sm-Nd model ages (Albert et al.,
2014), suggesting the bulk components of

the protolith rocks could be sourced from a
Mesoproterozoic-Paleoproterozoic terrane.
Given the occurrence of both juvenile and
evolved zircons in the ca. 400 Ma ophiolites
(Fig. 8b), the juvenile zircons, with ages
close to the crystallization age of the Purrido
ophiolite are likely to represent the mantle-
derived component of the magmatic system.
The Mesoproterozoic zircons are interpreted
as xenocrysts (Martinez et al., 2009, Arenas
et al., 2013), implying the magma traversed
through continental crust.

Arenas et al.,, (2013) consider the
evolved ~400 Ma zircon grains in the
Moeche Ophiolite to be inherited into the
mafic magmas from a separate continental
source, and cite the xenocrystic morphology
and oscillatory zoning of the grains as
justification. Additionally, the authors also
consider the normal mid-ocean-ridge basalt
(N-MORB) to transitional island arc tholeitic
geochemistry of the Moeche greenschists to
be incompatible with a continental source,
and therefore must have a mantle provenance.
However, Pearce (1996) maintains that
MORB-island arc transitional basalts can also
be emplaced in evolved marginal (backarc)
basins or attenuated continental settings. The
eHf arrays for the Moeche and the Purrido
ophiolites Devonian ‘ophiolites’ strongly
suggests an environment in which mafic
magma intruded a late Mesoproterozoic-early
Paleoproterozoic crust. Mafic rocks of the
Devonian ophiolites have suprasubduction
zone geochemical signatures (Pin et al., 2002;
Martinez et al., 2011; Arenas et al., 2013),
indicating emplacement in a back-arc setting.

The hafnium isotopic data presented
herein cast doubt on the widely assumed WAC
derivation ofthe Upper Allochthon. The terrane
with the most similar eHf isotopic record is
Avalonia (Fig. 12). The Paleoproterozoic
(~2.1-1.9 Ga) tectonomagmatic event recorded
in Avalonian zircons overlaps in hafnium
space with that in the Upper Allochthon, and
the Mesoproterozoic (~1.6-1.4 Ga) zircon
grains from the Upper Allochthon are also
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consistent with an Avalonian source. Although
no true basement is exposed in Avalonia,
hafnium data presented here for Avalonia
(see Fig. 6 and Fig. 7) and Sm-Nd whole rock
data from Neoproterozoic igneous rocks in
East Avalonia indicate a Mesoproterozoic-
Paleoproterozoic basement (~1.2-1.8 Ga,
see Nance and Murphy, 1994 and references
therein).

The range of inherited zircons in the
Devonian ophiolite requires the interaction
with a Mesoproterozoic-Paleoproterozoic
(~1.4-1.9 Ga) basement. A similar situation
exists in the Cenozoic island arcs of Vanuatu,
where basaltic arc rocks contain abundant
inherited zircons of crustal affinity (Buys et al.,
2014). The proto-Vanuatu arc is interpreted to
have formed in response to Cretaceous back
arc extension and rifting along the eastern
margin of Australia, and is now located ~2000
km east of mainland Australia (Schellart et
al., 2006). Basaltic island arc magmas were
emplaced in an extended ribbon of continental
crust leading to an accumulation of inherited
zircons that match the igneous rock record of
northern Australia (Buys et al., 2014). This
evolved back arc setting could represent a
potential modern analogue for the Upper
Allochthon. Therefore, the Upper-Allochthon
could have hosted island-arc type magmatism
built on extended continental lithosphere
during the Devonian (~400 Ma); a tectonic
scenario that is able to explain the mixed
juvenile-crustal isotopic signature and the
Mesoproterozoic-Archean inherited zircons
of the Devonian ophiolites.

8.4 Provenance for the Armorican terranes

The Armorican terranes include most
of the Bohemian Massif, the Massif Centrale
of France and the Armorican Massif (Fig. 1).
The boundary between WAC-derived terranes
and Baltica-derived terranes (Avalonia) is
located between the Mid German Crystalline
Rise (MGCR) and the Rheno-Hercynian Zone
in central Germany. The Rheno-Hercynian
Zone of the Bohemian Massif is generally
considered to be part of the ‘Avalonian’

ribbon (Tait et al., 2000; Stampfli and Borel,
2002; Linnemann et al., 2008), whereas
the remainder of the Bohemian Massif to
the south is considered here to be part of
the “Armorican” terranes. We compile and
interpret the available U-Pb-Hf zircon data for
the first time to assess its likely provenance
in the late Neoproterozoic-early Cambrian.
The detrital zircon hafnium signature is
consistent throughout the Armorican terranes
and reinforces the common interpretation that
the late Neoproterozoic-early Cambrian rocks
in the Armorican terranes are derived from the
WAC (Linnemann et al., 2008, Fig. 12).
Gerdes and Zeh (2006) analysed 42
detrital zircon grains from a Cambrian
metasedimentary rock in the MGCR in the
Bohemian Massif for U-Pb-Hf isotopes. The
MGCR separates the Saxo-Thuringian Zone
and Moldanubian Zone from the Rheno-
Hercynian Zone in central Germany, and
marks the collision zone between ‘Avalonian’
components to the north and ‘Armorican’
components to the south (Linnemann et al.,
2004; Zeh and Gerdes, 2010). The detrital
zircon spectrum in the MGCR is dominated
by Cryogenian-Cambrian (~720-500 Ma) and
Paleoproterozoic (~1.8, 2.1-2.0 Ga) grains,
with minor Archean populations (~2.5-2.8
Ga). The limited hafnium array suggests a
linkage with the WAC.

The Saxo-Thuringian Zone, located
south of the MGCR in central Germany,
contains Late Neoproterozoic-early Cambrian
sequences that yield Paleoproterozoic (~1.8-
2.2 Ga) and Archean (~2.5-3.0 Ga) detritus.
The zircons overlap with the age and
hafnium isotopic array of the West African
Craton (Linnemann et al., 2014). Similar
Paleoproterozoic and Archean grains have been
found in previous U-Pb detrital zircon studies
from the Saxo-Thuringian Zone, however no
hafnium analyses were conducted (Linnemann
etal.,2004; Linnemannectal.,2007; Linnemann
et al., 2008). Similarly, Ediacaran siliciclastic
rocks of the Tepla-Barrandian complex farther
south in the Bohemian Massif also preserve
dominant Neoproterozoic (~700-550 Ma),
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Paleoproterozoic (~2.1-1.8 Ga) and Archean
(2.8-2.5, 3.2 Ga) populations (Drost et al.,
2011), a detrital zircon signature interpreted to
be consistent with the WAC.

The Armorican Massif (France)
is composed of Neoproterozoic-early
Cambrian “Cadomian” magmatic and

volcaniclastic rocks which overlie a composite
Paleoproterozoic (Icartian gneiss, ~2.0 Ga)
basement (Chantraine et al., 2001). ¢Hf data
from the ~2.0 Ga zircons in the Icartian gneiss
overlap with ~2.0 Ga zircons in the WAC
compilation (Fig. 11a). The link between pre-
Cadomian arc “Armorican” basement and the
WAC are also reinforced by similar whole rock
Nd isotopic compositions for the ~2.0 Ga rocks
(Samson and D’Lemos, 1998). Detrital zircons
from late Neoproterozoic sedimentary rocks
in the north Armorican domain of Brittany
are devoid of Mesoproterozoic zircons and
have also been interpreted to indicate a WAC
provenance (Fernandez-Suarez et al., 2002).

9. CONCLUDING REMARKS

We present new hafnium isotopic
detrital zircon data from Neoproterozoic-
Silurian sequences in Avalonia, autochthonous
Iberia and the Upper Allochthon of Iberia.
We compile this data with existing hafnium
isotopic data from Avalonia, Iberia and the
Armorican terranes to reassess the provenance
of these regions from Gondwana and Baltica
during the late Neoproterozoic.

We have compiled comprehensive
detrital and magmatic zircon hafnium
isotope arrays from the West African Craton,
Saharan Metacraton, Arabian-Nubian Shield,
Amazonia and Baltica to demonstrate that they
are distinctive in character and provide insight
into the crustal evolution of the basement
rocks in the Appalachian-Variscan orogen.
We demonstrate that the hafnium arrays can
be used to trace detrital zircons in exotic
continental terranes now located within the
Appalachian-Variscan orogenic belt to their
cratonic sources and provide a more detailed

resolution than Sm-Nd whole rock isotopic
studies.

The hafnium isotopic data suggest that
Avalonia inherited a hitherto unrecognized
Baltican hafnium isotopic signature in
the early Neoproterozoic (~975-750 Ma)
during the deposition of the Gamble Brook
Formation. The hafnium array indicates that
the oceanic arc was initially built on a sliver
of Paleoproterozoic crust (~1.9 Ga) that had
previously separated from Baltica. Early
oceanic arc magmatism commenced at ~800-
760 Ma and involved a mixture of juvenile
material with “Grenvillian-type ~2.0-1.0 Ga
crust. Together, these rocks form the basement
to the Late Neoproterozoic Avalonian arc. At
~640 Ma the hafnium isotope array becomes
more evolved and indicates the introduction
of an older crustal component (Archean),
consistent with the accretion of Avalonia to
a continental margin by that time. During
the late Neoproterozoic-early Ordovician,
Avalonian rocks inherited detritus recycled
from the underlying Baltica-derived basement,
the proximal ~760-550 Ma arc rocks and an
Archean craton (~2.5-2.8 Ga). The hafnium
array from Edicaran-Ordovician rocks has
isotopic similarities to both Baltica and/or
Amazonia, and provenance from either source
cannot be confidently interpreted on the basis
of the present hafnium isotope arrays.

The autochthonous zones of Iberia have
a clear affinity with the Saharan Metacraton
in the late Neoproterozoic-Ordovician. The
late Neoproterozoic-Cambrian rocks of the
Upper Allochthon (NW Iberia) do not display
an affinity to cratonic Gondwana; instead the
hafnium isotopic array is closest is that of
Avalonia. A compilation of published U-Pb-
Hf zircon data from the Armorican terranes
(Armorican Massif, Massif Centrale of France
and the Bohemian Massif) reinforces a strong
link to the West African Craton in the late
Neoproterozoic.

The data presented here highlight the
power of hafnium isotope arrays for defining
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the crustal evolution of ancient cratonic
regions. Thesearrays can be used toisotopically
“fingerprint’ a craton, and we demonstrate
the arrays are traceable through many stages
in the evolution of mobile microcontinental
terranes. The data have direct implications
for late Neoproterozoic paleogeography, the
geodynamic evolution of the Rheic Ocean and
subsequent amalgamation of Pangea.
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Gondwanan basement terranes of the Variscan—Appalachian Orogen

Chapter 2
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