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ABSTRACT
Truth-finding is the fundamental technique for corroborat-
ing reports from multiple sources in both data integration
and collective intelligent applications. Traditional truth-
finding methods assume a single true value for each data
item and therefore cannot deal will multiple true values
(i.e., the multi-truth-finding problem). So far, the existing
approaches handle the multi-truth-finding problem in the
same way as the single-truth-finding problems. Unfortu-
nately, the multi-truth-finding problem has its unique fea-
tures, such as the involvement of sets of values in claims,
different implications of inter-value mutual exclusion, and
larger source profiles. Considering these features could pro-
vide new opportunities for obtaining more accurate truth-
finding results. Based on this insight, we propose an inte-
grated Bayesian approach to the multi-truth-finding prob-
lem, by taking these features into account. To improve
the truth-finding efficiency, we reformulate the multi-truth-
finding problem model based on the mappings between sources
and (sets of) values. New mutual exclusive relations are de-
fined to reflect the possible co-existence of multiple true val-
ues. A finer-grained copy detection method is also proposed
to deal with sources with large profiles. The experimental
results on three real-world datasets show the effectiveness of
our approach.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Management—
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1. INTRODUCTION
Integrating data from multiple sources has been increas-

ingly becoming a commonplace in both Web and the emerg-
ing Internet of Things (IoT) applications to support collec-
tive intelligence and collaborative decision making [4]. Un-
fortunately, it is not unusual that the information about
a single item comes from different sources, which might
be noisy, out-of-date, or even erroneous. It is therefore of
paramount importance to resolve such conflicts among the
data and to find out which piece of information is more reli-
able [15]. For example, in a recent controversy on Obama’s
birthplace1, some people rumored Kenya, while others in-
sisted on Hawaii. Clearly, such conflicts can be extremely
disturbing and misleading to the users who want to find the
specific facts on something or somebody they concern [12].
Solutions to this challenge are generally recognized as truth-
finders. Different from methods that seek non-factual truth
(e.g., aggregating users’ rating on a product, or analyzing
people’s opinions on a recent event), truth-finders aim at dis-
covering the factual truth, such as the birthplace of Obama
and the capital city of the United States.

While the single-truth-finding problem (STF)—which aims
at finding the single true value for an item—has been widely
studied, a more general case, where multiple true values
(or multi-truth) might exist for a single item, is rarely ex-
plored [24]. In fact, multi-truth scenarios commonly exist
in our real lives. For example, a book is usually authored
by several people; a conference may have several deadlines;
and the presidents of the United States involve a long list of
names. We recognize the discovery of multiple true values
(for either one or multiple data items) as the multi-truth-
finding problem (MTF), of which STF can be treated as a
special case. We identify the main challenges on solving
MTF as follows:

• Unknown quality on data sources. The quality of data
sources (e.g., trustworthiness) varies and is usually un-
known a priori to truth-finding methods. For exam-
ple, no website guarantees how much information it

1http://beforeitsnews.com/obama-birthplace-controversy/
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publishes is accurate. Without assessing and differen-
tiating the quality of data sources, truth-finding ap-
proaches could be easily misled by low quality and de-
pendent sources2.

• Poor availability of the ground truth. Obtaining the
ground truth is a nontrivial task by itself due to the
possibly numerous sources and data items involved.
For example, it took tremendous efforts to setup a gold
standard for the experimental book-author dataset—
by manually checking the covers of each book [21], not
to mention the more practical tasks like consolidating
millions of book records from different libraries. The
difficulty in obtaining the ground truth suggests an
unsupervised approach to the truth-finding problem.

• Unique multi-truth-finding features. The multi-truth-
finding problem (MTF) has unique features that should
be properly addressed. For instance, instead of be-
ing totally different or exactly the same, the values
claimed by different sources may overlap. Also, claim-
ing one value for an item does not necessarily imply
disclaiming all the other values for the item, because
the claimed value may only cover the truth partially.
All these features require special consideration when
developing truth-finding solutions.

In this paper, we propose an integrated Bayesian approach
to address the above challenges. In a nutshell, we make the
following main contributions:

• We propose to reformulate the problem model for multi-
truth discovery based on the relations between sources
and values, and present corresponding methods for
grouping sources and values to enable the reformula-
tion. The reformulation can significantly reduce the
computation load when solving the multi-truth-finding
problem, without sacrificing the accuracy of the truth-
finding results.

• We develop an integrated Bayesian model, which com-
prehensively incorporates novel methods on three key
aspects, namely source/value grouping, source depen-
dency, and inter-value mutual exclusion, to solve MTF.
In particular, we define a method for calculating the
effect of mutual exclusion between different values, by
taking into account the agreement occurring by chance,
similar to what Kappa coefficient does [6]. We also
develop a finer-grained copy detection method to infer
source dependencies. The new method is more efficient
and especially suitable for sources with large profiles
(i.e., sources that claim lots of values).

• We empirically show that our approach outperforms
traditional methods using three large real-world data-
sets. We also study the impact on the effectiveness of
the proposed approach of the three technical aspects
in the Bayesian model.

The rest of the paper is structured as follows. Section 2
reviews the related work. Section 3 reformulates the multi-
truth-finding problem. Section 4 presents the details of our
solution, including the integrated Bayesian model and the

2Dependent sources are those sources that rely on other
sources to provide data, e.g., copiers or aggregators.

related algorithms. Section 5 reports our experimental re-
sults. Finally, Section 6 provides some concluding remarks.

2. RELATED WORK
Over the last few years, truth finding has become an active

research area [21, 3, 5, 24, 9, 11]. Early truth-finding meth-
ods either take the mean or median (for numerical data) or
employ the majority voting (for categorical data) to predict
the truth. These methods treat every source equally and ne-
glect their quality differences [1]. Recent approaches differ-
entiate sources by giving more credit to trustworthy sources
and propose solutions for the quality estimation of data
sources. TruthFinder [21] alternately computes two mea-
sures, the confidence of fact (here, facts refer to values) and
the trustworthiness of source, from each other through an
iterative procedure. Pasternack et al. [16] propose Average-
Log, Investment and PooledInvestment to avoid overestimat-
ing the trustworthiness of those sources that make more
claims. Galland et al. [5] propose Cosine and 2-Estimates to
incorporate the mutual exclusion between categorical values.
In [5], the authors refine the 2-Estimates algorithm by in-
troducing a new measure, hardness of fact, to estimate how
hard in obtaining each fact. Truth-finding has also been
modeled as optimization problems. The Conflict Resolution
on Heterogeneous Data (CRH) framework recently proposed
by Li et al. [11] models truth-finding as the problem of min-
imizing the weighted deviation of multi-source inputs from
the estimated truth. Yin and Tan [22] employ a different
optimization model and propose a semi-supervised solution.

Most above approaches have the disadvantage that a sin-
gle evaluation result (e.g., the confidence of fact of a value)
alone cannot indicate whether the value is true, which is
also the reason that we have to adapt some of the exist-
ing methods in Section 5.2 for MTF. For better interpre-
tation of evaluation results, Bayesian analysis [3] is intro-
duced as a principled approach to the truth-finding problem,
which yields explicit probabilistic estimations. Most current
Bayesian-based approaches assume a prior distribution of la-
tent variables, such as a uniform distribution over a single
type of values (e.g., false values) [3] or distributions of all
latent variables [7, 23, 24, 9]. Many of them develop proba-
bilistic graphical models for handling categorical values [24],
numerical values [23], ordinal values [9] and knowledge base
triples [7]. Waguih et al. [20] summarize and experimentally
evaluate these truth-finding methods.

Despite these efforts, most existing studies focus on single-
truth-finding, yet little attention has been paid to the more
general multi-truth-finding problem (MTF). The only work
that we are aware of dealing with MTF is the Latent Truth
Model (LTM) proposed in [24]. Based on a probabilistic
graphical model, LTM makes strong assumptions on the
prior distributions of latent variables, rendering the modeled
problem intractable and inhibitive to incorporating various
considerations. Distinguishing from previous approaches,
our approach features an integrated Bayesian model based
on a reformulated MTF model. Besides considering the
unique features of MTF, our work also differs from the LTM
approach [24] in two aspects: i) no assumption on prior dis-
tribution of latent variables and ii) new measures for bet-
ter data source quality estimation. Both the reformulation
model and no requirement of prior distribution of latent vari-
ables help reduce the computational load, which has been
validated in our experimental studies (see Section 5).
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3. MULTI-TRUTH-FINDING PROBLEM

3.1 The Problem Model
In general, a multi-truth-finding problem (MTF) involves

four basic inputs: i) data items, the true values of which
are to be discovered, e.g., the author-names of a book, ii)
sources, which provide values on data items, e.g., a website
that publishes the information on books and authors, iii)
values, e.g., the author-names published by a website, and
iv)mappings among the above elements, e.g., which websites
publish which author’s which books.

For each data item, MTF aims at identifying an opti-
mal subset of values from the multi-source inputs to ap-
proximate the truth. Multi-truth-finding differs from single-
truth-finding in that each source may claim multiple values—
instead of a single value—on a single item, and multiple true
values may hold on a single item.

Suppose m sources, S = {s1, s2, . . . , sm}, provide values
on n items, O = {o1,o2,. . .,on}. We denote by Si the sources
that provide values on item oi, O(si) the items on which a
source si provides values, and Vij the values provided by
source si on item oj . To describe the mappings between
sources and values, we further denote by Si(v) the data
sources that provide a specific value v on item oi, and Vi(s)
the values provided by a specific source s on item oi.

3.2 Reformulating the Problem Model
MTF is inherently difficult and prohibitive to be solved

directly. Given a set of possible true values V, any element
of the power set of V, instead of any single value of V in
STF, could be the actual truth in MTF. Intuitively, MTF
can be first transformed into its single-truth counterparts to
be solvable by the existing approaches. However, a direct
transformation could excessively expand the problem scale
and the unique features of MTF may not be preserved.

To address these problems, we propose to reformulate the
MTF model by grouping sources and values based on their
mapping relationships over all data items. For ease of illus-
tration, we depict the source-value mappings under different
models of MTF with respect to a single data item in Fig-
ure 1. Each subfigure shows a bipartite graph/hypergraph
that maps sources (or sets of sources) and values (or sets of
values) via edges. The three models are as the following:

• The multi-mapping model (Figure 1a): A many-to-one
mapping between sources and sets of values, which rep-
resents the original MTF model as described in Sec-
tion 3.1.

• The single-mapping model (Figure 1b): A many-to-
many mapping between sources and values, which rep-
resents the result of casting an MTF directly to its
single-truth counterparts.

• The group-mapping model (Figure 1c): A many-to-
many mapping between groups of sources and groups
of values, which represents our reformulated model.

Under the single-mapping model (Figure 1b), edges be-
tween sources and sets of values can be simply replaced with
the edges between sources and individual values (e.g., the
three edges between data source s2 and values v3, v4, v5).
Interestingly, the single-truth-finding problem (STF), which
is a many-to-one mapping between sources and values on a

Figure 1: An example illustrating four sources
claiming six potential true values under different
models of the multi-truth-finding problem.

single item, immediately transforms to the single-mapping
model when multiple items are concerned. This explains
why the single-mapping model can be directly solved by ex-
isting single-truth-finding methods.

Though viable, transforming an MTF directly to the single-
mapping model tends to result in an exploded problem scale,
represented by a multiplied number of nodes in the result-
ing graph. This could in turn complicate the computation
load of the truth-finding methods. As an example, the three
nodes in the right side of Figure 1a—which are actually three
overlapping sets of values—are decomposed into six nodes
in Figure 1b. To reduce the resulting problem scale, instead
of decomposing each set into single values, we group the
sources (resp., values) that share the same mapping schema
in Figure 1b. Each source-group represents the maximum
number of sources that claim the same set of values. Simi-
larly, each value-group represents the maximum number of
values that are claimed by the same set of sources. As an
example, sources s3 and s4 in Figure 1c claim the same set
of values {v4, v5, v6}, so s3 and s4 are grouped together as a
source-group g3. While v6 is solely claimed by s3 and s4, v1
and v2 are claimed by s1, so, v1 and v2 are grouped together
as a value group c1, and v6 alone as a group c4. We can
see that after the grouping, the node size is reduced from 10
(4:6) in Figure 1b to 7 (3:4) in Figure 1c.

We introduce new concepts of source-group and value-
group to define our reformulated problem model. In par-
ticular, we denote by G the set of source-groups, C the set of
value-groups, Gn the source-groups that claim values on item
on, O(gk) the items on which a source group gk claims val-
ues, and Ckn the value-groups claimed by the source-group
gk on item on. To describe the mapping, we further denote
by Gn(c) the source-groups that claim a specific value-group
c on item on, and Cn(g) the value-groups claimed by a spe-
cific source-group g on item on.

Different from value-groups, each source-group represents
the joint strength of all the member sources. To represent
this joint strength, we add weights to the edges associated
with source-groups in Figure 1c. Given a data item on,
we define the weight on the edge between source-group g

and an associated value-group c as ω(g, c) = |g|, where c ∈
Cn(g), |g| is the number of sources contained in g. For the
example in Figure 1c, both the edges associated with g3
should be weighted by 2 because g3 contains two sources.
All the other edges are weighted by 1 because they each
contains only one source. After the weighting, each source-
group and each value-group will be considered as a single
node in the subsequent truth-finding process.
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4. THE TRUTH-FINDINGMODEL
In this section, we introduce the details of our approach,

including the methods on grouping sources and values, the
integrated Bayesian framework and the corresponding algo-
rithms. The main notations used in this paper are summa-
rized in Table 1.

4.1 Grouping Sources and Values
Grouping methods aim at reducing the scale of the truth

discovery problems. To this end, we expect each group to be
as large as possible, to maximally reduce the computation
load. Meanwhile, we expect the elements in each group to be
as similar as possible, so as to keep the computation simple.

In our approach, we group sources directly based on the
multi-mapping model for all data items, which is similar to
Figure 1a, but involves multiple data items. We first map all
distinct values to a Hash table, and then calculate the sum
of hash values regarding each source. If two sums turn out
equal, the corresponding sources are further compared with
respective to their claimed values. In this way, we grad-
ually assemble similar sources until all sources associated
with the same set of values are grouped together. In case the
hash values are non-additive, we designate a unique sequence
over all the different values, and group those sources that
map to the same subsequences. Values are grouped with re-
spect to each data item in three steps based on the resulting
source-groups. First, we transform the multi-mapping into
the single-mapping model, and then transform the source-
value mapping in the single-mapping model into the map-
ping between source-groups and values. Finally, the values
are grouped in the similar way as we group sources. The
time complexity of the grouping methods is O(|S||V|).

4.2 Integrated Bayesian Model
The Bayesian model estimates the a posteriori veracity of

values (i.e., latent variables) based on sources’ trustworthi-
ness (i.e., model parameters) and sources’ reports on poten-
tial true values (i.e., observations) by Eq.(1). The sources’
trustworthiness can in turn be assessed by the estimated
veracity.

P(a(c)|X ) =
P(X|a(c))P(a(c))∑

a∈{a(c),ā(c)} P(X|a)P(a)
(1)

Both the a priori veracity and sources’ trustworthiness
are manually defined, and the conditional probabilities are
calculated by:

P(X|a) =
∏

g∈G+(a)

τ (g)
∏

g′∈G−(a)

(1− τ (g′)) (2)

In our approach, we extend the basic Bayesian model by
incorporating the following considerations:

• Degree of claim, w(g, c), represents the weights on the
edges of the bipartite graph (defined in Section 3.2).
The concept is the co-product of reducing the problem
scale by using the source-grouping method.

• Confidence score, μ(g, c), is used to quantify the im-
pact of mutual exclusive relation between different cat-
egorical values on multi-truth-discovery. We develop
the corresponding methods to characterize the multi-
truth features (to be detailed in Section 4.3).

• Independence score, I(g, c), is specified to quantify the
impact of source dependency to multi-truth-discovery.
We develop a finer-grained copy detection method to
deal with sources with large profiles (to be detailed in
Section 4.4).

In addition, since combining positive and negative per-
spectives can help better distinguish between sources with
truth-sensitive and fault-sensitive behavioral features, we
use positive precision (τpp)—precision on true samples, and
negative precision (τnp)—precision on false samples, to re-
place τ in Eq.(2). We define the above two measures based
on the veracity score (σ(c)) of value-groups as follows:⎧⎨

⎩
τpp(g) =

∑
on∈O

∑
c∈Cn(g) σ(c)

∑
on∈O |Cn(g)|

τnp(g) =
∑

on∈O

∑
c′∈Cn(g) (1−σ(c′))

∑
on∈O

|Cn\Cn(g)|

(3)

We compute veracity score as the truth probability of
value-groups using the extended Bayesian model. We find
the degree of claim naturally resides over quality measures as
powers in the Bayesian model and should not be normalized—
the Bayesian model calculates the joint effect of sources by
multiplying their respective effects, and the multiplication
turns into a power function when all sources have equal ef-
fect. Indeed, the Bayesian model requires modeling all fac-
tors as powers because simple multipliers will be eliminated
during calculation. Therefore, we model above parameters
as powers over the quality measures in our model. Here, we
simply take the product of the different scores to represent
their joint effect, but leave more sophisticated combinations
of the scores to our future work. For simplicity, we synthe-
size the parameters into four factors:⎧⎪⎪⎨

⎪⎪⎩
f(g, c) = τpp(g)

ω(g,c)I(g,c)μ(g,c)

J (g, c) = (1− τnp(g))
ω(g,c)I(g,c)μ(g,c)

f̂(g, c) = (1− τpp(g))
ω(g,c)I(g,c)μ(g,c)

Ĵ (g, c) = τnp(g)
ω(g,c)I(g,c)μ(g,c)

(4)

Given a value-group c, we define the likelihood of X under
different assumptions on the truthfulness3 of c:{

P(X|a(c)) =
∏

g∈G+(a(c)) f(g, c)
∏

g′∈G−(a(c)) J (g′, c)

P(X|ā(c)) =
∏

g′∈G+(ā(c)) Ĵ (g′, c)
∏

g∈G−(ā(c)) f̂(g, c)

(5)
The source-groups that support or oppose the same asser-

tions should have the following relations:

G+(a(c)) = G−(ā(c)),G−(a(c)) = G+(ā(c)) (6)

By substituting Eq.(5) into Eq.(1) and adopting Eq.(6),
we have:

P(a(c)|X ) =
1

1 + P(ā(c))
P(a(c))

∏
g∈G+(a(c))

f̂(g,c)
f(g,c)

∏
g′∈G−(a(c))

Ĵ (g′,c)
J (g′,c)

(7)

4.3 Calculating Confidence Scores
Since most truth-finding methods tend to favor sources

with large profiles, incorporating the mutual exclusive re-
lation can significantly neutralize this effect and therefore
improve truth discovery accuracy on categorical data. An
example of mutual exclusion is that, by claiming Washing-
ton, D.C. as the capital city of the United States, a source

3Truthfulness could be either true or false.
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Table 1: Notations used in the paper

Notation Explanation

s, g A source (resp., source-group)
v, c A value (resp., value-group)
S, G The set of all sources (resp., all source-groups)
V, C The set of all values (resp., all value-groups)

G(c), S(c) The set of all source-groups (resp., sources) that claim a specific value-group
C(g) The set of all value-groups claimed by a specific source-group

a(c), ā(c) The assertion that a specific value-group is true (resp., false)

G+(a), G−(a) The set of all source-groups that supports (resp., oppose) an assertion a ∈ {a(c), ā(c)}
ω(g, c) The degree of the claims made by a source-group on a value-group

I(g, c), I(s, c) The independence score of a source-group (resp., a source) on a value-group
μ(g, c) The confidence score of a source-group on a value-group
τ(g) The trustworthiness of a source-group

τpp(g), τnp(g) The positive precision (resp., negative precision) of a source-group
σ(c) The veracity (i.e., the probability of being true) of a value-group
ρ The probability of a source-group copying from other source-groups

ρt, ρf The probability of a source-group copying a true (resp. false) value-group from other source-groups
X The observation of which source-groups claim which value-groups
Ψc The observation that two source-groups claim the same specific value-group

implicates that all other cities are not. Similarly, we can
define mutual exclusion between sets of values for MTF.
However, traditional truth-finding methods assume that a
source always supports or opposes an assertion by its full
credit. In fact, in MTF, a claimed value does not strictly re-
ject the unclaimed values because each source could provide
only partial true values. We use the confidence score, μ(g, c),
to quantify the strength that a source-group supports or op-
poses an assertion. Similar to the Kappa coefficient [6], the
idea is to exclude the effect of random guess in determining
the strength. More specifically, given a set of value-groups C,
if a source-group g claims a subset C(g) ⊆ C, the confidence
score of g on each value-group c is calculated as:

μ(g, c) =

⎧⎪⎪⎨
⎪⎪⎩

1

|C(g)|
(1−

1

|C|
), c ∈ C(g) (8a)

1

|C\C(g)|

1

|C|
, c ∈ C\C(g) (8b)

Based on above definition, by claiming certain value-groups,
a source-group supports each claimed value-group and op-
poses each unclaimed value-group at the same time with the
confidence scores defined by Eq.(8a) and Eq.(8b), respec-
tively. All the confidence scores regarding the same source-
group sum up to 1, where each score μ(g, c) ∈ (0, 1].

Generally, the confidence score has the following interest-
ing properties:

• Given a fixed set of value-groups, the more (resp., less)
value-groups a source-group claims, the less (resp., more)
confidence the source-group has on the claimed value-
groups, and meanwhile the more (resp., less) confi-
dence on the unclaimed value-groups.

• Given a fixed number of value-groups claimed by a
source-group, the larger (resp., smaller) the set of value-
groups are, the more (resp., less) confidence the source-
group has on the claimed (resp., unclaimed) value-
groups.

As an example, suppose a source-group claims a subset
{v1, v3} of {v1, v2, v3, v4, v5}, the traditional method obtains
the corresponding scores as {+1,−1,+1,−1,−1}. In con-
trast, our method would produce {+2

5
, −1

15
, +2

5
, −1

15
, −1

15
}4. In

4In both results, the positive (resp., negative) sign repre-
sents the source-group supports (resp., opposes) the asser-
tion that the corresponding value is true.

particular, the values 2
5
is calculated as 1

2
·(1− 1

5
) by using Eq.

(8a) and 1
15

is calculated as 1
3
· 1
5
by using Eq. (8b). Compare

to the results of the traditional method, our results reflect
a differentiation towards source-groups’ confidence on the
claimed and unclaimed value-groups, i.e., 2

5
for the claimed

and 1
15

for the unclaimed value-groups, instead of 1 for both
types of value-groups. This is important because disclaim-
ing a value is no longer equivalent to disclaiming the value
in the MTF’s context. Besides, our results implicitly reflect
a differentiation towards source-groups of different behav-
ioral features. Following the above example, if a source-
group claims another subset {v1, v3, v4, v5}, which is closer
to the full set, our method would redeem the source-group
as being more audacious than being cautious and therefore
lower the confidence on the claimed value-groups (meanwhile
increase the confidence on the unclaimed value-groups), as
manifested by the new results {+1

5
, −1

5
, +1

5
, +1

5
, +1

5
}.

4.4 Inferring Source Dependency
Although copying relation has been actively studied re-

cently [3, 14, 19], existing copy detection techniques only
calculate a global score for each source [13]. Thus, they can
hardly be applied to cases with partial dependence and/or
high-order dependence. Especially according to the long tail
characteristics [10], a source may have an extremely large
profile (e.g., the store A1Books, which is a source in the
book-author dataset, published nearly 700 book records on
www.abebooks.com). Under such condition, a global score
cannot manifest the characteristics of all different parts of
the source’s data. In contrast, a finer-grained copy detection
technique will produce better predictions.

Based on this insight, we introduce a new copy detection
method to calculate the independence score for each (source-
group, value-group) pair. Given such a pair (g, c), we first
calculate a score, I(s, c), for each (source, value-group) pair
(s, c), where s ∈ g, and then aggregate the above scores to
derive to independence score for (g, c) as follows:

I(g, c) =

∑
s∈g I(s, c)

|g|
(9)

where I(g, c) is the independence score of source-group g on
value-group c.
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4.4.1 Calculating Independence Score
Copying only happens between sources that provide the

same value-group. Based on this observation, we propose
to calculate I(s, c) by examining the independence prob-
ability of s on every other sources that provide the same
value-group c. Given Ψc, the observation that two sources
provide the same value-group c, we denote by ⊥ (resp., ∼)
the independence (resp., copying) relation between sources
on c, and → the former copies c from the latter. Note that,
we omit parameterizing the above notations by c (except
Ψc) for ease of description. For two arbitrary sources s and
si (s �= si), we have:{

P(s ⊥ si|Ψc) + P(s ∼ si|Ψc) = 1
P(si → s|Ψc) + P(s → si|Ψc) = P(s ∼ si|Ψc))

(10)

Given a value-group c, and any source that claims c, s ∈
S(c), we define the independence score of s on c as the prob-
ability that s never copies c from other sources:

I(s, c) =
∏

si∈S(c)∧si �=s

1− P(s → si|Ψc) (11)

We assume equal probability of the two directions of copy-
ing, i.e.,

P(si → s|Ψc) = P(s → si|Ψc) (12)

By incorporating Eq.(10) and Eq.(12), we reform Eq.(11)
into:

I(s, c) =
∏

si∈S(c)∧si �=s

1 + P(s ⊥ si|Ψc)

2
(13)

4.4.2 Calculating Independence Probability
To calculate the probability of independence between two

sources, we first define the likelihood of Ψc under different
assumptions on source dependence and the truthfulness of
c:⎧⎨
⎩

P(Ψc|s1 ∼ s2, a(c)) = P(Ψc|s1 ∼ s2, ā(c)) = 1
P(Ψc|s1 ⊥ s2, a(c)) =

∏
s∈{s1,s2}

τpp(s)
∏

s∈{s1,s2}
θ

P(Ψc|s1 ⊥ s2, ā(c)) =
∏

s∈{s1,s2}
τnp(s)

∏
s∈{s1,s2}

η

(14)
Here, θ=1 - τnp(s) and η=1 - τpp(s). For any assumption

d ∈ {s1 ∼ s2, s1 ⊥ s2}, we develop Bayesian formulas to cal-
culate the corresponding probability, where a ∈ {a(c), ā(c)}:

P(d|Ψc) =
P(Ψc|d)P(d)∑
d′
P(Ψc|d′)P(d′)

=

∑
a
P(Ψc|d, a)P(d|a)P(a)∑

d′

∑
a′ P(Ψc|d′, a′)P(d′|a′)P(a′)

(15)

In our approach, we distinguish between two types of
copiers, namely blind copiers and smart copiers. The blind
copiers assume independence between the veracity of values
and sources’ probability of copying, i.e., P(d|a) = P(d). We
can thereby rewrite Eq.(15) to:

P(d|Ψc) =
P(d)

∑
a
P(Ψc|d, a)P(a)∑

d′
P(d′)

∑
a′ P(Ψc|d′, a′)P(a′)

(16)

Since blind copiers have no bias on copying true/false val-
ues, we define a single copying probability ρ for all sources
and on all value-groups:{

(P(s1 ∼ s2) = P(s1 → s2) + P(s2 → s1) = 2ρ
P(s1 ⊥ s2) = 1− 2ρ

(17)

By substituting Eq.(14) and Eq.(17) into Eq.(16), we get:

P(s1 ⊥ s2|Ψc) =
(1− 2ρ)Psum

2ρ + (1− 2ρ)Psum

(18)

where Psum denotes the sum term in the numerator of Eq.(16):

Psum =P(a(c))(τpp(s1)τpp(s2) + (1− τnp(s1))(1− τnp(s2)))

+P(ā(c))(τnp(s1)τnp(s2) + (1− τpp(s1))(1− τpp(s2)))

(19)

Without prior knowledge, we can initialize veracity as:

∀c ∈ C, P(a(c)) = P(ā(c)) = 0.5

On the other hand, the smart copiers have some “smart-
ness” that they are more likely to copy true value-groups
than false value-groups. We define different conditional prob-
abilities for the two cases to reflect the “smartness”:

P(s1 ∼ s2|a(c)) = 2ρt, P(s1 ∼ s2|ā(c)) = 2ρf (20)

It can be inferred from the above equations that:

P(s1 ⊥ s2|a(c)) = 1− 2ρt, P(s1 ⊥ s2|ā(c)) = 1− 2ρf (21)

For copiers to be“smart”, the probability of a source copy-
ing a true value-group should be larger than the probability
of copying a false value-group, i.e., ρt > ρf . By substituting
Eq.(14)(20)(21) into Eq.(15), we get:

P(s1 ⊥ s2|Ψc) =
Pover

2ρtP(a(c)) + 2ρfP(ā(c)) + Pover

(22)

where Pover denotes the numerator in Eq.(15):

Pover =(1− 2ρt)P(a(c))

(τpp(s1)τpp(s2) + (1− τnp(s1))(1− τnp(s2)))

+(1− 2ρf )(1− P(a(c)))

(τnp(s1)τnp(s2) + (1− τpp(s1))(1− τpp(s2)))

Because it is critical for smart copiers to acquire some
prior knowledge in order to be “smart”, we update the prior
probability with the latest estimation of veracity scores after
each cycle of the iteration:

∀c ∈ C, P(a(c)) ← σ(c),P(ā(c)) ← 1− σ(c) (23)

This ensures that the smart copiers’ perception on values’
veracity keeps evolving with the truth-finding process.

4.5 The Algorithm
Various algorithms, such as the iteration algorithm [21,

3, 5, 17] and the Expectation Maximization (EM) algo-
rithm [23, 2], can be applied to solve our model. Both
algorithms belong to the category of coordinate ascent al-
gorithms, which differ in the methods used for estimating
the quality of data sources. In particular, the former defines
linear or nonlinear functions to calculate sources’ quality,
while the latter infers sources’ quality by maximizing the
(lower bound of the logarithmic) likelihood of observations
over all source-claimed values.

Here we present an iteration algorithm for our integrated
Bayesian model, but omit the description of the EM algo-
rithm, which is only slightly different from [18], due to the
limited space. For the ease of illustration, we use a single
notation to represent the copying probabilities of the two
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Algorithm 1: Iterative Multi-Truth-Finding

Input: data items O, value-groups C = {Cn|on ∈ O},
source-groups G, the mapping between source-groups
and value-groups Gn(c) and Cn(g)

Output: {v|v ∈ c ∧ σ(c) ≥ 0.5}
1 ρ ← default values;
2 foreach g ∈ G do

3 {τpp(g), τnp(g)} ← default values;

4 foreach on ∈ O and c ∈ Cn do

5 σ(c) ← default values;

6 foreach on ∈ O, g ∈ Gn(c), c ∈ Cn(g) do

7 compute wn(g, c), un(g, c);

8 repeat

9 foreach on ∈ O and c ∈ Cn do

10 foreach g ∈ Gn(c) do

11 fn(g, c),f̂(g, c),Jn(g, c), Ĵn(g, c) ←Eq.(4);
12 In(g, c) ←Eq.(9) ;

13 σ(c) ←Eq.(7);

14 foreach g ∈ G do

15 τpp(g), τnp(g) ←Eq.(3);

16 until convergence;

types of copiers:

ρ =

{
{ρ}, for blind copiers

{ρt, ρf}, for smart copiers

The detailed procedure is described in Algorithm 1. In the
initialization phase (Lines 1-7), the copying probabilities are
defined a priori (Line 1). Sources’ quality and values’ ve-
racity are initialized with default values (Lines 2-5). The
algorithm then computes the degree of claim and confidence
score for each pair of source-group and value-group (Lines
6-7). Both parameters and the copying probabilities remain
unchanged until the algorithm terminates. For each cycle
of the iteration (Line 8-16), the algorithm calculates the ve-
racity scores (Lines 9-13) and sources’ quality (Lines 14-15)
in turn. For each data item, the veracity scores are calcu-
lated in two steps: i) calculates the synthesized factors (as
defined by Eq.(4)) and independence score for each pair of
source-group and value-group (Lines 10-12) and ii) updates
the veracity scores for each value-group (Line 13). The iter-
ation terminates when the algorithm converges (i.e., the al-
gorithm’s judgment on the truthfulness of all values remains
unchanged for certain consecutive cycles) (Line 16). Loga-
rithms are used in calculating the multiplication of small
decimals to ensure accuracy.

5. EXPERIMENTS
In this section, we report our experimental studies on the

comparison of our approach with the state-of-the-art algo-
rithms and the impact on the performance of our approach
of different key aspects in the Bayesian model.

5.1 The Datasets
We used three real-world datasets in our experiments. The

book-author dataset [21] contains 33,971 book-author records
crawled from www.abebooks.com. The records of the web-
site are contributed by numerous book stores (i.e., sources),
where each record represents a book store’s claim on the au-
thor(s) of a book. We removed the invalid and duplicated
records. To make the problem more challenging, we also ex-
cluded the records with only minor conflicts (i.e., the records
related to those books on which less than two distinct lists

Table 2: Evaluation of the major sources in the
movie-director dataset.

Source
Record
number

Positive
precision

Negative
precision

hkmdb.com 5265 0.91 0.87
rottentomatoes.com 4950 0.92 0.95

mrqe.com 4931 0.98 0.93
nowrunning.com 3433 0.83 0.81

imdb.com 2592 0.98 0.94
moviefone.com 2529 0.92 0.86

dvdmoviemenus.com 2208 0.87 0.69
abc.net.au 1563 0.99 0.84

nollywoodreinvented.com 1071 0.95 0.80
hoyts.com.au 1066 0.96 0.93

of author-names are provided). Finally, we obtained 12,623
distinctive claims describing 649 sources (i.e., websites) that
provide author-names on 664 books. On average, each book
has 3.2 authors. The ground truth provided for the original
dataset is used as gold standard.

The parent-children dataset [16] contains 11,099,730 records
about people’s birth and death dates, the names of their
parents/children and spouses, edited by different users (i.e.,
sources) onWikipedia. We particularly extracted the records
on the parent-children relations from this dataset. After
eliminating the duplicates, we finally obtained 55,259 users
claiming children for 2,579 persons. In the resulting dataset,
each person has on average 2.45 children. We used the latest
editing records as the ground truth.

We prepared the third dataset, the movie-director dataset,
by crawling 33,194 records from 16 movie websites. We re-
moved redundant records and finally obtained 6,402 movies,
each on average having 1.2 directors. We sampled 200 movies
and extracted their director information from citwf.com as
the ground truth. Table 2 shows the top ten websites that
provide the most records, with their quality values obtained
by one of our methods MBM (see Section 5.2 for details). It
should be noted that most datasets used in previous works
for categorical truth discovery [12, 20] are not suitable for
our multi-truth-finding problem. The three real datasets
used in our work are comparable to those datasets in size.

5.2 Baselines and Metrics
We compared our approach with the following methods,

which were modified, if necessary, to incorporate mutual ex-
clusion.

• Majority Voting. This method regards a value as true
if the proportion of the sources that claim the value
exceeds a certain threshold.

• Sums (Hubs and Authorities) [8], Average-Log [16].
Both methods compute the total trustworthiness of all
sources that claim and disclaim a value separately, and
recognize the value as true if the former is larger than
the latter.

• TruthFinder [21], 2-Estimates [5], and LTM [24]. The
three methods can be directly applied without modi-
fication, which recognize a value as true if its veracity
score exceeds 0.5.

It should be noted that we excluded the comparison with
several methods that are inapplicable to the multi-truth-
finding problem. For example, the algorithms in [3] can-
not be applied to our problem because they all assume the
number of false values as a prior knowledge. The approach
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Table 3: Comparison of different algorithms on the three datasets: the best and second best performance
values are in bold; both precision and recall are in the range of [0,1].

Method Book-author dataset Parent-children dataset Movie-director dataset
Precision Recall Time(s) Precision Recall Time(s) Precision Recall Time(s)

Majority voting 0.88 0.62 0.03 1.00 0.52 1.25 1.00 0.74 0.07

Sums 0.69 0.49 0.10 0.86 0.59 3.20 0.88 0.64 0.22
Average-Log 0.70 0.38 0.13 0.89 0.79 4.08 0.89 0.87 0.24
TruthFinder 0.73 0.80 0.10 0.86 0.89 2.89 0.87 0.88 0.27
2-Estimates 0.79 0.65 0.12 0.92 0.62 3.44 0.89 0.77 0.21

LTM 0.84 0.78 0.86 0.93 0.82 39.2 0.83 0.83 1.84
MBM 0.78 0.87 0.16 0.97 0.87 3.19 0.89 0.87 0.22

MBM-C 0.88 0.85 0.50 0.94 0.85 19.1 0.93 0.92 1.28
MBM-EM 0.86 0.91 0.26 0.92 0.84 6.87 0.92 0.88 0.72

in [16] requires normalizing the veracity of values, which is
infeasible for the multi-truth-finding problem. Finally, the
methods in [23, 11] focus on handling heterogeneous data,
while our approach is proposed specially for categorical data.

To ensure fair comparisons, we first ran a series of experi-
ments to decide the optimal parameter settings for the base-
line methods. Since the parameter tuning for our methods
are relatively more complicated, we simply used a generic
parameter settings for all datasets, i.e., the copying proba-
bilities of blind copiers ρ=0.8 and for smart copiers, ρt=0.85
and ρf=0.7. The initial source quality values do not usually
affect the experimental results as long as they are not un-
reasonably large or small (as indicated in our experiments
in Section 5.3.2), so we just initialized them as τpp(g)=0.8
and τnp(g)=0.7.

To evaluate our approach under different implementations,
we derived three variants of our approach:

• MBM : our (Multi-truth)Bayesian Model that adopts
the grouping method and the new mutual exclusion
definition.

• MBM-C : a variant of MBM that additionally incorpo-
rates our Copy detection method for blind copiers5.

• MBM-EM : a variant of MBM that estimates sources’
quality by performing the Maximum Likelihood Esti-
mation using the EM algorithm, instead of Eq.(3).

We implemented all algorithms using Java SDK 7, and
conducted experiments on a 64-bit Windows 7 PC with an
octa-core 3.4GHz CPU and 8GB RAM.

5.3 The Results

5.3.1 Comparison of Truth-Finding Methods
Table 3 shows the performance of different algorithms on

the three datasets in terms of precision, recall, and computa-
tion time. The computation time of our algorithms includes
the time spent for both problem reformulation and Bayesian
truth discovery. However, the results show the time spent
on reformulation is minor when compared to that of main
truth discovery process. Our three algorithms consistently
achieved the best precision and recall among all the com-
pared methods, except the majority voting which always
achieved the best precision (in those cases, our algorithms
still yielded the second best results). All the algorithms
achieved lower precision on the book-author dataset due to
the elimination of the records with minor conflicts.

5We only used blind copiers for the comparison because
smart copiers tend to produce similar results. They will
be specially compared via experiments in Section 5.3.2.

The majority voting achieved comparatively low recall
(nearly always the lowest) on all datasets. This is because
most sources tend to provide only a minor proportion of the
entire truth. So when tuning the sources’ trustworthiness as
the prior parameters, only the precision of the method is op-
timized. Despite the low recall, the majority voting achieved
nearly perfect precision—except on the book-author dataset
where the approach is inapplicable. This may imply that
the majority voting method is better used for generating the
ground truth for semi-supervised truth-finding approaches,
rather than for solving MTF, unless more comprehensive
quality measures are considered in evaluating the sources.

Besides the majority voting, both LTM and 2-Estimates
showed higher precision than the other baselines. All base-
lines except TruthFinder considered the mutual exclusive re-
lation. However, these methods achieved lower recall when
compared to TruthFinder or our methods. They identified
only a small proportion of true values. This may be due to
their neglect of the possibility of random guess in consid-
ering sources’ claims—as opposed to the definition of mu-
tual exclusive relation in our approach. This should explain
why our methods achieve better recall than those methods.
It should be noted that TruthFinder achieved better recall
yet generally lower precision than the other baselines, which
may attribute to its overestimation of veracity scores.

As for the efficiency, our MBM and all the baselines—
except LTM—had comparable computation time on the three
datasets. LTM and MBM-C always demanded the longest
computation time. While the efficiency of LTM depends
on the problem scale, MBM-C is more sensitive to data-
sets. Specially, MBM-C achieved significantly better effi-
ciency than LTM on the parent-children dataset, because
of the many source-groups and value-groups in this dataset.
Overall, our three methods showed no significant difference
in their truth-finding quality. However, MBM-C exhibited
less stable performance, depending on the underlying de-
pendence among sources in the datasets. MBM-EM always
ranked in the middle of the three in term of efficiency.

5.3.2 Impact of Different Concerns
We also studied the impact of different aspects to our

methods and report the findings in this section.

Grouping of sources/values. We exploited our methods to
discover various source-groups and value-groups in the three
datasets. Table 4 shows examples of three source-groups
found in the book-author dataset. In the first example,
six sources claim the same two authors for a book. In
the third example, two sources claim the same author for
each of the ten books. By grouping the sources , the num-
ber of sources in the three examples was reduced from 10
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Figure 2: Performance comparison of the proposed
algorithms between using and not using the group-
ing methods. The algorithms marked by asterisk are
those without using the grouping methods.

to 3. After the grouping, the total number of sources (or
joint sources) in the book-author dataset is reduced from
4,264 to 3,874. We found the author-book dataset contained
more source-groups, while the movie-director dataset con-
tains more value-groups. The parent-children dataset con-
tains large numbers of both types of groups. A comparison
of the three algorithms between using and not using the
grouping methods (Figure 2) demonstrates the effectiveness
of the grouping methods.

Mutual exclusion. In our datasets, each item has on average
1 to 4 different values, so the confidence scores stay in the
range of (0.08, 0.75) (calculated by Eq.(8a) and Eq.(8b)). To
examine the effect of our defined confidence scores, we imple-
mented our methods based on the traditional definition and
our new definition of mutual exclusive relation, respectively,
and compared the results. Figure 3a shows the comparison
on the movie-director dataset, which demonstrates that our
definition almost always brings better precision and recall.
The results on the other two datasets are similar.

Table 4: An example of three source-groups in the
book-author dataset.

Source (Website) Item (ISBN) Value (Authors)

bookscorner1
Jerome McCarthy
Mybooklocator

“Rare Finds Books,
Music, Etc.”

Twice Read Books
Shadow Books

0201489163
Campbell David
Campbell Mary

bookmac
Allen Williams Books

9780335216369

Alyson Simpson
Angela Thomas
Asha Jennifer
Len Unsworth

Usedbooks123
Free Shipping Books

0201308207
0201325705
0201379538
0201379619
0201489295
0201489805
0201633957
0201657643
0201709147
0201711141

Denning Dorothy E
Brent Callaghan
Black Daryl P
Jeffrey Rule S
F John Lescher

J Smedinghoff Thomas
Bradner Scott
Sharma Vivek

Box Don
Aviel D Rubin

Blind and smart copiers. We investigated the effect of in-
corporating copy detection by comparing MBM and MBM-C
in the experiments. The results showed improved precision
and recall of our approach by incorporating copy detection
methods. We further studied the performance of our meth-
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Figure 3: (a) Performance comparison of the pro-
posed algorithms between using the traditional def-
inition and using our definition of mutual exclusion
on the movie-direct dataset: the algorithms marked
by asterisk are those adopting the traditional defi-
nition. (b) Performance comparison of MBM-C be-
tween using the blind copiers and using the smart
copiers. Both blind copiers and smart copiers were
configured with their optimal parameter settings
and ran a fixed number of iterations, i.e., 10, re-
gardless if they converge.
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Figure 4: (a) Performance of MBM-C under varying
copying probability of blind copiers, i.e., ρ. (b) Per-
formance of MBM-C under varying copying proba-
bilities of smart copiers, i.e., ρt and ρf .

ods using blind copiers and smart copiers, respectively. We
observed that using smart copiers led to slightly slower con-
vergence but better results on the movie-director dataset
(Figure 3b). As the copying probability grew, we observed
an increase in both precision and recall of the methods using
blind copiers on the movie-director dataset, until the prob-
ability became close to 0.8 (Figure 4a). Smart copiers also
showed similar features (Figure 4b) on the movie-director
dataset (Figure 4b). It is worth noting that, recall had some
robustness on ρf . At certain points, increasing ρf could even
yield a higher recall. The impact of initial parameters were
similar for the other datasets.

Comprehensive source quality. We varied the initial values
of source quality measures for our methods and observed
similar results on all three datasets. This indicates that our
approach is insensitive to the initial assumptions of source
quality (as long as the initial values are not infeasible large
or small, such as equal to one, or close to zero). Compared
to the traditional measures, our source quality measures in-
curred similar computation time but higher recall on larger
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datasets (e.g., the parent-children dataset and the movie-
director dataset), while the advantages on smaller datasets
(e.g., the book-author dataset) was not obvious.

5.4 Discussion
In this section, we briefly review the important concepts

incorporated in our approach via the hardness of fact to
better understand the experimental results. The hardness
of fact was first proposed in [5] to quantify the difficulty in
determining the truthfulness of a value. It is used by pay-
ing the most trust on the sources that claim a more difficult
value (which has a higher hardness of fact). We find that
both the smart copiers and our mutual exclusion definition
can be interpreted or inferred from the concept of hardness of
fact in evaluating the sources. In particular, a smart copier
prefers copying the values with higher veracity. Those values
are usually claimed by more sources. In defining a higher
probability of copying, the smart copier actually dampens
the effect of those sources which jointly claim values with
many other sources. This is exactly the effect of considering
the hardness of fact in the truth-finding process. As for our
proposed mutual exclusion definition, a claimed value would
receive a higher confidence score if given a larger number of
distinct values on a specific item. This can also be inter-
preted from the hardness of fact. Since it is more difficult
to identify a true value from a larger set of different values,
once a value is identified as true, the value should be more
trusted based on the philosophy of the hardness of fact.

6. CONCLUSION
In this paper, we address the problem of discovering multi-

ple true values from the multi-source data, which has rarely
been studied in the previous works. We propose an inte-
grated Bayesian approach, which comprehensively incorpo-
rates novel methods on three key aspects that character-
ize the multi-truth-finding problem (MTF), namely source-
value mapping, mutual exclusive relation, and source de-
pendency, to better solve the problem. In particular, we
leverage the unique mapping features of MTF to reformu-
late the problem model in order to reduce the problem scale.
We develop a new definition of mutual exclusion to reflect
the inter-value implication under the MTF’s context and
a finer-grained copy detection method to cope with sources
with large profiles. Experimental studies on three real-world
datasets demonstrate the effectiveness of our approach. Our
future work will focus on investigating more comprehensive
ways for solving the MTF, e.g., by identifying and integrat-
ing more aspects to enhance the Bayesian model.
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