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ABSTRACT

Data veracity is a grand challenge for various tasks on the
Web. Since the web data sources are inherently unreliable
and may provide conflicting information about the same
real-world entities, truth discovery is emerging as a counter-
measure of resolving the conflicts by discovering the truth,
which conforms to the reality, from the multi-source data.
A major challenge related to truth discovery is that differ-
ent data items may have varying numbers of true values
(or multi-truth), which counters the assumption of existing
truth discovery methods that each data item should have ex-
actly one true value. In this paper, we address this challenge
by exploiting and leveraging the implications from multi-
source data. In particular, we exploit three types of implica-
tions, namely the implicit negative claims, the distribution of
positive/negative claims, and the co-occurrence of values in
sources’ claims, to facilitate multi-truth discovery. We pro-
pose a probabilistic approach with improvement measures
that incorporate the three implications in all stages of truth
discovery process. In particular, incorporating the negative
claims enables multi-truth discovery, considering the distri-
bution of positive/negative claims relieves truth discovery
from the impact of sources’ behavioral features in the spe-
cific datasets, and considering values’ co-occurrence relation-
ship compensates the information lost from evaluating each
value in the same claims individually. Experimental results
on three real-world datasets demonstrate the effectiveness of
our approach.
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1. INTRODUCTION

The World Wide Web (WWW) has transformed radically
in recent years as a platform for collecting, storing, pro-
cessing, managing, and querying the Big Data [2]. Besides
the exploding amount of data, the type and number of data
sources on the Web have increased enormously. Each day,
around 2.5 quintillion bytes of data are created from various
sources, such as sensors in the Web of Things (WoT) appli-
cations, posts in social networking websites, and transaction
records in e-Commerce systems [3]. A common requirement
of these applications is to integrate and exploit useful in-
formation from the multi-source data. The sequent issue
is that the data sources in an open environment are inher-
ently unreliable—they may provide incomplete, out-of-date,
or even erroneous data [2]. For example, sensors in wild
fields may produce inaccurate readings due to hardware lim-
itations or device malfunction, weather websites may pub-
lish out-of-date weather information due to delayed updates,
and workers in crowdsourcing systems may assign different
labels to the same picture as a result of their varying ex-
pertise and biases. Moreover, it is common in e-Commerce
environments that sellers attract customers by posting un-
real low prices. Consequently, given a real-world entity, dif-
ferent data sources are liable to provide conflicting data. It
therefore becomes important to discover the truth from the
multi-source data to resolve the conflicts.

The main challenge regarding truth discovery is that, given
a specific data item, the number of true values is generally
unknown. For example, many online bookstores, such as
textbooksNow.com and textbookx.com list Miles J. Mur-
docca as the only author of the book “Principles of Com-
puter Architecture”, while other stores, such as AlBooks
and ActiniaBookstores, post J Miles Murdocca and Heuring
P Vincent as co-authors of the same book. Given the vary-
ing numbers of authors in the conflicting records, users may
find it difficult to determine the correct authors of the book.
Although many truth discovery methods are been proposed
previously, they are mostly designed to discover a single true
value for each data item; so given a data item that possesses
multiple true values, they simply regard the values claimed
by each source as a joint single value and determine the
truthfulness of these values together. This is unreasonable
since the sets of values claimed by different sources are gen-
erally correlated and should not be evaluated independently.
Neglect of this hint could greatly degrade the truth discov-



ery accuracy. Take the above bookstores for example, the
values claimed by textbookx.com and Al1Books are not to-
tally different. By claiming J Miles Murdocca and Heuring
P Vincent to be the co-authors of the book, A1Books impli-
cates that J Miles Murdocca is a correct author; similarly,
by claiming Miles J. Murdocca as the author of the book,
textbookx.com, in turn, partially supports A1Books’s claim
of the two authors.

In this paper, we study the problem of discovering varying
numbers of true values of different data items from multi-
source data, or the multi-truth discovery problem (MTD).
We propose a probabilistic approach with improvement mea-
sures that leverages the implications of the multi-source data
throughout all stages to facilitate multi-truth discovery. In
a nutshell, we make the following contributions:

e We formally define the MTD and propose a proba-
bilistic approach, which separates the consideration of
each value in the same claims and takes into account
the impact of both positive claims and negative claims,
which are derived from the positive claims, to support
multi-truth discovery.

e We present methods for re-balancing the distributions
of positive/negative claims and for incorporating the
influence among the co-occurring values in the same
claims to improve the truth discovery accuracy. The
first method neutralizes the impact of sources’ behav-
ioral features on truth discovery results and the second
method improves the evaluation of values’ veracity by
capturing underlying correlations between values.

e We evaluate the proposed approach via experiments on
various real-world datasets. The results demonstrate
the effectiveness of our approach.

The rest of the paper is organized as follows. We discuss
the observations that motivate our work and define the truth
discovery problem in Section 2. Section 3 introduces our ap-
proach, including the probabilistic model and improvement
measures. Section 4 reports our experiments and results.
We discuss the related work in Section 5 and give some con-
cluding remarks in Section 6.

2. PRELIMINARIES

Due to the correlations among the values claimed by dif-
ferent sources, the first step towards multi-truth discovery
is to separate the evaluation of each value contained in the
same claims. A characteristic of the multi-source data is that
it contains only positive claims, i.e., given a specific data
item, the sources only provide the values that they believe
true, but do no provide the values that they believe false.
While the positive claims can be used to evaluate values in
terms of which values are more likely to be true, the evalua-
tion results derived from pure positive claims represent only
relative measures and a single evaluation score itself cannot
indicate whether the corresponding value is true.

Incorporating mutual exclusion between distinctive val-
ues is the fundamental technique that enables truth discov-
ery methods to acquire this ability. According to the mutual
exclusion assumption, by claiming a value as the prospective
truth (i.e., positive claims), a source is believed to implicitly
disclaim all the other values on the same data item (i.e., neg-
ative claims). Several existing truth discovery methods [6,
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16] have incorporated this assumption. Specially, all proba-
bilistic models [20, 21] naturally conform to this assumption,
as truth probability is exactly the measure that is capable
of indicating the truthfulness of a value by itself.

2.1 Observations and Motivation

2.1.1 Investigation of Real-World Datasets

In view of the significance of the positive and negative
claims to truth discovery, we investigate the distribution of
the two types of claims in various real-world datasets, e.g.,
the author dataset [17], the biography dataset [11], and the
movie dataset [16]. We observe imbalanced distributions
of positive and negative claims in most of the investigated
datasets, due to the long-tail characteristic of the real-world
datasets [8, 15]:

e Most values are claimed by very few sources. For
such values, the negative claims overwhelm the pos-
itive claims in number, and truth discovery methods
tend to predict only partial or incomplete true values.

e A small portion of values are claimed by large num-
bers of sources. For such values, the positive claims
overwhelm the negative claims in number, and truth
discovery methods tend to predict more values than
the real truth.

Intuitively, the imbalanced distribution of positive and
negative claims can significantly impair the truth discovery
accuracy, e.g., if a value is claimed only by a trustworthy
source, it should be regarded as a true value. Unfortunately,
it is very likely that a truth discovery method would recog-
nize it as false since all the other sources (i.e., the sources
that do not provide this value) are believed to disclaim
this value, according to the mutual exclusion assumption.
In comparison, a balanced distribution of positive/negative
claims enables truth discovery methods to adapt to various
problem scenarios, without being affected by the sources’
behavioral features in the specific datasets. For example, if
most sources in a dataset claim fewer values than the truth,
the negative claims would overwhelm the positive claims in
number, leading to low recall of truth discovery methods.
Re-balancing the positive and negative claims could com-
pensate the impact caused by their imbalanced distribution
and therefore improve the truth discovery accuracy.

2.1.2 A Motivating Example

In the following, we illustrate the basic concepts and issues
related to detecting varying numbers of true values through
a running example. We will use the simplest truth discovery
method, naive voting, in this example for ease of illustration;
but most other methods have the similar issues.

Suppose we want to corroborate the correct authors of
some books. Five data sources provide such information
and only s; provides all true values (Table 1). The naive
voting method would predict {T%im,Chris} as the correct
authors of the book (id: 0126565619), since they represent
most frequently occurring claim in all sources’ claims. In
comparison, by separating the evaluation of distinctive val-
ues in the same claims (the results represent the positive
claims, which are shown in the upper segments of Table 2),
e.g., evaluating Tm and FEllis separately instead of eval-
uating {Tim, Ellis} together as a joint single value, naive



Table 1: An illustrative example: five sources pro-
vide information on the authors of three books.
Only s; provides all true values.

[ [ 0132212110 [ 0126565619 [ 0321113586 |
s1 | Jeffrey; Mary; Fred Tim; Ellis Herb; Alex
So Jeffrey Ellis; Korper Alex
s3 Jeffrey Tim; Chris Herb; Bjarne
S4 Mary Tim; Ellis; Korper Herb
S5 Jeffrey Tim; Chris Herb

voting would produce {Tim} as the truth instead. This re-
sult apparently contains only true values but the deficit is
that it contains only one true value.

By incorporating mutual exclusion, the negative claims
are added to the claim sets (as shown in the lower segments
of Table 2). By leveraging both the positive and negative
claims, the naive voting method is now able to determine
the truthfulness of each value individually. Take the book
(id: 0126565619) for example, since the sources that make
positive claims regarding T'im are more than those making
negative claims, naive voting would regard T%m as a correct
author. Finally, it would predict {T'im, Ellis} as the correct
authors for the book (id: 0126565619), as the positive claims
are more than the negative claims regarding each of the two
values.

Although the naive method finds the correct authors of
the second book, it only represents a rare case. Since most
real-world sources tend to provide only partial truth, deriv-
ing the negative claims in this way could lead to imbalanced
positive/negative claims, which impairs the truth discovery
accuracy. For example, naive voting incorrectly recognizes
{Mary, Fred} and Bjarne as false values for the first and
third books, respectively. Considering source quality may
helps, but cannot fully address this issue. We test differ-
ent truth discovery methods on this example, but none rec-
ognizes Fred as a true author of the first book since only
one (s1) of the five sources claims it to be true. Assigning
higher reliability to s; cannot neutralize the impact of the
overwhelming negative claims. On the other hand, in many
cases, incorporating source quality could even deteriorate
the situation. For example, many sources in the real-world
only claim very few values that are frequently claim by oth-
ers. On such occasions, the fewer values the source claim,
the more likely it would be trusted by a truth discovery
method. This mechanism further decreases the chance of
the less frequently occurring values being predicted as true
by truth discovery methods.

2.2 Problem Definition

We describe the key concepts and their relations in a
multi-truth discovery problem (shown in Fig. 1) and explain
each concept as follows.

Data Item. A data item is an object whose true values are
to be detected. A data item usually exists as an attribute of
a real-world entity. For example, the author(s) of the book
“Principles of Computer Architecture” is a data item, book
is an entity, and author is an attribute.

True Value. True values are the values of the data items
that conform to the factual truth. Each data item may have
one or more true values. For example, the true values for the
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Table 2: The example after reformatting sources’
original claims into those regarding individual val-
ues: the symbol — before a value means a source

disclaim the value.

(a) First book

(b) Second book

(¢) Third book

0132212110 0126565619 0321113586

S1 Jeffrey S1 Tim S1 Herb
S1 Mary S1 Ellis S1 Alex
S1 Fred So Ellis So Alex
So Jeffrey So Korper S3 Herb
s3 Jeffrey S3 Tim s3 Bjarne
S4 Mary S3 Chris S4 Herb
S5 Jeffrey sS4 Tim S5 Herb
S2 —Mary S4 Ellis S1 —Bjarne
So —Fred 54 K01.”per So —Herb
S3 —Mary S5 Tm.l Sa —Bjarne
S3 —Fred S5 Chris S3 —Alex
sS4 —Jeffrey S1 —Korper sS4 —Alex
sS4 —Fred S1 —Chris sS4 —Bjarne
S5 —Mary So —Tim S5 —Alex
S5 —Fred Sao —Chris S5 —Bjarne

S3 —Ellis

S3 —Korper

S4 —Chris

S5 —Ellis

S5 —Korper

Entity
1
has attribute
1.
Attribute Source
1 1 1.*
has true value, has possible value claims value
1. 1. 1.%
True Value Claimed Value

Figure 1: Relation between the key concepts in a
truth discovery problem.

authors of the book “Principles of Computer Architecture”
are Miles J. Murdocca and Vincent P. Heuring.

Data Source. It is the provider of possible true values for
the data items, e.g., a website named textbookx.com, which
publishes the author names of “Principles of Computer Ar-
chitecture”.

Claimed Value. These are the values provided by sources
about the possible true values of a specific data item. Each
data source may claim fewer or more values than the truth.
For example, textbookx.com publishes Miles J. Murdocca as
the only author of “Principles of Computer Architecture”. In
contrast, textbooksNow.com publishes two names, Miles J.
Murdocca and Vincent P. Heuring, while Paperbackshop-US
has no author information on this book.

Let s, 0, and v be a data source, data item, and a value
on this data item, respectively. We use positive claim, i.e., a
triple (s,0,v), to represent the opinion of s that v is a true
value of data item o. Similarly, we define negative claim, i.e.,
(s,0,—w), to represent its opinion that v is a false value of o.
The multi-source data are actually a list of different sources’
positive claims on a set of data items. The negative claims
are generated afterward for each data item and added to the
claim set to facilitate multi-truth discovery.
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Figure 2: Overview of our approach.

The objective of the multi-truth discovery problem (MTD)
is to identify the true values for each data item based on
the sources’ claims. The MTD distinguishes from the tra-
ditional truth discovery problem in allowing for a varying
number (which is unknown a priori) of true values on each
data item.

3. THE APPROACH

Intuitively, there are two approaches for detecting an un-
known number of true values for each data item. The first
approach is to evaluate the possible values and detect the
number of true values (say k) separately for each data item
and then predict the k£ values with the best evaluation results
as the truth. The second approach is to employ probabilistic
truth discovery models. In this paper, we address the multi-
truth discovery problem based on a probabilistic approach
because it naturally produces probabilistic results and has
the potential of detecting the number of truth values auto-
matically during the truth discovery process.

Our approach is based on two observations. First, sep-
arating the evaluation of individual values is just one pre-
liminary step towards detecting multiple true values. While
it on the one hand improves the truth discovery accuracy,
on the other hand, it neglects the important implications in
sources’ claims. Second, existing truth discovery approaches
do not consider the behavioral features of sources, e.g., some
sources tend to claim more values than the truth while some
others claim fewer values. We believe the traditional mutual
exclusion definition is too strict, i.e., by claiming some value
to be true, a source is believed to implicitly disclaim all the
unclaimed values on the same data item.

Based on the above discussions, besides the implicit neg-
ative claims, we focus on two implications of sources’ claims

that are lost during the above separation, i.e., the co-occurrence

of values in sources’ claims, and the imbalanced distributions
of positive/negative claims of sources on the data items. To
emphasize on our approach’s ability to deal with the possible
multiple true values by combining the two aspects, we will
hereafter call our approach Hybrid Multi-Truth Discovery or
MTD-hrd for short. Fig. 2 shows the main components of
MTD-hrd, where rectangles represent the components and
the other non-shaded blocks represent the input/output in-
formation. The following subsections will introduce these
components, respectively.

3.1 Enforcing Mutual Exclusion

Existing methods commonly use relative measures to eval-
uate values [4, 5, 6]. Given a specific data item, they first
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calculate a confidence score for each distinctive value and
then predict the value with the highest confidence score as
the truth. For the case of multiple true values, they simply
take each claim as a single value and neglect the inherent cor-
relations among the claims, which could degrade the truth
discovery accuracy.

As aforementioned (Section 2), the first step of enabling
the discovery of varying numbers of true values is to separate
the evaluation for distinctive values for each data item. The
separation allows the algorithms to capture the truth prob-
ability of values in a finer granularity and makes it possible
to define a probabilistic approach that assumes conditional
independence of the truth probabilities of different values
for truth discovery. An example of the separation and the
enforcement of mutual exclusion is shown through the trans-
formation in Table 1 to Table 2.

3.2 Truth Discovery Model

Our probabilistic truth discovery model consists of three
major elements: value veracity, source reliability and obser-
vation of source’s claims. Fig. 3 shows the graphical struc-
ture of conditional dependence of our model, where each
node in the graph represents a random variable or prior pa-
rameter. The shaded nodes indicate the observed variables
and the other nodes represent latent variables. A plate with
a set as its label means that the nodes within are replicated
for each element in the set. A directed edge from node a to b
models the conditional dependence between the two nodes in
the sense that the random variable associated with b follows
a probabilistic conditional distribution that takes values de-
pending on a as parameters. Given the observed data and
prior and conditional distributions, maximum a posteriori
(MAP) estimation can be performed to find the most likely
values of the unobserved variables, thus achieving truth dis-
covery.

3.2.1 The Generative Process

In this section, we describe the model details for the three
elements, respectively.

Value Veracity. We model the veracity of a value as the
probability that the value is true. For each value v € V| its
value veracity t, is generated from a Bernoulli distribution
with parameter 6,

ty ~ Bernoulli(0) (1)
where t, is a Boolean variable, and 6 is the prior probability
that ¢, is true.

Here the prior truth probability # determines the prior
distribution of how likely each value is true. It is generated
from a Beta distribution with hyperparameter 8 = (81, 82),
where (1 is the prior true count, and s is the prior false
count of each data item.

0 ~ Beta(pr, B2) 2)
Source Reliability. We model source reliability as the prob-
ability that a source makes correct positive and negative
claims. Given a specific value, a positive (resp., negative)
claim is correct when the value is actually true (resp., false).
For each source s € S, its reliability ¢ is generated from
a Beta distribution with hyperparameter by a = (a1, a2),
where a7 is the prior false positive count, and «s is the prior
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Figure 3: Graphical illustration of our probabilistic
approach.

true negative count of each source:

¢s ~ Beta(aq, as) (3)
Observation of Sources’ Claims. For each claim ¢ of a data
item o, suppose s. is the source that makes this claim. The
observation of ¢, namely X, is generated from a Bernoulli
distribution with parameter ¢,

X. ~ Bernoulli(és,) (4)

3.2.2 Inference Approach

Given observations on sources’ claims, we perform infer-
ence to estimate the truth probabilities of values and the re-
liability of sources based on the above generative processes.
In particular, the complete likelihood of all observations,
latent variables, and unknown parameters given the hyper-
parameters « and f is:

p(X,s,t,0,¢la,B) =
[T p(@:le) x [T (pecl)o (1 - 0.)' Q)

seS veV

()

where @ denotes the impact of sources’ claims, which is the
multiplication of a series of conditional probabilities, i.e.,

Q=[] r(xclgs.) (6)

cel

The objective of the inference approach is to assign the
appropriate truth labels to the values, so as to maximize
the joint probability p(X, s, t). In particular, we pursue the
maximum a posterior (MAP) estimate of ¢:

(7)

The joint distributions can be estimated by using various
existing inference algorithms, such as the variational [1] or
sampling algorithms [7]. The time complexity of these algo-
rithms is usually O(|C|) or O(|S||V]), which is linear in the
number of claims.

Erap = argmax / p(X, 5,t,0,6)d0 do
t

3.2.3 Calculating Imbalance Factor

The incorporation of mutual execution easily leads to im-
balanced numbers of positive and negative claims over the
data items and their values. The imbalance could, in turn,
make truth discovery methods dependent on the sources’
behavioral features in the specific datasets and thus impair
the truth discovery accuracy. Basically, the probabilistic
approach infers truth probabilities by maximizing the like-
lihood of observations of sources’ claims. However, after
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incorporating mutual exclusion, negative claims are added
and the original observations (i.e., the set of positive claims)
are therefore altered. This means part of the observations
used by the probabilistic approach are artificially generated
and may not reflect the reality. For example, given a specific
book, a cautious source may post only the names of people
who are convinced to be the authors of this book, while an
audacious source may post the names of all people who are
possibly the authors of the book. In the first case, the source
does not necessarily exclude the existence of more authors
for the book; in the latter case, the source may not totally
support all the authors that it claims to be true.

Given a real-world dataset, it is usually dominated by
either the cautious sources or the audacious sources. The
inclusion of negative claims makes truth discovery methods
to, in the first case, overly decrease the truth probability of
the less frequently occurring values, and in the second case,
overly amplify the truth probability of all values. The first
case generally leads to a low recall, while the second case
usually results in low precision. Both cases lead to degraded
truth discovery accuracy.

We improve the truth discovery accuracy by reducing the
bias resulted from the imbalanced positive/negative distri-
bution in the specific datasets. In particular, we distin-
guish between the impact of positive and negative claims
and thereby rewrite Eq. (6) as:

Q=0"-0"
where the positive and negative factors are defined by:
Q+ = HCEC+ p(XCM)Sc)
o = Hclgc— p(Xc/ |¢Sc/)

To neutralize the influence of the imbalanced numbers of
positive/negative claims on evaluating their respective im-
pact, we calibrate the two types of impact by:

Q+ = Hl Hj ‘cifj\yncecij p(XC|¢SC)
Q = Hz H]' 'CZJ\VHC/EC;J_ p(Xc/ |¢SC/)

(8)

9)

where Cj’j (resp., C;;) is the set of all positive (resp., neg-
ative) claims with respect to the j-th value for data item
0;.

This calibration method has two characteristics, both of
which are consistent with our intuition:

e The impact of positive and negative claims are more
determined by the reliability of the sources that make
these claims rather than the numbers of sources that
make the same claims.

e Sources of similar reliability tend to have a greater
impact on determining the truthfulness of a value than
the sources that have significantly different reliability.

3.3 Incorporating Value Influence

Since the values occurring in the same claims are believed
to impact each other in terms of veracity, the co-occurrence
of values in the same claims indicates potentially similar
truth probability of these values. Based on this insight, our
interpretation of value co-occurrence lies between the two
extreme cases of previous truth discovery efforts: i) simply
regarding the values in the same claim as an integral joint
value—as what traditional truth discovery methods do based



5.5,

Figure 4: Association among values for the book (id:
0126565619).

on the unseparated claims, and %) considering the values in
the same claim as totally independent—as what the methods
do based on the positive and negative claims regarding each
single value.

We define weighted association among the distinctive val-
ues on the same data item to represent their influence to each
other, based on which to amend the predicted truth proba-
bility of each value and to achieve better results. In particu-
lar, we represent the bipartite mapping between sources and
values on each data item into a value graph, which is a graph
where values are the vertices and sources are the weights of
edges among the values. For example, the influence of the
distinctive values of the book (id: 0126565619) in Table 1
can be represented by Fig. 4.

Note that we do not distinguish between the positive and
negative influence in this graph as both types of influence are
considered at the same time in our calculation. Given a data
item, the influence of the distinctive values on one another
can be represented as a square adjacent matrix, which should
be stochastic, irreducible, and aperiodic to be guaranteed to
converge to a stationary state [13]. Given a value graph,
the more sources claim the co-occurrence of two values, the
more relevant the values are in their truthfulness. Since the
graph is already bi-directional, for the three characteristics,
we initialize the weights over the edges of the graph for each
data as the sum of the reliability of all sources that claim
the co-occurrence of this pair of values, and then normalize
the weights to ensure that every column sums to 1. We add
small weights to the edges between the unconnected values
to ensure a full connectivity. We finally perform iterations
using page-rank methods to achieve a stationary state over
the mutual influence of these values for each data item and
incorporate the influence of these co-occurring values on one
another in the probabilistic model by leveraging the station-
ary weights.

Given the veracity of values and the stationary weight
between values, we calculate the veracity of an arbitrary
value v by:

m(v)

R 1

w(v,v;)
bv) = 1+ E;i(f) w(v, v;)

- 1+ E:’Z(lv) w(v,vi)

0(vi)
A (11)

where 0(v) and 6(v) are the old and new veracity scores of
v, m(v) is the number of all the other values (e.g., v;) that
have an influence on v, and w(v, v;) is the stationary weight
between v and v;. Since Y7 w(v,v;) = 1, Eq. (11) can
be simplified as:

m(v)

Z w(v,vi)e(vi)) (12)

=1

I(v) = %(9(1}) +

4. EXPERIMENTS

In this section, we report the experimental studies on the
comparison of our approach with the state-of-the-art algo-
rithms using real-world datasets, and the impact of the two
concerns, i.e., the co-occurrence of values in the same claim
and the imbalance factors.

4.1 Experimental Setup
4.1.1 The Datasets

We used three real-world datasets in our experiments.
The author dataset [17] contains 33,971 book-author records
crawled from www.abebooks.com. Each record represents
a bookstore’s claim on the author(s) of a book. We re-
moved the invalid and duplicated records, and excluded the
records with only minor conflicts to make the problem more
challenging. Finally, we obtained 12,473 distinctive claims
describing 634 sources (i.e., websites) that provide author
names on 657 books. On average, each book has 2.19 au-
thors. The ground truth provided for the original dataset is
used as gold standard.

The biography dataset [11] contains 11,099,730 records
of people’s birth and death dates, parents/children, and
spouses on Wikipedia. We extracted the records related to
the parent-child relation and got 2,402 people’s children in-
formation edited by 54,764 users. Similar to the handling of
the book-author dataset, we also removed the records with
minor conflicts from this dataset. In the resulting dataset,
each person has on average 2.48 children. For the experi-
mental study purpose, we used the latest editing records as
the ground truth.

We prepared the third dataset, the director dataset, by
crawling 33,194 records from 16 major movie websites. We
removed redundant records and finally obtained 6,402 movies,
each on average having 1.2 directors. We sampled 200 movies
and extracted their director information from citwf.com as
the ground truth.

4.1.2 Evaluation Metrics

We evaluated the performance of the algorithms using
three measures. For all these measures, a larger value in-
dicates a better result.

e Precision, i.e., the average percentage of the predicted
actual true values in the set of all predicted true values
on all values of all data items.

e Recall, i.e., the average percentage of the predicted
actual true values in the set of all actually true values
on all values of all data items.

e [ score, i.e., the harmonious mean (i.e., a weighted
average) of precision and recall ranging from 0 to 1. It
is calculated using:

_9 precision - recall

By —
precision + recall

(13)

4.1.3 Baseline Methods

We compared our approach with three categories of truth
discovery methods. All the algorithms are unsupervised and
some traditional truth discovery algorithms (i.e., Voting and



Table 3: Comparison of different algorithms on the three datasets: the best performance values are bolded,
where precision, recall and F: score are all in the range of [0,1].

Method Author dataset Biography dataset Director dataset
Precision  Recall F; score | Precision Recall F; score | Precision Recall F; score

Voting 0.88 0.23 0.36 0.90 0.12 0.21 0.91 0.15 0.26
Sums 0.69 0.49 0.57 0.76 0.59 0.66 0.85 0.64 0.73
2-Estimates 0.79 0.65 0.71 0.80 0.62 0.70 0.87 0.77 0.82
TruthFinder 0.73 0.78 0.75 0.80 0.89 0.84 0.85 0.88 0.86
Voting-N 0.79 0.49 0.60 0.84 0.59 0.69 0.87 0.64 0.74
Sums-N 0.73 0.65 0.69 0.77 0.52 0.62 0.81 0.56 0.66
Accu-N 0.73 0.78 0.75 0.77 0.82 0.79 0.85 0.77 0.81
LTM 0.84 0.78 0.81 0.84 0.82 0.83 0.81 0.83 0.82
MBM 0.79 0.87 0.83 0.87 0.85 0.86 0.87 0.86 0.86
Our approach 0.88 0.87 0.87 0.90 0.87 0.88 0.87 0.89 0.88

Sums) were improved in different ways to cope with the
multi-truth scenario.

Traditional Truth Discovery Methods. The methods of this
category consider all the values of the each claim as a sin-
gle value. We selected several typical and competitive algo-
rithms from this category for the experimental comparison.
In the following, both Voting and Sums were modified by
taking into account of the mutual exclusion consideration.

e Voting: for each item, the value claimed by the most
sources is produced as the estimated truth. This method
regards a value as true if the proportion of the sources
that claim the value exceeds a certain threshold.

Sums: this method evaluates sources and values alter-
nately from each other by iteration. It computes the
total reliability of all sources that claim and disclaim
a value separately and recognizes the value as true if
the former is larger than the latter.

2-Estimates [6]: this method assumes that claiming
one value indicates disclaiming (vote against) all un-
claimed values. A value is recognized as true if its
veracity score exceeds 0.

TruthFinder [17]: this method considers inter-value
influence and evaluates each value by a probability.
TruthFinder recognizes a value as true if its veracity
score exceeds 0.5.

Ezisting Multi- Truth Discovery Methods. There are two
multi-truth methods, discussed as the following:

e LTM [20]: this method assumes prior distributions of
latent variables and thereby constructs a probabilistic
graphical model to infer sources’ reliability and values’
veracity.

e MBM [16]: this method deals with the multi-truth
problem by incorporating new mutual exclusion def-
inition.

Improved Single-Truth Discovery Methods. Both Voting and
Sums can be improved using a different approach, i.e., incor-
porating them with true value number prediction methods,
to cope with the multi-truth problem. The original Accu
method [4] evaluates a value by the a posterior probability
using the Bayesian model without the variable distribution
assumptions. As a result, Accu can be improved in a similar
way to cope with multi-truth discovery.
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In particular, we used the truth discovery procedures of
the original methods to produce evaluations to the values
and followed a similar procedure to predict the number of
true values. Suppose the estimated true value number is
N, the values with the top-N highest evaluation values are
predicted as the true values. We denote the three methods
improved by the above approaches by Voting-N, Sums-N,
and Accu-N, respectively.

Our approach. Our approach combines the consideration of
two aspects of concern, the co-occurrence of values and im-
balance in sources’ claims, in the same probabilistic model.

We excluded comparison with the methods in [11], which
are inapplicable for discovering varying numbers of true val-
ues. In particular, the approach requires normalizing the
veracity of values, which is infeasible for our problem. Be-
sides, the methods in [19] focus on handling numerical data,
while our approach is proposed specially for categorical data.

4.1.4 Algorithm Configuration

We implemented all algorithms using Java SDK 7 and
conducted experiments on a 64-bit Windows 7 PC with an
octa-core 3.4GHz CPU and 8GB RAM.

To ensure fair comparisons, we first ran a series of ex-
periments to decide the optimal parameter settings for the
baseline methods. For our method, we initialized the prior
accuracy of all sources to 0.9. We set the parameters in a
manner that makes sure the actual prior counts should be
at the same scale as the number of facts to ensure its effec-
tiveness. Since all the three datasets are at the scale of ten
thousands, we defined the same parameters for the datasets,
i.e., (a1, a2) = (50,50) and (81, B2) = (10, 10). For the both
sets of parameters, we defined relatively small uniform prior,
which enforced no prior bias towards the truth discovery re-
sults. Note that we used 0.5 other than other values as the
threshold to determine the truthfulness of values in many
of the compared algorithms, since tuning this value requires
using ground truth and makes the comparison unfair to the
other algorithms.

4.2 Comparative Studies

Table 3 shows the performance of different algorithms on
the three datasets in terms of precision, recall, and the F;
score. From the table, we can see that our approach consis-
tently achieves the best (or the second best) precision among
all the compared methods. The majority voting method al-
ways achieves the best precision. This indicates that some
true values are claimed by most data sources in all the three
datasets. All algorithms achieve lower precision on the au-
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Figure 5: Comparison of the five algorithms in terms of precision, recall, and F; score on three real-world

datasets.

thor dataset because we intentionally eliminated the records
with minor conflicts when preparing the dataset to make the
problem more challenging.

For recall, TruthFinder, MBM, and our approach gener-
ally achieve better recall over all the other baselines. Among
the inferior baseline methods, those based on the consider-
ation of mutual exclusion neglect the uncertainty in infer-
ring the sources’ negative claims from the raw data, i.e.,
the positive claims, while the others based on the predic-
tion of true value numbers suffer from the uncertainty in
the predicted true value numbers. Another problem with
the methods based on the prediction of true value numbers
is that sources’ reliability is separately evaluated in predict-
ing the true value numbers and in evaluating the different
values. Consequently, the sources’ reliability used to predict
true value numbers may not be consistent with the ranked
evaluation results of the values, thus degrading the recall.

It should be noted that TruthFinder achieves better re-
call yet generally lower precision than the other baselines,
which may attribute to its overestimation of veracity scores.
Majority voting achieves the lowest recall on all the three
datasets. This is because most sources tend to provide only
a minor proportion of the entire truth. Given an arbitrary
value, the sources that do not claim this value almost al-
ways overwhelm the sources that claim this value. As a
result, after incorporating the mutual exclusion considera-
tion, majority voting could hardly yield a bigger proportion
value than 0.5 due to the imbalanced distribution of posi-
tive and negative claims. This may imply that the major-
ity voting method should be better used in a supervised or
semi-supervised manner where the threshold (i.e., 0.5 in the
experiments) can be tuned for the specific dataset based on
sufficient ground truth.

The comparison results with respect to Voting vs. Voting-
N and Sums vs. Sums-N show no significant difference
between the traditional methods improved by the two ap-
proaches (i.e., incorporating either the mutual exclusion and
incorporating the potential number of true values), except
for the majority voting method, whose recall is improved
significantly by predicting the true value numbers. The rea-
son lies in that the approach based on the true value number
prediction is not affected by the imbalanced distribution of
positive and negative claims.

The comparison results help us better understand the dif-
ferent approaches for incorporating the multi-truth concern-
ing in addressing the true discovery problem. Considering
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the mutual exclusion relation can help detecting any number
of true values naturally. However, due to the strong assump-
tion of implicit negative claims, it easily suffers from the im-
balanced distribution of the positive and implicit negative
claims. Predicting the potential number of true values can
avoid the above problem. However, it produces an inconsis-
tent estimation of source reliability, which cannot be easily
addressed. Besides, both approaches require separating the
concerns of different values in the same claim, which cause
the loss of the implicit correlation between the co-occurring
values. Our approach takes into account both aspects of
concern about the imbalanced claim distribution and the
implicit correlation between values. The good performance
of our approach in the comparison shows the effectiveness
of incorporating these concerns for addressing the truth dis-
covery problem with unknown numbers of true values.

4.3 Impact of Different Concerns

To evaluate the impact of different concerns (i.e., the sep-
arate consideration of different values in the same claim,
the imbalanced distribution of positive and implicit negative
claims, and the co-occurrence of values in the same claim),
we implemented two algorithms based on the Bayesian prob-
abilistic model.

e Bayesian: this is the basic graphical probabilistic model
that calculates truth probabilities by inferring a series
of latent variables. The values contained in each single
claim is defined as a variable. The values contained in
the claim that has the highest truth probability are
regarded as truth.

e Bayesian-s: this model differs from Bayesian in defin-
ing each single value as a variable. Those values with
a truth probability over 0.5 are regarded as truth.

We further derived two variants of our approach (i.e.,
MTD-hrd) for the comparison:

e MTD-blc: a version of MTD-hrd that only adopts the
imbalance factor to improve the basic probabilistic model.

e MTD-ast: a version of MTD-hrd that only adopts the
influence between the different values of each data item
to improve the basic probabilistic model.

Fig. 5 shows the comparison of the above five implementa-
tions of the probabilistic truth discovery approach. Results
on all the three datasets show that when the actual number



of true values is unknown a priori, separating the concerns
of individual values in the same claim can improve both
the precision and recall of truth discovery, as indicated by
the better performance of Bayesian-s than Bayesian. Given
that different sources’ claims about the same data item may
overlap, the truth probabilities of the sources’ claims about
the same data item are neither statistically nor conditionally
independent. Due to this reason, traditional truth discov-
ery methods, even some might be applicable, are generally
unsuitable for detecting unknown numbers of true values if
unmodified.

The superior precision and recall of MTD-blc and MTD-
ast comparing to Bayesian-s indicate that both measures—
incorporating the imbalance factor and incorporating the
value influence—can help improve the accuracy. It is worth
noting that the first measure has a greater impact on the
precision while the second on the recall of truth discovery.
Our approach, which incorporates both measures, always
achieves the best precision and recall, as well as F1 score,
when compared with the other four methods.

To investigate the impact of different concerns to the scal-
ability of the probabilistic approach, we conducted both the-
oretical analysis and experimental studies to compare the
five algorithms. The time complexity of truth discovery is
usually determined by the number of connections between
sources and truth variables, which is no larger than M x N,
where M and N are the numbers of sources and truth vari-
ables, respectively. For Bayesian, the truth variables are
the claims. For all the other four algorithms, truth vari-
ables are individual values. Considering the upper-bound
notations, the time complexity of Bayesian is O(M x |C]),
where |C| is the maximum number of claims for each source.
In contrast, the time complexity of all the other algorithms
is O(M x |V), where |V| is the maximum number of values
claimed for each source. Because each source can make at
most one claim on each data item, we have |C| < |V|.

Fig. 6 shows the performance of the algorithms in terms
of computation time on the director dataset. The results
show that evaluating the values separately may not signifi-
cantly affect the efficiency but incorporating the value influ-
ence does. In particular, incorporating value influence (as
illustrated in Section 3.3) might be time-consuming as it re-
quires achieving the stationary state of graph weights using
page-rank algorithms. To better evaluate this impact, we
further compared MTD-hrd and MTD-ast with their respec-
tive simplified versions, which directly use the normalized
graph weights instead of the stationary weights to calculate
the influence. The results show only a slight difference in
the resulting accuracy of using and not using the page-rank
methods, while the efficiency could be drastically improved
through the simplification. The comparison results on other
datasets show the similar results.

5. RELATED WORK

Due to the significance of data veracity, tremendous efforts
have been conducted on truth discovery [10]. The truth
discovery problem is first coined by Yin et al. in 2008 [17].
It is defined as the process of finding the true values of a
set of data items from the conflicting records reported by
different sources. The problem is non-trivial because most
real-world sources are unreliable, and the ground truth is
difficult to obtain and generally insufficient to support a
supervised approach.

869

a
0.94 Recall
= =
[
8 081 £
o E=
~ c
< S
2 0.7 IS
= =]
o £
a 3
0.6 o
0.5 T
) ]
VAN 0
o™ ®
Figure 6: Performance comparison of the algo-
rithms: all the five algorithms are compared in

terms of computation time. Only MTD-ast and
MTD-hrd are compared with their simplified vari-
ations, i.e., MTD-ast* and MTD-hrd*, in terms of
precision and recall.

Source quality is an important factor that determines the
trustworthiness of information. Generally, a source of high
quality has a higher possibility of providing correct informa-
tion than a low-quality source. Therefore, most truth discov-
ery methods jointly evaluate the trustworthiness of informa-
tion and source quality through an iterative process, where
the two aspects are estimated alternately from each other.
Those methods diverge into different categories according to
the techniques used for the estimation, such as the iterative
approach [17, 11, 6, 4], the Maximum Likelihood Estimation
(MLE) approach [14], optimization approach [18, 9, 8], and
the probabilistic approach [20, 19, 12].

Despite active research in the field, a fundamental prob-
lem remains unresolved, i.e., most existing research is con-
fined by the assumption that each data item has only one
true value. While these methods commonly obtain the single
true value by ranking the evaluation results of all distinctive
values, they cannot automatically detect the number of true
values and thus cannot be applied to the multi-truth sce-
nario. In fact, it is common in the real world that an item
has more than one true value. Failure to incorporate this
feature may degrade the truth discovery accuracy.

Unfortunately, until now, there are very few works on
multi-truth discovery. Intuitively, traditional truth discov-
ery methods can be used for discovering multi-truth by re-
garding all the values in the same claim as a single value.
But the problem is that this modification approach does not
consider the relationship between different claims, i.e., some
claims may overlap in their contained values, and there-
fore lead to low accuracy. In [20], Zhao et al. propose a
Bayesian model that is compatible with the multi-truth sce-
nario, which shows a positive effect on the accuracy and al-
lows for the existence of multiple true values. In [16], Wang
et al. define a new mutual exclusive relation among val-
ues for multi-truth discovery, and incorporate sources’ con-
fidence on their claims and a finer-grained copy detection
technique into a Bayesian framework to address the prob-
lem. Both above methods avail from using the probabilistic
methods, which can automatically detect the number of true
values as a byproduct. However, they consider each distinc-
tive value independently, while on the other hand, neglect
their inter-relations. We believe the co-occurrence of values



in the same claim reflects sources’ belief on their similarity
in the truthfulness. Zhi et al. [21] also improve the mutually
exclusive relation, but in a way that models the silence rate
of sources to allow for the possible non-existence of true val-
ues in the multi-source data. However, this work does not
consider the multi-truth scenario.

Our interpretation of the computing of values lies between
two extreme conditions, namely i) simply regarding the val-
ues in the same claim as an integral joint value, and ii) con-
sidering the values in the same claim totally separately. We
believe that separating the consideration of different values
in the same claim is only a first step, which enables existing
approaches to deal with multi-truth discovery problem. A
further step should include reconsidering the important im-
plications contained in the problem inputs and developing
approaches that can leverage these implications to address
the problem effectively. Our approach is proposed based
on the above approaches and considerations, but it is more
generic in terms of allowing for the existence of a flexible
number (e.g., zero, single, or multiple) of true values for each
data item and being able to deal with imbalanced source
claims, which form the main contributions of this paper.

6. CONCLUSION

In this paper, we focus on the problem of detecting varying
numbers of true values on different data items from multi-
source data, or the multi-truth discovery problem (MTD).
Although the data items with multiple true values widely ex-
ist in the real world, the MTD is rarely studied by previous
efforts. We have proposed a probabilistic model, which com-
prehensively incorporates implications from sources’ claims
in the multi-source data to address the MTD. In particular,
we separate the evaluation of each value in the same claims
and infer the implicit negative claims of sources to enable
multi-truth discovery by a probabilistic approach. We fur-
ther incorporate two measures, namely the calibration of im-
balanced positive/negative claim distributions and the con-
sideration of the implication of values’ co-occurrence in the
same claims, to improve the truth discovery accuracy. The
resulting approach is able to perform accurate multi-truth
discovery under various conditions of sources’ behavioral fea-
tures manifested by the dataset. Experimental results on
three real-world datasets demonstrate the effectiveness of
our approach.
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