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Summary

A high performance colour graphics display system plays an important role in the man-
machine interface of a computer workstation. With rapid progress in the technology of
TV monitors and the reducing cost of frame buffer memory, the raster graphics display is
becoming predominant in the graphics display field. The advantage of the raster display
is that because the brightness and colour of each picture element can be specified inde-
pendently, any picture can be conveniently displayed with comparatively low cost. The
main difficulty of the high performance raster graphics display is that a great many bits in
the frame buffer must be modified to make major changes to the picture. Therefore, the
capability of rapidly updating the frame buffer is one of the most important properties of
a raster graphics display system.

This thesis describes the design of a high resolution colour graphics display system for
a shared-memory 32-bit multiprocessor workstation. This display system makes picture
creation and rearrangement simple and rapid by introducing a specially structured mul-
tiple functionality mode frame buffer. This multi-mode frame buffer supports fast raster
operations, flexible picture element manipulation, a virtual frame buffer architecture and
multiprocessor parallel picture updating in the frame buffer. This system has been de-
signed as a hardware testbed for experimentation with various graphics applications and
for the display of multiple overlapped active windows.

A virtual frame buffer simulator is presented to show a scheme which enables the multi-
mode colour frame buffer to be a demand-paged virtual frame buffer. This not only enlarges
the frame buffer space, which is essential for the display of active multiple overlapped
windows and the panning of very large images, but also facilitates the management of
image storage and reinforces security.

An experimental hardware display system has been built, and basic graphics operations
have been tested on the prototype. An analysis of the resulting performance is presented
to show the appropriateness of this display system architecture and to indicate suitable
directions for further improvement.

vi



Declaration

This thesis contains no material which has been accepted for the award of any other degree
or diploma in any University, and, to the best of my knowledge and belief, this thesis
contains no material previously published or written by another person, except where due
reference is made in the text of the thesis.

I hereby consent to the thesis being made available for photocopying and loan if it is
accepted for the award of the degree.

Chong he Fang

25th November 1987

vil



A cknowledgements

I have been extremely fortunate in having the help of many people during the course of
this project. I would first like to thank Prof. Christopher Barter and Dr. Christopher
Marlin for their constant encouragement, inspiration and direction throughout the whole
project.

I would also like to thank Peter Hawryszkiewycz, Francis Vaughan, Peter Ashenden,
and Peter Fife for numerous stimulating discussions. Werner Dorfl, Tony Romano, and
Peter Daly have contributed a great deal to the building of the prototype hardware; without
their efforts, I would never have obtained a running display system. Quentron Optics have
generously given me the use of their QDS-1000 processor board and software environment
for my experiments.

Finally, I would like to thank my wife Ching-hua who has acted out of love and grace,
and not a sense of justice.

This thesis was completed with the assistance of a scholarship under the University
Research Grant scheme of the University of Adelaide.

viil



Chapter 1

Introduction

1.1 The display system of a workstation

1.1.1 The significance of the graphics display system

A high performance colour graphics display system plays an important role in the man-
machine interface of a workstation. Since humans are good and efficient at understanding
pictorial representations of information, a high quality graphics display is a good means

of achieving man-machine communication. For example, a graphics display can be used

e to visualize physical or abstract objects which normally can only be ex-
pressed in numerical data or mathematical expressions, such as the pic-
torial representation of mathematical, physical and economic functions,
and the dynamic display of the behaviour of the execution of a program
— seeing the effect of transformations in a pictorial fashion facilitates the

perception of patterns and trends, and the discovery of new ideas,

e to reconstruct the shape of invisible but detectable objects, such as the

internal organs of a living human being, and

e to create computer-generated scenes or shapes for simulation, design anal-

ysis, process control and education.
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A graphics display can handle a large variety of fonts, symbols, and character sizes; it
can mix text with graphics. It also supports flexible editing, providing a powerful tool for
document preparation, engineering drafting and electronic typesetting.

Graphical interaction encourages people to develop new ideas to use computer technol-
ogy in many areas of endeavour. This is particularly evident from the uses of computer
graphics displays in art, animation and graphic design.

Display systems which can only handle monochrome images prove inadequate in many

applications. The importance of colour can be seen from the following examples:

e colour is used to distinguish features that would be indistinct in mono-

chrome image, for example in the examination of a Landsat image,

e colour can express visually some special properties of the object being
displayed, such as using a solid shaded colour image to show how the

curvature of a three dimensional surface varies,

e colour makes information more readable and understandable — for exam-
ple, the interconnections in a complex multi-layer printed circuit board
can only be clearly displayed by representing traces in different layers

with different colours,
o colour is essential in increasing the realism of a high quality picture, and

¢ colour can also be used to attract people’s attention by highlighting special

information with special colour, such as using red for warning messages.

Another important aspect of a graphics display is that it supports the display of multiple

overlapped windows, so that a user may consult many information sources at the same
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time without the inconvenience of switching the display screen from one to the other.
This significantly improves the quality of the man-machine interface; for example, a user
can observe the progress of a CAD program from one window, and execute interactive
commands in another window, and obtain design parameters from a third window. Each

window can be sent to the back or pulled to the front, according to the user’s needs.

1.1.2 The raster graphics display system

A computer graphics display system can be described as shown in Figure 1.1. The appli-
cation data structure holds descriptions of real or abstract objects whose pictures are to
appear on the screen. The description of an object includes geometric data that defines
the shape of object components and data which defines the relationship between these
components, as well as some non-geometric data that describes properties of the objects
useful for post-processing. The application program accesses the application data struc-
ture, storing or retrieving data relevant to the objects. The application program also uses

the graphics package to generate graphics commands which instruct the display system to

Application

data structure
Graphics
package Display Video

processing [—#{ monitor
unit
Application i Display .
program program

\ 4 / \ /

Host Computer Display Unit

Interactive Input

Figure 1.1. A computer graphics system.
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create a picture of the objects on the screen. There are many kinds of display systems;
this thesis will focus on the raster display system.

A raster graphics display system represents the image by a two dimensional array of
picture elements, referred to as pizels. Each pixel has a value which represents the colour
and brightness of the pixel. The pixels are arranged in a number of scanlines, as shown
in Figure 1.2; the number of scanlines on a screen, and the number of pixels on each
scanline, determine the resolution of the display. These pixels are normally stored as a two
dimensional array in a special memory, called the frame buffer or image memory. Because
each image element is directly mapped into memory bits, a raster image is also referred to

as a bitmap image.

Figure 1.2. A raster image.

A raster graphics display system can be depicted by the block diagram shown in Fig-
ure 1.3. The host_ processor generates high level graphics primitives for the display pro-
cessor. The display processor creates pictures by writing data into the frame buffer. The
screen refresh system reads the image from the frame buffer, and uses the look-up table
and D/A converters to transform the pixel values into colour signals or grey-scale signals,

finally displaying the image on the screen.
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Host

Computer [ > Display Processor | Frame Buffer

v

Screen Refresh

System
Y
Look-up Table Video
and > Monlitor
D/A Converters

Figure 1.3. A raster graphics display system.

1.1.3 The advantages and disadvantages of the raster graphics
display

The advantage of the raster graphics display is that because the brightness and colour of
each pixel can be specified independently, any picture can be conveniently displayed. With
the reducing cost of frame buffer memory and the use of standard television technology,
the raster graphics fiisplay is becoming predominant in the graphics display field.

The difficulties of the high performance raster graphics display is that a great many
bits in the frame buffer must be modified to make major changes to the picture. Therefore,
the capability of rapidly updating the frame buffer is one of the most important properties

of a raster graphics display system.

1.1.4 The frame buffer
As will be seen later in this thesis, the organization of the frame buffer and its interface

to the rest of the display system have particular significance to the functionality and

performance of a colour raster display system. Therefore, the research described in this
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thesis has focussed on the study of a specially structured frame buffer and its interaction
with the rest of the display system. Firstly, a series of models of the frame buffer is
introduced.

The first model of the frame buffer is a two dimensional array of pixels and is thus the
same data structure as a bitmap image. It can be expressed in a Pascal-like notation, as
follows:

type frame_buffer = array [0..Xmax, 0..Ymax] of pixel ;

pixel = 0..Max_value -

Figure 1.4(a) illustrates this two-dimensional array of pizels model. Actually, this model
is a three dimensional array, the third dimension being the pixel value. The largest pixel
value which can be expressed in this array is denoted by “Max_value”. The “Xmax”
and “Ymax” stand for the maximum x- and y-coordinates which can be accommodated

in this array. Physically, the frame buffer is organized by word. In the two-dimensional

Pixel
depth
\/i s ~

Q78 Pl =

u&
x pixel x JJ x )

_ J |
l
«— 5 «— 5 «— 5

(@ (b) (c)

Figure 1.4. Models of the frame buffer.
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array of pixels model, a memory word contains thc valuc of one pixel or a few adjacent
pixels. The pixel value is an integer, represented by several memory bits; the number of
memory bits, which represents the value of one pixel, is often referred to as pizel depth.
This frame buffer format is called pizel packed format.

The frame buffer can also be considered to be a stack of bit-planes, each bit-plane
holding a binary image. This arrangement can be represented in our notation as follows:

type frame_buffer = array [1..maxplane] of bit_plane ;
bit_plane = array [0..Xmax, 0..Ymax] of pixel ;

pixel = boolean;

in which “maxplane” stands for the number of bit-planes in the frame buffer, and “Xmax”
and “Ymax” are the maximum x- and y-coordinates in each bit-plane. This stack of
bit-planes model is illustrated in Figure 1.4(b). Physically, each pixel in a bit-plane is
represented by one bit. Pixels which have the same x- and y-coordinates, but occur in
different bit-planes, are physically aligned to each other. A collection of these physically
aligned bits across all the bit-planes stands for the value of a multi-bit pixel in the two-
dimensional array of pixels model. In the stack of bit-planes model, the memory word
represents a rectangle of a binary image in a particular bit-plane (usually 16 to 32 pixels).
This frame buffer format is called the bit-plane format.

Other frame buffer formats and data structures can be derived from the above two basic
frame buffer models, and will be discussed in Chapter 2. A typical example is that several
bit planes can form a group, corresponding to a image with reduced colour resolution;
in this way, the whole frame buffer becomes an arbitrary mixture of bit-plane groups, as

depicted in Figure 1.4(c). By manipulating the look-up table, the images represented by
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these bit-plane groups can be displayed one at a time, or with assigned visual priority, so
that images in different bit-plane groups can be displayed simultaneously in an overlapped

fashion.

1.1.5 Basic graphics capabilities

Almost all applications include the need for basic graphic functions, such as line drawing,
area fill, overlapped window manipulation, panning and scrolling a large image, character
display and so on. The ability to manipulate and display natural images and images with
shaded colour is often also essential for more sophisticated graphics applications.

In order to support these operations, four basic graphics capabilities are necessary for
a display system; they are fast RasterOp, pixel value manipulation, a large image buffer

and efficient image data transfer. Each of these is discussed, in turn, below.

RasterOp

One of the most important graphics functions is called RasterOp or BitBlt (bit bound-
ary block transfer), first introduced by Xerox PARC [23]. RasterOp is an image copy.
During a RasterOp, a source image rectangle is copied onto a destination rectangle, as
depicted in Figure 1.5; the halftone image rectangle is a square bitmap image which rep-
resents a texture to be painted onto the destination image. In the course of copying, a
bitwise logical operation is applied between source, destination and halftone image rect-
angles (which will be referred to simply as “source”, “destination” and “halftone”). The
result is written into the destination image rectangle. The image rectangles can have

arbitrary pixel boundaries.

The logical operations between the three images can consist of as many as 256 combi-

nations, but only a few are of practical use. Examples include:
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Source Halftone
image image
rectangle rectangle
Destination
image
rectangle

Figure 1.5. The raster operation.

e set destination to “0” or “1”,

¢ copy source to destination,

e form the exclusive “OR” of the source and destination,

e apply the logical “OR” operation to source and destination,

¢ copy the source to the destination while using halftone as a mask (called

“texturing”),
¢ invert the destination, and

e copy the halftone to the destination.

These bitwise logical operations are not only powerful for manipulating binary images,
but many of them also lend themselves to the manipulation of colour images. For example,

they can be used to

e set the destination to some background colour,
e copy the source to the destination,

e extend a binary pattern into a coloured pattern (for example, a character
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stored in binary pattern form in a font area can be extended to a coloured

character when copied into the destination),
e texture a colour image area, and

e combine colour images.

The uses of RasterOp can be demonstrated by the following examples. A bitmap image
can be created by copying small primitive images. For example, a screenful of text can be
formed by copying characters from a font area to the text region, several images can be
combined, and a small image can be used as a brush and copied along a trajectory to form
a line with texture and arbitrary width.

Other graphics functions, such as panning and scrolling a large image, rotating a image
through 90 degrees, or image zooming, can also be done by image copy.

Manipulation of multiple overlapped screen windows can also be handled by image
copy. Examples include changing window size, moving a window to a new position, saving
the obscured parts of a window in a off-screen buffer area, and restoring the window when
these parts of the window are uncovered.

From the above discussion, we can see that RasterOp is a fairly general graphics op-
eration. In order to have fast RasterOp execution, as many pixels as possible need to be
copied in one memory cycle. For binary images, this is done by using a memory word
to represent a 16- to 32-pixel binary image rectangle. For multi-bit pixel colour images,
this suggests the use of a bit-plane frame buffer format and simultaneous execution of
RasterOp in all bit-planes. The graphics processor needs hardware assistance to handle
pixel boundary image block transfer and the logic operations. Therefore, hardware Ras-

terOp support should be considered in the architecture of the display system in order to
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accelerate a large group of graphics capabilities.

Pixel value manipulation

For a large number of graphics applications, the pixel values of an image need to be
manipulated one after another; examples of situations where this occurs include filling
polygons with shaded colour, displaying natural images with pseudo-colour, and antialias-
ing by blending foreground and background colours. In these applications, the graphics
processor should be able to access and manipulate the pixel values efficiently, so that
these operations can be executed at a reasonable speed. Furthermore, since most of these
operations are computationally intensive, an increase in processing power will enhance
overall performance. This suggests that the frame buffer should be organized in a pixel
packed format and be accessible to multiple processors, so that the processing power of

the multiprocessor workstation can be exploited.

Large off-screen buffer area

A large off-screen buffer area is needed to back up obscured windows, menus, icons and
fonts, as well as being used when a large image is being scrolled. However, the size of the
physical frame buffer is always limited and in managing the limited buffer area there is
some software overhead in dealing with the fragmentation problem. Therefore, a paging

virtual frame buffer scheme may be a promising scheme to investigate as a solution to this

problem.

Efficient image data transfer

Images need to be moved around the system for processing, display or storage. There-
fore, it should be possible to transfer the image data efficiently between the frame buffer

and the main memory, between the frame buffer and the disc, and also between image



CHAPTER 1. INTRODUCTION 12

bit-planes.

1.2 This thesis

1.2.1 Motivation

The motivation for this work is the design and investigation of a high resolution colour
display system for a multiprocessor workstation which simplifies and speeds up picture
creation and rearrangement. This is achieved by introducing a special structured frame
buffer memory, putting it into the virtual memory space, and exploiting the processing
power of a shared memory multiprocessor environment.

The design goal is to build a hardware testbed for experimentation with various graphics
applications. This testbed is to provide a moderately high level of performance in many
different application areas and to efficiently display a variety of images. Image types
include bitmap images, display list images, solid colour and shaded colour images, and
binary images.

Because a multi-window display is so important in a modern user interface, one of
the objectives of this work is to provide hardware assistance to handle multi-window dis-
plays. A virtual frame buffer is proposed as an experimental attempt to improve image
management.

The design makes use of the large and flexible processing power of the symmetric
multiprocessor architecture of the workstation to promote parallelism in image creation

and updating, in order to achieve high performance.
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1.2.2 Hypothesis

From the above discussion, we can see that different frame buffer organizations are suited
to different kinds of colour graphics capabilities; an ordinary frame buffer memory cannot
satisfy all the different data type and functionality requirements described earlier. There-
fore, it is usual for a graphics display system to optimize its frame buffer to one type
of application. For example, the Textronix 4115B graphics terminal [17] and the AED
512 graphics terminal [1] orient their applications to line drawing and organizes the frame
buffer in the pixel packed format. However, this is not fast enough or convenient enough
to handle RasterOp function. The Commodore AMIGA [30] treats the frame buffer as
a stack of binary images, each memory word standing for a binary image rectangle; this
is done to allow flexible use of bit-plane groups to represent images of different colour
resolutions and for the convenience of executing RasterOp function. However, pixel value
manipulation in this scheme is expensive.

The hypothesis for the experiment described in this thesis is composed of the following

three parts:

1. A multi-mode frame buffer may enhance overall colour graphics display system per-

formance.
2. Multiple graphics processors may improve performance.
3. A virtual frame buffer may enhance management of multiple screen windows.

Multi-mode frame buffer

In each mode, the frame buffer is designed to support a specific category of operation;

so that the constraints, imposed by a particular memory format can be eliminated, and
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the performance of the graphics display system can be enhanced. Threc memory modes

are considered adequate:

e in pixel mode, the processor accesses the frame buffer by pixel value,

e in bit-plane mode, the processor accesses the frame buffer by bit plane,

and
¢ in RasterOp mode, the frame buffer supports parallel multiple bit-plane
RasterOp.
The three modes will satisfy most of the requirements of graphics operations.

Multiple graphics processors

Making the frame buffer directly accessible to multiple general purpose processors,
which work as graphics processors, may exploit the large processing power of the multi-

processor workstation for parallel updating of images.

Virtual frame buffer

A large virtual frame buffer will facilitate the management of the frame buffer heap
area (solving the heap fragmentation problem, to a large extent) and images larger than

the physical frame buffer size can be accommodated in the virtual frame buffer.

1.2.3 The remainder of this thesis

Chapter 2 includes a brief survey of various raster graphics display architectures and a
description of the definition and the implementation of a new display system. Chapter
3 describes the multi-mode colour virtual frame buffer management scheme. A detailed

description of the algorithms used in a virtual frame buffer simulator is given in this chapter
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and an appendix; this simulator shows how this virtual frame buffer management scheme
works, and demonstrates its functionality.
In Chapter 4, the programming model and co-ordinate system of the display system
—are given. Also given are algorithmic descriptions of a number of sample procedures for
basic graphics operations, illustrating how to use the display system. The special issues
arising when the display system is used in a multiprocessor environment are also discussed.
Finally, Chapter 4 describes the experiments which have been carried out on the hardware
prototype. An analysis of the results is presented to show the performance issues for this
display system and the directions for further improvement.
Chapter 5 summarizes the achievements of this thesis, the characteristics of the imple-

mented display system, the problems remaining to be solved and probable future work.



Chapter 2

Implementation

2.1 Architectural features of workstation display sys-
tems

Many computer workstations have used the Xerox PARC model [33]; this model consists
of a collection of personal computers linked by a high bandwidth local network. All users
interact with the dedicated personal computers via high bandwidth graphics displays,
which provide a rapid response via text and graphics. Most tasks are served locally by the
personal computer, with occasional access to other machines for special services. The high
bandwidth and tight integration between the personal computer and its graphics display
system provide the characteristics of the architecture of this kind of workstation display
system. Several architectural alternatives, within this category of display systems, are

discussed in the rest of this section.

2.1.1 RasterOp model

The RasterOp model of a workstation display system was first developed on the Xerox
Alto personal computer [33], which unified operations on various kinds of image represen-
tation through the manipulation of the lowest level of image representation — the bitmap

image. The principal characteristic of these systems is that, in addition to other graphics

16
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functions, they use the RasterOp function to effectively handle the manipulation of multi-
ple overlapped windows, panning and scrolling, texture filling and text. Because of these
advantages, the display system developed in this thesis also uses the RasterOp model.
Other systems using this model include the PERQ workstation, the Sun workstation, the
Apollo Domain and the Blit terminal.

The PERQ workstation [4], whose architecture is depicted in Figure 2.1 (which is
adapted from [31]), has a monochrome display. It uses a 16 bit bit-slice CPU, combined
with 64 bit RasterOp hardware. The dual-ported image memory is part of the main
memory, so that the CPU can operate directly on the pixels composing the picture. The
machine is microcoded and has special graphics instructions which support image area
copying with logic operations on its pixels, and vector drawing, over the whole memory

space. This facilitates image movement and the manipulation of multiple windows.
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Figure 2.1. The PERQ workstation.

The Sun-2/120 monochrome workstation, shown in Figure 2.2 (adapted from [35]), uses

a standard Motorola MC68010 as CPU and a RasterOp processor on the CPU board for
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better integration. Its dual-ported image memory and main memory are placed on a high-
speed memory bus, the P2 bus. The MC68010 CPU and Sun’s proprietary MMU support
demand-paged virtual memory. The CPU virtual address and the direct virtual memory
access (DMA) address can be translated by the MMU into physical addresses and thus be
mapped to onboard device addresses, to memory addresses via the P2 bus, or to Multibus
addresses, depending on how tags in the MMU are set. The lmage memory appears as a
128 Kbyte contiguous memory area. Because the processor accesses image memory in the
same way 1t accesses main memory, it is easy to use RasterOp to move images between

image memory and virtual memory, which greatly increases the multi-window capability

of the system.
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Figure 2.2. The Sun-2 workstation.

The Blit terminal [28] uses very simple hardware; the only graphics display hardware
is the dual-ported image memory. A general purpose processor, the Motorola MC68000 is
used to handle the tasks of both CPU and graphics processor. The linearly addressed frame

buffer is part of the main memory, which can store both image and program. Through
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careful design of primitive graphics procedures, the performance of the Blit lerminal equals
or even exceeds that of some more sophisticated workstations, as shown by a series of
evaluation tests [28]. The uniform structure of frame buffer and main memory, and the
ability of the CPU to directly manipulate the frame buffer, contribute to the improvement

in graphics display performance.
2.1.2 Parallel architectures
Parallel architectures attempt to meet the demand for increased performance by partition-

ing image generation tasks among many processing elements which operate concurrently.

There are four basic types of parallel display architectures:

a scheme which partitions graphics object spaces,
¢ a scheme which partitions image spaces,
e a scheme which partitions different operations, and

¢ a scheme which combines the above approaches to partitioning,.

Systems adopting the third scheme are normally implemented as pipeline systems, and
systems corresponding to the remaining three schemes can simply be classified as parallel

image creation systems.

Pipeline systems

A pipeline system partitions operations among processing elements. Parallelism is
achieved by overlapping operations executed on different stages. Many modern high per-
formance display systems adopt such a pipelining approach. Take the Iris workstation for

example, whose simplified block diagram is shown in Figure 2.3 (adapted from [15]); the
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Figure 2.3. The Iris workstation.

task of image generation is partitioned into graphics primitive generation (performed by a
MC68000 or MC68010 processor), geometry transformation, clipping, scaling (performed
by “Geometry Engines”), rasterization, character printing, and frame buffer updating
(performed by a frame buffer controller and an update controller). Each task is run on
a separate processor. Most of these processors are specialized function units, arranged in
a pipeline fashion. Finally, the display controller reads the pixel values from the frame
buffer and displays them on the video monitor screen. In this class of system, different
function units normally communicate in a fixed order and they can provide a high level of
performance in the-context of a set of commonly used functions. Pipeline display archi-
tectures can also be found in the Ramtek 2020 workstation [24], the Graphica system [22],

and others.
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Parallel image creation

Parallel image creation schemes try to achieve higher performance by subdividing the
task of creating a whole image into the generation of several sub-images or objects in
parallel. For example, generating realistic three dimensional images is computationally
very intensive. If there are a lot of processors executing in parallel, each generating a small
part of the whole image (such as a scanline), the image creation task will be completed
much faster. So, many research projects have investigated different parallel image creation
schemes.

Fuyjitsu Laboratories have developed a cellular array processor with distributed frame
buffer for fast parallel sub-image generation [31]. The architecture of this machine is
depicted in Figure 2.4. This architecture applies 64 general purpose processors, each
working as a cell processor, to form an 8 x 8 two-dimensional processor array. Each cell has
its own local memory and a video memory, the latter forming part of the whole frame buffer.
The sub-image in the cell image memory can be mapped onto the screen in many different
ways, a fact which su;;ports flexible image partitioning. Global communication among cells,
and between cells and the host computer, is via a common “command bus”; each cell also
has local communication lines with its four nearest neighbours. Image generation is handled
by software, so that different algorithms can be supported and so the processor array can
be used for other parallel computation. This architecture provides high bandwidth for
image updating; the distributed frame buffer largely eliminates access conflicts between
different cell processors. However, moving a bitmap image around the whole frame buffer
(such as moving a window to a new position), or scrolling a large image, can cause a

large amount of pixel data transfer across the local cell video memories, and this will be



CHAPTER 2. IMPLEMENTATION 22

expensive. In summary, the distributed frame buffer is more suitable for image creation

than for moving images.
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Figure 2.4. A cellular array processor architecture.

2.1.3 Peripheral and integral display system architectures

According to the position of the frame buffer in the whole system, display systems can be
classified into two categories [25,32], which will be referred to as peripheral display systems
and integral display systems. In a peripheral display system [14], shown in Figure 2.5, the
frame buffer is placed on a separate bus and is under the sole control of the graphics pro-
cessor or controller. The main processor handles graphics display operations by sending
commands to the graphics subsystem in a similar way to the way in which it would handle
a peripheral device. The advantage of this scheme is that large amounts of pixel data can
be off-loaded from the system bus and a specially designed graphics processor can pro-
vide a high degree; of performance over a set of commonly used graphics operations. The
disadvantage of this scheme is that all frame buffer accesses must go through the graph-

ics processor; therefore, the manipulation of pixel values by the main processor becomes
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cumbersome, and sometimes the graphics processor tends to become overloaded. Also, the
data types and functionality defined by the structure of a peripheral display subsystem

‘cannot be easily extended to meet new requirements.
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Figure 2.5. A peripheral display system.

By contrast, the integral display system [18,33], shown in Figure 2.6, places the frame
buffer onto the system bus address space. Thus, the display becomes an integral part of
the computer system, and any processing unit connected to the system bus can directly
manipulate the frame buffer and other display system components, such as look-up tables
and control registers. Other bus masters, such as DMA device controllers, also have direct
access to the display system components. This arrangement provides great flexibility;
not only can the processor have fine control over image generation, but images can be
created and stored anywhere in the processor’s address space, including the frame buffer,
and images can be conveniently transferred between frame buffer and peripheral devices,

such as secondary storage and frame grabbers. The disadvantage of the integral display
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system is that the voluminous pixel data stream goes along the system bus; therefore, a
very high system bus bandwidth is required for a high performance display system of this
kind. Since the integral display system can be programmed to meet the requirements of

many different applications, it is more suitable for general purpose use.

Frame Display Video
Buffer | [——®| Controller —»| Monitor

| I .

< Main Bus )
Optional
CPU Processor

Figure 2.6. An integral display system.

2.2 The implemented display system

Consistent with the goal of designing a general purpose hardware testbed for experimen-
tation with various graphics applications, and having considered the architectural alterna-
tives described above and the architectural features of the multiprocessor host workstation,

an experimental display system was built with the following architecture:

e an integral display system with multiple graphics processors,
e a multiple functionality mode frame buffer with built-in RasterOp units, and

e a large offscreen frame buffer area with a virtual frame buffer architecture.
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Before discussing the structure of the implemented display system, it is necessary to

introduce the general architecture of the host multiprocessor workstation.

2.2.1 General architecture of the host workstation

The general architecture of the host workstation into which the display system is inte-
grated is illustrated in Figure 2.7 (adapted from [11]). The system components (such as
processors, memory and device controllers) communicate via a locally-designed high-speed

32-bit asynchronous multiprocessor system bus, called L-bus.
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Figure 2.7. The architecture of the host workstation.

The general data processors provide a homogeneous pool of processing resource for
the execution of tasks. The device processors provide interfaces to devices in the outside
world, as servers for the other tasks. The special data processors are optional components
for improving the performance of certain functions. The system memory provides a shared
high-speed storage resource for all the processors and controllers which are connected to

the system bus; it can also be used as a communication medium between tasks. Device
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controllers are device interface components. The communication to a device controller
is via the control registers of the controller, the addresses of which are mapped into the
system bus address space.

In the host system, NS32000 series processors and NS32000 paging virtual memory
management scheme are adopted. The processor uses virtual addresses which are trans-
lated into L-bus physical addresses by a memory management unit (MMU). The L-bus
address space is divided into cacheable and non-cacheable regions by address bit 26; the
I/O device buffers and registers are placed in the non-cacheable region. A general data
processor module normally consist of CPU, MMU, floating point unit, local memory and
cache. Because the local memory and cache contain most of the currently executing code
and data, the data traffic during program execution can be largely confined within the
processor board. This significantly reduces the system bus traffic and increases execution
speed. The host system provides hardware and software facilities for task dispatching and
inter-task communication; the means of communication with service tasks is consistent

with the general means of inter-task communication.

2.2.2 The display subsystem

A single common bus multiprocessor host system such as that described above provides
a flexible and powerful parallel processing environment. It is well suited to provide the
processing elements for the graphics display system.

NS32032 32-bit high performance microprocessors are used as the general purpose data
processors in the host system; these operate at a clock frequency of 10 MHz. The specifi-
cation for this processor includes a large linear address space, a powerful instruction set, a

wide data path and a high data transfer bandwidth. This processor and its floating point
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coproccessor lend themsclves to the handling of graphics operations, such as addressing
large frame buffer areas, high precision arithmetic, and so on. Furthermore, the general
data processor’s paging virtual memory mechanism can be used to implement a virtual
frame buffer.

The multiprocessor host system described above can be employed to provide a parallel
image updating system, and so use parallelism to achieve the required performance in a
cost effective way. In order to fully exploit the processing power of the multiprocessor host
system, the frame buffer must be made directly accessible to all processors in the processor
pool. Therefore, it was decided to map the frame buffer, look-up table and other display
control registefé into the system bus address space, so that all L-bus masters can directly
access them. Thus, the display system provides a memory interface to the host system
and the host system becomes a part of the integral display system. This architecture has

several advantages:

e graphics tasks can be dynamically allocated among multiple processors and different

parallel image updating schemes can be configured by software,

e the multi-mode frame buffer (and other special function hardware) can be shared
by all graphics processors to enhance the overall performance and an increase in
processing power can be achieved by adding more processors (which may be limited
by the bus bandwidth and the memory transfer bandwidth — the L-bus bandwith is

16MB /sec and the frame buffer transfer bandwidth is 6.6MB/sec.),

e because of the use of a general purpose processor as the graphics processor, pro-

gramming becomes easier and sufficiently flexible to support experiments with new
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graphics algorithms, and

o because the display subsystem interfaces to the system bus, it becomes independent
of a specific kind of processor (when a better processor becomes available, the display
system can be easily upgraded), and more display boards can be plugged into the

system bus to expand the display system.

The disadvantage of this architecture is that, because of system bus arbitration overhead
and bus contention between multiple processors, the frame buffer access speed for an
individual graphics processor will be lower than the speed with which it accesses its own
local memory.

The architecture of the implemented display system is depicted in Figure 2.8. Except

for the host system, the display subsystem contains four main components, namely

the multi-mode frame buffer array,

the display controller,

the look-up table and D/A converters, and

the system interface.

The multiple general data processors in the host system create and move images by
directly manipulating the frame buffer. The display controller handles the timing and
control of the dual-ported frame buffer, and screen refreshing. It scans through the frame
buffer, converts the parallel pixel values (read from the frame buffer) into a video-rate
serial pixel stream, and sends this stream to the look-up table as indices. The look-up

table converts the pixel values into intensities for the red, green and blue (referred to as
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Figure 2.8. The architecture of the implemented graphics display system.

RGB) signals. The three D/A converters convert the digital RGB signals into analogue
video signals and send them to the colour video monitor. The video synchronization
and blanking signals are also generated by the display controller. The display controller
can produce an interrupt signal for a processor, at a selected time in each vertical scan
period, to synchronize the screen refreshing process with graphics input device sampling or
dynamic image updating. The display controller also uses an interrupt to report an internal
error condition. The frame buffer, display controller and look-up table communicate with
the host system via the common system bus interface. The implementation of these three
functional components will be described in detail in the rest of this chapter.

In a single bus multiprocessor system, all of the bus masters contend for the use of
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the bus. In the host system being described here, two bus arbitration schemes are used in
parallel; these two schemes are called the fairness and priority schemes. All bus masters
working in the fairness arbitration scheme have equal opportunity to use the system bus.
It is designed for a situation where processors are working on a general data processing
task and it provides for fairness between tasks. In the priority arbitration scheme, the bus
master which has the highest priority will acquire the bus. It is designed for bus masters
working on tasks which need to be processed urgently, such as data transfer to or from
fast secondary storage or an interactive display. In a particular bus arbitration situation,
if bus masters from both the fairness and priority schemes issue system bus requests, the
priority bus master will always win over the fairness bus master. The bus arbitration
type can be associated with the process; therefore, the same processor may use different
bus arbitration schemes, and may have different priorities, depending on the nature of the
process running on it. In this system, all screen updating processes will be assigned higher
arbitration priority than other processes; this guarantees that screen updating will not be
hindered by a non-display process, yielding better display responsiveness.

The display system described here was not designed for animation; therefore the as-
sumption is made that screen updating comes only in discrete bursts and so the priority
bus masters and pixel data stream will not dominate the system bus and degrade system
performance. For applications where continual full-screen updating is required, it would
be necessary to expand the display system into a double bus system which has one mul-
tiprocessor bus for updating the frame buffer and another multiprocessor bus for data
processing. If the two buses were of the same type, communication between the two buses

could be achieved by a simple bus adapter between them or by making each processor
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dual-ported, with interfaces to both buses.

2.3 The multi-mode frame buffer

2.3.1 Frame buffer updating in a multi-window environment

Before discussing the multi-window display and frame buffer updating, an important dis-
tinction between a clipping window and screen window should be made. In computer
graphics terminology [20], image objects are specified in world co-ordinates. A clipping
window defines a rectangular region in the world co-ordinate system; only images inside
this clipping window region can be displayed. The clipping window is mapped onto a
viewport by a scaling operation. A viewport is a rectangular portion of the screen surface
and is described in terms of a device-independent normalized device co-ordinate which is
associated with a real hardware display system. In the context of a multi-window raster
display, the screen surface mentioned above is a virtual screen surface and is associated
with a virtual pixel matrix [10]. The images are rasterized into this virtual pixel matrix.
There can be multiple virtual screen surfaces and virtual pixel matrices; a window manager
will display these virtual pixel matrices on a real screen in the form of screen windows. A
screen window is normally a rectangular region on the real screen to which a virtual pixel
matrix is being mapped.

From a virtual pixel matrix to a screen window, there may be a transformation, such
as zooming in, zooming out, or rotation. A screen window can be dragged around the real
screen, and the size and position of the screen window can be redefined by the window
management program. In a multiple screen window environment, multiple screen windows
can be displayed in an overlapped fashion — as if they exist in multiple layers, where

windows with higher visual priority obscure windows with lower visual priority.
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Thus, the viewport defines the position and size of an image in the virtual pixel matrix
and the screen window defines what part of this viewport can be displayed on the real
screen, and in what position it is displayed. Because this thesis is concerned with updating
the frame buffer, the term “window” will always be used to refer to the screen window;
the clipping window in the world co-ordinate system is referred to as the “image window”.

The above conceptual model gives us an abstract view of a multiwindow display system.
Actually, the real screen is usually displayed from the contents of a contiguous region of
the frame buffer, called the visible region of the frame buffer. The window manager maps
the visible parts of the virtual pixel matrix onto the visible region of the frame buffer, and
the invisible parts of the virtual pixel matrix onto an off-screen buffer area. If there are a
large number of overlapped screen windows, only a small portion of the screen window will
be visible for most of them; the rest will have to be kept in the off-screen buffer, in order to
recover the obscured parts of the screen windows when they are uncovered. Consequently,
a very large off-screen buffer area is needed to accommodate these obscured windows.
When the layout of the screen windows changes, the visible parts and the invisible parts
of the screen windows are rearranged using the RasterOp function. In our case, the frame
buffer is being accessed by graphics processors in different modes for different kinds of
image updating, to keep multiple screen windows active.

From the above description, we can see that an efficient RasterOp function and a large
off-screen buffer space are key factors in the fast manipulation of multiple overlapped screen
windows. Later, we will also see that far more data is needed to represent a colour image
than for a binary image. It is more cost effective to implement a higher data transfer rate

within the frame buffer, rather than between the frame buffer and other modules; thus,
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the scheme of maintaining the off-screen buffer region within the frame buffer is preferable.
A virtual frame buffer scheme can be used to implement a very large off-screen buffer. In
this case, there will be exchanges of blocks of image data between the physical frame buffer

and secondary storage.

2.3.2 The screen format and frame buffer organization

Screen format

The amount of data needed to represent an image increases rapidly with an increase in
the image resolution and colour pixel depth. For example, a 512 x 512 binary image is
represented by 256 Kbits, a 1024 x 1024 binary image is represented by 1 Mbits, while a
1024 x 1024 full-colour 24-bit-pixel image requires 24 Mbits for its representation. The
great amount of data needed to represent a high resolution, full-colour image means that
it is very expensive to manipulate, transfer, store and display such an image. Therefore,
the selection of screen format is a trade-off between picture quality and image updating
speed, as well as the hardware complexity. We choose a 1024 x 768 high resolution screen
and 8-bit pixel depth. A colour look-up table translates the 8-bit pixel into 8 bits each for
red, green, and blue, and is thus capable of simultaneously displaying of 256 colours from
a 16 million colour palette. This screen format can produce colour images that meet the
requirements of most graphics applications with a reasonable cost, but it is not sufficient
for image processing tasks requiring high pixel depth.

The choice of 8-bit pixel depth also stems from the data and addressing modes of the
graphics processor. An 8-bit pixel maps to precisely one byte, and so the pixel value can
be conveniently manipulated by the byte addressing general data processors in the host

system. If some other pixel depth were selected, it would also have to match with the
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addressable data unit of the graphics processor, otherwise the pixel value manipulation

would become cumbersome.

Memory components

Ideally, the full bandwidth of the frame buffer should be used for image updating.
Unfortunately, the screen refresh process usually takes up large amount of the frame buffer
bandwidth, causing image updating to be slow. For example, a flicker-free 1024 x 1024
monochrome screen needs to be refreshed 60 times a second, which requires more than
60 Mbit/sec frame buffer bandwidth; since the full bandwidth of a 16-bit word memory
with a 250 nsec cycle time is only 64 Mbit/sec, none of the memory cycle is available
for image updating. In order to circumvent this bottleneck, a number of techniques have
been developed; examples include double buffering, a shadow frame buffer, a wide memory
data path, and using memory components which have a page mode. All of these make the
display system more complex and expensive.

This design adopted a new memory component, known as video RAM, which was first
developed by Texas Instruments [29]. Figure 2.9 illustrates the block diagram for this
component. Video RAM makes use of the wide internal data path of a VLSI RAM and
transfers the data of a whole row of 256 memory cells into an internal shift register in one
memory cycle. The shift register can then work as an independent port and shifts this
data out for screen refreshing. The rest of the RAM chip works as a conventional random
access port for image updating. For our 32-bit frame buffer memory, eight 1024 pixel scan-
lines can be read in one memory cycle (256 x 32 pixels being the same as 8 x 1024-pixel
scan-lines); the video RAM cycle time is 300 nsec, and so the total time needed to refresh

a 800 line screen frame is 30 us (100 x 0.3 us), compared with the 16667 us (1/60 second)
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frame time. Thus, we can see that, by using video RAMs as frame buffer components,
almost the full frame buffer bandwidth can be used for image updating without extra cost.
The memory chips adopted in this design are NEC pPD41264 4 x 64K video RAMs (3]
and the scan-line organization of the frame buffer fits in well with the use of these video

RAM components.
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Figure 2.9. Block diagram of a video RAM chip.

Frame buffer organization

In order to impiement a multi-mode frame buffer and meet the basic functionality
requirements of a multi-window display environment, the frame buffer is organized as a
stack of eight bit-planes, as depicted in Figure 1.4(b). All the bit-planes are locked to the
same co-ordinate system, so that the contents of these eight bit-planes can represent colour
images with 8-bit pixel depth. The bit-planes are organized in scan-line order, as depicted
in Figure 2.10; the upper left corner of a bit-plane stands for x- and y-coordinate pair
(0,0). Each memory word represent a 32-pixel segment of a scan-line, but it can also be

considered as a primitive binary image rectangle with a height of 1 and a width of 32 (called
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Figure 2.10. The organization of a frame buffer bit-plane.
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The x- and y-coordinates of the bit-planes are mapped into a linear one-dimensional

memory address space. The frame buffer has the same width as the screen, so that a simple

address range will define the frame buffer as a contiguous visible screen area and leave a

contiguous area of memory for the off-screen buffer area. The frame buffer size is 1024 x

2048 pixels, of which only 1024 x 768 are displayed on the screen; the remainder serves as

large buffer area and is used for virtual frame buffer page frames, or for double buffering

in dynamic display applications. Keeping a large off-screen buffer area in the frame buffer

1s an essential part of this design, for the following reasons.

1. In a colour raster graphics display system, the multiple functionalities and the high

bandwidth of parallel RasterOp function units can only be achieved in the frame



CHAPTER 2. IMPLEMENTATION 37

buffer. If there is only a small off-screen buffer (or perhaps no off-screen buffer)
available in the frame buffer, the off-screen buffer must be kept in other memory,
and frequent data transfer between the frame buffer and the other memory is needed
to move an image onto and off the screen. However, the overhead of moving an
image between the frame buffer and the other memory is much higher than moving
it inside the frame buffer, and so the power of the parallel RasterOp units and the

multi-mode frame buffer will not be fully exploited.

2. The virtual frame buffer can only be used effectively in the off-screen buffer area,
and one of the major aims of this project was to use a virtual frame buffer to achieve
high performance. The screen area of the frame buffer must be a contiguous area,
so that it can be read correctly by a normal display controller and can be shared by
multiple screen windows. If there is no off-screen buffer area in the frame buffer, no

virtual frame buffer scheme can be implemented.

The advantages of the scan-line organized, linearly addressed frame buffer are as follows.

e It is convenient for the screen refresh system to read the frame buffer in

a scan-line by scan-line fashion.

e In raster operation, the unit height primitive image rectangle is easy to
map into any large image rectangle, since only the x-direction boundary
condition needs to be considered. This will simplify rectangle edge com-
putation. Also, this unit height rectangle can be conveniently mapped

into a polygon or other shaped areas.

e A two-dimensional image array of any size can easily be mapped into a
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contiguous linear one-dimensional memory array, so that in the off-screen
buffer area, pieces of arbitrary-sized images can be densely packed together
in a one-dimensional space. This significantly saves frame buffer memory

space and eases off-screen buffer management.

e The uniform structure of frame buffer memory and other system memory
simplifies data exchange between frame buffer and the rest of the system,
and makes it possible to use the paging virtual memory mechanism of the

host system to implement a virtual frame buffer.

Some frame buffer designs adopt x- and y-addressing, and a primitive image rectangle
can then be accessed to a pixel boundary [12]. This eliminates the overhead of converting
x- and y-coordinates into linear memory address, and pixel addressing also facilitates pixel
boundary image block transfers within the frame buffer. However, the peculiar structure of
the frame buffer adds extra overhead on data transfer between the frame buffer and main
memory; for example, x- and y-addressing is not compatible with DMA block transfer, nor
does it fit in with virtual memory address translation. It is difficult or even impossible to
pack arbitrary-sized pieces of image densely into a two-dimensional off-screen buffer area,
such as that which occurs with x- and y-addressing; however, to be able to dynamically
allocate and deallocate arbitrary-sized image pieces in the off-screen buffer area is essential
for a multi-window display. Lastly, it is clear that the pixel addressing mechanism increases
the cost and complexity of the hardware .

In an attempt to enhance vector drawing and the display of characters, two-dimensional
image memory cells, such as the 8 by 8 display [32] and the Disarray [27,34], have been

proposed. These schemes use an n X n pixel array as the memory access unit, so that an
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n X n character or n pixels of a vector can be displayed in one memory cycle, whereas
the scan-line word organized frame buffer scheme generally only draws one pixel on each
memory cycle. The disadvantage of a two-dimensional image cell is that it is difficult to
map these cells into an arbitrary-sized rectangle, since both x and y boundary conditions
and masks must be calculated. The boundary calculation is especially time consuming
when mapping these cells into a non-rectangular area. This two-dimensional memory cell
must be addressed using x- and y-coordinates, and this suffers from the problems inherent
in two-dimensional addressing, as mentioned above; these problems include the fact that
the peculiar structure introduces difficulties in data exchange between the frame buffer
and other memory areas. With future increases in the graphics processor data path width,
such as to 64 bits or more, the two-dimensional frame buffer cell is an interesting direction
to investigate, but the scheme proposed in this thesis is more suited to our current task.
Several notable research efforts have been experimenting with putting graphics proces-
sors into frame buffer memory chips. For example, the “Pixel-plane” project [21] combines
a tree processor with memory array which can evaluate arithmetic expressions for hidden
surface removal and shading. This direction of research involves building custom VLSI

chips and is out of the scope of this thesis.

2.3.3 Multiple functionality modes and their data structures

In accordance with the hypothesis discussed in Section 1.2.2, the frame buffer has been
designed with three functionality modes. Each mode supports a specific category of graph-
ics operations. Different functionality modes are selected by accessing the frame buffer
through different address ranges; thus, different functionality modes can be used simul-

taneously, and can be used together in implementing graphics operations. Also, parallel
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graphics processes can work in different modes without the inconvenience of a mode switch.
The data formats and address formats of the three functionality modes are shown in Fig-
ure 2.11; these will be explained below. The address formats given are the ones used in
programs; they are transformed by the graphics processor’s bus interface to the system

bus address format during program execution.

Pixel mode

In this mode, the data structure of the frame buffer is a two-dimensional array of
pixels. The graphics processor accesses the frame buffer by pixel values. A 32-bit memory
word represents the values of four horizontally adjacent pixels, as shown in Figure 2.11(a).
The pixel values in this word come from all the bit-planes of the frame buffer, each pixel
value corresponding to a byte. The frame buffer is byte addressable in this mode, so that
individual pixels can be directly addressed and the pixel values manipulated conveniently.
The address format in Figure 2.11(a) shows that bits 0 to 20 specify the co-ordinate of
the left starting point of a 4-pixel pixel group. The processor instruction will specify how
many pixels the instruction is to access.

There is an 8-bit bit-plane write-enable control register for pixel mode in the frame
buffer controller. Each bit in this register controls the modification of one bit-plane and
so selective bit-plane modification can be achieved.

In pixel mode, pixel values can be conveniently read and manipulated. This facilitates
line drawing, area filling with shaded colour, combining colour images with operations
such as maximum or minimum intensity, adding or subtracting with saturation, replacing
with transparency, colour blending, and so on. These operations are much more expensive

if the frame buffer is organized in bit-plane format. This is because, in order to obtain
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Figure 2.11. Frame buffer address and data formats.
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one pixel value, all bit-planes involved in this pixel have to be accessed separately and the
pixel value has to be extracted from each of these bit-plane formatted memory words for
processing; the reverse process has to be used to store the pixel.

Another advantage of pixel mode is that a pixel mode transfer can read or write four
8-bit pixels in any pixel position, without setting up parameters. Thus, it is more efficient
for the copying of small image object, such as is used in displaying text, than is RasterOp

hardware.

Bit-plane mode

In bit-plane mode, the data structure of the frame buffer is a stack of bit-planes. A
32-bit memory word represents an x-segment in one bit-plane, as shown in Figure 2.11(b).
The frame buffer is byte addressable in this mode; thus, the processor may conveniently
manipulate 8-pixel, 16-pixel, or 32-pixel binary image segment in byte boundary. The
address format in Figure 2.11(b) shows that bits 0 to 17 specify the left starting point
of an x-segment in memory byte address; a particular pixel can be accessed using the x-
segment byte address and the pixel offset. The pixel offset corresponds to the bit number
of a pixel within the memory element being accessed. The bit-plane being accessed is
specified by address bits 18 to 20. The length of the x-segment being accessed is specified
by the processor instruction.

Bit-plane mode is efficient for moving low colour resolution images; for example, a
binary 32-pixel x-segment can be accessed by one bit-plane mode reference, but eight
references are neede.d to access the same binary image segment if the memory is in pixel-
packed format. Because only one bit-plane is involved in a bit-plane mode access, it is

convenient to use this mode when inserting or extracting images to or from an arbitrary
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bit-plane in the frame buffer. Thus, bit-plane mode is used for data exchange between
bit-planes and for moving blocks of arbitrary bit-plane groups between the frame buffer
and other memory areas or disc. Another interesting use of this mode is that all single
bit-planes can be drawn concurrently by different processors, without interfering with each

other.

RasterOp mode

This mode is designed for the fast movement of images; the frame buffer data structure
for this mode is a bit-plane group. All bit-planes are activated in one memory cycle,
the memory access unit being a 16-pixel colour image rectangle (which is limited to 16
pixels by the RasterOp components used); this 16-pixel rectangle is aligned with a bit-
plane memory word and is called a RasterOp mode image word. Figure 2.11(c) illustrates
the data and address formats for RasterOp mode. Address bits 1 to 17 specify the left
starting point of a RasterOp mode image word; up to 128 bits (16 pixels, each at 8 bits per
pixel) can be accessed in one memory cycle and so a 1024 x 768 screen can be updated in
49,152 memory cycles. (If the RasterOp mode memory cycle time is about 600 nsec, this is
equivalent to approximately 29 msec). All RasterOp data exchange and logical operations
are executed within the frame buffer module. During RasterOp mode frame buffer access,
a source colour image rectangle can be copied onto a destination with a logical operation
between source, destination and optionally halftone images; details of this operation will

be described in Section 2.3.5.

2.3.4 Other multi-mode frame buffers

There are other computer systems which adopt a multi-mode frame buffer within their

display systems. The Symbolics 3600 system [7] has a three-mode frame buffer, in which
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the processor can do any of the following in a single memory cycle:

e access a 32-bit pixel for an image processing type application,
e access four 8-bit pixels for graphics applications including pseudo-colour, or

o fill thirty two 32-bit pixels with a single colour.

Together with pixel masks and bit-plane masks, the last mode can be used to display text
characters and fill areas with colour.

The recently released Sun-3 workstation [6] has a frame buffer with two addressing
modes. The processor can access this frame buffer by pixel value or by bit-plane; RasterOp
devices are incorporated into each bit-plane. The frame buffer size is 1048576 pixels, just
a little larger than the Sun-3’s 1152 x 900 screen. No description of the structure and the

mode format for this frame buffer is given in the literature.

2.3.5 The design of the multi-mode frame buffer array

The data path of the multi-mode frame buffer array is a direct consequence of the multi-
mode data structure. The main effort in the design of the data path is to enable the frame
buffer to be accessed in different formats, and to enable raster operations to be executed.
Effort has also been put into ensuring that the pixel co-ordinates in the different modes

are kept consistent, and that no data corruption can be caused by any access mode.

Data path for screen refresh

The basic arrangement of the frame buffer memory array is depicted in Figure 2.12.
It is composed of eight bit-planes, each of them a contiguous linearly addressed area of

memory with 32-bit memory words. In a linearly addressed frame buffer, the horizontal
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dimension must be an integral number of memory words, so that each scan-line can start
at the beginning of a new memory word. For a video RAM frame buffer, the horizontal
dimension should be chosen that an integral number of scan-lines can be accommodated in
the internal shift register of the video RAM. Thus, the data used for screen refresh can be
prepared during screen blanking time; this significantly simplifies the control and timing

logic of the screen refresh system.
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Monitor Blue '— D/A converters
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[ = . I~ - Colour look-up table
- - ) .
.., External shifters Look-up
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N Pixel data stream table
Bit planes address
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Figure 2.12. Basic arrangement of the frame buffer memory.

The display system described in this thesis uses 1024 pixels (corresponding to thirty

two 32-bit memory words) as the length of a scan-line, thus providing a high resolution
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screen and satisfying the above mentioned screen refresh requirement. The address lines of
these eight bit-planes are tied together so that all the bit-planes can be kept pixel aligned.
During a screen refresh operation, eight memory words with the same co-ordinates are
shifted out from the serial ports of the eight bit-planes. These eight words are then sent
to eight external shift registers to be converted into a video-rate 8-bit pixel value data
stream.

The video-rate pixel stream is routed via a multiplexer to the index of three colour
look-up table chips, which convert the 8-bit pixel values into three 8-bit red, green and
blue signals (which can specify approximately 16 million different colours). These digital
signals are converted into analogue RGB video signals by the internal D/A converters of
the look-up table chips. The RGB video signals then drive the video monitor to display the
image stored in the frame buffer. The contents of the look-up table can be read or written
from the system bus; in such cases, the system bus addresses are used as the indices of the
look-up tables. The look-up table data goes to the system bus via the look-up table data
bus. Look-up table access from the system bus will interfere with displaying the image on

the screen and hence should only take place in vertical retrace time.

Data path for pixel mode and bit-plane mode access

The basic structure of the multi-mode frame buffer is a stack of bit-planes. As illus-
trated in Figure 2.13, a bit-plane is composed of eight 4 x 64k video RAM chips. The
RAM chips of the eight bit-planes are arranged into a matrix along eight plane buses and

eight pixel buses.

The byte addressable capability in pixel mode and bit-plane mode is jointly handled

by the drawing processor and the frame buffer. On receiving a frame buffer address on
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Figure 2.13. The multi-mode memory data path.

the form shown in Figure 2.11(a) or (b), and using the data length from the machine
instruction, the drawing processor will put an address from bit 2 to bit 31 onto the system
bus with byte enable signals (that is, the drawing processor extends its 24-bit CPU address
into a 30-bit system buls word address with byte enable signals). If a machine instruction
specifies a 32-bit word which is not aligned with the 32-bit system bus word, the processor
will perform two successive partial word data transfers to complete the data access. Bits
23 to 31 in a system bus address select the display module board; bits 2 to 22 select a

32-bit word from this board and the byte enable signals determine which bytes of the word
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are being accessed.

For the sake of convenience, we will first describe the data path for bit-plane mode. In
bit-plane mode, a selected bit-plane is connected to the system bus via its plane bus and the
appropriate gate. The memory chips in each bit-plane have their individual row address
strobe (RAS) signal; thus, in bit-plane mode only the selected bit-plane is activated. The
memory contents of the other bit-planes will not be disturbed by a bit-plane mode write
cycle. Bits 2 to 17 on the system bus specify the address for a 32-bit memory word in a
bit-plane, such a word being divided into four bytes; each byte has its own write enable
signal which is under the control of system bus byte enable signals, so only the selected
byte can be modified. The bus gate ensures that only the enabled byte can be connected
to the system bus.

In each pixel mode frame buffer cycle, 32 pixels (8 x 32-bit words) are activated with the
address taken from system bus bits 5 to 20; among these, up to four pixels (corresponding
to a 32-bit system bus word) can be accessed through the system bus. So, system bus
bits 2 to 4 are used to select which pixel group within these 32 activated pixels is being
accessed. The system bus byte enable signals specify which pixels in this pixel group are
being accessed. Each individual pixel can be accessed as a byte and each 4-pixel group
can start at any pixel position.

In a pixel mode read cycle, one of the pixel buses and appropriate gates link the selected
pixel group with the system bus. Up to four 8-bit pixel values can be read from the frame
buffer, since all eight bit-planes are activated so that the processor can read and process
image data from all bit-planes. In a pixel mode write cycle, the pixel mode plane write

enable register controls the RAS of each bit-plane, so that only enabled bit-planes can be
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modified. Among the 32 activated pixels of the frame buffer memory, only selected pixels
can receive memory chip bit write-enable signals, ensuring that the other pixel values can

remain intact.

Executing RasterOp in a scan-line word organized memory

A simplified raster operation can be expressed by the Pascal code depicted in Fig-
ure 2.14 (adapted from [26]). RasterOp contains two nested loops, the inner one going
across pixels in a scan-line and the outer one running over scan-lines. The execution speed

of the inner loop has considerable effect on the overall performance of the RasterOp.

type raster.op = 1..4; {1 — destination:= colour
{2 — if source # 0 then destination:= colour
{3 — if source # transparent then
{ destination:= source
{4 — destination:= source

N A At At Nyt

procedure RasterOp (operation: raster_op;
var destination: raster; xd, yd, width, height: integer;
var source: raster; xs, ys, colour: integer);
var X, Y: integer;
begin
for Y:=1 to height do begin
for X:=1 to width do begin
case operation of
1: SetPixel(destination, xd, yd, colour);
2: if GetPixel(source, xs, ys) <> 0 then
SetPixel(destination, xd, yd, colour);
3: if GetPixel(source, xs, ys) <> transparent then
SetPixel(destination, xd, yd, GetPixel(source, xs, ys));
4: SetPixel(destination, xd, yd, GetPixel(source, xs, ys))

end;

xd:=xd + 1; xs:=xs + 1
end;
yd:=yd + 1; ys:=ys+ 1

end;

end; {RasterOp}
Figure 2.14. Procedure RasterOp.
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The above algorithm explains how RasterOp works, but if RasterOp were to copy
only one pixel at a time, its speed of execution would be very slow. An important factor
in improving the speed of the RasterOp inner loop is to operate on as many pixels as
possible in one memory cycle. Now, we examine how this is achieved in one bit-plane of
our scan-line word organized frame buffer.

From Figure 2.10, we can see that each memory word corresponds to a unit height
binary image rectangle; thus a primitive image rectangle can be defined as a string of
horizontally adjacent pixels, with the longest length of such a string equal to the size of a
memory word. One memory cycle can hence simultaneously access up to 16 or 32 pixels,
since the memory word consists of either 16 or 32 bits. Thus, the full bit-plane bandwidth
can be exploited for image transfers. For clarity, we will only examine the process of
copying one source primitive image rectangle onto a destination at a pixel boundary, as is
illustrated in Figure 2.15(a). In this figure a unit height primitive source image rectangle,
which is covered by two memory words (source word 1 and source word 2), is going to be
copied onto a destination area at a pixel boundary position; this destination position is
also composed of two memory words. During the copy process, a bitwise logical operation
can be applied between the source, destination, and halftone primitive image rectangles
(the halftone image works as a mask or colour). In the destination, only the dark shaded
rectangle is replaced by the result of the logical operation, and the light shaded part remains

intact. The copy operation is executed in a logical unit, as shown in Figure 2.15(b), where
¢ a source register queue contains two consecutive source memory words,
e a destination register contains a destination memory word,

e a halftone register contains a halftone primitive image rectangle,
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Figure 2.15. Copying one primitive image rectangle.
* a shifter shifts the source register queue to align the source image in the queue with
its position in the destination memory words,

e a logical function unit applies logical operations between the source, the destination,

and the halftone images, and
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¢ a destination merge unit enables only those pixels of the destination which are covered

by the source image being copied.

This copy process can be expressed by the algorithm in Figure 2.16. Larger image rect-
angles can be mapped by these primitive image rectangles, in which case the RasterOp
inner loop will execute the algorithm in Figure 2.16 repeatedly over the width of the large

image rectangle.

Calculate the shift amount;
Calculate the left and right mask;
Read a pattern into the halftone register;
Read source word 1 into the source register queue;
Read source word 2 into the source register queue;
Shift the concatenated long source word to make it pixel-aligned
with the destination position;
Read destination word 1 into the destination register;
Apply a logical operation between the shifted source register,
the halftone register, and the destination register;
Use the left mask to merge the resulting word and the destination register;
Store the merged word into the address given by destination word 1
Shift source word 2 to the top position of source register queue;
Shift the long source register queue to make it pixel aligned
with the destination position;
Read destination word 2 into the destination register;
Apply a logical operation between the shifted source register,
the halftone register, and the destination register;
Use the right mask to merge the resulting word and the destination register;
Store the merged word into the address given by destination word 2 ;

Figure 2.16. RasterOp in a bit-plane organized memory.

The algorithm in Figure 2.16 can be accelerated by a hardware barrel shifter, a logic
function unit, and a mask and merge unit. Pacific Mountain Research Inc. produces
a VLSI RasterOp chip, called the BLT chip [13]; this has a functional data path which
includes all the functional units for bit boundary image block transfer, as is depicted in

Figure 2.17 (which is adapted from [2]). In the BLT chip, there is

® a source register queue to store consecutive source image words,
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Figure 2.17. The block diagram for the BLT chip.

a rotator and a skew mask which shift the source image in the source register queue

to the destination position,
¢ a halftone register which contains a pattern mask or colour,

e a destination register which contains the destination image word,

a logical function unit which can perform 256 logical operations on data from the

shifted source register, the halftone register and the destination register, and

* a merge mask and a destination merge unit, which merge the results from the logical
operation and the destination register at a pixel boundary, and outputs the merged

data into frame buffer destination word.
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If all the parameters needed for RasterOp are set up and source words 1 and 2 have been
read into the source register queue, then only one read-modify-write memory cycle will
be required to move the bit boundary source image rectangle into the destination word.

Hardware units such as BLT chip increase the speed of a RasterOp in three ways:

e they operate on multiple pixels at once,
e they execute shift, mask and merge in one operation (in less than 100 nsec), and

e they replace separate reading and writing (destination) cycles by a single read-

modify-write cycle.

Although the data path of the BLT chip is only 16 bits wide, its functionality is quite
suitable for our purpose. Furthermore, using VLSI units can save a large amount of circuit
board area, which is a considerable advantage. Consequently, the BLT chips were used in
our experiment.

In our implementation, each bit-plane has a BLT chip attached as a RasterOp acceler-

ator, as shown in Figure 2.13. The data path can be used in the following ways.

1. In a normal RasterOp, the system bus and all the plane buses are separated from
each other and the data exchanges are only carried on between each bit-plane and its
BLT chip. During a RasterOp mode read cycle, all bit-planes are activated and eight
binary source image words from these bit-planes are read into the source registers or
halftone registers of the BLT chips, respectively, depending on the control informa-
tion field of the RasterOp mode address. A collection of these binary image words
represents a RasterOp mode colour image word. During a RasterOp mode write

cycle, the frame buffer controller starts a read-modify-write cycle which executes a
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one word RasterOp in the BLT chips and stores the output of the BLT chips into
the destination colour image word. Thereby, RasterOp mode performs RasterOp
on a colour primitive image rectangle at the same speed as on a binary image, the

performance thus being independent of the pixel depth.

2. The system bus can transfer data to BLT registers. In this case, all plane buses
are connected to the system bus and control parameters can be sent to BLT control
registers; also, data from the graphics processor, or an image word read from another
memory area or from a certain bit-plane, can be sent to the source or the halftone
registers in all BLT chips. Thus, a binary image pattern can be sent to all BLT
chips as a mask. If the BLT chips have an image word or a colour stored in their
source or halftone registers, the mask can selectively copy the image or colour onto
the destination. In the first case, the mask gives the image a texture, and in the
second case the binary mask pattern is extended into a colour pattern. In this way,
fonts, menus and other patterns can be kept in binary form and stored in some other

memory area, thereby saving the valuable frame buffer resource.

3. Special operations have been designed to overlap the operation of loading the BLT
source register from the system bus and reading the destination image word in a
read-modify-write cycle, so that using RasterOp to copy one image word from other

memory to the frame buffer, or between bit-planes, can be accomplished in one

MOVE instruction.

4. The pixel buses can be used to transmit colour values to the halftone registers in

the BLT chips. One MOVE instruction can load 16 colour pixels into a BLT chip;
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therefore, no special colour register is needed for area filling or colour extending.

Pixel mode and RasterOp mode have separate bit-plane write enable control registers,
so that RasterOp can work in a bit-plane group different from pixel mode. This provides
more efficient use of the multi-mode frame buffer in an environment consisting of multiple
graphics processors performing parallel image updating; for example, a drawing process
which currently owns the RasterOp hardware can freely change its working bit-plane group
without disturbing other parallel drawing processes. This facilitates better concurrency,
and eliminates unnecessary waiting and synchronization.

The 16-bit BLT chip is connected to the lower 16-bit word in each bit-plane and com-
municat;es with the higher 16-bit word via a gate, depicted in Figure 2.13. In RasterOp
mode, the frame buffer can only be accessed by 16-bit word size and bit 0 of the address

must always be ‘0’ (otherwise the access will be rejected by the frame buffer).

2.3.6 The display controller

Functionally, the display controller can be partitioned into the frame buffer memory con-
tro'ller, the frame buffer updating controller and the screen refresh controller, as illustrated
in Figure 2.18. The screen refresh controller generates a frame buffer address for screen
refreshing, and it generates video synchronization and blanking signals for video monitor;
it also generates signals to control the screen refresh data path. The frame buffer updating
controller generates signals to control the updating port of the frame buffer and to han-
dle the multi-mode functionality. The frame buffer memory controller provides address,
control and strobe signals for the video RAM memory chips in the frame buffer memory;
it also handles the dynamic RAM (DRAM) refresh operation for.these chips. The screen

refresh controller and updating controller share the frame buffer controller.
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Figure 2.18. Functional partition of the display controller.

In the implemented system, a Texas Instruments TMS 34061 video system controller
(VSC) was adopted for the frame buffer controller and part of the screen refresh controller.
During horizontal blanking time, it performs special data transfer cycles to transfer the
image data in a whole row of frame buffer memory cells into the internal shift register of
the video RAM for screen refreshing. It also provides video synchronization and blanking
signals. When activated and provided with a memory address and other appropriate
control signals, the VSC can perform the frame buffer memory read or write cycle. In
addition to the above functionality, the VSC assumes the responsibility of frame buffer
memory access arbitration. There are three processes that access the frame buffer; they
are the screen refresh process, the DRAM refresh process, and the frame buffer updating

port access. The first two are handled inside the VSC, while the last is handled from the
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system bus. When an updating access request is applied to the VSC, but there is a frame
buffer memory cycle in progress or there is another higher priority access request, the VSC
will negate its ready pin, thus informing the updating controller to wait until the memory
is free.

The updating controller is show in Figure 2.19. The heart of this controller is an access
controller which is implemented by a state machine programmed into programmable logic
arrays (PLAs). The access controller receives operation codes and addresses from the
system interface, and generates appropriate sequence and control signals to control the

frame buffer data path and to activate and control the VSC.

Data path
Micro-operation
Control signal decoder
PALs
Locat - System bus
seli,c?n h Tv‘dco RAM Activate | Access acknowieagement
control  ysC control I—
YSC Access
controller
Da 4 T L) T
Hand- ;
and-shaldng Synchrqnization
Mode Tegister
&
operation
Address decoder
| v 1 [y
Interrupt System interface
request

Figure 2.19. The updating controller.
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A group of PALs serves as micro-operation decoder which take the control signals from
the access controller, the VSC, and the address decoder, and interpret them into micro-
operation control signals which directly drive the data path. Hand-shaking logic between
the access controller and VSC handles the synchronization between these two controllers.
The access controller and the VSC use the same clock source, so that intermediate synchro-
nization latches for their state machines and their associated delay can be avoided. The
frequency of the access controller is twice the frequency of the VSC, in order to reduce
synchronization time between system bus signals and the access controller. The access
controller also sends an acknowledgement signal to the system interface, signalling the
completion of its task. A synchronization register is placed between the input of the access
controller and the asynchronous input signal sources, to eliminate metastable conditions.

The block diagram for the screen refresh system is shown in Figure 2.20. For non-
interlaced high resolution raster display systems, the pixel dot rate is very high. In our
case, the pixel dot frequency is about 70 Mhz and the cycle time is about 14 nsec, depending
upon the video monitor being used; the pixel dot frequency could be even higher. This
frequency is near the upper limit of fast Schottky TTL circuits. Their propagation delays
and set-up time requirements make it very difficult to generate adequate combinational
control signals with the correct timing. In the timing section, therefore, we have used fast
ECL technology. ECL components have a typical delay and set-up time of around 1.7 to
2 nsec; hence, they can be used more comfortably at the high pixel dot frequency required.

During active horizontal scan time, image data in the video RAM’s internal shift register
is shifted out and loaded into eight 16-bit external shifters, to be converted into a video-

rate pixel stream. This pixel stream is routed through the colour look-up table, the D/A
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Figure 2.20. The refresh controller.
converter and becomes RGB signals to be displayed on the colour monitor. The 32-bit
frame buffer word is divided into two 16-bit half-words and the 16-bit external shifter is
loaded from each of these half words in turn. After a 32-bit image word has been shifted out
of the external shifter, a new image word will be shifted out of the video RAM serial port
to load the external shifter. The clocks and control signals are handled by the ECL timing
control. The video RAM internal shift registers hold several scan-lines; thus, during screen
blanking time, there must not be any video RAM shift clock signals, otherwise image data
in the internal shift register will be shifted out and hence will be missing. Therefore, the
video RAM shift clock is gated by the blanking signal. A 1/32 pixel dot clock (VDCLK) is
used to drive the VSC screen refresh controller, so that the VSC can generate appropriate
screen refreshing addresses and vertical and horizontal video timing signals, which are

synchronized with the pixel dot stream. The blanking signal generated by the VSC is
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one VDCLK period time ahead of the real blanking time, so that the blanking signal can
be synchronized exactly to the pixel stream. Hence, pixels at the horizontal margin of
the screen are correctly displayed. In order to reduce the skew between the different bits
of the digital pixel ya,lue from the output of the external shifter and the colour look-up
table, two sets of pipeline registers are provided in both the input and output stages of
the look-up tables in the colour palette chips. The blanking signal can output separately,

or as a composite signal with video output signals.

2.3.7 The system interface

The system interface links the display subsystem and the system bus of the host work-
station. It appears as a slave interface to the system bus; as shown in Figure 2.21, it
includes address logic (system bus address register/counter and module select logic), an
address and operation decoder, status and acknowledgement logic, and bit-plane enable
control registers. The display subsystem receives all control information via the interface
in Figure 2.21. The display subsystem is placed in a non-cacheable area of the system bus
address space; the address allocation of its multi-mode frame buffer, colour look-up table,

and control registers is given in Appendix A.

The system interface handles the bus transfer protocol and handshaking of the asyn-
chronous system bus. If the bus master requires operations that the display subsystem
cannot perform, it will report an error status. The system interface also supports block
data transfer. That is, after each data transfer, the internal address register of the display
subsystem will automatically increment itself for the next data transfer. Thus, a block of
data can be transferred continuously with only one address transfer and one bus arbitra-

tion. This effectively increases the data transfer speed between the frame buffer and other
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Figure 2.21. Block diagram of the system interface.

memory areas or a disc, such as occurs with page transfers during virtual frame buffer
operation, and with image loading or dumping.

The vertical video retrace interrupt signal and any internal error report interrupts will
go to a special processor which handle these particular tasks, so that these interrupts
will not disturb the system and cause unnecessary context switching. In response to the
display subsystem interrupt request, the special task server will acknowledge the display
subsystem by reading its status register to determine the cause of the interrupt and clear

the interrupt request at the same time. The interrupt can be masked by software.
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Virtual frame buffer

3.1 The virtual frame buffer scheme

3.1.1 The motivation for using a virtual frame buffer

There are three main factors that motivate the extension of the virtual memory manage-

ment technique to implement a virtual frame buffer.

1. It is desirable to keep the multi-mode frame buffer large, so that its special function-
alities can be fully exploited. However, the size of the physical frame buffer is always
limited. A virtual frame buffer can provide an image store which is much larger than
the physical frame buffer, so that more obscured windows, icons, menus and images
from an image library can be accommodated. Also, a large virtual frame buffer can

accommodate images larger than the size of physical frame buffer.

2. The virtual memory mechanism can enforce memory protection among various draw-

ing processes.

3. A paging virtual memory mechanism can join non-contiguous memory pages into a
contiguous memory area, easing the fragmentation problem for the off-screen buffer

area.

63
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3.1.2 Ordinary paging virtual memory systems

Before proceeding with the discussion of virtual frame buffer management, we first review
how an ordinary paging virtual memory system works. In the context of a paging virtual
memory system, the term wvirtual address refers to memory addresses used in programs
and the physical address is the address used by the hardware to access a physical memory
location. Both virtual and physical addresses are divided into two fields, known as the

page number fleld and the in-page offset field, as shown in Figure 3.1.

Virtual memory address

page number field in-page offset field

Figure 3.1. The composition of an address in a paging virtual memory system.

A page is a fixed size contiguous memory block, the page size being determined by the
memory management unit. The page number specifies a particular page in the memory
and the in-page offset locates a byte address within a page. Physical memory pages are
used as page frames to contain virtual memory pages. By means of dynamically mapping a
virtual page onto a physical page (that is, mapping a virtual page number onto a physical
page number), the paging virtual memory mechanism decouples-the virtual address from
a fixed physical memory location.

When a non-resident virtual page is referenced, the virtual memory mechanism will
find a physical page frame for this virtual page from the free page list and record the
mapping between virtual and physical pages in an address translation table. If there is no
free page frame left for the process, the virtual memory system will swap a virtual page

out to backing store, commonly the least recently used, and use the vacated physical page
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frame for the new virtual page. In this way, a program can effectively utilize a memory
space which is much larger than the physical memory space, and concurrent programs can
use the same virtual address in different address spaces without interference.

The process of mapping a virtual page to a physical page is called address translation.
In a paging system; address translation is handled by looking up a page table, as shown

in Figure 3.2.

Virtual address
W VPN in-page offset
Page table
Index
= PFN M| PV

Y

PFN in-page offset

Physical address

Figure 3.2. The address translation.

When a virtual address appears, the virtual page number (VPN) is used as the index

to a page table entry. The page table entry has several fields:

e the V flag indicates whether this page is currently resident in physical memory,

o the protection (P) field specifies whether this page is accessible to this program and,

if so, the legal access operation,

o the M flag indicates whether this page has been modified, and
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¢ the page frame number (PFN) field stores the physical page number of the corre-
sponding page frame, if the virtual page is valid, or the location of this virtual page

in backing store if the page is not in physical memory.
The address translation algorithm can be expressed as shown in Figure 3.3.

using the virtual page number and the page table base,
find the page table entry;
if a protection violation has occurred then
branch to the appropriate trap;
elsif the page is valid then
assemble PFN and in-page offset into the physical address;
use this address to reference physical memory;
else
generate a page fault and trap the current process;
swap in the required virtual page into physical memory;
validate the page table entry;
wake up the faulted process and try again;
end;

Figure 3.3. The address translation algorithm.

Thus, in addition to extending the physical memory space, a paging virtual memory
system can protect memory pages from unauthorized access, and can join discrete physical

page frames into a contiguous memory area.

3.1.3 The difficulties of implementing a virtual colour frame
buffer

The frame buffer is, by its nature, a piece of memory. It is desirable to extend the basic
virtual memory mechanism to manage a virtual frame buffer. In fact, the SUN-2/120
workstation uses virtual memory as an off-screen buffer to store binary images.
Unfortunately,' the implementation of a colour virtual frame buffer is difficult. The
difficulty arises because of the flexible use of the colour frame buffer does not fit into the

ordinary paging virtual memory mechanism.
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In Section 1.1.4, it was pointed out that a multiple bit-plane colour frame buffer can be
used in a very flexible way. For example, an eight bit-plane frame buffer can be configured

into, say, three groups:
e bit-plane 0 to 3, inclusive,

e bit-plane 4 to 6, inclusive, and

e bit-plane 7.

Fach group may contain images of pixel depth equal to the number of bit-planes in the
bit-plane group.

Suppose, for example, that the frame buffer memory word and page are defined in
pixel-packed format (see Section 1.1.4). If a binary image needs to have a page swapped
in, then only one eighth of the page contains valid data; obviously, the page transfer is very
inefficient and so is the utilization of the secondary storage. Furthermore, since the data
transfer to an appropriate bit-plane group is governed only by a bit-plane enable control
register, that virtual page can be swapped between the frame buffer and backing store only
when the bit-plane enable control register is set to this particular bit-plane group. This
means that if there are two drawing processes working in different bit-plane groups and
one process is suspended waiting for a virtual frame buffer page, the required page cannot
be swapped in until the other process is suspended, since a different bit-plane enable has
to be set for the latter process.

Impleméntation of virtual memory for a multi-mode frame buffer is even more difficult.
In our case, the frame buffer can be accessed by pixel value (pixel mode), by bit-plane

(bit-plane mode), or by colour image rectangle (RasterOp mode); according to their corre-
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sponding data and address formats, each access mode will associate its own meaning with
its memory pages, and the meanings of memory pages in different modes are incompatible
with each other. If the different modes swap their own pages independently, the same
pixel data in different modes may map to different physical frame buffer locations at the
same time and different values may be kept for each mode. This will inevitably lead to
erroneous results. After this kind of address translation, there would be no guarantee that
the same pixel data can be correctly accessed using different modes.

If a common frame buffer memory page were defined in one frame buffer mode, such
as bit-plane mode, then each page would be in one bit-plane and multiple bit-plane op-
erations, such as a pixel mode frame buffer reference, would involve multiple pages in
one memory access. This situation obviously cannot be handled by the ordinary virtual
memory mechanism described above. This is especially true in RasterOp mode, where one
memory address corresponds to a colour image rectangle, which may involve multiple mem-
ory words in different bit-planes; the meaning of a page in this mode has little resemblance
to the ordinary memory page. All of the above matters complicated the implementation

of a virtual multi-mode colour frame buffer.

3.1.4 The solution — the page group concept

Because of the above difficulties, a new concept and mechanism are needed to map the
multi-mode colour virtual frame buffer into the physical frame buffer memory. From
Section 1.1.4, it can be seen that a colour image can be considered as composed of a stack
of binary images; each of these binary images resides in one bit-plane and can be handled

by several ordinary memory pages defined in bit-plane format, as shown in Figure 3.4.
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Figure 3.4. A stack of binary images forms a colour image.

We define a bit-plane group to be a collection of bit-planes in the frame buffer; this
collection is used to store colour images with a pixel depth equal to the number of bit-
planes in this bit-plane group. If we gather together pixel-aligned pages from the different
bit-planes of a colour image into a group, then this group is called a page group, and is
depicted in Figure 3.5; each page group will thus represent a part of the colour image.
‘The memory pages referred to here are defined in bit-plane format (bit-plane mode) and
so each memory page corresponds to a contiguous memory block in a bit-plane. Thus, the
definition of a page group can be expressed as a group of pixel-aligned pages in a bit-plane

group.

A memory page _/Z A page group

Figure 3.5. The page group concept.

The multi-mode address format can be designed so that any mode of frame buffer
access can be encompassed by one page group; if this is done, a page group can be used as

the image swapping unit in virtual frame buffer management. Thus, for all frame buffer
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access modes, the concept of page only exists in name for address translation, since the
entity being managed by the virtual frame buffer mechanism is actually a page group. In
this way, the nominal page in each frame buffer mode can keep its own meaning and its
own page number for a specific frame buffer co-ordinate, but all of them will map into the
same page group. For example, a pixel mode memory page represents a contiguous area
of pixels in a page group, a bit-plane mode page represents a page in one bit-plane of a
page group, and a RasterOp mode page corresponds exactly to a page group. Whenever
a frame buffer page fault is encountered, the virtual page group number can be extracted
from the faulted virtual address and the required page group can be swapped in for the
continued execution of the program.

The size of a page group may vary from one binary image page to eight binary image
pages, depending on how many bit-planes the colour image involves. So, the unit of image
swapping becomes programmable and the page group image swapping scheme guarantees
that the faulted image fragment is swapped into the physical frame buffer, without trans-
ferring invalid data in irrelevant bit-planes. Thus, the page group concept solves both the
page transfer efficiency problem and the problem of mapping multi-mode colour virtual

frame buffer to physical memory.
3.1.5 Address translation for the multi-mode frame buffer
For a multi-mode colour virtual frame buffer, two basic requirements must be met by the

address translation scheme:

1. The data corresponding to every pixel must be accessed correctly by all modes after

address translation.
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2. One frame buffer reference for any mode must be covered by one page group.

The multi-mode frame buffer address format has to be carefully designed to be compat-
ible with the page group concept. The frame buffer address format consists of a number

of fields, as shown in Figure 3.6:

e a mode code field, which distinguishes a frame buffer reference from other kind of

reference and specifies the functional mode,

e a co-ordinate field, which specifies the position of the image data element being ac-

cessed, different modes access different data element of an image in different formats,

and

¢ other fields, depending on the mode: in pixel mode, there are no more fields; in bit-

plane mode, there is a bit-plane select field; in RasterOp mode, there is a function

select field.

Non-cacheable | Mode | Control

area flag Rodt i| EraEten Co-ordinate field

Figure 3.6. Fields of the frame buffer address.

First, we examine the bit-plane mode address format, shown in Figure 3.7(a). The
co-ordinate field for bit-plane mode specifies the starting pixel location for a string of eight
horizontally adjacent pixels in a bit-plane, which is equivalent to a byte. This address
format can also be considered to be composed of a page number field and an in-page offset

field; the lowest order 9 bits of the address specify the in-page offset of a 512 byte memory
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Bit-plane mode address fomat

2322 21 20 18 17 987 6
mode | bit-plane
I code select Y X (byte)
2 bits 3 bits 11 bits 7 bits
T-field In page
Page number 9 bits offset
(a)
Pixel mode address format
2322 2120 109 8
mode X
1| _code Y
2 bits 11 bits 10 bits
T-field
: Page In page
9 bits number offset
(b)
RasterOp mode address format
2322 19 18 17 876 10
mode | control v x segment
g code |information address 0
4 bits 1 bit 11 bits 6 bits
Page T-field In page
number 9 bits offset
(©)

Figure 3.7. Frame buffer address format.
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page, and the remainder is the page number field. From the bit-plane mode address format,
we can see that only bit 9 to bit 17 of the co-ordinate field is transformable and this is
called the T-field. It can be substituted by a translation value for address translation. The
rest of the page number fields, such as the mode code and the bit-plane select fields, must
be directly mapped from a virtual address to a physical address to maintain its meaning.

Now, from the definition of a page group, we can see that, in bit-plane mode, memory
pages with the same T-field value are pixel-aligned, and can be included in a page group.
Thus, the T-field represents the page group number, and the virtual frame buffer address
translation is actually mapping a virtual page group onto a physical page group. Analogous
to a physical page being used as a page frame in an ordinary virtual memory system, the
physical page group in the virtual frame buffer system is used as page group frame to
accommodate virtual page groups.

Similarly, we can find a field in the pixel mode and RasterOp mode address formats
which corresponds to the bit-plane mode T-field, as shown in Figures 3.7(b) and (c).
That is, the higher 9 bits of the co-ordinate field of these address formats specifies the
page group number. The frame buffer addresses that refer to different parts of the same
16-pixel colour image rectangle which is aligned with a 16-bit memory short word in a
bit-plane (see Section 2.3.2) are defined to be conjugate addresses. For example, pixel
mode, bit-plane mode and RasterOp mode addresses which share the same high order 17
bits of the co-ordinate field are conjugate addresses. Similarly, we can define all frame
buffer nominal pages, those falling into one page group, to be conjugate pages.

The address translation rule for the multi-mode virtual frame buffer is that a phys-

ical page group is first found for a virtual page group, then the virtual page group number
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is replaced by the physical page group number in all conjugate pages of the virtual page
group, and the remainder of the virtual address is mapped directly to physical address,
to obtain the physical frame buffer address. Because the same translation value is used
for all conjugate pages, a set of conjugate virtual frame buffer addresses can be translated
into a set of conjugate physical frame buffer addresses.

Figure 3.7 also shows that a page group, specified by a T-field value, is eight times
larger than the nominal memory page in pixel mode and so a pixel mode frame buffer
access can always be covered by a page group. A bit-plane mode memory page is always
one of the pages in a page group, and a RasterOp mode page is equivalent to a page group.
Therefore, one frame buffer reference must fall into a page group, no matter which mode
is used. Hence, the frame buffer address translation scheme described above meets the two

requirements mentioned earlier.

3.2 A virtual frame buffer management simulator

3.2.1 Introduction

A virtual frame buffer management simulator was implemented to enable experimentation
with, and verification of, the virtual frame buffer mechanism proposed for the multi-mode
multiple bit-plane colour frame buffer.

Virtual frame buffer management can be divided into two parts: the mechanism and
the policy. The mechanism includes the way that virtual frame buffer memory is mapped
into physical frame buffer memory, the way that address translation from multi-mode
virtual frame buffer addresses to physical addresses is handled, and how pages are swapped
between physical frame buffer memory and the backing store so that all demanded pages

can be placed into physical memory for program execution. The virtual frame buffer
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management mechanism also includes page frame management for the physical frame buffer
memory, memory protection, virtual page locking, and sharing of address spaces between
different processes.

The policy part of virtual frame buffer management is concerned with page replace-
ment strategies, frame buffer resource allocation, process swapping, frame buffer resource
reconfiguration, frame buffer working set allocation, dynamic adjustment of the size of
working set, and so on.

The purpose of the simulator to be described here is to provide a means of realizing the
idea of a multi-mode colour virtual frame buffer and to verify the correctness of the virtual
frame buffer management algorithm. The policy part of virtual frame buffer management
will be left for the window management system or operating system kernel to determine.

The simulator allocates the off-screen physical frame buffer as physical page frames for
virtual frame buffer management. Different kinds of images can then be written into this
virtual frame buffer, using each of the function modes, .and copied to a contiguous physical
frame buffer area which is directly mapped to the screen. A normal memory area is used
to simulate the backing store. This simulator is primarily designed to simulate the frame
buffer address translation in ordinary memory. However, it can be migrated to the real
colour graphic display system, so that the behaviour of the virtual frame buffer can be

examined visually.

The simulator consists of a number of functional modules; these are:

1. An address translator, which simulates the function of the memory management unit
(MMU) looking up the page table and translating a virtual frame buffer address into

a physical frame buffer address.
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2. A frame buffer configurator, which configures the frame buffer into a set of bit-plane

groups to store images with different pixel depths.

3. A paging handler, which handles virtual frame buffer page group swapping, so that
demanded virtual page groups can be called into the physical frame buffer for image

access.

4. A shared area handler, which enables a process to share part of another process’

address space, and dynamically creates and deletes shared areas.

5. An initializer, which initializes the virtual memory management data structures,
specifying the working address spaces with appropriate protection types for the var-

lous processes.

3.2.2 The address translator and its data structures

In the implemented graphics display system, the general purpose graphics processor uses
the same address translation hardware to access its general purpose virtual memory and the
virtual frame buffer. The virtual frame buffer mechanism must be made compatible with
this address translation hardware and its basic data structures. Therefore, it is necessary
to examine the address translation scheme of the NS32000 family of processors, which are
used in the host system as general purpose data processors (as discussed in Section 2.2),
and find a way to fit virtual frame buffer management into the framework of the host
processor’s address translation scheme.

The NS32000 ‘paging virtual memory scheme divides an virtual address into a page
number field and an in-page offset field. The virtual page number field is further divided

into index1 and index2, as shown in Figure 3.8. The page table has two levels: the indexl
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page table (PT1) and the index2 page table (PT2), as depicted in Figure 3.8. The address
translation hardware, which is built into the memory management unit (MMU), first uses
PT1’s base and indexl to locate a PT1 entry; if this entry is valid and no access violation
is detected, the PFN field will contain a pointer to PT2. By using this PT2 pointer
and index2, a PT2 entry can be found by the MMU. Following the address translation
algorithm (described in Section 3.2), if this entry is valid then the page frame number
(PFN) field of the PT2 entry and the in-page offset field of the original virtual address are

assembled by the MMU to yield the physical address.

Virtual address
index1 I index2 I offset I
]P’I.‘-l base | index1 page table (PT1)
\ 4 i PT1 entry
index1 k1 | PEN | [R|P|V
PTI base| index e,
L T g

PFN| [MR|p[V
A 4
| PT2basc | index2

Y A 4
r PEN | offsctj

Physical address

Figure 3.8. The NS32000 address translation scheme.

The virtual frame buffer management simulator simulates the functions of the NS32000
MMU and maintains the address translation data structure (that is, the page tables) in
a manner compatible with the NS32000 family virtual memory architecture. Thus, the
algorithm described here will mirror precisely the activities on real hardware and the

virtual frame buffer management scheme can easily be migrated to real hardware. For
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simplicity and to facilitate the analysis of its behaviour, the simulator concentrates on
handling the virtual frame buffer and bypasses all references to other address areas.

The main data structure for address translation is the two-level page table represented
by the arrays PT1 and PT2. This table is maintained by the paging handler. As specified in
Figure 3.9, PT1 includes three arrays of PT1 entries corresponding to the three different
frame buffer modes. (The notation used in Figure 3.9 is the Modula-2 programming
language [36], which is the language in which the simulator is written and will be used
as the notation throughout this discussion.) Indexl from the virtual address is the offset
of a particular PT1 entry relative to the top of the array PT1. A PT1 entry (defined by
the type “T_PTE1”) contains two fields: the access field, specifying access protection, and
“PT2_ptr”, which contains a pointer to the PT2 table.

The PT2 table is an array of PT2 entries (defined by “T_PTE2”). Index2 from the
virtual address locates a PT2 entry in the PT2 table. A PT2 entry contains eight fields.
The access field specifies access protections of write and read, read only, and no access.
The modify field marks whether the page is being modified. The class field shows whether
the page is “va;lid”, “out” of physical memory, or “in transition” (meaning that the page is
not in the process’ working set, but still in physical memory in a temporary list, and can
be easily moved back into the working set). The PFN2 field contains the physical page
frame number if the virtual page is valid or in transition; otherwise, the backing_block
field contains a pointer to the location in the backing store where the virtual page is stored
(this field is oniy significant for bit-plane mode PT2 entries). Other fields relate to the
sharing of the address space between different processes; the shared field indicates whether

this page is a shared page, and the same_group field marks whether this shared page belongs
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type
T_access = (w_r, r, no); (*+ Kinds of protection *)
T._class = (valid, trans, out); (* Status classes of a virtual page *)

T_PTEI =record (x PTI entry )
access: T_access;
PT2 ptr: PT2 _pointer;
end;

T PTE2 =record (x PT2 entry %)
access: T_access ;
shared: boolean ;
same_group: boolean ;
modify: boolean ;
case class: T_class of
valid, trans: PFN2: integer |
out: backing block: pointer_to_block |

end;
end;
var
PTI] = record

pixel_mode: array [0..31] of T.PTE;
case : boolean of
true : plane_mode : array [0..31] of T_PTEI;
RasterOp_mode : array [0..7] of T_PTEI]|
false: plane_mod: array [0..7],[0..3] of T_PTEI;
RasterOp_mod: array [0..1],[0..3] of T_PTE1]|
end;
end;
PT2 = array [0..PT2size] of T_PTE2;

Figure 3.9. The structure of PT1 and PT2 for the simulator.

to a bit-plane group the same as the process’ private bit-plane group.

The procedure “Address_translator”, whose algorithm is shown in Figure 3.10, handles
virtual frame buffer address translation whenever a frame buffer reference is issued. The
procedure is called to translate a virtual frame buffer address to a physical frame buffer

address.
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Procedure Address_translator (virtual address, physical address);

begin
if this is not a frame buffer reference then
return physical address as the virtual address;
else
extract mode, index]l and index2 from the virtual address;
use mode, index]l and index2 as table indices to look up PT1
and PT2 and hence obtain a PT2 entry;
if access protection is violated then
error report;
set the physical address to some dummy address;
elsif the virtual page is invalid then
generate a page fault and call the paging handler
to swap in the virtual page group;
inform the Address_translator to try again;
else
assemble the page frame number field of the PT2 entry and the
in-page offset of the virtual address into a physical address and
return this address;
end;
end;
end;
end Address_translator;

Figure 3.10. Procedure Address_translator.

80

The algorithm is almost the same as the ordinary paging virtual memory address

translation algorithm given in Figure 3.3, and so it could be executed by conventional

hardware in the host system. An important trick in this algorithm is that each valid

frame buffer PT2 entry is provided with a nominal physical page number which is derived

from a physical page group frame number, so that the translated address will reference

the appropriate pixel data in that page group. Details of the derivation of these nominal

physical page numbers for the various frame buffer modes will be discussed in Section 3.2.4.
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3.2.3 Frame buffer resource management — the frame buffer con-
figurator

The colour frame buffer memory is modelled as a two-dimensional array of 8-bit pixels, as
a stack of 8 bit-planes, and as a set of bit-plane groups (see Section 1.1.4). The motivation
for using the frame buffer as a set of bit-plane groups to store low colour resolution images
is to use the frame buffer resource efficiently; this will also reduce the size of these images,
so that they can be transferred and manipulated more efficiently.

However, if images with arbitrary pixel depths and sizes are piled into the frame buffer
randomly, it will be very difficult to manage this multi-dimensional frame buffer resource
(the dimensions include the size, shape, position, and bit-plane combination of each indi-
vidual image being stored) and also it will be very difficult to manage the colour look-up
table to display these amorphous images with the correct colour and visual priority (pre-
suming that some images in different bit-plane groups are overlapping on the screen).

In order to handle the task of managing the physical frame buffer resource in a paging
virtual frame buffer environment, where different processes may create images of different
pixel-depths and sizes in the frame buffer, the frame buffer is managed using the concept
of bit-plane group and the concept of page group, which were defined in Section 3.1.4.

The physical page frame resource is initially configured into several bit-plane groups.
The initial configuration of the frame buffer can be extended later if enough bit-planes
remain. The frame buffer can be configured in one of two different ways.

In the first type of configuration, different bit-plane groups must be allocated in different
bit-planes, each group consisting only of adjacent bit-planes, and each bit-plane group

including all the page frames in these bit-planes. For example, it is possible to form four
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bit-plane groups, consisting of bit-planes 0 to 3, bit-planes 4 to 5, bit-plane 6 by itself, and
bit-planes 7 and 8.

In the second type of configuration, the collection of physical page frames in the frame
buffer is split into two halves, each of which can be independently configured into bit-plane

groups. In this way, we can have, say,

e four bit-plane groups, consisting of bit-planes 0 to 3, bit-planes 4 to 6, bit-plane 7

by itself and bit-plane 8 by itself, in one half, and

e two bit-plane groups, consisting of bit-plane 0 by itself and bit-planes 1 to 7, in the

other half.

The second type of configuration can accommodate a greater variety of bit-plane groups
than the first one, but provides only half the physical page frames for each plane group.
A bit-plane group can be specified by its top bit-plane (the first bit-plane of the group)
and its span (the difference between the number of the first bit-plane and that of the last
bit-plane of the group). A data structure called the “page frame_ list_head” is defined, as
shown in Figure 3.11, to record the bit-plane groups in this way. By specifying its top and
span, the page frame list of a particular bit-plane group can be found. Thus, the physical
frame buffer resource is managed as a set of independent bit-plane groups, as if it were
a collection of several separate frame buffers. Because each bit-plane group maintains its
own one-dimensional page frame group list, the colour frame buffer resource becomes quite
manageable and the concept of configuring the colour frame buffer into bit-plane groups

enables the application to use the frame buffer in a structured and efficient way.
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typc
T_CELL = record
HEAD, TAIL: integer ;
end;
HEADER = record
free, modified: T_CELL;
end;
var
top_number, span_number: [0..7];
page_frame_list_head:
array [top_number],[span_number] of HEADER;

Figure 3.11. The page frame list data structure.

As described in Section 2.3.2, the size of the physical frame buffer is 1024 x 2048 pixels,
of which only 1024 x 768 are displayed; so, functionally, the frame buffer is partitioned into
screen area and off-screen area as shown in Figure 3.12. The screen area is a contiguous
memory area, and its address is directly mapped onto the virtual address space and its
pages never enter the free page frame list. Page frames for virtual pages are allocated from

the off-screen part of the physical frame buffer.

Screen 768
area lines
20481 PFETTEEREEEEE

lines Off-screen
area

Figure 3.12. Partitioning the physical frame buffer.
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3.2.4 The paging handler and related data structures

Overview
From the previous section, we can see that the concept of configuring the colour frame
buffer into bit-plane groups simplifies virtual frame buffer management; consequently, for
any one particular frame buffer reference, only one bit-plane group needs to be considered.
However, because there may be many different bit-plane groups existing at any given time,
the virtual frame buffer management mechanism must be able to distinguish the relevant
bit-plane group for each individual frame buffer reference.

The process header of a process records the top and span of its private bit-plane group,
to identify its “working” bit-plane group. On a frame buffer page fault, the top and span of
the process’ work%ng bit-plane group are copied to TOPC and SPANC (which together form
the current bit-plane group indicator), so that a frame buffer reference can be associated
with its working bit-plane group. (A process can also reference a shared area in another
process’ address space in other bit-plane group, as will be discussed in next section.)

Each image drawing process has its own working set list. Page group replacement
in the working sets follows a first-in-first-out algorithm. A page group evicted from the
working set will be appended to the tail of the free list or modified list of its bit-plane
group, depending on whether it has been modified. The free lists and modified lists are
maintained with a minimum length so that a page frame attached to the list tail will not
be taken immediately for another process to use. A new page frame will be taken from
the head of the free list if free page group frames are available; otherwise, a new page
frame group will be taken from the modified list. On a frame buffer page fault, the paging

handler is activated to call a new virtual page group into physical memory, and to write
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the swapped out page group onto backing store if it has been modified. If the faulted page
group is found to be in the free or modified lists, then this page group is simply moved
from the list back into the working set. The advantage of this page swapping algorithm is
its simplicity. Also, since an evicted page has to move from the tail of a list to the head, it
will be in the list for a while, and frequently used page groups have good chance of being

moved back into the working set, thus maintaining a reasonable page fault rate.

The paging handler

We now examine how the paging handler validates an invalid frame buffer address. An
important aspect of the virtual frame buffer mechanism is the fact that the same frame
buffer is accessed from three different address areas, using three different modes in different
data formats, and the data swapping between the physical frame buffer and the backing
store is handled by the page group swapping mechanism (described in Section 3.1.4) using
a single memory format (bit-plane mode). An interface must be worked out between the
multi-mode page table based address translation mechanism and the single mode page
group swapping mechanism.

The general idea is shown in Figure 3.13. In performing frame buffer address transla-
tion, the address translator looks up the page table for the information on a virtual address.
If the page table entry is valid, the address translator will produce the translated physical
address using information stored in this entry. If this frame buffer reference violates access
protection, the address translator will abort the translation of this address and give an
error report. If the page table entry is invalid, the address translator will generate a page

fault and thereby call the paging handler to validate this virtual page.
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Figure 3.13. Overview of the virtual frame buffer scheme.

On a frame buffer page fault, the paging handler first calls the multi-mode to bit-plane
mode interface to translate the faulted multi-mode virtual address into a corresponding
bit-plane mode page number. Then, this bit-plane mode virtual page number is used as
a parameter by the page group swapper to reorganize the appropriate page groups. The
page group swapper uses only bit-plane mode for page group swapping. This enables the
page group to have a unique representation in the multi-mode frame buffer and to be
handled in a consistent way. Whenever there is a need for the page group swapper to
communicate with the page table, a bit-plane mode to multi-mode interface will be called
to bridge the multi-mode page table and the single mode page group swapper. After the
required virtual page group has been swapped into physical frame buffer memory, the
interface transforms the bit-plane mode representation of the page group into the contents

of the corresponding conjugate multi-mode nominal page table entries. Thereupon, an
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invalid virtual frame buffer address becomes valid and so do all other virtual frame buffer
addresses which relate to the same page group.

The function of the paging handler is performed by procedure “Pager”, whose algo-
rithm is outlined in Figure 3.14. The role of the multi-mode to bit-plane mode inter-

face is played by procedure “Get_plane_mode_PT1_entry”, as shown in Figure 3.15. On a

Procedure Pager (virtual address) ;
begin
(* Extract the VPGN from the virtual address; find the
corresponding PT1 entry and index2 for bit-plane mode. *)
Get_plane_mode_PT1 entry (virtual address, PT1 entry,
VPGN, index2);
with PT1 entry do
if PT2 ptr = nil then
allocate space for PT2 and initialize PT2
end;
(* Use PT2_ptr and index2 to find a bit-plane mode PT2 entry
and validate the virtual page group indicated by VPGN. %)
Look_up_plane_mode_PT2 (PT2_ptr, index2, VPGN);
end;
end Pager;

Figure 3.14. Procedure Pager.

Procedure Get_plane_mode_PT1_entry (virtual address, var PTI entry,
var VPGN, var index2);
begin
from the virtual address, extract the mode code and the VPGN;
if not bit-plane mode then
extract bit-plane mode indexl and index2 from the VPGN;
using the top plane number of the process’ private
bit-plane group and indexl to find a plane_mode PT1 entry ;
else
extract bit-plane mode indexl and index2 from virtual address;
use. index1 to find a plane_mode PT1 entry;
end;
end Get_plane_mode_PT1_ entry;

Figure 3.15. Procedure Get_plane_mode PT1 _entry.
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frame buffer page fault, the procedure Pager will call procedure Get_plane_mode PT1_entry
to do the multi-mode to bit-plane mode translation. Then the procedure Pager will call pro-
cedure “Look_up_plane_mode PT2” (the page group swapper, whose algorithm is shown in

Figure 3.16) to swap in the virtual page group and validate the relevant page table entries.

Procedure Look_up_plane_mode_PT2 (PT2_ptr, index 2, VPGN);
begin
use PT2 _ptr and index2 to find the appropriate entry in PT2;
if this is a shared page then
set shared_flag to true;
(*+ Examine global entry. *)
check_global (VPGN, backing_block);
else
set shared_flag to false;
if the virtual page is out of memory then
if it is in backing store then
Call_in_page_group (VPGN)
put it into the working set;
else
(* It is a new virtual page group allocate a physical page group
to the virtual page group and allocate a backing storage
to this virtual page group. *)
Allocate_page_group (VPGN);
put it into the working set;
end;
elsif the virtual page is in transition then
extract the bit-plane mode page frame number PFN from
the PFN2 field of the PT2 entry;
use PFN as an index to retrieve the in transition
page group from a page frame list;
put it back into working set;
end;
end;
end;
end Look_up_plane_mode PT2;

Figure 3.16. Procedure Look_up_plane_mode PT2.

As explained earlier, a bit-plane group in this simulator is denoted by its TOP and

SPAN. A virtual page group is represented by its virtual page group number (VPGN) and
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its bit-plane group; a physical bit-plane mode page frame is determined by its page frame
number (PFN), corresponding to the T-field (see Section 3.1.5), and its plane number. In
Section 3.1.5, we noted that all bit-plane mode pages in a page group have the same T-field
value; therefore, in a given bit-plane group, the PFN can be used to identify different page
group frames, and represents the physical page group frame number in a given bit-plane
group.

Procedure Get_plane_mode_PT1_entry takes a multi-mode virtual frame buffer address
and finds its corresponding bit-plane mode PT1 entry, index2 and VPGN, for further
processing. Procedure Look_up.plane_mode PT2 examines the bit-plane mode PT2 entry
and calls the page group swapping mechanism to move the required virtual page group
into physical frame buffer memory. The page group swapping mechanism will then call
the bit-plane mode to multi-mode interface to validate the PT1 and PT2 entries related
to this virtual page group.

Procedure Callin_page_group, which is used in procedure Look_up_plane_mode _entry,
calls the virtual page group designated by its argument VPGN, which presently resides
in backing store, into the physical frame buffer; the algorithm of this procedure is given
in Figure 3.17. Procedure Allocate_page_group, also referred to in Figure 3.16, allocates
a page group frame and also space in backing store for a new virtual frame buffer page
group. The algorithm used in this procedure is very similar to that in Figure 3.17 and will

not be presented here.

Data structures

Before going on to further description of the algorithms for paging management, it is

necessary to introduce some important data structures. After the page table, which has
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Procedure Call_in_page_group (VPGN);
begin
if a free page group frame is available in the free list then
take a page group frame (PFN) from the head of the free list;
else
take a page group frame (PFN) from the head of the modified list;
write the old contents of the page group frame to backing store;
end;
move the backing store address of the old virtual page from
PFN database to its bit-plane mode PT2 entries;
change the class of the old virtual page from “in transition” to “out”;
(* Now the vacated page group frame is ready
for a new virtual page group. *)
(* Copy the new virtual page group from backing store
to the vacated page group frame; use the page group frame
number PEN to derive the address translation values, and
validate the conjugate PT2 entries for 3 frame buffer modes. *)
Derive (VPGN, PFN, Call_in_block);
end Call_in_page_group;

Figure 3.17. Procedure Call_in_page_group.

already been discussed, the next most important data structure is the “PFN database”,
shown in Figure 3.18. The PFN database is organized as a two-dimensional array whose
entries can be retrieved by specifying a bit-plane number and a PFN. Each physical bit-
plane mode page has an entry in the PFN database and each entry contains six fields:
“backing_ptr” stores the backing store location of the virtual bit-plane mode page in this
page frame, “PTE2_adr” contains a pointer pointing to the page table entry for the virtual
page, “state” marks whether the page frame contains a modified virtual page, “ref_count”
records how many processes are currently using this virtual page (ref_count thus becomes
zero when this virtual page is not in any process’ working set), and “last” and “next”
contain the PFNs of the neighbouring page frames if this page frame is in a page frame
list.

The page frame list, as mentioned in Section 3.2.3, is another important data structure

and represents the physical page group resource. As shown in Figure 3.11, the page frame
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type PFN_entry = record
backing ptr: pointer_to_block;
PTE2_ adr: pointer_to_PT2_entry ;
state: kind;
ref_count: integer;
last: integer;
next: integer;
end;
var PFN_data_base: array [plane|,[PFN] of PFN_entry;

Figure 3.18. The PFN database.

list header is organized as a two-dimensional array of list headers. Each bit-plane group
has its own page frame list, called a page group list, which can be found by specifying its
top plane number and its span. Page group lists are managed by the virtual frame buffer
management system. Each page group list consists of two linked lists: a free list and a
modified list. During initialization, all free page group frames in a bit-plane group are
organized into a free list. This is done by linking the PFN database entries for the pages
in a bit-plane group into a list, using their “last” and “next” fields. The head and tail of
such a list contain the PFN of the first and last page group frames, respectively. A page
group frame can be retrieved from a list by specifying its PFN and its bit-plane group
(that is, its top and span).

The third data structure is the working set list, shown in Figure 3.19. It is a circular
list, with a pointer “NEXT” always pointing to the current entry in the list. A working

set list entry has three fields:

o the “VPGNC” field contains the VPGN of the virtual page group which can be used
to access the relevant page table entries when the current page group is evicted from

working set,
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o the “state” field indicates whether this entry is empty, valid or contains a locked

page group, and

e the “same_group” field shows whether the virtual page belongs to the private bit-

plane group of the process, or to a different shared bit-plane group.

type t_state = (valid, empty, lock);
WSLE = record (x Working set list entry. *)
VPGNC: integer ;
state: t_state ;
same_group : boolean ;
end;

var working_set_list: array [0..limit] of WSLE;

Figure 3.19. The working set list.

Bit-plane mode to multi-mode interface

Now, we resume the discussion of the paging management algorithm. The bit-plane
mode to multi-mode interface is used to bridge the bit-plane mode based page group
swapping mechanism with the multi-mode frame buffer and its address translation page
table.

As described in Section 3.1.5, a page group number can be extracted from a frame
buffer nominal page number; therefore, the page group number can be expressed as a
function of the frame buffer nominal page number

PageGroupNo = F (FrameBufferPageNo) (3-1)
and the frame buffer nominal page number can be expressed as the inverse function of
above function

FrameBufferPageNo = & (PageGroupNo, t) (3-2)
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wlere ¢t represents the remaining parameters in the frame buffer page number, such as mode
code, bit-plane number, the directly mapped part of the co-ordinates, and so on. Frame
buffer pages derived from function (3-2) by the same page group number are conjugate
pages.

The bit-plane mode to multi-mode interface is implemented as a procedure “Derive”.

It takes three arguments, namely:
e the virtual page group number (VPGN),
e the corresponding physical page group number (PFN), and
e the operation required to be performed.

Scanning through all frame buffer modes and other t parameters, procedure Derive uses
function (3-2) to derive relevant conjugate virtual and physical frame buffer page numbers
from the given page group numbers VPGN and PFN, and applies the designated operation
on their related data structures. The algorithm used in procedure Derive is described in
Figure B.1 of Appendix B.

Since the operation is passed as a parameter to the interface (that is, to procedure
Derive), the same interface can be used to perform diverse activities in virtual frame buffer
management. As an example, we consider the operation of moving a virtual page group
from backing store into physical frame buffer memory. This is performed by procedure
“Call_in_block”, which takes different measures in different modes. In bit-plane mode, the

operation procedure

e copies virtual page group VPGN from backing store into the corresponding physical

page group PFN, one bit-plane mode page at a time,
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e saves backing store addresses of these bit-plane mode virtual memory pages from

their PT2 entries to the corresponding PFN database entries,

e stores the derived physical page number into the PT2 entries, and

o sets these PT2 entries and their corresponding PFN database entries into valid and

unmodified states.

In other frame buffer modes, the operation procedure simply fills in the relevant PT2 entries
with derived nominal physical page numbers and set these entries into valid and unmodified

states. The algorithm for Call_in_block can be found in Figure B.2 of Appendix B.

Working set related operations

When a new virtual page group is validated, it should be put into the working set of the
faulted process. This task is performed by procedure “Put_into_working set”. When the
working set is not full, there are empty entries in the working set list. A new virtual page
group can be put directly into an empty entry. However, when the working set is full, a
virtual page group must be evicted from the working set list to make room for the incoming
page group. Procedure Put_into_working set selects the page group which has stayed the
longest in the working set as the candidate, and calls procedure “Evict_page_group”, to
evict it from the working set.

Procedure Evict_page_group extracts the virtual page group number (VPGN) of the
evicted page group from its working set entry (see Figure 3.19) and calls the interface
(procedure Derive) to scan through all its related PT2 entries. The interface uses operation
procedure “Evict_3_.mode” to check whether this page group is still in any other process’

working set, and whether any part of this page group has been modified. If this page
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group is not in any other process’ working set, it will be appended to the end of the free
page frame list or the modified page frame list depending on whether it has been modified;
otherwise, it will not go onto page frame list. If a virtual page group is being evicted from
the working set, the states of its related PT2 entries will be changed to “in transition”. A
page group can be locked in the working set, and it will not be evicted until it is unlocked.

Because a process may work on two different bit-plane groups, the same_group field of
the working set entry plays the role of indicating if this page group belongs to the same
bit-plane group as the process’ private bit-plane group, or to a different shared bit-plane
group. Procedure Evict_page_group checks this field and then adjusts the current bit-plane
group indicator (consisting of TOPC and SPANC) to the bit-plane group of this evicted
page group, so later the interface (procedure Derive) can access the correct page group and
its related PT2 entries. The algorithms for Put_into_working set, Evict_page_group, and
Evict_3_mode are given in Figures B.3, B.4 and B.5, respectively, in Appendix B; details

about evicting shared page groups will be discussed in the next section.

The “in transition” virtual page group

On a frame buffer page fault, the faulted page can be found in the class “in transition”.
This means the relevant page group is in one of the page group frame lists. In this
case, the page group swapper (procedure Look_up_plane_mode PT2) will call procedure
“Get_pageframe_back” to move the demanded page group back from the page frame list

to the working set. Procedure Get_page_frame_back

e identifies the page group list by current bit-plane group indicator,

e removes this page group from the identified page group list,
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o changes the states of the related PT2 entries of this page group into valid by using

the interface (procedure Derive), and

e puts this page group back into the working set list.

Because an “in transition” PT2 entry still holds a valid nominal physical page number, no
other processing is necessary. The algorithm for procedure Get_page_frame_back can be
found in Figure B.6 of Appendix B.

The above description shows that the paging handler can guarantee that the multi-mode
frame buffer maintains its multi-mode properties in a virtual addressing environment. On
a frame buffer page fault, only pages in the relevant bit-plane group are swapped, keeping
the page swapping of the colour frame buffer efficient, even when the image’s pixel depth

1s low.
3.2.5 Sharing of the virtual frame buffer address space

General description

The virtual frame buffer mechanism allows a drawing process to not only work in its own
private address space, but also to share other process’ address spaces. The purpose of
sharing address spaces between processes is to permit image exchange. For each shared
area, there is a distinction between the owner and the sharer of the area; the owner can
freely read or write in the area, but the sharer can only read in the area. There are two
reasons for this arrangement. Firstly, allowing multiple processes to modify shared image
memory space creates a situation which may result in the corruption of image data in this
area. Secondly, one process is unable to create images in more than one bit-plane group

using three function modes (as explained later), but it can access images in other bit-plane
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groups using bit-plane mode. In this virtual frame buffer scheme a process can both be an
owner of its own image and a read-only sharer of other process’ image. Thus, images can
be safely transferred between different processes and bit-plane groups.

A process can access shared images located in a bit-plane group different from its own
private bit-plane group. In this case, however, only bit-plane mode is allowed to access
the shared area, because operations of the other modes involve multiple bit-planes and
multiple bit-plane references are confined to the process’ private bit-plane group. The
contents of the bit-plane enable register enforces this limitation to prevent these multiple
bit-plane operations from corrupting images in other bit-plane groups. Consequently, pixel
mode and RasterOp mode are not available for accessing bit-planes outside the process’
private bit-plane group; therefore, the virtual frame buffer mechanism prohibits pixel mode
and RasterOp mode from accessing a shared bit-plane group which is different from the
process’ private bit-plane group.

An important aspect of using this multi-mode virtual frame buffer is that any virtual
frame buffer address is associated with only one bit-plane group. So, if a shared area is
from a different bit-plane group, then the process’ private bit-plane group in this area
is undefined. Normally, images can be copied from another bit-plane group to a private
bit-plane group, and then manipulated using all three modes, if this is necessary. A sharer
can create many shared areas in its private bit-plane group, but it can create shared areas
in only one other bit-plane group at a time. This limitation simplifies bit-plane group
identification on a random page fault, but does not prevent any kind of image copying.
Shared areas can be dynamically created and deleted, and so a process can access any

sequence of bit-plane groups by accessing them one at a time.
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Problems with sharing the address space

There are several problems to be solved in the sharing virtual colour frame buffer

address space; they are:

¢ at any time, only one copy of a shared virtual page group must be kept in physical

memory to maintain the consistency of its contents,

e it must be possible for different sharing processes to access a shared area through

different address areas,

¢ a shared page group should not be evicted from a process’ working set by another

sharing process,

e on page group swapping, the paging handler must be able to identify to which bit-

plane group the swapped page group belongs, and

e when a previously shared page group is no longer shared, there should be a way to

change it into the owner’s private page group.

Mechanisms for sharing the address space

In order to handle the problems with sharing the virtual frame buffer address space,
a global entry is created for each shared virtual bit-plane mode page and a number of
special mechanisms are embedded in the paging handler. These will be described in the
remainder of this section.

The form of a global entry is shown in Figure 3.20. It has the same format as a
PT2 entry with the addition of a “shared_count” field showing how many sharer processes

are sharing this page. In a PT2 entry, depicted in Figure 3.9, the shared field indicates
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Global entry
PT2 entry
shared | out |backing block /"' PT2 entry format
shared_count
PEN data base entry

PTE2_adr ref_count

Figure 3.20. A global entry and its relation to the other data structures.

whether this virtual page is shared or not, and the same_bit_plane_group field indicates
whether this virtual page is in the process’ private bit-plane group. If a shared virtual
page is of class “out”, then the backing_block field of its PT2 entry in bit-plane mode will
contain a pointer pointing to the corresponding global entry, as shown in Figure 3.20. If
the class field of a global entry is “valid” or “in transition”, then its PFN?2 field contains
the nominal bit-plane mode physical page number; if its class is “out”, its backing_block

field will contain the location of this virtual page in the backing store.

The address translation process for a shared page group is very similar to that for
a private page group. The address translator, outlined in Figure 3.10, does not behave
differently depending on whether the virtual address is in a shared area or not. If the page
is valid, the translator produces the translated physical address; if the page is invalid, the
translator will generate a page fault.

On a frame buffer page fault, the Pager first derives the corresponding PT2 entry in
bit-plane mode from the faulted virtual address as usual, and as shown in Figure 3.14.
If it is a shared page, the page group swapper (procedure Look_up._plane_mode_PT2

given earlier, in Figure 3.16) will set a global “shared flag”. Depending on whether the
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saine_bit_plane_group field in the PT2 entry is set or not, procedure Look_up_plane_mode PT2
also adjusts the current bit-plane group indicator (TOPC and SPANC) to that for the pro-
cess’ private bit-plane group or for a shared bit-plane group; these values are recorded in
the process’ header. Then, procedure “Check_global”’, whose algorithm is given in Fig-

ure 3.21, is called to examine the global entry.

Procedure Check_global (VPGN, global_pointer);
begin
case class of the entry indicated by global_pointer of
out, trans: same algorithm as used for private pages
in Look_up_plane_mode_PT2 |
valid: (* Use the physical page frame number (PFN2) of the
global entry to derive the relevant sharer’s PT2 entries. *)
extract PFN from PFN2;
Derive (VPGN,PFN,copy_PT?2_entry)
end;
end Check_global;

Figure 3.21. Procedure Check_global.

Procedure Check_global uses a global_pointer (found in the “backing_block” field of the
PT2 entry, as shown in Figure 3.20) to find the corresponding global entry. According
to the class of this entry, different actions will be taken. In the case of “out” or “in
transition”, the operations applied are almost the same as in the case of a private page.
However, because the shared flag is “on”, the page group swapping mechanism references
the global entry for the backing store location and PFN2, instead of referencing the PT2
entry.

On a frame buffer page fault, if the corresponding global entry is found to be of class
“valid”, then the current page group is in some other process’ working set. In this case,
the physical page number (PFN2) value of the global entry is used to derive the physical

page number of the other relevant conjugate PT2 entries for the faulted process.
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Also, the various “operation procedures” whicl can be passed as arguments to the inter-
face (procedure Derive) will now need to be modified to take account of shared page groups.
As an example of the additional actions needed, we examine procedure Call_in_block (given
in Figure B.2). As described earlier in Section 3.2.4, procedure Call_in_block takes differ-
ent measures for different PT2 entries. For a pixel mode or RasterOp mode PT2 entry,
Call_in.block simply derives the nominal frame buffer page number from the allocated
physical page group number and validates that PT2 entry. For a bit-plane mode entry,
however, in addition to the above operation, Call_in_block also copies the corresponding
bit-plane mode virtual page from the backing store into the allocated bit-plane mode phys-
ical page. If, during this operation, the PT2 entry concerned is found to contain a shared

page, additional measures will be taken which involve:

e extracting the global entry pointer from this PT2 entry,
e extracting the backing store address of this virtual page from the global entry,

e saving the global entry pointer and backing store address of the virtual page in the

corresponding PFN database entry as links,

e deriving the physical page number from the given physical page group number and

validating this PT2 entry and its global entry, and

e initializing the “ref_count” field of the physical page frame to “1”, for later use.

Additional operations check whether the shared_count of this shared page group is zero
and also whether this page group is in the process’ private bit-plane group. If it is so,

that means this virtual page group is no longer shared by any other process. In this
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case, Call.in_block will change this page group into a private page group and delete its
global entry. Thus, a page group which is no longer shared can be changed into a private
one. After these additional operations, the PT2 entry and its related data structures are
correctly set up, and the virtual page will be copied from backing store into the given
physical bit-plane page frame as usual. The algorithm for the additional operations in
procedure Call_in_block is given in Figure B.7 of Appendix B.

The ref_count field of a page frame, as illustrated in Figure 3.20, indicates how many
processes include this page frame in their working sets. Whenever a shared page frame is
put into a working set, the ref_count field in its PFN database entry will be incremented
by one; whenever a shared page frame is evicted from a working set, its ref_count field
will be decremented by one. The ref_count field is checked by procedure Evict_3_mode (as
described earlier) whenever a shared page group is evicted from a working set. Only when
the ref_count field equals zero will this page group be put into the page frame list ready
for other uses; otherwise, this page group is simply removed from the current working set.
Thus, for a particular process, its shared page group will never be invalidated by another

process.

Creating and deleting shared areas

A shared area is created by specifying the process header of its owner process and
sharer process, the shared length (measured by the number of shared page groups), and
the starting page group in both the owner’s and the sharer’s address spaces. Creation
of a shared area' is performed by procedure “Create_shared_area”. This procedure first
checks the sharer to make sure that it is not attempting to work on more than two bit-

plane groups at once. If the owner’s bit-plane group is different from the sharer’s private
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bit-plane group, it will be recorded in the sharer’s process header as a “different shared
group”, for later use. Procedure Create_shared_area uses procedure “Create _shared_table”
to set up a global area in the owner’s address space. After this has been done, procedure
“Map_to_global” is called to map the sharer’s address space onto the owner’s global area.

Because the page group swapping mechanism only references bit-plane mode PT2 en-
tries for page swapping information, it is not necessary to set up an address sharing mech-
anism in PT2 entries other than bit-plane modes. Procedure Create _shared_table scans
through all the relevant bit-plane mode PT2 entries in the owner’s shared area, and calls
procedure “Create_shared_entry” to change them into the shared state and create a corre-
sponding global entry for each of them. Algorithms for procedure Create_shared_area, pro-
cedure Create_shared_table, and procedure Create shared_entry are given in Figures B.8,
B.9 and B.10, respectively, in Appendix B.

On creating a global entry, the shared_count of a global entry is initially set to zero;
with every additional sharer process, this count will incremented. If the owner’s virtual
page has a corresponding page frame, the global entry pointer will be stored in the related
PFN database entry, as shown in Figure 3.20, to link this page frame and its translation
table entry. A process may allow many sharers to share the address space in its private
bit-plane group, but will refuse any attempt to share such address space, where the process
itself shares from another process in a bit-plane group different from the process’ private
bit-plane group.

Procedure Map_to_global scans through every shared virtual page group and uses an-
other interface procedure (called “Derive_shared”, which is very similar to the procedure

Derive discussed earlier) to copy the contents of the owner’s shared PT2 entry to the
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corresponding sharer’s PT2 entry in the three frame buffer modes.

For each shared virtual page group, procedure Derive_shared scans through all related
owner’s PT2 entries and related sharer’s PT2 entries in three frame buffer modes, and
applies “operation” on them. If the sharer is found to be sharing an area outside its
private bit-plane group, then the sharer’s relevant PT2 entries of its private bit-plane
group in this shared area, are set to “no access” status (by setting the access field t\o
“no”), so that the sharer’s private bit-plane group in this address area becomes undefined
and inaccessible. Algorithms for procedure Map_to_global and procedure Derive_share can
be found in Figures B.11 and B.12, respectively, in Appendix B.

A sharer cannot create a new shared area in a previously defined address area. In order
to use this address area for a new shared region, the old definition of this region must be
deleted. Procedure delete_old region is designed for this purpose. It scans through the
specified page groups and uses the interface procedure (that is, procedure Derive, given in
Figure B.1 of Appendix B) and the operation procedure “Delete_entry” to change the class
field of all relevant page table entries into “out”, to discard all related virtual pages, and
to dispose the corresponding backing store blocks, page frames and global entries. This
permits the address region to be redefined for other purposes. Also, because a process
is only permitted to work on two different bit-plane groups at a time, the old (different)
shared plane group must be deleted completely before the process can work on another
bit-plane group. The procedure “Delete_different_group” first finds the specification of the
shared area beiﬁg. deleted (from the process header) and then deletes the whole area, as
described above. In addition to deleting the area, the procedure restores the previously

blocked private bit-plane group of this region into a read-and-write-accessible area. Algo-
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rithms for procedure Delete_old_region, Delete_entry and Delete_different_group are given

in Figures B.13, B.14 and B.15, respectively, in Appendix B.

3.2.6 Experimentation

The simulator described above is written in Modula-2 and was tested on a VAX-11/750
under the VMS operating system. A test program configures the simulated colour frame
buffer into a series of bit-plane groups and issues virtual addresses in different modes
and from different processes working in different bit-plane groups. The physical addresses
produced by the simulator have been checked to see whether the address translation scheme
translates conjugate frame buffer addresses properly.

In this experiment, data was stored into the virtual page groups and then these were
forced to be swapped out during paging. Later, these data were retrieved and checked
against the original values to verify that the page group swapping mechanism moves data
between the physical frame buffer and backing store correctly. Because the multi-mode
feature of the target hardware is not available on the VAX, the data could only be stored
and retrieved using bit-plane mode.

Shared address regions were created between processes working in the same or differ-
ent bit-plane groups. Tests similar to those used for private address areas were applied
to shared areas. Additional tests for the correctness of address translation, page group
swapping and access protection in a multiple bit-plane group environment have been tried,
to verify the address sharing mechanism. The experiment showed that the virtual frame

buffer management scheme met the requirements discussed in this chapter.



Chapter 4
Using the display system

4.1 The programming model of the display system

4.1.1 Overview

In view of the architecture of the graphics display system, described in Section 2.2.2 of
Chapter 2 and shown in Figure 2.8 in that chapter, a programming model of the display
system hardware can be outlined as shown in Figure 4.1. The programmable items are as
follows:
® a stack of eight bit-planes of bit-map memory, constituting the colour frame buffer,
and which can be accessed by all the drawing processors via the three modes,
o the hardware RasterOp units, which assist RasterOp mode operations and present a
set of control registers as interface to the drawing processor,
¢ two bit-plane write-enable registers for pixel mode and RasterOp mode respectively,
which control the selective modification of bit-planes during multiple bit-plane oper-
ations,
e the colour look-up table, which can be accessed by all drawing processors as a 256
X 24-bit array (each 24-bit cell of this array occupies a 32-bit word location in the
system bus address space with byte 0 assigned to red, byte 1 to green, and byte 2 to

blue),
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Figure 4.1. A programming model of the display system.

e the video system controller (VSC), which performs the role of screen refresh controller

and bit-map memory controller, presents eighteen control and status registers as a

system interface, through which the screen format, the location of the screen area

in the frame buffer, the video timing functi-on, the dynamic RAM refresh function,

the synchronization and error interrupt function, and the VSC working mode can be

specified, and

e the board ID directory occupies the first 512 words of the address space of the

board and contains information about the function of the board for automatic system

configuration.

All these programmable items are mapped into the system bus address space; the actual

addresses of these items in a drawing processor’s address space are shown in Appendix A.

Programming details of the RasterOp unit (the BLT chip) and the VSC unit can be found

in their respective manuals [2,8].
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4.1.2 The co-ordinate system

The most natural co-ordinate system to use to represent a raster image is the two-
dimensional cartesian co-ordinate system, normally with the x-axis along the scan-line
direction and the y-axis along the vertical scan direction. A pixel in this system can be
located by its x- and y-coordinates. As described in Section 2.3.1 of Chapter 2, our frame
buffer is organized as a stack of eight bit-planes. Each bit-plane is organized in scan-line
order, the scan-lines being horizontal on the screen (along x-direction). The upper left
corner of a bit-plane is its origin. In each bit-plane, a scan-line is composed of a number
of 32-pixel segments. Each segment corresponds to a memory word in that bit-plane, as
shown in Figure 2.10 in Chapter 2. In our system, a memory word can be partitioned into
two 16-bit short words or four 8-bit bytes.

The frame buffer adopts a linear addressing scheme: the x- and y-coordinates of a
picture data element are mapped into a frame buffer memory address. Thus, the frame
buffer can also be considered as one-dimensional contiguous array of memory cells.

The eight bit-planes of this frame buffer are all pixel-aligned, so that colour images
can be stored in the frame buffer as a, stack of binary images and be correctly displayed
on the screen. The multi-mode frame buffer is accessed to different memory granularities
via the different modes. For example, in bit-plane mode, a bit-plane can be accessed
at the level of an 8-, 16-, or 32-pixel binary imagve segment at a memory byte-aligned
position; the smallest addressable position in this mode is the memory byte position in a
bit-plane. In pixel mode, the frame buffer can be addressed to the granularity of one, two,
or four horizontally adjacent 8-bit pixels; the smallest addressable position is the pixel.

In RasterOp mode, the drawing processor operates the frame buffer via its eight built-in
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16-bit RasterOp units; therefore, the frame buffer is addressed at the level of a 16-pixel
image rectangle which is aligned to the short word boundary of a bit-plane memory word.
The address and data format were given in Figure 2.11 in Chapter 2.

In a program, the frame buffer pixel mode and bit-plane mode address areas are de-
clared as two contiguous arrays of bytes to allocate memory space for the program to store
bit-map images. The RasterOp mode address area is declared to be an array of short
words, with each element aligned with memory short word boundaries in the bit-planes.
This arrangement reflects the short word oriented nature of the RasterOp mode hardware
organization and the programming language must guarantee that all RasterOp mode op-
erations are memory short word aligned without error. One point to be noticed is that
modelling the RasterOp mode frame buffer as an array of memory short words provides
a way to allocate image memory for the program, and a mechanism to address RasterOp
mode image rectangles; the actual data element being processed is not a memory short
word but a RasterOp mode image rectangle, as described in Section 2.3.3 of Chapter 2.

If a bit-map image is going to be stored in a linearly addressed raster storage, the x-
and y-coordinate values of its pixels must be converted into the addresses of the memory
array. Referring to Figure 4.2, the conversion can be expressed by

PixelAddress = BaseAddress + Width x y + x (4-1)
where BaseAddress is the start address of this raster rectangle, and the memory can be
directly addressed to an individual pixel. Because the raster position and dimension are
required for pixel address calculation, they should be recorded in the raster description to

facilitate the image updating operation.
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Figure 4.2. A pixel in a linearly addressed raster storage.

In order to give a raster storage a certain structure, we use the form concept (adapted
from the Smalltalk graphics kernel [23]) to describe a raster storage. A “form” represents
a rectangular raster memory area where a bit-map image can be stored. Primarily, a form

contains three components, width, height and BaseAddress, as shown in Figure 4.3.

BaseAddress

width

height

height

width
g -

Figure 4.3. A “form™ representation of image storage.

The BaseAddress points to the first memory granule of the bit-map storage of the
form, and stands for the origin of the form. The boundary of a form is always aligned to
the boundary of a certain memory granule. The width, which is specified as a number of

pixels, is a multiple of that granule, so that memory space can be allocated to this form.
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The height is represented by the number of scan-lines.

Since the multi-mode frame buffer corresponds to different address areas for different
modes, with different memory granules for different modes, it is necessary for the form
to reflect this property and facilitate the calculation of frame buffer addresses from co-
ordinates in all modes. Therefore, in our new form definition, as shown in Figure 4.4,
a common memory granule is chosen to be a 16-bit memory short word in a bit-plane.
Because of this, the memory granule can be directly addressed by all three frame buffer

modes. The BaseAddress and width are specified as a multiple of 16-bit memory short

words in the bit-plane.

type (* New form definition. *)
form = record
BaseAddressPixel,
BaseAddressPlane,
BaseAddressR_Op,
width, height, size: integer;
top, span : [0..7];

end;
plane_form = record
BaseAddress,
width, height: integer;
end;
pixel_form = record
BaseAddress,
width, height: integer;
top, span : [0..7];
end;

Figure 4.4. New “form” representations of raster storage.

In order to facilitate the co-ordinate to address conversion in equation (4-1), BaseAd-
dress has a set of conjugate values corresponding to base addresses for each mode. The
width and height of a form are specified by pixel numbers, and two new components “top”

and “span” specify the bit-plane group of this form. If we substitute, in equation (4-1),
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the value of BaseAddress for a specific mode, and the values of width and x both divided
by a factor equal to the number of pixels involved in the smallest addressable image data
element of that mode, the frame buffer address of a specific mode can be obtained.
Colour and binary images may be stored in general purpose memory. In that case, these
images cannot be handled by multi-mode function, so another two forms — plane_form and
pixel_form — are defined as shown in Figure 4.4 to distinguish ordinary memory from the

frame buffer, as well as to distinguish bit-plane format from pixel-packed.

4.2 Programming the display subsystem

4.2.1 Basic drawing procedures

A number of basic drawing procedures are implemented; each of them performs a primitive
drawing operation, such as copying bit-map image rectangles, line drawing, or painting
a string of characters. These graphics primitives can be used by higher level graphics
functions to build graphics packages, and they also serve to illustrate how to use this

display subsystem. The implemented drawing procedures include:

e RasterOp type primitives, which copy source image rectangles to destinations, and
apply bitwise logical operation between source, destination, and halftone images, as

described in Section 1.1.5 of Chapter 1,

e line drawing type primitives, which draw lines and points in absolute co-ordinates

and relative co-ordinates,
¢ polygon filling primitives, which fill a polygon with solid colour or a pattern,

¢ image storage management primitives, which allocate and deallocate forms of colour

image storage, and
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e un anli-aliasing line drawing procedure and colour picture rectangle blending proce-

dure, which are used as examples to illustrate the pixel value manipulation operation.

Algorithms for these procedures and methods of programming the multi-mode frame buffer
are described below for each frame buffer mode, so that the characteristics of each mode
can be clearly illustrated. The notation used in this chapter for the description of ma-
chine instruction level matters is NS32000 series processor assembly language [5], which

represents the instructions actually used to drive this display subsystem.

4.2.2 RasterOp mode operation

As described in Section 2.3.4 of Chapter 2, RasterOp mode is designed to accelerate Ras-
terOp type operations with the assistance of hardware RasterOp units — the BLT chips.
The programming model of the BLT chip is shown in Figure 2.15 of Chapter 2 and the
frame buffer data path is shown in Figure 2.13 of that chapter. During a RasterOp mode
read operation, all bit-planes in the frame buffer are separated from the common internal
data bus and a primitive binary image rectangle in each plane is read into its correspond-
ing BLT chip register. Therefore, after a RasterOp mode read, the BLT chip set holds a
colour image rectangle. If the control bit (address bit 18) is “0” then the colour image
rectangle will be held in BLT source registers, otherwise it will be held in BLT halftone
registers. This operation loads a primitive source image rectangle, a colour, or a colour
pattern into the BLT chip. Since this operation separates the system bus from the frame
buffer, no valid data can be read into the drawing processor. So, if we only want to load
BLT registers with colour or image, we can use an instruction of the form
movw mode3_src_address, dummys;

where “dummy” is a local fast scratch pad memory address, or a register whose content is
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of no significance.

All the BLT registers, except destination registers, can be loaded from the system bus
by writing into specific system bus addresses (details of the BLT register to system bus
address mapping are included in Appendix A). However, in this case, the registers of all
BLT chips are loaded with the same data from the system bus. This kind of operation is
used to load a BLT chip with binary image, image mask, or control information, such as
skew, operation code, merge mask, and so on.

If the control bit (address bit 18) is “0”, the RasterOp mode “write” operation first
reads a destination memory word from each bit-plane into BLT destination registers, then
it applies a logical operation between the shifted source image, halftone image and des-
tination image. The bit pattern of the BLT merge mask register specifies the portion of
the destination memory words to be modified; a “0” bit in the merge mask selects the
corresponding bit of the logical unit output, while a “1” selects the bit of the destination
register. The output of the merge unit is used as BLT output and is written into the
destination memory word for each bit-plane. Corresponding to this operation, the frame
buffer actually performs a read-modify-write memory cycle.

The RasterOp mode plane enable register controls which bit-plane can be modified.
The skew register specifies the shift amount of the source primitive image, so that the
source image can be copied to any pixel location in the destination area. Thus, with one
instruction

movw mode3_src_address, mode3_dest_address; (4-2)
a primitive source image rectangle can be copied to a destination with a logical operation.

In this operation, the data communication only involves BLT chips and bit-plane memories;
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there is no valid data transfer between frame buffer memory and the system bus.

If the control bit (address bit 18) is “1”, the RasterOp mode write operation will load
the data on the system bus into the source registers of all BLT chips before the read-
modify-write of the destination memory words. Thus, with the move instruction (4-2), if
the source address specifies a binary image in a bit-plane or in the general purpose memory,
this source image can be copied to any frame buffer bit-plane by RasterOp. Binary images
copied by this method can be used as a mask and extended into a solid colour image
or an image with a colour pattern, depending upon the contents of the halftone register;
this operation is known as a brush-paint operation, with the source register containing
the brush and the halftone register containing the paint. The brush-paint operation can
significantly save image memory space, since many images (such as fonts, menus and icons)
can be kept in a highly compact binary form and stored in an ordinary memory area. Later,
\'Nhen painted onto the screen, these binary image patterns can be extended into colour
images by the brush-paint operation. The above operation can also be used for RasterOp
between the frame buffer bit-planes.

A variant of brush-paint operation can be used to paste arbitrary shaped colour images
onto another colour image to form a combined image. The image being pasted is associated
with a mask which specifies what portion of the source image should be pasted on to the
destination. Some high performance microprocessors, such as NS32032, support bit field
instructions, and with these instructions a bit string (with a length of up to 25 bits in the
case of NS32032) can be extracted from or inserted into a memory word in an arbitrary bit
position. The paste algorithm can be significantly simplified and accelerated by employing

bit field extracting instructions. Since the binary image mask can be loaded into the BLT



CHAPTER 4. USING THE DISPLAY SYSTEM 116

halftone register by the bit string extracting operation in a position which is aligned to
the destination at a pixel boundary, operations such as mask fetching, shifting and BLT
register loading can be completed in one instruction. The inner loop of the paste algorithm
is depicted in Figure 4.5. In this operation, although the RasterOp copies a rectangular
area onto destination, only pixels corresponding to mask bit “1” are modified.

set the BLT operation to

(dest:= (source and halftone) or (dest and not (halftone)));

; Extract mask and load it into BLT _halftone register.

extw mask_address, BLT _halftone;

movw mode3_src_address, mode3_dest_address;

advance to next mask_address;

advance to next mode3_src_address;
advance to next mode3_dest_address;

Figure 4.5. The paste algorithm.

In order to appreciate the advantage of using the RasterOp mode RasterOp function,
we make a comparison of executing RasterOp in an 8-bit pixel frame buffer using RasterOp
mode (Figure 4.6), using pixel mode (Figure 4.7), and using bit-plane mode (Figure 4.8).
For clarity, this example only copies a single unit height image rectangle from the source
area onto a destination area, as depicted in Figure 2.14 of Chapter 2. In the comparison, the
word length of the bit-plane frame buffer and the pixel-packed frame buffer are supposed
to be the same as RasterOp mode data format (16 bits), and we also presume bit field
instructions are not used.

In the above comparison, RasterOp mode uses 7 instructions, 2 frame buffer read
cycles and 2 frame buffer read-modify-write cycles. The pixel-packed mode uses 24 (8 X

3) instructions, 8 frame buffer read cycles, and 8 frame buffer write cycles. The bit-plane
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; Assume skew and operation code are already in BLT chip.

; Load source wordl into BLT source register.
movw mode3_src_address, dummy

advance mode3._src_address to next memory word;
movw leftmask, BLT merge_mask;

; Copy shifted source word into destination word 1.
movw mode3_src_address, mode3_dest_address;
advance mode3_dest_address to next memory word;
movw rightmask, BLT_merge_mask;

; Copy shifted source word into destination word 2.
movw mode3_src_address, mode3_dest_address:;

Figure 4.6. Copying a 16-pixel segment using RasterOp mode.

; Repeat the following operation n times {n = (image_width div 2) = 8}
; Copy source image onto destination two pixels at a time.

movw src.address, dest_address;

advance src_address to next two-pixel segment;

advance dest_address to next two-pixel segment;

Figure 4.7. Copying a 16-pixel segment in pixel mode.

mode uses 144 (8 x 18) instructions, 40 (8 x 5) frame buffer read cycles and 16 (8 x 2)

frame buffer write cycles.

This example is actually an unfavourable case for RasterOp mode and bit-plane mode,
because in this case all the image memory words are at boundaries and so both left and
right boundary conditions need to be processed. Much fewer instructions are needed to
copy a 16-pixel segment in the middle of a horizontal line with RasterOp mode and bit-
plane mode, as shown in Figure 4.9. In this situation, RasterOp mode only needs three
instructions, one frame buffer read cycle and one frame buffer read-modify-write cycle
to copy a 16-pixel segment. Bit-plane mode needs 40 (8 x 5) instructions, 16 (8 x 2)
frame buffer read cycles and 8 frame buffer write cycles. Pixel-packed mode uses the same

operation as in Figure 4.7.
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; For each of the 8 bit-planes, do the following.

; Read source word 1 and source word 2 into a long word in buffer.
movd src_address, buffer;

; Shift the source longword to align it with its destination position.
Ishd skew, buffer;

advance src_address to next memory word;

movw dest_address, accumulator;

; Mask off modified part of destination.

andw leftmask, accumulator;

comw leftmask, invertedMask; Invert leftmask

; Mask off unmodified part from source word.

andw invertMask, buffer;

; Merge shifted source image into destination word.
addw buffer, accumulator;

; Copy new destination word back into memory.

movw accumulator, dest_address;

advance dest_address to next memory word;

; Process the remainder of source and destination images.
; Read source word 2 into buffer.

movw src_address, buffer;

Ishd skew, buffer;

movw dest_address, accumulator;

andw rightmask, accumulator;

; Invert rightmask.

comw rightmask, invertMask;

andw invertMask, buffer;

addw buffer, accumulator;

movw accumulator, dest_address;

Figure 4.8. Copying a 16-pixel segment in bit-plane.

If we take the number of instructions and frame buffer cycles used by RasterOp mode
as one, we obtain the relative number of instructions and frame buffer cycles used in the
above two examples as a benchmark to compare the performance of the different frame
buffer modes, as shown in Figure 4.10. For simplicity, we assume that the frame buffer
read and write cycles use equal amounts of time, and that a read-modify-write cycle is 1.3

times longer than a read cycle.
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;
; | Using RasterOp mode. |

1

movw mode3_src_address, mode3_dest_address;
advance mode3_src_address to next memory word;
advance mode3_dest_address to next memory word;

; | Using bit-plane mode. |

]
; For each of the eight bit-planes, do the following:
; read source wordl and source word2 into a longword in buffer

movd src.address, buffer;

; shift the source longword to align it with its destination position
Ishd skew, buffer;

advance src_address to next memory word;
movw buffer, dest_address;
advance dest_address to next memory word;

Figure 4.9. Copying an image in the middle of a horizontal line.

From the above comparison, we can see that RasterOp mode is much faster than exe-
cuting the same operation in bit-plane or pixel-packed mode, and also that the performance
of RasterOp mode is not effected by the pixel depth, whilst the performance of bit-plane
mode is inversely proportional to the pixel depth.

In a complei;e RasterOp mode RasterOp procedure, other operations are required in
addition to image copy, such as to calculate the amount of skew, the value of the merge
mask, and the address increment, to deal with image boundary conditions, and so on. The
algorithm for procedure “RasterOp_BLT” is given in Figure 4.11 to show the whole process.
This simplified procedure copies a source image from a buffer area to a destination area
with no overlap between source and destination image, so that the copy can be executed

in any order (in this case, from top to bottom in the y-direction and from left to right in
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Boundary copy Copy in the middle of a line
Relative number | Relative number Relative number | Relative number
of instructions of frame buffer S e of frame buffer
cycles cycles
RasterO '
mode g 1 | 1 1
Bit-plane
Pixel
mode 3.4 3.7 8 6.95

Figure 4.10. Performance comparison for copying a 16-pixel segment, with a pixel-depth
of eight.

the x-direction). A more general RasterOp procedure would include the test of a correct
copy direction, so that when the source image overlaps with destination, it will not be
destroyed before copying to the destination, and a clipping function which only copies
images which are within a clipping rectangle in the destination area. This procedure can
handle unclipped and overlapped source and destination images, but is slower than the
one in Figure 4.11.

Referring to Figure 2.17 of Chapter 2, “skew” in the procedure RasterOp _BLT specifies
the shift amount of the BLT rotator from low significant bits to high significant bits. A
“1” bit in the skew mask selects the corresponding bit of the previous source register to
participate in the rotation, whilst a “0” bit in the skew mask selects the corresponding
source register.

A variety of bif,-n.’lap image transformations can be implemented by RasterOp, such as
“zoom in”, “zoom out”, rotating by 90 degrees, and so on, as described in [23]. In addi-

tion, an image rectangle can be copied along two vectors, as described in [9] and shown
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Procedure RasterOp_BLT (operation: integer; src, dest: form;
Xs, Xd, Ys, Yd, w, h: integer);

(* Xs, Ys and Xd, Yd are the upper-left corner co-ordinates of source
and destination rectangles, respectively. w and h are the width and
the height of the rectangle. ¥)

const noMasking = 0;

type RasterOpModeAddress = Pointer to shortword;

var src_offset, dest_offset, d_StartBits, d_LastBits, skew,

leftMask, rightMask, word_span, Ys.dIt, Yd_dit, Ys_line_dlt,
Yd line_dlt, src_start, dest_start, i, j: integer;
preload: boolean; dummy: shortword;

begin
(* Calculate skew for source/destination image alignment * )
src_offset:= Xs mod 16; dest_offset:= Xd mod 16;
skew:= (src_offset - dest_offset) mod 16;

(* Skew is the difference between source and destination positions
within the range of pixel offset *)

(*+ Determine whether the source register queue needs to be preloaded *)

preload:= src_offset >= dest_offset;

d_StartBits:= 16 - dest_offset;

d_LastBits:= ((Xd + (w - 1)) mod 16) +1;

(* Look up corresponding merge mask. *)

leftMask:= MaskLeft [d_StartBits];

rightMask:= MaskRight [d_LastBits];

(* word_span is the number of 16-bit short word needed to cover
the width of the destination rectangle, except for the d_StartBits. *)

word_span:= (w + 15 - d_StartBits) div 16;

if word_span = 0 then
(* For one short word wide destination image, the merge mask is the

logical “or” of left and right masks. *)
leftMask:= leftMask + rightMask;

end;

(* Y_dIt is the frame buffer address increment when the Y coordinate
is increased by one, Y_line_dlt is the frame buffer address
increment when the image word at the end of a image scan-line
advances to the start of next scanline. *)

Ys._dlt:= src.width div 16;

Yd_ dlt:= dest.width div 16;

Ys line_dlt:= Ys_dlt - word_span;

Yd_ line_dlt:= Yd_dlt - word_span;

(* Calculate the starting address of the source and destination
image rectangles. *)

src_start:= src.BaseAddressR.Op + (Ysdlt * Ys) + (Xs div 16);

dest_start:= dest.BaseAddressR_Op + (Yd_dlt * Yd) + (Xd div 16);

Figure 4.11. Procedure RasterOp BLT.
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(* Send skew, skew mask, and operation code to the BLT registers. * )
BLT skew:= skew;
BLT skewMask:= Maskleft [skew];
BLT opecode:= operation;
(* Copy source image to destination. *)
for i:= 1 to h do (* From the top of the image to the bottom * )
if preload then (* Preload a source word into the BLT source register * ) _

dummy:= RasterOpmodeAddress (src_start)7;
srcstart:= src_start -+ 1;
end;
BLT _mergeMasl:— leftMasi;
(* Copy a primitive Image rectangle from the source area
to the destination area,
RasterOpmodeA ddress (dest_start )] := RasterOpmodeA ddress (src_start)7;
BLT _mergeMask:= noMasking;
for j:= 1 to word_span - 1 do
inc (dest_start); inc (sre_start);
RasterOpmodeA ddress (dest_start):= RasterOpmodeA ddress (src_start)7;
end; (* inner loop *)
if word_span > @ then
BLT _mergeMaslk:= rightMask;
inc (dest_start); inc (srestart);

RasterOpmodeA ddress (dest_start)t := RasterOpmodeA ddress (src_start)7;
end;

Src_start:= src_start - srcline_dlt;
dest_start:= dest_start + dest_line_dlt;
end; (x Copy Image *)
end Ra.sterOp_BLT;

Figure 4.11. (continued)
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source

destination

Figure 4.12. RasterOp with transformation.

line of arbitrary width and pattern can be generated. Also, a polygon can be decomposed
into a collection of horizontal lines and each line can be filled with colour or pattern using

RasterOp. Thus, RasterOp mode can also be used for line drawing and polygon filling.

4.2.3 Pixel mode operation

As described in Section 2.3.3 of Chapter 2, the frame buffer is accessed by pixel value in
pixel mode. In this mode, individual pixel values can be directly read and written. A frame
buffer reference can transfer up to four horizontally adjacent pixels in any pixel position,
and pixel values can be directly manipulated by the drawing processor; so, arithmetic op-
erations and other operations, such as maximum, minimum, addition and subtraction with
colour saturation, and colour blending, can be implemented using pixel mode. Because of
these features, pixel mode is used to implement line drawing, polygon filling, antialiasing
figure drawing, and RasterOp with special functionalities. A number of procedures have
been implemented to experiment with the characteristics of this mode.

In graphics algorithms, it is desirable to use an arbitrary pixel address to access pixel
segments of different.lengths. For example, in pixel mode, one frame buffer reference can
access one pixel, two pixels, or four pixels; if we were to access the frame buffer as an array,
the length and position of the pixel segment being access will be constrained by the array

definition and become fixed. So, instead of using an array, we use a special pixel pointer as



CHAPTER 4. USING THE DISPLAY SYSTEM 124

a vehicle for access to the pixel-packed image memory. The definition of the pixel pointer

type is given in Figure 4.13.

type pixel ptr = record

case choice of
0: C: integer |
1: L: pointer to integer |
2: S: pointer to shortword |
3: B: pointer to byte |

end;

end;

Figure 4.13. The pixel pointer type.

This pixel pointer has four variant definitions for the same piece of data. Assuming a

variable “pixel_pointer” of the type defined in Figure 4.13,

o “pixel_pointer.C” is used for address calculation and assignment,

o “pixel pointer.L1” is used to access a four-pixel segment using its starting pixel

address,

e “pixel_pointer.ST” is used to access a two-pixel segment using its starting pixel ad-
dress, and
e “pixel_pointer.B1” is used to access an individual pixel by using its own pixel address.

Thus, by changing the field name used, pixel segments with different lengths can be refer-
enced with the same starting address. Similarly, this pixel pointer can be used in bit-plane

image memory to address 8, 16, or 32 pixel binary image segments.

The line drawing procedures

Line drawing procedures draw lines and move the “pen” from the current pen position

to an end point specified by relative or absolute co-ordinates. A widely used incremental
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line drawing algorithm, Bresenham’s algorithm [20,26], is adopted in our line drawing
procedures. In this algorithm, for each iteration step, the pen co-ordinate along the major
increment direction will be incremented by one and the co-ordinate increment along the
minor increment direction is determined by a decision variable which is used to keep track
of the error factors associated with rounding to an integer pixel grid. As an example
of using pixel mode for line drawing, an outline of Bresenham’s algorithm is given in
Figure 4.14. Since a line can be drawn into any image area, an environment descriptor is
used to specify a particular drawing environment, including the form being drawn into,
the width of the form, the current pen position co-ordinate and its corresponding address.
A pointer to this descriptor is passed as a parameter to the line drawing procedures. In
Figure 4.14, it can be seen that line drawing in pixel mode is simply a matter of setting
the value of the pixels under the pen to a given colour; it can be executed as fast as the
next pixel address can be generated.

Antialiasing line drawing can be achieved by modulating the intensity of the pixels of
the line, according to how much of this pixel is covered by the line and how much it is
covered by back-ground colour, as illustrated in Figure 4.15. In this figure, S is used to
represent the deviation of the centre of the rounded pixel from the theoretical centre of
the line, and using a simple antialiasing algorithm, the intensity of pixels P1 and P2 can
be obtained by the equations

intensity of P1 = (1 — S) x colour + S x background
intensity of P2 = S x colour + (1 - S) x background
where P1 and P2 are the two pixels involved in one step of the incremental algorithm.

Pixel P1 is the pixel chosen by the algorithm for a point on the line; that is, it is the
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type draw_environment = record
form_ptr: pointer to form;

width,

pen.x, pen.y: integer;
pen_adr: pixel_ptr;
end;

Procedure Line_relative (Dx, Dy, colour: integer;
environment: draw_environment);
var y.increment, x_increment, 1: integer;
begin
set y_increment to environment.width;
set x_increment to one;
calculate line drawing direction for Bresenham’s algorithm;
for i:= current point to the end of the line do
pen.adr.b]:= byte (colour);
calculate next pen coordinates using Bresenham’s algorithm;
update pen_adr to the value corresponding to next
pen coordinates;
end;
end line_relative;

Figure 4.14. Procedure Line_relative.
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Figure 4.15. Drawing an antialiasing line.

“pen”. Pixel P2 is the other of the two alternative pixels; that is, it is the “auxiliary
pen”. In pixel mode, this pixel intensity modulation can be conveniently implemented as
illustrated in the algorithm used in procedure“Smooth_line”, a part of whose algorithm is

given in Figure 4.16. In this algorithm, a pixel pointer type variable “pen_adr” holds the
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address of the pen pixel P1 and another pixel pointer “pen_aux_adr” holds the address of
the auxiliary pen pixel. For simplicity, this procedure draws only a monochrome image
with grey scale. Similar operations can be used for linear colour blending of two colour

images and also for colour image transformation {19].

Procedure Smooth_line (Dx, Dy, colour, environment);

(* pen_adr is a pixel pointer which specifies the address of
current pen position, pen_aux._adr is a pixel pointer which
specifies the address of the auxiliary pen position *)

var S: real; pen_aux_adr: pixel_pointer;

begin

set initial S value; (* S is line drawing rounding error *)
(* Draw a smooth line. *)
from current pen position to end of the line do
calculate the value of pen_adr, pen_aux_adr, and S
using incremental algorithm;
(* Get the background colour under the pen. *)
background:= integer (pen_adr.B7);
(* Write the pixel P1 *)
pen_adr.BT:= byte (trunc (S * float (colour)
+ (1.0 - S) * float (background)));
(* Get background colour under the auxiliary pen *)
background:= integer (pen_aux_adr.BT);
(x Write the pixel P2 )
pen.aux._adr:= byte (trunc ((1.0 - S)) * float (colour)
+ S * float (background)));
end;

end Smooth_line;

Figure 4.16. Procedure Smooth_line.

Performing RasterOp in pixel mode

In procedure RasterOp.BLT, we can see that in addition to image copy, a series of
parameters needs to be calculated, such as skew, skew mask, merge mask, and so on. In

order to handle the left and right boundary conditions, additional tests and additional
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frame buffer cycles are also needed on copying an image rectangle. For larger images, this
overhead is negligible compared with the time used for the image copy. But, if the image
being copied is very small (such as a character), copying only needs a few cycles, and
the parameter and boundary condition calculations result in comparatively higher set-up
overhead.

In pixel mode operations, however, individual pixels or pixel segments can be directly
addressed, eliminating the need for the shifting, merging, masking and read-modify-write
memory operations required for performing RasterOp in bit-plane format, and the handling
of boundary conditions is much simpler. Although one pixel mode frame buffer reference
can access only at most four pixels, copying a small or horizontally narrow image using a
RasterOp-like operation in pixel mode can be more efficient. The algorithm used for this

operation is given in Figure 4.17, where

e “src_adr” and “dest_adr” are pixel pointers pointing to the source and destination

segment to be copied,

e “src_start” and “dest_start” are the start address of a horizontal line of the source

and destination images respectively, and

o “w” and “h” are width and height of the image rectangle being copied.

Copying a segment from the source area to the destination area is simply done using a
statement of the following form over the whole image rectangle.

dest._adr.LT:= src_adr.LT;
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Procedure RasterOp_Pixel (src, dest: pixel_form;
Xs, Xd, Vs, Yd, w, h, colour: integer);
var src_start, dest_start, i, wO0: integer;
src_adr, dest_adr: pixel_pointer;
begin
(x Calculate starting addresses of the image areas. *)
src_start:= src.BaseAddressPixel + src.width * Ys + Xs;
dest_start:= dest.BaseAddressPixel + dest.width * Ys + Xs;
(x+ Copy image rectangles from top to bottom * )
for i:= 1 to h do
src_adr.C := src_start;
dest_adr.C := dest _start;
wl:= w;
(* Copy a horizontal line * )
while w0 > 4 do (* First, copy four pixels at a time * )
dest_adr.L1:= src_adr.LT; ( % )
wl:= w0 — 4;
src.adr.C:= src_adr.C + 4;
dest_adr.C:= dest_adr.C + 4;
end; (* while *)
while w0 > 0 do (* Copy the remainder one pixel at a time *)
dest_adr.B:= src_adr.B{; (% * )
wl:= w0 - I1;
src_adr.C:= src_adr.C + 1;
dest_adr.C:= dest_adr.C + 1;
end; (* while %)
(* Advance to the next line * )
src_start:= src_start 4 src.width;
dest_start:= dest_start 4 dest.width;
end; (* for x)
end RasterOp_Pixel:

Figure 4.17. Procedure RasterOp_Pixel.

When combining colour images, the following operations are sometimes useful:

e replacing the &estination pixel with the maximum or minimum of the source and

destination pixels,

* combining the source and destination images using addition or subtraction with a

saturation, and
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¢ linear blending of colour images.

These and other graphics operations require arithmetic operations on pixel values which
cannot be handled by bitwise logical operations. In pixel mode, however, since pixel values
can be directly a(_:cessed and manipulated by the drawing processor, RasterOp can perform
the above operations while copying source image rectangles onto the destination. In order
to do this, the statements marked (***) in Figure 4.17 are replaced by calls to a procedure
which performs an operation between source and destination pixel values and stores the
result into the destination pixel. As an example, a simplified procedure “Maximum” is
given in Figure 4.18; this selects the larger of the source and destination pixel values to be
the destination pixel value.

This procedure can be passed as a parameter to the procedure “RasterOp_pixel” in
Figure 4.17, so that different operations can be performed. Bit-field instructions can
extract or insert a particular bit-field in a memory word; these instructions are used in
procedure Maximum to obtain a particular colour component from the pixel value. The
distribution of the colour components is specified by the offsets of the components from the
first bit’of the memory word and the lengths of the components. The colour distribution
of a specific image is recorded in a variable of type “colour_record”, which is passed as a
parameter to the operation procedure for insertion and extraction of colour components.

For simplicity, procedure Maximum only performs operations on pixels one at a time.

Polygon filling

A widely used graphics primitive is polygon filling. The procedure “Fill_polygon”,
which adopts an edge coherence and scan-line algorithm[20], has been implemented to fill

convex polygons; each scan-line only intersects with two edges of the polygon. Concave
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type ColourMask = record
offset, length: [0..8];
end;
colour.record = record

red, green, blue: ColourMask;
end;

Procedure Maximum (src.adr, dest_adr: pixel_pointer;
colour_descriptor: pointer to colour_record);
var src.buffer, src_colour, dest_buffer, dest_colour: integer;
begin
(* Read source and destination pixel values *)
src_buffer:= src_adr.BT;
dest_buffer:= dest_adr.BT;
(* Manipulate pixel value *)
extract “red” bit-field from src_buffer and put into src_colour;
extract “red” bit-field from dest_buffer and put into dest_colour;
if src_colour > dest_colour then
insert src_colour into the “red” bit-field of dest_buffer;
end;
extract “green” bit-field from src_buffer and put into src_colour;
extract “green” bit-field from dest_buffer and put into dest_colour;
if src_colour > dest_colour then
insert src_colour into the “green” bit-field of dest_buffer;
end;
extract “blue” bit-field from src_buffer and put into src_colour;
extract “blue” bit-field from dest_buffer and put into dest_colour;
if src_colour > dest_colour then
insert src_colour into the “blue” bit-field of dest_buffer;
end;
(* Replace destination pixel with the result of the operation )
dest_adr.Bl:= dest_buffer;
end Maximum;

Figure 4.18. Procedure Maximum.

polygons can be decomposed into convex polygons.

In procedure Fill_polygon, a polygon is represented by a list of adjacent vertices, each
pair of vertices defining an edge. The procedure first creates an edge table (ET) from
the vertex list, each ET entry holding a pointer to a list of edge records with the same

lower y-coordinate. In the ET, these edge lists are sorted with the lower y-coordinates in
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an ascending order. An active edge table (AET) holds the polygon edges which intersect
with the current scan line. The filling scans the polygon from the lowest to the highest y-
coordinate; edges that intersect with the current scan-line are put into the AET and their
intersecting points with the scan-line are derived. Since each scan-line can only intersect
with the polygon at two points, these two points define a line which composes part of the
polygon. After filling this line with colour, the y-coordinate is incremented and the AET
updated.

Thus, by scanning the polygon along the y-direction, the problem of filling a polygon
becomes a matter of filling a series of horizontal lines. A degenerate form of RasterOp
is suitable for filling horizontal lines with a solid colour or pattern, and so pixel mode
and RasterOp mode RasterOp function can both be used for polygon filling. However,
for shading a polygon, individual pixel values need to be calculated, and only pixel mode

operations can be conveniently used.

4.2.4 Bit-plane mode operation

From the discussion of pixel mode and RasterOp mode operations, it seems that almost
all graphics operations can‘ be conveniently performed between them. What then is the
point of having bit-plane mode? The main function of bit-plane mode is to transfer images
between the bit-planes of the multi-mode frame buffer and other memory areas or disk,
and to transfer images between different bit-planes of the frame buffer itself.

Bit-plane mode operations can directly transfer a 8- to 32-pixel binary image segment
from a bit-plane of the frame buffer to any memory area within the drawing processor’s
address space. With the assistance of bit-field instructions, a binary image segment (with

a length of between one and 25 pixels) can be extracted from the source image in an
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arbitrary pixel position and inserted at any pixel position in the destination area. The
operation of copying a 16-pixel binary image segment from a source region to a destination
region can be simplified into executing the following pair of instructions:
extd src_offset, src_address, buffer, length;
insd dest_offset, buffer, dest_address, length;

where “src_offset” and “dest_offset” are the pixel offsets of the image segment in the source
and destination memory words, respectively, and “length” is the length of the segment. The
total operation only needs two instructions and three to six memory cycles. In addition to
this, the maximum number of pixels that can be handled by one instruction is 25, instead
of 16 for a RasterOp mode operation. Taking the average number of memory cycles used
to copy 25 binary pixels in this operation as 4.5, the average number of pixels copied in
one cycle is 25 pixels divided by 4.5, that is, 5.56 pixels. In RasterOp mode, this figure is
16 pixels divided by 2.3, or 6.96 pixels. So, we can see that copying a binary image using
bit-field instructions can be performed at about the same rate as with RasterOp hardware.

Without bit-plane mode, image transfers between frame buffer bit-planes and other
memory areas, or between frame buffer bit-planes themseclves, would be difficult. For
example, there is no communication between bit-planes in RasterOp mode. In pixel mode,
transfer of an image from one bit-plane group to another needs bit-field extraction and
insertion operations, and the number of bits that can be moved in one memory reference is
normally much less than that possible when using a bit-plane mode operation, especially
when the pixel depth is small. In the virtual memory management simulator (described
in Section 3.2 of Chapter 3), it can be seen that bit-plane mode is a convenient vehicle

for the manipulation and management of bit-plane groups in a multiple bit-plane frame
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buffer.

4.2.5 Off-screen buffer management

As described in Section 2.3.2 of Chapter 2, in a multi-window display environment, a
large off-screen buffer area is required to store fonts, menus and so on, as well as to
provide temporary storage for obscured windows and other image objects. Therefore, the
off-screen buffer resource should be efficiently allocated and deallocated. In order to do
this, a frame buffer heap manager is required so that image forms can be dynamically
allocated and deallocated. The frame buffer adopts a linear addressing scheme, which has

two advantages for frame buffer heap management:

1. two-dimensional image rectangles can be mapped into pieces of a one-dimensional
memory array and therefore can be densely packed together regardless of their shape

and size, giving efficient storage utilization, and

2. the linear addressed one-dimensional frame buffer memory is very similar to gen-
eral purpose memory, and so well-understood heap management algorithms can be

adapted for image memory resource management.

The problem of managing a multi-plane colour frame buffer is the fact that it is very
difficult to manage the storage resource for randomly piled images which have arbitrary
pixel depth, shape and size. As described in Section 3.2.3 of Chapter 3, this problem can
be overcome by using the bit-plane group concept described in Section 3.1.4 of Chapter 3.
So, this concept is also used as a tool to implement the frame buffer heap manager.

The frame buffer heap manager is written for an environment where no other frame

buffer management (such as virtual frame buffer management) is used. So, the heap
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manager assumes sole responsibility for the management of the physical off-screen frame
buffer memory.

The off-screen frame buffer resource is firstly configured into a series of independent
heaps, one for each bit-plane group. Further configuration is possible if enough remaining
bit-planes are available. As defined in Section 3.2.3 of Chapter 3, a bit-plane group consists
of adjacent bit-planes, different bit-plane groups do not overlap, and the heap for a specific
bit-plane group can be simply found by specifying its top bit-plane. Thus, the off-screen
frame buffer resource can be managed as a set of independent heaps, as though they were
separate frame buffers. Conventional heap management algorithms can be adopted to
handle these one-dimensional memory resources for each bit-plane group.

The data structures for the frame buffer heap manager are given in Figure 4.19. Each
heap for a bit-plaﬁe group has a list of storage block records that represents all the: <.)ff-
screeﬁ frame buffér storage for that group. The collection of these heap lists is represented
by an array called “HeapRecord”. A storage block is a contiguous image memory area
which can contain colour images with pixel depth specified by the bit-plane group. In a
block record, the field “bsize” specifies the size of the block in terms of the size of a single
bit-plane involved in the bit-plane group; the field “next”points to the start address of the
next block in the list. The block lists are stored in the bit-plane mode address area, since
the bit-plane mode data structure lends itself well to representing the bit-plane group,
while the other two frame buffer modes do not.

The calculation from a “form” specification to the corresponding image memory size

and frame buffer address is as follows. The block size is specified by the number of 16-bit

memory short words in a bit-plane and so the corresponding block size can be obtained
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type block_ptr: pointer to block;
block = record (* A storage block. *)
next: block_ptr;
bsize: integer;
end;
HeapList = record (* Representation for the storage resource
for a particular bit_plane group. *)
ListHead: block_ptr;
top,span: [0..7];
end;

var HeapRecord: array [0..7] of HeapList;
(* Representation for the collection of all heaps for bit_plane groups. *)

Figure 4.19. The data structure for frame buffer heap.
from the width and height of a form as follows:
block size = (width / 16) x height.

The algorithm for the heap manager, procedure “NewForm”, is given in Figure 4.20.
This algorithm first finds an appropriate memory block for the form required; however, the
starting address of the memory block at this stage is specified as a bit-plane mode address
in the top bit-pla.ne' of the bit-plane group, and so the calculation shown in Figure 4.21 is
necessary to obtai’n the BaseAddress for each individual mode in the “form” specification.

In the calculation, the x- and y-coordinate portion must first be extracted from this
bit-plane mode starting address by masking out other fields of the address. Referring to
the frame buffer address format (shown in Figure 2.11 of Chapter 2), the co-ordinate field
in the bit-plane mode address format specifies the position of an 8-pixel segment, while in
pixel mode it specifies a single pixel position; so, the co-ordinate value in bit-plane mode °
format needs to be left-shifted three bit positions, to obtain the corresponding value in

pixel mode. The RasterOp mode address format adopts the same co-ordinate field as used
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in bit-plane mode. After the co-ordinate values for pixel mode and RasterOp mode have
been obtained, the calculation for their BaseAddresses becomes a matter of assembling the

mode code and co-ordinate field into the corresponding addresses.

Procedure NewForm (var formspec: form): boolean;
var size: integer;
begin
(+ Calculate the size of the formspec from its width and height %)
size:= height * width /16;
(+ Use the “top” plane number of formspec to find the head of the
relevant heap. *)
heap_head:= heaprecord [top]. hecapHead;
if a memory block is found in the heap block list whose size is equal
or larger than the required formspec
then
set BaseAddressPixel, BaseAddressPlane, BaseAddressR_Op field
of the formspec to the value derived from the start address of that block;
take a memory block of the “size” from that block;
if the remainder of the block becomes zero then
delete that block from the block list;
end;
return true;
else
return false;
end;
end NewForm;

Figure 4.20. Procedure NewForm.

PlaneModeCoordinate = BlockStart Address mod CoordinateMask
BaseAddressPixel = PixelModeCode + PlaneModeCoordinate * 8
BaseAddressPlane = PlaneModeCode + PlaneModeCoordinate

BaseAddressRasterOp = RasterOpModeCode + PlaneModeCoordinate

Figure 4.21. Calculating frame buffer base address for the three modes.
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For images stored in the general purpose memory area, we can use a similar method to
calculate the block size of pixel form and plane_form from the form specification, and call
standard memory allocation and deallocation procedures to acquire or dispose of memory

space for images.
4.2.6 Multiprocessor environments

This graphics display system was designed for use in a multiprocessor environment, where
multiple drawing processors have direct access to the display system components, such
as frame buffer, RasterOp hardware, bit-plane enable registers, and so on. Accesses from
these multiple processors can be interleaved, and frame buffer memory space can be shared
between different processes as well. This can give rise to special problems.

In such an environment where multiple drawing processors can be simultaneously up-
dating the frame buffer, care should be taken to avoid conflicting operations on shared
image data. Normally, if each drawing processor draws into its own image area, there
is no conflict, but in a situation such as displaying multiple windows, the screen area is
shared among many drawing processes and a memory word may contain different drawing
processes’ images. For example, a processor may execute a bit-plane mode instruction
on the frame buffer memory involving a read-modify-write operation; just before the first
processor updates the frame buffer, a second processor may also access the same mem-
ory object using a read-modify-write operation. When the second processor completes its
read-modify-write operation, it will overwrite the result of the update performed by the
first processor.

Similarly, in pixel mode, if all bit-planes are enabled and there is more than one bit-

plane group, several processors may use read-modify-write operations, such as bit-field
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insertion instructions, to update the same frame buffer memory object simultaneously,
resulting in damage to each other’s images in the different bit-plane groups.

Since this kind of read-modify-write cycle cannot be made an indivisible bus oper-
ation, instructions such as bit-field insertion instructions, should be avoided on shared
image areas. However, since the RasterOp mode RasterOp read-modify-write operation
is guaranteed by hardware to be an indivisible operation, it can be safely used on shared
multi-window area.

Another point to be noticed in the context of a multiple drawing processor environment
is that the RasterOp mode RasterOp hardware has internal registers which can only hold
the context of one executing instance at a time, preventing its use by concurrent drawing
processes. The operating system should therefore manage the RasterOp mode frame buffer
area as a non-shareable resource, viz. only one process can execute in a RasterOp mode
area at a time.

It is too expensive to save all the contexts in RasterOp hardware registers, and so if a
RasterOp mode operation encounters a page fault, the RasterOp hardware will be forced
to wait for that page and no other process will be able to use it. F ortunately, the working
area of a RasterOp mode operation can be exactly determined before its execution; thus,
a better strategy is to call all memory pages required by a RasterOp mode operation into
physical memory before dispatching the process.

The pixel mode and RasterOp mode bit-plane enable registers also need to be managed
by the system, using semaphores; each bit-plane group has a semaphore and its correspond-
ing bit-plane enable value. If a drawing process uses pixel mode or RasterOp mode, it can

be made ready only when its working bit-plane group conforms with the current value of



CHAPTER 4. USING THE DISPLAY SYSTEM 140

the bit-plane enable register. The value of the bit-plane enable can be changed only when
there are no running processes using that bit-plane enable value, otherwise drawing pro-
cesses may draw pictures into the working bit-plane group of another process and destroy

each other’s images.

4.3 Experimentation and performance issues

4.3.1 Performance estimation

The performance of a hardware display system is determined by the level of hardware
support for graphics operations, by the speed of the frame buffer and the drawing processor,
and by the way that they communicate with each other. The overall performance will also
be greatly influenced by the design of the graphics software. In an environment in which
a multi-processor system is updating images in parallel, it is possible for the processing
components to keep the frame buffer busy. Thus, the frame buffer performance will have
significant influence on the overall performance. So, we assume the frame buffer can be
kept busy, and base our performance estimation on an examination of the frame buffer
alone.

The sequence of the frame buffer operation is outlined in Figure 4.22. On the system
bus, an ordinary data transfer from a bus master to a non-cacheable bus responder consists
of an address transfer cycle and a data transfer cycle. A block data transfer consists of a
starting address transfer cycle and a series of data transfer cycles. The bus master starts
an address transfer by asserting an “Astrobe” signal. After completing the address and
operation decoding, the responder acknowledges the bus master. On receiving an address
acknowledgement, the bus master starts a data transfer cycle by asserting a “Dstrobe”

signal. Referring to Section 2.3.6. of Chapter 2 and considering the frame buffer side, the
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Dstrobe signal needs to be synchronized before activating the synchronous access controller
state machine. The access controller, in turn, activates the VSC (Video System Controller)
and waits for the VSC to be ready; this is necessary since the screen refreshing process
and the DRAM refreshing process may also request a frame buffer reference at that time,
or a frame buffer operation might be in progress. This access conflict is arbitrated inside
the VSC, and the VSC will acknowledge the access controller with a “ready” signal if the

latter’s request is granted.

Address Address
& acknowledgement p Dstrobe State machine
operation *1 synchronization
decoding

Negate Frame buffer
Dstrobe request

Data
acknowledgement

Frame buffer
read/write
or
-m-w
operation

Frame buffer
ready

Frame buffer

Wait

arbitration

Figure 4.22. The sequence of frame buffer operation.

There are two categories of frame buffer operation cycles at its updating port; they
are read/write cycle and read-modify-write cycles. Having completed its operation, the
display subsystem acknowledges the bus master. In response to this, the latter negates
the Dstrobe signal and the display subsystem returns to the idle state waiting for the next
data transfer. |

With the current design, the address transfer cycle time is about 120 nsec, the read/write

cycle is 390 nsec and the read-modify-write cycle is 520 nsec. Thus, a complete data trans-
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fer cycle is 510 nsec for read/write operation and 640 nsec for a read-modify-write cycle.
Using these frame buffer cycle times, we can derive the estimated performance figures
for the frame buffer. We consider that basic graphics operations are achieved by the
repeated execution of certain atomic operations. For example, the atomic operation for
vector drawing is writing a single pixel value to the frame buffer, and the atomic operation
for rectangle image copy in pixel mode is reading a four-pixel image segment from the source
image area and writing it into the destination area of the frame buffer. The maximum
performance figure for the frame buffer can be represented by the number of pixels or
frame buffer bits that can be updated per second. So, the performance figure becomes the
product of the number of pixels or bits which can be updated per atomic operation, and
the number of atomic operations per second, which is the inverse of the cycle time of the

atomic operation, as shown in the following expression.

Maximum image updating rate =
(Pixels or bits/per atomic operation) X 1/atomic operation cycle

The atomic operation cycle can be obtained by summing up all frame buffer cycles involved
in this operation. The estimated maximum performance figures for the multi-inode frame

buffer and their related atomic operation parameters for typical graphics operations are

given in Figure 4.23.
4.3.2 Experimentation

The prototype hardware for this project was implemented by wire-wrapping on one mother
board and one small daughter board, as shown in Figure 4.24. Because of the unavailability
of multiple high speed 32-bit L-bus compatible processors at the time of the experiment, the

implemented display subsystem was tested with a single processor board using a 5MHz
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Frame Basic | Atorgic Pixels | . Maximum
graphics operation per atomic | 1mage updating
buffer . time t rate
mode || Operation (nsec) PO | (Mpixels/sec)
. 510
Vector drawing (1 write cycle) il 1.96
Pixel : 510
mode RCCtangle ﬁlhng (1 write Cy(:le) 4 7.84
Rectangle image 1020
copying (Iread + 1 write) 4 3.92
(a)
: Atomic Frame buffer| Maximum
Frame Ba‘;l-c operation bits image updating
buffer graphics time per atomic rate
mode operation (nsec) operation (Mbits/sec)
i 640
o 128
RasterOp Rectangle filling (1 r-m-w cycle) 200
mode .
Rectangle copying (1 rea dl-t{slor-m-w) 128 111
Rectangular 510 32
binary image filling | (1 write cycle) o2
Bit-plane
mode Rectangular 1020 32 31.3
binary image. | 1 ro2d+ 1 write) '
copying

Figure 4.23.

16-bit NS32016 CPU; this processor board was, in fact, designed for

(b)

Estimation of the performance of the frame buffer.
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QDS-1000 image

processing display terminal(16]. The processor board was used as the drawing processor,

communicating with the display subsystem through the system bus

(L-bus). The output

of the display subsystem was used to drive a high resolution 19-inch RGB colour monitor

with a 1024 x 860 ‘screen.

Experiments have been carried out on the prototype to verify the hypothesis described

in Chapter 1 and to find out the bottle-neck in such a, system. Although the prototype
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Figure 4.24. The prototype hardware.

adopts a straight-forward timing scheme and the display subsystem is driven by a single
SMHz 16-bit general purpose processor, the advantages of the multi-mode frame buffer
have still been demonstrated by these experiments. The performance has been improved
on three main pixel-intensive operations: video generation, pixel value manipulation, and

bitmap image manipulation.

e The video generation only takes a very small fraction of the frame buffer cycle so
that, even allowing for screen refresh and dynamic RAM refresh operations, there
is still more than ninety percent of frame buffer memory cycles left for frame buffer

updating.

e The RasterOp mode moves a colour bitmap picture fairly fast; together with the
bit-plane mode, it provides flexible image data exchange and logical operations on

bitmap images.

o The pixel-packed mode facilitates pixel value manipulation, line drawing and Ras-

terOp on small objects.
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e Because of the multi-mode structure, the performance of graphics operation in the
frame buffer becomes independent of pixel depth that means colour pictures can be

manipulated at the same speed as binary monochrome pictures.

o The very large off-screen buffer area provides a high bandwidth multi-mode memory
space for obscured windows, picture templates, fonts, double buffering, and so on;
it also provides physical page group frames for a virtual frame buffer scheme. In
addition, the linear addressing scheme of the frame buffer makes the off-screen buffer

especially flexible.

The basic graphics operations described in Section 4.1 have been implemented on the

prototype as function test. Examples of these are shown in Figure 4.25.

(a) (b)

Figure 4.25. Examples of basic graphics operations.

An experiment Has also been designed to test the concurrent use of multiple modes.
In this experiment, illustrated in Figure 4.26, one procedure draws random sized and
positioned colour boxes using bit-plane mode and RasterOp mode in the top left part of

the screen; the second procedure draws a dynamic pattern of coloured lines on the bottom
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part of the screen using pixel-packed mode. A third procedure uses RasterOp to make
a copy of the pattern of coloured lines to the top right part of the screen. Since there
is no mode switch and the various modes share the same data structure — the form data
structure described in Section 4.1.2 — to describe their drawing environment, no extra

overhead is introduced by the multi-mode structure.

Figure 4.26. Example of concurrent multi-mode operation.

Now that the functionality of the prototype has been tested, the next step is to inves-
tigate the behaviour of the display system to discover the performance bottle-neck in the
system and to remove it, to further improve its performance. Experiments for performance
evaluation include measuring the frame buffer memory data transfer cycle time, the image
updating speed and the system bus utilization in different graphics operations.

As illustrated in Figure 4.27, we can see that a significant performance improvement
can be gained by fine-tuning the timing systems of both the drawing processor and the
frame buffer. The real frame buffer data transfer cycle is about 900 nsec longer than the
estimated frame buffer data transfer cycle. The reason is that the processor used in this

experiment is not designed for very fast graphics operation; thus, of the 900 nsec, about
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Astrgbc period
380 nsec ' : 800 nsec

S

' Erame buffer : Frame buffer
active : active
120 nsec . _ 600 nsec

T

Figure 4.27. The frame buffer data transfer cycle time.

700 nsec is consumed by the processor bus interface for synchronization and state transfer.
The remainder of the extra cycle time is mainly caused by the (slow) VSC. It takes 200
nsec to assert the RAS signal after each invocation. The synchronization of the access
controller state machine and the long wire connections of the temporary wire-wrapped
implementation also contributes a small amount to the extra, cycle time. After fine-tuning,
this latter part of the extra cycle time can be eliminated or overlapped with other activities
of the frame buffer cycle. Through appropriate adjustment, a cycle time faster than the
estimated one can be achieved. With a fast processor and bus interface, it should be
possible to largely eliminate the first 700 nsec mentioned above. Thus, we can expect the
performance to be significantly improved.

From the system bus utilization figures shown in Figure 4.28, given for different graphics
operations, we can see that for most of them only a small portion of the bus bandwidth is
being used. That means the performance of this graphics display system is determined by
the processing power of the drawing processor. According to the current bus utilization
figures, more than three drawing processors would be required to keep the frame buffer
busy. This supports the assertion in the hypothesis that multiple drawing processors

updating the frame buffer in parallel will enhance the performance of the display system.
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Operation 5 MHz CPU 10 MHz CPU
Painting full screen 24.8 % 37.6 %
Pixel ; i 2.6 %
= Line drawing o 4 %
Character printing 17 % 26 %
Painting full screen 32 % 46 %
Copying 400 x 400
rectangle 29 % B\%
RasterOp
mode Character printing 4% 6.5 %
Painting random
boxes 13% .
] Line pattern,
Mult-mode random boxes & 19 % 29 %
RasterOp copy

Figure 4.28. The system bus utilization for various graphics operations.
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We choose the full screen updating and character printing speeds to represent the image

updating speeds, since they represent two typical difficult aspects of memory intensive

image updating. The first requires the transfer of a huge amount of image data in a very

short time; the second constrains the image data transfer in a form of scattered bits and

bytes and still requires great speed. The performance figures are listed in Figure 4.29.

The above experiment shows that it is very important for a large high resolution colour

raster display to increase its frame buffer updating bandwidth, as is emphasized in this

thesis. With the current prototype timing arrangement, the ordinary bit-plane mode or

pixel-packed mode requires 1.3 sec to paint a full colour screen using a single 10MHz
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@peration 5 MHz CPU 10MHz CPU
Painting full screen 2.3 sec 1.3 sec
Pixel Printing characters 1758 char/sec 3143 char/sec
mode
Printing character string 2329 char/sec 4018 char/sec
Painting full screen 0.24 sec 0.13 sec
RasterOp Printing characters 1580 char/sec 3036 char/sec
mode
Printing character string 7267 char/sec 13445 char/sec

Figure 4.29. Measurements of the image updating speed.

processor. During the same period of time, the RasterOp mode could paint more than
10 full screens (with 46% bus utilization). Without this high bandwidth, it is difficult to
maintain a good interactive response. The implementation of a large frame buffer with
a very high internal image transfer bandwidth in this design provides suitable hardware
support for a fast interactive colour graphics display.

In the experiments, we also found that using RasterOp to copy very small objects such
as characters can result in a frame buffer updating speed which is much slower than it
is when copying a large image. One reason for this is that an external procedure call is
executed for each character to be printed; this external procedure call switches the module
table and link table pointers, creates a new frame on the stack, and saves the old stack
pointer, frame pointer and the contents of a gumber of registers as well. On returning to

the calling environment, all the previous context needs to be restored. Since printing a
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character only needs to copy a few bytes of image data, the context switch of an external
procedure call represents a fairly high overhead. Similarly, the co-ordinate to frame buffer
address conversion and other set-up parameter calculations must be performed for each
small character, also contributing to the high overhead for character printing. In order
to circumvent this problem for the printing of a string of characters, a string printing
procedure has been implemented; the entire string of characters can then be printed by
only one procedure call. Instead of using an external procedure call to print each character,
a subroutine call is used which does not switch context at all. In this procedure, the result
of the co-ordinate to frame buffer address conversion can be used by many subroutine
calls, thereby eliminating the repeated calculation. Thus, the speed of printing of small
characters can be improved. For interactive single character input, the procedure for
printing a single character can still be used.

The experimental results show that pixel mode RasterOp is slightly faster than Ras-
terOp mode for printing a 8 X 9 pixel character with a 16-bit drawing processor. When
a 32-bit drawing processor is used, the difference will become significant; this is because
each pixel mode transfer handles twice as much image data as can be handled by 16-bit
processor, while the RasterOp mode transfer handles the same amount of image data.
However, pixel mode RasterOp must use a colour font, which requires more memory to
store, to print colour characters, while RasterOp mode can extend a binary font to any
coloured characters and thus uses fewer system bus cycles. This display module provides
alternative ways for printing small objects; which one of them is more efficient will depend

upon the specific requirements of an application program.
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Conclusions

5.1 Concluding remarks

The issues which concern the performance of a colour raster graphics display system, and

which have been addressed in this thesis, can be listed as follows.

e High resolution colour raster graphics displays require significant processing band-

width for the high speed updating of their frame buffers.

e The flexible use of a multiple bit-plane frame buffer gives rise to the need to reference
and manipulate the images from different points of view with different data formats.
An ordinary frame buffer memory, however, cannot satisfy the data formats and
functionalities required, because it has a fixed data type and format. It can only
optimize its organization to one type of application, to the neglect of the needs of

other applications.

o A large frame buffer is essential for the display of multiple active overlapped windows.

It is also essential for panning and scrolling of very large images.

In this project, a special structured frame buffer has been designed and fabricated. It

features three functionality modes; the frame buffer can be accessed by pixel values, by

151
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individual bit-plane, and by hardware RasterOp functions. Since the hardware RasterOp
function has been distributed in the bit-planes of the frame buffer, very high image manip-
ulation bandwidth can be achieved and the RasterOp performance becomes independent
of the colour resolution.

A number of sample programs have been written for this display system to explore its
hardware features. An experimental colour graphics display system has been built to test
the hypothesis and find the system bottle neck. The result shows that the multi-mode
functionality of the frame buffer enables the frame buffer to be used in a most convenient
and efficient way for various basic graphics operations. The design meets the goal of
providing basic graphics capabilities, including fast RasterOp, pixel value manipulation, a
large image buffer and efficient image data transfer. Since the multi-mode functionality is
achieved by referencing the frame buffer via different address areas, different modes can
be used simultaneously to achieve special functionality. For example, joining bit-plane
mode and RasterOp mode enables RasterOp to be performed between different bit-planes
and brush-paint type operations; also, bit-plane formatted image data and pixel-packed
formatted image data can be transformed to one another through accessing the frame
buffer via different modes. In addition, one function mode can be used to prepare image
data for the later operations in the other modes; examples of this include the fact that
colour fonts created by a brush-paint operation using bit-plane mode and RasterOp mode
can be used by later pixel mode character printing operations, and a colour pattern created
by a pixel mode operation can be used by later RasterOp mode raster-operations.

In spite of the special functionality of the multi-mode frame buffer, it provides a very

flexible interface to the rest of the system; images can be transferred in bit-plane group
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form or in pixel-packed form between the frame buffer and the ordinary system memory or
peripheral devices, without the need for peculiar operations. The “memory type” interface
of the display system to the workstation facilitates multiprocessor parallel image updating
and enables the display system to be used as a test bed for experimentation with various
graphics algorithms.

The bit-plane group concept developed in this work proves to be an convenient vehicle
for storing and manipulating images with different pixel depths in a structured way. Based
on this.concept and the page group concept, a multi-mode colour virtual frame buffer
management scheme is built. The virtual frame buffer simulator shows the feasibility
of managing a multi-mode multiple bit-plane frame buffer in a demand-paging virtual
memory fashion. The multi-mode feature, previously thought might be a difficulty for the
implementation of a paging virtual frame buffer, turns out to be a convenient tool for the
management of a frame buffer resource based on the bit-plane group organization.

In addition to extending the physical frame buffer space to a much larger virtual frame
buffer space, the virtual frame buffer management scheme creates an environment which
enables various drawing processes to work in their own bit-plane groups and address spaces,
independent of each other. Other advantages of paging virtual memory management, such
as joining discrete pages into contiguous memory space for better management of image
storage and memory space protection, can also be obtained in this virtual frame buffer
scheme.

The design shows that the implementation of this multi-mode frame buffer is not very
expensive, and the very regular data paths can be easily merged into the VLSI RasterOp

chip. The temporary adoption of the available 16-bit RasterOp hardwarc unit into a 32-
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bit word frame buffer memory complicated the implementation to some extent, but this
problem will disappear with the adoption of a new 32-bit RasterOp unit.

This design trades memory address space for better functionality and flexibility. With
the arrival of the new 32-bit microprocessors, a 32-bit address space (or an even larger
one) will become a standard facili‘ty. Then, using more address space, such as in this
multi-mode frame buffer, will no longer be a problem, and hence a much larger virtual
frame buffer space can be achieved.

Having programmed this display system, we feel that it would be better to provide
local temporary storage in the hardware RasterOp unit; this would be used to save the
execution status of the RasterOp hardware in a stack or in some other fashion. Then Raster
Operations can be interruéted and nested. For example, while the RasterOp hardware
units are busy scrolling a large image, an urgent request to move the cursor to a new
position may occur; when the RasterOp hardware can suspend its current task, it could
save its context, and serve the urgent cursor request. Later, the interrupted RasterOp
task could be resumed. Also, when a page faultl is encountered, the context of a blocked
RasterOp process can be saved and another process would be able to use the RasterOp
hardware. This makes the utilization of the RasterOp hardware and the multi-mode
frame buffer much more efficient. The context saving of the RasterOp hardware should be
implemented locally in the RasterOp hardware itself, otherwise the transfer of this context
between multiple RasterOp units and memory will become a considerable overhead.

We also feel that the multi-mode frame buffer can be used more efficiently, in an
environment where multiple drawing processors update the frame buffer in parallel, if the

individual drawing processors can identify themselves when accessing the frame buffer.
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Since different drawing processors may address different bit-plane groups, the frame buffer
would be able to adjust its bit-plane enable control to the appropriate bit-plane group, if the
master of each access can be identified. This would enable concurrent updating of different
bit-plane groups and the concurrent use of RasterOp hardware in different bit-plane groups.
Furthermore, if the RasterOp hardware could have multiple sets of working registers, then
different sets of working registers could be allocated to different drawing processors and
be adjusted dynamically. For example, while the address and set-up parameters of one
RasterOp are being calculated in a processor, the other drawing processor can use the
RasterOp hardware with its own set of working registers without disturbing the context
of the previous one. Thus, the scarce RasterOp hardware resource can be shared among a
couple of drawing processors and be used more efficiently. Unfortunately, no such RasterOp

chip is currently available.

5.2 Further work

The implementation and fabrication of this display subsystem provides a hardware testbed
for future experimentation. Future work might involve the development and investigation
of graphics algorithms to explore the potential of the multi-mode frame buffer and mul-
tiprocessor parallel image updating. System bus contention may be a limitation on the
performance of this display system in a single bus configuration. An investigation of this
issue may provide instructive information to show the range of applications suitable for
this configuration and what type of application will cause a multiple bus configuration to

become necessary.
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The virtual frame buffer scheme described in this thesis shows many promising mer-
its. However, an essential prerequisite is that the address translation must be conducted
efficiently. In practice, this is achieved by using a look-aside address translation cache.
This cache holds the most recently used address translations so that if the memory refer-
ence range can be covered by this address translation cache, the time needed for address
translation is only the fast cache access time and represents very little overhead.

However, limited by silicon real estate, most microprocessor memory management unit
(MMU) chips have a fairly small address translation cache. For example, the NS32081
MMU only has 32 cache entries, with one half for supervisor mode programs and the other
half for user mode programs. For normal program execution, the locality of references is
such that this small translation cache maintains a reasonably high hit rate.

The address range being referenced during a graphics operations can be much larger
than that in program execution. As an example, we consider the process of drawing a long
vertical line in our scan-line organized frame buffer. In the screen region, a page group
covers 8 scan-lines and so a 800-pixel vertical line will involve 100 page groups. It is obvious
that, for a 16-entry translation cache, the miss rate will be almost 100 percent. Thus, for
each frame buffer reference, two levels of page table references must be carried out to find
the address translation value before the actual frame buffer reference can proceed. Even if
all the pages being referenced reside in physical memory, the address translation imposes
heavy overheads on graphics operations.

In order to mitigate this problem, a new MMU with a very much larger translation
cache is required. As an example, the architecture of Fairchild:’s new “Clipper machine”

is quite suitable. In this architecture there are two MMUs for each processor, one for
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instruction reference and another for data reference. Each of these MMUs has a 128-entry
address translation cache and supports a 1K byte page size. With this kind of MMU, the

extra address translation overhead in graphics operation can be virtually eliminated.



Appendix A

Address mapping

. System bus address
Programming object Logical address (slotaddress+__ )
Board ID 800000 .. 800200 0..200
VSC registers'
BaseTailiness 800800 800
BLT registers'
base address 800A00 AQ0
Pixel mode 800A20 A20
bit-plane enable
RasterOp mode A24
bit-plane enable S
 JSOHT 800C00 .. 800FFF C00 .. FEF
look-up table
Pixel mode
frame buffer A00000 .. BFFFFF 200000 .. 3FFFFF
Bit-plane mode
frame buffer C00000 .. DFFFFF 400000 .. SFFFFF
A lonmate 880000 . 8FFEEF 80000 .. FFFFF

frame buffer

Figure A.1. Address mapping for the display system.

158




APPENDIX A. ADDRESS MAPPING

Logical address bits
4 3 2 1 0
BLT register
select pins A3 | A2 | Al 0 0
BLT source 1 1 1 0 0
register

Figure A.2. Mapping for BLT register select bits.

Logical address bits
8 ¥ 6 5 4 3 2
VSCregister | a6 | ca5 | cad | ca3 | ca2 | cal | ca0
select pins

Figure A.3. Mapping for VSC register select bits.
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Appendix B

Virtual frame buffer algorithms

Procedure Derive (VPGN, var PFN, operation);
begin
(* Derive the PT2 entries for pixel mode. *)
from the VPGN, derive index] and index2 for pixel mode ;
from the PT1 [index1] entry, get the PT2_ptr;
for i:= 0 to 7 do
(* iis the pixel mode low order nominal virtual page number. *)
operation (PT2_ptr! [index2 + 1i], i, pixel_ mode, PFN, result);
end; (* for )
(* Derive the PT2 entries for bit-plane mode. * )
from the VPGN derive index] and index2 for bit-plane mode ;
for i:= top bit-plane to (top + span) bit-plane do
(* 1 is the bit-plane number in the bit-plane mode address. * )
find the bit-plane mode PT1 [i, indexl] entry;
from the PT1 entry, get the PT2_ptr;
operation(PT2_ptr] [index2], i, plane_mode, PFN, result);
end; (* for )
(* Derive the PT2 entries for RasterOp mode. *)
from the VPGN, derive index] and index2 for RasterOp mode ;
for =0 to 1 do
(* i is the control code in the RasterOp mode address. *)
find the RasterOp mode PT1 [i, index1] entry;
from the PT1 entry, get the PT2_ptr;
operation(PT2_ptr] [index2], i, RasterOP mode PFN, result);
end; (* for )
end Derive;

Figure B.1. Procedure Derive
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Procedure Call_in_block (PT2 entry, index, mode,
‘ var PFN, var result);
begin
case PT2 entry mode of
pixel_mode, RasterOp mode: class:= valid;
assemble the mode code, PFN and index
into the PFN2 field of the PT2 entry|
plane_mode: store the backing store address of the bit-plane mode
virtual page into the PFN database entry of the
corresponding page frame;
(* Because the space in PT2 entry will be used
to store valid physical page number (PFN2). *)
class:= valid;
assemble the mode code, PFN and index
into the PFN2 field of the PT2 entry;

copy the virtual page from backing store to page frame PFN;

set the page frame state to valid;
end;
clear PT2 entry’s modify flag ;
end Call_in_block;

Figure B.2. Procedure Call_in_block.

Procedure Put_into_working_set (VPGN);
begin
if the current working set entry is empty then
put VPGN in the current entry;
else
advance to the next entry;
(x Skip locked entries. *)
while entry contain a locked page group do
advance to the next entry ;
end ;
if the current entry is empty then
put VPGN in the current entry
else
Evict_page_group (current);
put VPGN in the current entry;
end;
end;
end Put_into_working_set;

Figure B.3. Procedure Put_into_working_set.

161



APPENDIX B. VIRTUAL FRAME BUFFER ALGORITHMS

Procedure Evict_page_group (index);

var VPGN, modify_local: integer;

begin
set VPGN to the VPGNC field of the entry in the
working set list indicated by current entry pointer “index”;
(» When evict page group “index” points to the entry

whose contents stay the longest in the working set list. *)

set the state field of working set list entry to empty ;
save TOPC and SPANC;
if same_group then
(* This evicted page group belongs to
the private group of the process. *)
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set TOPC and SPANC to the corresponding value of the private page group;

else
(* This page group belongs to
a different shared group of the process. *)
set TOPC and SPANC to the corresponding value of
the different shared group;
end;
(* Initialize global and local flags. *)
set the modified_flag and the evict_flag to false;
set modify_local to zero;
(* Evict the page group “VPGN” from the working set. *)
derive (VPGN, PFN, modify_local, evict_3_mode);
if modify_local = 1 then
(* After “derive” scanning all the relevant PT2 entries,
this page group is found to be modified. *)
the “state” field of the PFN database entry for
the page frame in the top bit-plane, set to modified;
end,
if the evict_flag is true then
(* After “derive” scans through all the relevant PT2 entries,

this page group is found to be not in any process’ working set;

so Evict_3_mode sets the evict_flag to true indicating
this page group should be put into page group list. * )
Put_into_page_group_list (PFN, modified_flag);

end;

restore TOPC and SPANC;

end;

Figure B.4. Procedure Evict_page_group.
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Procedure Evict_3_mode (PT2 entry, index, mode, var PFN,
var modify_local);
begin
if PT2 entry’s modify field is true then
set modify_local to ong;
(* Mark this page group being modified. *)
end;
if mode is not bit-plane mode then
set PT2 entry’s class fleld to trans;
else (+ This is a bit-plane mode PT2 entry. )
extract the PFN from the PT2 entry’s PFN2 field;
use PFN and index to find the corresponding entry in the PFN database;
(* Here index stands for the bit-plane number of the bit-plane mode page. * )
if this is not a shared page group then
set the PT2 entry’s class field to trans;
set the evict_flag to true;
(* The evict_flag is a global flag to inform Evict_page_group
whether the evicted page group should go into a page group list. *)
else (x This is a shared page. *)
get the pointer of the “global entry” from
the PTE2_adr field of the PFN database entry.;
store the global entry pointer in the
backing block field of the PT2 entry;
if the modify field of the “global entry” is true then
set modify_local to one;
elsif modify_local is one then
set the modify field of the global entry to true;
end
decrement the ref count field in the PFN database entry;
if ref_count is zero then
(x This page group is not in any working set list and
so it can be moved into the free or modified list. * )
set the evict_flag to true;
end;
change the class field in the private PT2 entry to “out”;
change the class field in the global entry to “trans”;
end;
end;
end Evict_3_mode;

Figure B.5. Procedure Evict_3_mode.
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Procedure Get_page_frame_back (PFN);
begin
using the current bit-plane group indicator (TOPC and SPAN C)
and the PFN, locate the in transition page group In a free
or modified list of the current bit-plane group;
take this page group from the appropriate list ;
(* Derive and validate the con jugate PT2 entries for
mode-1, mode-2 and mode-3. )
derive_mode_1_2_3_PT2_ entries (VPGN, PFN, validate);
(* Put this page group (VPGN) into the process’ working set. *)
put_in_working set (VPGN);
end Get_page_frame_back;

Figure B.6. Procedure Get_page_frame_back.
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Procedure Call in_block (PT2 entry, index, mode,
var PFN, var result);
(x PFN is the allocated page frame number, mode is the mode of the
PT2 entry being processed. *)
begin
case PT2 entry’s mode of
plane mode: if the shared flag is true then
(+ We are currently dealing with a shared page group. *)
(* Process the shared entry. *)
get the global pointer from the backing_block;
assemble the mode code, PFN, and index into
physical page number (PFN2) field;
get the backing store location from the global entry;
save it in the PFN database entry;
validate the PT2 entry;
if the shared_count is non-zero then
(* This page is still shared. *)
validate the global entry;
set ref_count field for this page frame to 1;
elsif same_group then
(* The page is no longer shared and
is in the process’ private bit-plane group. *)
set the PT2 entry’s shared field to false;
(* Change this page into a private one. *)
delete the global entry;
set ref_count field for this page frame to 0;
end;
else (* Process private entry. *)

end;
copy the virtual page from backing store to the page frame |

end; (* case %)
end Call_in_block;

Figure B.7. Additional actions for Procedure Call_in_block.
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Procedure Create_shared_area (owner, sharer, length,
owner.start, sharer_start): boolean;
begin
adjust the bit-plane group indicator (TOPC, SPANC)
to the value of the owner’s private bit-plane group;
if the sharer’s private bit-plane group is the same
as the owner’s private bit-plane group then
set the same_group._flag to true;
elsif the sharer already has a different shared bit-plane group,
but it is different from the owner’s private bit-plane group
then(x The sharer is trying to share too many bit-plane groups. *)
report an error; return false;
else
set the same_group_flag to false;
record (TOPC, SPANC) as a different shared group
in the sharer’s process header, together with its start and length;
end;
(* Create a shared area in the owner’s address space and create
corresponding global entries. *)
if not Create_shared_table (owner.start, length) then
return false;
end;

(* Copy the owner’s shared PT2 entry to the sharer’s PT2 entry. )
return Map_to_global (owner_start, sharer_start, length);
end Create_shared_area;

Figure B.8. Procedure Create_shared_areca.
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Procedure Create_shared_table (owner_start, length): boolean;
var VPGN, j, i: integer;
begin
VPGN:= owner_start;
(* Scan through related bit-plane mode PT2 entries. *)
for j:= 1 to length do
derive index] and index2 from VPGN;
(* For all planes in the owner’s private bit-plane group. *)
for i:== TOPC to (TOPC + SPANC) do
find the relevant bit-plane mode PT2 pointer;
if notCreate_shared_entry (PT2 pointerf[index2], 1)
then return false;
end;
end;
VPGN:= VPGN + 1;
end;
end Create_shared_table;

Figure B.9. Procedure Create_shared_table.

167



APPENDIX B. VIRTUAL FRAME BUFFER ALGORITHMS 168

Procedure Create_shared_entry (var PT2_ entry, bit-plane): boolean;
var global_pointer: pointer to global_entry;
begin
if PT2 entry is not already shared then
set shared field of the entry to true;
set same_group field of the entry to true;
(* Create a global entry. *)
new (global_pointer);
copy contents of this PT2_entry to the global entry;
set global entry’s shared_count to zero;
if the class field of the PT2_entry is not “out” then
find the corresponding PFN database entry;
store the global entry pointer into the PTE2_adr field
of the PFN database entry;
if class of the PT2_ entry is “valid” then
increment the ref_count field of the PFN database entry;
end;
end;
if class of the PT2_ entry is not “valid” then
set the class field to “out”;
put global pointer into the backing_block field
of the PT2_entry;
end;
elsif the same_group fleld of the PT2_entry is false then
(* The sharer is trying to share such an address area, where the
owner itself shares from other process, in a bit-plane group
different from its private bit-plane group. *)
report an error;
return false;
else (* This page is already shared and within the owners bit-plane
group so, nothing extra need to be done. *)
end;
return true;
end Create_shared_entry;

Figure B.10. Procedure Create_shared_entry.
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Procedure Map_to_global (owner_start, sharer_start, length): boolean;
var .VPGN, t_VPGN, i: integer;
error: boolean;
begin
f_VPGN:= owner_start; t.VPGN:= sharer_start;
for i:= 1 to length do
Derive_share_entry (f.-VPGN, t_VPGN, error, copy-shared_entry);
if error has been detected then
return false
end;
increment f_'VPGN and t_VPGN ;
end;
return true;
end Map_to_global;

Figure B.11. Procedure Map_to_global.

Procedure Derive_shared_entry (f.VPGN, t_VPGN, mode, operation);
begin
from f.VPGN and t_VPGN, derive all the relevant owner’s and sharer’s
PT2 entry pairs in pixel mode;
apply “operation” to these PT2 entry pairs;
from f.VPGN and t_.VPGN, derive all the relevant owner’s and sharer’s
PT2 entry pairs in RasterOp mode;
apply “operation” to these PT2 entry pairs;
for bit-plane:= TOPC to (TOPC +SPANC) do
from f.VPGN and t_VPGN derive all the relevant owner’s and
sharer’s PT2 entry pairs in bit-plane mode ;
apply “operation” to these PT2 entry pairs;
end;
if the same_group_flag is false then
(* That means the sharer’s private bit-plane group is
different from the owner’s. *)
set the sharer’s relevant bit-plane mode entries in
its private bit-plane group to “no access”;
end;
end Derive_shared_entry;

Figure B.12. Procedure Derive_shared_entry.
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Procedure Delete_old_region (start, length);
(* Delete the previous definition of the specified address space. *)
(* This procedure only applies to an address space
in the process’ private bit-plane group. *)
var VPGN: integer;
begin
adjust the current bit-plane group indicator (TOPC, SPANC) to the
value of the private bit-plane group;
" for VPGN:= start to (start + length) do
Derive (VPGN, dummy, delete_entry);
. end;
end Delete_old_region;

Figure B.13. Procedure Delete_old_region.
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Procedure Delete_entry (PT2 entry, index, mode,
var dummy, var dummy);
(* Discard the virtual page corresponding to this entry and
initialize the entry. *)
begin -
if the mode is not bit-plane mode then
set the access fleld of the PT2 entry to “write/read”;
set the class field of the PT2 entry to “out”;
set the shared field of the PT2 entry to false;
else (x For a bit-plane mode entry. *)
if it is not shared then
(* Delete this virtual page and
release the relevant storage and entry. *)
if connected with a backing store block then
release the backing store block;
end;
if connected with a page frame then
release the page frame;
end;
if it is in a working set then
delete the corresponding working set entry;
end;
else (x+ Check the global entry. *)
decrement the shared_count of the global entry;
if the shared_count of the global entry is zero
then (¥ No process is using this global page. *)
(* delete this virtual page as described above. *)
if connected with backing store then
release backing store;
end;
if it is in a working set then
delete the corresponding working set entry;
end;
delete this global entry;
end;
set the access field of the PT2 entry to “read/write”;
set the class field of the PT2 entry to “out”;
set the backing block field of the PT2 entry to nil;
end;
end;(* if not bit-plane mode. *)
end Delete_entry;

Figure B.14. Procedure Delete_entry.
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Procedure Delete_different_group (process header pointer);
var VPGN, start, length: integer;
begin
get the start and length of the different shared bit-plane group
from the process header;
adjust the current bit-plane group indicator (TOPC, SPANC)
to the value of the deleted bit-plane group;
for VPGN:= start to (start + length) do
Derive (VPGN, dummy, delete_entry);

unblock the private bit-plane group denoted by VPGN;
end;

end Delete_different_group;

Figure B.15. Procedure Delete_different_group.
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