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Abstract

This thesis was submitted as a part of a Masters by research degree in the School of Mathematical
and Computer Sciences at the University of Adelaide during March 2002. Its aim is to provide a
detailed dissertation on the solutions to the Yang-Mills equations over compact Riemann surfaces
analysed in terms of algebro-topological and differential-geometric structures on vector bundles
over such manifolds, in the spirit of the paper The Yang-Mills equat'ions ouer cornpact R'iernann
surfaces l2]by Michael Ati,yah and Raoul Bott.

The introduction gives a physical motivation for the subject of Yang-Mills connections which
is aimed at familiarising the reader, at an informal level, with preliminary concepts in differential
geometry needed in exploring this topic. Subsequent chapters will make specific the preliminary
material and will also serve as the introduction of the main analytical and algebraic methods
implemented in the study of Yang-Mills connections on Riemann surfaces.

The project is structured as follows. Following a brief overview of connections, the Yang Mills
functional and the associated equations are given. A subsequent section on equ,iuariant Morse
theory sets the framework for the thesis, while the following sections on relations to stable bundles
and certain rnoduli, spaces of semi-stable bundles serve as descriptive methods of solutions of the
Yang Mills equations on compact Riemann surfaces.

By restricting our attention to bundles with structure group U (n) we may apply Morse theory
to the Yang-Mills functional and stratify the space of connections. With this we will deduce
information about the Yang-Mills minima by computing the equivariant cohomology of the moduli
spaces N(n,k) of stable bundles of rank n and degree k in the coprime case (n,k) : t.

The level of complexity of this thesis is that understandable by honours graduate students of
differential geometry and algebraic topology who have gone on to specialise in these fields.
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2 INTRODUCTION

2 Introduction.

All human knowledge thus begins with i,ntui,ti,ons) proceeds thence to concepts, and ends

with ideas.

Kant, Emrnanual (1724 - 1804). Quoted in Hilbert's Foundations of Geometry.

A connect'ion is a mathematical object defined on a uector bund,le over a mani,fold which allows
one to manipulate vectors in the different fi,bers in a consistent fashion. These ideas were developed
by the efforts of mathematical pioneers such as Johann Carl Friedrich Gauss, Georg Friedrich
Bernhard Riemann and Elie Joseph Cartan in the attempt to construct a differential calculus
intrinsic to topological structures (manifolds) not necessarily embedded in Euclidean space.

There is often a necessitation of developments in mathematics motivated by physical theories,
with this dependence sometimes assuming the reverse role. Such inter-relation between mathemat-
ics and physics is none more prevalent than with the theory of fiber bundles and conneclions; Albert
E'instein utilised the already existing geometrical theories of Georg Riemann in devising general
relatiuity in 1915, whlle quantum (gauge) fi,eld theory was later observed to be a theory of connec-

tions on the space-tirne manifold. The significance of the development of the theory of connections
can be best appreciated in such physical settings. The familiar (intuitive) notion of differential
calculus in IRn is given merit by the power of its implementation in Newtonian mechanzcs which
serves as a fairly good approximation to "real-world" phenomena. With the advent of general
relativity the luxury of a differential calculus in an ambient Euclidean space was abandoned for (at
Ieast, superseded by) a calculus intrinsic to topological structures known as differentiable mantfolds
which were not required to be embeddable in IR3. No longer were physical fields to be considered
as globally defined invariant functions but more appropriately as sections of vector bundles over

manifolds whose representations change according to the choice of coördinates one works with.
Thus the differential geometry of manifolds and fiber bundles are important disciplines of interest
in physical theories which have merited much study independently in Pure Mathematics.

The notion of connections arises naturally when an attempt is made at constructing a differential
calculus for the sections f (ø) of a vector bundle .E: differentiation of sections takes the form of a
differential operator (a connection)

V : r(E) ---+ s1(E)

whose codomain is the space of differential 1 forms taking values in -8. One already has been

exposed to connections in undergraduate differential geometry - the familiar couariant differenti,al
on a regular smooth surface X : f) c IR2 ---+ R3

V ¡¡V :: (U"V,P. + l:pU"V þ 
) X,.r,

where (J :: (JoX,a, V :: VoX, are (tangential) vector fields on X and l|p ,: Lg'õkB4.+
gaõ,p - gaB,t) are the Chri,stoffel symbols of 2"d kind associated to the metric tensor gaþ i: X,o.X,ls
on X. The differential operators V share many similar traits to the usual derivative in lRn, such

as linearity and the Leibnitz rule, but their main difference with the latter is that the order of
differentiation of sections is not necessarily interchangeable. This failure of the derivative operators
to commute leads to the notion of curuature

r'y :: dv o V: l(ø) ---+ *(E)

uJ



2 INTRODUCTION

on vector bundles associated with a connection V and its induced operators d,y : te(E) --+
tp+r (E); the richness in the theory of differential geometry on vector bundles is due to this inherent
obstruction in differentiation.

Whether borne out of necessitation from physical theories or developed independently in a
purely theoretical setting, the theory of connections on fiber bundles has been a very important
field of study primarily due to the elegance of the intrinsic nature of these differential operators in
the absence of an ambient Banach space structure.

Much in the same way that the choice of metric on a vector bundle is an arbitrary affair, there is
no "natural" connection on a vector bundle due to the affine structure of the space of connections.
One can refi.ne the choice of connections by requiring compatibility with certain auxiliary structures
on the manifold and vector bundle. For instance, there is physical significance in having derivatives
preserve mensuration, thus once a vector bundle ,Ð is endowed with a metric g we can limit our
attention to (uni,tary) connections V preserving g in the sense that

dg(o,r) : g(Y o,r) + g(o,Yr)

where d is the usual exterior derivative, ø and r are sections of our vector bundle ,8, and the
metric appearing on the right-hand side is the natural extension of our given metric to the space
of differential l-forms with values in E. The familiar Leui-Ci,u,ita connection V on the tensor
bundle (8k 

"X) 8(8' T* X) over the space-t'ime mani,fold (Xa, ù is an example of such a unitary
connection, which appears in the celebrated Einste'in fi"eld equat.ions

Gab i: Rou - !On"o : BrTo6
z

relating the curvature.Fy : l\"uldr" Adrb of V to the matter distribution in (X,g). When a
vector bundle ,Ð is endowed with a holomorphic structure a further "natural" choice of connection
is achieved by requiring oru connection to have (0,1)-component equal to the partial connection
0B : l(E) > ¿(o't)(E) associated with the holomorphic structure of E; the unique connection
compatible with both the (Hermitian) metric and holomorphic-structures on E is called the
metric connectionon E. There has been much study of metric connections on holomorphic vector
bnndles in the 1980's by mathematicians such as M. Narasimhan, C. Seshadri, and ^9. Donaldson
who related these connections to the notion of stability of vector bundles; a concept that will be of
central importance in the differential-geometric analysis of a special class of connections known as
Yang-Mills connections.

A further constraint can be made on connections, which will be of principle interest in this
thesis, by requiring connections to be extrema of certain functionals. One important such setting
is the study of the Yang Mi,lls functional on a compact oriented Riemannian manifold (X, g) for
connections V on a (smooth) vector bundle E over X with (Lie) structure group G

LYM(Y):: lFyl2 uoty

where the norm of the curvature Fy of the connection V is associated to the Cartan-Killing
(bilinear) form on the Lie algebra of G and the natural inner-product on differential forms on X
arising from the Hodge-star operator associated to the metric A. The critical points of YM are

4



2 INTRODUCTION

called Yang-Mills connections which, by the calculus of variations, are solutions to the system of
partial differential equations

düFv:o

called the Yang-Mi,lls equat'rons where dÇ is the formal adjoint of the operator dy with respect to
the natural inner-product on the space of differential forms. In Physics terminology, the Yang-Mills
equations are the Euler-Lagrange equat'ions associated to the action of the Yang-Mills Lagrangian
Ly¡4 ::tr(Fe A*Fy) where * is the operator induced by the Hodge-star operator on the manifold
X.

There is very much interest in the study of Yang Mills connections due to their relation to
quantum fi,eld theory in which the laws governing matter fields are formulated in a manner (referred
to by physicists as "gauge theories") resembling the Yang-Mills equations. Such physical theories
include the famous Marwell's (vacuum) electromagnetic fleld theory represented by the equations

d,F :0 and d,* F :0

for the electromagnetic field-strength tensor .F', as well as the quantum chromodynamical model
(Q.C.D.) with symmetry group SU(3) of 1969 Nobel prize winning physicist Gell-Mann which
describes the strong interactions, and the electrowealc model with symmetry group SU (2) x t/(1) of
1979 joint Nobel prize winners Glashow, We'inberg and Salam combining the electromagnetic and
weak nuclear interactions, paving the way, thanks to 1999 joint Nobel laureates Hooft and Veltman,
for the enormously successful standard-model witln symmetry group U(1) x SU(2) x SU(3) unifying
the electromagnetic, weak- and strong-nuclear forces.

In the early 70's it was recognised that the whole setting of gauge field theory was that of
connections on vector bundles over the space time manifold whose Lie structure group is taken to
be the symmetry group of the interaction under study. The field strength could then be identified
with the curvature of the connection and the action with the L2_nortll of the curvature. For
instance, Maxwell's electromagnetic fleld theory is a Yang Mills theory on a line bundle over IR4

with structure group t/(i) for which the field-strength tensor is interpreted as the curvature F : Fv
of a "field potential" connection V on this bundle with Maxwell's equations being the Bianchi, and
Yang-Mills equations for V; the arbitrariness in phase shift of the field-potential arises as the the
action of the gauge group on the affine space of connections. This further inter relation between
physics and mathematics is a prime reason why the theory of connections, and in particular Yang-
Mills connections, are topics of immense interest in mathematics today.

In recent years mathematical gauge theory has been perhaps the most important technique in
the study of differentiable structures on four dimensional manifolds. In particular, the study of the
moduli spaces o1(anti) self-dual connections on on vector bundles over Riemannian four manifolds
has yielded the definition, due to S. K. Donaldson, of polynomial invariants which have been
highly successful at distinguishing smooth structures on homeomorphic manifolds. Thus studying
the homotopy type of these moduli spaces continues to be of fundamental importance in algebraic
topology.

Although the methods in this thesis are readily extendable to general Riemannian manifolds,
we shall restrict our attention to the case of two (real) dimensional manifolds. When our base

5



2 INTRODUCTION,

manifold X is of (real) dimension one all connections are fl,at, that is, have zero curvature, so the
Yang Mills theory in that case is not particularly interesting; thus our first "non-trivial" theory
arises when our manifold X is of two real dimensions. This prototype theory merits a good deal
of study due to the richness of structures naturally occurring on such manifolds, such as a compler
structure associated (by the Newlander-Nirenberg theorem [28]) to the almost-cornpler structure
determined by the Hodge-star operator * t tp(X) --+ t2-p(X) on X (since *2 : -id on such X);
with this endowed structure X becomes known as a Riemann surface. Moreover, smooth complex
Hermitian vector bundles -E over Riemann surfaces have inherent holomorphic structures due to the
vacuotrs integrability conditi,on on connections on ,Ð; this gives a correspondence between unitary
connections V and holomorphic structures 0B on -8, thus the study of Yang-Mills connections on
Riemann surfaces can be put into a complex analytic framework. In such a setting, a Yang-Mills
connection V has central curuature *tr'y being a couariantly constant holomorphic section of the
algebra bundle ad(E) with fibers isomorphic to the Lie algebra of the structure group of E. This
naturally implies that the eigenvalues of the operator iad* Fy are locally constant, and so if the
bundle E is indecomposable, that is, has no proper sub-bundles, then *f'y : -2Ti, deg(E)zd¿ where
tlcre degree, deg(E) € Z, of E is the evaluation of the frrst Chern class on the fundamental cycle
of X. M. S. Naras'imhan and C. S. Seshadri, as did later Donaldson, showed that this implied
that necessarily and sufficiently -Ð was stable in the sense that deg(F)lrk(F) < deg(E)lrk(E) for
any non-zero proper sub-bundle F < E; (semi-stability rneans the possibility of equality in the
preceding inequality).

When our smooth complex vector bundles ,E have structure group U(n) and our Riemann
surface is compact, we may convert the theory of Yang-MiIIs to the natural setting of Morse theory
which deals with the analysis of the critical points of ftrnctions. The cri,ti,cal mani,folds of the Yang
Mills functional other than the one corresponding to the minimum for Y M can be shown to be
expressed in terms of the minima of Y M restricted to U (rn) sub bundles for m I n.

Calculations in Morse theory are readily simplified if we can decompose a space M into a
collection of locally closed submanifolds M¡ known as strata; the analysis of singularities of a
function on such a space then localise to these strata. Under the aforementioned identification of the
space of unitary connections "4(E) with the collection C(E) of holomorphic structures on a smooth
complex vector bundle ,Ð over a compact Riemann surface X, a stratificat,ion of .4 is obtained by
stratifying C whose open strata correspond to the semi stable holomorphic structures on ,E and the
other strata described in terms of canonical filtrat'i.ons: flags associated with holomorphic bundles
whose respective quotients are semi-stable. Relative to the group Aut(E) of automorphisms on -E
this stratification is perfect in the sense that

Pr(M): t tkx Pr(M¡)
I

where k¡ :: codim M¡ and P¿ is the Poincaré series. Thus we may deduce information about
the equiuariant cohomology of the semi-stable stratum, and hence in the case (n, l") : 7, where
k is the degree of -Ð, about the cohomology of the modul'i spaces N(n,k) ,: C,(E)lAut(E) of
stable bundles - we restrict to this class C., of bundles in order to avoid non Hausdorff phenomena
becoming prevalent in these moduli spaces. These moduli spaces) in a way, parametrise the solution
space of the Yang-Mills equations.

6



2 INTRODUCTION,

These relations between Morse theory and complex analytic geometry forged by Yang Mills
theory are testament to the richness of our two-dimensional prototype theory.

The theory of connections is often presented in many (equivalent) manners, usually by appealing
to a class of structured fiber bundles known as princ'ipal G-bundles. For all intents and purposes,
manipulations involving connections are made on vector bundles since they are, in a sense, easier
objects to deal with, and as there is a direct correspondence between connections defined on prin-
cipal bundles and vector bundles: explicitly, the matrix representation of a connection (covariant
derivative) on a vector bundle -E with respect to a trivialisation ç : E¡u ---+ U x R.k is the pull-back
,þ. (A) of a Lie algebra valued connection l-form A on a principal frame bundle P associated to ,Ð

representing the distribution of horizontal subspaces in the fibers of P.

7



3 THE YANG-MILLS EQUATIONS

3 The Yang-Mills equations.

In this section we shall introduce the important class of connection on a vector bundle known as

Yang-Mills connections. These connections are the solutions of the Yang-Mills equations which
arise when extremising the Yang-Mills functi,on¿l on the space of connections. Although the results
of this section could have well been defined on a compact Riemannian manifold, we shall limit our
attention to Riemann surfaces for the aim of the thesis.

Let X be a compact Riemann surface, and .Ð[Rft] a smooth vector bundle (of rank k) over X
with compact Lie structure groupl G whose corresponding Lie algebra is denoted by g.

For an open set U C X, denote by f(t/,-Ð) the C-(X)-module of smooth sections of ,E

over U, and by ep(U) the space of C-valued smooth differential p-forms over [/. \Me also write
ü(U,E) ': f(4E8Ao X) = tp(U)Q¿o(u)l(U,E). When (J : X we simply write f(E) and
tp(E).

A. connection (or couariant deriuati,ue) on -Ð is a lR-linear operator

V : r(E) ---+ e11ø¡

satisfying the Lei,bnitz rule

vU"):d,f Øo:_fYo where ¡ e eolx¡ and o€f(E).

Given {g.p} tlr. transition functions representing ,Ð with respect to a trivialising cover {[/o]
over X, the adjoi,nt map Ad: G ---+ Aut(g) : g r+ {Ad,n : L r-+ SLS-|} induces transition functions
Aù(S"B) for the Li,e algebra bundle ad(E) c End(E) whose fibers are thus isomorphic to g. A
connection V of E can thus be formally regarded as a differential operator of the form d + A where
d is the exterior derivative and,4 el(ad(E) 8"-X). Given a trivialising cover {(tþ",U")} of E
with an associated local frame {"i}f:, of -Ð, for instance "i 

: ó;r(.,e¿), this operator acts on
local sections olei of E by

V (oiei) : dol ø ei + oi Ai¡ Ø ei

where ,qi¡ e tt(U") may be thought of as the entries of the matrix Alu. : [Afi] arising via
Yef;: Ai¡Øei.

The collection of all (smooth) connections on -8, denoted A(E), is thus an affi.ne space modelled
over Il(X, ad,(E)Q".X) One may extend a covariant derivative V: f(E) ---+ t1(E) to a linear
map

d,y : te (E) ---+ te+t (E)

by linear application of the formula

d,y : a I o r-+ da Ø o + (-I)eu I Vo
lWe shall, in this thesis, assume G to be the unitarg group U(kl2) when -E is a complex vector bundle. When G is

a subgroup of the classical Lie groups such as O(k), SO(k), or U(le l2), SU(kl2) when ,E is a complex vector bundle,
G is then semi-simple and hence the Cartan-K'illing form on the Lie algebra g, used in defining the Yang Mills
functional, is positive-definite

8



3 THE YANG_MILLS EQUATIONS.

for ø € tp(X) and o € f (E). The resulting sequence

0 --------+ r(E') -l--+ St(E) oo , S,(E) --------+ 0

is not necessarily a complex since the tO(X) linear map

Fy :: dv " V : f (E) ---+ e21ø¡

is not zero in general. Under the isomorphisms

Horneo(x)(f(E), s'(E)) e Hom¿o1x)(f(E),f(E')) I e'(ø)
ro(x)

= t (H om(E , E)) I e' (¿)
r0(x)

= t2 (H om(E, E)),

we define the curuature associated to the connection V as either the map Fy :: dv o V or the
corresponding 2-form Fv € l(ad(E)ØT*X AT.X). Observe that if Y : d, + A then Fv :
dA+ AA,4; that is,,Fy(e¿) - ¿Atj Ø e¡ I A¿¡, A A¡"¡8 e¡ for {.¿} ^local 

frame for E.

On the affine space A(E) of connections on -Ð there is defined an important functional that will
be of prime interest in this thesis. Given

k:gxg-+lR
: (L, K) + tr(LK*)

the Cartan-Killi,ng form2 on the Lie algebra g we construct an inner product on the fiber
ad(E), A Ai X by linearly applying the formula

(Ir 8 utt L2 Ø w2) :: k(Lr, L2) * (wy A *u2)

where * ' Al X -+ ¡2-n X is the Hod,ge-Star operatoÊ on X; with this we construct a global
inner-product on te (ad(E)) by linearity on the formula

t.(Ir ø at,L2I ø2) :: (Lt(") 8 u1(r), Lz(r) Ø uz(r)) uol x

where uoly e 52(X) is the uolume form given locally by Jdet6 dr1Ad,r2 for g a metric on X.

With these preliminary definitions out of the way we can now define the Yang-Mi,lls functi,onal.

2For a general semi-simple compact Lie structure group G for our vector bundle -8, we replace this definition of
the Killing form with k(L, K) :: tr(adt " ad,k) .

3This operator exists since X is an oriented manifold.

I



3 THE YANG-MILLS EQUATIONS. 10

3.1-. Definition.
The Yang-Mills functional on E is defined and denoted by

Y M (v) ,: llF'v lll :: (Fy, Fs)

where V e A(E) and .Fy its associated curvature form.

In physics terminology, the Yang-Mills functional is the action associated to the Lagrang'ian
densitya Lvu(V) :: tr(Fv A +f'y). The Euler-Lagrange equations corresponding to this action are
the Yang-Mi,lls equations; more succinctly:

3.2. Proposition.
A connection V e A(E) is extremal for the Yang Mills functional if and only if

dyi'tr'y:g

Proof:
By the methods of variational calculus V will be extremal for Y M if and only if the first variation

õYM(v) ':4vru(vt)n:od,t

of YM vanishes at V, wher€ V¿ :: V+úa, ú € [0,1] and a e tr(ad(E)). Given the bracket on
Sr(ad(E)) by the formula lr,tl(r,w) : lw(u),t@)l - lr(-),7(u)l for u,w e f(X), the curvature
of the variation about V becomes Fvr: }'v * tdyatlt2la,a). Thus YM(V¿) : YM(V) +
2t(d,ya,.F'v) + O{t'}, and so

6Y M(V) :2(d,ea,¡'v) : 2(a,dÇ Fy)

where d,Ç :: - * o dy o * is the formal adjoint of dy. tr

3.3. Definition.
Together with the Bianchi identi,ty we have an elliptic system of partial differential equations on -E

d"YFe:Q, dY*FY:Q

known as the Yang-Mills equat'ions. The solutions of the Yang Mills equations (extrema lor Y M)
are called Yang-Mi,lls connections.

aThis is actually a bundle map between the jet bunille assocíated to ad(E) and the bundle ¡\2 X
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4 Equivariant Morse theory.

Yang-Mills theory, in the mathematical point of view, consists of analysing the fixed-points of the
Yang-Mills functional YM. Classical Morse theory has been used as a means of studying multiple
solutions of differential equations which arise in the calculus of variations. The theory is used to
estimate the number of solutions by describing the local behaviour of the functional the differential
equation came from.

Morse theory relates the analytic information of a smooth Morse functi,on on a manifold by
means of its critical set to the underlying topology of the manifold. In this way it is a natural
framework to analyse the Yang-Mills equations. We shall in particular be interested in the extension
of Morse theory to functions with symmetry under a compact Lie group action. In particular, we
are interested in the action of the gauge group on the affine space of connections since it wilt be
used to parametrise the solution space of Y M by means of moduli, spaces. The proofs of results for
this specialised setting requires little modification of those of the classical theory (S7.2 [8]). In this
way we give a complete overview of classical Morse theory and assume the same results when we
pass over to Lie group 'inuariant functions.

We shall in this section assume, unless stated otherwise, (X" , S) to be a Riemannian manifold.

4.1. Definition.
Given f eg6) asmoothfunction, r€X iscalled acriticalpointfor f if d,f :0where

d*f : TrX -+ R

'"(*),'+'tff@)
is the derivative of /; this is equivalent torequiringthat ,eLrfø:0 for all 1< i 1n inany
coördinate system about ø. A real number c e IR. is said to be a critical ualue for f if f -r(c)
contains at least one critical point.

Let V, the (unique) Leui-Ci,ui,úø connection on TX over the Riemannian manifold (X,g); this
connection is torsion freein the sense that (Vr)rtu - (Vs)., -lr,r]:0 for allu,w e f(X). The
symmetric bilinear form

H*f :: V n df (r)

onTrX is called Ihe Hessian of / at r, whose associated local matrix representation is given by

l#o,-ffin,,r,øt)
where lf¡ ,: Tgr'(gr,¡ I g¡L,t - gij,ù are the Christoffet symbols oÍ 2"d k,ind, associated to Ve; at a
critical point r of / we clearly have the reduction of this matrix to the familiar form

l#o,l
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4.2. Defrnition.
A critical point r of / is said to be non-degenerate if the (matrix representation of the) Hessian
is invertible 5 ; that is, if detHrf + 0. One calls f a Morse function if all its critical points are
non degenerate. The inder of a non-degenerate critical point ø of /, denoted by À"/, is the number
of negative eigenvalues of H"f ; this is equivalent to the maximal dimension of a subspace of TrX
upon which Hrf is negative-definite 6.

To a Morse function f e g(X), we associate tIrc Morse counting series

M¡(f) :: t t\'r .

t:d, f -O

This is only well defined when X is compact, as is apparent from the following results

4.3. Proposition.
GivenreXanon-degeneratecriticalpointofasmoothfunctionfe.- g(X),thereexistsa
coördinate chart ([/, /) about r with ó(") :0 upon which

r " þ-r@): Í(n) +D6'y?
i:r

where ð¿ : Ì1 for y € Ó(U).
Proof:
Assume without loss of generality that /(r) : 0 (otherwise replace "f by f - f @)). For the
purpose of local analysis, assume also for the time being that / € g(V) where V c IR3 is an open
convex neighbourhood about 0, and that 0 is the non degenerate critical point of / in context with
/(0) : 0.

Given y ÇV since ff(0) :0 we have the Taylor series expansionof f aboúy

n n

.f@):ttv¡u¡l¡¡(ù, (4.3.1)
i:r j:r

where r¿¡fu)': 
lo' fir,Urldú 

and l¿@),: 
lr' firOrlot.

If necessary, we replace f 4 by Lff¿¡ + Í¡¿) ¡n order to ensure that [fi¡] is symmetric. Observe that

t/,¡(o)l is invertible since ffi(O) : /,¡(0).
Assume for 1 ( lc { n our/ e 9(I/) has the form

k-r nn

I @) : D ¡oa? + t Ðyoy¡ lo¡@) (4.3.2)
i:r i:k j:k

sNon singularity of the Hessian at a critical point of / is independent of the coördinate system used since #* :
a' f grÀ- 

'! 

ovía j

ôr¡x¡ ôy¡ ðy;'
6By Sylu'ester's theorem in linear algebra, the index is independent of the choice of coördinates usecl in representing

H'f . h may be interpreted as the number of independent directions along which / is decreasing.



4 EQUTUARTAIV" MORSETHEORY 13

rvhere lf¿¡l c M6-*¡1¡(T(V)) is a symmetric matrix.
We may perform a linear change of the variables gk,...,gr,., so that equation (4.3.2) holds with

lnn!) f 0; moreover, by continuity, we may assume fnÁA) is of constant sign ôr : tl for all
A e V. Setting p t: Jllkrl we d.efi.ne

r¿

zn :: P(A) lJn * t
i=k,*l

zj;:Aj for jlk,Ll j<n.

Bytheinversefunctiontheorem, zr¡...¡z,-aîethenlocalcoördinatesinaneighbourhoodof 0,and
the change of variables from z to y defines a diffeomorphism i[ so that in a neighbourhood of 0 we
have z: iú(g). Thus

,f o ü'-r Q) : Í(y)
k-1 n, n

: t 6¿a? + y?Ínx@) * 2yn \, uif in(s) + t D, aoa¡fo¡fu)

n,

j:k+t

j:k1'I

i,:kiI j:kIIi:t
k-r

i:r
yk+ Í¡x(y)

fnn(y)
(

rL 2

:td¿v?+lnn@) Ðrt
n ,tm)'+i f,aoa¡Ín¡(a)/ i:k+t j:k+l

- fnn(y) t
j:k1'I

lc n 'rL

:,Do¿zl+\ \uruiHufu)
i:r i:k+7 j:k-lr
Icní¿

:td¿zl+ \ | aziHtj"v-l(y),
i:l i=k1'l j:k*l

where lH¿¡l c M6-q(f (V)) is symmetric.
Thus, by induction on 1 < k < n we have that the smooth chart / can be chosen such that

f " ô-t is given by (a.3.1) with [fi;] : di,ag(!I,...,ll)nxn.
¡

By an additional permutation of coördinates in the above proposition we can put "f € g(X)
into the "standard form"

f : f @)-rl-r22-...- *2t +r2¡r¡r+...+12,

with respect to a suitable coördinate system ó: (*t,...,rr) about r where lc: \rÍ.

4.4. Corollary.
If X is compact, then a Morse function f € f 6) has only finitely many critical points
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The relation between analysis and topology in Morse theory is expressed in the so-called Morse
i,nequalities. Deflning the Po'incaré series for X relative to a field IF

Pt(Xn;Ð':irolEn
i:0

where B¿:: d'impUi(X",lF) are tlne ith Betti numbers for a chosen cohomology theory (satisfying
the Eilenberg-Steenrod arioms) relative to IF, the Morse inequalities determine a lower bound for
¡WtU) in terms of P¿(X;F.).

4.5. Theorem.
Given f e f 6) a Morse function on the compact manifold X', upon denoting tty *¿ the number
of critical points of / of index i, we then have the following relations

mo ) þ0,

rn¡-rnt<þo-þt,
rn\-rntlm2) þo-fu*02,

q

j-0

q

\-(-f)s-irn, ) \-l-l\q i ß^.
L"J-ZJ\/'J' 0{q1-n,

j:o

nn

ÐeD¡^t :\{-t)'oi.
j:o j:o

These inequalities represent the formal domination of P¡(X;F.) by M^f) in the sense that

uttj) - Pt(x;F') : (1 +t)Q(t)
where Q(t) is a polvnomial (formal series) with non negative coeffi.cients.

The key observation which provides this result is the change of homotopy type of the sublevel
sets

Xo::{reXlf@){"}
whenøcrossesacriticalvalue.Foreachcriticalpointref-r(p)acelle¡ofdimensionÀ:Àr,f
is attached to Xo when o, crosses the value /(r); that is

Xa+e - Xa-e Urecrit(Í)¡Í-r(a) e^,1

where crit(f) is the set of critical points of /.
Starting from the absolute minimum (which exists if X is assumed compact) then one obtains

a cell decomposition of X up to homotopy equivalence

These observations are made or".*"1Jrir.;': 
ç¡¡eÀ' Í'
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Figure 1: Given X the 2-Torus embedded in R3 and I e g(X) the projection onto the vertical
coördinate axis, the following two diagrams depict the crossing over a critical value.

4.6. Theorern.
Given I € f 6) and a ( b, suppose f -tla,b] is compact and contains no critical points of /. Then
Xo is diffeomorphic to X6. Furthermore, X, is a deformation retract of X6, so that the inclusion
Xo 4 X6 is a homotopy equivalence.

The deformation retracts required to prove this result are constructed by a so-called 1-parameter
group of di,ffeomorphisms of the manifold X. This is a smooth map

/:ìRxX-+X
such that

(i): foreachúe IR,themapót:re Xr+ó(t,r)e X isadiffeomorphismof Xontoitself;

(ii): for all s,f € R, d¿+, : óto ór.

Given a smooth vector field u € X.(X), by the Pi,card-Lindelöf theorern for ordinary differential
equations, we have that for each r € X there exists an open interval 1, c IR with ,I, ) 0 and a
smooth curve 7r, : I, -+ X with

^i"(t) : uuç¡, l,(0) : r.

Since the solution also depends smoothly on the initial point r, we furthermore have that for each

r e X there exists an open neighbourhood [/ about r and an open interval 1 > 0 with the property
that for all y Ç [/, the curve 73/ satisfying "ia(t) : utoþ), fs(O) : g, called ttre integral curue of u

15
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through y, is deflned on 1. Furthermore, the map (ú, A) € I x U r+ U(t) e X, called the local fi,ow
of the uector field u, is smooth.

The family of functions {öt}te4 given by þr(y) t:7s(¿) is observed to satisfy ór+,(y) : ót"þ,(A)
for all s,t,tI s € I, since'yr(ú*s) :1711"¡(t): a "walk" frorny along the integral curve for a time
ú * s gives the same result as walking from 7r(s) for a time ¿. With this semi-group property, one
has that ó-'" ó'(y) : óo(A) : y and so @¿, defined on [/, maps [/ diffeomorphically onto its image.

The semi-group {@¿}¿çr, is called a local 1 parameter group of diffeomorphisms of X generated
by u. In general, a local 1 parameter group need not be extendable to a group, since the maximal
interval of definition 1, of Ty need not be all of R. The following result gives a condition under
which this occurs.

4.7. Lemma.
A smooth vector field on X with compact support has a flow defined for all ú € IR and for all r € X,
and the local 1-parameter group of diffeomorphisms becomes a group.
Proof:
By theprecedingresults, for every ï e X there exists a neighbourhood [/ and an s > 0 suchthat
fol all U e U, the curve 7y(¿) is defined for ltl ( e. Let supp(u) C A, a compact subset of X. A
can be covered by finitely many such neighbourhoods, and we choose eo to be the smallest such e.

As u¡x1a:0, then þt(y) ,:7r(t) is defined on (-e, e) x X, and for l"l,l¿l < eof2 we have the
semi-group property ót+,(A) : ót o ór(y).

In order to rlefine þ¿ for ltl ) ro,we expand I as ú : k(e,12) * r, k € Z and lrl < eol2. We
deflne

Ör"lz o Óe, /2o"'oÖr"/zoÖr, k>0

þt ,: k-fold
Ó-e./zo Ó-e"lzo "' o Ó-r"/zoÖr, lç <0.

-k-fold

In this way ót is defined for all ú, is smooth, and satisfies d¿+" : öt o Q, for all ú e lR.

With this result we can continue with our main task:

Proof of Theorem 4.6:
Given g a Riemannian metric on the Riemannian manifold X, we define the gradienl vector field
grad f of / by the equation

g(u,grad l) : 'U)
the directional derivative of / in the direction of u € '/-()(). One observes that the vector field
grad f vanishes precisely on the critical set of /.

Let p : X -+ IR be a smooth function with compact support with

p : 7l gØrad f , grad f ) on /-1[ø, b].

The associated vector field'u € f(X) defined by

u, :: p(r)(grad f)"
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thus satisfles the requirements of Lemma 4.7 above, and so generates a l-parameter group of
diffeomorphisms

þ¡:X-+X
If þ¡(r) e f -rla,òl then

fttforøll : o(ftór{,),srad, r) : s(u,srad, f) :1

and so the function

t+ f(þ¡(r))

is linear with derivative 1 provided ø ( f @t@)) ( b. In this way the map öu-o is a diffeomorphism
of Xo onto X¿; what we have done here is to "push" X6 "down to" Xo along the orthogonal
trajectories of the hypersurfaces / : constant.

Furthermore, the l-parameter family of maps r'¿: X6 -+ Xa defined by

(
,¡@1 ,:f '' f@)<"'¿\*/' 

I dt1,-¡1,¡¡(ø), a<f(r)<b'

is observed to satisfy ro : Ixa with 11 a retraction frorn X6 to Xo; thus Xo is a deformation retract
of X6.

tr

4.8. Theorem.
Given I Ç g6) with non-degenerate critical point ro € X of index À, if c : Í(r,) with /-1[c -
e,c I e) compact and contains no critical point of / other than r for some e ) 0, then for all
sufficiently small E the set X.-.. is homotopy equivalent to the space obtained by attaching a À-cell
to X"-r.
Proof:
By Proposi,tion 1.3 we may choose a coördinate chart (U,ó) about ro upon which / has the form

f : c - rl - "l - "' - *2^ I r2¡¡r + "' + rl.

Choose e small enough so that f-Iþ- e ,cl e) is compact and contains no critical point of /
other than ro, ãnd such that þ(U) contains the closed ball 82.(0) C lR?¿.

Define our À-cell by

e¡:: {r eU I rl+... + 12^ { e and r¡1r : ¡.. : rn :0}.

Observe that e¡ ì X"-, - ô"x so that e¡ is attached to X"-, as required. We must prove that
e¡U X"-, is a deformation retract of X"¡r.

Define the smooth function F : X -+ IR as / outside of [/ and by

F:: f - p@?+ * 12¡ I 2"t^*, + - . . + 2r2*)
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in [/ where p : IR -+ ]R is a smooth bump function which vanishes outside the interval (-2e,2e)
and with p(0) > e and -1 < #p(r) ( 0 for all r.

For convenience let us write f : c- € + 4 and hence

F(r) : c - €(n) + q(r) - p(€(r) + 2n@))

for {,4 : U -+ [0, -) given by

{::rlt...]_r2^
\i:ï2^+r+...+r2r.

The region F-t(--,c-|e] is observed to coincide with the region Xc+e:i "f-t(--,c*e] since
outside the region € + 2q ( 2e the functions f a;nd F coincide and within this region we have

F<l:c-t*n<cr €1_n<c+e
1

t
Another observation is that the critical points of / and f' coincide since, by the above observa-

tion,F(rr):c-p(0)1c-e andso p-rlc-e,cle)cf-I[c-e,c*e] containsnocriticalpoints
of F. This observation together with Theorem 1.6 imply that F-l(-oo,c - e] is a deformation
retract of X"¡r. For convenience let us denote r'-t(--,c-e] by X"-rl) fl where 11 is the closure
of,F-r(--,"-e]\X"-,.

We shall complete the proof by showing that X" ,l)e^ is a deformation retract of X.-rl) H,
which together with the previous observation proves our theorem. \Me define the deformation
retract r¡ i X¿-6U H -+ X"-, l) eÀ by

:: id outside [/;
t (rt,... ,rr) t+ (rr, . ..t\,tr^+t,.
, (rt,. . . ,rn) è (rt,. ..lxÀt str^+r,

,trn) in the region € < s;

, strn) in the region e <, { 1 q -f e

where s¡::t+(1 -ú) (€ - e)ln;
: id within the region r¡ -l e { {

With the same arguments in the pleceding proof, one shows more generally that

4.9. Theorem.
Given f € g6) with non-degenerate critical points tt,...tr, in f-rk) of respective indices
À1,...,Àr, suppose that /-1[c - e,cI e] is compact and does not contain any other critical points
besides rrt...¡r". Then X"1, is homotopy equivalent to X" , U €À, U...U e^,, à space obtained by
attaching cells to X"-r.

We are now at a position to prove the validity of the Morse inequalities. To this extent we
require the following lemma.



4 EQUTVARTAIVT MORSE THEORY 19

4.10. Lemma.
Let f e g(X) have non degenerate critical points ør,...tr, in f-'þ) with respective indices
À1,...,À". Suppose a 1c ( b with f-rlo,b] compact and containing no critical points of / other
than those above. Then

Hn(Xa, Xo) = ßt"n

where rrun is the number of critical points of / of index q.

Proof:
We assume r:1and generalise our results by appealingto Theorern /¡.g.

For e as it Theorem 1.8 and [/ a coördinate chart as in its proof, set

H6 :: X"-,1) {r € U I *'^*r+ ... + "7 < 62}

and H6,, t: Xc-eU {ø € U ì H5 | "?+... * r2x> nt}
where0<ð2(eand0<rf1e.X"-,isthenad.eformationretractofH6,,viatheretraction

o(r) ::

r(r) :: Pop¡(r), n € H5,r\X"-,
r, otherwise

where pt(r) :: ((1 + t)r1, ..., (1 + t)r¡,rs¡1,..., r,,) and

0, r e X"-,
sùpprþ)ØX._.{¿ > 0}, r € H6,r\X",

By the homotopy invariance of cohomology theories, the fact that HI(X,,A) = 0 if A C X
is a deformation retract of X, and by the standard relative cohomology sequence, we have that
Hn(Xu,X") = Ho(Ha,fIa,a) where 0 < n2 1e is arbitrary. By the ercis'ion theorem 7 on the
exterior of H5,, we obtain a pair of spaces homotopy equivalent to (e¡ x IR3-),gÀ-t x R x R"-À)
and hence to (e¡, SÀ 1).

Using the identity

Hn("n,5n-ry ry Q:n
otherwise

we have our required result.
n

Proof of Theorern 4.6
Let cv 1c2 { "' ( cr-r ( c¡ be the critical values for f . Choose bs 1c1, b¡ € (c¡,c¡-) for
7<j<k-1andb¡r> c¡.

The triple z c Y C x gives rise to the exact relative cohomology sequence

0 -------+ Ho(x,y) ------+ Hj(x,z) --------+

Ho(Y,z) -L---; ¡7r(x,Y) --------)
TThe excis'ion theorem for singular cohomology states that given U g y C X manifolds with d,imX : dirnY and.

U çY" then IIq(X, Y) ! -fis(X\t/, Y\t/)

{r
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Upon defining

þ¿(X,Y) :: rlc H'(X,Y)

þ¿(X,Y, Z) :: rki,m(6'),

we have by the exactness of the above sequence that

20

q

D(-t)' þ¿(x,y) - l3¿(x, z) + þ¿(y, z) - (-t¡ø þi(x,y, z) -0)i:0

hence

(-r)n-r þn_r(x,y, z) :(-t¡ø Bn(X,y, z) - (-t)s þo(x,y)
+ (-r)n pn(x, z) - (-1)q þq(y, z). (4.10.1)

We define the following polynomials

P(t, X,Y) :: \ t* B*(X,V),
m)0

Q(t, X,Y, Z) :: D t^ P,,(*,Y, Z).
m)0

Multiplying the preceding equation (4.10.1) by (-L)^t^ and summing over r¿ we obtain

8(t,X,Y,Z): -IQ(I,X,Y,Z) + P(I,X,Y) _ P(t,X,Z) + P(I,Y,Z).

Applying these results to the triple X6o C Xu¡_, C Xbj and observing that Xbo : Ø since
c1 : rninr€ x r @) we have

P (t, X6,, Xb¡ _r) : P (t, Xa,, Ø) - P (t, Xb¡ _,,Ø) + (t + t)e (t, X6,, X6, _,, Ø),

and so as X6r: X since c¡" : Írràx*çx Í (") we have upon summing the above relations

k

D,(r,xu¡,xu¡_,) : p(t,x,Ø) + (r +t)e(t)
t:1

for some Q(t) € Z+ltl.
By Lemma 1.10 we have

kk

D'Q, xb¡, xb¡-r) : I tj *¡,
j-r j-r

and as Hi(X,Ø): gi (X) we also have that

P(t,x,Ø) :ttip¡(x).
j>0

n
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4.11. Corollary.
Let X" be a compact smooth manifold and / € g(X) a Morse function. Then

(i)z m¡ > 0¡ for all j;

(ii): tt'(-I)i^¡ : X(X) where X(X) = Dþ01-t¡, þ¡(X) is the Euler characteristic of. X;

(iii): fj_o (t¡a-i* I DÍ=o(-t)o-i þ¡,0 { q { n.

4.L2. Defrnition.
We call a Morse function f € g6) F perfect if

Mt(Í): P¿(X;F')'

and perfect if this relation holds for all fields lF.

Clearly a perfect Morse function can only exist on a torsion free rnanifold X; that is, X must
have all its finitely generated cohomology modules H'(X,F') being free abelian groups in general,
11 H'(X,JF) is finitely generated, then by the structure theorem for groups we have ¡1'(X,F) or

F¿Øf, where fl (the ith-Betti group) is free abelian hence = O* Z and. 
", 

(the ith-Tors,ion group)
decomposes uniquely as?Z¿rO OZ¿* whered"¿¡ld,¿,¡¡1, 1 ( j 1m¿, arethe tors,ion
coeffic'ients.

If X were not torsion free with respect to the freld Z, for p a prime, we would have by the
un'iu er s al co effi ci ent theoremg

þ¡ (X,Zò : 0¡ (x,v,) + t¡ (p) + t¡ -t(n)

where ú¡ (p) is the number of torsion coefficients of H ¡(X, Z) divisible by p. Substituting this relation
in the Morse inequalities we have that

qq

D(-r)o-, *¡ >D,i Ðs-i p + to@).
j=o j:o

Choosing p so that pld,4, d"¿¡ L}re torsion coefficients of H¿(X,V.), then pldo¡ for alt j and so tn(p) : un

the number of torsion coefficients in H.(X,Z). Thus we have

q q

I(-r)n-, ^¡ >ÐGr)q1 B¡ + u,
j:0 j:0

and so / cannot be Zr=pefiect

The following are criteria to ensure a perfect Morse function.

sThe uniuersal coefficient theorem states that for R a principal ideal domain H¡(X,R) ry

¡1, (X) 8 R @ T or(H¿-r (X), A).
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4.13. Proposition.
A Morse function I e g(X) is perfect if either

(i): (The lacunary principle):
if the set {À,f }*e",¿t¡¡¡ of indices of / contains no consecutive integers;

(ii): (The completion principle):
if all the critical points ro of f are completable in the sense that, in a suitable coördinate
system U about ro where

f :, - "l - 
... - r2^,Í l r'^,r*, *. . . -f r2r,

the boundary of the set

uio,: {r eU I "?+... + r2^,f I e, r^,f+r : .. . : rn :0}

bounds a singular chain in X"-, for small enough e ) 0.

Proof:
(i),
If for some r we have rmr-r: Trur+r:0 then by Corollary 4.11('i) we have þr-t: þr+L:0. As
m¡ - þ¡ : qj + ej-t for r - I 1 j < r * 1, for Q(t) : D¡>otrei the polynomial in the Morse
inequalities with q¡ ) 0, then qj : 0 for r - 2 < j <r * t hence m, : þ,.
(ii):
If each ro e crit(f) are completable, then in the proof of the Morse inequalities we have

/¡(Xa¡, Xbi-r, Xuo) :0 for all j, thus Q(t) :0.
n

Having expounded an overview of classical Morse theory we now extend these principles as

follows.

4.L4. Defrnition.
A connected submanifold y C X of X is called a non-degenerate critical manifold if

d,lþey:0 and Hyfplr¡ is non - degenerate

where u(Y) is lhe norrnal bund,le of Y (given by T Xy = TY Ø "(V) with respect to a Riemannian
metric on X). A function f e f @) is called non-degenerate if its critical set is the union of
non-degenerate critical manifolds.

We extend the Morse counting series as follows. If (X, g) is a Riemannian manifold, we have

an induced metric h on the normal bundle u(Y) of a submanifold y C X and thus a self-adjoint
endomorphism

Ay : u(Y) -+ u(Y)
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defined by the formula

h(Ayu,w) : Hyf (u,w), u,u e u(Y).

As Hyf is non degenerate Ay tras non-zero eigenvalues and hence decomposes u(Y) orthogonally
into a direct sum of negative- and positive-eigenspaces

"(Y) = u- (Y) O "*(r).
We call the rank of the "negative" bundle "-(Y) ttre i,nder of Y, (as a critical manifold of "f),
denoted by Àvf.

Given f €96) anon-degeneratefunctionwithY CX anon-degeneratecriticalmanifoldof
/, with respect to a field lF we define the polynomial

MÁf ,Y) :: \ti atmr niQ- V))

where f{ denotes the compactly supported cohomology. When "- (Y) is orientable we have, by
the Thom'isomorph'ism e, a reduction of this polynomial to

ìyÍ n(y).

With these results we define

Mtff),: I MÁf ,y)
Y

where we sum over the critical manifolds of /.
Given e ) 0, let u; (Y) denote the set in the exponential image r0 of u- (Y) in X where

f > f V) -e; if e is smallenough, u;(Y) is a Àyl discbundle over Y.
We have a parallel result to Theorem 1.9 given as follows.

4.15. Theorem.
Given f e f6) with critical value c € IR and /-1(") : {Yt,Yz,...,Yr} consisting of non-
degenerate critical manifolds, there exists an e ) 0 such that if Í-'Ír- €,cl e] is compact then

r
Xc+e - X"-rUU", V).

j:t

The proof of this result is essentially the same as that for Theorem 1.9 with the deformation
constructed along the fibers. With this result we have that the Morse inequalities also hold with

ncirren an orientecl vector bunclle of rank k with total space .Ð over a compact manifold X, the Thom isomorphism
theorem calculates the compactly supported cohomology H: (E) in terms of H* (X); namely, Ho (X) = Hl+k (E) .locivenXaRiemannianmanifold,foreachx€X,u€T,Xthereexistsamaximalintervall,Cm.containing0
andageodesiclu:1, -+Xwithf(0) :øancl 7(0) :o. Wedefinethe exponent,ialmape:Lp:C-+X:ut+"yr(l) on
the star-shaped neighbourhood C ;: { u € :fX lf e I" } ofthe zero section ofTX. Thtserp* maps aneighbourhood
of 0 € T*X difieomorphically onto a neighbourhood of r € X.
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respect to this extended Morse counting series, and thus we say that a non-degenerate / is an
F-perfect Morse function if

Mt(l): Pt(X)

where the field lF is used in the cohomology modules on both sides of this equation.
Observe that if our critical manifolds are points, that is if Y: {r}, then u(Y): ?}X, and so

"- (Y) is the largest subspace of T,X upon which Hrf is negative definite, and so dim u- (Y) : \,f
thus M¿(/, Y) : ¡\"f as in the classical theory.

The completion process is extended via the following commutative diagram where Y is said to
beF-completable if the map a is zero; here zr is the projection of the disc-bundle u; (Y) and -ã the
reduced homology modules over IF.

H.(u;(Y)) ------+ U.(";(Y),0u, (y)) --q-+ É.-1(0u;(v))

".1 I t4 15 1)IJ
H.-s, ¡(Y) --\ fr.a(X ¡1v¡,)

Observe that zr* corresponds to the Thom isomorphism since Hq-k(Y) = H!(u, (Y)) by the
Thom isomorphism (Theorem 2.13 l24l) which in turn is isomorphic to Hn-q-rk(": (Y)). ß2I 124)),
and finally isomorphic to HnQ, (Y),0u;(Y)) by the Lefschetz duah,tytr.

4.16. Proposition.
If all critical manifolds of / are lF completable then / is an lF-perfect Morse function on M.

The extended notion of non degeneracy to critical manifolds has the advantage of being func-
torial under pull back. More succinctly,

4.17. Proposition.
Given r: E -+ X asmoothfibration, f ef@) isnon degenerateif andonlyis r*f : /ozrisnon-
degenerate on -8. Moreover, if Y is a non degenerate critical manifold of / then Àv f : Àn-'qy¡tr* I .

Proof:
These results follow from the fact that for p € n-L(Y), d,ptr* : d*@)f o d,or, ,(n-L(y)) :
(dr)-ru(Y), and Hr* : J o Hf o d,r -f d,f o flzr where -I is the change of coördinate matrix
from -Ð to X.

!

We now come to extending the main results of Morse theory to the equivariant setting; namely,
for functions possessing a certain symmetry under a compact Lie group action. Equiuariant Morse
theory studies the Morse relations and the Morse handle body theorem (the attaching of cells upon
passing critical points) for G-inuari,ant functi,ons f : X -+ IR. for G a compact Lie group acting
on a smooth manifold X. These are functions satisfyin1 f Ø.r): f @) for all r € X and for all

lrThe Lefschetz iLual'ity states (Theorem 28.18 [16]) thai for Mn a compact manifold with boundary, Hq(M) =H"_q(M,AM).



4 EQUIUARIA¡.IT MORSE THEORY 25

g e G. As stated at the beginning of this section, the proofs of results in this setting of Morse
theory follow from those of classical Morse theory with the associated deformation retracts being
equivarìant functions($7.2 [S]), and so we shall not give any proofs here.

4.18. Definition.
Given G a compact Lie group, a G space X is a topological space (or manifold, depending on
context) with continuous G-action. Let X be a G space. A set ,4 C X is called G-inuariant if
g ' :x e ,4 for all r € A and for alI g € G. A map F : X -+ Y between two G spaces is called
G equ'iuariantif F(g.r): g.F(") for all r € X, g eG.

Notice that for a G invariant function, if z is a critical point then the points on the G orbit
containing r are also critical points.

The set of all G-orbits is called the orbit space. Endowed with the quotient topology it is
denoted by XIG or simply X. Observe that a G-equivariant function naturally induces a map
F : X -+ Y between orbit spaces.

A fiber bundle r : E -+ X with structure group G is called a G bundleif for all g € G tlne
fiberwise multiplicative map g : E -+ E is a differentiable bundle map such that gE, : Es., for all
r Ç X. Thus if X is a G-manifold the tangent bundle TX is a G-bundle with 9 'u: d,rþ(g,*)(r)
for all u e TrX for all r € X. Afiber bundle r: E -+ X is called a R'iemann'ianG-uector bundleif
it is a G bundle and possesses a Riemannian metric such that the G action is an isometry. Assume
X is a Riemmanian manifold and Y C X is a connected compact submanifold. Then TY < TX
and so the normal bundle u (Y) is also a sub-bundle of T X . If in addition X is a G manifold and
Y is G-invariant, then both TY and u(Y) are G-bundles.

Let f Ç C'(X,lR) be G-invariant. This gives rise to a G-equivariant gradient vector freld grad, f
given by

(grad,n.*f ,g'u) : (d"f ,r)

forall(g,*)cGxXandforallu€T*X;thatis,9*'gradf.g:grød,/.ArtheactiongonT*X
is unitary, hence dg* : g-r,wa obtain gradf 'g: g.grad,/. Analogously, the Hessian fIl is also
G-equivariant if / e C2(X,lR).

One observes that the sets X", f-7 (c) and the critical sets K" :: crü(f) n /-1(r) are G
invariant. Also, a critical orbit O ,: O(r) is a G submanifold of X. It follows that TrO < ker(H, f )
and that the bounded self-adjoint operator H,f i ",(O) 

-+ u"(O) satisfies g* . Hs.rl . 9 : Hrf .

In applying Morse theory to G spaces X, there is much advantage in having a free action. In
this case the orbit space X :: XIG is a manifoldand r'. X -+ Xis a smooth fibration 12 withfiber
G. Thus we can carry out Morse theory on X; that is, / is a perfect equivariant Morse ftrnction if
the induced function f on X is perfect in the usual sense.

On the other hand, when the action of G on X is not free, X may possess singularities and one
cannot implement Morse theory on such a space as easily. The remedy to this situation is to appeal
to homotopy theory and convert to free actions without changing the homotopy of the space on
which the group acts; thus we carry out Morse theory of an induced function f c on a new space
Xç called the homotopy quoti,ent These ideas are made precise as follows.

12See Appendix B for the definition of a fibration
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Consider a principal G-bundle .Ð over a manifold B = EIG 13; in particular we may choose ,Ð

to be a un'iuersal G-bundle which is a bundle unique up to homotopy with contractible total space
(a concrete example of such a bundle is given in Appendix B). Now G operates on -B x X diagonally,
that is g'(p,r) i: (gp,g.r), and this action is free since the action of G on,E is free. The pull-back
of a G-invariant function / on X to a function on -E x X is G-invariant under the diagonal action,
and hence induces a smooth function lc orthe homotopy quotient Xç:: E xc X ,: (E x X)lG,
which is a fiber bundle over BG :: B with fiber X and structure group G. Homotopy quotients
have the properties that {r}6 - BG, Xc - BG if X is contractible, and Xç - X if the action of
G on X is free.

Upon extending the Morse relations and the Morse handle body theorem to the equivariant
setting we obtain the following main result.

4.19. Proposition.
Given Y a non-degenerate critical manifold of / on X, the corresponding non-degenerate critical
manifold of /ç on Xç is Y6, and Àvf : \v"fc.Moreover, the equivariant Poincaré series is

Pf (Y) ': Pt(yc): t {aimnn(vò:, I tidl,mHbV)

and Y contributes to M¡(fç), the counting series of /ç on Xc,by ùYf Pt(Yc).

Notice that if the non-degenerate critical manifold Y of f consists of a single G orbit with sta-
bility group (the stabiliser) fI, that is, Y : G I H , then /6 will have corresponding non degenerate
critical manifold BH:: ElH, whence Y contributes ¿À"/R(BH) to MtUc).

If Y is the orbit of G through p, then fI the stability group of p acts on the normal space to Y
and, using an fI invariant metric, also on the negatiue normøl spaceuo (y). It follows that z-(Y)
is associated with the principle bundle G lH : Y , via this representation, and correspondingly that
u-(BH) is associated with the universal fI bundle EH :: -E over BH :: EHIH, by the same
representation.

Given a G-pair (X,Y) and a field IF, the cohomology

Hà(X,Y; IF) :: H' (Xc,Yc; F')

is called lhe G-equi,uariant cohomology. A. Borel proved that G-equivariant cohomology satisfies
most of the properties of general cohomology (S4 [8]), namely homotopy invariance, the exci-
sion principle and resultant exact sequences, however the dimension axiom does not hold since
uà({"}) = H'(BG).

A method of simplifying calculations in Morse theor¡ as will be utilised later in the Yang-Mills
theory, is to partition a space into a collection of submanifolds on which the singularities of the
space are isolated. This methodology is known as Whitney strati,fi,cation of a space into súraúa. This
is defined more precisely as follows.

t3The definition of a principal G-bunclle is given in Appendix B
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Given E apartiallyordered set and Y a closed subset of a smooth manifold X, aE-decomposition
of Y is a locally finite collection of disjoint locally closed subsets S¿ C Y for each i e 3, called strata,
such that

y:US, and ^9rìS¡#Ø <+ S¿ CS¡ ë i,:j or i<j
i€3

and we write ,S¿ < ^93. This decomposition is called a Whi,tney stratifi"cation of Y tf:

(i): each stratum S¿ is a locally closed smooth submanifold of X;

(ii): whenever ,So { Sp, the pair satisfies the following Whitney conditions: given sequences

{"0} c Sp and {A¿} ç So both converging to some A e So, and suppose that (with respect
to some coördinate system on X) the secant lines l¿ :: r¿U¿ converge to some limiting line I
and that T*oSþ converges to some limiting plane r. Then

(ria): ToSo c r;
(iib): I c r.

Now suppose that Y is a compact Whitney stratified subspace of a manifold X and / is the
restriction to Y of a smooth function on X. \Me define a crit'ical poi,nt of / to be a critical point of
the restriction of / to any stratum; in particular, the zero dimensional strata are critical points.

In stratified Morse theory we consider Whitney stratified spaces X embedded in some smooth
manifold M- We say that a function f on X is smooth if it is the restriction to X of a smooth
function on M. By definition, Morse functions on a Whitney stratified space X are defined by the
following three properties:

(1): the critical values of / must be distinct;

(2): at each critical point r of. f , the restriction of / to the stratum ,S containing r is non
degenerate;

(3): d,"f for r € cri,t(f) does not annihilate any limit of tangent spaces to any stratum ^9/ other
than the stratum S containing r.

Given a subset X of some smooth manifold M and a function f : X -+ IR which is the restriction
of asmoothfunction l,M -+lRandfixingaWhitneystratiflcationonX, acriticalpointof stch
afunction/isanypointr€Xsuchthatdrfp,s:0where,SisthestratumofXcontainingr.
A Morse function f : X -+ IR. is then the restriction of a smooth function l, M -+ IR. such that

(i): /: Ir ir proper and the critical values of / are distinct;

(ii): for each stratum 
^9 of X, the critical points of /¡s are non-degenerate; that is, if di,m(S) > 1,

the Hessian matrix of /ls is non-singular;

(iii): for each such critical point r € S, and for each generali,sed tangent space Q :: limrn-rTrnB
at the point r, for -R ) S a stratum of X and {*¿} c,R converging to r, d,l(Q) f 0 except
for the single case of Q : T*S.
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An important example of a Whitney stratification is the Morse strati,ficati,on of. a Riemannian
manifold X. We associate to a function f e f @) the vector freId gradl dual to df . Tlne gradient

fl,ow for / is given by the paths of steepest decent, that is the trajectories (integral curves) of
-gradÍ.If f is a Morse function, every trajectory converges to some r € crit(f), and the set of all
points on trajectories converging to a given r € cri,t(f ) form a cell X+ (r), called the stable manifold
of r. Upon replacing f bV -f we similarly get the cell X-(r) called tÌne unstable manifold of r; one
observes that di,mx-(*): codimx+(*): \,Í.More generally, if Y C X is a non degenerate
manifold of / we similarly obtain stable manifolds X+ (Y) which are cell bundles over Y. We thus
have a strati,fi,cation

X : l)y€"rtt1¡¡X+ (V¡

called the Morse stratifi,cati,on of X. If / is a G-invariant function for G a compact Lie group, we
can always choose a G invariant metric onTX. The gradient flow if G invariant so that the above
stratification is G-invariant.

The Morse stratification of a space X by a function / has a natural partial ordering < on the
critical manifolds of / given by

Y1 <, Y2 <+ ox+ (Yì ì x+ (Y2) + Ø

One observes that Yt l Yz implies there exists a trajectory of gradl starting on yl and passing
withine)0ofYz. Inparticular,upontakin1€<f(Y2)-l!t)wehavethatYr{Y2impliesthat
I Vù < f Vz) Hence the transitive relation ( generated by < is a partial ordering and has the
property that

x+(Y) ct)y,syx+(Y,).

The presence of such a partial ordering of the Morse strata aids us to develop a criterion for which
a general stratification is a Morse stratification. This criterion is developed as follows.

Often one is given an explicit stratification of X, say X : U)e^X.l where each -X¡ is a locally
closed submanifold of X and the indexing set Ä is strictlyla partially ordered, for all À e Â. we have

One can use this stratification to obtain Morse-type information on fI.(X). We begin with open
strata, given by minimal À, and inductively add other strata. At each stage we can write down
the exact cohomology sequence for a pair (U,U\V) where V is a closed submanifold of t/. We now
explain this procedure.

Define a subset 1 of indices to be

openifÀe land ¡,t<),imply pe I;

closed if Àe landp)Àimply ¡t,e I,

4 C Ur>¡X,

raA partial ordering 1is strict if À < p and p ( ì impÌy À: p
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for which r,¡¡e observe that 1 is closed if and only if Ic is open.
Moreover the subspace X1 '= U¡e¡X¡ of X is open (or closed) if l is open (respectively closed).

If 1 is open and À e I" is minimal then "/ :: 1 U {À} is open and our inductive step is from X¡ to
Xy. FYom the decomposition X.l Ç U¡">xX¡" we have that X¡ ,: X-¡\X¿ is a closed submanifold
of X¡. Assuming that all the normal bundles to our stratification are orientable, we have by the
Thom isomorphism theorem Hq-k(X^) = Hn(Xt,X¡), and so we obtain the exact sequence

------+ Uq-k(X) --------+ Hq(Xì 
--+ 

Hq(X¡) -------+ ...

where k : kx : codimX¡. If for a given field F" the exact sequence breaks up into short-exact
sequences for all q and À it follows that

pt6): t tk^rrr(x^¡;

in such a case we say that the stratification if perfect over lF. If this holds for all prime order fields
F : Zp we shall simply refer to the stratification as perfect; thus a perfect Morse function defi.nes

a perfect stratification.
If the stratification is G-invariant and the corresponding equivariant cohomology sequences

break up, we shall call the stratification G-equiuariantly perfect.

When a manifold is infinite dimensional the strata still have finite codimension. When the
following two finiteness properties hold for the stratification we may proceed to compute the co-

homology of X as in the finite dimensional case; although the induction never terminates, only
finitely many steps will be needed to compute Hq6).

(F1): For every finite subset 1 there are a finite number of minimal elements of the complement 1"
(so that our inductive procedure still applies);

(F2): for each q ÇZthere are only finitely many indices À e l with cod'imXx1q.

Given a stratifi.cation of X and a function f e f(X), the following are axioms for checking
whether the stratification is a Morse stratification (by stable manifolds) arising from / (for some
metric on X).

4.20. Proposition.
Given I eg(X) having only non-degenerate critical manifolds Y¡, suppose X : U.rX.i is a strat-
ification by disjoint locally closed submanifolds X¡ which, subject to a partial ordering ( on the
indexing set {À}, satisfies

(i): À < p implies f6ì < f(Xp.);

(ii): X¡ ClJp>xX¡,ti

(iii): for a.Ly r € X, grad*/ is tangential to the X¡ containing r;

(iv): Y¡ C X.ri
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(v): Ày^/ : cod,'imX^¡

then X¡ is the stable manifold ,5¡ :: X+(yr) of Y¡ so that we have the Morse stratiflcation.
Proof:
The trajectories r(ú) of -gradl through any point r € X¡ converges to Y¡ as ú -ì oo due to the
following reasons.

Condition (iii) implies r(ú) remains in X¡ for all finite ú, while condition (ii) implies r(æ) e Y,
for some p, > À. If r is sufficiently close to Y¡, r(t) either converges to or lies "belo',¡¡" Y¡ as ú -+ oo.

As r(oo) e Y, for some p > À, r(oo) cannot lie below Y¡ and so r(oo) € Y¡; thus locally near
Yx, Xx C X+(yÀ). By property (v) dimX^: dimX+(Y¡), and so near Y¡ the set X¡ is open in
X+(Y¡). Property (iv) implies X¡ and X+(yr) coincide near Y¡.

For r € X¡ with r(oo) e Yr, as t becomes large r(ú) gets close toYrin X+(Yr), and so r(ú)
lies in Xrfor large ú. On the other hand, r(t) e X¡ for all finite ú.

As the X¡ are disjoint, þ : \, and this implies what we require to prove.
tr

We shall show that a stratification satisfying properties (i)-(v) above is induced by the Yang-
Mills functional and hence obtain an explicit means of calculating Morse type information about
YM.If the Morse strata exist, that is, if one can prove good properties about the trajectories r(ú)
as ú -+ oo, then Proposition 4.20 will identify the Morse strata with our strata.

The problem in the Yang-Mills setting is that the manifotd X in Proposition 4.20 (which is
actually the space "4 of connections) is infinite-dimensional and the critical sets Y of the Yang Mills
functional Y M have singularities. As pointed out in the closing of $ 1 in [2] , due to these problems
the connection with Morse theory and our work on Yang-MiIIs theory is left at a conjectural level,
and our stratification will be used directly to compute cohomology.
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5 Morse theory for the Yang-Mills functional.

Our primary aim in ihis thesis is to use Morse theory on the Yang-Mitls functional

Y M : "4(-Ð) -+ IR,

when,Ð is a t/(n)-bundle over a compact Riemann surface X, in order to obtain information about
solutions to the Yang-Mills equations.

There is a natural group acting on the affine space of connections "4(,Ð) called the gauge groupl
denoted by Ç ::l(X,Aut(E)), whose action is deflned by

s.V(ø) ,:s-lV(so), sÇÇ, Ve A(E), oel(E);

when V : d. l A with respect to a trivialising cover of -E over X, the above formula expands as

s.V:: d+s-rds+s-14s.

The action of the gauge group Ç on A(E) is not necessarily free and so we must carry ottt (Ç
equivariant) Morse theory on the induced functional Y M ç on the homotopy quotient

Aç-BÇ

since "4(.Ð) is contractible.
To show lhat Y M is an equivariantly perfect Morse function is very difficult and is yet to

be established, although some directions have been followed by K. Uhlenbeck by analysing the
properties of the Yang Mills flow. Instead we shall concentrate on showing that the Yang-Mills
functional induces a Morse stratification on A and that this stratification is perfect in the sense
described in $2. For this purpose we now proceed to calculate Poincaré series P¿(.4ç) via a well
known description of the classifying space 15 Bç(E), namely that16

Bç(E) - Mapø(X,BU(n)), (5.0.1)

where the space on the right-hand side is the the space of maps X -+ BU(n) pulling back the
universal bundle EU(n) -+ BU(n) to a bundle over X isomorphic to E; this is explained more
precisely as follows. Consider the principal fibration 17 (a flbration whose total space is endowed.
with a group action)

Ç - ------+ Mapu@)@, EU(n)) --I-+ MapB(X, BU(n))

where MapuØ)@,EU(n)) denotes the space of U(n) equivariant maps. This frbration arises from
the principal t/(n)-bundle

U(") --------+ EU(n) * , BU(n),
15The notion of classifying spaces is described in Appendix B.
l6The formula BÇ(E) - Mapu(X,BG) holcts for vector bundles E with general compact Lie structure group G.
tTSome notes on fibrations appear in Append.ix B for the sake of completeness for readers unfamiliar with this

topic; some following locutions originate from this introduction.
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itself a principal fibration, since Ç acts on the space Mapu@)@,EU(n)) by composition whose
space of orbits is naturally homeomorphic to the function space MapB(X,BU(n)) under the as-

signment [t] + (Þ o a op-l for p I E -+ X. The classifying space BU(n) may be realised
as the topological union G"(C-) ': UoG"(Cq) where G"(Cq) is the Grassman uariety whose
points are n-dimensional subspaces of Cø; this is a paracompact manifold modelled on an infinite
dimensional complex Hilbert space and is therefore locally contractible, thus so too is the space

MapB(X,BU(n)). By Corollary 7.27, Chapter 1[34] (described in Theorem 8.9 in Appendix B),
the above fibration is locally fiber homotopically trivial since its base space is locally contractible.
As EG is contractible for any Lie group G (see S5 [25]) then so too is the space Mapu@)(8, EU(n)).
These facts imply that our fibration is a universal Ç-bundle, and so by tlire classi,fication the-
orern of un'iuersal princtple G bundles 18 the classifying space of Ç is homotopy equivalent to
MapB(X, BU(n)).

tr

We shall norv proceed to analyse the spaces M app(X, BU (n)) in order to derive the Ç equivariant
Poincaré series Prq (A(E)) ,: 4(BÇ).

When .E is a U(1)-bundle the classifying space of the structure group is BIl(1) = ClPoo where

crp- :: L[{cn" x [0, r]]/{(r,L) - (e(u ),0)}
n,)O

where i are the inclusions

{pt}'-+... 4cT"-cPn+1 + . ..

Note that ClFæ could also be thought of as the space P(11) :: S(H)/S1 where S(11) is the
(contractible) unit sphere of an infinite dimensional Hilbert space fI over C. The corresponding
universal I/(1)-bundte

u(1) --------+ s(Ir) --5 P(H)

gives rise to a long exact homotopyln sequence from which results

r¡(P(H)) -

P(ff) is thus an Eilenberg-MacLane space; for abelian groups r and integers n ) I, these are
CW complexes K(r;n) with homotopy

r¡(K(r;n)) =

Thus P(fI) - K(2";2)
l8This classification theorem is given as Theorem 8.2 in Appendix B.
leThe higher homotopy groups of a space X are defined by r*(X),: [S', X] the set of homotopy classes of based

maps S' -+ X. These are groups lf n> I and abelian if n) 2.
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The following result aids in our calculation of Bç(E) in this case, which is cited directly from [2]
(Theorem 2.6, a result of René Thom) since it could not be located in available texts on algebraic
topology.

5.1. Theorem.
Given X a finite complex, r an abelian group and n ) 1 an integer we have

Map(X, K(r;n)) -IIofuo(x,r);n - s).
q

Thus we conclude, for X a Riemann surface of genus g,

M ap(X, BU (r)) - K(Z;O) x 1l z@...@ l) x K(V,;2)
29-fold

- {pt) x Sr x ' .. x Sr. xP(H)
ã

where g is the genus of X; thus BÇ has no torsion.
By the Künneth formula for cohomology 'o we have that

ui(Map(x,BU(t))) : O Hp,({pt})Eto'(St)E Arrp,n(s1) Øso,n*,(P(H))
Po]_Pt*"'lPzn+t-i

As we know the cohomologies of the spaces {pú},51 and P(fI), we calculate the following list of
coefficients for the Ç-equivariant Poincaré series P¿(BÇ) ,:DorrtxdirnH'(Bç,Q).

polynomial term order i
0

1

2
oJ

coefficient
1

2g

(l) +t
('í) + ('f)

,^
2n*l

DT:rG:)
ÐTj'e)

Thus21

(5.1.1)

20The Künneth formula states that Ho (X) Ø Ho (Y) = Hp+s (X x Y), see $29 [16].21This result can also be understood from the fact that if A attd B are graded algebras then R(AQB) :
h(A)Pt(B).

Pt(Bç):ffi
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Consider now the case r¿ ) l for our structure groups U("). The classifying space BU(n) is
realised as the inflnite Grassmann uariety Gr,(C-) ': Uq>o G"(Aq) where G"(Cq) is the compact
manifold of n-planes in Cq whose points are the n dimensional subspaces of Cq; the Grassmann
variety is given the topology of a union since G,r(Cq) c GrlCø+t;.

Over the rationals Q the space BU (n) is a product of Eilenberg-Maclane spaces

BU(n) -q K(Z;z) x K(V.;4) " 
. . . x K(Z;2n),

the reason for this follows from a type of Postn'ilcou approrimateon (Proposition 18.19 [5]) which
states that every connected CW-complex can be approximated by a twisted product of Eilenberg-
Maclane spaces. The explanation as given in $2 [2] is that each Chern class c¿ e H2i(BU(r),Z)
induces a map BU(n) -+ K(V-;2i), and as fI'@U(n)) 1Lfq.... ,cnf (S7 [25]) then the product
of these maps induces a Qequivalence of these spaces.

As we know that I{(V,;l: 51 and K(V,;z): CIF- we find by the K'ünneth theorem22 that

H'(K(Z;2b)): i,:2kjforsomej€NU{0}
otherwise

and H'(K(Z;2k - t)) :
Z, i:0, 2k - 7

0, otherwise,

and so we have by Theorem 5.1 for k > 2 ttrat

P¡(Map(X, K(Z;2k))) -,, 
(7.+ t2n-t¡zs

\- , -," t ) ,t (1 _ tzn_z¡ ql _ t2k )

and so as the space Map(X,BU(n)) splits up as a product of map spaces Map(X,K(V';2k)) for
lc : I,... jnwe have with with the result (5.1.1) that

DtD?\ _ {(t+r)(t+¿3).. (1+*n-1')}2s
tl\Dv)-

It turns out furthermore that the space BÇ is torsion free in this case. This is explained as follows.
A compact Riemann surface of genus g is homotopically equivalent to the bouquet" VrnStV"',
where e2 is a 2-ceII, and so we have a cofi.bration24

Vz, sl x --------+ s2 (5.1.2)

which gives rise to the following fibrations on base point preserving maps

M ap* (52, aU (n)) --------+ M ap* (X, BU (n))

Mop* (V zssl, Btl(n))
22The Küntreth theorem (chapter V, Theorem 7.8 [34]) states that for abelian groups r,r' and n,q positive integers,

Hq(K(r@r';r)) ÈO,+":s H'(K(r;n))Qf/"(I((r';r))O@,a":o-rTor{H'(K(r;n)),H"(I{(r';t))}.
23In the disjoint union X l[ Y of based manifolds (X, z) and (Y, g) ideniify the points z and gr to obtain the quotient

space X!Y, called the it wedge or bouquet of X and I/.

2aSee Appendix B for the definition of a cofibration.

{r
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JL,

and

Map* (X, BU (n)) --------+ M ap(X, BU (n))

(5.1.3)

BU (n).

Now, the classifying space B[/(n) is known to be torsion free since (S7 [25]) H'(BU(n),Z) =
21"r,... ,cnl.Theloop-spaceQBU(n) xU(n) and its second loop-space OU(n) = Map*(Si,t/(n))
are also torsion free 25. This follows from Theorem 4.1 Chapter VII [34] which states that the
integral cohomology groups H'(U(n),2) are free and of finite rank AIso, asU(n) x SU(n) x U(1),
hence AU(n) = CISU(n) x Clt/(1), given that SU(n) is a semisimple, compact, connected and simply
connected Lie group the loop space OSU(n) has no torsion by the result of l4l26 as does CIU(1)
since it is topologically equivale to the free group Z,lhus the loop space O(/(n) is torsion free.

Given the following identifications

OU (n) :: Møp* (S',U (r)) : Map* (S1, ABU @))

= Mop*(xSr, nuç"¡¡ - Mop* (S2, BU(n))

and

Map. (V S1, au(n¡; =[Man* (S1, BU(r¿))
29 29

:[anu(n):lfu(n)
29 29

the fibration (5.1.2) becomes

OU (n) -------r M ap* (X, BU (n))

I

J

lIznU('"')

whose fiber and base-space are torsion free. Applying Theorem 5.1 to pointed maps we must
have that the Poincaré series of the middle term of the above fibration must be the product of
the Poincaré series of the factors. If there were any non trivial homological twisting, the Poincaré
series of the middle term would be smaller than the product of the Poincaré series of the factors;
thus Map*(X,BU(n)) must be free of torsion. A similar argument applied to fibration (5.1) then
implies that the space Map(X,BU(n)) is torsion free.

We shall obtain a Morse stratification for 
"4 

by applying Propositton 1.20 to a particular stratifi-
cation "4,: U.l A¡we shall soon meet. In particular, we will require to show that this stratification

25The loop-space of a space X is the space f)X :: M¿p*(Sl,X), which satisfies the adjunction formula
Map"(EX,Y) = Map.(X,QY) for the suspension ÐX :: X A 51; here the srnash prod,ucl of two spaces X and
Y is the space X AY ,: (X xY)16 v Y).

26The main result (Theorem I) of this paper states that if G is a semi rimple compact connected and simply
connected Lie group, then the loop space QG has no torsion.
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satisfies condition (v) of Propos'ition 1.20; namely, that

À¡,Y M : codimc.As

for any non degenerate critical manifold A' ç A(E) of YM contained in a particular stratum,4¡.
To this extent it is of importance to be able to compute the index ),¡,Y M; in particular, the index
\vY M for a Yang Mills connection V localised in a certain stratum. We now proceed to calculate
this quantity.

Given a connection V that minimizes YM tlne self-adjoint endomorphism on e0@d(E))

.4. :: 'i ad,+Fv i cu è iltoFy,a)

has locally constant eigenvalues. This follows from the following argument: given u, an eigenvector
of Àinthefiber ad(E)" suchthat |t(r)ur:\tr,, thenbytheequationforparalleltransportfora
smooth loop 'y on X we can find a local smooth section o of ad(E) such that Vi,ø : 0. So

V(Âo - À") : (V.A.)o * ÂVo - ÀVo.

The right-hand side of this equation vanishes due to the fact that dy * Fy : 0. Thus we have a

first order initial value problem

Vrl; : 0, tu(r) : g

where w :: l\o - Ào, which by elementary differential equation theory implies 11) : 0.

Thus ,4. decomposes the complexification

ad"(E)a = ad,- (E) @ øao1ø¡ @ øa+(ø)

corresponding to its negative, zero and positive eigenvalues respectively, with dualities

adÙ (E)* - adj (E) and art- (H). - o,d,+ (E)

induced by the Riemannian metric on ad(E).

5.2. Proposition.
Given V a Yang-Mills connection, we have

inder(Y) :2dimcHr 1X,Cl1"a- 1n¡¡¡ (5'2'1)

nutlity(V) :2d'i'mcvt1x,0çod0 (E))) (5.2-2)

These results follow from the formula arising from a spectral estimate for the eigenvalues of the
elliptic problem arising in the second variation of Y M . This is described more precisely as follows
due to the identification TyAwitln tt(X, ad(E)).

Although -4 is an infinite dimensional manifold we shall proceed to show that the notion of the
index and nullity of a critical point of a map on a Banach manifold is well defined. One potential



5 MORSE'IHEORY FOR THE YANG MILLS FUNCTIONAL 37

direction for defining these formulae directly is the suggestion of chapter 11 [21]. Given / : X -+ lR.

a smooth function on a manifold X modelled over a Banach space, for r € X a critical point of

f let B, denote the directed set of finite-dimensional subspaces of TrX, and let Àf / denote the
maximal dimension of a subspace of E Ç þ* on which the Hessian Hrf is negative definite. If ru.

denotes the exponential pre-image in T,X of the ball B,(r), then we define the index of r to be

\,f :: Js"tåå, ^ln"'Í
with a similar definition for the nullity of r.

5.3. Proposition.
The quadratic form Q : tL(X,ad(E)) x tl(X, ad(ø)) -+ IR induced by the Hessian of the Yang Mills
functional Y M at a Yang-Mills connection V is given by

Q(n,q) : (dþd,yq f *[+f'y, ril , n),.

Proof:
Given the curve V¿ :: V +tr¡ for r7 e t'(X,ad(E)), we have that the norm of its curvature expands
to second order as

llFv,llT: llF'vllS+zt(¿oq,F'v) r t'{llavnllï* (F'v, [n,dD + o{¿3}

where (.,.) ir the global inner-product on e2@d(E)) constructed, as in 52, by the Hodge-Star
operator on X.

The Hessian of Y M at the extremum V is obtained from this expansion to yield

eh,ù ::#ttr,v, ttZr,=o

: lldvnll| * (Fv, ln,nD.

Observe that lldyrTll/: (dþdyq,4) since dþ is the formal adjoint of dy, and that

(Fv,ln,ql) ,: lq,r1] n +try

4 A [q, *f'y]

l.: Ç1¡dim(x)¡1 4 A * *-1 [*Fv, ry]

Using the formula for x-1 the last equation reduces to (?, *[*,F'y,4])

The endomorphism

is a degree zero operator on 11 ,*,,orulÏ,rJ *Jri;î1" oo,.,u"u
. aa:(Fvn,() : (Fv, [n'{]).

L

L
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5.4. Proposition.
The index and nullity of a Yang-Mills connection V are finite and equal to, respectively, the index
and nullity of the quadratic form

QØ) ,: (avry .t Fvn , n)

on the kernel of dþ in tt (X, ad(E)) where Ay :: dþd, + dvdþ is the Laplacian associated to V.
Proof:
The finiteness of the nullity follows from the following argument. Given the Jacobi operator

Lv '.: dþdv + îv

of a Yang Mills connection V, and Jy c tl(X, ad(E)) the collection of Jacobi, fi,etds of Le, that is,

elements rl e €.1 (X , ad(E)) such that LvT : 0, we call the quotient l/y :: Jy I im(de) the null space

of Q and its dimension the nultity of V. In the usual norm on tt(X, ad(E)) the ortho complement
of im(dy) in the exact sequence

to (x, ad.(E)) 'o , Jv ------+ ./r/y --------+ 0

is ker(dþ). Thus we may identify lfy with the space

{ n e et(x,ad,(E)) I Lvrt :0, dþn :0 }

whose conditions are also equivalent to

(Av + Fo)q : o, dþn : o. (5'4'1)

As Fy is a degree zero operator and the Laplacian Ay is elliptic, the solution space to (5.4.1) is
finite dimensional, and thus so too is the nullity.

As the Morse index of a Yang Mills V connection is defined as the dimension of a maximal
negative subspace of Q, or equivalently, as the dimension of a maximal subspace in ker(dþ) on
which the form

Q(rt) ,: (Avry -t Fvn , \)
is negative deflnite, we may extend the preceding argument to yield the finiteness of the Morse
index.

!
We finally proceed to derive quantities (5.2.1) and (5.2.2). Recall that the operator Â.

i ad * Fy has locally constant eigenvalues À, and so forms a decomposition

ad,(E)Qc:Oad,¡(E)
)

into orthogonal sub-bundles on which this operator reduces to the constant matrix I rld.

As Fy : -i +.4. we can reduce the analysis of Q to the cases where À is zero or a positive or
negative scalar multiple of the identity matrix. In the case -4. : 0, which corresponds to the bundle
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a:!P(E), we have QØ),: (Avri,4) which is semi-definite and so its index is zero. The nullity of
Q is equal to the dimension of the subspace of V-harmonic forms in ker(dþ). As Ay4 : 0 for

n e ker(dþ) implies dv\ :0 and dþn :0, then the nullity of Q equals dimension of the subspace

of harmonic forms in t1(X, adÙ (E)); the space XL @ao (A)) of harmonic forms is isomorphic to the
DeRham space f/r1o @d0(E)) (p.152 117]), which in turn is isomorphic to I11(X,0@a0@))) by the

DoLbeault theorern 27 
.

For the case when r\, : À i,d for À > 0 we require the following results.

5.5. Lemrna.
Given an eigenvalue À > 0 of the operator r\,, the Laplacian Ay preserves the spaces t(1'0)(odÀ(-ø))
utr¿ ¿(0'r) @d¡(E)). Moreover, the first positive eigenvalue of Ay¡¿q',0)(ûdÀ(E)) is greater than or
equal to 2À.

Proof:
The Laplacian splits up on the natural decomposition of the complexification by the Hodge-star
operator *

ef iøa¡1ø;; : t(1,0)@d,¡(E)) @ e(o'tl @d^(E))

into operators on the partial connections

"^o ool"'=u;rîÃlÄ'_;

where ôv and ây are the (0, 1) and (1,0) components respectively of the covariant derivative dy
given locally and respectively by ô f A1 and 0 + Az for ô and ô the standard Cauchy-Riemann
operators and,41 and A2 the respective (0,1) and (1,0) components of the local connection matrix
for V.

By the formula dÇ: - *dy+ it follows that A¿o and A¿o induce the same operator |Ay on

t(1'0) and 6(o't) *¡i.¡ preserves these spaces, and AV : Aav +A5o on the spaces g(0'0) utr¿ ¿(r't).

AIso, on t(0,0) observe that i, d,Ça: (âvôv 1-0y0y)a: x[A,a], and so A¿o - Aao : À on this
space.

As âv and ôy are elliptic operators their associated Laplacians are compact self-adjoint oper-
ators. Thus we have a Hilbert space decomposition (p.gS [tZ]) of e|@a¡(O)) into a direct sum of
eigenspaces of these operators. As we have shown that the partial Laplacians are linearly related
on the spaces t(0'0), t(1,1), f (r'0) ut ¿ ¿(0'1), the eigenspaces of these operators in t1(ød¡(-Ð)) are

the same. Thus the positive eigenvalues (spectra) of the two partial Laplacians are in one-to one

correspondence, and so the positive spectra of A¿o on the spaces g(o'o) utt¿ t(1'1) coincide. By
the preceding remark, as the two partial Laplacians differ by ¡ ot ¿(0,0), the spectrum is bounded
below by À since A¿o is semi-definite. As Av : 2L6o on 6(r'o) *" have the required result.

n
27The Dolbeault theorem states that Hn(X,f¿o(E)) = HY;q)@) where Qe(.E) is the sheaf of germs of holomorphic

p forms on E (p.151 [17]).
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5.6. Corollary.
The quadratic form Q hur nullity zero and ind,er(Qp"r(dþ)) equals the dimensions of the subspace

of harmonic forms ¡r, g(r,o) @d^(E)) for À > 0.

Proof:
As.Êv: i *-4. and as *: -'i on ¿(1'0) and +: i on ¿(0'1) *s have that

Fo¡e(t'ol - -À and Fylt(o'1) : À

and so the operator Av * Fy is positive on t(0,1), and has single negative eigenvalue -À on the
space g(1'0) with multiplicity the dimension of the harmonic forms ¡tt ¿(t'o).

n

Proof of Proposition 5.2:
With the above derived expressions for the nullity and index of the quadratic form Q on ker(d,þ),
we proceed to put the theory of harmonic forms into a sheaf-theoretic framework.

By Hodge theory 28 on bundles we have

H' (x, o (ad,¡(E))) o ker (L5ol s(0'i) (odÀ (E)))

and. Hi (x, o(ad,¡(E)Q r'*x)) = ker(a5olt(f i) (ødì(E)))

where T'*X is the holomorphic cotangent space of X. Also, the Koda'ira-Serre duality 2e gives

Ho(x,o(ad,¡(E)8 T'* x)) = Ht i(x,o(ad"s(E).)).

Applying these results and our earlier mentioned duality ad- (E). = ad+ (E) with Corollary 5.6
forl>0gives

ind,er(Q) : d"'im H' (X, O (ad-¡(E))) -

By applying the above arguments to the case À ( 0 gives a completely analogous result

inder(Q) : dirn Ht (X, O (ad¡(E))),

and we obtain the general formula for the index once we sum over the eigenvalues À.

The index is stable in the sense that the above formula can be put in purely topological terms.
Recall that the Riernann-Roch (Hi,rzebruch) theorern states that for a compact complex manifold
X' a holomorphic bundle .E over X we have X(,U) : {ch(E) .tdQX)}W] where ch is the Chern

28Let X be a complex manifolcl and .E a holomorphic bunclle over X. Given the Laplacian L ,: 0 ø0*u ! õ*80 ¿ ,

t<r'e)(E) - ¿tn'c)1ø-), tirle h.armonic spacel{(v,ù78):: ker(L) is finite dimensional and isomorphicß HY'q)(E).

See p.152 117l

'ncirretr X' a complex manifold and .Ð a holomorphic bundle over X, the i operator gives isomorphisms
Hs(X,Qe(E)¡ - ¡{n-t(X,ç¿"-o(E-))* where Oe(-E) is the sheaf of germs of holomorphic p-forms on -8. For p:0
this gives Hn (X,O(E)) = Hn-q (X,0(E- Ø I!¡))* where Ky :: A- T'" X is tine canonical line bundle and T'" X
the holomorphic cotangent space. See p.153 [17].
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character, úd is the Todd class, X(E) = Dlo(-t)odimH,(X,O(E)), and {o}[X] denotes the
evaluation of the degree n component of the DeRham class ø e Hjp(X;C) on the fundamental
cycle of X . \Mhen X is a Riemann surface of genus g, this formula reduces to dimçHj (X , O (E)) -
dimçHt(x,o(E)) : deg(E) + (s - 7)rk(E), and as 

"t(E*) - -c! (,8) we have

i'nder(V) : 2{des(ad,+ (E)) + rk(ad+ (E))(g - l)}

The fact that fl0(X,O(ad,¡(E))) :0 follows since A¿o - Aao - -À otr g(0'o)@d¡(E)) for À > 0.

In this way for s € F10(X, O(ad,¡(E))) we have ôy, : 0 and thus ASos : ôlôv" : 0. Using
the natural inner product (., .) on t* @a@)) induced by the Catan Killing form on u(k) and the
Hodge star operator on X, we have that as Aôvs Aão" : -Às then (ôþôys, s) - (ãiã" , s) :
-À(r, s). As ôþ is the formal adjoint of ôy this results in llfusll2 - 0 - -Àll"ll' which implies
thats:0sinceÀ>0.

On the other hand, the nullity is not stable in this sense.

As a point of interest, the induced Yang Mills functional YMç on the homotopy quotient
Aç - BÇ is defined as perfect if

Pf (A) : Mt(Y M ç)

where the Morse counting M¿ series is given by

M^Y Mç) : I t^"'YM Pf (A')
,4 €uit(Y M)

due to our results in Proposition 1.19, and.the I equivariant Poincaré series Prç(.4/) is computable
owing to results in a subsequent chapter when we construct a Morse stratification for A. As

we have been able to explicitly compute the index 
^A,Y 

M of a non-degenerate critical manifold
At C A(E) of Y M we can compute the Morse counting series M¿(Y M ç). In the case of rank n : 2

t/(2) bundles -Ð over X with degree lc : I, Bott l3l shows that

Mt(Y M ç)- P¿(¡/(2' 1)) *'"n*n !!=! 
")nn,I-t2 '(1-¡z)z(!-t+)

where N(n,k) denotes the isomorphism classes of rank n holomorphic bundles of degree lc over X.
If we hazard to assume that Y M is perfect in the equivariant sense) we have upon equating

M(YMÇ) and Pt(BÇ) that

P¿(¡,r(2,1)) {(1 +¿)(1 +t\}2e t2s (I + t)4s

í - t2)(t - t4) (t - tz¡O - t4)

G. Harder and M. Naras'imhan [19] derived this result purely in the context of algebraic geometry
by defining these varieties over a finite field whose number of rational points were found with the
aid of number theory, and then by applyingthe Weil conjectures (see $11 [2]).
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6 Stable bundles.

In this section we shall introduce the notion of stability of a holomorphic vector bundle over a
Riemann surface X which will aid in our construction of a Morse stratification of the affine space

A(E) of connections on aU(n)-bundle -Ð over X. To this extent we shall expound results on the
stability of holomorphic vector bundles over our Riemann surface X relating to the form of the
curvature of a metric connection on such bundles.

Let X be a compact Riemann surface (without boundary) with Hermitian metric g chosen so

that J, uoly - 1 where uol : uolx is locally given by t/Aefifiar1Ad,r2 for the local representation
gt¡dr¿ Ø dr¡ of g, and let ,Ð be a smooth complex vector bundle over X of rank rk(E) : k with
compact Lie structurFgroup G çU(k).

Define the slope of -Ð to be the rational number

P'(E) :: des(E)lrk(E)

where t}re d,egreeof E is the integer d,eg(E) t: ct(E)lX] : tr(Ak E)lXl where [k,Ð is t]ne d,eter-

m,inant (line) bundle. We shall take q(E) : l-*úr(Fy)] Ç H3R6) for any smooth connection
V on E where tlne curuature of Y, Fy :: dv o V, is a smooth section of ad(E) 8o?-X AT.X;
this DeRham cohomology class being independent of the choice of V since two connections on -Ð

differ by an element of f (X, ad(E) 8c".X) where ad(E) Ç End(E) is the Li,e algebra bundle on

X with fibers isomorphic to the Lie algebra g c u(k) of G.

6.1. Definition.
A holomorphic vector bundle t over X is said tobe 'indecomposable if it cannot be decomposed into
a proper direct sum of holomorphic sub-bundles. á is said to be stable (respectively, sem'i- stable) if
for all non-zero proper holomorphic sub-bundles -F < á we have

p(F) < p@) (respectively, p(F) < p(t)).

Due to the fact that c1(t lF O .F) : ct(t lF) + q(F) we have that these conditions are equiv-
alent to

p@lF) > p@) (respectively, p,@lF) > p,@))

In 1965 M. S. Naras,imhan €i C. S. Seshadri, proved (Theorem 2(A) SI2l27]) that a holomorphic
vector bundle t ona compact Riemann surface X of genus g ) 2is stable if and only if á arises from
an irreducible projective unitary representation of the fundamental group nt(X). An equivalent
result was proved by S. K. Donaldson [9] in 1983 by a method expounded in this section which is

"self-contained" as opposed to the proof given in [27]. We shall later demonstrate the equivalence

between Theorem 2(^) gI2 [27] and Donaldson's version appearing as Theorern 6.2below.

6.2. Theorem.
An indecomposable holomorphic hermitian vector bundle (t,h) over (X,g) is stable if and only if
there is a unitary connection V on (á,h,) having curvature satisfying +Fv - -2nip,(t). Such a
connection is furthermore unique up to isomorphism.
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Here a connection V on (t,h) is catted unitary (with respect to h'.: (', ')) if d(o,r) : (Vo,r)l
(o, Vr) for o,r € f (X, t). This means that with respect to a unitary frame of (t,h) the connection
matrix of V is skew-adjoint.

6.3. Definition.
A connection V on (E,h) over (X,g) whose central curuature i.¡'v equals -zni,p,(E) is referred to
as an Hermitain Ei,nstein (H-E) connectionwith factor -2ni¡l(E).

As we are predominately working with the differential-geometric structures of connections on
holomorphic bundles, we will utilise an equivalence between holomorphic structures t and unitary
connections on smooth complex vector bundles ,Ð over X in order to simplify the proof of Theorem

6.2. This correspondence is made plecise as follows.

When analysing connections one naturally discusses their coördinate representations; this being
the motivation for the introduction of fne gauge group. Tine compler gauge group Ça of general

linear automorphisms on E acts on -4(E) by

e.Y ::v - (õvùs-t + ((ãog)g-t)*, s € Ç4, V e A(E),

thus extending the action u.V :: V - (d,su)u-1of the unitary gauge group Ç :: {u e ça I u*u : l}.
The existence of holomorphic structures á on a smooth complex íector bundle E over X is

related to a class of partial connect'ions on ,Ð called 0 operators. These are C-linear operator-s

0¿ :l(E) t ¿(o't)1ø)

satisfying t]ne0 Lei,bnitzrule0¿(lo):0f øo+Íãt@) for/ e SO(X) ando € f(E) andsatisfying

the integrability conditi,on ô¿' : 0 (where we have used the same symbol for the extension of ô¿

to the operator ¿(n,ø)çE) -+ t@,q+r) (E)); this latter condition is vacuous on a Riemann surface X
since ¡(z'o)x : A(o'2) X :0.

Given a holomorphic structure t and a local holomorphic frame {e¿} on E,we define a natural
0-operator by the local formula

ãt(Ðw¿ Ø e¿) ': I 0r¿ Ø .¿.

This construction is independent of the choice of holomorphic frame since the transition functions
relating these frames are holomorphic maps.

Conversely, given a partial connection ôo satisfying the ô Leibnitz rule and the (vacuous)

integrability condition, we have that its local components # + * (with respect to an open set

U C X) commute. Thus by the Newlander Ni,renberg theorem for almost complex manifolds [28] we

have that there is a complex gauge transformation g : U -+ GL(k,C) such that g($ + a)g-r : fi;
that is, there is local trivialisation of -Ð upon which o : 0. In such a local trivialisation the solutions
to ôos : 0 are just the holomorphic vector functions, so the sheaf of germs of local solutions to
this equation is a locally free sheaf of Ox-modules which thus corresponds to a holomorphic vector
bundle to over X. This latter result can be alternatively understood to mean the holomorphic
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vector bundle to constructed from the holomorphic transition functions which connect any two
local trivialisations of -Ð on which a : 0.

With this understanding, a unitary connection V on E induces a holomorphic structure tv on

E viaits (0,l)-component ôy : f (E) --¡ g(o'r)(E). Conversely, given a holomorphic structure t on
(E,h) and an associated partial-connection ô¿, there exists a unique unitary connection V (with
respect to h,) which is compati,b/e with the holomorphic structure t on -Ð; that is, with ôy - 0t.
For, within a local unitary trivialisation of E in which the partial connection ô¿ is represented by
a matrix a of (0, l)-forms, the connection matrix A of l-forms of such a V must satisfy A: -A*
and must have (0, 1)-component a. These requirements uniquely determine the connection matrix
as A: d- e*, which gives rise to a well defined global object due to the compatibility conditions
satisfied by a. Alternatively, given a local holomorphic frame {"t,.. . ,ek} for t upon which our
Hermitian metric h is locally represented by the matrix h¿j '.: h(e¿,e¡), in this trivialisation for
t our compatible connection is given by the matrix of (1,O)-forns h-r7h, where we have abused

notation here and written h : (h¿¡) for the local representation of h.. As before, V is determined
as a well defined global object by the conditions of compatibility of h.

6.4. Definition.
The unique connection on a holomorphic Hermitian bundle (t,h) over (X,S) which is compatible
with both the metric and holomorphic-structures on the bundle is called lhe metric connect'ion

on (€,h).

CIearIy, two ô-operators give isomorphic holomorphic structures if and only if they are conjugate
by an automorphism of the underlying smooth bundle; that is, t = F as holomorphic structures
on E if and only if there exists a g e l(X,Aut(E)) such that 0¿g : 907; or equivalently, if
o, : ot - (ãe g)g t.

Connections thus define isomorphic holomorphic structures precisely when they lie in the same

Ça-orbit. Given t a holomorphic vector bundle denote by O@) the orbit of connections {g'V I S e

Ça) such that ty = t.

In the proof of our main theorem we shall also require to generalise the class of connections to
incorporate tlne Ll connections. Connections of this class are described as follows.

Let A(E) denote the affine space, modelled over the space l(X,ad(E) 8c 7-X), of connections

on .8. Choosing a "base" connection V , € A(E), we obtain a Soboleu norrn orL sections o € l(U, E)
forUCXopen

k

ll"llp,n,: D llV,"ollo
a:0

where Voo means a-fold composition of the operator Vo with the convention that VoO :: 1r(ø).
The completion of the space l(U, E) in the ll 

. llr,r-rot- is defined to be the Soboleu space Lf,(u, E).
Different choices of Vo yield equivalent norms so the definition of this space is independent of the
choice of "base" connection. We define a connection V e A(E) to be of class -Lfl if, given V : d+A
locallyover[/, Ae LI(U,ad,(E)Q"-X); theaffinespaceof suchconnectionsisdenoted "ryk@)

For necessity in later calculations the gauge group acting on "fi(ø) is taken to be Çl+t t:
Ll*r(X, Aut(E)).
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The proof of Theorem 6.2 incorporates the minimisation of a certain functional .I on the space

of ,Ll connections satisfying /(V) : 0 if and only if the unitary connection V on the holomorphic
Hermitian bundle (t, h) is of type required by the theorem. This functional is constructed so as to
have the lower semi-continuity property which allows one to utilise the weak-compactness result

of K. Uhtenbeck (Theorem 1.5 132)) for connections on bundles (which shall be expounded in a

later appendix) in obtaining a limiting connection V fot a given minimising sequence for Jpçe¡.
This connection will either lie in O(t) or define a different holomorphic structure tf + € of same

rank and degree as t. In either case we have a non-zero sheaf homomorphism a: tç ---+ t. If a
is not an isomorphism we will show that /(V) ) J1 :: u¿(ker(a)) - u¿(i,m(a)) where u¿(T) ::
rk(F)(¡t@) - p,eÐ for F < t. By a result of l/. Buchdahl (Lemma 2 l7l we will also show

that there exists a connection V on t compatible with ô¿ such that -f(V) t h. By the lower

semi continuity property of J we have that "/(V) : i'nl J¡oçç) < inf Jp@) < J(V) thus yielding

a contradiction; thus concluding that áç ! t and i minimises Jp@).Finally, by considering small

variations within O(t) we deduce that V minimises Jp@) precisely when J(V) :0 which is the

condition that i is of type required by our main Theorern 6.2.

The functional J is constructed as follows.

On the space of Hermitian matrices define the functional

u(M) :: tr( M* M)

Any Hermitian matrix can be diagonalised by a unitary matrix, for instanceU-rMU: Â where

[/ is a unitary matrix whose columns are eigenvectors of M constituting an orthonormal basis

of Cl and It :: di,o,g(À¿) the diagonal matrix of eigenvaltes of M. This leads one to find that
u(M): DLrlf¿|. Moreover, "(M) -- mar{e¿}Ð¿l(M"¿,e¿)l for {e¿} orthonormal bases of C3.

These formulae for u(M) show that z is a norm on the space of Hermitian matrices. One observes

by the latter formula for u(M) that block matrices in C2" of the form

^n.-l 
A Bl

LB- D ]
satisfy "(M) 

> ltr(A)l + ltr(a)1.
Given (t,h) a holomorphic Hermitian vector bundle over X, by applying ru fiber-wise on t we

define on the space of self adjoint sections o Çl(End(t)) the functional

r,,(ø) :: llr"rf ,o,f'''

As y is a norm) so too is l'I on the space of such sections. Moreover, N is norm-equivalent to
the usual L2 norm ll"ll3 ,: I*loltuol :: [*tr(o*o)uol on the same space; for if o : (JÌ\(J-7,

for [/ unitary and À the diagónal matrix of èìgenvalues of o, tlnen tr(o* o) : tr(o2) : D¿ Àf , and

as u(o)2: {D¿lÀ¿l}' : Ðo^? l_D¿+¡lÀ¿À¡|, then one observes lloll2 !,nf(o) Vo. ConverselS

¡r/(") < klloll" where k: rtc(€)2.This means we can extend the norm lü to.L2-sections.
With this norm we define the functional

-r(V) :: l{ (#+/'(¿) 1)
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for Ll unitary connections V on t where Fy e t2 (End(S)) is the associated curvature and 1 in
the expression denotes the section of End(€) given by r r+ I¡, the k x k identity matrix.

This functional is in fact lower semi-continuous; that is, for any V we have /(V) < lim inf¡ J (V ¡)
L?

for V¡aV. To show this we must prove the equivalent condition that given e ) 0 there exists an

n€NsuchthatJ(V) </(Vr) *eforallj>n,whichweshallnowestablishbyconsidering
the reverse of this inequality. Given e ) 0 consider the set C. of all a e L2 (X, End(S)) satisfying
ll(a* p.I) < /(V) -e. Theclosed set C. isconvex since z is anorm. At If f C,wecan
separate C. and ffi; that is, there is a hyperplane H (a linear functional H e L2(X, End(t)).) and
aconstantc€lRsuchthatH(")>cforalla€C,andfl(a) (cwhenaliesinaneighbourhood

of #. Rs v¡4V then Fy,4I.o ,o for sufficiently large j we have that u(ffi) ( c hence there

exists anneNsuch thú+ /C,.Thatis,forallT >nwehave J(V¡) > J(V) -e.

We shall also require explicit reference to the structure of connections and their curvature on

sub bundles and quotient bundles. For this we briefly consider ertension classes of holomorphic
vector bundles.

Given holomorphic bundles t, t' , t" We say that t is given by an ertens'ion of €,tt by tt if
there is an exact sequence

0 ____+ et __:___+ ¿ _J-__¡ til ___-____+ 0

We furthermore say that two extensions of tt' by t' are equ'iualent if there exists a commutative
diagram of the form

0 --------+ tt -:]--+ tt -J\ ttt ---- ---+ 0

il|il J

0 ---> t, '" > t, -12--+ ttt ----+ 0

Upon applying the functor Horn(ttt ,. ) to an extension of ttt by t/ we obtain the exact sequence

0 -------+ Hom(t",€') ------+ Hom(t",5) --------+ Hom(t",t") -------+ 0.

Forming the associated long exact Õech cohomology sequence we have the connecting homomor-
phism

õ*, Hr (x, O (H om(€", t" ))) ---+ Hr (x, o (H om(t", e' ))).

For an extension to split holomorphically we require the presence of a holomorphic map o : t ---+ tl
such that po a:1¿, which translates to ô*(1¿,,) : 0. Thus the Õech cohomology class ô*(15,,)

is the "obstruction" to the holomorphic splitting of an extension of t" by t/, which we call the
ertension class. In fact we have 30

3oln the general setting, the splitting of an extension of coherent sheaves of (?x modules á" by t' over a compa,ct

complex manifold X is characterised by the hypercohomologg group EøúI(X;t",t'),: Itf (X, Homs(E.(t"),t'))
where E.(t" ) is a gtobal syzygy of the sheaf t". \Mhen á" is locally free then Ertl(X;t",€') -
tttçX,01nom(t",t'))). See Chapter 5$4 [17] for details; the proof of Lemma 6.Sappears olrp.725.
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6.5. Lemma.
There is a natural bijection (€,¿,p) F+ ô*(1¿',) between the equivalence classes of extensions of t"
by t/and the cohomology group n'(X,O(Hom(t",t'))).

Using the operator 0 : ô¿ defining the holomorphic structure t, we have by the Dolbeault

isomorph'ism theorem 31 that É e t(o't) (Hom(t",á/)), satisfying 0(a(s)) - a(A(s)) : i(É(")) for all
s e f(t'l), corresponds to a representative of the extension class ô*(1¿,,). Upon fixing a Hermitian
metric h on t this Dolbeault representative can be expressed in terms of connections by choosing

unitary connections V',Y" orr t' ,t// respectively and comparing a connection V on the smooth
splitting g A 8" with V/O V". The representative B then corresponds to the tensor in the following
expression

A
A, P

-P* A"

where At and A't are the connection matrices of the respective unitary connections V' and V// with
respect to local unitary frames .f ¿t àrrd 1¿,, for t' and á// respectively with respect to the induced
metrics, and A the connection matrix of V with respect to the local unitary frame (with respect

to h) {1¿,,1¿,,} of t. Moreover,

Fs :d'A*AAA
l- A'AA'_pAp.

I¡'|-p*AAt-A"A0*
dv r,,* 6r,0 I

Fy,, - p- Ap 
)

A'A13+13AAtl
-p*AB+A"AA"

where dv¿,,*6¿,is the linear operator t7(€tt* 8¿') --- ¿z(ttt* 8t') induced by the connection

Y¿,,*6¿,which is itself constr-ucted from the connections V" and V/, which acts on elements

o¿ :: u)8 (o8r) for u e tr(X), o € f(t"*) and r e f(t/) by

dy ¿,* 6sa 
'= dw A (o ai r) - u AV ¿,,* 6 e,(o I r)

where

V¿,,* 6 g,(o Ø r) :: V ¿,,*o A r I o AYtr-

As the bulk of the work done in this section resides in proving the necessary condition of
Theorem 6.2, we shall firstly prove its sufficient condition.

6.6. Proposition.
An indecomposable holomorphic Hermitian vector bundle (á, h) over a compact Riemann surface

(X,g) eqdowed with an H-E unitary connection V with factor -2trip,(€.) is stable.
Proof:

3'The Dolbeault isomorphism theorem states that for a holomorphic vector bundle E over a complex manifold X
we have n'çx,oçø¡¡ - t@'1)(E)laf (E). See p.a5[17]
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Let ttbe aholomorphicsub-bundleof t and t" its orthogonal complement in (t,h). If V¿,and
V¿r ar€ the respective metric connections on (t',h¡e') and (t",h1e,,), our H E connection V on
(á, h) will have curvature (as calculated earlier) of the form

FV:

and de7(tt) :

Fve, - þ Ap* dvr,,*6r,Þ

-dv r,,* Ø e, þ* Fv ,,, - P. A P

for some þ e e(o,t)(t". Ø8').
If {e¿} is a unitary frame for (t, h) such that {e1, .. . ,"p) is a unitary frame for (t',h¡e,) where

p :: rk(t'), then we write þeo : D¡ ,à I e¡ where ø) e t(0'1)(X¡
Flom the above decomposition of -Fy we obtain vector bundle analogues of the Gauss-Codazzi

equations

c¿'i:o3- t ,|nø)
b1p1À1r

where a) !, r =rk(€), and.Fy: (CIfi) , Fvr,: (CI'i).
Representatives of the first Chern classes of t and t' are given respectively by

c1(t,h)

c1(8t,h)

That our connection V is H-E is equivalent b Ai :'16'j for the (1,l)-form 7 :: -2tri¡1,(t)uol
Therefore

des(t) :

,r

2Ti,.2 1',
;-1
.J-L

-p
-- 

t \-oro
2tri, .L -' a

a:l

l*"r(t,h): -* l*r,
I*rrrt',h) 

: -* l"*', t ,! na)¡,
11a1p1À1r

hence I*,
1,"2tri

1 # L t ')na)' " " l1a1p1À1r
and p(€') +

Thus p(t') < t,@) with equality holding if and only if all the øà : 0. The vanishing of B implies
t : tt@ á/' both holomorphically and orthogonally (since an extension splits holomorphically if
and only if the Dolbeault representative of the extension class is ô exact) ; however we have assumed

that á is indecomposable, thus p(á/) < p(t).
!

The following lemma provides the setting for our earlier discussed methodology of proving
Theorem 6.2.
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6.7. Lemrna.
Let C be a holomorphic vector bundle over X. Then either inf J1oç¡ is attained 1n O(t) or there
is a holomorphic bundle F 7 t of same degree and rank as á with inf J¡oçr¡ { inf J¡o1e¡ and

Hom(€,F) + 0.

Proof:
Let {V¡} be a sequence of smooth connections minimising Jp@y As l/ is equivalent to tlne L2

norm we have ll,Fyrll2 bounded for all j. By Theorem 1.5 ttr] 1|ï" 
is a subsequence {Vi,} of

our sequence and Ll gatge transformations g¡, such that g¡,'V¡,"Jy, say. As {9¡, 'V¡,} is also a

minimising sequence for J¡oçe¡ we may assume without loss of generality that V¡,
As J has the lower semi-continuity property, we have

L?-lv

/(V) < lim,inf J(V ¡,) : inf Jpç¡.

We proceed to show that the alternative bundle .F in the statement of the lemma is actually tç.
Let Vo be a Ll unitary connection on the underlying smooth bundle E that induces a holo-

morphic structure isomorphic t; here we have implicitly used the result of Lemma 8 [7] which
states tlnat Ll unitary connections on -E induce holomorphic structures. Construct a connection
on Hom(E,{) = E-@-E as earlier composed of the (unitary) connection V" on -Ð*, induced
by Vo, and V. Denote the (0,1)-component of this connection by 0v"1. This differential op-

erator is 1tt-order elliptic since â is. As ôo,çs : 0 means that s is a holomorphic section of

Horn(E,E), solutions of ôo"çs : 0 correspond exactly to elements of Hom(t,ty). So if we

assume Horn(€.,t7):0 then ôo"ç has no kernel, so we obtain tlne ettiptic estim,o'te32

llôv"Vtllz ì tll"llz,r c ) 0, for all s.

The Sobolev imbedding L? C -La gives rise to the inequality llsll2,1 > 
"'ll"ll¿ 

for some c' > 0.

Moreover, the Sobolev imbedding L? +.La is compact 33 thus {V¡,} has a subsequenc" {V:,,}
converging (strongly) to the -L4 connection V.

As

(ôv"l - ôvov j,,)(o ø r) : (B - A¡,,)ço,r¡ I (ø I r)

where V¡,, - d,+ Ar,, and V : d"l B,

the Hölder inequality gives

ll(âv"V - 0o"o,,,)tllz < c"llA¡,, - gll¿ll"ll¿ for some c" > 0.

Using this inequality and the previous elliptic estimate and Sobolev inequality, we have

llão,on,,sllz > (c' -c"llA¡,,- Bllùllslla for each j" and for all s'
32If. L ,s an eÌliptic operator of orcler I on f({) for some vector bundle { then for each k > 0 there exists a

c:c(k))0suchthatforallsef(() wehavelltllr,¿+¿Jc(lllsllr,¡+llsllz,r).Furthermore,ifsis,Lf, orthogonalto
ker(L) vre can omit the llsllz,¡ term. See Theorem 1.1 Appendir, 54 123].

33The Relticlt-Kondlakou theorem states that given a compact Riemannian manifold Xn and integers integers
j)0,m)landrealnumberspandq)lsuchthatl(p<nql(,n-mq)theimbeddingofLl¡^inLliscompact.



6 STABLE BUNDLES. 50

.Ls Vr,4V, then given e ) 0 there exists an n € N such that llA¡,, - Bll+ < eYjtt ) n. Upon
choosing e : c'/c" then for large enough j// we have llôy,y,,,sllz ) 0 for all .s. As elements of

Hom(t,ty ,,) conespond to solutions of 0y"y.,,s : 0, our result implies Hom(t,tv,,,) :0, which
is a contradiction since t ? tvj,, as the V¡ wére chosen to lie in the orbit O(e).

Thus we conclude Hom(t,t") #0.
We therefore conclude:

(i)'
if V € O(S), that is tl = €, then by the lower semi-continuity of -I we have J(V) <

liminf¡' J(V¡,): inf J¡o@) < J(V), therefore "/(V) : inf Jpç¡ which means that inf /¡o1e¡ is

attained in O(t).
otherwise
(ii):

if Sy 7 t, as Y¡,4V, whence Fy,,4Ftr,therefore lim¡,-oo d'eg(ty,,) : d'eg(tv) since c1({) ::
l- fitr@e)] for any connection V on -Ð. As deg(te ,) : deg(t) since the V¡r were chosen in O(t) 

'
we have that €ç is of the same degree (and rank) as t.

For the limiting connection V we have by the semi-continuity property of J that inf J¡cçee :
/(V) < inf J1o6¡.

!

We now proceed to show that if t is a stable holomorphic bundle then the second alternative
of the above lemma does not occur.

6.8. Lemma.
If .F is a holomorphic vector bundle over X expressible as an extension
0 -+ M -+ F -+ Aí -+ 0, and rf ¡1,(M) > pV) (whence p(F) > p(N)), then for any unitary
connection V on f

J(v) > rk(M){¡-t(M) - r,V)} +rk(AÍ){¡t,(F) - p,(Af)}

:i Jot

with equality holding only if the extension splits (that is, only if F = M@,Â/ holomorphically).
Proof:
Fixing an hermitian metric on .F and letting V¡,1 and V¡¡ be the metric connections on M and ,A/

respectively with respect to the naturally induced metrics on these bundles, a unitary connection
Y on F with respect to the chosen metric will have curvature of the form

Fy
Fv..-PAP- do*.*-þ
-dvN*Ø-þ* Fvx - P. A P

where É e t(o'r)(¡/-8 M) is a representative of the extension class. Using the properties of the
trace-norm ru on block matrices we have that

, (#+ É,(Ð 1) - 
l'" { ry!!)+ /,(r) 1 

} I 
. 

l'" { 
ú"#:t9* r(Ð' 

} I
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Therefore
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(6.8.1)v, 1."(J #. ¡"1r¡t) ua

l.{*(**,(Ð')

(**,(r)') - vst'),rl .ll.{-(#* r(r)') + ,,t'},rl (6 s 2)

the first inequality following from the Jensen inequali,tg 34 since the operation of squaring is convex;

the second inequality follows from the fact that *tr(þ* n þ) : -2ni]Bl2.
As

uol + p,(F) tr(I¡) uot - llPll|

: -aeg(M) + p.V)nç(M) - ll1llS

As p"(fl S p(M) by assumption the first term on the right hand side of inequality (6.8.2) is thus

aes(M) - p,(F)rk(M) +llþll3
: rk(M)A"(u) - pV)) +ll7llT

Similarly, the second term in inequality (6.8.2) is

p,(F)rk(N) - deg(N) +llpllT
: rk(N)(pV) - t"(¡D) +ll|ll7,

thus

/(v) > rk(M)A'(u) - pV)) + rk(ltÍ)A"V) - p(¡,0) +2ll7llT
:: Jo I2llpll',
)Jo

One observes that equality holds in this expression only if ll0llz : 0, that is B : 0 almost
everywhere which implies that the extension splits.

¡

We wish to use the above lemmae to prove our main Theorem 6.2 by induction. In order to
proceed inductively, we must show that Theorem 6.2holds for lines bundles.

Clearly, every line bundle is stable and indecomposable. Let }C1(X) be the subspace of S1(X)

consisting of harmonic forms; that is, l-forms ø satisfying d*dw: 0. The Hodge decompositzon

theorem states that on a compact Riemann surface X

s'(x) - ttt(X)O ae'(x)O aetlx¡

+Fv ¡
2ni, ) L

ta'lhe J"rten inequality states that Ï*(ó " l) dtt > þ(Ï" I d,p,) for @ : lR --+ IR. a convex function and / : X ---+ IR.

integrable.
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From this one concludes that a 2-form u e t2(X) satisfying |xr:0 is expressible as u: Ô0f
for some / € SO(X). Upon taking u :: Fv +2trip.(t)uol for V any unitary connection on our
holomorphic line bundle t we observe that Ix, -- 0 (as we have assum"d /, uol :1), hence

Fe 1-2tri,¡l(t)uot : AAÍ for some / € SO(X). By the affine structure of A(t) we may write
V : V/ * ¿ for some other unitary connection V' on á where a €. tr (X). If V' is chosen so that
o:0f then we have that Fv : Fv, + AAf . Thus we have shown that there exists a unitary
connection V' on t such that +tr.y, : -2trip'(t).

Th:us Theorem 6.2 holds for holomorphic line bundles, and we use this start in induction to prove

the following Lemma. \Me utilise Lemma 2 l7l in order to avoid calculations involving semi-stable

fi,ltrations [2]; that is, a nested sequence of proper sub bundles 0 :: Po { Pt < "' <
eachP¿fP¿-1 semi-stable and associated slopes p,(P¿lP¿-t) decreasing with i. These filtrations are

used in [9] to sequentially decompose an arbitrary extension of a stable bundle into a sequence of
stable bundles. Lemma 2 [7] avoids this by showing that there exists an extension of a stable bundle
by stable bundles. With this adoption, Donaldson'sf9] Lernmo 3 is modified to the following:

6.9. Lernma.
Given t a stable holomorphic bundle, and assuming Theorem 6.2 holds true for bundles of rank
Iess than rk(t), if t can be expressed as an extension 0 -+P -+ t -+ L-+0 with P and L stable,

then there is a smooth unitary connection V e O(t) with

/(v) < rk(P){¡1,@) - t (P)} + rk(L){¡r(L) - p(t)}
.T

-..)1,

Proof:
OnP,,C fix the Il-E connections which exist by the inductive hypothesis, and set B e t(0'1) (¿* I P)
to be a representative of the extension class.

The operator Q :: -'r 7aom(L,p)AHom(L,p¡ acting on smooth sections of Hom(L,P) satisfies

Q. +Q: A-+Fv where V is the metric connection on Horn(L,P) and L :-- d,Çdy is the Laplacian.
With the induced H-E connections on P and L the metric connection on Hom(L,P) = L. ØP
has factor -2ni,(p,(P) - p(L)).As t is stable, then p(?) < p(L), thus Q* has no kernel whence Q
is surjective. Thus there exists a 1 € Hom(L,P) such that A(þ + ôt) :0. Modify B in this way

so that 0þ:0 and rescale so that llþllr:1 (possible since B f 0 since t is stable).
Ttiples (Yp,Y r,ffi) for t I 0 gives us a connection V¿ e O(S) with curvature

Fv¡.:("'-*PAP* o \
" \ 0 .F'vr-t213*Aþ)

By the inductive hypothesis Fvp: -2trip'(P)uol and Fvr: -2nip'(L)uol. A-s p(P) < pr@) <

¡-r,(f,), then for ú small enough we have that the eigenvalues of (¡L'(€) - p(P))l - h - (B n B.) arc

positive, and those of (¡.t(S) - p(L))I - *. @. A þ) are negative. Therefore

,(P+ ¡-¿(¿)r) : rk(P){tt@) - p(P)} +rnÇ.){¡1,(r') - p@)} - 2t'lill'
\ 2tri, , 

:, ; _)rrwlr,
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and so
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J (v')' : frtt, - zt'llpllr)'

- Jr' - +ttt2118117 + +ta L
Choosing f small enough so that tn [*lþln < t'll|llz: t2 we then have the required result J(V') <
h.!

Observe that the last clause of Lemma 6.8 says that if a holomorphic bundle .F is indecom-
posable, that is, every extension 0 -+ M -+ F -+ "l\/ + 0 does not split, then /(V) > Jo for any
unitary connection V on F.

Assuming V satisfies Theorem 6.2, lhat is, J(V) : 0, then 0 ) Jo ,: rk(M){p(M) - p@)) +
rk(N){p,(F) - p(¡/)} By assumption of Lemma 6.8, p,(M) > 1,,(F), thus p(.F) > ¡;(.Â/), so if
N c f for all such extensions then .F is stable.

Conversely, if t is a stable holomorphic bundle and Theorem 6.2 holds for all bundles of rank
less than that of t then the second alternative of Lemma 6.7 does not occur; thus inf /¡oqe¡ is

attained in O@). For, if the second alternative of Lemma 6.7 díd hold true, namely, if =F + e
wtth rk(T) : rk(t), des(t) : deg(€) and Hom(t,F) + 0 such that inf Jp@) ( inf J¡61e; then
the following argument shows that we attain a contradiction.

As Hom(8,F) + 0, choose a non-zero sheaf map a: t --+ F. We have extensions of these
bundles and consequently a diagram

0 ------+ P --------+ t --------+ L ------+ 0

lpln

J,la

0<---N<-F<-M<--0
with exact rows, rk(L) : rk(M), det(B) I 0, and deg(L) < deg(M). This diagram is constructed
as follows. Given the exact sequences of sheaves 0 -+ ker(a) -+ t -+ im(a) -+ 0 and 0 -+ i,m(a) -+
F -+ colcer(o) -+ 0. AIIthe constituent sheaves, save coker(a), are locally free thus correspond to
holomorphic bundles. By factoringthe analyti,c sheaf N' :: coker(a) by its torsion subsheaf

,(N'):: II,E¡{s e Af:" 1/s : 0 for some f e O"}

we obtain the sheaf J{ t: IÍ'lr(N') which is torsion free everywhere hence a locally free sheaf
since X is a Riemann surface 35. W" thus obtain an exact sequence of locally free sheaves 0 ->
M-+F-+N-+0forsomelocallyfreesheaf.MandamapP:irn(a)---+Mwithdeg(B) l0bV
"chasing" the preceding commutative diagram.

As t = PAL and F - ¡/OM smoothly, then rk(t) : rk(P) + rk(L) and rk(F) :
rk(ltl') * rk(M), whence as rk(L) : rk(M) from the diagram we have rk(P) : rk(Jr[). We

similarly obtain the inequality deg(P) > deg(J\D from the properties of the first Chern class and
the information from the diagram. Thus we conclude J1 { -/r. Applying Lemma 6.8 to the bottom

35In fact if X were a general complex manifold, the set of all points x e X on which a coherent analyt'ic sheaf ís

not locally free is analytic and nowhere dense in X. See Chapter 4$4 [15] for details.
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row of the preceding commutative diagram we have -I(V) ) Jo for any unitary connection V on
.F; in particular, inf Jplr¡ > 1". Also applying Lemma 6.9 to the top row of our diagram, there
exists a unitary connection V on t with "/(V) ( .[; whence inf Jp@) ( Jr. However) we have

assumed the second alternative of Lernma 6.7,narnely that inf Jp@) < inf J¡o1e¡,so Jo ( -I1 hence

a contradiction. Thus, inf Jloçe¡ is attained in O(t).
Consider the operator d,þd,y acting on L/ sections of End,(t). Recall that a normal linear

operator on a complex inner-product space I/ with distinct eigenvalues À1,..., À¡ and corresponding
eigenspaces W¡ wrll decompose V into Wt@ O Wk. If o e l(End(á)) is a non-constant element
(that is, one not of the form z ,+ cIr¡rç¡) of ker(dþdy) it would have eigenspaces that decompose

t holomorphically contrary to the assumption that t is indecomposable. Thus the kernel of dþdy
consists only of the constant scalars. By the Hodge decompos'ition theorem for bundles, given

J{:l(End,(t)) --+ X0(End(S)) the orthogonal projection and G:l(End(t)) ---+l(End(t)) tkre

Green's operator, we have td,:J{ +AG onl(End(t)) where A is the Laplacian dþdv +dvdç.
As dydþ : 0 on l(End(s)) then A : didv, hence J{o(End(s)) :: lcer(L) : {cr I c e C},
whence -i * Fy : -nrp,(€)I + d,Çd,yG(-i * Fy); that is, there exists h e L?t(ønd(t)) such that
d|dvh : 2tr p,(t)I - i * Fy.

For this element h and small ú € IR define the gauge transformation g¿ :: llth, and subsequently
define the connection

V¿ :: gt.Y c O(t)
:: V - (ôvgùgt | + ((ãvgùgt L).

_.",_At

whence

Fv, i: dAt I A¡ n A¿

- -F.v - \v(ãvjùstt) + õvjrt\v(gr)) - õr(gt)gr'ao(s¿) + grravØùãvjùgr'

- Fv - t(}vôv - 0v0v)h + q(t,h)

where for small t llq(t,h)ll, < cllhll2,2t2.
As dþdy : i * (0v0v - ôvôv) and as dþdvh : 2nrt'(t)I - i + Fv

then -ú(ôy 0y - 0y0y)h : -t2tri¡l(t)uol - tFv whence

* * t''@)1: {#+ /-,(¿)1}(1 - ¿) ¡ *q(t,h)'

Therefore /(V¿) : J(V)(1 - ú) + O{t'}.
As -r(V) : inf Jpe), then by the calculus of uarzations the fi,rst uariatlon fil(V¡)¡r:o must

vanish, hence concluding J(V) : 0; that is, *f.y : -2trip'(t)I.
We must flnally prove that our connection V e O(t) is unique up to isomorphism. For this we

firstly need the following lemma (see Proposition 3(ii,) [10] for proof).

6.10. Lemma.
If á is a holomorphic bundle over X endowed with a H-E connection and p(8) : 0 then any
holomorphic section is covariantly constant.
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If we have two unitary connections V6, V1 on .E inducing isomorphic holomorphic structures
tyo and ¿vl respectively, there must exist a complex automorphism g of -Ð such that ôv, : go}voog
and fu, : g o }voo g. Applying a unitary change of gauge to one of our connections, say by
g(g*g)-tl', g may be assumed to be positive self adjoint. If V¡ and V1 are our H-E connections

on E, then the holomorphic isomorphism g : tyo ---l ty, is covariantly constant by the above

proposition. This means Q: ôvoØ*g):0vr@2) and ôyo(S') : O. As áyo is indecomposable,

92 -- cIp where c is a constant. Furthermore, as g is positive self-adjoint then g : ctIE for c' a
constant.

The equivalence between Theorem 2(A) Sl2 127) of Narasimhan & Seshadri and Donaldson's
Theorem 6.2 is observed as follows.

A unitary connection V on E with curvature of the form Fv : -2rip,(E) uolx corresponds to
a projective unitary representation p : nt(X) -+ trU(k) of the fundamental group where FU(k) ::
U(k)lU(I)Ik is the projectiue unitary group. This follows from the following observations.

Choosing vector flelds z, u e X.(X) tlnein i,ntegral curues (paths 7 being solutions of the differ-
ential equations i:u or u) can be intersected to make a quadrilateral Q on X, being closed by a
streamline to the commutator field [u,z].

lu,uf,,
:x4

Uot

Ig

a

lo

Observe here that the gap ":x4 - rs" in the four legged curve is characterised by the difference

f @ù - /(r3) for àrry I € g(X), and in a given coördinate basis we have the Taylor's expansion

f @ù - f @ù : ((uBuo,B - uþuo,p)#)"r+ "cubic errors":: lu,u](f)rr't "cubic errors". Thus
the vector [u, u] describes the separation between points rl3 and ra; its description gets arbitrarily
accurate when u and '¿.r get arbitrarily short. Thus we keep the lengths of legs of the quadrilateral
comparable/equal to the lengths of the tangential vectors, and these latter lengths are taken "small
enough" so that the second-order terms in the expansion of the parallei transport equation P(8, V)
abotrt Q are negligible.

As

y,o(a) - 
J,3,¿ ]{"t-t, v)o(7(e)) - "(y)}

rl

uno

ur2

:L2

'ù-
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forø€f(E) and?acurvewithT(0) -gandi:r,thentosecondorderwehave,forp€81q,

P(Q,V)p: p + {V,V, -YoVu - V¡,,,1}p l"llrl
:: p t Fv(u,u)plullul.

For an arbitrary loop 7 on X, break the region bounded by 7 into a number of contingent
quadrilaterals Q as defined above, whence for o e f (E)

P(1,Y)o -- o +ÐOo(Luo,uq)oluqlluql
a

o t Fy(u1,"ìo Dl"qll"ql
a

which is only valid for curves 7 of small compass; the difference P(1,V)o - ø doubles when the

area bounded by 7 doubles, but the error increases by a factor of - 2312.

Parallel transport about two different small curves 11 and 72 (based at the same point lxo Ç X)
for our "central" connection V differs by a constant in U(1) and so [P('y1,V)] : lP(lr,V)] as

equivalence classes in trt/(k), and so we have a reprysentationp : 
"t 

(X) -+ PU(k). Given a universal
covering of Í -+ X, the associated bundle É,: Í xpOPk-1 is isomolphic to the projectivisation
P(E).

Conversely, given a projective unitary representation p : "t(X) -+ PU(k) of the fundamental
group we have a projectively flat connection V on .Ð. Given the natural homomorphism ¡.r, : U (k) -+
PU(k) with associated Lie algebra homomorphism p' :u(k) -+ pu(k) the curvature of the induced
connection on P(E) is given by p'(Fv), and so F'y takes on scalar multiples of idø.



7 STRATIFYI¡,IG THE SPACE A(E) OF CO¡,I¡üEC"IO¡\rS 57

7 Stratifying the space A(E) of connections.

Assume X is a compact Riemann surface with volume normalised to unity and ,Ð is a smooth

complex vector bundle over X of degree k with structure group G : U (n).
We shall induce a Morse stratification on the space of unitary connections on ,8, which by

abuse of notation is also denoted by A(E), by constructing one for the space C(,8) of holomorphic

structures on ,Ð via the identification of "4 with C as expounded in the previous chapter owing to the

isomorphism S1(u(n)) ry g(0'r)(gl(n,A)). The stratification of C involves working with canonical

filtrations of non-semi-stable holomorphic vector bundles over X. To this end we need some

preparatory mater-ial on the existence and uniqueness of such flags.

7.1. Definition.
Given .Ð a holomorphic vector bundle over X which is not semi stable, a non-zero proper holo-

morphic sub-bundle F of E is said to be strongly contradi,cting semi,-stabilzfy (SCSS) if it satisfies

the following conditions

(C1): .F' is semi-stable;

(C2): for every sub-bundle Ft of E containing F as a proper sub-bundle, we have p(F) > p(F')

Note that condition (C2) and the following conditions are equivalent:

(C2'): for âny non zero sub-bundle Q of EIF we have p'(Q) < p(F);

(C2"): for any stable non-zero sub bundle Q of EIF we have p(Q) < p(F).

7.2. Lemma.
Given F'r and }.2 sub-bundles of -E such that F1 is semi-stable and f'2 satisfies condition (C2), if
F1 is not contained in F2 then p(Fz) > p(Ft)
Proof:
Given that the canonical sheaf map map ,/ : I\ -+ H l12 is non zero by assumption, as expounded

in the previous chapter we have a factorisation

F1 ------+ Fi --------+ 0

I nl/J r
ElF2 <- l1"1 (- 0

with rk(F{):rk(Fit), d,et(s) l0 and des(FÐ < des(Fi'). As F1 is semi-stable, p(F1) < p(Fí)
and. as F2 satisfies condition (C2), ¡1,(Fit) < p(Fr). As deg(FÐ < deg(Fi') and rk(F{) : rh(Fl')
then p(F{) S p@i') and so p(Ft) < p(Fz).

tr

7.3. Lemma.
Given sub-bundles Fr and F2 of E which are SCSS, then tr.1 : ¡,
Proof:
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If h ø F2, Lemma 7.2 implies p(Fz) > lr@t) and that we must have .F2 Ç Fr. We immediately
obtain a contradiction since p(Fz) I p@t) owing to the semi stability of F1, and so .trl Ç Fz. Ã
similar argument shows Fz Ç h.

n

7.4. Proposition.
If ,Ð is not semi-stable then it contains a unique SCSS sub-bundle.
Proof:
The Uniqueness of a SCSS sub-bundle follows from Lemma 7.3.

Let m :: sup.lFc B p@) whish exists since the values of the degrees are discrete and are

bounded from above. As ,Ð is not semi-stable we have rn> p.(E).
Choose a sub-bundle f., of -E of maximal rank such that þ(Fo) : rn. If F' is a non-zero

sub bundle of .t', we have ¡-r,(F't) 4 rn : p(F,) so that .F| is semi stable. On the other hand, a

sub-bundle Ft of E containing F'o as a proper sub-bundle satisfies p(F') < p(F") and so f'o also

satisfi.es condition (C2); that is, -F, is SCSS.
¡

7.5. Lernma.
If a vector bundle bundle ,Ð is not semi-stable we have a flag

0:FoÇhÇ"'ÇFn:E

satisfying conditions

(FI): F¡lF¿-1 is semi stable for i :7,. . . ,k,

(F2): F¿lF¡-1 is SCSS in Ef F¿4 fori : 1,..., k - l.

Moreover, such a flag is uniquely determined.
Proof:
Existence follows frorn Proposi,tion 7.1. More explicitly, given F1 a SCSS sub-bundle of E,lf Ef F1

is not semi stable we find another SCSS sub-bundle Fl c E lft and define Fz to be the inverse of
Flbv the map E -+ Elfi. Repeating this procedure if necessary yields a flag satisfying conditions
(F1) and (F2).

The uniqueness follows by induction on the rank of ,Ð by applying Propos'ition 7.1¡ and noting
that the sub-bundles F¿f F¿l for i ) 2 from a flag of Elfi satisfying conditions (F1) and (F2).

tr

7.6. Lemma.
Given a flag

0:FoÇfiÇ"'ÇFx:E,

conditions (F1) and (F2) are equivalent to the conditions

(F7'): F¿lF¿-1 is semi-stable for i : I,. . . ,k,

(F2'): p,(F¿lF¿_t) > p(F¡+tlF¿) for i - 1,.. . ,k - I.
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Proof:
If conditions (F1) and (F2) hold, we have an exact sequence

0 --------+ F¿lF¿-t -------+ EIF¿-, -------+ EIF¿ --------+ 0.

As F¿¡1f F¿ C ElFi and F¡f F¿_1 are SCSS in Ef F¿-1, we have p(F¿lF¿_t) > p(F+tlF¿).
Now, if conditions (F1') and (F2l) are satisfied, we have the exact sequence

0 --------+ FntlFx-z --------) ElFn-" --------+ ElFn-t ------) 0'

whence p(Fn-tlF*_z) > p(ElFr-r) by condition (F2'). As EIF¡, 1 and Fn¿lFx-z are semi

stable, we have that F¡r-1f F¡-2 \s SCSS in E lFn-z; this follows because if A is a bundle that is
not semi stable and B a non-zero sub bundle of A satisfying the following conditions

(i): B arrd Af B are not semi-stable;

(ii): p(B) > p(AlB),

then B is SCSS in A. In fact for any non-zero sub-bundle Q of AIB we have p'(Q) < p(AlB) <
p(B), so that condition (C2l) is satisfled.

We prove that condition (F1) is satisfied by downward induction on 'i. Consider the exact

sequences

0 -------+ F¿lF¿¿ --------+ EIF¿-y ----+ Ef F¿ --------+ 0,

and

0 --------+ F¿+tlF¿ --------+ EIF¿ --------+ EIF¿+, ------+ 0.

To prove that F¿f F¿_r is SCSS in E f F¿_1we must show that for any stable non zero sub bundle

Q of E I F¿ we have p(F¡ I F¿_ù > t"(Q); the required result will then follow from condition (C2").
Given Q C F¡+tlF¿ we have p(Q) < p(F¿+tlF¡) since F¿+tf-fl is semi-stable, and by hypothesis

p(F¿+tlF¿) < p(F¿lF¡-1) so that p(Q) < p(F¿lF¿_t). If Q is not contained in F¿¡1f F¿, then by

induction we may assume F¿+tlF¿ is SCSS in E lF¿. As Q is semi-stable and Q C F¿¡1f F¡, we have

by Lemma 7.2 tlnat 1,,@) < p(F¿+tlF¿). Ar p(fi+r lF¿) < p(F¿lF¿'t) by hypothesis, it follows that
p(Q) < p(F¿ln¿-t) 

n

Upon combining Lemma 7.5 and Lemma 7.6 we obtained our desired result.

7.7. Proposition.
If E is a holomorphic bundle which is not semi stable, then .Ð contains a uniquely determined flag

O:Eo <,Er 1"'1Er: B (7.7-I)

with D¿ :: E¿lE¿t semi stable and ¡-r,(D1) > p(Dz) > "' >
canon'ical fi,ltration associated to -8.
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Note that if -E is semi-stable then r : 1. Given rk(D¿) :i rLi and deg(D¿) :: k¿, let
Q.rt,. .. , þn) € Ø be a vector such that pt ) ttz > "' >
ktlrt, the next n2 eeual to k2f n2, etc. We call ¡L'the typeof E.

Let C, denote the subspace of C of holomorphic bundles of type p. Note that if all the com-

ponents ¡-r,¿ of the vector ¡-r, equal le f n then clearly Cp : Crr, the subspace of C of semi-stable

holomorphic bundles. Furthermore, as C, is preserved by the action of Aut(E) it is then a union
of orbits.

We partially order the types p € q in the following standard manner (fottowing S7 [2]).
Associate to ¡; the convex polygon P, in IR2 whose vertices are given by (0,0), (nt,kt), (r, +
n2,lq+kz), .... The convexity of P, reflects the monotonicity of the lt¿ln¿.

(n1+ n2,h I lcz)

(n,k)

nt,kt)

(0,0)

\Me define a partial ordering { on the set of types p e @ by

),> ¡t if and only if P¡ lies above Pr. (7.7'2)

Upon considering P, as the graph of a concave function pp. : i. e Z ,+ D¡<¿¡r¡ which interpolates

linearly between integers, then

\ > ¡; if and only if I ^, 
, Drt, i - I,... ,n - |

k

j<i

and

j<i
n n

I¡o:tþ¿:tc
i:I i:I

Let Ap denote the stratification of -4 induced by the stratification C, of C under the earlier

mentioned identification A -+ C. Denote by JrÍ, the space of Yang Mills connections V on E whose

curvature if of type ¡;, that is +.Fy : -2tridzag(¡t1,... ,lrn). We shall proceed to show that the

stratification A : UrA, is a Morse stratification with respect to the critical manifolds N, by

satisfying the conditions of Proposition 1.20.
Let Â/" 36 denote the irreducible 37 Yang Mills connections on -Ð with *f'y having entries

-2rikfn. V € 
^/" 

induces the (absolute) minimum 4tr2k2fn for YM. This is because if V/
36In the notation of [2], -Al" denotes the set of connections giving the minimum 4r2k2fn for YM arising from

irreducible projective unita,ry representations of nr(X). By the last paragraph of the preceding chapter we have that
such representations incluce connections V with xFy a diagonal matrix with entries -2trikln.

374 connection V is said to be irreducible \f its (central) curvature *Fy a diagonal block matrix.
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was another Yang-Mills connection on E, we can decompose -E as E1 O @ 'Ð' upon which

xFy, is a diagonal matrix with entries -2rik¡fn¡ where nj i: rk(E¡) and k¡ t: deg(E¡), thus

YM(Vt) :4tr2Di:1tJl"¡. Now 4n2tc2 f n <YM(Vt) by applyingthe Cauchy-Schwarz inequality

(u.r)' l ll"ll'llull2 tothevectors v7 (fuf ,/-n1,... ,lr,f Jn,) and u :: (r/n1,". ,f-n,); moreover,

the Cauchy-schwarz inequality is an equality if and only if z and u are proportional, hence k¡ ln j :
kf n in this case. By Donaldson's Theorern 6.2, the existence of such V € 

^f, 
on a holomorphic

bundle -tr implies .Ð is a direct sum of stable irreducible sub-bundles. This implies connections

V e N, are direct sums of of connections in yV, otr sub bundles, thus Nt, C.,4r. This establishes

condition (iv) of Proposition .1.20.

As we have assumed the normalisation -[x uoly:1we have for V e Â/¡,

Y M (V) : 4tr2 ó(d,i,as(pt, þn

where ó(r)::tr(r*r) is the convex invariant integrand of the Yang Mills functional on u(n); we

denote this evaluation bv ó(t"). BV defining

where V runs over the metric connections in E, then by induction on Donaldson's result (Theorem

6.2) we have that YM(E) : þ0") for stable bundles E. If -E is an arbitrary holomorphic bundle

with filtration (7.7.1) then

YM(E) <YM(ØDj).
:l

As any semi-stable bundle has a filtration with stable quotients then

YM(E):ó0t) for EeCr.

Fromthisresult it followsthat C¡ C C, implies d(À) < ó0") sinceYM(C^) <YM(Cp) (for instance,

YM(C^):4r2Di:rfJ). ns the components of the types are increasing then d(À) < @(¡;) implies

), < ¡r,. It follows therefore that

Ç,. U c^'
\>¡t

The associated strata {.,4¡} for A and the non-degenerate critical manifolds .A/.1 of Y M thts satisfy

the Morse stratification conditions (i), (ii) and (iv) of Proposition 1.20. To prove condition (v) for

Morse stratification we require the following results.

If .Ð is a smooth complex vector bundle of rank n over X, the elements o € Aut(E) are given

locally (with respect to a trivialising cover {t/o} for E) by smooth maps Ào :Uo -+ GL(n,C). In
this way Aut(E) acts on C as follows: if t € C has transition functions gaB with respect to the

trivialising cove. {t/o} then o.t is defined to be the bundle with transition functions À;19oBÀp. So

the orbits of this action are the isomorphism classes of holomorphic structures on -Ð. The orbit in C

)

VYM(E)::i+,fYM

: 4tr2 D, ,?
i:t
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corresponding to a holomorphic structure t on E canbe identified with the Ça-orbit O(t) of unitary
connectionson-8. As TO@) = {|øna@)þl þ e e0@nd(€))} and.TCple¡ = t(o't) @nd,(s)) (under

the identification A -+ C), then the normal bundle to the orbit O(t) is given by

uo(s)=TM' ro(t)
€(o,r) @nd@))

i,m(?8.¿1¿¡)

= Hr(X,O@na@\)

where the last isomorphism follows from the Dolbeault isomorphism theorem.38 This Õech cohomol-

ogy group is finite dimensional (Appendix [13]), so the orbit in C corresponding to a holomorphic
structure t on E is, locally, a manifold of flnite codimension in C.

As the filtration (7 .7 .I) is canonical, the subsp aces C(E), are preserved by the action of Aut(E),
thus C, is a union of orbits and so its conormal (the dual of its normal bundle) should be a quotient

of
Hr(X,O(End(ø))). Letting nnd'(ø) be the bundle of endomorphisms of .Ð which preserve its
filtration, and End" (,Ð) the bundle arising from the exact sequence

0 ------) Endt(E) --------+ End(E) -----+ End" (ø) --------+ 0

the associated long-exact cohomology sequence implies H'(X,0(End"(E))) is a quotient of
H'(X,O(End,(E))) and so is considered the conormal of Cr. The fact that H0(X,O(End"(E))) :
O(End"(E))(X) : 0 follows by applying Corollary 7.9 below to the filtration (7.7.1).

7.8. Lemma.
Let E is a semi-stable bundle over X and D a holomorphic bundle over X with p(,Ð) > ¡;(D) and

f : E -+ D a non zero homomorphism. If D1 is the sub-bundle of D generated by the i'mage of f
then ¡r(D1) > p(D)
Proof:
As explained in the previous section / has the following canonical factorization

0 --------+ Et -- 
-+ 

E --------+ Ez - 
--+ 

0

l,lf

0<_Dz<-_D<--D1 <-0
with exact rows, rk (,Ez) : rlc(Dt), det(g) f 0, and deg(82) < deg(D1), where Dl is referred to as

the sub-bundle of D generated by the i,mage of f
Ls p,(E) 2 p@) by the semi stability of E,if ¡L'(E) > p(D) then ¡;(D1) 2 p(Ez) > pt@) >

p(D).
n

38Giuett ? a complex space, a holomorphic family of vector bundles on X parametrised by 7 is a holomorphic vector

bundle f on T x X, or the collection {F }rr, where .F.¿ is the pultback of f under the map Í t+ (t, r). By Lemma

2.1 (ü) [27], given t a holomorphic bundle over a compact Riemann surface, there exists a family of holomorphic
vector bundles {t^}^em parametrised by a complex manifold M such ttrat t*" : t for some mo € M and such

that the inf"nitesimal d,eformation mapT^M -+ Ht(X,O(End,(t^))) is an isomorphism at mo. Thus infinitesimal
deformations of a holomorphic bundle t are classified by the elements of Il1(X, O@nd'(S))).
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7.9. Corollary.
If ,Ð and D are semi-stable bundles over X with p(E) > p(D) then every homomorphism .E -+ D
is zero.

Now -Endl(-Ð) is a direct sum of the Hom(D¿,D¡) lor z ) j arising from the filtration (7.7.1)

(cited from (7.13) [2]), and so

End"(E) = O Hom(D¿,D¡).
i<j

By Donaldson's result Theorem 6.2 we have that for a Yang-Mills connection V e l{, on E of
type Lt we have E = @¿D¿ where the D¿ are semi stable with p(D¿) the components of the vector
p.By Corollary 7.9 above we have that

ad (E)=eHorn(D¿,D¡)
x<J

and so ad- (E) = End" (E). Thus for our Yang-Mills connection Y e A[, we have

inder (Y ) 

_rï:rii,x' 
o (End' (E)))

where "4, is the stratum containing V. The codimensiond,r'.: codimçC, can be calculated explic-
itly by apptying the Riemann-Roch theorem to the bundle @x.i Ho*(D¿, D¡): as deg(Di I D¡) :
-lc¿nj i k¡n¿ and ,F10(X, O(End" (E))) : 0 then

dp D,{l"nttt - n¡tc¿) + n¿n¡(s - t)}
i>j

: t {p¿-t'¡+(s-t)}
(7.e.1)

pi>pj

where g is the genus of X.
Thus we have shown that condition (v) of Proposi,tion 1.20 holds for Yx : JrÍx and X¡ : A^.

One also notes that the finiteness property (F2) in $3 holds for the indexing set of types {À} by
the above explicit formula for d¡.

Finally, the gradient field of Y M is given by

gradyYM: -*dy*tr'y.
As the tangent space to the Ç-orbit at V consists of vectors d,ya for CI € t0(X, ad(E)) and the
tangent space to the Ça orbit at V consists ofõyB for B e to(X, ad,(Ea)) where.Ec denotes the
complexification of -8, upon identifying tt(X,ad,(E))rv¡1¡ ¿(o't)(X,ad(Ea)) on which x : i we

have that the tangent space to the Ça-orbit at V consists of vectors d"yay l *d,ya2 for a1,a2 €
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to(X,ad(E)). In particular, from the above formula we see that gradeYM is tangential to the

9a orbits through V and thus also tangential to the stratum -4¡ containing V; this corresponds to
property (iii) of Proposition 1.20.

We have thus shown that the stratification .4t of "4 is a Morse stratiflcation relative to the
Yang Mills functional Y M according to Proposit'ion 1.20. Moreover, we have

7.10. Theorem.
The stratiflcation C : UsC¡ is Ç-equivariantiy perfect in the sense that

Pf (c): t *d^ Pf (c^), (7.10.1)

À

where d"¡:: cod'imçC¡.

In order to prove this result that our stratification is perfect we require the following results.

For the sake of completeness we shall repeat some definitions from the section on Morse theory.

Recall that a non-degenerate critical mani,fold Y of a smooth function f ona compact smooth
manifoldXisaconnectedsubmanifoldYcXsuchthatbothdaf¡ev:0andtheHessian
Hv f V(v¡ is non-degenerate, where ru (Y) is the normal bundle of Y. The function / is called non-

degenerate if its critical set is the union of non-degenerate critical manifolds. In such a case, given

"- 
(Y) tlne negati,ue bundle associated to }Z, the znder of Y as a critical manifold of / is defined

and denoted byÀy/ :: rk(u-(f)). Given the Àyl-disc bundle ":(Y) over a critical manifold Y
of /, which is the exponential image of u-(Y) in X with I > f V) - 6) we have the following
commutative diagram.

H.(u, (v)) -------+ É.Q;(v),au;$)) --9--+ É.1@u;(v))

'.1 I t7 '10'2)IJ
H.-x"¡(Y) --3--+ Ê.a(X¡;v¡-,)

For a given field F" we say that Y isF-completable if .!he map o in the preceding figure is zero. Here

zr is the projection of the disc-bundle u;(Y) and fI the reduced homology modules over lF. The

map zr* corresponds to the Thom isomorphism.

7.1L. Definition.
Given / a smooth non degenerate function on a compact smooth manifold X, a critical manifold
Y of f is called self completi,ng if given a class s € H.-¡"¡(Y) goes to zero under the dashed arrow

in the commutative diagram (7.L0.2) provided zr*s is in the image of H.(u;(Y)).

The following result is cited from Proposition 1.9 g1 [2].

7.L2. Proposition.
Given G a Lie group, if the equivariant Euler class of the normal bundle to Y is not a zero-divisor
in Hþ(Y,ÌF) for IF any field, then Y is equivariantly self completing for lF".

If all critical manifolds satisfy the hypothesis of Proposition 7.12 then / will be equivariantly
perfect over IF, so that the equivariant Morse and Poincaré series coincide.
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Now given G a compact connected Lie group without torsion in its cohomology, and given ? a

maximal torus of G, the fibration

Gl:f ---+ BT -------+ BG

behaves like a product for integral cohomology and all the spaces involved have no torsion. For

any G-space X the induced fibration

Glf --------+ Xr --------+ Xc

is multiplicative for integral cohomology

H' (Xr) o H' (Xc)Q rl' G [Ð,

so that Hà(X) is a direct summand of H|(X); or equivalently, that for all primes p, the map

Hà(x,Zr) ------- Hi(X,v,e)

is injective.
If T :ToxTl a product of two subtori with fl acting trivially on the connected ? space X,

then X7 - BTo, Xrt and so

H+(x) o H'(BT') I ra iri
From these results, by restricting from G to a maximal torus ? ) [, we have

7.L3. Proposition.
Let X be a connected G-space on which some subtorus 7} acts trivially and let Y be a G-vector
bundle on X. Assume that the representation of To on the fibre of Y is primitive and let H'(G)
have no torsion. Then the multiplication by the top Chern class cr,(Y6:) on Hþ(X,Zr) is injective
for aII primes p.

We shall use both PropositionsT.T2 and 7.13 to prove Theorem 7.10. To this end we require

the following result and concepts.

7.14. Proposition.
Given a smooth complex vector bundle .Ð of rank n and degree k over a compact Riemann surface

X and given D¿ the quotients associated to -Ð via its canonical fiItration (7.7 .1,) whose degrees are

the elements of a type vector l, we have the following identity

HAç@)^):8 HAQ(D:),").

Proof:
Let l, denote the space of all smooth filtrations of ,Ð ot type ¡-r,; that is, the collection of all sections

of the fibre bundle over X with fibre the manifold GL(n,A) lB, where B, is the parabolic subgroup
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preserving a fixed flag of subspaces of C" of dimensions fl1,T:\*n2,
is canonical we have a map

Since the filtration (7.7.1)

C, --------+ Fr.

Using a fixed base point of .F, corresponding to a certain smooth filtration E, of -Ð, the fibre of
this map over this point is the subspace B, C C, of cornplex structures compatible with the given

filtration. If Aut(Er) is the group of smooth automorphisms of -Ð preserving the flltration then

Aut(Er) acts on ßr, arrd F, is the homogeneous space Aut(E) lAut(Er) arrd C, can be identified
with the associated bundle. Thus the equivariant cohomology of the pairs

(Aut(E),Cr) and (Aut(Er),ßr)

are equivalent 3e

Now, upon choosing splittings of the filtration E, so that we get a direct sum decomposition
E,ofE

E: DtO @1"
with E¿ : DtO O,n,

and let Aut(Ei) and ß", be the automorphisms and complex structures (in ßr), respectively, com-

patible with this decomposition. We then have

66

r
Aut(Ei) -\Aut(n), (7.14.r)

B"r= C"'(D¿)

AIso, as the homomorphism

Aut(E r) --------+ Aut(Ei,)

is a homotopy equivalence, and the fibration

B, + 8",

has a vector space as fibre and is compatible with the group actions, then it follows that the pairs

(Aut(E r), B r) and (Aut@i), ß"¡")

have equivalent equivariant cohomology. Using this and (7.I4.1,) we have the required result.
n

3eThis follows from $13 [2] which states that for G a topological group, Il < G, and X a G space upon which .If
acts freely, then 11!(X) P Hä/r<(XlK).

i.:L
T

II
i:t
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Proof of Theorem 7.10:
Given I/, the conormal bundle to C, in C and ,nff the restriction of l/, to ß'r, then by a similar
argument to the previous result we can replace the triple (Aut(E),C¡",Np), in the equivariant

cohomology sense) by the triple (Auú(Ufl),8',,1/,i). From (7.14.I) Aut(E"¡") is observed to contain
the r dimensional torus 7r which acts trivially on ß"r.

We now use Propositions 7.1,2 and 7.14 to show that the representation of ?' on the fibre of
lü, is primitive.

At a point of 8", the bundle -Ð is a holomorphic direct sum of tbLe D¿ and so the bundle of
endomorphisms preserving the filtration

End'(E) = O Hom(D¡,D¡),
i>j

and hence

End"(E) =O Hom(D¡,D¡). (7.14.2)
i<j

On Hom(D¿,D¡) tine element (¿r,... ,tr) e T' actsby tort¡ and so it acts by the same character

on Ëfl(X,O(Hom(D¿,D¡))). As the fibre of l/, is Ht(X,O(Endtt(E))) it follows from (7.14.2)

that the representation of T' on l/, is primitive. 
tr

In conclusion, the A, VIay the role of the Morse strata for the Yang-Mills functional Y M 40 
.

This is in the sense that our strata ,4, satisfy all the properties of Proposition 4.20 relative to
YM, which in "good cases" (that is, for good properties of the trajectories r(t) of -gradYM as

f -+ oo) characterize the Morse strata. Although we have shown that the stratification of / by the

,4, is equivariantly perfect, we have not proved that the Yang-Mills functional is an equivariantly
perfect Morse function. [2] suggests that this could follow from sufficiently good properties about

the Yang-Mills flow gradY M.

Notice that if all the components of a type vector À are all equal (to lcfn), then C^: C,".

Thus knowledge of Pf (C) from our results in $4 leads to formulae ør ff (Crr) since the equivariant

cohomology of all the "un-stable" strata C^ ca,\ be calculated via Proposition 7.1/¡. We have

shown in $4 that BÇ is torsion free in its equivariant cohomology, and so it follows that the

equivariant cohomology of the strata C¡ also have no torsion. \Mhen (n,k) :1 we have Cr, -- Cr,

the subspace of C of stable bundles, and so we can deduce results about the torsion of the moduli
space l/(n, k) :: Cf Auú(E). This is the content of the next section.

a0This is also the caseíf YM is replaced with any other functional defined by a strongly convex invariant function
on the Lie algebra u(n) of U(n)
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8 The moduli space of semi-stable bundles.

In the language of uariet'ies and schemes given X a non-singular projective algebraic curve over C

(in our case a Riemann surface) and .Ð a holomorphic bundle over X of rank n and degree k we

shall consider the moduli, scheme

,n/(n, k) t: C,,(E) lAut(E)

the quotient of the space of semi-stable bundles over X of rank n and degree k by the action of
the automorphism group Aut(E).

We shall further restrict to the coprime case (n, k) : L so that these moduli spaces do not

exhibit non-Hausdorff phenomena' In this case Cr, : Cr, the subspace of C of stable bundles, and

Aut(E) acts on Cr(E) with only the constant central scalars as its isotropy group; moreover) in this

case the moduli spaces l/(n, k) are (compact) Krihter mani'folds ar'

These moduli spaces, as in the study of varieties and schemes, parametrise the solution space

of the Yang-Mills equations and so merit analysis. Upon calculating the ordinary cohomology of
the moduli space ly'(n, k) and thus obtaining a formula for its Poincaré series we shall show that
this space has no torsion. r

Let0 :-- ÇluQ)id where U(I)id is the constant central t/(1)-subgroup of Ç, and let Ç- ::
çalC" id which acts freely on C, with quotient N(n,lc), hence resulting in the formula

H'(N(n,k)) = Hà(c'). (8.0.3)

Here we have used I cohomology since it gives the same result u" f cohomology (Proposition

2.16 [2]),
The fibration

BU(r) -------+ BÇ --------+ BÇ (8.0.4)

is trivial in rational cohomology for the following reasons. As the composition i/(1) ---+ ç ---+ U(1)

arising from taking determinants has degree n, the map

H' (Bç,Q) -------) ¡1' (BU(1), Q)

is surjective thus BÇ -q BÇ x BU(1) and so

P¡(N(n,k)) : (1 - *)Pf (C") (8.0.5)

where Pf (Cr) is calculated inductively by the formula

n9):\t2d'rt(cr) (8.0.6)
p

al A compact complex manifold is called Kähter if it admits a Hermitian metric a, given locally by I g;¡ dz; Ø d7i :
Dônø$n, whose associated (1,1)-form ø, patched from the local representatives il2DÓn A þo' is d-closed.
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where d, :: cod,irncC, n' whose first term arises from the semi-stable bundles and all the remaining

terms can be calculated inductively from the fact that the equivariant cohomology of the stratum
C, is isomorphic to the tensor product of the equivariant cohomology of the semi-stat¡le strata for
the quotients of the canonical filtration for the bundle ,Ð.

Consider the map arising from taking determinants of bundles

det: N(n,k) -+ Jx6)

where .I¡ is the Jacobian of X a3 which parametrizes line bundles of degree k over X Let
No(n,k) denote the fibre of this map, which is the moduli space of stable bundles with fixed

determinant. If f denotes the group of components of I (which is fll(X, Z) = Zz0¡ and define

l,r:: lf nl - H'(X,Zr) we have that (equation (9.5) [2])

N(n,k): (l/,(n, k) x J¡,)11".

Letting Ç' cÇ correspond to the lattice nf c f so that çlç' :lf nl.: l,r, then

H' (No(n, k) x J¡,) = H;, (C").

Since I and. Ç' give the same equivariant cohomology of C, over Q due to the fact that the same is

true for Ç and Ç' , we have by the Künneth formula that

H'(C,) e H'(No(n, k)) I H'(Jù,

or equivalently that

P¡(N(n,k)) : Pt(N.(",k))(7 + t¡zs (B'0'7)

since .I¡ = U lz2s = flr, St.

\Me now proceed to prove that the integral cohomology of the moduli space N(n, k) has no

torsion.
As C is contractible then the homotopy quotient Cç \s of the same homotopy type as the

classifying space BÇ. We had found earlier lhat BÇ - Mapp(X,BU(n)) and that this map

space had no torsion, thus the space C and the strata C, have no torsion in their Ç-equivariant
cohomology. In particular, the same is true for the semi-stable stratuíL Crr. We wish to deduce a

similar result for the cohomology module Hã(Cr). Thus it is sufficient to show that the fibration
(8.0.4) is a product and so

HeQ) - Hà(c,)Q ø'iru1t¡¡.

Now Btl(1) : K(2,;2) and so (8.0.4) has characteristic class in H'(90,2) whose vanishing will
imply the triviality of the fibration. Therefore we equivalently show that the map

H, (Bç,2) --------+ H2 @U (r),V")
a'The di*etrrion d, can be calculated by means of formulae (7.9.1).
a3See Appendix B for the definition of the Jacobian of a Riemann surface.
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associated to the cohomology sequence of the fibration (8.0.4) is surjective. Due to time constraints

I have assumed the result of Proposition2.2I [2] which states exactly this.

Given the commutative diagram of fibrations

BU(I) --------+ (C,)ç, ------+ No(n,k) x J¡

ilJl
BU(1)

where the map No(n,k) x J¡ -+ l/(n, k) is the finite l,r-covering. As the bottom row has been

shown to be a product, the same must be true for the top row. As we know that the Ç/-equivariant
cohomology of C" is torsion free it follows that l/r(n, k) x J¡, has no torsion, hence the same being

true for No(n,k).To this extent we have proved the following results.

8.L. Theorem.
If (n,k):1, the moduli spaces N(n,k) and ltro(n,k) of stable bundles have no torsion.

We end with the calculation of the Poincaré series of the moduli space l/(n, k) for (n,lc) : (2,t)
so that we can get a result more concrete than that posed at the end of $4 on a conjectural level.

Given equations (7.10.1) and (7.9.1) we have in this case

oo

pf (c): t tz(zm+s) pf (cç^¡r,_^¡) + pf (c,).
m:o

The equivariant Poincaré series of the "un-stable" strata C1^+t,-^¡ are calculated with Proposit'ion

7.11to obtain

e!(Cç,,+r,-"ù):{+#}'

Formula (8.0.5) derived above gives

Pf Q) - PL(lrQ:-rD

and given the following result derived in $4

Pf (c) : Pt(BÇ) :

we obtain

{(1 +¿)(1 +t\}2e
(1 + ¿2)2(1 - t4)

t2e (I + t)4s

(1 -
where the infinite summation is reduced by geometric series

)(t-¿+¡'
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A L2-connections over Riemann surfaces.

Here we shall give a complete description of the result of K. Uhlenbeck 132) used in Donaldson's
theorem on stable bundles expounded in $6.

In 1982 Uhlenbeck derived (Theorem A.B l32l) a weak-compactness result for connections on

bundles. This global theorem rests on the existence of a gauge on the trivial bundle -Ð[N] over

the ball 82 '.: BtO C IR2 upon which the Lorentz-gauge condition dÌ A :0 and t]he arial-gauge
cond,'ition (r.,4)¡s':0 hold for a given connection d+ Ae A?(E) with a bound on [BrlFyldr.

Such gauges are often assumed constructable in terms of so called path-ordered integrals; how-
ever, the convergence of these integrals is too suspect to hold any merit, so we prove the above

result analytically by appealing to the i,mpli,cit functi,on theorern.

Let Xn be a compact Riemannian manifold, and E'[N] a vector bundle with compact structure
group G ç SO(I) whose corresponding Lie algebra is denoted by g.

As before, denote lry Ler(U,,8) the completion of the space f (U,E) with respect to the ll . llo,¡-
norm, and define fv "4n@) the affine space of connections V e A(E) of class Ll; that is, given

Y: d,*A locally over IJ, A€ LI(U,ad(E) 8".X). The curvature -F'y of a connection V extends
to a Ll section when V is of class LI"*r.

We define the smooth gauge group on -Ð by Ç::l(X,Aut(E)). This group acts on A(E)by

s V(o)':s-lV(so), seÇ, Ye A(E), o€f(,8').

When Y : d. f A with respect to a trivialising cover of E over X, the above formula expands as

s . V :: d + s-rds+ s-1.4.s.

Also, define as earlier the gauge group acting on Æh(E) bV ÇI+t,: Leu*r(Aut(E)). BV multiplica-
tion theorems on Sobolev spaces aa this group is a smooth manifold and Lie group for p(lc+l) > 2.

We shall assume at this point that X : B2:: Br(0) C IR2 endowed with the flat (standard)
metric 94: õ¿¡, and -E : X x N. ttt this instance ad(E) -- 82 x g, so ad(E)8"-X : B2 x
(W 8g), hence A7:{V:d,l_Al Ae L2k(82,R'8g)} and Çî+r: L2k+r(82,G).

For CI C ìR2 given the space Cf (CI) of C* functions on Q with compact support, let L2k,"(Q)

denote the closure of Cf;(O) in ¿?(ç¿). We say that u € ¿?(C¿) is0 on ôCI if u e L2k,o(Q). This
space is used to overcome ambiguities associated with making statements such as ülar¿ : 0 since u
is in fact an equivalence class of measure-almost-everywhere equal functions and such a statement
is vacuous since ô0 is a set of measure zero.

Upon defining A?,o,: {V e A?(E) I Ï""lFyldr < rc} the local theorem we aim to prove is the
following:

aaFor Sobolev spaces defined on vector bundles over compact r¿ Riemannian manifolds the multiplication operator
Li\ØLiZ- -Lf isdefineclandcontinuousif (kr -nlp1)+((k2-nlp")>k-rlp andkr,lez>tlt,ptkt,pzkz1n,
Pr,Pz ) l, p t æ See Theorem 9.5 l29l
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,A..L. Theorem.
There exist rc,c ) 0 such that every V e A?,^ is gauge-equivalent to a connection d + A e Al
where A satisfies

d,*A:0 the Lorentz - go,uge condit'ion;

r ' A e f?,.(n',g) the ari,al - gauge conditi,on;

llAll',r < 
" lFeld,r;

/ ,1/2
(d) , llallz,r t"( [ lF'vl2drrl

\ JB' /

Here the trp norms are defined with respect to the natural inner product on the spaces /\[ X
and the Cartan-Killi,ng form k(A, B) :: tr(AB*) on g.

Our method of proof of this theorem is as follows. Let 3 denote the set of all connections in
..41,o which are gauge-equivalent to connections in "41 satisfying conditions (ø) - (d) of the above

theorem. Upon showing that A?1,o is connected and that the set E is both open and closed \n A?1,o,

S is then equal to the only topological component of Al,o, namely Al,oitself.
We begin by establishing the connectivity of A?1,o by showing that this space is path connected.

4.2. Lemma. The space Al,o c Al is connected.
Proof
Given V:d+ Ae Al,o,for ¿ € [0,1] consider t]ne di'lation at0 e B2 wi'th ratio t

õ¡: B2 ---+ B2

:rrltr,

and define the pull-back of V, V¿ :: ô;(V) : cl I tA(tr).
The ,Lr curvature of the path V¿ is controlled by that of V, for

Fv, : t2 dA(tr) + * A(tr) A A(tr)
: * Fv(tr)

hence I Vo,ld,r:t I lrolo,Jx ' JE6
{ f,t<, { r, Vt

where B¿(0) :: { r e R2 I l"l < ú }. Therefore the curve V¿ lies in "41,o.
n

4.3. Lemma.
The set E is closed in Al,^.
Proof:
The methodology adopted here is to show that for any sequence {V¿} in 3, the limiting connection

Y :: d, + Ã e .41,o must lie in E.

72

(r)
(b)

(")
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Each V¿ :: d,* A¿ e3 is gauge-equivalent to a connection d t A¿ € Alwheretlne A¿ satisfy

conditions (o) - (d) of Theorem A.1;inparticular, llA,llr¡< "llFvollz. 
Rs V¿L-|V,thus f'yn4,F'y,

the A¿ are uniformly bounded in Ll. As Ll is a reflexive Banach space there exists a subsequence

of {A¿} which converges weakly rn Ll, say to ,4.

Conditions (o) - (¿) of Theorem A.1are preserved under weak limits since

(o) .4. o d* € L?(82,re' I s). VIr e fl@2, R' I g)*;
(b) (".) is a linear functional on Ll(n2,R' I g);
(c) & (a) follow since llÁ¿llz + lllllz and ll,Fynllz -+ llF'vllz.

To cogLplete the proof we require to show that there exists a gauge transformation between

V:d,*À and d+ A. As s¿.V¿: d* A¿for some si e Ç],or equivalently that

d's¿:3¿ -Ã¡s¿ (A'3'1)

we have that llds¿ll2 < llA¿llz+llÃ51" since G c SO(¿), hence t]ne d,s¿ are boundedin L2 thus the s¿

are bounde din L2r. As G is compact the s¿ are uniformly bounded in -Lr2 hence there is a subsequence
r2

{s¿,} such that s¿,4s. The equation (4.3.1) is preserved under weak limits to become ds: sA- As

.i"." ¡, "d, e LI(B',G)* VL e L?(B',R'8g)* and upon setting I\(Ã¿s¿): nr(Ã)Â2(s¿) for
lv c L?(82, R' I g)* and l\2 e L?(82,s)* .

As s takes its values in G its træ-norm is well defined and bounded, thus

ll"Allz I ll'll".ll,allz and llA"ll, I llÁllzll"ll""

thus ds e -L2 since

lld'll, < ll'll-(ll¿ll, + llAllz)

A similar calculations are adopted in showing Vods e tr2 where Vo is a connection on the bundle
Aut(E) 8 ?*X, thus concluding that d,s e Ll. By the elliptic estimate a5

llrllz,, < clldsll2,l

we have tlnat s e L2". 
tr

We now show that E is open ,n Al,o, namely to establish the following:

4.4. Lemma.
If V € Al,*is gauge-equivalent to d+ A where A satisfies conditions (o) - (¿) ín Theorem A.1,

there exists an open neighbourhood of Y rn Al,o provided rc is sufficiently small.

We save ourselves some difficulty in the proof of Lemma A.4 by observing that the "closed"
conditions (c) and (d) of Theorem A.1are apriori valid estimates on solutions to equations (a) and
(ò). This is described in the following result.

4tlf ¿ is an elliptic operator of order I on l(() for some vector bundle { over a compact Riemannian manifold,
thenforeach/c)0thereexistsac:c(k))0suchthatforalls€f(Owehavellsllz,,r+L<c(llLsllz,*+llsllz,r)'
Furthermore, 7f s is L2¡" orthogonal to ker(L) we can omit the llsllz,r term. See Theorem l.l Appendix, $4 [23].



A L2,CONNECTIO]VS OVER RIEMA]VN SURFACES. 74

4.5. Lemma.
Given A e tl@z,R'8g) satisfying conditions (a) and (b) of Theorem,4.-1, there exists a k > 0

such that if llÁll2 ( k then llÁllr,r < cllF¿+,cll2 and llAll1,1 < 
'llF¿+¿llr

Proof:
As 111(B') :0 the basic elliptic estimate for the ltt-order elliptic operator d+d* on 1-forms gives

llÁllz,r < k'lldAll2 since d'* A:0. (4.5.1)

FYom the equation for curvature F¿¡¡ : d"A * A A A we have

llaAllr l llF¿+¿llz + llÁ 
^ 
All2' (A'5'2)

Moreover

llA ^ 
All2 < k"ll1'llrllÁllz,r; (4.5.3)

this following from the fact that llAAAll2 < c'llAn 4ll1,1 since Ll. ç f'on 2-dimensional manifolds,
and as

ll,4 A All1,1 < ." llA A v,,4ll1 + llAllS)
< k" (llAllrllv 

"Allz 
+ llAllS)

by the Hölder inequality where Vo is a connection on ad(E) 8?.X.
Combining equations (4.5.1), (4.5.2) and (4.5.3) we attain

llAllr,, (r - k'k"llAllz) I k'llFa+,sllz.

Upon taking ¡: fi6, we obtain the required result.
Upon replacing the index "1" for the index "2" in equation (4.5.1) and replacing equation

(4.5.3) with the basic Hölder estimate llA A Alll < ll¿llrll¿llz, these equations combine with the

Sobolev inequality ll¿ll, < k"llAllr; to give llAllt,, < cllFa+.qli.
¡

We will also require the following two lemmae for the proof of Lemma A./¡.

4.6. Lemma.
There exists a linear operator P : L2r(82) ---+ f?r@2) such that for / e L?(B') we have pff) e

L7,"@') and (r . dP(Í) - f) e L?,"(B').
Proof:
Given f e L2r@2) tet F(¡) be the solution of the inhomogeneous heat equation boundary-value
problem on 51 with the radial coördinate r \n B2 is taken as the "time" variable:

.0uAgru- Ar: J, 0(r(1, u(t) :g

where As, :: (d.d+ dd*)¡6,-1s'¡ be the :usual Laplacion on 51
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The regularity theorem 46 for this partial differential equation gives P(/) e L7@2\{0}) for

f e rl(a2). By the nature of the problem @.aFff)- Ð e L?,"(F2\{0}) and p(¡) e L3,"@2\{0}).

LetP(f),:Fff).ówhere/isasmoothcut-offfunctionwith/(r) :0nearr:0andþ(r):1near
lrl : t. Thus P(/) e L3@2) for / e L?(B').Furthermore P(/) e L?2,"(82) and (r .dPff) - Í) e

L?,"(B').
!

AssumewehaveaconnectionVe,4l,ogauge-equivalenttoaconnectiond+Ae.4lsatisfying
conditions (u)-(¿) of. Theorem A.1; the product-connection d clearly establishes the existence of
such a connection. The following lemma will show that in a neighbourhood of d -f A there are

connections also satisfying the Lorentz gl,uge condition (a); this will be the foundation of the proof
for the "openess" of E. If we start with our intuitive notion of "neighbourhood" connections,
namely those of the form d + (A * À) where ), e Ll(82,R' I g) is small (in the .Ll sense), the use

of the i,mpli,ci,t funct'ion theorem in the following lemma will show that there exist connections of
the form d+ (s-rds + s-1(,4 + À)s) which satisfy the Lorentz-gauge condition (a) for a suitable
gauge transformation s € Ç]. In order that such a neighbourhood connection also satisfies the
arial gauge condition (b), we make the assumption that ø -À, r.ds e Ll,"(82,g). The validity of
this assumption rests in the use of the preceding technical lemma which modifres neighbourhood
connections d+ (A * À) to a form where r.À e L?'(F2,g). In showing that conditions (a) and
(b) are satisfied in a neighbourhood of d l- A, we use the apriori results of Lemmø 4.5 to imply
satisfaction of the remaining conditions (c) and (d) by this neighbourhood.

To facilitate this methodology we introduce the following spaces

L?,,,: {x e r2r@2,R' I ù I r . 

^ 
€ L?,"(B',s)},

Ç?.,,: {s e Ç} | r-ds e Ll,"(a2,s)},

L3:,,: {U € L3@',ø) I 1",(J 
d,r : 0, r. d,[J Ç L?,,(82,s)]

and Lf;L ,: {v € L2 (B' , ø) I l",V 
d,r : o}.

4.7. Lernrna.
Given d+ A € A?,^ satisfying conditions (a) and (b) of Theorem A.1 and such that llAll2 < k for
somek)0,thereexistsan€>0suchthatforÀefl,,withllÀ112,1 (e,thenonlinearequation

d* (s-r d,s* s-l(A + À)s) : g

has a solution s(À) e ç3,, depending smoothly on À.

Proof:
As gauge transformations on E can be expressed as s : eu fo, U e L3@2, g) we consider the
smooth map

o : rlL-g rl,, --+ L\t
: (U, À) ,+ d*(e-u d""u + "-u 1A+ À)eu).

a6See Proposition 2.1 chapter 15 $2 [31]
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Suppose iÞ(t/, À) : g. Then by the i,mplicit function theorem if the linearization on the first
variable about (t/, À) is an isomorphism from LlL. to .Lfrr there is a neighbourhood ,A/(À) of À,

a neighbourhood I[(U) of t/ and a smooth function ú : Ll,, --- LZI, such that Ü(À) : y,

V(¡/(À)) C N(U) and for each À' e 
^f(À) 

the equation Õ(t/',À') : 0 is uniquely solved by

t/' : V(À') e 
^f 

(q.
The linearization of Õ on the first variable about (U, À¡ : (0,0) is given as

La(ù :: d,ldlo(¿h,0)l¿:6 for n e rf(n2,s). As 
"tâ 

: DT:o t"h" f nt tlner^

"-th¿"th 
¡ .-th ¡"th : tdh + A + tAh - thA + o{t'}, whence La(ù : d* (dh + ÍA,h)).

This map is self-adjoint, for G ç SO(I) choose the trace inner product on g, thus an inner-
product on L2(82,g) is (h,1, h2):: [urtr(t tt;)dr; the result (¿O(hl), hz): (h,LO(h2)) follows

by application of Stolçes' theorem.

To show this linearization is invertible, we firstly require to prove that llIO(ñ,)ll2 > cllhll2,2 for
some c ) 0 in order to establish that trÕ is 1 - 1.

Observe that d,*lA,h): -7(A¿h)l0r¿+ O(hAòlAr¿: -A¿ôhl0r¿-l 0hl0r¿A¿ (since d*A:0),
thus d*[,4, h): - +lA,dh]. So by the Hölder inequality,

ll¿o(h) ll2 > lld. dhllz - ll lA, dhlll2

> k"lldhll2,t - lldhllz,t("rll,4ll, + c2llAll2¡)

I lldhllz,r (ls" - clle - c2crc)

since llÁll2 { k and hence llAllr,r l "ll¡'¿+¿ll2by 
Lemma A.5. Taking þ: (c2cn-k")f2c1 gives

the required result.
To show that -LÕ is onto we must deduce thati,m(LQ): L\L. As trÕ is linear, ker(LÞ): {0}

whence ker(LQ)L - Lßt. Also, ker(LÕ)r : i,m(LQ.),but i.m(LQ*) : i,m(LÞ) since.LtÞ is self-

adjoint, thus attaining the restrlt.
Thus the i,mpti,cit functi,on theorem implies a gauge transformation s(À) 1: su(^) e ç3,, solving our
non-linear equation locally (that is, within a neighbourhood of À, namely llÀllr,r ( e), smoothly
dependent on À. 

tr

Proof of Lemma 4.4:
Suppose î c Ç'z2 is the gauge transformation taking V e Al, to d -1,4. Our procedure is as follows:

we work within a neighbourhood of d -l A of elements satisfying conditions (ø) - (d) of Theorem

A.1 and. then map this neighbourhood back to one about V by 1-1. Intuitively, neighbourhood

elements about d + .4 will have the form d * (,4 + À). In order to satisfy (o) - (¿) we use Lemma 4.7
to map these elements to those of the form d + (s-1ds + s-1(A + À)s) by a gauge transformation s

which satisfies d*(s-1ds+s-l(A+À)s) : 0. In order for Lemma A.7 to be validly used to imply the

existence of such a s, we must requirer.\ € L?,o(82,g); we thus use Lemma A.6to construct such

an element. Let U : U(À) :: P(r. À) for P as in Lemma 2.4. Making the gauge transformation
e-u (d+(A+\))eu : d,-le-u deu +e-u Aeu +e-u À.eu :: d,I(a+.1), as(J : P(r'À) € L7,o(82,G)

then d,eu - dU Ç L?,o(B' ,g) (bv use of the identity 
"u 

: Ðloui lil) . As (r'dU -r'À) € L?,"(B' , g)

(bytheresults of Lemrna,4.6) thenr'À e L?,o(B',g). Moreover, as llt/ll2,z I ¿ll"'À112,1 wecanmake

llÀllr,t sufficiently small by doing so with llÀllr,r. Lemma A.7 cannow be used on the neighbourhood
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elements of the form d+ (A +f¡. Obr"rve that lls-lds + s-l(A+.r¡s¡¡, I lld"llz + llAllz + llÀll2 < k'

since lllll2,1 ( e/, s takes its values in G Ç SO(t), and as A satisfies condition (c) with llFvllt < o.

We can thus use the fact that Il C L2 and Lemma A.5 to imply the conditions (c) and (d) for

these neighbourhood elements. 
tr

We have thus shown that the space 5 is identically A?,

We now piece together these results to prove our main theorem.

We now assume X is a compact Riemann surface and and EIN] a vector bundle with compact

structure group G Ç SO(l). We will use the result Theorern A.1in establishing the following result:

4.8. Theorem.
Given {V¿} u sequence of connections whose corresponding curvatures -F'yu satisfy I,lFyul2uol < B
for some B ) 0, there exists a subsequence {V¿,} and gauge transformations s¿, e Ç} sucJntlnat

{t¡t 'Y¡t} is weakly convergent in Al. The weak limit V satisfies frlfyl2uot < B.

We now establish a technical result 4.11 involving trivialising covers for the bundle E ovet X
which will aid in the proof of the above main theorem.

Let ã be a fixed neighbourhood of e e G in the domain of the rnap erp-r where erp: g ----+ G.

To this extent we require the following 2 results.

4.9. Lemma.
GivenGacompactgroupwithgeuivariantmetri(,1/o)0suchthatifh,g,p€G,lerp-thTl<fo
and lerp-L pl < f o, ther hpg e G and lenp-Lhpgl < 2(lerp-lhsl + lerp-t p1¡.

Proof:
Define the map Q t gxg---+ g by the formula erp(Q(k,u):erp(lc)erp(u).
Q is smooth in both variables in a neighbourhood of 0 in g. Observe that Q(0,0) : O and as

erp(Q (k, u)) dQ @, u) : lerp (k) erp (u), erp (k) erp(tr)l then 
I 
d8 (0' 0) I : r.

Let O ,: {lr,u e B¡"(0) c g I ldQ&,")l <2}. As O is convexT then by t}-:e rnean ualue theorern

we have lQ@,")l <2(lkl + l"l) for lkl,l"l I f ,.
Let k ') 

"rp-r(hg) 
and u :: Ad,gerp-r(p) then Q(k, u) : erp-t(gherp-r(Adnerp-r(p))) :

e:Lp-L (hg p) . Thus lQ (k, u)l < 2(leri-t (nùl 't lActnerp-t (p) l) : 2(lerp-r (hs)l + l."p-'Ø)l) .

n

,4..1-0. Proposition.
l,et {%}L:1 be a finite cover of X'
Let lt..p .. (Jol)Uþ + G and gaB : (Joì,Up ---+ G be sets of continuous transition functions

describing two vector bundles over X.
-/¿ such that if

Tn :: Tmo":x a,þ | n €(J.f.u p l"*p-t (h * B @) g. p(") ) I < /¿

then there exists a refinement {%} of the cover {t/"} and continuous maps pû : Vo -+ G such

that hoB: pogoppBt onVoO VB. Moreovet) Tnarxrev-lerp-r(po)l < c¿m.

Proof:
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We proceed by induction on l.
For I : 1 we have the required result by setting p1 : e e G.

Suppose we have constructed, (Jo,t" C Uo and Pa i (Ja,tt ---+ G satisfying hoþ : PogaBppt on

(Jo,t lUp,nfor 1( a, 13 <k;and assume x c (u".¡r.,r)u (r"r*¿t") and,lerp-tpol1c¡,m.
For rn sufficiently small we can proceed in induction from j : k to j : k+ 1. We do this as follows'

Define the maps uj'.: erp-r(h¡opo9o¡):(Jo,¡rltl¡ ---+ g for a 1k: i -I.
If rn { fof c¡ then lerp-t po(r)l a ,** ( /, and lerp-rh¡o(r)0"¡çr¡l < * < lo.
Lemma ,4 . 9 implies the existence of the u, and establishes that 2 (1 -l c¡)m : c jrn. From the overlap

condition on the transition functions we have that the uj are defined onU¡n (U"5¿U",¡).

Choose a smooth partition of unity {d¡} subördinate to {U¡} which is 0 on U¡\ Ua<kUo,n

Make the choice of @¡ so that the sets t/o,i : (Ja,k n {" I Ó¡@) : 1}" cover X\Uot¡,

Define pj : e:xp(ó¡u¡) on u¡ a (o.5¡,U",r) u.ta pj : 7 on I/r'\ (u"5*n",*)
o

Thenlerp-tp¡@)l < lþ¡@)"¡(")l < 2(I+c¡)m: c¡rn. This and the iterative equation ck+r:
2(I + c¡") complete the proof. 

tr

4.11. Corollary.
Let hop, gap € L\(U"7tUB,G) be transition functions for two vector bundles over X.
Suppose

Trù'.: nùa.:L ù,þ | r €t) ot\(J p lerp-r (h.p (ù s. B @D I I I ¿.

Then the po constructed in Propos'it'ion A.10 are elements of L\(V.,G).
Furthermore, if llh^pllz,z¡u.nup,lls.,Bllz,zl¡¡.nuu I m' Va,B, there exists a k(mt) such that

ll"rp-' p *llr,z 1y. I k (*' )

Proof:
The maps p¡:: erp(þ¡erp-rh¡opogo,j) are boundedrn Lf(U¡,G) by the rules of multiplication
and composition of functions in the Sobolev spaces ,L!.

!
IfVisaconnectiononthebundleEsuchthat/"lFyl2uollBforsomeB)0,inordertoapply

our local results to the proof of Theorem A.8we require to show that this implies [u.lFvluol I n

over a particular trivialising cover {[/.,] of -E over X. This is done as follows.

L.Lz. Lemma.
Let V be a connection on the bundle ad(E) such that /, l¡" l2uot t B for some B > 0. There is

afiniteatlas{(t/o,d")}of Xwith óot(Io---+(B')" suchthat [prlFel2d,rlnt whereÍitth"
pull-back of V restricted to these covers.

Proof:
Choose an atlas {(U., ô.)} of X with õo , Uo ---+ (B')" which trivialises -Ð, and [/o chosen such

that the Riemannian metrics on X compare uniformly to As Vlu-" : d'l Ao

fo1 Ao a g-valued.1-form on X, let Ão ,: (õ;t). Ao and that-(d;1)*Fv :
(ó;t).(d,A,)+(õ" t).lA*,A.,land,Fç 

-- ¿((þ;t).A.)+ : (ó;r).(dA,)+
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(þ;t).lAo,A.): (õ;r)*tv (by the properties of pull-backs; namely, that df.@): /*(dc,,') and

f 
*(, A r) : /-(ø) n /.(r)).

Lety:rr+ ntf Btrfor ¿€ [0,1], z€ (82)" anddefine þo::X-rofo. Then Óä,: X*o(do 1)*'

ep(¡) --+ €p((82)").
(d;t)-Fv : @'f B)2t2Fy o S;r@'lBtr).
[u,lFyl2 d,r 4 [s,lóäFvl2 ctr < (rc'f B)t [p¡elFrl2 dr < n'.

As X is compact, there is a finite subcover of {U"}, and our required coördinate maps are the /o.
n

4.13. Lemma.
Let {V¿} be a sequence of connections in "41 such thal [rlFy,l2uol < B.
There exists a trivialising cover {(U",rþL)} of .Ð such that
(i) : given V ¿Vt. : d, I A'o with respect to this trivialisatio n of E , the At, satisfy conditions (") - (¿)

of Theorem 4.1;
(ii): the transition functions 9!6 associated with this trivialisation are uniformly bounded in Lf(U"n
uB,G);

(iii): for an appropriate subsequence, we have weak convergence ot' 
t?(u''Ñ 8n) Ao und

;, LZ(U.aUp,G)
9".n r ÇaBì
(iv): fne Ao represent a connection V on ,Ð with respect to a trivialisation whose transition
functions ale gaþ.

Proof:
AsL2 Ç.L1 thenby LemmaA.l2we havethat llF'vollrlu" (rcthusby TheoremA.lwe havethat

(i) follows. (ii) follows from the computations similar to those in Lemma A.2. As llÁillz,r¡,:r" I
c(a)lFy,llr¡u, bV Theorem A.1we have that {A'.-} arc uniformly bounded in Ll; with this fact and

the result of part (ii) we have weak convergence in (iii) of appropriate subsequences. (iv) follows
from the fact that the overlap conditions are preserved under weak limits.

n

\Me can finally prove our main Theorem 4.8.

Proof of Theorem 4.8:
Let us assume the results of Lemrna A.13, and renumerate so that 'ít :'i.
As L36) c C0(X) is a compact embedding, we have gLp + 9oB (strongly) in C0(t/" ÀUB,G). So

upon applyingProposi,ti,on A.10 and Corollary A.11to gLþ,gt p:7aB 1j such that for j ( z ( oo

we have a refinement {%} of the cover {I/.} with p', e L2r(V,, G) and ¿Lp : OLOt pOL-t.
Moreover, p\ e L2r(V",G) is bounded and so converges to po in Co(Vo,G), which is equivalent to
, L2r(v*,G)

PL -r Pa.
Define the global gauge transformation s¿ e 9l on Uo by si i: pi . Observe that (so 1 o Vi o

s¿)lv.: so 1o (V¿)¡y. o si: pL-t 
^o 

(d+ !L) o pL: d+ {p'*-rapL+ pL-'ALpL}
As tLe,4! converge weakly in LI(V*,R'8g) and rhe px. converge weakly in L?r(Vo,G), then by
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the lules of multiplication in Sobolev spaces we have that the above connection convelges weakly

in Ul on Vo.
tr
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B Principal bundles, fibrations and the Jacobian variety.

Let G be a group and X a set. Recall that a (left) group act'ionof G on X is a map

T:GxX--+X

suchthatT(e,r):randT(g,T(h,r)) :T(gh,r) forallg,h€Gandr€Xwheree€Gisthe
identity element of the group; we usually write g 'r for T(g,r). A space X together with a group
action is called a G-space. As there is a bijective correspondence between left and right G-space
structures we need only concern ourselves with one type of group action. Given

Go :: {g e C I g., : rVr € X} oG,

a group action on a space is called effectiue rf Gr: (e).

Given an action of G on X, the orbits

Or::{g."lS€G}

corresponding to r e X partition X. We say an action is trans'itiue if given auy :xr,r2 € X therc
exists a g e G such that 12 : g' 11, which is equivalent to requiring that X consists of a single
orbit.

We also define tlne stability (or i,sotropy) group of a r € X to be the subgroup

G,::{SeClg'r:r}<G.

We call the action on X free (respectively, almost free) if G, : (e) for all r € X (respectively, if
G, is discrete for each r € X).

Consider a fiber bundle {[f-] over a (topological) space with typical fiber -F having {g¿¡} as its
transition functions relative to a trivialising cover {U¿) of X. Suppose we have a(n effective) group
action of G on F with corresponding homomorphism p: G ---+ Aut(F). Suppose 9t¡@) e p(G)
for all r € U¿ÀU¡ I Ø. In this case G is the structure group of the bundle ( which is referred
to as a G-bundle in this case; the rrra,ps gij are called G transi,tion rnaps. Furthermore we call a
bundle { a G-bundle if it is isomorphic to a bundle (8,p, E lG) where E lG is the space of orbits
corresponding to the action of G on a space E and p : E -+ E lG is the natural quotient map.

A G-space X is called principal if the action of G on X is effective with a continuous translat'ion
rnap; namely, the map I, {(*,g. r) € X x X I Vg e G} -+ G such that r(r, r')', : rt. Let G
be a topological group . A, prznci,pal G bundle, denoted PG, is a G-bundle (8,T, X) with principal
G-space .Ð. More formally, it is a fiber bundle whose fibers are affine spaces on which the action
of G is free and transitive. One observes that a principal G bundle is a flber bundle with fiber- G.

For brevity we give the following definition of a principal G-bundle; for the purposes of this
thesis we shall restrict our attention to the case where the base space is a manifold and the group
a Lie group.

8.1. Definition.
Let X be a smooth manifold and G a Lie group. A (smooth) pri,ncipal G-bundleover X is a fiber
bundle PG:: (E,T,X) whose total space .Ð is a G-space such that
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(i): the total space E is a smooth manifold;

(ii): theprojection r: E -+ X is surjectivesatisfying zr(9'ù:n(p) for aII p€P andg €G;

(iii): theaction (g,p)r+ g'pis asmoothmap G x P-+ G with (hg)'p:h'(g 'p) for allpe P
and g, h e G such that the following "local triviality" condition is satisfied: there exists a
trivialising cover {(ry'¿,U,)} of PG over X such that zr t(f¡,) ir diffeomorphicto U¿ x G via
ry'¿ where ,þ¿(p) : (n(p),ó¿(p)) such that ó¿(g 'p) : gö¿(p).

AnimportantGbundleisauniuersalGbundlepiE-+Bwhichischaracterisedbyacon-
tractible total space -8. The rnaín class'ifi,cat'ion theorem ($8 [25]) for universal principal G-bundles
for a topological group G, which is given below for completeness, states that the base spaces of
any two such bundles are homotopy equivalent, and we usually wr-ite BG for any space in this
homotopy class, known as the classi,fying space of the group G.

For the statement of the following theorem, let ?G(B) denote the set of equivalence classes of
principal G-bundles over the space B; via pullbacks of bundles this is a contravariant set valued
functor on the homotopy category of topological spaces. We also denote by [X,Y] the collection of
homotopy equivalence classes of maps X -+ Y between topological spaces X and Y.

8.2. Theorem. (Classification theorem for universal bundles)
Given p: E -+ EIG a universal principal G bundle, the natural transformation

iÞ,[., EIG]-+9G(.),

obtained by sending the homotopy class of a map f , B -+ E lG to the equivalence class of the
principal G-bundle f* E, is a natural isomorphism of functors.

What will follow is an explicit construction of a classifying space for a topological group G
which will give a concrete example of a universal principal G-bundle.

Let G be a topological group and set

E"(G) ,: Gnir and B"(G) :: Gn

with pr, '. çn*r -+ G the projection on the first n coördinates.
Define the the face- and degeneracy-operators on E"(G) 0 < i < n to be the respective maps

d,¿: E"(G) -+ E"-r(G)

(gr,..' ,7n+t) è , Tn+l),
, 9i-tr 9¿9¿+t' 9i+2,

,i:0
,gn+r), If i1n,

(sz,
(st,

and

s¿: En(G) -+ E"¡1(G)
, (h,. .. ,7n+r) t+ (9r, .'. ,9i-r,€,9i, "' ,7n+t)
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which satisfy the relations d,¿ o d¡ : dj-t o d"¿ rf i < j,si o sj : sj*l o s¿ if i { j and

s¡-to d,i if i < i,
id if i: j ori: j+I,
s¡od"¿-1 if i> j+I.

83

d¡osj-

The face- and degeneracy-operators are defined on B"(G) in a similar way except that
dn(h,.. -,9n) : (gt, "',7n_t)'

Given the convex hull 4,, ,: {(to, ... ,tn) € IR3+1 I 0 < ¿o < 1, t t¿:1} and operators

6,¡:A.n_1 JA",
: (ú0,. . . ,tn+t) t+ (ú0, ... ,ti-t,O,ti,. .. ,t,,-t)

and

o¿ : A,"¡1 --) 4",
: (úo'.. ' ,tr+r) t+ (ú0, ." ,ti-t,t¿It¿¡1,..' ,tn+r)

we define the equivalence relations

@,6¿(")) - (d¿(g),u) and (s,o¿(r)) - ("¿(s),r)

for u € Ar¿-1 and u € Ln¡1. \Mith this we construct the quotient spaces

E(G):: ilf¿icl , o,) / - and B(G):: f[{a,'{c) " o,) /n)0 I n)0

with topologies given by the union of the constituent quotient topologies. Associated with these

spaces is the natural map p I E(G) -+ B(G) induced by the maps pn.

Note that E(G) inherits a free right action by G and that B(G) is the orbit space E(C)IG
called the classifying space of G. It can be shown (S5 [25]) that ,Ð(G) is a contractible space, and

thus for any Lie group G the projection p : E(G) -+ B(G) constructed above is a universal principal
G-bundle.

Two important notions in homotopy theory are those of cofibrations and fibrations; their sig-

nifi.cance being that all exact sequences that feature in the study of homotopy, homology and co-

homology groups can be derived homotopically from the theory of cofiber and fiber sequences. We

shall provide the definition of cofibrations and fibrations and follow with some theorems involving
fibrations as appear in chapter IV [34]; these results were assumed in the proof of (5.0.1).
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El.3. Definition.
A map i: A -+ X is known as a cofibrati,onif it satisfies the homotopy ertension property (HEP)
which entails the existence of a map å which makes the following diagram commute if h"io: f oi
where 1 :: [0,1] and io(r) : (",0).

A ?,o Ax I
h

ixid

X XxI

One calls a topological space X compactly generated if it is a Hausdorff space and if each A C X
with the property that A î C is closed for every compact subset C C X is itself closed.

8.4. Definition.
LetXandBbetopologicalspaces,Yacompactlygeneratedspaceandp:X-+Basurjective
map. A homotopy lifting problern for (p, Y) is symbolised by a commutative diagram

r h

uo

rY X

B

h
ouo p

I xY
h

where 1 :: [0,7], i.(A) : (0,g), and the maps / and h are said to constitute the datu for the
problem in question. The map h. is a homotopy of p o / ancl a solut'ion to the problem is a map

h, I xY -+ X such that the the above diagram commutes; thus ã tifts the homotopy h of po / to
a homotopy of /. The map p is said the have the homotopy lifti,ng property (HLP) with respect to
Yifeveryhomotopyliftingproblemhasasolution; amapp:X-+Bissaidtobeafi,brationifit
has the HLP with respect to every space Y.

Given a fibration p : X -+8, one calls the space -F.6':p-l(b) tlne fibreover the point b € B. It
can be shown (chapter IV [34]) that if B is pathwise connected then all the fibres have the same



B PRINCIPAL BI]NDLES, FIBRATIO/VS A¡\ID THE JACOBIA¡,I VARIETY 85

homotopy type; a candidate for this homotopy class is called ttre typi,cal fiber. One often uses the

following notation to indicate that the map p : X -+ B is a fibration with typical flber .F

P ----¡ Y -J--¿ 3
where i is an inclusion.

8.5. Theorem.
If p : X -+ Y and q : Y -+ B are fibrations, then so too is the composition q o p : X -+ B -

An open cover O of a space B is called locally finite if each b € B is a point of only finitely
rnany (J e 0. Tlne cover O is furthermore called numerable if in addition to it being locally flnite
there exist continuous maps ly : B -+ l for each U e 0 such that ltt(0, 1):U; any open cover

of a paracompact space is numerable.

8.6. Theorem. (Hurewicz)
Given p:X -+ B acontinuousmapwithB aparacompact space. Suppose(? isanopencover of
B such that for each U e O tlne maps plp-r( u) | p-r (tl) -+ (J are fibrations. Then p is a fibration.

8.7. Corollary.
Let p : X -+ B be the projection map associated to a flbre bundle whose base-space B is paracom-

pact. Then p is a fibration.

8.8. Theorern.
lf p:X -+BisafibrationandB/CBwith X'::p-r(B'),thenp¡¡,:Xt-+ B/isafibration.

Two frbrations p : X -+ B and p' ; Xt -+ B over the same base space B are said to have the

same fibre homotopy typeifthere are maps À : X -+ X' ,l,t'. Xt -+ X such thal pto\:P,Po þ: Pt ,

andiftherearehomotopiesr\.:1xX-+X,l\' :IxXt-+Xt betweenpairs(poÀ'1x)and
(Àop,1¡,) respectively such that poÂ: poÀ(0,') and p'o l\' : p'o r\.'(0,'). This means the maps

À and p are homotopy inverses thus the total spaces of the fibrations have the same homotopy type.

Given spaces f' and B, the projection F x B -+ B is designated as the triuial fi,brati'on over B
with typical fiber F. A fibration p i X -+ B is said to be fibre-homotopi.cally tri,ui'al if it has the

same fibre homotopy type as such a trivial flbration.

8.9. Theorem.
Let p: X -+ B be a fibration with B contractible. Then p is fibre-homotopically trivial.

We end this appendix with the definition of the Jacobian of a Riemann surface. We begin with
the notion of lattices.

8.L0. Definition.
GivenVandimensionalvectorspaceoverlR,anadditivesubgrouplCViscalledalatti'celf
there exists n lR linearly independent vectors urt... ,un ÇV such that

l:Zutt...IZun

The following theorem gives conditions for a subgroup to be a lattice
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8.11. Theorem.
A subgroup f c V is a lattice if

(i): f isdiscrete; thatis,thereexistsaneighbourhoodt/of0suchthatf nt/:{0};

(ii): f is contained in no proper vector subspace of V.

GivenXacompactRiemannsurfaceofgenusg)1andb)tt...,ørabasisofthevectorspace
of holomorphic 1 forms Ot(X) on X, define a subgroup

Per(u1,... ,w) C U

consisting of all vectors

{([rr, , Iun)e C9la€n1(X) ],
Ja Ja

or equivalently,

{( I, (lIt u)eAlaeHy$)j

Per(a1,...,rs) isalatticeinCa (Chapter2, $21 [13]) considered asa29 dimensionallR vector
space, called lhe period latti,ce of X relati,ue to the bas'is {w1,... ,ug}. Thus, there are 29 closed

curves (trt . . . r(r2a oÍt X such that the vectors

'Y, i: ( UI¡ wn) e (! L, :1,. . . ,2g

are linearly independent over IR, and

Per(u1,...,us):Z'nl

8.L2. Definition.
The Jacobian (or Jacobi, uariety) of X is the space

J (X) :: U f Per(u1, .

+ Zlzs

, us).

This is an abelian group which also has the structure of a compact complex manifold (a complex
g-dimensional torus). Different choices of bases of ç¿1(X) Iead to isomorphic spaces J(X).

Given the group Diu¡(X) of d'iuisors on X of degree k, define the group
Pic¡r(X) :: Di,un(X)/(linear equivalence) where two divisors d,d' are linearly equ'iualent if d :
,t' + (Í) for some non-vanishing meromorphic function f on X where (/) denotes the divisor
associated to /; this is equivalent to requiring that the associated line bundles [t9], [tt'] are equal,

and so Pi,c¡,(X) may be considered the group of holomorphic line bundles on X of degree k.

The map sending a divisor û e Di,u¡r(X) to the equivalence class of J(X) with representative

Uorr,... ,[oør) for some o € H]X) withôa: ú induces amap Pi'c¡"(X) -+ J(X), whoseimage
is defined to be ./¡(X).
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C Symbol index.

Given here is a list of mathematical symbols used in the thesis with their description and page

number of their first mention. Any symbols of single appearance in the thesis are not mentioned if
the are in the immediate vicinity of their definition.

Symbol Description Page

reads "the expression to the left is defined to be
equal the expression on the right"

a vector space norm
an inner product
the field of real and complex-numbers respectively
the ring of integers,
and the set of natural numbers respectively

the field of integers modulo p
the subclass of non negative numbers when R : R,Z, Q
an arbitrary field
the ring of polynomials over the ring -R in variables 11, ... ,rn
the n-sphere {r € Rn+1lll"ll :1}
the baII {y e re" I lly - "ll < r}, the second case

where n is implicit
the set consisting of the single point r
the empty set
set complement
set closure or orbit space if A a G-space
set interior-
set boundary
the set difference of A with B C A
proper set inclusion
the direct product
disjoint union
either a homeomorphism or diffeomorphism
the isomorphism relation
homotopy equivalence
set union
set intersection
set inclusion
the dimension of the vector space V or manifold over lF

the codimension of the vector subspace or submanifold I/ over IF

the image space of a linear function /
the kernel of a linear function /
the rank of the linear function /, respectively of the bundle E
the quotient Broup) space or bundle; the orbit space tf W is a
group andV a I4l-space

ilil
( ,')' (''')
R,C
Z,Q,N
the field of rationals
v'p

R+
F"

Rl,t,..' ,rn]
sn
Bi@), B,(*)

{"}
Ø

A"
A
Ao

OA

,4\B
ç
X, fI
U

:
U,U
n, rì
+
dimpV
codimpV
¡*U)
ker(f)
,kU), rk(E)
vlw
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Description
direct sum
tensor (or exterior) product
the dual vector space) respectively bundle
either a smooth-real or complex manifold of dimension n
basis vectors, respectively covectors, in a local coördinate chart
the identity map on a space X
for positive integers c and d reads "c divides d", meaningd(modc) :0
the Euler characteristic of the space X
the restriction of a map f to a subset U of its domain
the pre-image of a set [/ in the base-space of a bundle -E; when
U : {r} this is the flber of E over r

the (left) action of a group element g with a point r
weak limit of a sequence {r¿} in a normed space I/, meaning
lim¿-¿oolt(r¿) : Â(g) for all À e I/*

wedge (or alternating) product or smash product
the wedge or bouquet product
a connection on a vector bundle .E

the evaluation of the connection V on the vector- field u
the covariant derivative associated with the connection V
the curvature associated to the connection V
the space of smooth p forms with complex coefficients on an open
subset U of a manifold

the space of (p, S) forms on the space [/
the space of smooth p forms with coefficients in the bundle -Ð

over a manifold X on an open subset U oÏ X; the latter
case when U -- X

a vector bundle -E with fibers isomorphic to the vector space lFÀ

the trace functional
the conjugate transpose of a square matrix M
the Lie algebra corresponding to an arbitrary Lie group
the general linear and special orthogonal and unitary groups of
dimension r¿ over the field IF

the unitary group of dimension n
the respective Lie algebras of the general linear and unitary groups

the module of smooth sections of the bundle E over a manifold X
on an open subseb U of X; the latter case when U : X

the space of Ck functions on an open subset U of a manifold
the (real) tangent bundle to the manifold X whose flber at r e X
is the (real) tangent space ?i,X

the (real) cotangent bundle to the manifold X whose frber TIX
at r € X is the dual of the tangent space

the holomorphic tangent, respectively cotangent, bundle
the antiholomorphic tangent, respectively cotangent, bundle

Symbol

@,e
Q,ø
V*, E*
XN
0f0r¿, d,r¿

l,7y,id,,'id"y
cld

xrx)
fv
Ep, E,

Page

g.r
ri-^U

Vn

35

34

8

B

I

B

8

B

B

A,
V,
V,
v,
d,e

Fy
ep(u)

¿(n,o) (U)
ü(u,E), ep@)

Eltr*]
tr
M*
g

GL(n,F'), SO(n, F')

u (")
gt(n,lF), u(n)
f(u,,8'), f(E)

CK(U)
TX

T*X

T,X, T,* X
T,,X, 7,,* X

8

8
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SymboI

I\, X
ctd(E)

Vt:, Vc
Homsnçx¡(E, F)

End(E), Aut(E)

1.

YM
Adn, adn

A(E), A

C(E\. Ç

Description
the bundle of p-forms on a manifold X
the adjoint bundle whose fibers are isomorphic to the Lie algebra
of the Lie structure group of the bundle E

the complexification I/ 8m C of a real vector space or bundle V
the bundle of homomorphisms from the bundle .E over X into
the bundle F over X; its fiber at r e X is

the Ck (X)-module H om(E,, F,)
the bundle of endomorphisms, respectively automorphisms,
on the bundle ,Ð

the Hodge-star operator
the Yang-Mills functional
the adjoint action on a Lie group, respectively Lie algebra
the affine space of connections on the bundle E, ttre
latter case when .E is implicit

the gauge group on the bundle E, lhe latter case when
.Ð is implicit

the space of homotopy classes of based maps X -+ Y
the kth-homotopy group [Sk, X] of X
the Eilenberg-Maclane space for an abelian group T

and an integer n ) 1

the real , respectively complex-projective r¿-space

the space of maps A -+ B
the space of base point preserving maps A -+ B
the volume form on the manifold X
the space C* (X) of smooth tinctions on a manifold X
the space I(TX) of smooth vector fields on a manifold X
the (usual) derivative of a function f € f (X) at a point lx e X
the Hessian of a functiorr I e 9(X) at a point r € X
a Riemannian manifold with metric tensor g

a metric tensor, respectively its inverse) on a manifold
the Christoffel symbols of second kind
the index of a non degenerate critical point r € X, respectively
manifoldYCX,offeT(X)

the Morse counting series of a Morse function
12,23

the Poincaré series for a manifold X
the ith-Betti number
the the number of critical points of a function / e 9(X)
of index i

the set of critical points for the function Í € g(X)
the sublevel set {r Ç X I f @) ( a} corresponding to
afunction f €96)

the gradient vector field associated to the function f e f (X)

Page

9

11

B9

8

B

ct

I

B

IX,Y]

"n(x)K(r;n)

IRIP', CIP'
Map(A, B)
Map* (A, B)
uol, uoly
s(x)
x(x)
d"r
H,r
(x, g)
g¿j, g'l
rr,
\"1, \vÍ

31

32

32

34

11

11

11

11

11

12,23

utU)
f e r$)
Pt6)
Dpi
Tni

cri,t(f )

xo

T4

72

72

l4

I4
grad f 16
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Symbol
en

H"(X;R), H"(X)

H,(X,Y;R), H"(X,Y)

H"(X; R), H"(X)

H"(X,Y; R), H"(X,Y)

H

"(Y)

,- (Y), 
"+ 

(Y)

"; (Y)
Xç
fc

BG

EG
Pf
HZ
QX
O(E)
Hr(x,s), ¡Ie(x, s)
Í*

[,.]
Av
0e
(n,k)
N(n,k)

,n(E)
c1(E)lxl

des(E)
p(E), pt

0, ôe

90

Description
an n-dimensional cell (= S')
nth-homology module over the ring -R, the latter
instance when ,B is implicit

nth-relative homology module over the ring lB where Y C X,
the latter instance when ¡B is implicit

nth-cohomology module over the ring rB, the latter
instance when .R is implicit

nth-relative cohomology module over the ring -R where Y ç X,
the latter instance when R is implicit

reduced (co)homology
the normal bundle of the submanifold Y of a
Riemannian manifold X

the positive, respectively negative, bundles of the submanifold Y
the exponential image of u- (Y) in X
the homotopy quotient of the G-space X
the induced function on the homotopy quotient from
afunction f eg6)

the classifying space of the group G - also the base space of a
universal G-bundle

the total space of a universal G-bundle
the equivariant Poincaré series

equivariant cohomology
the loop space of the space X
the sheaf of germs of holomorphic sections of the bundle .E

the pth Öech cohomology module with respect to the sheaf S
the pull-back of a smooth function / or the formal adjoint of a
linear map .f on an inner-product space

the Lie bracket
the (1,O)-component of the covariant derivative dy
the (0,1) component of dy
the greatest common divisor of the natural numbers n and lc

the moduli space of stable bundles of rank n and degree k; only
defined when (n, k) : t

the kth-Chern class of the complex vector bundle -E

the integration of the first Chern class on lhe fundamental cycle

of the Riemann surface base-space X of the bundle ,Ð: this is

the generator of the homology group Ht6)
the degree of the complex vector bundle E
the slope, respectively type of the complex vector bundle -Ð

a partial connection corresponding to a holomorphic structure
t on a smooth complex vector bundle

the holomorphic vector bundle induced by the locally free sheaf

of germs of local solutions to to the equation ôys : 0

Page
14,17

25,83

83

26

26

35

39

39,44

22

23

23

25

25

42

42

63

43

44

42

€y
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Symbol
o(E)
c, c(E)

C,,
Ap

llp,n

çi
dp

J(X), Jn6)

Description
the orbit of connections {9 . Vlg e ç@)a} such that Ey = E
the space of holomorphic structures on the smooth bundle .Ð
the subspace of C of stable, respectively semi-stable bundles
the strata of C, respectively, the induced strata of "4
the Laplacian of a complex
the Sobolev (p, k)-norm
the Sobolev space
the Sobolev space of connections, respectively gauge transformations
the codime nsion cod'imçC,
the Jacobian variety of a Riemann surface X, the latter case

parametrising the line bundles over X of degree k
the space of smooth functions with compact support
the closure of Cf; in Ler

Page

91

44
44,7r
44,7r

63

69,86
77

7I

44

60

68,60
60

C,,
C,,
A
ll

Ll
'ry-

cr
LÏ,,O
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