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Abstract

This thesis was submitted as a part of a Masters by research degree in the School of Mathematical
and Computer Sciences at the University of Adelaide during March 2002. Its aim is to provide a
detailed dissertation on the solutions to the Yang—Mills equations over compact Riemann surfaces
analysed in terms of algebro-topological and differential-geometric structures on vector bundles
over such manifolds, in the spirit of the paper The Yang-Mills equations over compact Riemann
surfaces [2] by Michael Atiyah and Raoul Bott.

The introduction gives a physical motivation for the subject of Yang-Mills connections which
is aimed at familiarising the reader, at an informal level, with preliminary concepts in differential
geometry needed in exploring this topic. Subsequent chapters will make specific the preliminary
material and will also serve as the introduction of the main analytical and algebraic methods
implemented in the study of Yang-Mills connections on Riemann surfaces.

The project is structured as follows. Following a brief overview of connections, the Yang—Mills
functional and the associated equations are given. A subsequent section on equivariant Morse
theory sets the framework for the thesis, while the following sections on relations to stable bundles
and certain moduli spaces of semi—stable bundles serve as descriptive methods of solutions of the
Yang-Mills equations on compact Riemann surfaces.

By restricting our attention to bundles with structure group U(n) we may apply Morse theory
to the Yang-Mills functional and stratify the space of connections. With this we will deduce
information about the Yang-Mills minima by computing the equivariant cohomology of the moduli
spaces N(n, k) of stable bundles of rank n and degree k in the coprime case (n, k) = 1.

The level of complexity of this thesis is that understandable by honours graduate students of
differential geometry and algebraic topology who have gone on to specialise in these fields.
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2 INTRODUCTION. 3

2 Introduction.

All human knowledge thus begins with intuitions, proceeds thence to concepts, and ends
with ideas.

Kant, Emmanual (1724 - 1804). Quoted in Hilbert's Foundations of Geometry.

A connection is a mathematical object defined on a vector bundle over a manifold which allows
one to manipulate vectors in the different fibers in a consistent fashion. These ideas were developed
by the efforts of mathematical pioneers such as Johann Carl Friedrich Gauss, Georg Friedrich
Bernhard Riemann and FElie Joseph Cartan in the attempt to construct a differential calculus
intrinsic to topological structures (manifolds) not necessarily embedded in Euclidean space.

There is often a necessitation of developments in mathematics motivated by physical theories,
with this dependence sometimes assuming the reverse role. Such inter-relation between mathemat-
ics and physics is none more prevalent than with the theory of fiber bundles and connections; Albert
Einstein utilised the already existing geometrical theories of Georg Riemann in devising general
relativity in 1915, while quantum (gauge) field theory was later observed to be a theory of connec-
tions on the space—time manifold. The significance of the development of the theory of connections
can be best appreciated in such physical settings. The familiar (intuitive) notion of differential
calculus in R" is given merit by the power of its implementation in Newtonian mechanics which
serves as a fairly good approximation to “real-world” phenomena. With the advent of general
relativity the luxury of a differential calculus in an ambient Euclidean space was abandoned for (at
least, superseded by) a calculus intrinsic to topological structures known as differentiable manifolds
which were not required to be embeddable in R*. No longer were physical fields to be considered
as globally defined invariant functions but more appropriately as sections of vector bundles over
manifolds whose representations change according to the choice of coordinates one works with.
Thus the differential geometry of manifolds and fiber bundles are important disciplines of interest
in physical theories which have merited much study independently in Pure Mathematics.

The notion of connections arises naturally when an attempt is made at constructing a differential
calculus for the sections I'(E) of a vector bundle E: differentiation of sections takes the form of a
differential operator (a connection)

V:T(E) — EYE)

whose codomain is the space of differential 1-forms taking values in £. One already has been
exposed to connections in undergraduate differential geometry - the familiar covariant differential
on a regular smooth surface X : § C R?2 — R3

VoV = (UVE+ T U VX,

where U := U*X ,, V := V®X , are (tangential) vector fields on X and I‘Zﬂ = %g"‘s(gm,a +
9as,8 — Jap,s) are the Christoffel symbols of 2" kind associated to the metric tensor 9op = X o Xpg
on X. The differential operators V share many similar traits to the usual derivative in R", such
as linearity and the Leibnitz rule, but their main difference with the latter is that the order of
differentiation of sections is not necessarily interchangeable. This failure of the derivative operators
to commute leads to the notion of curvature

Fy:=dyoV:I'(E) — &*(E)
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on vector bundles associated with a connection V and its induced operators dy : EP(E) —
EPTL(E); the richness in the theory of differential geometry on vector bundles is due to this inherent
obstruction in differentiation.

Whether borne out of necessitation from physical theories or developed independently in a
purely theoretical setting, the theory of connections on fiber bundles has been a very important
field of study primarily due to the elegance of the intrinsic nature of these differential operators in
the absence of an ambient Banach space structure.

Much in the same way that the choice of metric on a vector bundle is an arbitrary affair, there is
no “natural” connection on a vector bundle due to the affine structure of the space of connections.
One can refine the choice of connections by requiring compatibility with certain auxiliary structures
on the manifold and vector bundle. For instance, there is physical significance in having derivatives
preserve mensuration, thus once a vector bundle E is endowed with a metric ¢ we can limit our
attention to (unitary) connections V preserving g in the sense that

dg(o,7) = g(Vo,7) + g(o,VT)

where d is the usual exterior derivative, 0 and 7 are sections of our vector bundle F, and the
metric appearing on the right—hand side is the natural extension of our given metric to the space
of differential 1-forms with values in E. The familiar Levi-Civita connection V on the tensor
bundle (QF TX) Q(®R' T* X) over the space-time manifold (X*, g) is an example of such a unitary
connection, which appears in the celebrated Einstein field equations

1
Gap = Rgp — §Rgab = 8Ty

relating the curvature Fy = | ;ab]dw“ A dz® of V to the matter distribution in (X, g). When a
vector bundle F is endowed with a holomorphic structure a further “natural” choice of connection
is achieved by requiring our connection to have (0,1)-component equal to the partial connection
0g : T(E) — &OD(E) associated with the holomorphic structure of E; the unique connection
compatible with both the (Hermitian) metric- and holomorphic-structures on F is called the
metric connection on . There has been much study of metric connections on holomorphic vector
bundles in the 1980’s by mathematicians such as M. Narasimhan, C. Seshadri and S. Donaldson
who related these connections to the notion of stability of vector bundles; a concept that will be of
central importance in the differential-geometric analysis of a special class of connections known as
Yang-Mills connections.

A further constraint can be made on connections, which will be of principle interest in this
thesis, by requiring connections to be extrema of certain functionals. One important such setting
is the study of the Yang-Mills functional on a compact oriented Riemannian manifold (X, g) for
connections V on a (smooth) vector bundle F over X with (Lie) structure group G

YM(V) ::/ |Fy |2 vol x
X

where the norm of the curvature Fy of the connection V is associated to the Cartan—Killing
(bilinear) form on the Lie algebra of G and the natural inner—product on differential forms on X
arising from the Hodge-star operator associated to the metric g. The critical points of Y M are
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called Yang-M:lls connections which, by the calculus of variations, are solutions to the system of
partial differential equations

dg Fy =0

called the Yang-Mills equations where dg is the formal adjoint of the operator dy with respect to
the natural inner—product on the space of differential forms. In Physics terminology, the Yang—Mills
equations are the Fuler-Lagrange equations associated to the action of the Yang-Mills Lagrangian

Ly = tr(Fy A+Fy) where * is the operator induced by the Hodge-star operator on the manifold
X.

There is very much interest in the study of Yang Mills connections due to their relation to
quantum field theory in which the laws governing matter fields are formulated in a manner (referred
to by physicists as “gauge theories”) resembling the Yang—Mills equations. Such physical theories
include the famous Mazwell’s (vacuum) electromagnetic field theory represented by the equations

dF =0 and d'F=0

for the electromagnetic field-strength tensor F', as well as the quantum chromodynamical model
(Q.C.D.) with symmetry group SU(3) of 1969 Nobel prize winning physicist Gell-Mann which
describes the strong interactions, and the electroweak model with symmetry group SU(2) x U(1) of
1979 joint Nobel prize winners Glashow, Weinberg and Salam combining the electromagnetic and
weak-nuclear interactions, paving the way, thanks to 1999 joint Nobel laureates Hooft and Veltman,
for the enormously successful standard-model with symmetry group U (1) x SU(2) x SU(3) unifying
the electromagnetic, weak— and strong—nuclear forces.

In the early 70’s it was recognised that the whole setting of gauge field theory was that of
connections on vector bundles over the space-time manifold whose Lie structure group is taken to
be the symmetry group of the interaction under study. The field strength could then be identified
with the curvature of the connection and the action with the L?-norm of the curvature. For
instance, Maxwell’s electromagnetic field theory is a Yang-Mills theory on a line bundle over R*
with structure group U (1) for which the field—strength tensor is interpreted as the curvature F = Fy
of a “field-potential” connection V on this bundle with Maxwell’s equations being the Bianchi and
Yang-Mills equations for V; the arbitrariness in phase shift of the field—potential arises as the the
action of the gauge group on the affine space of connections. This further inter-relation between
physics and mathematics is a prime reason why the theory of connections, and in particular Yang—
Mills connections, are topics of immense interest in mathematics today.

In recent years mathematical gauge theory has been perhaps the most important technique in
the study of differentiable structures on four dimensional manifolds. In particular, the study of the
moduli spaces of (anti) self-dual connections on on vector bundles over Riemannian four manifolds
has yielded the definition, due to S. K. Donaldson, of polynomial invariants which have been
highly successful at distinguishing smooth structures on homeomorphic manifolds. Thus studying
the homotopy type of these moduli spaces continues to be of fundamental importance in algebraic
topology.

Although the methods in this thesis are readily extendable to general Riemannian manifolds,
we shall restrict our attention to the case of two (real) dimensional manifolds. When our base
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manifold X is of (real) dimension one all connections are flat, that is, have zero curvature, so the
Yang-Mills theory in that case is not particularly interesting; thus our first “non—trivial” theory
arises when our manifold X is of two real dimensions. This prototype theory merits a good deal
of study due to the richness of structures naturally occurring on such manifolds, such as a complex
structure associated (by the Newlander—Nirenberg theorem [28]) to the almost-complex structure
determined by the Hodge-star operator * : EP(X) — E27P(X) on X (since ¥ = —id on such X);
with this endowed structure X becomes known as a Riemann surface. Moreover, smooth complex
Hermitian vector bundles E over Riemann surfaces have inherent holomorphic structures due to the
vacuous integrability condition on connections on F; this gives a correspondence between unitary
connections V and holomorphic structures O on E, thus the study of Yang—-Mills connections on
Riemann surfaces can be put into a complex—analytic framework. In such a setting, a Yang—Mills
connection V has central curvature xFy being a covariantly constant holomorphic section of the
algebra bundle ad(E) with fibers isomorphic to the Lie algebra of the structure group of E. This
naturally implies that the eigenvalues of the operator 7ad * Fy are locally constant, and so if the
bundle E is indecomposable, that is, has no proper sub-bundles, then *Fy = —27ideg(FE)idg where
the degree, deg(E) € Z, of E is the evaluation of the first Chern class on the fundamental cycle
of X. M. S. Narasimhan and C. S. Seshadri, as did later Donaldson, showed that this implied
that necessarily and sufficiently £ was stable in the sense that deg(F)/rk(F) < deg(E)/rk(F) for
any non-zero proper sub-bundle F' < FE; (semi-stability means the possibility of equality in the
preceding inequality).

When our smooth complex vector bundles £ have structure group U(n) and our Riemann
surface is compact, we may convert the theory of Yang—Mills to the natural setting of Morse theory
which deals with the analysis of the critical points of functions. The critical manifolds of the Yang—
Mills functional other than the one corresponding to the minimum for Y M can be shown to be
expressed in terms of the minima of Y M restricted to U(m)—sub—bundles for m < n.

Calculations in Morse theory are readily simplified if we can decompose a space M into a
collection of locally closed submanifolds M) known as strata; the analysis of singularities of a
function on such a space then localise to these strata. Under the aforementioned identification of the
space of unitary connections A(E) with the collection C(E) of holomorphic structures on a smooth
complex vector bundle F over a compact Riemann surface X, a stratification of A is obtained by
stratifying C whose open strata correspond to the semi—stable holomorphic structures on F and the
other strata described in terms of canonical filtrations: flags associated with holomorphic bundles
whose respective quotients are semi-stable. Relative to the group Aut(FE) of automorphisms on F
this stratification is perfect in the sense that

B(M) = >t Py(M))
A

where k) := codim M) and P; is the Poincaré series. Thus we may deduce information about
the equivariant cohomology of the semi-stable stratum, and hence in the case (n,k) = 1, where
k is the degree of E, about the cohomology of the moduli spaces N(n,k) := C4(E)/Aut(E) of
stable bundles — we restrict to this class Cg of bundles in order to avoid non-Hausdorff phenomena
becoming prevalent in these moduli spaces. These moduli spaces, in a way, parametrise the solution
space of the Yang—Mills equations.
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These relations between Morse theory and complex—analytic geometry forged by Yang Mills
theory are testament to the richness of our two—dimensional prototype theory.

The theory of connections is often presented in many (equivalent) manners, usually by appealing
to a class of structured fiber bundles known as principal G-bundles. For all intents and purposes,
manipulations involving connections are made on vector bundles since they are, in a sense, easier
objects to deal with, and as there is a direct correspondence between connections defined on prin-
cipal bundles and vector bundles: explicitly, the matrix representation of a connection (covariant
derivative) on a vector bundle E with respect to a trivialisation 1) : By — Ux R* is the pull-back
9*(A) of a Lie algebra valued connection 1-form A on a principal frame bundle P associated to E
representing the distribution of horizontal subspaces in the fibers of P.
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3 The Yang—Mills equations.

In this section we shall introduce the important class of connection on a vector bundle known as
Yang-Mills connections. These connections are the solutions of the Yang-Mills equations which
arise when extremising the Yang-Mills functional on the space of connections. Although the results
of this section could have well been defined on a compact Riemannian manifold, we shall limit our
attention to Riemann surfaces for the aim of the thesis.

Let X be a compact Riemann surface, and E[R¥] a smooth vector bundle (of rank k) over X
with compact Lie structure group! G whose corresponding Lie algebra is denoted by g.

For an open set U C X, denote by I'(U, E) the C°°(X)-module of smooth sections of F
over U, and by EP(U) the space of C—valued smooth differential p—forms over U. We also write
EP(U,E) =T(U,EQN X) = &°(U) Qeow) I'(U, E). When U = X we simply write I'(E') and
EP(E).

A connection (or covariant derivative) on FE is a R-linear operator
V:T(E) — EYE)
satisfying the Leibnitz rule
V(fo)=df ® o + fVo where f € &%X) and o € ['(E).

Given {gog} the transition functions representing F with respect to a trivialising cover {U,}
over X, the adjoint map Ad: G — Aut(g) : g = {Ad, : L — gLg~'} induces transition functions
Ad(gap) for the Lie algebra bundle ad(E) C End(E) whose fibers are thus isomorphic to g. A
connection V of E can thus be formally regarded as a differential operator of the form d+ A where
d is the exterior derivative and A € T'(ad(E) @ T*X). Given a trivialising cover {(¥o,U,)} of E
with an associated local frame {e?}%_, of F, for instance e® = ¢, (-, e;), this operator acts on
local sections ofef* of E by

V(oief') = dof* @ e + 0" A]; ® €7

where A € €1(U,) may be thought of as the entries of the matrix Ay, = [Ag]
Vet = A% ® c5.

The collection of all (smooth) connections on £, denoted A(F), is thus an affine space modelled
over ['(X,ad(E) @ T*X). One may extend a covariant derivative V : T'(E) — E}(F) to a linear
map

arising via

dy : EP(E) — &PTY(E)
by linear application of the formula

dy :w®oc = dw®o+ (—-1)’w® Vo

!We shall, in this thesis, assume G to be the unitary group U(k/2) when E is a complex vector bundle. When G is
a subgroup of the classical Lie groups such as O(k), SO(k), or U(k/2), SU(k/2) when E is a complex vector bundle,
G is then semi-simple and hence the Cartan-Killing form on the Lie algebra g, used in defining the Yang-Mills
functional, is positive—definite.
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for w € EP(X) and o € T'(FE). The resulting sequence

0 — T(E) — eYE) & e2(B) —— 0

is not necessarily a complex since the £°(X)-linear map
Fg:=dyoV :T(E) — &2(E)
is not zero in general. Under the isomorphisms
Homgo(x(T(E), £%(E)) = Homeo(x)(T(E),T(E)) X) €*(E)
)

e0(X

= I'(Hom(E, E)) (R) €*(E)
£9(X)
~ ¢2(Hom(E, E)),

we define the curvature associated to the connection V as either the map Fy := dy o V or the
corresponding 2-form Fy € T'(ad(E) Q@ T*X AT*X). Observe that if V = d + A then Fy =
dA+ AN A; that is, Fy(e;) = dAyj; ® ej + Ay A Ay ® 5 for {e;} a local frame for E.

On the affine space A(E) of connections on F there is defined an important functional that will
be of prime interest in this thesis. Given

E:gxg—R
(L, K) — tr(LK™)

the Cartan-Killing form? on the Lie algebra g we construct an inner-product on the fiber
ad(E)s @ AL X by linearly applying the formula,

<L1 R wi, Lo ® wz) = k‘(L]_,Lz) * (w1 A *(.Uz)

where * : A2X — A2P X is the Hodge-Star operatord on X; with this we construct a global
inner—product on EP(ad(E)) by linearity on the formula

(L1 ® wi, Lo ®w2) = /X<L1(£C) & wl(.'lt),Lg(.’E) ®w2(3:)) vol x

where volx € E2(X) is the volume form given locally by +/det(g) dz1 A day for g a metric on X.

With these preliminary definitions out of the way we can now define the Yang-Mills functional.

*For a general semi-simple compact Lie structure group G for our vector bundle E, we replace this definition of
the Killing form with k(L, K) := tr(adyr, o ady).
3This operator exists since X is an oriented manifold.
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3.1. Definition.
The Yang-Mills functional on E is defined and denoted by

YM(V) = ||Fy|3 := (Fy, Fy)

where V € A(F) and Fy its associated curvature form.

In physics terminology, the Yang-Mills functional is the action associated to the Lagrangian
density* Ly (V) = tr(Fy A*Fy). The Euler-Lagrange equations corresponding to this action are
the Yang-Mills equations; more succinctly:

3.2. Proposition.
A connection V € A(E) is extremal for the Yang-Mills functional if and only if

dv*Fv:O.

Proof:
By the methods of variational calculus V will be extremal for Y M if and only if the first variation

d
) YM(V) = aYM(vt)lt:()

of Y M vanishes at V, where V; := V +ta, t € [0,1] and « € &L (ad(E)). Given the bracket on
&l(ad(E)) by the formula [w,¥](v,w) = [w(®),y(w)] — [w(w),y(v)] for v,w € X(X), the curvature
of the variation about V becomes Fy, = Fy + tdye + 5t?[a,0). Thus YM(V;) = YM(V) +
2t(dva, Fg) + O{t*}, and so

SYM(V) =2(dve, Fy) = 2(a, dy Fy)

where dg := — x ody o * is the formal adjoint of dy. O

3.3. Definition.
Together with the Bianchi identity we have an elliptic system of partial differential equations on E

dvFVZO, dv*FVZO

known as the Yang-Mills equations. The solutions of the Yang—Mills equations (extrema for Y M)
are called Yang-Mills connections.

“This is actually a bundle-map between the jet bundle associated to ad(E) and the bundle A* X.
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4 Equivariant Morse theory.

Yang-Mills theory, in the mathematical point of view, consists of analysing the fixed—points of the
Yang-Mills functional Y M. Classical Morse theory has been used as a means of studying multiple
solutions of differential equations which arise in the calculus of variations. The theory is used to
estimate the number of solutions by describing the local behaviour of the functional the differential
equation came from.

Morse theory relates the analytic information of a smooth Morse function on a manifold by
means of its critical set to the underlying topology of the manifold. In this way it is a natural
framework to analyse the Yang—Mills equations. We shall in particular be interested in the extension
of Morse theory to functions with symmetry under a compact Lie group action. In particular, we
are interested in the action of the gauge group on the affine space of connections since it will be
used to parametrise the solution space of Y M by means of moduli spaces. The proofs of results for
this specialised setting requires little modification of those of the classical theory (§7.2 [8]). In this
way we give a complete overview of classical Morse theory and assume the same results when we
pass over to Lie group invariant functions.

We shall in this section assume, unless stated otherwise, (X", g) to be a Riemannian manifold.

4.1. Definition.
Given f € F(X) a smooth function, z € X is called a critical point for f if d, f = 0 where

dof : TuX — R

o2 of
3 vl<8mi>wr—> Ulc')xi (z)

is the derivative of f; this is equivalent to requiring that %ﬁi(m) =0foralll <: < n in any
coordinate system about z. A real number ¢ € R is said to be a critical value for f if f=1(c)
contains at least one critical point.

Let V, the (unique) Levi-Civita connection on TX over the Riemannian manifold (X, g); this
connection is torsion free in the sense that (Vg),w — (Vg)yv — [v,w] = 0 for all v,w € X(X). The
symmetric bilinear form

H,f :=Vgydf ()
on T X is called the Hessian of f at x, whose associated local matrix representation is given by

2L~ L)

0z;x; oy,

where I‘fj = %gkl(gil,j + gjii — giju) are the Christoffel symbols of 2™ kind associated to V; at a
critical point x of f we clearly have the reduction of this matrix to the familiar form

[(9?:'?; (x)] ‘
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4.2. Definition.

A critical point z of f is said to be non-degenerate if the (matrix representation of the) Hessian
is invertible ® ; that is, if detH,f # 0. One calls f a Morse function if all its critical points are
non-degenerate. The indez of a non—degenerate critical point z of f, denoted by A, f, is the number
of negative eigenvalues of H, f; this is equivalent to the maximal dimension of a subspace of T, X
upon which H,f is negative-definite 6.

To a Morse function f € F(X), we associate the Morse counting series

My(f):= Y ).

x:dy f=0

This is only well defined when X is compact, as is apparent from the following results.

4.3. Proposition.
Given z € X a non-degenerate critical point of a smooth function f € F(X), there exists a
coordinate chart (U, ¢) about z with ¢(z) = 0 upon which

Fod™My) = fl=)+ > oy}
i=1

where &; = £1 for y € ¢(U).

Proof:

Assume without loss of generality that f(xz) = 0 (otherwise replace f by f — f(z)). For the
purpose of local analysis, assume also for the time being that f € F(V) where V C R” is an open
convex neighbourhood about 0, and that 0 is the non-degenerate critical point of f in context with
f(0)=o0.

Given y € V since —%%(0) = 0 we have the Taylor series expansion of f about y

F@) =Y wivifi(w), (4.3.1)

i=1 j=1

1 1
where f(5) = [ a%fi(ty) at and fi)= [

Oyi

f(ty) dt.

If necessary, we replace f;; by %( fij + fji) in order to ensure that [f;;] is symmetric. Observe that

[£i;(0)] is invertible since 02-28};:]- (0) = fi;(0).

Assume for 1 < k < n ourf € F(V) has the form

k—1 n o n
F@W) =63+ >0 vy fis () (4.3.2)
=1

i=k j=k

2
*Non-singularity of the Hessian at a critical point of f is independent of the codrdinate system used since 24— =

Oyiy;
82f 9z Oy
Ozpxy Oy; Oy;°

®By Sylvester’s theorem in linear algebra, the index is independent of the choice of codrdinates used in representing
H, f. It may be interpreted as the number of independent directions along which f is decreasing.
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where [fi;] € M(n_g41)(F(V)) is a symmetric matrix.
We may perform a linear change of the variables yg, ..., y, so that equation (4.3.2) holds with
frk(0) # 0; moreover, by continuity, we may assume fix(y) is of constant sign & = +1 for all

y € V. Setting p := \/|fix| we define

. f:l-
% =Pl (y * Z i?fu»(iv))

i=k+1
zj:=y; for j#k, 1<j5<n.

By the inverse function theorem, 21, ..., z, are then local codrdinates in a neighbourhood of 0, and
the change of variables from z to y defines a diffeomorphism ¥ so that in a neighbourhood of 0 we
have z = ¥(y). Thus

foU l(z) = f(y)
k—1 n n n
=Y Sl uifee ) 200 D vifi@ + D> Y viyifi )
i=1 j=k+1 i=k+1j=k+1
= o fan@))?
=Y su? < ) >
; vF + fer () | v +j—zk-:f—1y] o)
_fkk(y)< Z ijk(y > Z Z vy fij (y
i S LS
= Z(SZ + Z Z ylyj zg
i=k+1j=k+1
—Z(SZ—FZ Zzzzy ”O\I/ ()
i=k+1 j=k+1

where [H;;] € M,_1)(F(V)) is symmetric.
Thus, by induction on 1 < k < n we have that the smooth chart ¢ can be chosen such that
fo ¢t is given by (4.3.1) with [f;;] = diag(E1, ..., £1)nxn-
O

By an additional permutation of coérdinates in the above proposition we can put f € F(X)
into the “standard form”

fzf(m)_$%—$%—--'—xi+xi+1+...+mi

with respect to a suitable co6rdinate system ¢ = (z1,...,z,) about « where k = A, f.

4.4. Corollary.
If X is compact, then a Morse function f € F(X) has only finitely many critical points.
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The relation between analysis and topology in Morse theory is expressed in the so—called Morse
wnequalities. Defining the Poincaré series for X relative to a field F

n
P(X™F) = t'6;
1=0

where §; := dimpH* (X", F) are the i*" Betti numbers for a chosen cohomology theory (satisfying

the FEilenberg-Steenrod azioms) relative to F, the Morse inequalities determine a lower bound for
M(f) in terms of P(X;F).

4.5. Theorem.

Given f € F(X) a Morse function on the compact manifold X", upon denoting by m; the number
of critical points of f of index i, we then have the following relations

mOZﬂOa
mo —m1 < Bo — Pi,
mo —m1 +ma > By — P1 + Ba,

q q
S-1TTm; > (-1, 0<qg<n,

J=0 Jj=0

> (Dmy = (-1

3

=

These inequalities represent the formal domination of P;(X;F) by Mi(f) in the sense that
My(f) — B(X;F) = (1 +1)Q(1)
where Q(?) is a polynomial (formal series) with non-negative coefficients.

The key observation which provides this result is the change of homotopy type of the sublevel
sets

Xo={zeX| f(z) <a}
when a crosses a critical value. For each critical point z € f~!(a) a cell ey of dimension A = A, f
is attached to X, when a crosses the value f(x); that is
Xote ~ Xoge Umecrit(f)ﬁf—l(a) e f

where crit(f) is the set of critical points of f.

Starting from the absolute minimum (which exists if X is assumed compact) then one obtains
a cell decomposition of X up to homotopy equivalence

X ~ Uzeerit(£)€ra f-

These observations are made precise as follows.
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Figure 1: Given X the 2-Torus embedded in R® and f € F(X) the projection onto the vertical
coordinate axis, the following two diagrams depict the crossing over a critical value.

4.6. Theorem.
Given f € F(X) and a < b, suppose f t[a,b] is compact and contains no critical points of f. Then
X, is diffeomorphic to X;. Furthermore, X, is a deformation retract of Xj, so that the inclusion
X, — X} is a homotopy equivalence.

The deformation retracts required to prove this result are constructed by a so-called I-parameter
group of diffeomorphisms of the manifold X. This is a smooth map

:Rx X = X
such that
(i): for each t € R, the map ¢ : z € X — ¢(¢,z) € X is a diffeomorphism of X onto itself;
(ii): for all s,t € R, ¢rys = @1 © ¢s.

Given a smooth vector field v € X(X), by the Picard-Lindeldf theorem for ordinary differential
equations, we have that for each x € X there exists an open interval I, C R with I, > 0 and a
smooth curve v, : I, - X with

Vo (t) = Uy(t)y Tz (O) =z

Since the solution also depends smoothly on the initial point z, we furthermore have that for each
z € X there exists an open neighbourhood U about x and an open interval I > 0 with the property
that for all y € U, the curve vy, satisfying v, (t) = v,,(s), (0) =y, called the integral curve of v
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through y, is defined on I. Furthermore, the map (t,y) € I x U — 7,(t) € X, called the local flow
of the vector field v, is smooth.

The family of functions {¢; }se1, given by ¢:(y) := y,(t) is observed to satisfy ¢i1s(y) = dro¢s(y)
for all s,¢,t+ s € I since yy(t + 5) = 7,,(5)(t): a “walk” from y along the integral curve for a time
t+ s gives the same result as walking from v,(s) for a time ¢. With this semi-group property, one
has that ¢_;0 ¢s(y) = do(y) = y and so ¢y, defined on U, maps U diffeomorphically onto its image.

The semi-group {¢s }tcr, is called a local 1-parameter group of diffeomorphisms of X generated
by v. In general, a local 1-parameter group need not be extendable to a group, since the maximal
interval of definition I of -y, need not be all of R. The following result gives a condition under
which this occurs.

4.7. Lemma.
A smooth vector field on X with compact support has a flow defined for all t € R and for all z € X,
and the local 1-parameter group of diffeomorphisms becomes a group.
Proof:
By the preceding results, for every € X there exists a neighbourhood U and an € > 0 such that
for all y € U, the curve v, (t) is defined for |¢| < e. Let supp(v) C A, a compact subset of X. A
can be covered by finitely many such neighbourhoods, and we choose €, to be the smallest such e.
As vx\a =0, then ¢¢(y) := v, (t) is defined on (—¢,¢) x X, and for |s|, |t| < £,/2 we have the
semi-group property ¢iis(y) = ¢ o s (y).
In order to define ¢; for |t| > €,, we expand t as t = k(e,/2) + 7, k € Z and |r| < ,/2. We
define

¢£o/2o¢so/2o"'o¢so/2o¢ra k>0
¢t S k—:“:)ld
b _c,j20 P 20 0 $—eo/2°¢r, k<O
—k—fold

In this way ¢; is defined for all ¢, is smooth, and satisfies @45 = ¢ o ¢ for all t € R,
With this result we can continue with our main task:

Proof of Theorem 4.6:
Given g a Riemannian metric on the Riemannian manifold X, we define the gradient vector field
grad f of f by the equation

g(v,grad f) = v(f)

the directional derivative of f in the direction of v € X(X). One observes that the vector field
grad f vanishes precisely on the critical set of f.
Let p: X — R be a smooth function with compact support with

p=1/glgrad f,gradf) on f'a,t]
The associated vector field v € X(X) defined by

vy = p(z)(grad f),
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thus satisfies the requirements of Lemma 4.7 above, and so generates a 1-parameter group of
diffeomorphisms

¢tZX—->X.

If ¢¢(x) € f[a,b] then

d d
S F(@u(a)) = (S (@), g70d ) = (v, grad ) = 1
and so the function

t = f(de(z))

is linear with derivative 1 provided a < f(¢:(z)) < b. In this way the map ¢,_, is a diffeomorphism
of X, onto X;; what we have done here is to “push” X, “down to” X, along the orthogonal
trajectories of the hypersurfaces f = constant.

Furthermore, the 1-parameter family of maps r; : X — X}, defined by

ri(z) == T
T bram sy (@), a < f(z) < b

is observed to satisfy ro = 1x, with r; a retraction from X, to X,; thus X, is a deformation retract
of Xb.

|

4.8. Theorem.

Given f € F(X) with non—-degenerate critical point z, € X of index A, if ¢ = f(z,) with f~l[c —
g,c¢ + €] compact and contains no critical point of f other than x for some £ > 0, then for all
sufficiently small € the set X, is homotopy equivalent to the space obtained by attaching a A—cell
to X.—..

Proof:

By Proposition 4.3 we may choose a codrdinate chart (U, ¢) about z, upon which f has the form

Choose ¢ small enough so that f~1[c — ¢, ¢+ €] is compact and contains no critical point of f
other than z,, and such that ¢(U) contains the closed ball Bs.(0) C R".
Define our A-cell by

ex)={z€U|zi+ - 425 <e and z)11 = =2, =0}.

Observe that ey N X,._. = Jdey so that e, is attached to X,_. as required. We must prove that
ex U X._. is a deformation retract of X.,..
Define the smooth function F' : X — R as f outside of U and by

Fi=f-plai+: 423 +23,, - +207)
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in U where 4 : R — R is a smooth bump-function which vanishes outside the interval (—2¢,2¢)
and with 4(0) > € and -1 < %p(r) < 0 for all r.
For convenience let us write f = ¢ — £ 4+ 1 and hence

F(z) = c—&(z) +n(z) — p(é(z) + 2n(z))
for £,m: U — [0, 00) given by

Eimad bt ad

n:=w§+1+--'+fvi-

The region F~!(—o0, c+€] is observed to coincide with the region X, =: f~!(—00, c+¢] since
outside the region £ + 2n < 2¢ the functions f and F' coincide and within this region we have

1
F§f=c—§+n§c+§§+n§c+s.

Another observation is that the critical points of f and F coincide since, by the above observa-
tion, F'(z,) = c—u(0) < c—e and so F~Yc—e,c+¢] C flc—¢,c+ €] contains no critical points
of F. This observation together with Theorem 4.6 imply that F~!(—o0,c — €] is a deformation
retract of Xci.. For convenience let us denote F~1(~o00,c—¢| by X,._. UH where H is the closure
of F71(—o00,c — e\ Xc_e.

We shall complete the proof by showing that X, . Ue, is a deformation retract of X,_, U H,
which together with the previous observation proves our theorem. We define the deformation
retract ¢ : X, UH — X, . Uey by

:=1d outside U;
(z1,... ,zp) = (z1,... 2T\, 22241, ... ,tzy,) in the region ¢ < &;
(x1,. .. ,20) & (T, - Ty, StTag1,- - ,8:Ty) in the region e < E<n+e

where s; :==t+ (1 —t) \/m;

:=4d within the region n + ¢ < &.

With the same arguments in the preceding proof, one shows more generally that:

4.9. Theorem.

Given f € F(X) with non-degenerate critical points x1,...,z, in f~1(c) of respective indices
A1, .-, Ar, Suppose that f~l[c — €, ¢ + €] is compact and does not contain any other critical points
besides z1,...,z,. Then X.,, is homotopy equivalent to X, . Uey, U---Ue,_, a space obtained by
attaching cells to X._..

We are now at a position to prove the validity of the Morse inequalities. To this extent we
require the following lemma.
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4.10. Lemma.

Let f € JF(X) have non-degenerate critical points z1,...,7, in f!(c) with respective indices
AL,y Ar. Suppose a < ¢ < b with f~![a, b] compact and containing no critical points of f other
than those above. Then

HY(Xp, Xo) = M

where m, is the number of critical points of f of index q.

Proof:

We assume r = 1 and generalise our results by appealing to Theorem 4.9.
For ¢ as in Theorem 4.8 and U a coordinate chart as in its proof, set

H5:=XC‘EU{:C€U|w?\+1+---+$721§52}
and Hjp =X, .U{z e UNHs| 23+ - +22 >n%)

where 0 < 62 < e and 0 < n? < €. X._. is then a deformation retract of Hj,, via the retraction

. po(z)(x)7 T Hé,n\Xc—e
r(=): { x, otherwise

where p;(x) := ((1 + t)z1, ..., (1 + t)zx, Trt1, --r) Tn) and

O'(.’E) L 0, HARS Xc~.€
‘ SUD ), (2)¢X,_. {t>0}, =€ Hs,\Xc ..

By the homotopy invariance of cohomology theories, the fact that H4(X,A) 2 0if A C X
is a deformation retract of X, and by the standard relative cohomology sequence, we have that
HY(Xy, X,) = HI(Hj, Hs,) where 0 < n? < ¢ is arbitrary. By the ezcision theorem 7 on the
exterior of Hj, we obtain a pair of spaces homotopy equivalent to (ey x R*™* S*1 x R x R*~*)
and hence to (ey, S 1).

Using the identity

F =n
q n—1\ ~ y 4
i (enpisi= ) = { 0, otherwise

we have our required result.
O

Proof of Theorem 4.5
Let ¢ < ¢ < -+ < -1 < ¢ be the critical values for f. Choose by < c1, bj € (¢j,¢j-1) for
1<j<k—1andbg > cy.

The triple Z CY C X gives rise to the exact relative cohomology sequence

0 —— HY(X)Y) — HYX,Z) ——

H(Y,Z) — 5 HYX,Y) ——

. "The excision theorem for singular cohomology states that given U CY C X manifolds with dimX = dimY and
U CY°then HY(X,Y) = HY(X\U,Y\U).
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Upon defining

Bi(X,Y) :=rk H'(X,Y)
Bi(X,Y, Z) := rkim(8%),

we have by the exactness of the above sequence that

q

S0 (A Y) = X, 2) + (Y. 2) - (-1IB( Y, 2) ) =0

i=0
hence

(1) -1 (X, Y, Z) =(~1)7B,(X, Y, Z) — (—1)?B,(X,Y)
+ (—1)16,(X, Z) — (-1)18,(Y, Z). (4.10.1)
We define the following polynomials
P(t,X,Y):= Y t"Bu(X,Y),
m>0

QU X,Y,Z) = > t"Bn(X,Y, Z).
m>0

Multiplying the preceding equation (4.10.1) by (—1)™#™ and summing over m we obtain
Qt, XY, Z) = —tQ(t, X,Y, Z) + P(t, X,Y) — P(t, X, Z) + P(t,Y, Z).

Applying these results to the triple X, C Xp;_, € Xp, and observing that X, = () since
¢ = mingex f(z) we have

P(t, Xp;, Xo;_,) = P(t, Xp;,0) — P(t, Xp;_,,0) + (1 + £)Q(t, Xp;, X,_,, 0),
and so as X3, = X since ¢ = maxgzecx f(x) we have upon summing the above relations

k
> Pt Xe, Xp,_,) = P(t, X,0) + (1 +5)Q(2)
=1
for some Q(t) € Z 1]
By Lemma 4.10 we have
k k '
P(t, ij s ij_l) = Z tjmj,
~1 j—1

J

and as H/(X,0) = H7(X) we also have that

P(t,X,0) = > t/B;(X).

J20
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4.11. Corollary.
Let X™ be a compact smooth manifold and f € F(X) a Morse function. Then

(i): m; > B; for all j;
ii): S27_o(—1)7m; = x(X) where x(X) := 37_,(=1)73;(X) is the Euler characteristic of X
J=0 J 7=0 J

(iii): Zgzo(—l)q_jmj > Z?zo(—l)q_jﬁj, 0<g<nm.

4.12. Definition.
We call a Morse function f € F(X) F-perfect if

Mi(f) = B(X;F),

and perfect if this relation holds for all fields F.

Clearly a perfect Morse function can only exist on a torsion free manifold X; that is, X must
have all its finitely generated cohomology modules H*(X,F) being free abelian groups — in general,
if H(X,F) is finitely generated, then by the structure theorem for groups we have H(X,F) =
F; @ T; where F; (the i*"-Betti group) is free abelian hence = @* Z and T; (the it - Torsion group)
decomposes uniquely as = Zg, @ - @ Zg,,,. where dij|d; j11, 1 < j < m;, are the torsion
coefficients. '

If X were not torsion free with respect to the field Z, for p a prime, we would have by the
universal coefficient theorem®

Bi(X, Zyp) = B;(X,Z) + t;(p) + tj_1(p)

where t;(p) is the number of torsion coefficients of H;(X, Z) divisible by p. Substituting this relation
in the Morse inequalities we have that

q g
(1) 7m; = > (—1)479 B + t4(p).
Jj=0 J=0

Choosing p so that p|dg1, di; the torsion coefficients of H;(X,Z), then p|dg; for all j and so ¢4(p) = v,
the number of torsion coefficients in Hy(X,Z). Thus we have

q q
(=1)m; > 3 (1785 + v,
3=0 7=0

and so f cannot be Z,perfect.

The following are criteria to ensure a perfect Morse function.

R

8The wuniversal coefficient theorem states that for R a principal ideal domain H;(X,R)
Hi{(X)Q RD Tor(H;—1(X),R).



4 EQUIVARIANT MORSE THEORY. 22

4.13. Proposition.
A Morse function f € F(X) is perfect if either

(i): (The lacunary principle):
if the set {A\, f }xemt( f) of indices of f contains no consecutive integers;

(ii): (The completion principle):
if all the critical points x, of f are completable in the sense that, in a suitable coordinate
system U about z, where

2 2 2 2
fzc_xl—"'_'T)\mf+x)\zf+1+'.'+mn7

the boundary of the set
vy, ={z eU| m%-l—---—i—ximf <e€ T pp1 = =2y =0}

bounds a singular chain in X,_. for small enough ¢ > 0.

Proof:
(1):
If for some r we have m,_1 = m,;1 = 0 then by Corollary 4.11(i) we have 8,1 = Br41 = 0. As
mj— B =qj+qgj—1forr—1<j <r+1, for Q) = Zj>0 t/q; the polynomial in the Morse
inequalities with g; > 0, then ¢; = 0 for r — 2 < j < r + 1 hence m, = ;.
(ii):
If each z, € crit(f) are completable, then in the proof of the Morse inequalities we have
Bi(Xp;» Xb;_1> Xpy) = 0 for all j, thus Q(t) = 0.
|

Having expounded an overview of classical Morse theory we now extend these principles as
follows.

4.14. Definition.
A connected submanifold Y C X of X is called a non-degenerate critical manifold if

dmf|m€y =0 and HYf|V(y) is non — degenerate

where v/(Y') is the normal bundle of Y (given by TX|y = TY @ v(Y) with respect to a Riemannian
metric on X). A function f € F(X) is called non-degenerate if its critical set is the union of
non-degenerate critical manifolds.

We extend the Morse counting series as follows. If (X, g) is a Riemannian manifold, we have

an induced metric h on the normal bundle v(Y) of a submanifold Y C X and thus a self-adjoint
endomorphism

Ay v(Y) - v(Y)
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defined by the formula
h(Ayv,w) = Hy f(v,w), v,w € v(Y).

As Hy f is non-degenerate Ay has non-zero eigenvalues and hence decomposes v(Y') orthogonally
into a direct sum of negative— and positive—eigenspaces

v(Y) = (V) rH(Y).

We call the rank of the “negative” bundle v~ (Y') the indez of Y, (as a critical manifold of f),
denoted by Ay f.

Given f € F(X) a non—degenerate function with Y C X a non-degenerate critical manifold of
f, with respect to a field F we define the polynomial

My(f,Y) =Y tdimpHi(v™(Y))

where H! denotes the compactly supported cohomology. When v~ (Y) is orientable we have, by
the Thom isomorphism °, a reduction of this polynomial to

M P(Y).
With these results we define
My(f) == My(f,Y)
Y
where we sum over the critical manifolds of f.

Given ¢ > 0, let v (Y) denote the set in the exponential image 19 of v~ (Y) in X where
f > f(Y) — ¢, if € is small enough, v (Y) is a Ay f—disc bundle over Y.
We have a parallel result to Theorem 4.9 given as follows.

4.15. Theorem.
Given f € F(X) with critical value ¢ € R and f~!(c) = {Y1,Y2,...,Y,} consisting of non—
degenerate critical manifolds, there exists an € > 0 such that if f~![c — ¢, ¢+ €] is compact then

.
Xete ~ Xee U v (7).
=1

The proof of this result is essentially the same as that for Theorem 4.9 with the deformation
constructed along the fibers. With this result we have that the Morse inequalities also hold with

°Given an oriented vector bundle of rank k with total space E over a compact manifold X, the Thom isomorphism
theorem calculates the compactly supported cohomology H; (E) in terms of H*(X); namely, H?(X) = HP*(E).

°Given X a Riemannian manifold, for each z € X, v € T, X there exists a maximal interval I, C R containing 0
and a geodesic v, : I, = X with v(0) = 2z and ¥(0) = v. We define the ezponential map exp: C — X : v+ v,(1) on
the star-shaped neighbourhood C := { v € TX | 1 € I, } of the zero section of TX. Thus exp, maps a neighbourhood
of 0 € T, X diffeomorphically onto a neighbourhood of z € X.
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respect to this extended Morse counting series, and thus we say that a non—degenerate f is an
F-perfect Morse function if

Mi(f) = P(X)

where the field F is used in the cohomology modules on both sides of this equation.

Observe that if our critical manifolds are points, that is if Y = {z}, then v(Y) = T, X, and so
v~ (Y) is the largest subspace of T, X upon which H, f is negative-definite, and so dim v (V) = A\, f
thus M;(f,Y) = t*=/ as in the classical theory.

The completion process is extended via the following commutative diagram where Y is said to
be F-completable if the map « is zero; here 7 is the projection of the disc-bundle v, (Y') and H the
reduced homology modules over F.

Ho(v; (V) —— Ho(uz (), 007 (Y)) —2= He (907 (Y))
W*T l (4.15.1)

Ho )y f(Y) — He 1 (Xf(v)—e)

Observe that m* corresponds to the Thom isomorphism since H7*(Y) = H(v-(Y)) by the
Thom isomorphism (Theorem 2.13 [24]) which in turn is isomorphic to H*~ 9% (v (Y))* (§21 [24]),
and finally isomorphic to H, (v (Y), v (Y)) by the Lefschetz duality 1.

4.16. Proposition.
If all critical manifolds of f are F-completable then f is an F-perfect Morse function on M.

The extended notion of non—degeneracy to critical manifolds has the advantage of being func-
torial under pull back. More succinctly,

4.17. Proposition.
Given 7 : E — X a smooth fibration, f € F(X) is non-degenerate if and only is 7* f = fom is non—
degenerate on E. Moreover, if Y is a non-degenerate critical manifold of f then Ay f = A1y 7™ f.
Proof:
These results follow from the fact that for p € w (YY), dym* = dy()f o dpmr, v(r 1Y) =
(dm)~tv(Y), and Hr* = J o Hf o dr + df o Hr where J is the change of coérdinate matrix
from F to X.

O

We now come to extending the main results of Morse theory to the equivariant setting; namely,
for functions possessing a certain symmetry under a compact Lie group action. Fquivariant Morse
theory studies the Morse relations and the Morse handle body theorem (the attaching of cells upon
passing critical points) for G—invariant functions f : X — R for G a compact Lie group acting
on a smooth manifold X. These are functions satisfying f(g - z) = f(z) for all 2 € X and for all

"The Lefschetz duality states (Theorem 28.18 [16]) that for M™ a compact manifold with boundary, H?(M) =
Hy_o(M,0M).
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g € G. As stated at the beginning of this section, the proofs of results in this setting of Morse
theory follow from those of classical Morse theory with the associated deformation retracts being
equivariant functions(§7.2 [8]), and so we shall not give any proofs here.

4.18. Definition.

Given G a compact Lie group, a G-space X is a topological space (or manifold, depending on
context) with continuous G-action. Let X be a G-space. A set A C X is called G—invariant if
g-z € Aforallz € Aand forall g € G. A map F : X — Y between two G-spaces is called
G-equivariant if F(g-xz) =¢- F(z) forallz € X, g € G.

Notice that for a G-invariant function, if z is a critical point then the points on the G orbit
containing z are also critical points.

The set of all G-orbits is called the orbit space. Endowed with the quotient topology it is
denoted by X/G or simply X. Observe that a G-equivariant function naturally induces a map
F: X — Y between orbit spaces.

A fiber bundle 7 : E — X with structure group G is called a G—bundle if for all ¢ € G the
fiberwise multiplicative map g : £ — F is a differentiable bundle map such that gE, = E,., for all
z € X. Thus if X is a G-manifold the tangent bundle TX is a G-bundle with g -v = d9(g, z)(v)
forallv € T, X for all z € X. A fiber bundle 7 : E — X is called a Riemannian G—vector bundle if
it is a G-bundle and possesses a Riemannian metric such that the G—action is an isometry. Assume
X is a Riemmanian manifold and Y C X is a connected compact submanifold. Then TY < TX
and so the normal bundle v(Y') is also a sub—bundle of TX. If in addition X is a G-manifold and
Y is G-invariant, then both TY and v(Y) are G-bundles.

Let f € C*(X, R) be G-invariant. This gives rise to a G-equivariant gradient vector field grad f
given by

<gradg-mfa g- ’l)) = (daff) ’U)

for all (g,z) € G x X and for all v € T, X; that is, g* - grad f - g = grad f. As the action g on T, X
is unitary, hence dg* = g~1, we obtain grad f - ¢ = ¢ - grad f. Analogously, the Hessian H f is also
G-equivariant if f € C%(X,R).

One observes that the sets X., f !(c) and the critical sets K. := crit(f) 0 f~1(c) are G-
invariant. Also, a critical orbit O := O(z) is a G—submanifold of X. Tt follows that T,,0 < ker(H,f)
and that the bounded self-adjoint operator H f : v;(O) — v5(O) satisfies g* - Hg.pf - g = Hy f .

In applying Morse theory to G-spaces X, there is much advantage in having a free action. In
this case the orbit space X := X/G is a manifold and 7 : X — X is a smooth fibration 12 with fiber
G. Thus we can carry out Morse theory on X; that is, f is a perfect equivariant Morse function if
the induced function f on X is perfect in the usual sense.

On the other hand, when the action of G on X is not free, X may possess singularities and one
cannot implement Morse theory on such a space as easily. The remedy to this situation is to appeal
to homotopy theory and convert to free actions without changing the homotopy of the space on
which the group acts; thus we carry out Morse theory of an induced function fg on a new space
X called the homotopy quotient. These ideas are made precise as follows.

12Gee Appendix B for the definition of a fibration.
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Consider a principal G-bundle F over a manifold B = E/G '?; in particular we may choose F
to be a uniwversal G-bundle which is a bundle unique up to homotopy with contractible total space
(a concrete example of such a bundle is given in Appendix B). Now G operates on E x X diagonally,
that is g- (p, ) := (gp, ¢-x), and this action is free since the action of G on F is free. The pull-back
of a G-invariant function f on X to a function on F x X is G-invariant under the diagonal action,
and hence induces a smooth function fg on the homotopy quotient X := E xg X := (E x X)/G,
which is a fiber bundle over BG' := B with fiber X and structure group G. Homotopy quotients
have the properties that {z}¢ ~ BG, Xg ~ BG if X is contractible, and Xg ~ X if the action of
G on X is free.

Upon extending the Morse relations and the Morse handle body theorem to the equivariant
setting we obtain the following main result.

4.19. Proposition.
Given Y a non-degenerate critical manifold of f on X, the corresponding non—degenerate critical
manifold of fc on X¢ is Y, and Ay f = Ay, fe. Moreover, the equivariant Poincaré series is

PE(Y):= P(Yg) = Y _ t'dim H(Yg) = Z tidim H5(Y)

and Y contributes to M;(fc), the counting series of fo on Xg, by t'"Y/ P,(Yg).

Notice that if the non—degenerate critical manifold ¥ of f consists of a single G—orbit with sta-
bility group (the stabiliser) H, that is, ¥ = G/H, then fg will have corresponding non—degenerate
critical manifold BH := E/H, whence Y contributes t*¥/P,(BH) to M;(fc).

If Y is the orbit of G through p, then H the stability group of p acts on the normal space to ¥
and, using an H-invariant metric, also on the negative normal space v, (Y'). It follows that v=(Y")
is associated with the principle bundle G/H =Y, via this representation, and correspondingly that
v~ (BH) is associated with the universal H-bundle EH := F over BH := FH/H, by the same
representation.

Given a G—pair (X,Y) and a field F, the cohomology
H&(X,Y;F) == H*(Xg, Yg; F)

1s called the G—equivariant cohomology. A. Borel proved that G—equivariant cohomology satisfies
most of the properties of general cohomology (84 [8]), namely homotopy invariance, the exci-

sion principle and resultant exact sequences, however the dimension axiom does not hold since
H({z}) = H*(BG).

A method of simplifying calculations in Morse theory, as will be utilised later in the Yang—Mills
theory, is to partition a space into a collection of submanifolds on which the singularities of the
space are isolated. This methodology is known as Whitney stratification of a space into strata. This
is defined more precisely as follows.

13The definition of a principal G-bundle is given in Appendix B.
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Given § a partially ordered set and Y a closed subset of a smooth manifold X, a §-decomposition
of Y is a locally finite collection of disjoint locally closed subsets S; C Y for each i € 8, called strata,
such that

Y:USi and S$;NS;#0 & S;CS8; & i=j or i<j
1€8

and we write S; < S;. This decomposition is called a Whitney stratification of Y if:
(i): each stratum S; is a locally closed smooth submanifold of X;

(ii): whenever S, < Sg, the pair satisfies the following Whitney conditions: given sequences
{z;} € Sg and {y;} C S, both converging to some y € S,, and suppose that (with respect
to some coordinate system on X) the secant lines I; := Z;5; converge to some limiting line [
and that T}, Sg converges to some limiting plane 7. Then

(iia): TSy C T;
(iib): I C 7.

Now suppose that Y is a compact Whitney stratified subspace of a manifold X and f is the
restriction to Y of a smooth function on X. We define a eritical point of f to be a critical point of
the restriction of f to any stratum; in particular, the zero—dimensional strata are critical points.

In stratified Morse theory we consider Whitney stratified spaces X embedded in some smooth
manifold M. We say that a function f on X is smooth if it is the restriction to X of a smooth
function on M. By definition, Morse functions on a Whitney stratified space X are defined by the
following three properties:

(1): the critical values of f must be distinct;

(2): at each critical point x of f, the restriction of f to the stratum S containing z is non-
degenerate;

(3): dyf for & € crit(f) does not annihilate any limit of tangent spaces to any stratum S’ other
than the stratum S containing x.

Given a subset X of some smooth manifold M and a function f : X — R which is the restriction
of a smooth function f: M — R and fixing a Whitney stratification on X, a critical point of such
a function f is any point z € X such that d;fir,s = 0 where S is the stratum of X containing z.

A Morse function f: X — R is then the restriction of a smooth function f: M — R such that
(i): f= ﬁx is proper and the critical values of f are distinct;

(ii): for each stratum S of X, the critical points of f|s are non-degenerate; that is, if dim(S) > 1
the Hessian matrix of f|s is non-singular;

7

(iii): for each such critical point € S, and for each generalised tangent space Q := limg,_, Ty, R

at the point z, for R > S a stratum of X and {z;} C R converging to z, d, f(Q) # 0 except
for the single case of Q@ = T,S.
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An important example of a Whitney stratification is the Morse stratification of a Riemannian
manifold X. We associate to a function f € F(X) the vector field grad f dual to df. The gradient
flow for f is given by the paths of steepest decent, that is the trajectories (integral curves) of
—grad f. If f is a Morse function, every trajectory converges to some x € crit(f), and the set of all
points on trajectories converging to a given z € crit(f) form a cell X7 (), called the stable manifold
of z. Upon replacing f by — f we similarly get the cell X ~(z) called the unstable manifold of x; one
observes that dim X~ (z) = codim Xt (z) = A\ f. More generally, if Y C X is a non-degenerate
manifold of f we similarly obtain stable manifolds X *(Y') which are cell-bundles over Y. We thus
have a stratification

X = UYEcrit(f)X+ (Y)

called the Morse stratification of X. If f is a G—invariant function for G a compact Lie group, we
can always choose a G-invariant metric on TX. The gradient flow if G-invariant so that the above
stratification is G—-invariant.

The Morse stratification of a space X by a function f has a natural partial ordering < on the
critical manifolds of f given by

Y1<Y, <— 8X+(Y1) N X+(Y2) #* 0.

One observes that Y; < Y> implies there exists a trajectory of grad f starting on Y; and passing
within € > 0 of Y5. In particular, upon taking ¢ < f(Y2) — f(¥1) we have that Y3 < Y5 implies that
f(Y1) < f(Y2). Hence the transitive relation < generated by < is a partial ordering and has the
property that

XH(Y) C Uysy X H(Y).

The presence of such a partial ordering of the Morse strata aids us to develop a criterion for which
a general stratification is a Morse stratification. This criterion is developed as follows.

Often one is given an explicit stratification of X, say X = Uyecp X where each X, is a locally
closed submanifold of X and the indexing set A is strictly'4 partially ordered, for all A € A we have
X_,\ - UMZ A X e

One can use this stratification to obtain Morse—type information on H,(X). We begin with open
strata, given by minimal A, and inductively add other strata. At each stage we can write down

the exact cohomology sequence for a pair (U,U\V') where V is a closed submanifold of U. We now
explain this procedure.

Define a subset I of indices to be
open if A€ I and p < X imply u € I;

closed f A€ I and p > X imply ;1 € T,

1A partial ordering < is strict if A < pand g < Aimply A = p.
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for which we observe that I is closed if and only if /¢ is open.

Moreover the subspace Xy := Uycr X of X is open (or closed) if I is open (respectively closed).
If I is open and A € I¢ is minimal then J := I U {\} is open and our inductive step is from X; to
X ;. From the decomposition X, C Upu>2X,, we have that X := X;\X; is a closed submanifold
of X ;. Assuming that all the normal bundles to our stratification are orientable, we have by the
Thom isomorphism theorem H97%(X,) = H9(X s, X;), and so we obtain the exact sequence

- —— HT7¥(X)) —— HYX;) —— HI(X ;) — ---

where k = k) = codim X,. If for a given field F the exact sequence breaks up into short—exact
sequences for all ¢ and X it follows that

P(X) =) thP(X,);

in such a case we say that the stratification if perfect over F. If this holds for all prime order fields
F = Z, we shall simply refer to the stratification as perfect; thus a perfect Morse function defines
a perfect stratification.

If the stratification is G—-invariant and the corresponding equivariant cohomology sequences
break up, we shall call the stratification G—equivariantly perfect.

When a manifold is infinite dimensional the strata still have finite codimension. When the
following two finiteness properties hold for the stratification we may proceed to compute the co-
homology of X as in the finite dimensional case; although the induction never terminates, only
finitely many steps will be needed to compute H?(X).

(F1): For every finite subset I there are a finite number of minimal elements of the complement ¢
(so that our inductive procedure still applies);

(F2): for each g € Z there are only finitely many indices A € I with codim X < q.

Given a stratification of X and a function f € F(X), the following are axioms for checking
whether the stratification is a Morse stratification (by stable manifolds) arising from f (for some
metric on X).

4.20. Proposition.

Given f € F(X) having only non-degenerate critical manifolds Y}, suppose X = U)X, is a strat-
ification by disjoint locally closed submanifolds X, which, subject to a partial ordering < on the
indexing set {\}, satisfies
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(v): Ay, f = codim X,

then X is the stable manifold Sy := X (Y)) of Y} so that we have the Morse stratification.
Proof:
The trajectories z(t) of —grad f through any point z € X converges to Y) as t — oo due to the
following reasons.

Condition (iii) implies () remains in X for all finite ¢, while condition (ii) implies 2(oco) € Y},
for some p > A. If z is sufliciently close to Y, z(t) either converges to or lies “below” Yy as t — oo.
As z(o00) € Y, for some p > A, z(0c0) cannot lie below Y) and so z(co) € Y); thus locally near
Yy, X, C XT(Ya). By property (v) dim X, = dim X+ (Y)), and so near Y, the set X is open in
X*(Y,). Property (iv) implies X and X (Y}) coincide near Y.

For z € X, with z(c0) € Y),, as t becomes large z(t) gets close to Y, in X1(Y}), and so z(t)
lies in X, for large t. On the other hand, z(t) € X, for all finite ¢.

As the X are disjoint, p = A, and this implies what we require to prove.

d

We shall show that a stratification satisfying properties (i)—(v) above is induced by the Yang—
Mills functional and hence obtain an explicit means of calculating Morse—type information about
Y M. If the Morse strata exist, that is, if one can prove good properties about the trajectories z(t)
as t — oo, then Proposition 4.20 will identify the Morse strata with our strata.

The problem in the Yang-Mills setting is that the manifold X in Proposition 4.20 (which is
actually the space A of connections) is infinite-dimensional and the critical sets Y of the Yang-Mills
functional Y M have singularities. As pointed out in the closing of §1 in [2], due to these problems
the connection with Morse theory and our work on Yang—Mills theory is left at a conjectural level,
and our stratification will be used directly to compute cohomology.
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5 Morse theory for the Yang—Mills functional.
Our primary aim in this thesis is to use Morse theory on the Yang-Mills functional
YM: AF) > R,

when E is a U(n)-bundle over a compact Riemann surface X, in order to obtain information about
solutions to the Yang-Mills equations.

There is a natural group acting on the affine space of connections A(FE) called the gauge group,
denoted by G :=I'(X, Aut(FE)), whose action is defined by

s-V(o):=s"1V(so), s€G, VeAE), oel(E);
when V = d + A with respect to a trivialising cover of E over X, the above formula expands as
5-Vi=d+s 'ds+ s 1A4s.

The action of the gauge group G on A(F) is not necessarily free and so we must carry out (G-
equivariant) Morse theory on the induced functional Y Mg on the homotopy quotient

Ag ~ BG

since A(F) is contractible.

To show that Y M is an equivariantly perfect Morse function is very difficult and is yet to
be established, although some directions have been followed by K. Uhlenbeck by analysing the
properties of the Yang-Mills flow. Instead we shall concentrate on showing that the Yang-Mills
functional induces a Morse stratification on A4 and that this stratification is perfect in the sense
described in §2. For this purpose we now proceed to calculate Poincaré series Pi(Ag) via a well
known description of the classifying space ° BG(FE), namely that!®

BG(FE) ~ Mapg(X, BU(n)), (6.0.1)

where the space on the right-hand side is the the space of maps X — BU(n) pulling back the
universal bundle EU(n) — BU(n) to a bundle over X isomorphic to E; this is explained more
precisely as follows. Consider the principal fibration 17 (a fibration whose total space is endowed
with a group action)

G —— Mapy(y(E, BU(n)) —— Mapp(X, BU(n))

where Mapy(,)(E, EU(n)) denotes the space of U(n)-equivariant maps. This fibration arises from
the principal U(n)-bundle

P
U(n) —— EU(n) —— BU(n),
5The notion of classifying spaces is described in Appendix B.
®The formula BG(E) ~ Mapg(X, BG) holds for vector bundles £ with general compact Lie structure group G.

'"Some notes on fibrations appear in Appendix B for the sake of completeness for readers unfamiliar with this
topic; some following locutions originate from this introduction.
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itself a principal fibration, since G acts on the space Mapy ) (E, EU(n)) by composition whose
space of orbits is naturally homeomorphic to the function space Mapg(X, BU(n)) under the as-
signment [o] = ®oaop ! for p: E — X. The classifying space BU(n) may be realised
as the topological union G,(C*) = |J, Gn(C?) where G,,(C?) is the Grassman variety whose
points are n—dimensional subspaces of C?; this is a paracompact manifold modelled on an infinite—
dimensional complex Hilbert space and is therefore locally contractible, thus so too is the space
Mapg(X,BU(n)). By Corollary 7.27, Chapter I [34] (described in Theorem B.9 in Appendix B),
the above fibration is locally fiber homotopically trivial since its base—space is locally contractible.
As EG is contractible for any Lie group G (see §5 [25]) then so too is the space Mapy () (E, EU(n)).
These facts imply that our fibration is a universal G-bundle, and so by the classification the-
orem of universal principle G-bundles ' the classifying space of G is homotopy equivalent to
Mapg (X, BU(n)).

a

We shall now proceed to analyse the spaces Mapr(X, BU(n)) in order to derive the G—equivariant
Poincaré series PZ (A(E)) := Py(BG).
When E is a U(1)-bundle the classifying space of the structure group is BU(1) = CP* where

CP = [T{CP" x [0, 1]}/{(=,1) ~ (i(=),0)}

n>0
where 7 are the inclusions
{pt} < --- HCP*"SHCP ! < - .

ote that could also be thought of as the space = where 1s the
N hat CP° 1d also be thought of he sp P(H) S(H)/S1 h S(H) h

(contractible) unit sphere of an infinite dimensional Hilbert space H over C. The corresponding
universal U(1)-bundle

U(l) —— S(H) —— P(H)
gives rise to a long-exact homotopy'® sequence from which results

wmmﬂng{ﬁ'Z;j

P(H) is thus an Filenberg-MacLane space; for abelian groups 7 and integers n > 1, these are
CW-complexes K (7;n) with homotopy

7MKUWD%{SZZ;Z

Thus P(H) ~ K(Z;?2).

18 This classification theorem is given as Theorem B.2 in Appendix B.

®The higher homotopy groups of a space X are defined by m,(X) := [S", X] the set of homotopy classes of based
maps S™ — X. These are groups if n > 1 and abelian if n > 2.
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The following result aids in our calculation of BG(F) in this case, which is cited directly from [2]
(Theorem 2.6, a result of René Thom) since it could not be located in available texts on algebraic
topology.

5.1. Theorem.
Given X a finite complex, 7 an abelian group and n > 1 an integer we have

Map(X, K (r;n)) ~ [ [ K(H(X, 7);n — q).
q
Thus we conclude, for X a Riemann surface of genus g,
Map(X,BU(1)) ~ K(Z;0) x K(Z & --- ® Z; 1) x K(Z;2
ap(X, BU(1)) ~ K(Z;0) X (.GBfli9 ) x K(Z;2)
2g—fo

~ {pt} x S x .- x S x P(H)
S——_———
2g—fold

where ¢ is the genus of X; thus BG has no torsion.
By the Kiinneth formula for cohomology %° we have that

H'(Map(X,BU(1))) = P a7 ({pt}) Q) H' (SH) Q) - - - Q) HP*(ST) (X) HP>+1 (P(H)).

po+p1+-+p2g+1=1

As we know the cohomologies of the spaces {pt},S! and P(H), we calculate the following list of
coefficients for the G—equivariant Poincaré series P;(BG) := > ., t'dim H'(BG,Q).

polynomial term order ¢ coefficient

0 1

1 29

2 (%) +1

3 G+ ()

. 'y
2n+1 Zjio i

Thus?!
(1+t)%

20The Kiinneth formula states that H?(X) ® HY(Y) = HPT4(X x Y), see §29 [16].
21This result can also be understood from the fact that if A and B are graded algebras then P.(A® B) =
P,(A)P(B).
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Consider now the case n > 1 for our structure groups U(n). The classifying space BU(n) is
realised as the infinite Grassmann variety Gn(C*) := U5 Gn(C?) where G5(C?) is the compact
manifold of n—-planes in C? whose points are the n—dimensional subspaces of C?; the Grassmann
variety is given the topology of a union since G, (C?) C G, (CIt1).

Over the rationals Q the space BU(n) is a product of Eilenberg-MacLane spaces

BU(n) ~q K(Z;2) x K(Z;4) x --- x K(Z;2n),

the reason for this follows from a type of Postnikov approzimation (Proposition 18.19 [5]) which
states that every connected CW-complex can be approximated by a twisted product of Eilenberg-
MacLane spaces. The explanation as given in §2 [2] is that each Chern class ¢; € H*(BU(n),Z)
induces a map BU(n) — K(Z;2i), and as H*(BU(n)) = Z[ecy, ... ,cn] (§7 [25]) then the product
of these maps induces a Q~equivalence of these spaces.

As we know that K(Z;1) = S! and K (Z;2) = CP* we find by the Kiinneth theorem *? that

P . ) Z, i=2kj for some j € NU {0}
H'(K(Z; 2k)) = { 0, otherwise

and H"(K(Z;zk-m:{ Z, i=0, 21

0, otherwise,

and so we have by Theorem 5.1 for k > 2 that
(1 +t2k—1)2_q
(1 = t2k—2)(1 . tZk)
and so as the space Map(X, BU(n)) splits up as a product of map spaces Map(X, K(Z;2k)) for
k =1,...,n we have with with the result (5.1.1) that
{A+8)(1+¢%) - (142 1))}29
{(1 + t2)(1 + t4) x (1 _ t2n—2)}2(1 _ t2n) i

It turns out furthermore that the space B is torsion free in this case. This is explained as follows.

A compact Riemann surface of genus ¢ is homotopically equivalent to the bouquet 23 Vs : StV e?,
2 24

Py(Map(X, K(Z;2k))) =

P(BG) =

where e~ is a 2—cell, and so we have a cofibration

Vo, St y X » S? (5.1.2)

which gives rise to the following fibrations on base-point preserving maps

Map*(S?, BU(n)) ——  Map*(X,BU(n))

l

Map*(\/2g Sl? BU(TL))

22The Kiinneth theorem (chapter V, Theorem 7.8 [34]) states that for abelian groups 7, 7" and n, ¢ positive integers,
HIK(T@7'in) =@, H (K(1;n) @ H(K(r';n) @D, 4 y—g_ Tor{H"(K(r;n)), H*(K(r';n))}.

*31n the disjoint union X []Y of based manifolds (X, x) and (Y, y) identify the points z and y to obtain the quotient
space X VY, called the it wedge or bouguet of X and Y.

245ce Appendix B for the definition of a cofibration.
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and

Map*(X,BU(n)) —— Map(X, BU(n))

1 (5.1.3)
BU(n).

Now, the classifying space BU(n) is known to be torsion free since (§7 [25]) H*(BU(n),Z)
Zlci, ... ,cp). The loop-space QBU (n) ~ U(n) and its second loop-space QU (n) ~ Map*(St,U(n))
are also torsion free 2°. This follows from Theorem 4.1 Chapter VII [34] which states that the
integral cohomology groups H*(U(n),7Z) are free and of finite rank. Also, as U(n) = SU(n) x U (1),
hence QU (n) =~ QSU(n) x QU(1), given that SU(n) is a semisimple, compact, connected and simply
connected Lie group the loop space 2SU(n) has no torsion by the result of [4] 26 as does QU(1)
since it is topologically equivalent to the free group Z, thus the loop space QU (n) is torsion free.
Given the following identifications

ey

QU (n) := Map*(S',U(n)) = Map*(St, QBU (n))
~ Map*(£S', BU(n)) = Map*(S? BU(n))
and

Map*(\/ S, BU(n)) = H Map*(St, BU(n))
29

29
=[[eBU(®) =]]U®)
29 29

the fibration (5.1.2) becomes

QU(n) —— Map*(X, BU(n))

|
HZg U(n)

whose fiber and base—space are torsion free. Applying Theorem 5.1 to pointed maps we must
have that the Poincaré series of the middle term of the above fibration must be the product of
the Poincaré series of the factors. If there were any non—trivial homological twisting, the Poincaré
series of the middle term would be smaller than the product of the Poincaré series of the factors;
thus Map*(X, BU(n)) must be free of torsion. A similar argument applied to fibration (5.1) then
implies that the space Map(X, BU(n)) is torsion free.

We shall obtain a Morse stratification for 4 by applying Proposition 4.20 to a particular stratifi-
cation A = (J, Ay we shall soon meet. In particular, we will require to show that this stratification

*The loop-space of a space X is the space QX := Map*(S!, X), which satisfies the adjunction formula
Map*(ZX,Y) = Map*(X,QY) for the suspension BX := X A S'; here the smash product of two spaces X and
Y is the space X A\Y := (X xY)/(X VY).

*The main result (Theorem I) of this paper states that if G is a semisimple compact connected and simply
connected Lie group, then the loop space QG has no torsion.
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satisfies condition (v) of Proposition 4.20; namely, that
)\A/YM = codim(cA,\

for any non-degenerate critical manifold A’ C A(FE) of Y M contained in a particular stratum Aj.
To this extent it is of importance to be able to compute the index A 4 Y M; in particular, the index
AvY M for a Yang—Mills connection V localised in a certain stratum. We now proceed to calculate
this quantity.

Given a connection V that minimizes Y M the self-adjoint endomorphism on £°(ad(E))
A:=iadir, 1 a— i [xFy, o

has locally constant eigenvalues. This follows from the following argument: given v, an eigenvector
of A in the fiber ad(F), such that A(zx)v, = Avg, then by the equation for parallel transport for a
smooth loop v on X we can find a local smooth section o of ad(E) such that V50 = 0. So

V(Ao — o) = (VA)o + AVo — AVo.

The right-hand side of this equation vanishes due to the fact that dy * Fiy = 0. Thus we have a
first order initial value problem

where w := Ao — Ao, which by elementary differential equation theory implies w = 0.
Thus A decomposes the complexification

ad(E)® = ad™ (E) €P ad(E) P ad™ (E)
corresponding to its negative, zero and positive eigenvalues respectively, with dualities
ad®(E)* = ad®(E) and ad (F)* = ad™(F)

induced by the Riemannian metric on ad(F).

5.2. Proposition.
Given V a Yang—Mills connection, we have

index(V) = 2dimcH (X, O(ad™ (E))) (5.2.1)
nullity(V) = 2dimcH' (X, O(ad’(E))). (5.2.2)

These results follow from the formula arising from a spectral estimate for the eigenvalues of the
elliptic problem arising in the second—variation of Y M. This is described more precisely as follows
due to the identification Ty A with E1(X, ad(E)).

Although A is an infinite-dimensional manifold we shall proceed to show that the notion of the
index and nullity of a critical point of a map on a Banach manifold is well defined. One potential
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direction for defining these formulae directly is the suggestion of chapter 11 [21]. Given f : X — R
a smooth function on a manifold X modelled over a Banach space, for € X a critical point of
f let B, denote the directed set of finite-dimensional subspaces of T3 X, and let AZ f denote the
maximal dimension of a subspace of F € 3, on which the Hessian H, f is negative—definite. If v,
denotes the exponential pre-image in T; X of the ball B.(x), then we define the index of = to be

— 1; : Enve
def i lng Inf 0TS

with a similar definition for the nullity of =.
5.3. Proposition.
The quadratic form Q : £1(X,ad(E))x &1 (X, ad(E)) — R induced by the Hessian of the Yang-Mills
functional Y M at a Yang—Mills connection V is given by
Q(n,n) = (dydvn + *[+Fv,1] , 7).

Proof:
Given the curve V; := V +tn for n € €1(X, ad(E)), we have that the norm of its curvature expands
to second order as

1Fw, |15 = 1Fll3 + 2¢(dvn, Fo) + 2 {lldenll3 + (Fo, [n,m)} + O{t*}

where (-, -) is the global inner-product on £2(ad(E)) constructed, as in §2, by the Hodge-Star
operator on X.
The Hessian of Y M at the extremum V is obtained from this expansion to yield

1 d?

Qn,n) = 5@”17%”%”:0

= lldvnl3 + (Fo, [, 7))
Observe that ||dyn||5 = (d&dyn,n) since d¥ is the formal adjoint of dy, and that

(Fy, [n,1)) = /X [, 7] A +Fy
JX
_ (__1)dim(X)+1 AnA o w1 [*FVJ]]‘

Using the formula for *~! the last equation reduces to (7, *[*Fy,n]).

The endomorphism
F\V N *[*FV717]
is a degree zero operator on £!(X,ad(E)), for which we have observed

(F\V'mf) = (FV7 ["7,5])
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5.4. Proposition.
The index and nullity of a Yang—Mills connection V are finite and equal to, respectively, the index
and nullity of the quadratic form

Qn) == (Avn + Fon, 1)

on the kernel of dt, in E(X, ad(F)) where Ay := d&dy + dyd¥ is the Laplacian associated to V.
Proof:

The finiteness of the nullity follows from the following argument. Given the Jacobi operator
Ly := dbdy + Fy

of a Yang-Mills connection V, and Jy C E(X, ad(E)) the collection of Jacobi fields of Ly, that is,
elements n € £}(X, ad(E)) such that Lyn = 0, we call the quotient Ny := Jy /im(dy) the null space
of @ and its dimension the nullity of V. In the usual norm on £'(X, ad(E)) the ortho-complement
of im(dy) in the exact sequence

£9(X,ad(E)) —=

~
)

JV 7 Nv

is ker(dy). Thus we may identify Ny with the space
{ne€&l(X, ad(E)) | Lyn=0, dyn=0}
whose conditions are also equivalent to
(Av + Fg)n =0, don=0. (5.4.1)

As ﬁv is a degree zero operator and the Laplacian Ay is elliptic, the solution space to (5.4.1) is
finite dimensional, and thus so too is the nullity.

As the Morse index of a Yang-Mills V connection is defined as the dimension of a maximal
negative subspace of (), or equivalently, as the dimension of a maximal subspace in ker(dy,) on
which the form

~

Qn) == (Lvn+ Fyn, )

is negative definite, we may extend the preceding argument to yield the finiteness of the Morse
index.

O

We finally proceed to derive quantities (5.2.1) and (5.2.2). Recall that the operator A :=
tad * Fy has locally constant eigenvalues A, and so forms a decomposition

®(C @ad,\ E)

into orthogonal sub-bundles on which this operator reduces to the constant matrix Aid.
As Fv = —i * A we can reduce the analysis of Q to the cases where A is zero or a positive or
negative scalar multiple of the identity matrix. In the case A = 0, which corresponds to the bundle
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ad’(E), we have Q(n) :== (Avn, n) which is semi-definite and so its index is zero. The nullity of
@ is equal to the dimension of the subspace of V-harmonic forms in ker(dy). As Ayn = 0 for
n € ker(dy) implies dyn = 0 and dyn = 0, then the nullity of O equals dimension of the subspace
of harmonic forms in £}(X, ad®(E)); the space H!(ad’(E)) of harmonic forms is isomorphic to the
DeRham space H;V (ad®(E)) (p.152 [17]), which in turn is isomorphic to H'(X,O(ad’(E))) by the
Dolbeault theorem 27.

For the case when A = Aid for A > 0 we require the following results.

5.5. Lemma.

Given an eigenvalue A > 0 of the operator A, the Laplacian Ay preserves the spaces L0 (ady (E))
and €0V (ad,(E)). Moreover, the first positive eigenvalue of AV |£0,0)(ady (E)) I8 greater than or
equal to 2\.

Proof:

The Laplacian splits up on the natural decomposition of the complexification by the Hodge-star
operator *

Et(ady(E)) = E10 (ady(E)) @D € (adi (E))
into operators on the partial connections

Doy = Oy 0% + 00y
and Ay, = Jydy + Dydy.

where Oy and Oy are the (0,1) and (1,0) components respectively of the covariant derivative dy
given locally and respectively by 0 + A; and 9 + Ay for  and d the standard Cauchy—Riemann
operators and A; and A, the respective (0,1) and (1,0) components of the local connection matrix
for V.

By the formula dy, = — * dy* it follows that As, and A5v induce the same operator %Av on
£L0) and €01 which preserves these spaces, and Ay = Doy + A5v on the spaces €00 and (L1,
Also, on €09 observe that i dia = (Ov0v + Ov0v)a = *[A, a], and so Ag, — Agv = X on this
space.

As Oy and Oy are elliptic operators their associated Laplacians are compact self-adjoint oper-
ators. Thus we have a Hilbert space decomposition (p.95 [17]) of € (ad)(E)) into a direct sum of
eigenspaces of these operators. As we have shown that the partial Laplacians are linearly related
on the spaces &(0:0) e g(.0) and £01) the eigenspaces of these operators in ! (ady(E)) are
the same. Thus the positive eigenvalues (spectra) of the two partial Laplacians are in one-to-one
correspondence, and so the positive spectra of A, on the spaces &0 and &) coincide. By
the preceding remark, as the two partial Laplacians differ by A on £(0.0) the spectrum is bounded
below by A since Agv is semi—definite. As Ay = 245, on &(19) we have the required result.

O

*"The Dolbeault theorem states that HI(X, QF (F)) = ng'“(E) where QP(FE) is the sheaf of germs of holomorphic
E
p—forms on E (p.151 [17]).
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5.6. Corollary. R
The quadratic form @ has nullity zero and indez(Q) Icer(d*v)) equals the dimensions of the subspace

of harmonic forms in £1:9) (ady(E)) for A > 0.
Pro/gf:
As Fg =i * A and as x = —i on &m0 and x =4 on &1 we have that

Fyl|eM0 = _X\ and Fy|e®V =)

and so the operator Ay + ﬁv is positive on &0 and has single negative eigenvalue —\ on the
space L0 with multiplicity the dimension of the harmonic forms in g0y,
O

Proof of Proposition 5.2:
With the above derived expressions for the nullity and index of the quadratic form @ on ker(dy),
we proceed to put the theory of harmonic forms into a sheaf-theoretic framework.

By Hodge theory *® on bundles we have

H'(X,0(ad)(E))) = ker(Lg |E0 (adi (E)))

and H'(X,0(ad\(E) Q) T X)) = ker(Ag |E1) (ady(E)))

where T''* X is the holomorphic cotangent space of X. Also, the Kodaira-Serre duality % gives
H'(X,0(adr(E) Q) T"" X)) = H' (X, O(ady (E)*)).

Applying these results and our earlier mentioned duality ad™ (E)* & ad* (E) with Corollary 5.6
for A > 0 gives

indez(Q) = dim H' (X, O(ad_x(E))).
By applying the above arguments to the case A < 0 gives a completely analogous result
index(Q) = dim H' (X, O(ad)(E))),

and we obtain the general formula for the index once we sum over the eigenvalues A.
O

The index is stable in the sense that the above formula can be put in purely topological terms.
Recall that the Riemann-Roch (Hirzebruch) theorem states that for a compact complex manifold
X™ a holomorphic bundle F over X we have x(F) = {ch(F) - td(TX)}[X] where ch is the Chern

2Let X be a complex manifold and E a holomorphic bundle over X. Given the Laplacian A := Op0p + 0p0x :
gl Q)(E) — &PD(E), the harmonic space HPD(E) := ker(A) is finite dimensional and isomorphic to H(P q)(E).
See p.152 [17].

®Given X™ a complex manifold and E a holomorphic bundle over X, the *—operator gives isomorphisms
HI(X,QP(E)) 2 H* (X, Q" ?(E*))* where QP(F) is the sheaf of germs of holomorphic pforms on E. For p =0
this gives H(X, O(E)) = H" 9(X,0(E* ® Kx))* where Kx := \"T'"X is the canonical line bundle and T'* X
the holomorphic cotangent space. See p.153 [17].
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character, td is the Todd class, x(E) = S.¢ ,(—1)idim H'(X,O(E)), and {w}[X] denotes the
evaluation of the degree n component of the DeRham class w € Hjn(X;C) on the fundamental
cycle of X. When X is a Riemann surface of genus ¢, this formula reduces to dimc¢H°(X, O(E)) —
dimcHY (X, O(E)) = deg(E) + (g — 1)rk(E), and as ¢1(E*) = —c;(F) we have

index(V) = 2{deg(ad™ (E)) + rk(ad* (E))(g — 1)}.

The fact that H°(X,O(ady(E))) = 0 follows since Ag, — Az = —X on 00 (ady(E)) for A > 0.
In this way for s € H°(X,O(ady(E))) we have Oys = 0 and thus Np, s = dg0ys = 0. Using
the natural inner product (-, -) on £*(ad(F)) induced by the Catan—Killing form on u(k) and the
Hodge—star operator on X, we have that as Ag, s — Agvs = —As then (05 0ys, s) — (g*vgv , 8) =
~X(s, s). As 8% is the formal adjoint of dy this results in |9y s[> — 0 = —A||s||* which implies
that s = 0 since A > 0.

On the other hand, the nullity is not stable in this sense.

As a point of interest, the induced Yang—Mills functional Y Mg on the homotopy quotient
Ag ~ BG is defined as perfect if

P (A) = My(Y Mg)
where the Morse counting M, series is given by

Mt(YMg) - Z t)\A/YMPtQ(AI)
Al €crit(Y M)

due to our results in Proposition 4.19, and the G—equivariant Poincaré series Ptg (A"} is computable
owing to results in a subsequent chapter when we construct a Morse stratification for A. As
we have been able to explicitly compute the index A4 Y M of a non—degenerate critical manifold
A" C A(F) of Y M we can compute the Morse counting series M;(Y M¢). In the case of rank n = 2
U(2)-bundles FE over X with degree k = 1, Bott [3] shows that

P(N(2,1))  t91(1 + %)%

MY Mg) = 1 ¢2 (1-— t2)2(1 _ t4)

where N(n, k) denotes the isomorphism classes of rank n holomorphic bundles of degree k over X.

If we hazard to assume that Y M is perfect in the equivariant sense, we have upon equating
M (Y Mg) and P,(BG) that

_ {0 +na+ 291+
F(N(2,1)) = (1—¢2)(1 — t9) - (1—t2)(1 —t4)"

G. Harder and M. Narasimhan [19] derived this result purely in the context of algebraic geometry
by defining these varieties over a finite field whose number of rational points were found with the
aid of number theory, and then by applying the Weil conjectures (see §11 [2]).
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6 Stable bundles.

In this section we shall introduce the notion of stability of a holomorphic vector bundle over a
Riemann surface X which will aid in our construction of a Morse stratification of the affine space
A(E) of connections on a U(n)-bundle E over X. To this extent we shall expound results on the
stability of holomorphic vector bundles over our Riemann surface X relating to the form of the
curvature of a metric connection on such bundles.

Let X be a compact Riemann surface (without boundary) with Hermitian metric g chosen so
that [, volx = 1 where vol = volx is locally given by 4 /det[g;;] dz1 Adxy for the local representation
gijdz; ® dzj of g, and let E be a smooth complex vector bundle over X of rank rk(F) = k with
compact Lie structure-group G C U (k).

Define the slope of E to be the rational number

p(E) := deg(E)/rk(E)

where the degree of E is the integer deg(E) := c¢1(E)[X] = c1(A\* B)[X] where A" E is the deter-
minant (line) bundle. We shall take ¢i(E) = [~ 5 tr(Fy)] € Hjp(X) for any smooth connection
V on E where the curvature of V, Fy := dy o V, is a smooth section of ad(F) Q. T*X AT*X;
this DeRham cohomology class being independent of the choice of V since two connections on E
differ by an element of I'(X, ad(F) Q¢ T*X) where ad(E) C End(E) is the Lie algebra bundle on

X with fibers isomorphic to the Lie algebra g C u(k) of G.

6.1. Definition.

A holomorphic vector bundle £ over X is said to be indecomposable if it cannot be decomposed into
a proper direct sum of holomorphic sub-bundles. £ is said to be stable (respectively, semi-stable) if
for all non—zero proper holomorphic sub-bundles F < £ we have

u(F) < (&) (respectively, u(F) < p(€)).

Due to the fact that c1(E/F @ F) = c1(E/F) + c1(F) we have that these conditions are equiv-
alent to

n(E/F) > pu(€) (respectively, u(€/F) > u(€)).

In 1965 M. S. Narasimhan € C. S. Seshadri proved (Theorem 2(A) §12[27]) that a holomorphic
vector bundle £ on a compact Riemann surface X of genus g > 2 is stable if and only if £ arises from
an irreducible projective unitary representation of the fundamental group 71(X). An equivalent
result was proved by S. K. Donaldson [9] in 1983 by a method expounded in this section which is
“self-contained” as opposed to the proof given in [27]. We shall later demonstrate the equivalence
between Theorem 2(A) §12 [27] and Donaldson’s version appearing as Theorem 6.2 below.

6.2. Theorem.

An indecomposable holomorphic hermitian vector bundle (€, h) over (X, g) is stable if and only if
there is a unitary connection V on (£,h) having curvature satisfying *Fy = —2miu(€). Such a
connection is furthermore unique up to isomorphism.



6 STABLE BUNDLES. 43

Here a connection V on (€, h) is called unitary (with respect to h := (-, -)) if d(o,7) = (Vo,7)+
(0,VT) for 0,7 € T'(X,£). This means that with respect to a unitary frame of (£, h) the connection
matrix of V is skew—adjoint.

6.3. Definition.
A connection V on (E, h) over (X, g) whose central curvature xFy equals —2miu(FE) is referred to
as an Hermitain—FEinstein (H-E) connection with factor —2miu(E).

As we are predominately working with the differential-geometric structures of connections on
holomorphic bundles, we will utilise an equivalence between holomorphic structures £ and unitary
connections on smooth complex vector bundles E over X in order to simplify the proof of Theorem
6.2. This correspondence is made precise as follows.

When analysing connections one naturally discusses their coordinate representations; this being
the motivation for the introduction of the gauge group. The complez gauge group G© of general
linear automorphisms on E acts on A(FE) by

g-V:=V—(@vg)gt +((Ovg)g™ V)", g€g® VeABE),

thus extending the action u-V := V — (dyu)u~lof the unitary gauge group G := {u € G€ | u*u = 1}.
The existence of holomorphic structures £ on a smooth complex vector bundle E over X is
related to a class of partial connections on E called d—-operators. These are C-linear operators

ds : T(B) — eOU(R)

satisfying the 0-Leibnitz rule 0g(fo) = Of ® o+ fO¢ (o) for f € E°(X) and o € T'(E) and satisfying
the integrability condition 552 = 0 (where we have used the same symbol for the extension of Oe
to the operator EPD(E) — £P4t)(E)); this latter condition is vacuous on a Riemann surface X
since /\(2’0) X = /\(0’2) X =0.

Given a holomorphic structure £ and a local holomorphic frame {e;} on E, we define a natural
d—operator by the local formula

55(2 w; Q€)= Zgwi R e;.

This construction is independent of the choice of holomorphic frame since the transition functions
relating these frames are holomorphic maps.

Conversely, given a partial connection 0, satisfying the 0-Leibnitz rule and the (vacuous)
integrability condition, we have that its local components a% + a (with respect to an open set
U C X) commute. Thus by the Newlander-Nirenberg theorem for almost complex manifolds [28] we
have that there is a complex gauge transformation g : U — GL(k,C) such that g(a% +a)g = a%;
that is, there is local trivialisation of E' upon which o = 0. In such a local trivialisation the solutions
t0 Oos = 0 are just the holomorphic vector functions, so the sheaf of germs of local solutions to
this equation is a locally free sheaf of O xy—modules which thus corresponds to a holomorphic vector

bundle £, over X. This latter result can be alternatively understood to mean the holomorphic
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vector bundle &, constructed from the holomorphic transition functions which connect any two
local trivialisations of £ on which o = 0.

With this understanding, a unitary connection V on E' induces a holomorphic structure £y on
E via its (0, 1)-component dy : T(E) — 8(0’1)(E). Conversely, given a holomorphic structure £ on
(E,h) and an associated partial-connection g, there exists a unique unitary connection V (with
respect to h) which is compatible with the holomorphic structure £ on E; that is, with Oy = O¢.
For, within a local unitary trivialisation of E' in which the partial connection Og is represented by
a matrix « of (0, 1)—forms, the connection matrix A of 1-forms of such a V must satisfy 4 = —A*
and must have (0, 1)-component «. These requirements uniquely determine the connection matrix
as A = o — o, which gives rise to a well defined global object due to the compatibility conditions
satisfied by «. Alternatively, given a local holomorphic frame {e;,--- ,er} for £ upon which our
Hermitian metric A is locally represented by the matrix h;; := h(e;, e;), in this trivialisation for
& our compatible connection is given by the matrix of (1,0)-forms h~10h, where we have abused
notation here and written h = (h;;) for the local representation of h. As before, V is determined
as a well defined global object by the conditions of compatibility of h.

6.4. Definition.
The unique connection on a holomorphic Hermitian bundle (£, k) over (X, g) which is compatible

with both the metric— and holomorphic—structures on the bundle is called the metric connection
on (&, h).

Clearly, two O-operators give isomorphic holomorphic structures if and only if they are conjugate
by an automorphism of the underlying smooth bundle; that is, £ = F as holomorphic structures
on E if and only if there exists a ¢ € I'(X, Aut(E)) such that dg g = g 0r; or equivalently, if
OF =0 — (0e 9)g *.

Connections thus define isomorphic holomorphic structures precisely when they lie in the same
GC—-orbit. Given £ a holomorphic vector bundle denote by O(£) the orbit of connections {g-V | g €
QC} such that &y = €.

In the proof of our main theorem we shall also require to generalise the class of connections to
incorporate the L2 connections. Connections of this class are described as follows.

Let A(E) denote the affine space, modelled over the space I'(X, ad(E) @ T* X), of connections
on E. Choosing a “base” connection V,, € A(F), we obtain a Sobolev—norm on sections o € I'(U, E)
for U C X open

k
lollpk ==Y IV, %0l
a=0

where V ® means a—fold composition of the operator V, with the convention that Vo). = lrE).
The completion of the space I'(U, E) in the || - ||, x—norm is defined to be the Sobolev space L}, (U, E).
Different choices of V,, yield equivalent norms so the definition of this space is independent of the
choice of “base” connection. We define a connection V € A(E) to be of class LY if, given V = d+ A
locally over U, A € L} (U, ad(F) @ T*X); the affine space of such connections is denoted AP (E).

For necessity in later calculations the gauge group acting on AQ(E) is taken to be g}; 1=
L} (X, Aut(E)).
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The proof of Theorem 6.2 incorporates the minimisation of a certain functional J on the space
of L? connections satisfying J(V) = 0 if and only if the unitary connection V on the holomorphic
Hermitian bundle (£, h) is of type required by the theorem. This functional is constructed so as to
have the lower semi-continuity property which allows one to utilise the weak—compactness result
of K. Uhlenbeck (Theorem 1.5 [32]) for connections on bundles (which shall be expounded in a
later appendix) in obtaining a limiting connection V for a given minimising sequence for Jjo(g).
This connection will either lie in O(E) or define a different holomorphic structure £ # £ of same
rank and degree as £. In either case we have a non-zero sheaf homomorphism o : £ — €. If a

is not an isomorphism we will show that J(V) > Jy := vg(ker(a)) — ve(tm(a)) where vg(F) =
rk(F) (&) — p(F)) for F < €. By a result of N. Buchdahl (Lemma 2 [7]) we will also show
that there exists a connection V on &£ compatible with d¢ such that J(V) < Ji. By the lower
semi—continuity property of J we have that J(%) =nf Joeg) < inf Jioey < J(V) thus yielding
a contradiction; thus concluding that &g = € and V minimises Jio(e)- Finally, by considering small
variations within O(€) we deduce that V minimises Jio(e) precisely when J (V) = 0 which is the

condition that V is of type required by our main Theorem 6.2.
The functional J i1s constructed as follows.

On the space of Hermitian matrices define the functional
V(M) :=tr(VM*M).

Any Hermitian matrix can be diagonalised by a unitary matrix, for instance U MU = A where
U is a unitary matrix whose columns are eigenvectors of M constituting an orthonormal basis
of C* and A := diag();) the diagonal matrix of eigenvalues of M. This leads one to find that
v(M) = Y7 |Ail. Moreover, v(M) = maz.,) >;|(Mei,e;)| for {e;} orthonormal bases of C*.
These formulae for (M) show that v is a norm on the space of Hermitian matrices. One observes
by the latter formula for v(M) that block matrices in C*" of the form

A B
I
satisfy v(M) > |tr(A)| + |tr(D)|.
Given (£,h) a holomorphic Hermitian vector bundle over X, by applying v fiber-wise on & we
define on the space of self-adjoint sections o € I'(End(€)) the functional

N(o) = [ /X v(0)? vol] e

As v is a norm, so too is N on the space of such sections. Moreover, N is norm-equivalent to
the usual L? norm ||o|3 := [y |o|?vol := [y tr(c*c)vol on the same space; for if o = UAU,
for U unitary and A the diagonal matrix of eigenvalues of o, then tr(c*c) = tr(c?) = 3, A%, and
as v(o)? = {3 Il}2 = 2, 08 + >izj |AiAjl, then one observes llells < N(o) Vo. Conversely,
N(o) < k|lol|2 where k = rk(£)?. This means we can extend the norm N to L?-sections.

With this norm we define the functional

J(V) = N(

xFy
27

+ u(€) - 1>
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for L? unitary connections V on € where Fy € €2(End(£)) is the associated curvature and 1 in
the expression denotes the section of End(€) given by x — Ij the k X k identity matrix.

This functional is in fact lower semi-continuous; that is, for any V we have J(V) < liminf; J(V;)

2
for VjLJV. To show this we must prove the equivalent condition that given € > 0 there exists an
n € N such that J(V) < J(V;) + € for all j > n, which we shall now establish by considering
the reverse of this inequality. Given € > 0 consider the set C. of all a € L*(X, End(€)) satisfying
N(a+p-1) < J(V) —e. The closed set C, is convex since v is a norm. As *—21% ¢ C. we can

separate C. and %; that is, there is a hyperplane H (a linear functional H € L?(X, End(£))*) and
a constant ¢ € R such that H(a) > ¢ for all & € C, and H(«a) < ¢ when « lies in a neighbourhood

L2 2 *Fo .
of %f— As V; 2V then FV%LAFV so for sufficiently large j we have that H( 2:1.3 ) < ¢ hence there
exists an n € N such that TVZ.,- ¢ Ce. That is, for all j > n we have J(V;) > J(V) —e.

We shall also require explicit reference to the structure of connections and their curvature on
sub-bundles and quotient bundles. For this we briefly consider eztension classes of holomorphic
vector bundles.

Given holomorphic bundles £, &', £" We say that £ is given by an extension of £’ by & if
there is an exact sequence

0 N (LI S SN/ s 0

We furthermore say that two extensions of £” by £’ are equivalent if there exists a commutative
diagram of the form

O g’ 7:1 ra El P 7 g” —> 0
|| | ||
N ] 2 D2 1} N
0 £ y Eo — &£ > 0

Upon applying the functor Hom(£",-) to an extension of £” by £’ we obtain the exact sequence
0 —— Hom(E",E"Y —— Hom(E",E) —— Hom(E",E") —— 0.

Forming the associated long exact Cech cohomology sequence we have the connecting homomor-
phism

§* : HY(X,0(Hom(E",£"))) — HY(X,O(Hom(E",E")).

For an extension to split holomorphically we require the presence of a holomorphic map o : £ — &'
such that p o a = 1g, which translates to §*(1¢») = 0. Thus the Cech cohomology class 6*(1gn)
is the “obstruction” to the holomorphic splitting of an extension of £” by &', which we call the
extension class. In fact we have 30

30Tn the general setting, the splitting of an extension of coherent sheaves of Ox—modules £ " by & over a compact
complex manifold X is characterised by the hypercohomology group Ext'(X;E",€') == H' (X, Homo(E.(£"),£"))
where E.(£") is a global syzygy of the sheaf £”. When £” is locally free then Ext'(X;E",€') =
HY(X,0(Hom(E",£"))). See Chapter 584 [17] for details; the proof of Lemma 6.5 appears on p.725.
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6.5. Lemma.

There is a natural bijection (£,%,p) — 6*(1gr) between the equivalence classes of extensions of £
by &' and the cohomology group H'(X,O(Hom(£",E"))).

Using the operator 0 = ¢ defining the holomorphic structure &, we have by the Dolbeault
isomorphism theorem 3! that 8 € €OV (Hom (", E")), satistying d(a(s)) — a(d(s)) = i(B(s)) for all
s € I'(£"), corresponds to a representative of the extension class 6*(1¢»). Upon fixing a Hermitian
metric h on £ this Dolbeault representative can be expressed in terms of connections by choosing
unitary connections V', V" on &', E" respectively and comparing a connection V on the smooth
splitting £’ @ £ with V'®V". The representative 5 then corresponds to the tensor in the following
expression

!
(4 2]
where A’ and A" are the connection matrices of the respective unitary connections V' and V" with
respect to local unitary frames g and g for £ and " respectively with respect to the induced

metrics, and A the connection matrix of V with respect to the local unitary frame (with respect
to h) {ver,ven} of E. Moreover,

Fy =dA+ANA

dA'  dp ANA —BABH ANB+BNA"
—dp* dA” —B*NA —A"AB* —B*AB+ AT NAT
For —BAB*  dvggpb

—dv._m- ®e& p* Fgn — /3* A ,B

where dy,,. o ., is the linear operator EWEM™RE) — EXE" Q@E') induced by the connection

Vens @ e which is itself constructed from the connections V" and V', which acts on elements
a=w® (c®T) for w e ENX), s € (") and 7 € T(£') by

AV pin @ = AW AN (0 QT) —w A Ve g (0 ®T)

RS

where

Vgu* ®€I(U®T) = Vgu*O' /\ T + U/\ VI'T.

As the bulk of the work done in this section resides in proving the necessary condition of
Theorem 6.2, we shall firstly prove its sufficient condition.

6.6. Proposition.

An indecomposable holomorphic Hermitian vector bundle (£, h) over a compact Riemann surface
(X,g) endowed with an H-E unitary connection V with factor —2miu(€) is stable.

Proof:

31The l?olbeault isomorphism theorem states that for a holomorphic vector bundle E over a complex manifold X
we have H(X, O(E)) = ¢V (E)/OT(E). See p.45[17]
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Let &' be a holomorphic sub-bundle of £ and £" its orthogonal complement in (£,h). If Vg and
Ven are the respective metric connections on (€', hjgr) and (€, hjen), our H-E connection V on
(€, h) will have curvature (as calculated earlier) of the form

Fv5l _ﬁ/\ﬁ* dVg//*@g/ﬂ

Fo =
v —dV£ll*®5//B* FVgH _18*/\16

for some 8 € EOV(EM™ R E).

If {e;} is a unitary frame for (£, k) such that {e1, - ,e,} is a unitary frame for (£', hjer) where
p = rk(E), then we write fe, = 3., w) ® ey where w) € OV (X)

From the above decomposition of Fy we obtain vector bundle analogues of the Gauss-Codazzi
equations

Qy=0— > w)Aw,
b<p<A<T
where a > 1, r:=rk(£), and Fy = (Q¢), Fy, = ().
Representatives of the first Chern classes of £ and £ are given respectively by
T
1 j

27 4 »
j=1

1 S e
al€h) =53 @
a=1

C1(€,h) =

That our connection V is H-E is equivalent to Q; = 76;. for the (1,1)—form v := —2miu(€) vol.
Therefore
1
deg(€) = E,h)=——
eol€) = [ erle.h) = o
and  deg(®) = [ ea(€'h) = —5- / py - w) AT,
1<a<p<)\<r
1
hence w(f)=—-—=— 1 v
2m Jx
1
and u(€')=—-— / w) AT
2mi 27T'Lp X 1<a<p< ALy

Thus p(E") < p(€) with equality holding if and only if all the w) = 0. The vanishing of 8 implies

E = &' P E" both holomorphically and orthogonally (since an extension splits holomorphically if

and only if the Dolbeault representative of the extension class is 0-exact) ; however we have assumed
that £ is indecomposable, thus u(€'") < u(€).

Il

The following lemma provides the setting for our earlier discussed methodology of proving
Theorem 6.2.
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6.7. Lemma.

Let &£ be a holomorphic vector bundle over X. Then either inf Jip(s) is attained in O(€) or there
is a holomorphic bundle F % £ of same degree and rank as £ with inf Jio(r) < inf Jjo(e) and
Hom(E,F) #0.

Proof:

Let {V;} be a sequence of smooth connections minimising Jio(g). As N is equivalent to the L?
norm we have ||Fy,||2 bounded for all j. By Theorem 1.5 [32] there is a subsequence {V} of

LI~
our sequence and L2 gauge transformations g; such that g; - V=V, say. As {gj - V;} is also a

L2 ~
minimising sequence for Jjp(g) we may assume without loss of generality that Vj/J\V.
As J has the lower semi-continuity property, we have

J(V) < liminf J(V;) = inf Jio(g).-
]I

We proceed to show that the alternative bundle F in the statement of the lemma is actually &g.

Let V, be a L? unitary connection on the underlying smooth bundle E that induces a holo-
morphic structure isomorphic &; here we have implicitly used the result of Lemma 8 [7] which
states that L? unitary connections on E induce holomorphic structures. Construct a connection
on Hom(E, E) ~ F*QF as earlier composed of the (unitary) connection V" on E*, induced
by V,, and V. Denote the (0,1)-component of this connection by 8V g- This dlﬁerentlal op-

erator is 15t—order elliptic since 0 is. As 8 s = 0 means that s is a holomorphic section of
Hom(E, FE), solutions of 8v gs =0 correspond exactly to elements of Hom(&,Es ) So if we
assume Hom(&,Eg) = 0 then 8vov has no kernel, so we obtain the elliptic estimate 3

||5V063||2 >c|sll21 ¢ >0, for all s.

The Sobolev imbedding L? C L* > ||s||la for some ¢ > 0.
Moreover, the Sobolev imbedding L? < L* is compact ** thus {V;} has a subsequence {V;»}
converging (strongly) to the L* connection V.

As

Og,5 = 0v,vu)lo®@T) = (B — Ajn) o)) ® (e ®7)
where Vjn = d+ Ajn and V = d + B,
the Holder inequality gives
||(5vu§ - gvovj,,)sng < "||Ajn = Bl4llsl|4 for some ¢’ > 0.
Using this inequality and the previous elliptic estimate and Sobolev inequality, we have

||5vovj,,s||2 > (¢ = "||Ajn — Blla)||s|la for each ;" and for all s.

32If L is an elliptic operator of order [ on T'(¢) for some vector bundle £ then for each k& > 0 there exists a
¢ = ¢(k) > 0 such that for all s € T'(£) we have ||s||2,e+1 < ¢(||Ls|l2,5 + ||s]|2,%). Furthermore, if s is L{-orthogonal to
ker(L) we can omit the ||s||2,x term. See Theorem 4.1 Appendiz, §4 [23].

33The Rellich-Kondrakov theorem states that given a compact Riemannian manifold X" and integers integers
4 >0, m > 1 and real numbers p and ¢ > 1 such that 1 < p < ng/(n—mgq) the imbedding of LY, in L¥ is compact.
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As vjuL—qﬁ, then given € > 0 there exists an n € N such that [|A;» — Blls4 < € Vj" > n. Upon
choosing € = ¢'/c” then for large enough j” we have ||0v,v,, sll2 > 0 for all s. As elements of
Hom(€, Ev]_,,) correspond to solutions of gvovj,, s = 0, our result implies Hom/(E, Evj,,) = 0, which
is a contradiction since £ = &y, as the V; were chosen to lie in the orbit 0(€&).

Thus we conclude Hom(€,Eg) # 0.

We therefore conclude:

i):
()if V € O(€), that is & = &, then by the lower semi-continuity of J we have J(V) <
liminf; J(Vj) = inf Jio) < J(V), therefore J(V) = inf Jio(e) which means that inf Jio(e) is
attained in O(&).
otherwise
(ii):

if €5 #E, as vjﬂﬁ, whence ij,E\F%, therefore limy o deg(é'vj,) = deg(Eg) since c1(§) =
[~ o=tr(Fy)] for any connection V on E. As deg(Ev,,) = deg(£) since the V; were chosen in 0(€&),

2mi
we have that £g is of the same degree (and rank) as £.

For the limiting connection V we have by the semi-continuity property of J that inf J|(9(g%) =
J(V) < inf Jioe).-
O

We now proceed to show that if £ is a stable holomorphic bundle then the second alternative
of the above lemma does not occur.

6.8. Lemma.
If F is a holomorphic vector bundle over X expressible as an extension

0 > M —= F = N — 0, and if u(M) > u(F) (whence u(F) > p(N)), then for any unitary
connection V on F

J(V) 2 rk(M){p(M) — u(F)} + rk(N){(F) — p(N)}
=: Jo,

with equality holding only if the extension splits (that is, only if F = M @ N holomorphically).
Proof:

Fixing an hermitian metric on F and letting V4 and V be the metric connections on M and N
respectively with respect to the naturally induced metrics on these bundles, a unitary connection
V on F with respect to the chosen metric will have curvature of the form

_va*®M/B* FVN _B*A/B

where g € 0D (N* ® M) is a representative of the extension class. Using the properties of the
trace-norm v on block matrices we have that

u(*F—V_ +u(}’)1> > ‘tr{*FvM AEAT) +u(]-")lH + ’tr{*FvN il +u(]-')1H.

21 iy 2m1
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Therefore
(V) > /X V(%+u(]-‘)1) ol adn
> /{ﬁr(*;?:;w +u(f)1> - lﬁlz}vol + /X{tr<*§:fr +u(}“)1> +\,3|2}Uol (6.8.2)

the first inequality following from the Jensen inequality 3* since the operation of squaring is convex;
the second inequality follows from the fact that *tr(8* A B) = —2mi|B)?.
As

/X{tr<*l;vr;‘" +M(}—)1> - |ﬂ|2}vol = /Xtr<*§;’”) vol + p(F) /Xﬁ"(lM)“Ol — 1813

= —deg(M) + p(F)rk(M) — |83

As pu(F) < p(M) by assumption the first term on the right hand side of inequality (6.8.2) is thus
deg(M) — u(F)rk(M) + |13
= rk(M) (M) — u(F)) +1IBI3-
Similarly, the second term in inequality (6.8.2) is
WFIEN) = deg(N) + 1815
= rk(N) (4(F) — p(N)) + 118113,
thus
J(V) > k(M) (p(M) — p(F)) + rkW) (u(F) — u(N)) + 2118113

: o+ 2118113
> Jo

One observes that equality holds in this expression only if ||3||2 = 0, that is 8 = 0 almost
everywhere which implies that the extension splits.

]

We wish to use the above lemmae to prove our main Theorem 6.2 by induction. In order to
proceed inductively, we must show that Theorem 6.2 holds for lines bundles.

Clearly, every line bundle is stable and indecomposable. Let 3!1(X) be the subspace of EH(X)
consisting of harmonic forms; that is, 1-forms w satisfying d*dw = 0. The Hodge decomposition
theorem states that on a compact Riemann surface X

e (x) = 1M (X) @ oet(x) P et (X)

#The Jensen inequality states that [, (¢ o f)du > ¢(f fdp) for ¢ : R — R a convex function and f: X — R
integrable.
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From this one concludes that a 2-form w € £%(X) satisfying [, w = 0 is expressible as w = 00f
for some f € E°(X). Upon taking w := Fy + 2miu(€) vol for V any unitary connection on our
holomorphic line bundle £ we observe that [, w = 0 (as we have assumed [, vol = 1), hence
Fy + 2mip(E)vol = 00f for some f € E°(X). By the affine structure of A(E) we may write
V = V' + a for some other unitary connection V/ on £ where a € E}(X). If V' is chosen so that
a = Of then we have that Fy = Fy» + 00f. Thus we have shown that there exists a unitary
connection V' on € such that xFy: = —27miu(E).

Thus Theorem 6.2 holds for holomorphic line bundles, and we use this start in induction to prove
the following Lemma. We utilise Lemma 2 [7] in order to avoid calculations involving semi-stable
filtrations [2]; that is, a nested sequence of proper sub-bundles 0 =: P, < Py < --- < Py := P with
each P;/P;_1 semi-stable and associated slopes p(P;/P;—1) decreasing with i. These filtrations are
used in [9] to sequentially decompose an arbitrary extension of a stable bundle into a sequence of
stable bundles. Lemma 2 [7] avoids this by showing that there exists an extension of a stable bundle
by stable bundles. With this adoption, Donaldson’s[9] Lemma 3 is modified to the following:

6.9. Lemma.

Given £ a stable holomorphic bundle, and assuming Theorem 6.2 holds true for bundles of rank
less than rk(€), if £ can be expressed as an extension 0 — P — & — L — 0 with P and £ stable,
then there is a smooth unitary connection V € O(€) with

J(V) <rk(P){u(&) — (P} + rk(L){p(L) — n(€)}
== Jl.

Proof:
On P, L fix the H-E connections which exist by the inductive hypothesis, and set 8 € E0V(L* Q P)
to be a representative of the extension class.

The operator @ := — * 8H0m(£"p)5Hom(£7’P) acting on smooth sections of Hom(L,P) satisfies
Q*+Q = A—*Fy where V is the metric connection on Hom (L, P) and A := dydy is the Laplacian.
With the induced H-E connections on P and £ the metric connection on Hom(L,P) = L* QP
has factor —2mi(u(P) — p(L)). As € is stable, then u(P) < p(L), thus Q* has no kernel whence @
is surjective. Thus there exists a v € Hom(L, P) such that (8 + dv) = 0. Modify B in this way
so that 98 = 0 and rescale so that ||3]|2 = 1 (possible since 3 # 0 since £ is stable).

Triples (Vp, V,tf) for t # 0 gives us a connection V¢ € O(€) with curvature

L Fy, —t2B A" 0
vE= 0 Fy, —t26* A S

By the inductive hypothesis Fy, = —2miu(P)vol and Fy, = —2miu(L)vol. As pu(P) < p(€) <
2

(L), then for ¢t small enough we have that the cigenvalues of (u(€) — u(P))1 — £ = (B A B*) are
positive, and those of (u(£) — pu(£))1 - 2« (B* A B) are negative. Therefore

27t

V(*QI*;Z +M(5)1> = rk(P){u(E) — p(P)} + rk(L){u(L) — n(E)} — 2628
=i Jy — 26|,
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and so

J(VY)? = /X (Fr — 222 B

= 12— AR BIE + 4t /X B,

Choosing ¢ small enough so that ¢t [, |8]* < #?||8]|3 = t* we then have the required result J(V?*) <
Ji. O

Observe that the last clause of Lemma 6.8 says that if a holomorphic bundle F is indecom-
posable, that is, every extension 0 -+ M — F — N — 0 does not split, then J(V) > J, for any
unitary connection V on F.

Assuming V satisfies Theorem 6.2, that is, J(V) =0, then 0 > J, := rk(M){pu(M) — pn(F)} +
rk(M){u(F) — p(N)}. By assumption of Lemma 6.8, u(M) > wu(F), thus u(F) > pN), so if
N C F for all such extensions then F is stable.

Conversely, if £ is a stable holomorphic bundle and Theorem 6.2 holds for all bundles of rank
less than that of £ then the second alternative of Lemma 6.7 does not occur; thus inf Jjo(g) is
attained in O(&). For, if the second alternative of Lemma 6.7 did hold true, namely, if 3F 2 &£
with rk(F) = rk(£), deg(€) = deg(£) and Hom(E,F) # 0 such that inf Jio(r) < infJige) then
the following argument shows that we attain a contradiction.

As Hom(E,F) # 0, choose a non-zero sheaf map o : £ — F. We have extensions of these
bundles and consequently a diagram

0 > P » & y L > 0
oL
0 N < F < M < 0

with exact rows, rk(L) = rk(M), det(B) £ 0, and deg(L) < deg(M). This diagram is constructed
as follows. Given the exact sequences of sheaves 0 — ker(a) — & — im(a) — 0 and 0 — im(a) —
F — coker(a) — 0. All the constituent sheaves, save coker(a), are locally free thus correspond to
holomorphic bundles. By factoring the analytic sheaf N’ := coker(a) by its torsion subsheaf

T(N') :i=pex{s € N, | fs =0 for some f € O,}

we obtain the sheaf V' := N'/7(N’) which is torsion free everywhere hence a locally free sheaf
since X is a Riemann surface 3>. We thus obtain an exact sequence of locally free sheaves 0 —
M = F = N — 0 for some locally free sheaf M and a map S : im(a) — M with deg(8) #Z 0 by
“chasing” the preceding commutative diagram.

As € 2 PPL and F =2 NP M smoothly, then rk(€) = rk(P) + rk(L) and rk(F) =
rk(N) + rk(M), whence as rk(L) = rk(M) from the diagram we have 7k(P) = rk(N). We
similarly obtain the inequality deg(P) > deg(N) from the properties of the first Chern class and
the information from the diagram. Thus we conclude J; < J,. Applying Lemma 6.8 to the bottom

35In fact if X were a general complex manifold, the set of all points z € X on which a coherent analytic sheaf is
not locally free is analytic and nowhere dense in X. See Chapter 484 [15] for details.
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row of the preceding commutative diagram we have J(V) > J, for any unitary connection V on
F; in particular, inf Jio(r) > Jo. Also applying Lemma 6.9 to the top row of our diagram, there
exists a unitary connection V on £ with J(V) < Ji; whence inf Jig¢) < Ji. However, we have
assumed the second alternative of Lemma 6.7, namely that inf Jjo(r) < inf Jg(e), so J, < Ji hence
a contradiction. Thus, inf Jjo(¢g) is attained in O(E).

Consider the operator dydy acting on L3 sections of End(€). Recall that a normal linear
operator on a complex inner-product space V' with distinct eigenvalues Aq, ..., Ay and corresponding
eigenspaces W; will decompose V into W1 @ - - - @ Wy. If 0 € T'(End(£)) is a non-constant element
(that is, one not of the form z +— cl 1)) of ker(dydy) it would have eigenspaces that decompose
£ holomorphically contrary to the assumption that £ is indecomposable. Thus the kernel of dydv
consists only of the constant scalars. By the Hodge decomposition theorem for bundles, given
H : T'(End(£)) — HY(End(€)) the orthogonal projection and G : T'(End(£)) — T'(End(£)) the
Green’s operator, we have id = H + AG on ['(End(€)) where A is the Laplacian dy,dy + dvdy.
As dyds = 0 on I'(End(€)) then A = d&dy, hence HY(End(£)) := ker(A) = {cI | ¢ € C},
whence —i x Fy = —2mp(€)1 + d&dyG(—i * Fy); that is, there exists h € LZ(End(&)) such that
dgdvh =2mp(€)1 — i x Fy.

For this element h and small t € R define the gauge transformation g; := 1+th, and subsequently
define the connection

Vt =gt Ve O(E)
=V — (Ovgr)g; ' + ((Ovgr)gr )*
= d + At
whence
th = dAs + Ay A Ay
= Fy — 0y (9v(9)9; 1) + 0v (9, "0v(9:)) — Ov(9:)g; 20w (9¢) + g5 0w (9:) v (ge) s
= Fy — t(8v0v — Ovdv)h + q(t, h)

where for small ¢ [|g(t, h)|2 < cﬂh||272t2.
As d*vdv_Z 1 *_(8v(9v - avav) and as d*vdvh = 27Tu(5)1 — 1 % Fv
then —t(0ydy — OvOv)h = —t2miu(€)vol — tFy whence
x Iy,

21

x Iy

+ (€)1 = {% +u(5)1}(1 — 1) + %q(t, ).

Therefore J(V;) = J(V)(1 - t) + O{t?}.
As J(V) = inf Jjo(¢), then by the calculus of variations the first variation %J(Vt)ltzo must
vanish, hence concluding J(V) = 0; that is, xFy = —2mip(E)1.

We must finally prove that our connection V € O(€) is unique up to isomorphism. For this we

firstly need the following lemma (see Proposition 3(ii) [10] for proof).

6.10. Lemma.

If £ is a holomorphic bundle over X endowed with a H-E connection and p(£) = 0 then any
holomorphic section is covariantly constant.
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If we have two unitary connections Vg, V1 on E inducing isomorphic holomorphic structures
Ev, and £y, respectively, there must exist a complex automorphism g of E such that v, = godv,°g
and Oy, = g o dy, o g. Applying a unitary change of gauge to one of our connections, say by
g(g* g)“l/ 2. g may be assumed to be positive self-adjoint. If Vy and V; are our H-E connections
on E, then the holomorphic isomorphism g : £y, — vy, is covariantly constant by the above
proposition. This means 0 = dv,(g*g) = v, (g%) and dv,(g?) = 0. As €y, is indecomposable,
g% = clp where c is a constant. Furthermore, as g is positive self-adjoint then g = ¢'1g for ¢’ a
constant.

The equivalence between Theorem 2(A) §12 [27] of Narasimhan & Seshadri and Donaldson’s
Theorem 6.2 is observed as follows.

A unitary connection V on F with curvature of the form Fy = —27iu(FE) vol x corresponds to
a projective unitary representation p : 1 (X) — PU (k) of the fundamental group where PU (k) :=
U(k)/U(1)I is the projective unitary group. This follows from the following observations.

Choosing vector fields u,v € X(X) their integral curves (paths v being solutions of the differ-
ential equations 4 = u or v) can be intersected to make a quadrilateral @ on X, being closed by a
streamline to the commutator field [v, u].

Observe here that the gap “z4 — z3” in the four legged curve is characterised by the difference
f(z4) — f(z3) for any f € F(X), and in a given codrdinate basis we have the Taylor’s expansion
f(za) — fzs) = ((upva,s — vﬁua’g)—a%%)m-i- “cubic errors”=: [u,v](f)zs+ “cubic errors”. Thus
the vector [u,v] describes the separation between points z3 and x4; its description gets arbitrarily
accurate when u and v get arbitrarily short. Thus we keep the lengths of legs of the quadrilateral
comparable/equal to the lengths of the tangential vectors, and these latter lengths are taken “small
enough” so that the second—order terms in the expansion of the parallel transport equation P(Q, V)
about ) are negligible.

As

Vuo(y) = lim 2{P(~y, V)o(y(e)) — o(y)}

e—=0 €
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for o € I'(E) and v a curve with y(0) = y and 4 = u, then to second order we have, for p € E\q,

P(Q7 Vip=p+ {vuvv —VyVy — V[u,v] }p |“||v|
=: p+ Fy(u, v)pul|v].

For an arbitrary loop v on X, break the region bounded by < into a number of contingent
quadrilaterals @) as defined above, whence for o € I'(E)

P(v,V)o =0+ Y Fy(ug,vq)o lug|lvgl
Q

=0+ Fy(uy,0,)0 ) _ lugllvg]
Q

which is only valid for curves v of small compass; the difference P(y,V)o — o doubles when the
area bounded by v doubles, but the error increases by a factor of ~ 23/2.

Parallel transport about two different small curves v; and 2 (based at the same point z, € X)
for our “central” connection V differs by a constant in U(1) and so [P(y1,V)] = [P(y2, V)] as
equivalence classes in PU (k), and so we have a representation p : m1(X) — PU (k). Given a universal
covering of XX , the associated bundle E=X Xp CP*~! is isomorphic to the projectivisation
P(E).

Conversely, given a projective unitary representation p : m(X) — PU(k) of the fundamental
group we have a projectively flat connection V on E. Given the natural homomorphism p : U(k) —
PU (k) with associated Lie algebra homomorphism 4 : u(k) — pu(k) the curvature of the induced
connection on P(F) is given by p'(Fy), and so Fy takes on scalar multiples of idg.
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7 Stratifying the space A(FE) of connections.

Assume X is a compact Riemann surface with volume normalised to unity and E is a smooth
complex vector bundle over X of degree k with structure group G = U(n).

We shall induce a Morse stratification on the space of unitary connections on F, which by
abuse of notation is also denoted by A(E), by constructing one for the space C(E) of holomorphic
structures on E via the identification of A with C as expounded in the previous chapter owing to the
isomorphism &!(u(n)) = &1 (gl(n,C)). The stratification of C involves working with canonical
filtrations of non-semi-stable holomorphic vector bundles over X. To this end we need some
preparatory material on the existence and uniqueness of such flags.

7.1. Definition.

Given E a holomorphic vector bundle over X which is not semi-stable, a non-zero proper holo-
morphic sub-bundle F of E is said to be strongly contradicting semi-stability (SCSS) if it satisfies
the following conditions

(C1): F is semi-stable;

(C2): for every sub-bundle F' of F containing F' as a proper sub-bundle, we have u(F) > pu(F').

Note that condition (C2) and the following conditions are equivalent:
(C2'): for any non-zero sub-bundle Q of E/F we have u(Q) < u(F);
(C2"): for any stable non-zero sub-bundle Q of E/F we have u(Q) < u(F).

7.2. Lemma.

Given Fy and F, sub-bundles of E such that F} is semi—stable and F; satisfies condition (C2), if
Fy is not contained in F» then p(Fp) > p(Fy).

Proof:

Given that the canonical sheaf map map f : #1 — £/ F5 is non—zero by assumption, as expounded
in the previous chapter we have a factorisation

FR — F ——0

1

E/F; < Py 4 0

with rk(F]) = rk(F}), det(g) # 0 and deg(F]) < deg(Fy'). As Fy is semi-stable, u(Fy) < p(Fy)
and as Fy satisfies condition (C2), u(F}) < u(F2). As deg(Fy) < deg(F{') and rk(F{) = rk(F}’)
then p(F}) < p(Fy) and so pu(Fy) < p(F2).

Il

|

7.3. Lemma.
Given sub-bundles F; and Fy of E which are SCSS, then F; = F5.
Proof:
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If F, ¢ Fy, Lemma 7.2 implies pu(F3) > p(F1) and that we must have Fy C Fi. We immediately
obtain a contradiction since u(Fs) < u(F1) owing to the semi-stability of Fi, and so Fy C Fp. A
similar argument shows Fy C Fj.

O
7.4. Proposition.
If E is not semi-stable then it contains a unique SCSS sub-bundle.
Proof:
The Uniqueness of a SCSS sub-bundle follows from Lemma 7.5.
Let m := supgxpcp #(F) whish exists since the values of the degrees are discrete and are

bounded from above. As E is not semi-stable we have m > u(F).

Choose a sub-bundle F, of E of maximal rank such that u(F,) = m. If F' is a non—zero
sub-bundle of F, we have u(F') < m = p(F,) so that F, is semi-stable. On the other hand, a
sub-bundle F' of F containing F, as a proper sub-bundle satisfies u(F’) < u(F,) and so F, also
satisfies condition (C2); that is, F, is SCSS.

0

7.5. Lemma.
If a vector bundle bundle E is not semi-stable we have a flag

0=FRCRC--CF,=E
satisfying conditions
(F1): F;/F;_ is semi-stable for i =1,... |k,
(F2): F;/F;_1isSCSSin E/F;_qfori=1,... ,k—1

Moreover, such a flag is uniquely determined.
Proof:

Existence follows from Proposition 7.4. More explicitly, given Fy a SCSS sub-bundle of F, if E/Fy
is not semi-stable we find another SCSS sub-bundle Fj C E/F; and define F; to be the inverse of
F} by the map F — E/F;. Repeating this procedure if necessary yields a flag satisfying conditions
(F1) and (F2).
The uniqueness follows by induction on the rank of E by applying Proposition 7.4 and noting
that the sub-bundles F;/F;_; for i > 2 from a flag of E/F} satisfying conditions (F1) and (F2).
O

7.6. Lemma.
Given a flag

0=F CF C-CF,=EFE,
conditions (F1) and (F2) are equivalent to the conditions
(F1'): F;/F;_1 is semi-stable for i =1,... ,k,

(F2"): w(F;/Fi21) > p(Fig1/F;) fori=1,... ,k—1.
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Proof:
If conditions (F1) and (F2) hold, we have an exact sequence

0 —— Fi/Fi—l — E/Fi_l _— E/FZ — 0.

As F;11/F; C E/F; and F;/F;_y are SCSS in E/F;_y, we have u(F;/Fi_1) > p(Fiy1/F;).
Now, if conditions (F1') and (F2') are satisfied, we have the exact sequence

0 —— Fk_l/Fk_Q E— E/Fk_g — E/Fk_l —— 0,

whence pu(Fj_1/Fp_2) > w(E/Fx_1) by condition (F2’). As E/Fy 1 and Fy_1/Fy_» are semi-
stable, we have that Fy_1/F)_o is SCSS in E/F}_o; this follows because if A is a bundle that is
not semi-stable and B a non—zero sub-bundle of A satisfying the following conditions

(i): B and A/B are not semi-stable;

(i) u(B) > u(A/B),

then B is SCSS in A. In fact for any non-zero sub-bundle @ of A/B we have u(Q) < u(A/B) <
u(B), so that condition (C2') is satisfied.

We prove that condition (F1) is satisfied by downward induction on 4. Consider the exact
sequences

0 —— F/F,.y —— E/F,.y —— E/F;, —— 0,
and
0 —— F, /F; —— E/F;, —— E/F;,; — 0.

To prove that F;/F; 1 is SCSS in E/F;_; we must show that for any stable non-zero sub-bundle
Q of E/F; we have u(F;/F;_1) > p(Q); the required result will then follow from condition (C2").
Given Q C F;y1/F; we have pu(Q) < u(Fi41/F;) since Fiy1/F; is semi-stable, and by hypothesis
w(Fig1/F) < w(F;/Fi—1) so that u(Q) < wp(F;/Fi—1). If Q is not contained in Fjiy/F;, then by
induction we may assume F;y/F; is SCSSin E/F;. As Q is semi-stable and @ C F;y1/F;, we have
by Lemma 7.2 that u(Q) < u(Fii1/F:). As u(Fiy1/Fi) < pu(F;/Fi—1) by hypothesis, it follows that
#(Q) < p(Fi/Fim1).
U

Upon combining Lemma 7.5 and Lemma 7.6 we obtained our desired result.

7.7. Proposition.
If E is a holomorphic bundle which is not semi-stable, then E contains a uniquely determined flag

0=FEy<ki1<---<E,=F (771)

with D; := E;/E;_1 semi-stable and p(Dq) > p(D2) > --- > u(D,). Such a flag is called the
canonical filtration associated to E.
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Note that if E is semi-stable then r = 1. Given rk(D;) =: n; and deg(D;) =: k;, let
(p1,.-. ,pn) € Q" be a vector such that pq > po > -+ > pp with its first n; components equal to
k1/m1, the next ny equal to ko/ng, etc. We call p the type of E.

Let C,, denote the subspace of C of holomorphic bundles of type p. Note that if all the com-
ponents p; of the vector u equal k/n then clearly C, = Cg, the subspace of C of semi-stable
holomorphic bundles. Furthermore, as C, is preserved by the action of Aut(E) it is then a union
of orbits.

We partially order the types p € @ in the following standard manner (following §7 [2]).
Associate to p the convex polygon P, in R* whose vertices are given by (0,0), (n1,k1), (n1 +
no, k1 + k2), ... The convexity of P, reflects the monotonicity of the k;/n;.

A

k

(n1 4+ ng, k1 + ko)

n17k1)

(0,0) "n
We define a partial ordering < on the set of types u € Q* by
A>p if and only if Py lies above P,. (7.7.2)

Upon considering P, as the graph of a concave function p, : 1 € Z — > j<i Mg which interpolates
linearly between integers, then a

A>p ifandonlyif > A=) py, j—1,...,n—1
j<i j<i

n n
and Z)‘i :Z/Ji:k-
i=1 i=1

Let A, denote the stratification of A induced by the stratification C, of C under the earlier
mentioned identification A — C. Denote by N, the space of Yang-Mills connections V on E whose
curvature if of type u, that is xFy = —2midiag(py,... ,pn). We shall proceed to show that the
stratification A = | i A, is a Morse stratification with respect to the critical manifolds N, by
satisfying the conditions of Proposition 4.20.

Let N, %6 denote the irreducible 37 Yang-Mills connections on E with *Fy having entries
—2mik/n. V € N, induces the (absolute) minimum 472k?/n for YM. This is because if V'

3%Tn the notation of [2], N denotes the set of connections giving the minimum 4n°k*/n for Y M arising from
irreducible projective unitary representations of m1(X). By the last paragraph of the preceding chapter we have that

such representations induce connections V with *Fy a diagonal matrix with entries —27ik/n.
3T A connection V is said to be irreducible if its (central) curvature *Fy a diagonal block matrix.




7 STRATIFYING THE SPACE A(E) OF CONNECTIONS. 61

was another Yang-Mills connection on E, we can decompose E as Ey @ ---@ E; upon which
#Fyr is a diagonal matrix with entries —2mik;/n; where n; := rk(E;) and k; := deg(FEj), thus
YM(V') = 4n? i1 kf/n] Now 472k?/n < Y M (V') by applying the Cauchy-Schwarz inequality
(u-v)? < ||lul?|[v]|? to the vectors u := (k1//na, ... ,kr/y/7r) and v := (y/N1, ... ,4/Ny); mOTeEOVer,
the Cauchy—Schwarz inequality is an equality if and only if u and v are proportional, hence k;/n; =
k/n in this case. By Donaldson’s Theorem 6.2, the existence of such V € N, on a holomorphic
bundle E implies E is a direct sum of stable irreducible sub-bundles. This implies connections
V € N, are direct sums of of connections in N; on sub-bundles, thus M, C A,. This establishes
condition (iv) of Proposition 4.20.

As we have assumed the normalisation | x volx =1 we have for V € N,

n
YM(V) = 4n°(diag(p1,... ,pm)) = 41 D i}
1=1

where ¢(z) := tr(z*z) is the convex invariant integrand of the Yang-Mills functional on u(n); we
denote this evaluation by ¢(u). By defining

Y M(E) := inf Y M(V)

where V runs over the metric connections in F, then by induction on Donaldson’s result ( Theorem
6.2) we have that Y M(E) = ¢(u) for stable bundles E. If E is an arbitrary holomorphic bundle
with filtration (7.7.1) then

YM(E) <YM(ED Dy).
y]

As any semi-stable bundle has a filtration with stable quotients then
YM(E) =¢(u) for EeC,.

From this result it follows that C, C C,, implies ¢(X) < ¢(u) since Y M(Cy) < Y M(C,) (for instance,
YM(Cy) = 4n? Z?ﬂ )\5) As the components of the types are increasing then ¢(A) < ¢(u) implies
A < p. Tt follows therefore that

c.clJen

The associated strata {4, } for A and the non—degenerate critical manifolds Ny of Y M thus satisfy
the Morse stratification conditions (i), (ii) and (iv) of Proposition 4.20. To prove condition (v) for
Morse stratification we require the following results.

If E is a smooth complex vector bundle of rank n over X, the elements o € Aut(FE) are given
locally (with respect to a trivialising cover {U,} for E) by smooth maps A, : Uy — GL(n,C). In
this way Aut(E) acts on C as follows: if £ € C has transition functions g,z with respect to the
trivialising cover {U, } then o -& is defined to be the bundle with transition functions A3 lgag)s. So
the orbits of this action are the isomorphism classes of holomorphic structures on E. The orbit in C



7 STRATIFYING THE SPACE A(E) OF CONNECTIONS. 62

corresponding to a holomorphic structure £ on E can be identified with the GC~orbit O(£) of unitary
connections on E. As TO(E) = { Ognqe)B | B € EYEnd(€)) } and TCio(e) = EOD(End(€)) (under
the identification A — C), then the normal bundle to the orbit O(£) is given by
~ TCo(e)

TO(E)
. EOV(End(£))

im(Dgna(e))

= H'(X, O(End(£)))

vO(€)

where the last isomorphism follows from the Dolbeault isomorphism theorem.?® This Cech cohomol-
ogy group is finite dimensional (Appendix [13]), so the orbit in C corresponding to a holomorphic
structure £ on F is, locally, a manifold of finite codimension in C.

As the filtration (7.7.1) is canonical, the subspaces C(F), are preserved by the action of Aut(E),
thus C,, is a union of orbits and so its conormal (the dual of its normal bundle) should be a quotient
of
HY(X,0(End(E))). Letting End (E) be the bundle of endomorphisms of F which preserve its
filtration, and End”(E) the bundle arising from the exact sequence

0 —— End(E) — End(E) — End"(E) —— 0

the associated long—exact cohomology sequence implies H (X, O(End"(E))) is a quotient of
HY(X,O(End(E))) and so is considered the conormal of C,. The fact that H°(X, O(End"(E))) =
O(End"(E))(X) = 0 follows by applying Corollary 7.9 below to the filtration (7.7.1).

7.8. Lemma.

Let E is a semi-stable bundle over X and D a holomorphic bundle over X with p(E) > (D) and
f : E = D a non-zero homomorphism. If D; is the sub-bundle of D generated by the image of f
then u(D1) > u(D).

Proof:

As explained in the previous section f has the following canonical factorization

0—)E1——>E AEZ > 0
i
0 +— Dy ¢ D < Dy ¢ 0

with exact rows, rk(E2) = rk(D1), det(g9) # 0, and deg(E2) < deg(D1), where D, is referred to as
the sub-bundle of D generated by the image of f.
As u(E2) > u(FE) by the semi-stability of F, if y(E) > p(D) then u(D1) > p(E2) > u(E) >
u(D).
0

38Given T a complex space, a holomorphic family of vector bundles on X parametrised by T' is a holomorphic vector
bundle F on T x X, or the collection {Fi}:er where F; is the pullback of F under the map x + (t,z). By Lemma
2.1 (ii) [27], given £ a holomorphic bundle over a compact Riemann surface, there exists a family of holomorphic
vector bundles {£m }men parametrised by a complex manifold M such that £, = £ for some m, € M and such
that the nfinitesimal deformation map Tm M — H(X, O(End(€x))) is an isomorphism at m,. Thus infinitesimal
deformations of a holomorphic bundle £ are classified by the elements of (X, O(End(£))).
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7.9. Corollary.
If £ and D are semi-stable bundles over X with u(F) > p(D) then every homomorphism £ — D
is zero.

Now End(E) is a direct sum of the Hom(D;, D;) for ¢ > j arising from the filtration (7.7.1)
(cited from (7.13) [2]), and so

End"(E) = P Hom(D;, Dy).
1<y
By Donaldson’s result Theorem 6.2 we have that for a Yang-Mills connection V € N, on E of

type u we have E = @, D; where the D; are semi-stable with x(D;) the components of the vector
w. By Corollary 7.9 above we have that

ad” (E) = @ Hom(D;, Dj)
i<
and so ad™ (E) & End"(E). Thus for our Yang-Mills connection V € N, we have

index(V) = 2dimcHY (X, O(End" (E)))
= codim cC,,
= codim A,

where A, is the stratum containing V. The codimension d,, := codim cC,, can be calculated explic-
itly by applying the Riemann-Roch theorem to the bundle @), ; Hom(D;, D;): as deg(D; ® D;) =
—kinj + kijn; and H(X, O(End"(F))) = 0 then

dy = > {(nik; — njks) + ninj(g — 1)}
i>j

= > {pi—w+g-1)

14 > 44

(7.9.1)

where g is the genus of X.

Thus we have shown that condition (v) of Proposition 4.20 holds for Y) = N, and X, = A,.
One also notes that the finiteness property (F2) in §3 holds for the indexing set of types {A} by
the above explicit formula for d.

Finally, the gradient field of Y M is given by
grady Y M = — xdy * Fy.

As the tangent space to the G-orbit at V consists of vectors dya for o € E%(X, ad(E)) and the
tangent space to the GC—orbit at V consists of dyf for B € £%(X,ad(EC)) where EC denotes the
complexification of E, upon identifying €1(X,ad(E)) with €@ (X, ad(EC)) on which * = i we
have that the tangent space to the GC-orbit at V consists of vectors dyay + *dyas for o, as €
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€9(X,ad(E)). In particular, from the above formula we see that grady Y M is tangential to the
GC-orbits through V and thus also tangential to the stratum .4y containing V; this corresponds to
property (iii) of Proposition 4.20.

We have thus shown that the stratification A, of A is a Morse stratification relative to the
Yang-Mills functional Y M according to Proposition 4.20. Moreover, we have

7.10. Theorem.
The stratification C = |J, C is G-equivariantly perfect in the sense that

PE(C) =D M PI(Cy), (7.10.1)
A

where dy := codim ¢cC.

In order to prove this result that our stratification is perfect we require the following results.
For the sake of completeness we shall repeat some definitions from the section on Morse theory.

Recall that a non-degenerate critical manifold Y of a smooth function f on a compact smooth
manifold X is a connected submanifold Y C X such that both dyfj,cy = 0 and the Hessian
Hy f|,(v) is non—degenerate, where v(Y') is the normal bundle of Y. The function f is called non-
degenerate if its critical set is the union of non-degenerate critical manifolds. In such a case, given
v~ (Y) the negative bundle associated to Y, the index of Y as a critical manifold of f is defined
and denoted byhy f := rk(r~(Y)). Given the Ay f—disc bundle v (Y) over a critical manifold Y’
of f, which is the exponential image of v~ (Y) in X with f > f(Y) — &, we have the following
commutative diagram.

Ho(v7(Y)) —— Ho(z (Y),007 (V) —> Hoa (907 (V)

”*T l (7.10.2)
Ho 5y £ (Y) — % Heo1(Xfrv)—e)

For a given field F we say that Y is F-completable if the map « in the preceding figure is zero. Here
7 is the projection of the disc-bundle v7(Y) and H the reduced homology modules over F. The
map 7* corresponds to the Thom isomorphism.

7.11. Definition.

Given f a smooth non-degenerate function on a compact smooth manifold X, a critical manifold
Y of f is called self-completing if given a class s € Hq_», f(Y) goes to zero under the dashed arrow
in the commutative diagram (7.10.2) provided m*s is in the image of H. (v, (Y)).

The following result is cited from Proposition 1.9 §1 [2].

7.12. Proposition.
Given G a Lie group, if the equivariant Euler class of the normal bundle to Y is not a zero—divisor
in H(Y,F) for F any field, then Y is equivariantly self-completing for F.

If all critical manifolds satisfy the hypothesis of Proposition 7.12 then f will be equivariantly
perfect over I, so that the equivariant Morse and Poincaré series coincide.
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Now given G a compact connected Lie group without torsion in its cohomology, and given T' a
maximal torus of G, the fibration
G/T —— BT —— BG

behaves like a product for integral cohomology and all the spaces involved have no torsion. For
any G-space X the induced fibration

G/T >y X7 y Xo

is multiplicative for integral cohomology
H*(Xr) & H*(X6) Q) H(G/T),
so that H&(X) is a direct summand of H7.(X); or equivalently, that for all primes p, the map
HE(X, Zy) —— HP(X,Zy)

is injective.
If T =T, x T1 a product of two subtori with T, acting trivially on the connected T-space X,
then X = BT, X X7, and so

H3(X) = H*(BT,) Q) Ht, (X).

From these results, by restricting from G to a maximal torus T' D T}, we have

7.13. Proposition.

Let X be a connected G-space on which some subtorus T, acts trivially and let Y be a G-vector
bundle on X. Assume that the representation of T, on the fibre of Y is primitive and let H*(G)
have no torsion. Then the multiplication by the top Chern class ¢, (Yg) on HZ (X, Z,) is injective
for all primes p.

We shall use both Propositions 7.12 and 7.13 to prove Theorem 7.10. To this end we require
the following result and concepts.

7.14. Proposition.

Given a smooth complex vector bundle E of rank n and degree k over a compact Riemann surface
X and given D; the quotients associated to E' via its canonical filtration (7.7.1) whose degrees are
the elements of a type vector A, we have the following identity

H(C(E)) = Q) HG(C(Di)ss)-

Proof:
Let F,, denote the space of all smooth filtrations of E ot type u; that is, the collection of all sections
of the fibre bundle over X with fibre the manifold GL(n,C)/B,, where B, is the parabolic subgroup
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preserving a fixed flag of subspaces of C* of dimensions ny,n1 + ng,.... Since the filtration (7.7.1)
is canonical we have a map

Cp —— Fu.

Using a fixed base point of F, corresponding to a certain smooth filtration E, of E, the fibre of
this map over this point is the subspace B, C C, of complex structures compatible with the given
filtration. If Aut(E),) is the group of smooth automorphisms of E preserving the filtration then
Aut(E,) acts on By, and F), is the homogeneous space Aut(E)/Aut(E),) and C, can be identified
with the associated bundle. Thus the equivariant cohomology of the pairs

(Aut(E),C,) and (Aut(E,),By,)

are equivalent 3°

Now, upon choosing splittings of the filtration E, so that we get a direct sum decomposition
ECof B
i

E=D:P --PDr
with E;=Di@)---€P b,

and let Aut(E/‘j) and B, be the automorphisms and complex structures (in By), respectively, com-
patible with this decomposition. We then have

Aut(E2) = [[ Awt(Dy), (7.14.1)
i=1

BY, =[] Cos(D2)-
i=1

Also, as the homomorphism
Aut(E,) — Aut(E})
is a homotopy equivalence, and the fibration
B, —— Bj
has a vector space as fibre and is compatible with the group actions, then it follows that the pairs
(Aut(E,),B,) and (Aut(E'z),BZ)

have equivalent equivariant cohomology. Using this and (7.14.1) we have the required result.
O

39This follows from §13 [2] which states that for G a topological group, K 4 G, and X a G-space upon which K
acts freely, then H&(X) = Hg, i (X/K).
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Proof of Theorem 7.10:
Given N, the conormal bundle to C, in C and Ny the restriction of N, to B;, then by a similar
argument to the previous result we can replace the triple (Aut(FE),C,,N,), in the equivariant
cohomology sense, by the triple (Aut(Ej), By, Nj). From (7.14.1) Aut(E}) is observed to contain
the 7—dimensional torus 7" which acts trivially on B}).

We now use Propositions 7.12 and 7.14 to show that the representation of 7" on the fibre of
N, is primitive.

At a point of B the bundle E is a holomorphic direct sum of the D; and so the bundle of
endomorphisms preserving the filtration

End (E) = €D Hom(D;, Dy),

i>j
and hence
End"(E) = @ Hom(D;, D;). (7.14.2)
i<j
On Hom(D;, D;) the element (ty,... ,t,) € T" acts by t;'t; and so it acts by the same character

on HY(X,O(Hom(D;, D;))). As the fibre of N, is H'(X,O(End"(E))) it follows from (7.14.2)
that the representation of 7" on N, is primitive.

O

In conclusion, the A, play the role of the Morse strata for the Yang-Mills functional Y M o
This is in the sense that our strata .A, satisfy all the properties of Proposition 4.20 relative to
Y M, which in “good cases” (that is, for good properties of the trajectories z(t) of —gradY M as
t — o0o) characterize the Morse strata. Although we have shown that the stratification of A by the
A, is equivariantly perfect, we have not proved that the Yang-Mills functional is an equivariantly
perfect Morse function. [2] suggests that this could follow from sufficiently good properties about
the Yang—Mills flow gradY M.

Notice that if all the components of a type vector A are all equal (to k/n), then Cy = Cgs.
Thus knowledge of P¢(C) from our results in §4 leads to formulae for PP (C) since the equivariant
cohomology of all the “un—stable” strata Cj can be calculated via Proposition 7.14. We have
shown in §4 that BG is torsion free in its equivariant cohomology, and so it follows that the
equivariant cohomology of the strata C) also have no torsion. When (n,k) = 1 we have Css = Cs,
the subspace of C of stable bundles, and so we can deduce results about the torsion of the moduli
space N(n,k):= C/Aut(E). This is the content of the next section.

40This is also the case if Y M is replaced with any other functional defined by a strongly convex invariant function
on the Lie algebra u(n) of U(n)
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8 The moduli space of semi—stable bundles.

In the language of varieties and schemes given X a non-singular projective algebraic curve over C
(in our case a Riemann surface) and E a holomorphic bundle over X of rank n and degree k we
shall consider the moduli scheme

N(n, k) :=Css(E)/Aut(E)

the quotient of the space of semi-stable bundles over X of rank n and degree k by the action of
the automorphism group Aut(E).

We shall further restrict to the coprime case (n,k) = 1 so that these moduli spaces do not
exhibit non-Hausdorff phenomena. In this case Cs; = C;, the subspace of C of stable bundles, and
Aut(E) acts on Cy(E) with only the constant central scalars as its isotropy group; moreover, in this
case the moduli spaces N (n, k) are (compact) Kdhler manifolds 4!

These moduli spaces, as in the study of varieties and schemes, parametrise the solution space
of the Yang-Mills equations and so merit analysis. Upon calculating the ordinary cohomology of
the moduli space N(n,k) and thus obtaining a formula for its Poincaré series we shall show that
this space has no torsion.

Let G := G/U(1)id where U(1)id is the constant central U(1)-subgroup of G, and let G o=
GC /C* id which acts freely on C; with quotient N(n, k), hence resulting in the formula

H*(N(n,k)) 2 HY(C,). (8.0.3)

Here we have used G-cohomology since it gives the same result as E(Cfcohomology (Proposition
2.16 [2]).
The fibration
BU(1) —— BG —— BG (8.0.4)

is trivial in rational cohomology for the following reasons. As the composition U(1) — G — U(1)
arising from taking determinants has degree n, the map

H*(BG,Q) —— H*(BU(1),Q)
is surjective thus BG ~g BG x BU(1) and so
Py(N(n,k)) = (1 - *)P7(Cs) (8.0.5)

where P?(C,) is calculated inductively by the formula

P(C) =) " P(C,) (8.0.6)
i

A compact complex manifold is called Kéhler if it admits a Hermitian metric g, given locally by S gijdzi®dz; =
S ¢: ® ¢;, whose associated (1,1)—form w, patched from the local representatives i/2 S éi A @y, is d—closed.
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where d, := codimcC,, 42 whose first term arises from the semi-stable bundles and all the remaining
terms can be calculated inductively from the fact that the equivariant cohomology of the stratum
C,, is isomorphic to the tensor product of the equivariant cohomology of the semi—stable strata for
the quotients of the canonical filtration for the bundle E.

Consider the map arising from taking determinants of bundles
det : N(n, k) = Ji(X)

where Jj, is the Jacobian of X ** which parametrizes line-bundles of degree k over X . Let
N,(n, k) denote the fibre of this map, which is the moduli space of stable bundles with fixed
determinant. If ' denotes the group of components of G (which is H(X,Z) = Z29) and define
I, :=T/nl' =2 HY(X, Z,) we have that (equation (9.5) [2])

N(n,k) = (No(n,k) x Ji)/Tp.
Letting G’ C G correspond to the lattice nI' C T' so that G/G' =I'/nI’ = Iy, then

H* (No(n, ) x Jx) = Hy (o).

Since G and ?l give the same equivariant cohomology of C; over Q due to the fact that the same is
true for G and G’, we have by the Kiinneth formula that

H*(Cs) = H*(No(n, k) ®H.(Jk)7
or equivalently that

Pi(N(n,k)) = Pi(N,(n, k) (1 + )% (8.0.7)
since J, = C9 /729 I1s, St

We now proceed to prove that the integral cohomology of the moduli space N(n,k) has no
torsion.

As C is contractible then the homotopy quotient Cg is of the same homotopy type as the
classifying space BG. We had found earlier that BG ~ Mapg(X,BU(n)) and that this map
space had no torsion, thus the space C and the strata C, have no torsion in their G-equivariant
cohomology. In particular, the same is true for the semi-stable stratum Cy;. We wish to deduce a

similar result for the cohomology module Hé(Cs). Thus it is sufficient to show that the fibration
(8.0.4) is a product and so

Hg(Cs) = HY(C,) Q) H*(BU(1)).

Now BU(1) = K(Z;2) and so (8.0.4) has characteristic class in H?>(BG,Z) whose vanishing will
imply the triviality of the fibration. Therefore we equivalently show that the map
H?*(BG,7Z) —— H?*(BU(1),Z)

42The dimension d,, can be calculated by means of formulae (7.9.1).
*3%ee Appendix B for the definition of the Jacobian of a Riemann surface.
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associated to the cohomology sequence of the fibration (8.0.4) is surjective. Due to time constraints
I have assumed the result of Proposition 2.21 [2] which states exactly this.

Given the commutative diagram of fibrations

BU(1) —— (Cs)g —— No(n, k) x Ji

H ! !

BU(1) — (C))g ——  N(n, k)

where the map N,y(n, k) x Jp — N(n,k) is the finite I',-—covering. As the bottom row has been
shown to be a product, the same must be true for the top row. As we know that the G'~equivariant
cohomology of C, is torsion free it follows that N,(n,k) X J has no torsion, hence the same being
true for N,(n, k). To this extent we have proved the following results.

8.1. Theorem.
If (n, k) = 1, the moduli spaces N(n, k) and N,(n, k) of stable bundles have no torsion.

We end with the calculation of the Poincaré series of the moduli space N(n, k) for (n,k) = (2,1)
so that we can get a result more concrete than that posed at the end of §4 on a conjectural level.
Given equations (7.10.1) and (7.9.1) we have in this case

(o]
Ptg (C) = Z t2(2m+g)Ptg (C(m+1,—m)) + Ptg (CS)-

m=0

The equivariant Poincaré series of the “un-stable” strata C(;,41, _m) are calculated with Proposition
7.14 to obtain

2
(14 t)%
Ptg(c(m+1,—m)) = {—I——T .

Formula (8.0.5) derived above gives

Ptg(cs) = Pt(ljv_(iaz]-))

and given the following result derived in §4

{(1+1)(1+¢3)}%

FJ(0) = R(BY) = ~ o — gy

we obtain

32 T
P(N(2,1)) = {((11tt22()1(:—f 15)4}) : lltttzg th S

_{a+9a -+ t29(1 + t)49

T-o)-t) (-2 -8

where the infinite summation is reduced by geometric series.
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A L2?—connections over Riemann surfaces.

Here we shall give a complete description of the result of K. Uhlenbeck [32] used in Donaldson’s
theorem on stable bundles expounded in §6.

In 1982 Uhlenbeck derived (Theorem A.8 [32]) a weak—compactness result for connections on
bundles. This global theorem rests on the existence of a gauge on the trivial bundle E[R!] over
the ball B? := B{(0) C R? upon which the Lorentz-gauge condition d*A = 0 and the azial-gauge
condition (z - A)js1 = 0 hold for a given connection d + A € A?(E) with a bound on [, |Fy|dz.

Such gauges are often assumed constructable in terms of so called path-ordered integrals; how-
ever, the convergence of these integrals is too suspect to hold any merit, so we prove the above
result analytically by appealing to the implicit function theorem.

Let X" be a compact Riemannian manifold, and E[R!] a vector bundle with compact structure
group G C SO(l) whose corresponding Lie algebra is denoted by g.

As before, denote by L7 (U, E) the completion of the space I'(U, E) with respect to the || - ||, x—
norm, and define by A?(E) the affine space of connections V € A(E) of class L¥; that is, given
V =d+ Alocally over U, A € L} (U,ad(E) @ T*X). The curvature Fy of a connection V extends
to a LY section when V is of class L}, ;.

We define the smooth gauge group on E by G := I'(X, Aut(E)). This group acts on A(FE) by

5-V(o):=s1V(s0), s€G, VeAE), oecl(E).
When V = d + A with respect to a trivialising cover of F over X, the above formula expands as
5-Vi=d+s 'ds+s 'As.

Also, define as earlier the gauge group acting on A} (E) by G%., := L} | (Aut(E)). By multiplica-
tion theorems on Sobolev spaces 44 this group is a smooth manifold and Lie group for p(k+1) > 2.

We shall assume at this point that X = B2 := B;(0) C R? endowed with the flat (standard)
metric g;; = d;;, and E = X x R, In this instance ad(E) = B% x g, so ad(E) Q T*X = B? x
(R ®g), hence A2 ={V=d+A| Ac L}B*R*Qg)} and G} ; = L}, (B> G).

For © C R? given the space C°(2) of C* functions on  with compact support, let Li ,()
denote the closure of C°() in L2(£2). We say that u € L%(Q) is 0 on 0Q if u € Li,o(Q)- This
space is used to overcome ambiguities associated with making statements such as ujgq = 0 since u
is in fact an equivalence class of measure-almost-everywhere equal functions and such a statement
is vacuous since 0fQ is a set of measure zero.

Upon defining A%, :={V € A}(E) | [5.|Fy|dz < k} the local theorem we aim to prove is the
following:

4 For Sobolev spaces defined on vector bundles over compact n—Riemannian manifolds the multiplication operator
LE ®L,’;§ — L% is defined and continuous if (k1 — n/p1) + ((k2 — n/p2) > k —n/p and ki, k2 > k, piki, p2k2 <n,
p1,p2 > 1, p # 0o. See Theorem 9.5 [29].
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A.1. Theorem.
There exist &,c¢ > 0 such that every V € A%,n is gauge-equivalent to a connection d + A € A%
where A satisfies:

(a): d*A=0 the Lorentz — gauge condition,
(b)y: z-Ae€ L%’O(Bz,g) the azial — gauge condition;

(©: Al <e / \Foldz;
J B

1/2
(d) : IIA||2,1§6</ va|2da:> .
B2

Here the LP norms are defined with respect to the natural inner—product on the spaces AL X
and the Cartan-Killing form k(A, B) :=tr(AB*) on g.

Our method of proof of this theorem is as follows. Let 8 denote the set of all connections in
Ain which are gauge—equivalent to connections in A? satisfying conditions (a) — (d) of the above
theorem. Upon showing that Ain is connected and that the set § is both open and closed in A%,K,
8 is then equal to the only topological component of Aim namely A%’R itself.

We begin by establishing the connectivity of Ai .. by showing that this space is path—connected.

A.2. Lemma. The space .Aiﬁ C A? is connected.
Proof:
Given V=d+Ac .Ai,,u, for t € [0, 1] consider the dilation at 0 € B? with ratio t

é;: B> — B?
cx —tx,
and define the pull-back of V, V; := §;(V) = d + tA(tz).
The L!'-curvature of the path V; is controlled by that of V, for
Fy, = t?dA(tz) + t* A(tz) A A(tz)
= t?Fy (tz)

hence / |Fy,|dz = t/ |Fy|dy
X B:(0)

<tk <K Vit

where B;(0) := { z € R* | |z| < t }. Therefore the curve V lies in A} .

A.3. Lemma.

The set & is closed in Ai,{.

Proof:

The methodology adopted here is to show that for any sequence {V;} in §, the limiting connection
Vi=d+Ac A%,n must lie in 8.
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Each V; :=d+ A; € S is gauge—equivalent to a connection d + A; € A? where the A; satisfy

conditions (a) — (d) of Theorem A.1; in particular, ||A;|l21 < ¢/ Fv,||2. As ViL—iV, thus Fvl.L—2>Fv,
the A; are uniformly bounded in L2. As L{ is a reflexive Banach space there exists a subsequence
of {A;} which converges weakly in L3, say to A.

Conditions (a) — (d) of Theorem A.I are preserved under weak limits since
(a) hod* € I3(B%LR @g)° VA€ LB @g)";
(b) (z-) is a linear functional on L?(B% R? ® g);
(c) & (d) follow since || A;||2 — ||A|l2 and ||Fy,|l2 = || Fv]|2-

To complete the proof we require to show that there exists a gauge transformation between
V=d+Aandd+ A. As s; - Vi =d+ A; for some s; € Q’%, or equivalently that

dSi = SiAi — gisi (A31)
we have that ||ds;|l2 < || Aillz + || 4;]|2 since G € SO(I), hence the ds; are bounded in L? thus the s;
are bounded in L. As G is compact the s; are uniformly bounded in L2 hence there is a subsequence

L3 ~
{sy} such that sy —*s. The equation (A.3.1) is preserved under weak limits to become ds = sA — As

since Aod € L?3(B%,G)* VA € L?(B% R?* ®g)* and upon setting A(Aisi) = Ap(Aj)Ag(s;) for
Ay € L3(B?,R2®g)* and Az € L3(B?,g)*.
As s takes its values in G its L®—norm is well defined and bounded, thus

IsAllz < lsllol Allz - and | As]lz < [|Allzlslloo

thus ds € L? since

dsllz < lIslloo (I14])2 + [ All2).

A similar calculations are adopted in showing V,ds € L? where V, is a connection on the bundle
Aut(E) Q@ T* X, thus concluding that ds € L?. By the elliptic estimate *°

lIsll22 < ellds|l2,1

we have that s € L3,

We now show that 8 is open in Ain, namely to establish the following:

A.4. Lemma.,
ItV e Ain is gauge-equivalent to d + A where A satisfies conditions (a) — (d) in Theorem A.1,
there exists an open neighbourhood of V in Ain provided & is sufficiently small.

We save ourselves some difficulty in the proof of Lemma A.4 by observing that the “closed”
conditions (c) and (d) of Theorem A.1 are apriori valid estimates on solutions to equations (a) and
(b). This is described in the following result.

DIf L is an elliptic operator of order I on I'(¢) for some vector bundle ¢ over a compact Riemannian manifold,
then for each k > 0 there exists a ¢ = ¢(k) > 0 such that for all s € I'(€) we have ||s|j2,5+1 < c(||Ls|l2,& + [|8ll2,x)-
Furthermore, if s is Li-orthogonal to ker(L) we can omit the ||s||2,x term. See Theorem 4.1 Appendix, §4 [23].



A L?-CONNECTIONS OVER RIEMANN SURFACES. 74

A.5. Lemma.

Given A € L?(B%,R? @ g) satisfying conditions (a) and (b) of Theorem A.1, there exists a k > 0
such that if ||A|js < k then ||A]l21 < c||Fatall2 and A1 < cl|Fagallr-

Proof:

As H'(B?) = 0 the basic elliptic estimate for the 1%*~order elliptic operator d 4+ d* on 1-forms gives

|Allz1 < K'[|dAll2  since d*A=0. (A.5.1)
From the equation for curvature Fyy 4 = dA + A A A we have
ldAll2 < |Farallz + |4 A All2. (A5.2)

Moreover,
AN All2 < K" All2ll All2,15 (A.5.3)

this following from the fact that |AAA|ls < ¢/||AAAl|11 since L1 C L? on 2-dimensional manifolds,
and as

IAA Allig < "(IAA VoAl + A7)
< E' (1 All21V o Allz + | AlIZ)

by the Holder inequality where V, is a connection on ad(E) Q T*X.
Combining equations (A.5.1), (A.5.2) and (A.5.3) we attain

ANz, (1 — K'K"[|All2) < E'l| Farallz.

Upon taking k = W we obtain the required result.

Upon replacing the index “1” for the index “2” in equation (A.5.1) and replacing equation
(A.5.3) with the basic Holder estimate ||A A Aljx < ||A||2||All2, these equations combine with the
Sobolev inequality ||Al2 < &”||A]l11 to give ||Alli1 < cl|Fagalli-

O

We will also require the following two lemmae for the proof of Lemma A.4.

A.6. Lemma.

There exists a linear operator P : L?(B?) — LZ(B?) such that for f € L$(B?) we have P(f) €
13 ,(B?) and (x - dP(f) — f) € L ,(B?).

Proof:

Given f € L3(B?) let ﬁ( f) be the solution of the inhomogeneous heat equation boundary—value
problem on S! with the radial codrdinate r in B? is taken as the “time” variable:

Agm—g—Z:f, 0<r<1, u(l)=0

where Ag1 := (d*d + dd")|cee(s1) be the usual Laplacian on St
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The reqularity theorem 46 for this partial differential equation gives ﬁ( f) € L3(B*\{0}) for

f € L3(B?). By the nature of the problem (z-dP(f)— f) € L2 ,(B?\{0}) and P(f) € L3 ,(B2\{0}).

Let P(f) := P(f)-¢ where ¢ is a smooth cut-off function with ¢(z) = 0 near 2 = 0 and ¢(z) = 1 near

|z| = 1. Thus P(f) € L3(B?) for f € L?(B?). Furthermore P(f) € L%,O(BZ) and (z -dP(f) — f) €
L%,O(Bz)'

]

Assume we have a connection V € Ain gauge—equivalent to a connection d+ A € A? satisfying
conditions (a)—(d) of Theorem A.1; the product—connection d clearly establishes the existence of
such a connection. The following lemma will show that in a neighbourhood of d + A there are
connections also satisfying the Lorentz-gauge condition (a); this will be the foundation of the proof
for the “openess” of 8. If we start with our intuitive notion of “neighbourhood” connections,
namely those of the form d + (A + \) where A € L}(B?,R? @ g) is small (in the L? sense), the use
of the implicit function theorem in the following lemma will show that there exist connections of
the form d + (s71ds + s71(A4 + \)s) which satisfy the Lorentz—gauge condition (a) for a suitable
gauge transformation s € G2. In order that such a neighbourhood connection also satisfies the
azial-gauge condition (b), we make the assumption that z - A, z-ds € L%’O(Bz7 g). The validity of
this assumption rests in the use of the preceding technical lemma which modifies neighbourhood
connections d + (A + \) to a form where z - A\ € L%,O(B2,g). In showing that conditions (a) and
(b) are satisfied in a neighbourhood of d + A, we use the apriori results of Lemma A.5 to imply
satisfaction of the remaining conditions (c¢) and (d) by this neighbourhood.

To facilitate this methodology we introduce the following spaces

L}, ={eliBLRQ)s) |z X e L], (B a)},
gg,,, ={s € g§ | z-ds € L%,O(Bz,g)},

L3, :={Uel}(B%g)| | Udz=0, o dU €L}, (B%g)}
B2

and L :={V € L?(B%g) | / V dz = 0}.
B2

A.7. Lemma.
Given d + A € A} satisfying conditions (a) and (b) of Theorem A.1 and such that [|A[lz < & for
some k > 0, there exists an € > 0 such that for A € L3 , with || \][21 < ¢, the non-linear equation

d*(s7tds + s LA+ N)s) =0

has a solution s(\) € gg),, depending smoothly on .
Proof:

As gauge transformations on E can be expressed as s = eV for U € L2(B? g) we consider the
smooth map

o LA ®LZ, — L

(U, \) — d*(eVdeV + e V(A4 N)eY).
46See Proposition 2.4 chapter 15 §2 [31].
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Suppose ®(U,)\) = 0. Then by the implicit function theorem if the linearization on the first
variable about (U, A) is an isomorphism from L%i to L2 there is a neighbourhood N(A) of A,
a neighbourhood N(U) of U and a smooth function ¥ : L%,u — L%ﬁ such that ¥(\) = U,
T(N(N) C N(U) and for each X' € N()\) the equation ®(U,\') = 0 is uniquely solved by
U =3(\) e NU).

The linearization of ® on the first variable about (U, \) = (0,0) is given as
L®(h) := d/dt ®(th,0)|s—o for h € LE(B2,g). As et = 3% "A"/n! then
e thdeth 4+ e=th Aeth = tdh 4+ A + tAh — thA + O{t?*}, whence L®(h) = d*(dh + [A, h)).

This map is self-adjoint, for G C SO(l) choose the trace inner—product on g, thus an inner—
product on L?(B?,g) is (h1, ha) := [ tr(h1h3) dz; the result (L®(h1), ha) = (h1, L2 (h2)) follows
by application of Stokes’ theorem.

To show this linearization is invertible, we firstly require to prove that ||[L®(h)||2 > c[|h||2,2 for
some ¢ > 0 in order to establish that L& is 1 — 1.

Observe that d*[A,h] = —9(A;h)/0z; + O(hA;)/0z; = —Ai0h/Ox; + Oh/0x;A; (since d*A = 0),
thus d*[A, h] = — % [A,dh]. So by the Holder inequality,

|L&(R)|l2 > [|d*dh]|2 — ||[A4, dh]|l2
> K'\|dhll21 — ldhll2 (c1l| All2 + c2ll All2,1)
> ||dh||2’1(k" — 1k — ¢cackK)

since ||Allz < k and hence ||All21 < ¢||Fatallz by Lemma A.5. Taking k = (cack — k") /2c1 gives
the required result.

To show that L® is onto we must deduce that im(L®) = L3L. As L® is linear, ker(L®) = {0}
whence ker(L®)- = LB+, Also, ker(L®)+ = im(L®*), but im(L®*) = im(L®) since LY is self-
adjoint, thus attaining the result.

Thus the implicit function theorem implies a gauge transformation s(\) := eV ¢ g%u solving our
non-linear equation locally (that is, within a neighbourhood of A, namely ||A|l21 < €), smoothly
dependent on A.

g

Proof of Lemma A.4:

Suppose 8 € G2 is the gauge transformation taking V € A%,K to d + A. Our procedure is as follows:
we work within a neighbourhood of d + A of elements satisfying conditions (a) — (d) of Theorem
A.1 and then map this neighbourhood back to one about V by $~!. Intuitively, neighbourhood
elements about d+ A will have the form d+ (A+ )). In order to satisfy (a) — (d) we use Lemma A.7
to map these elements to those of the form d + (s~ 1ds +s (A + \)s) by a gauge transformation s
which satisfies d* (s 1ds+s 1(A+\)s) = 0. In order for Lemma A.7 to be validly used to imply the
existence of such a s, we must require z- A € LiO(Bz, g); we thus use Lemma A.6 to construct such
an element. Let U = U()\) := P(z - \) for P as in Lemma 2.4. Making the gauge transformation
e U(d+(A+N)eV =d+eVdeV +eVAeV +e VreV = d+(A+)),asU = P(z-)\) € L%,O(Bz, G)
then deV —dU € L%70(B2, g) (by use of the identity eV = >°5°, U*/d!). As (¢-dU—z-)) € Lio(Bz, g)
(by the results of Lemma A.6) then T\ E Lio(Bz, g). Moreover, as |Ul|2.2 < €]|z-Al|2,1 we can make

||X||271 sufficiently small by doing so with ||A||21. Lemma A.7 can now be used on the neighbourhood
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elements of the form d + (A + ). Observe that ||s~1ds+ s~ (A+N)s|2 < ||ds|l2 + || Al|2 + X2 < &'
since |||z, < €, s takes its values in G C SO(l), and as A satisfies condition (c) with | Fy|1 < k.
We can thus use the fact that L1 C L? and Lemma A.5 to imply the conditions (c) and (d) for
these neighbourhood elements.

O

We have thus shown that the space S is identically A%,n‘

We now piece together these results to prove our main theorem.

We now assume X is a compact Riemann surface and and E[R'] a vector bundle with compact
structure group G C SO(I). We will use the result Theorem A.1 in establishing the following result:

A.8. Theorem.
Given {V;} a sequence of connections whose corresponding curvatures Fy, satisfy Ix |Fv |2vol < B
for some B > 0, there exists a subsequence {V;} and gauge transformations sy € G2 such that
{sy -V} is weakly convergent in A%. The weak limit V satisfies [y | Fg|>vol < B.

We now establish a technical result A.11 involving trivialising covers for the bundle E over X
which will aid in the proof of the above main theorem.

Let G be a fixed neighbourhood of e € G in the domain of the map exp~ ! where exp: g — G.
To this extent we require the following 2 results.

A.9. Lemma.
Given G a compact group with equivariant metric, 3f, > 0 such that if h,g,p € G, lexp~thg| < f,
and |exp~1p| < f,, then hpg € G and |ezp~'hpg| < 2(lexpthg| + lezp~tpl).
Proof:
Define the map Q : g X g — g by the formula exp(Q(k, u) = exp(k)exp(u).
Q) is smooth in both variables in a neighbourhood of 0 in g. Observe that Q(0,0) = 0 and as
exp(Q(k,u))dQ(k, u) = [ezp(k)exp(u), exp(k)exp(u)] then |dQ(0,0)| = 1.
Let O := {k,u € By, (0) C g | |dQ(k,u)| <2}. As O is convex, then by the mean value theorem
we have Q(k, u)| < 3(K| + [u]) for k], ul < fo.
Let k := exp~'(hg) and u := Adgexp(p) then Q(k,u) = exp~t(ghexp~t(Adjexp(p))) =
exp~L(hgp). Thus |Q(b,w)] < 2lezp™(ho)] + | AdgespL(p)]) = 2(|exp(hg)| + lezp™(o)])-

O

A.10. Proposition.

Let {U,} _; be a finite cover of X.

Let hag : Uo NUpg — G and gap : Ua NUg — G be sets of continuous transition functions
describing two vector bundles over X.

3f; such that if

M 1= MaTa g sclant, 168D (Pap(2)gap(2))] < fi
then there exists a refinement {V,} of the cover {U,} and continuous maps py : Vo — G such

that hop = pagagpgl on V, N Vg. Moreover, mazgey, lexp~ ()] < am.
Proof:
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We proceed by induction on !.
For | = 1 we have the required result by setting p1 =e € G.
Suppose we have constructed U, C Uy and po : Uy — G satisfying hep = pagagpgl on

Uapg NUgy for 1 < o, 8 < k; and assume X C (UagkUa,k> U (Ua>kUa> and |emp_1pa| < ¢pm.

For m sufficiently small we can proceed in induction from j = k to j = k+ 1. We do this as follows.
Define the maps u; := ezp™ ! (hjapabaj) : Uaxg NU; — g for a < k=7 -1

If m < fo/ck then |ezplpq(2)] < cxm < fo and |ezp™thja(z)gaj(z)| < m < fo.

Lemma A.9 implies the existence of the u; and establishes that 2(1+cj)m = c;m. From the overlap

condition on the transition functions we have that the u; are defined on U; N (UagkUa,k>-

Choose a smooth partition of unity {¢;} subbrdinate to {U;} which is 0 on Uj\(UagkUa,k>-
Make the choice of ¢; so that the sets Up; = Uy x N {z | ¢;(z) = 1}° cover X\Ugs U
Define p; = exp(¢;u;) on U; N <Ua§kUa,k> and p; =1 on Uj\<Ua§kUa’k>.
Then |ezptpj(z)| < |¢;(z)u;(z)] < 2(1 + cg)m = ¢;m. This and the iterative equation cxi1 =
2(1 + ¢x) complete the proof.
O

A.11. Corollary.
Let hog, gap € L3(U, N Ug, G) be transition functions for two vector bundles over X.
Suppose

M = MATa g | acUanuy €70 (hap (@) gap (@))] < fi-

Then the po constructed in Proposition A.10 are elements of L3(V,, G).
Furthermore, if ||ha5||2’2|UamUB, “90‘5H272|UmU5 < m/ Va, B, there exists a k(m') such that
“emp_lpa”2,2iva < k(m,)
Proof:
The maps p; := ezp(¢; exp *hjapada,;) are bounded in L3(U;,G) by the rules of multiplication
and composition of functions in the Sobolev spaces L3.

O

If V is a connection on the bundle £ such that fX | Fg|?vol < B for some B > 0, in order to apply
our local results to the proof of Theorem A.8 we require to show that this implies fUa |Fy|vol < &
over a particular trivialising cover {U,} of E over X. This is done as follows.

A.12. Lemma.

Let V be a connection on the bundle ad(E) such that [y |Fy|?vol < B for some B > 0. There is
a finite atlas {(Ua, ¢o)} of X with ¢ : Uy — (B%)° such that [p, |[Fg|?> dz < &' where V is the
pull-back of V restricted to these covers.

Proof: B B

Choose an atlas {(Us, ¢o)} of X with ¢q : Uy — (B*)° which trivialises E, and U, chosen such
that the Riemannian metrics on X compare umformly to the Buclidean metrics. As Vl|ge = d+ Aa
for A, a g-valued 1-form on X, let A, (qb ) A and V :=d + A,. Observe that (¢a WPy =
(G5 (A + (B )" A ] 2l Foy = (B ) +B) A (1) Aa] = (30" (AA0) +
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() [Aa, Aol = ( ~1)*Fy (by the properties of pull-backs; namely, that df*(w) = f*(dw) and

Frlwhy) = F@) A f). ) }

Let x : ¢ — &'/Btz for t € [0,1], 2 € (B%)° and define ¢, := x ™ 0 ¢po. Then ¢ := x* o (¢ 1)*

EP(X) — EP((B?)°).

(¢3))"Fy = (' /B)? £2Fy 0 3,7\ (' Bta),

Jg2 |Fol?dz <[5 |¢aFy|* dz < (x'/B)? fw|<t |Fgl?dz < &/

As X is compact, there is a finite subcover of {U,}, and our required coordinate maps are the ¢q.
]

A.13. Lemma.

Let {V;} be a sequence of connections in A7 such that [, |Fy,|*vol < B.

There exists a trivialising cover {(Us,%%)} of E such that

(i): given V;y, = d+ A%, with respect to this trivialisation of E, the AY, satisfy conditions (a) — (d)
of Theorem A.I; ,

(ii): the transition functions gi p associated with this trivialisation are uniformly bounded in LZ(U,N
Us, G);

7 L (Ua ,R2®g)
(iii): for an appropriate subsequence, we have weak convergence Aj,

¢ L3(UanUp,G)

A, and

Jap

(f:/ﬁ) the A, represent a connection V on E with respect to a trivialisation whose transition
functions are g,g.

Proof:

As L? C L' then by Lemma A.12 we have that 15,1y, < & thus by Theorem A.1 we have that
(i) follows. (ii) follows from the computations similar to those in Lemma A.2. As ”Ag||2.1|r_/a <
c(a)|Fy, Hgan by Theorem A.1 we have that {A%} are uniformly bounded in L}; with this fact and
the result of part (ii) we have weak convergence in (iii) of appropriate subsequences. (iv) follows
from the fact that the overlap conditions are preserved under weak limits.

0

We can finally prove our main Theorem A.S.

Proof of Theorem A.8:

Let us assume the results of Lemma A.13, and renumerate so that ¢’ = 1.

As LE(X) C C°(X) is a compact embedding, we have ggﬁ — gag (strongly) in C°(U,NUg, G). So
upon applying Proposition A.10 and Corollary A.11 to gflﬁ,giﬂ = gap 37 such that for j <7 < oo
we have a refinement {V,} of the cover {U,} with p, € L3(V,,G) and gaﬁ = pagaﬁpa -

Moreover, o, € L3(V,,G) is bounded and so converges to p, in C"(Vy, G), which is equivalent to
; L3(Va,G)
pa - Pa- R
Define the global gauge transformation s; € G2 on U, by s; = pt,. Observe that (31'_1 oV;o
slive = 57 0 (Vi)ve 080 = pi 1o (d+ AL) o gh, = d+ {pf,dpl, + pl, AL}
As the AZ converge weakly in L2(V,, R? @ g) and the p¢, converge weakly in L3(V,,G), then by
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the rules of multiplication in Sobolev spaces we have that the above connection converges weakly
in U2 on V.
O
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B Principal bundles, fibrations and the Jacobian variety.

Let G be a group and X a set. Recall that a (left) group action of G on X is a map
T:GxX —X

such that T'(e,z) = z and T'(g,T(h,z)) = T(gh,z) for all g,h € G and z € X where e € G is the
identity element of the group; we usually write g - x for T(g,z). A space X together with a group
action is called a G—space. As there is a bijective correspondence between left and right G—space
structures we need only concern ourselves with one type of group action. Given

Go:={9€G|g-z=zVreX}«G,

a group action on a space is called effective if G, = (e).
Given an action of G on X, the orbits

Oy :={g9-z|g€G}

corresponding to x € X partition X. We say an action is transitive if given any z1,z2 € X there
exists a ¢ € G such that o = ¢ - z1, which is equivalent to requiring that X consists of a single
orbit.

We also define the stability (or isotropy) group of a x € X to be the subgroup

Gy={9€CGlg z=2} <G

We call the action on X free (respectively, almost free) if G, = (e) for all z € X (respectively, if
G is discrete for each z € X).

Consider a fiber bundle £[F] over a (topological) space with typical fiber F' having {g;;} as its
transition functions relative to a trivialising cover {U;} of X. Suppose we have a(n effective) group
action of G on F with corresponding homomorphism p : G — Aut(F'). Suppose g;;(z) € p(G)
for all z € U; NU; # 0. In this case G is the structure group of the bundle { which is referred
to as a G—-bundle in this case; the maps g;; are called G—transition maps. Furthermore we call a
bundle £ a G-bundle if it is isomorphic to a bundle (E,p, E/G) where E/G is the space of orbits
corresponding to the action of G on a space F and p: F — F/G is the natural quotient map.

A G-space X is called principal if the action of G on X is effective with a continuous translation
map; namely, the map 7 : {(z,g9-z) € X x X | Vg € G} — G such that 7(z,2') -2 = 2’. Let G
be a topological group. A principal G-bundle, denoted PG, is a G-bundle (F, 7, X) with principal
G-space E. More formally, it is a fiber bundle whose fibers are affine spaces on which the action
of G is free and transitive. One observes that a principal G-bundle is a fiber bundle with fiber G.

For brevity we give the following definition of a principal G-bundle; for the purposes of this
thesis we shall restrict our attention to the case where the base space is a manifold and the group
a Lie group.

B.1. Definition.
Let X be a smooth manifold and G a Lie group. A (smooth) principal G-bundle over X is a fiber
bundle PG := (E,w, X) whose total space E is a G-space such that
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(i): the total space E is a smooth manifold;
(ii): the projection 7 : E — X is surjective satisfying 7(g - p) = n(p) for all p € P and g € G;

(iii): the action (g,p) — ¢ - p is a smooth map G X P — G with (hg) -p=h-(g-p) forall p e P
and g,h € G such that the following “local triviality” condition is satisfied: there exists a
trivialising cover {(v;, U;)} of PG over X such that = 1(U;) is diffeomorphic to U; x G via
¥; where ;(p) = (w(p), ¢i(p)) such that ¢i(g - p) = g¢i(p).

An important G-bundle is a universal G-bundle p : E — B which is characterised by a con-
tractible total space E. The main classification theorem (§8 [25]) for universal principal G-bundles
for a topological group G, which is given below for completeness, states that the base spaces of
any two such bundles are homotopy equivalent, and we usually write BG for any space in this
homotopy class, known as the classifying space of the group G.

For the statement of the following theorem, let PG(B) denote the set of equivalence classes of
principal G-bundles over the space Bj; via pullbacks of bundles this is a contravariant set—valued
functor on the homotopy category of topological spaces. We also denote by [X, Y] the collection of
homotopy equivalence classes of maps X — Y between topological spaces X and Y.

B.2. Theorem. (Classification theorem for universal bundles)
Given p : E — E/G a universal principal G-bundle, the natural transformation

o[-, E/G] = PG(-),

obtained by sending the homotopy class of a map f : B — E/G to the equivalence class of the
principal G-bundle f*F, is a natural isomorphism of functors.

What will follow is an explicit construction of a classifying space for a topological group G
which will give a concrete example of a universal principal G-bundle.
Let G be a topological group and set

En(G):=G"™ and B,(G):=G"

with p, : G®*! — G™ the projection on the first n coordinates.
Define the the face- and degeneracy-operators on E,(G) 0 < i < n to be the respective maps

di s En(G) — En_l(G)

(927"' 7gn+1)’ =0
2 (g1, .-, — .
(91 grt1) { (91, -+ 1 Gi-1,GiGit1, Git2, -+ s 9nt1), L < i<,

and

8t En(G) — Ent1 (G)

: (gla"' agn-i-l) = (917"- 19i—1,€,Giy - . >gn+1)
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which satisfy the relations d;od; =dj_10d; if i <7, 85085 =841 08; if 1 < j and

sj1od; if 1 < g,
diosj:{id ifi=jori=j5+1,
Sdei_l ife>j 41

The face— and degeneracy—operators are defined on B,(G) in a similar way except that
dn(915--- ,9n) = (91,--- 1 Gn-1)-

Given the convex hull A, := {(to,... ,t,) € R*! | 0 <#; <1, Y ¢ =1} and operators
(51' & An—l — An
: (to, A ,tn+1) —> (to, N ,ti_l,O,ti, . ,tngl)

and

g; An+1 — An

: (t07' . 7tn+1) — (t()?' v )ti—lati +ti+1,' e 7tTL+1)

we define the equivalence relations

(9,0i(w)) ~ (di(g),u) and (g,04(v)) ~ (sig),v)

foru € A, 1 and v € A\, 1. With this we construct the quotient spaces

E(Q) = [[(Ba(@) x An)/ ~ and B(G):= [[(Ba(G) x An)/ ~

n>0 n>0

with topologies given by the union of the constituent quotient topologies. Associated with these
spaces is the natural map p: F(G) — B(G) induced by the maps p,.

Note that E(G) inherits a free right action by G and that B(G) is the orbit space E(G)/G
called the classifying space of G. It can be shown (85 [25]) that E/(G) is a contractible space, and

thus for any Lie group G the projection p : E(G) — B(G) constructed above is a universal principal
G-bundle.

Two important notions in homotopy theory are those of cofibrations and fibrations; their sig-
nificance being that all exact sequences that feature in the study of homotopy, homology and co-
homology groups can be derived homotopically from the theory of cofiber and fiber sequences. We
shall provide the definition of cofibrations and fibrations and follow with some theorems involving
fibrations as appear in chapter IV [34]; these results were assumed in the proof of (5.0.1).
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B.3. Definition.

A mapi: A — X is known as a cofibration if it satisfies the homotopy extension property (HEP)
which entails the existence of a map h which makes the following diagram commute if hot, = fo4
where I := [0,1] and i,(z) = (z,0).

Ac bo . AxI
h /
J-/
; Y i % id
f ” . ~
Y
X C - X x1I
to

One calls a topological space X compactly generated if it is a Hausdorff space and if each A C X
with the property that A N C is closed for every compact subset C' C X is itself closed.

B.4. Definition.
Let X and B be topological spaces, Y a compactly generated space and p : X — B a surjective
map. A homotopy lifting problem for (p,Y’) is symbolised by a commutative diagram

y I x
b
B
o p
Y Y
IxY — —> B
h
where I := [0,1], i,(y) = (0,y), and the maps f and h are said to constitute the data for the

problem in questlon The map h is a homotopy of p o f and a solution to the problem is a map
h:IxY — X such that the the above diagram commutes; thus h lifts the homotopy h of po f to
a homotopy of f. The map p is said the have the homotopy lifting property (HLP) with respect to
Y if every homotopy lifting problem has a solution; a map p : X — B is said to be a fibration if it
has the HLP with respect to every space Y.

Given a fibration p : X — B, one calls the space Fj, := p~1(b) the fibre over the point b € B. It
can be shown (chapter IV [34]) that if B is pathwise connected then all the fibres have the same
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homotopy type; a candidate for this homotopy class is called the typical fiber. One often uses the
following notation to indicate that the map p : X — B is a fibration with typical fiber F'

F——*+x 2,8

where 7 is an inclusion.

B.5. Theorem.
Ifp: X - Y and ¢ : Y — B are fibrations, then so too is the composition gop: X — B.

An open cover O of a space B is called locally finite if each b € B is a point of only finitely
many U € O. The cover O is furthermore called numerable if in addition to it being locally finite
there exist continuous maps Ay : B — I for each U € O such that )\51 (0,1] = U; any open cover
of a paracompact space is numerable.

B.6. Theorem. (Hurewicz)
Given p : X — B a continuous map with B a paracompact space. Suppose O is an open cover of
B such that for each U € O the maps p,-1(py : p~1(U) — U are fibrations. Then p is a fibration.

B.7. Corollary.

Let p: X — B be the projection map associated to a fibre bundle whose base-space B is paracom-
pact. Then p is a fibration.

B.8. Theorem.
Ifp: X — B is a fibration and B’ C B with X' := p~1(B’), then p|x : X' = B' is a fibration.

Two fibrations p : X — B and p' : X’ — B over the same base space B are said to have the
same fibre homotopy type if there are maps A : X — X',y : X' — X such that p’o X =p,pou =1p/,
and if there are homotopies A : I x X — X,A' : I x X' — X' between pairs (u o A,1x) and
(Xo u, 1x) respectively such that po A = po A(0,-) and p’ o A’ = p’ 0 A'(0, ). This means the maps
X and g are homotopy inverses thus the total spaces of the fibrations have the same homotopy type.

Given spaces F' and B, the projection F' x B — B is designated as the trivial fibration over B
with typical fiber F. A fibration p : X — B is said to be fibre-homotopically trivial if it has the
same fibre homotopy type as such a trivial fibration.

B.9. Theorem.
Let p: X — B be a fibration with B contractible. Then p is fibre-homotopically trivial.

We end this appendix with the definition of the Jacobian of a Riemann surface. We begin with
the notion of lattices.

B.10. Definition.
Given V a n-dimensional vector space over R, an additive subgroup I' C V' is called a lattice if
there exists n R-linearly independent vectors vy, ... ,v, € V such that

T =Zvi+ -+ Zop.

The following theorem gives conditions for a subgroup to be a lattice.
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B.11. Theorem.
A subgroup I' C V is a lattice if

(i): T is discrete; that is, there exists a neighbourhood U of 0 such that I' N U = {0};

(ii): T is contained in no proper vector subspace of V.

Given X a compact Riemann surface of genus g > 1 and wy, ... ,w, a basis of the vector space
of holomorphic 1-forms Q'(X) on X, define a subgroup

Per(w,... ,wg) CC7
consisting of all vectors

{(/awl,... ,/awg)ecuaem()()},

or equivalently,

{(/awl,... .,fnwg)ecuaeHI(X)}.

Per(wy,... ,wy) is a lattice in C¢ (Chapter 2, §21 [13]) considered as a 2g-dimensional R-vector
space, called the period lattice of X relative to the basis {w1,... ,wy}. Thus, there are 2g closed
curves ai,... ,op on X such that the vectors

fy,,::(/ wl,...,/ wg) e v=1,...,2
Oy g
are linearly independent over R, and

Per(wy, ... ,wg) = Zy1 + -+ Zryay.

B.12. Definition.
The Jacobian (or Jacobi variety) of X is the space

J(X) :=C/Per(wi,... ,wy).

This is an abelian group which also has the structure of a compact complex manifold (a complex
g-dimensional torus). Different choices of bases of Q(X) lead to isomorphic spaces J(X).

Given the group Divg(X) of divisors on X of degree k, define the group
Pici(X) := Divg(X)/(linear equivalence) where two divisors 9,79’ are linearly equivalent if ¥ =
¥ + (f) for some non—vanishing meromorphic function f on X where (f) denotes the divisor
associated to f; this is equivalent to requiring that the associated line bundles [9],[¢'] are equal,
and so Pici(X) may be considered the group of holomorphic line bundles on X of degree k.
The map sending a divisor ¥ € Divg(X) to the equivalence class of J(X) with representative
(f,wi,.-., [, wg) for some o € Hy(X) with da = ¢ induces a map Picy(X) — J(X), whose image
is defined to be J(X).
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C Symbol index.

Given here is a list of mathematical symbols used in the thesis with their description and page
number of their first mention. Any symbols of single appearance in the thesis are not mentioned if
the are in the immediate vicinity of their definition.

Symbol

R, C

Z,Q, N

the field of rationals
Z

Description

reads “the expression to the left is defined to be
equal the expression on the right”

a vector space norm

an inner product

the field of real- and complex—numbers respectively
the ring of integers,

and the set of natural numbers respectively

the field of integers modulo p

P
R+ the subclass of non-negative numbers when R =R, Z,Q
F an arbitrary field
Rlz1,... ,2p] the ring of polynomials over the ring R in variables z1,... , %,
s” the n—sphere {z € R"*!||z|| = 1}

B (z), Br(z)

{z}
0

the ball {y € R" | |ly — z|| < r}, the second case
where n is implicit

the set consisting of the single point z

the empty set

A° set complement

A set closure or orbit space if A a G—space
A° set interior

0A set boundary

A\B the set difference of A with B C A

C proper set inclusion

—

R Qe X

~ homotopy equivalence

u, U set union

N, N set intersection

— set inclusion

dimyV the dimension of the vector space V or manifold over F
codimpV the codimension of the vector subspace or submanifold V over F
im(f) the image space of a linear function f

ker(f) the kernel of a linear function f

rk(f), rk(E) the rank of the linear function f, respectively of the bundle E
VIw the quotient group, space or bundle; the orbit space if W is a

the direct product

disjoint union

either a homeomorphism or diffeomorphism
the isomorphism relation

group and V a W-space

Page
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Symbol

D, ®

X, ®

V*, E*

Xn

8/8$i, dx,-
1,1x,id,1dx
c|ld

x(X)

fiv

E|U7 E:l:

g-x
T; — Y

Fy
&r(U)

e@a)(U)
¢P(U,E), EP(E)

E[F*]

tr

M*

g
GL(n,F),SO(n,F)

CHU)
TX

™X

T'X, T"™X
TIIX TII*X

88

Description

direct sum

tensor (or exterior) product

the dual vector space, respectively bundle

either a smooth-real or complex manifold of dimension n

basis vectors, respectively covectors, in a local coordinate chart
the identity map on a space X

for positive integers ¢ and d reads “c divides d”, meaning d(modc) =0
the Euler characteristic of the space X

the restriction of a map f to a subset U of its domain

the pre—-image of a set U in the base—space of a bundle F; when
U = {z} this is the fiber of E over x

the (left) action of a group element ¢ with a point x

weak limit of a sequence {z;} in a normed space V, meaning
lim;eoA(z5) = A(y) for all A € V*

wedge (or alternating) product or smash product

the wedge or bouquet product

a connection on a vector bundle F

the evaluation of the connection V on the vector field v

the covariant derivative associated with the connection V

the curvature associated to the connection V

the space of smooth p—forms with complex coeflicients on an open
subset U of a manifold

the space of (p, q¢)—forms on the space U

the space of smooth p—forms with coefficients in the bundle E
over a manifold X on an open subset U of X; the latter

case when U = X

a vector bundle F with fibers isomorphic to the vector space F*
the trace functional

the conjugate transpose of a square matrix M

the Lie algebra corresponding to an arbitrary Lie group

the general linear and special orthogonal and unitary groups of
dimension n over the field ¥

the unitary group of dimension n

the respective Lie algebras of the general linear and unitary groups
the module of smooth sections of the bundle E over a manifold X
on an open subset U of X; the latter case when U = X

the space of C* functions on an open subset U of a manifold

the (real) tangent bundle to the manifold X whose fiber at z € X
is the (real) tangent space Tp X

the (real) cotangent bundle to the manifold X whose fiber T X
at © € X is the dual of the tangent space

the holomorphic tangent, respectively cotangent, bundle

the antiholomorphic tangent, respectively cotangent, bundle

Page

35
34
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Symbol
N X
ad(E)

Ve, yC
Homclc(x)(E, F)

End(E), Aut(E)

*

YM

Adg, ad,
A(E), A

G(E), 9

[X,Y]
T (X)
K(r;n)

RP™, CP"
Map(A, B)
Map*(A, B)
vol, volx
F(X)
x(X)

da f

Hyf
(X, 9)
9ij» 9%

Ty

)\:cfa )\Yf

M;(f)
feF(X)
Pi(X)

Bi

myg

erit(f)
Xa

grad f

89

Description Page

the bundle of p—forms on a manifold X

the adjoint bundle whose fibers are isomorphic to the Lie algebra

of the Lie structure group of the bundle F 8
the complexification V Qg C of a real vector space or bundle V/

the bundle of homomorphisms from the bundle E over X into

the bundle F' over X; its fiber at z € X is

the C*(X)-module Hom(E,, Fy) 8
the bundle of endomorphisms, respectively automorphisms,

on the bundle F

the Hodge-star operator 9
the Yang—Mills functional 9
the adjoint action on a Lie group, respectively Lie algebra

the affine space of connections on the bundle £, the

latter case when F is implicit 8
the gauge group on the bundle F, the latter case when

FE is implicit 31
the space of homotopy classes of based maps X =Y

the k™-homotopy group [S¥, X] of X 32
the Eilenberg—-MacLane space for an abelian group 7

and an integer n > 1 32

the real—, respectively complex—projective n—space
the space of maps A — B

the space of base—point preserving maps A — B 34
the volume form on the manifold X 9
the space C°°(X) of smooth functions on a manifold X 1l
the space I'(T'X) of smooth vector fields on a manifold X

the (usual) derivative of a function f € F(X) at a point z € X 11
the Hessian of a function f € F(X) at a point x € X 11
a Riemannian manifold with metric tensor g 11
a metric tensor, respectively its inverse, on a manifold 11
the Christoffel symbols of second kind 11
the index of a non-degenerate critical point € X, respectively

manifold Y C X, of f € F(X) 12,23
the Morse counting series of a Morse function

12,23

the Poincaré series for a manifold X 14
the i*"-Betti number 12
the the number of critical points of a function f € F(X)

of index ¢ 12
the set of critical points for the function f € F(X) 14
the sublevel set {z € X | f(z) < a} corresponding to

a function f € F(X) 14

the gradient vector field associated to the function f € F(X) 16
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Symbol Description Page
en an n—dimensional cell (= S™) 14,17
H,(X;R), Hy(X) n*-homology module over the ring R, the latter

instance when R is implicit

H,(X,Y;R), Hy(X,Y) n'-relative homology module over the ring R where ¥ C X,
the latter instance when R is implicit

H"(X;R), H"(X) n*—cohomology module over the ring R, the latter
instance when R is implicit

H™(X,Y;R), H(X,Y) n' relative cohomology module over the ring R where Y C X,
the latter instance when R is implicit

H reduced (co)homology
v(Y) the normal bundle of the submanifold Y of a

Riemannian manifold X 22
v (Y), v (Y) the positive, respectively negative, bundles of the submanifold Y 23
v, (Y) the exponential image of v~ (Y) in X 23
Xg the homotopy quotient of the G—space X 25
fa the induced function on the homotopy quotient from

a function f € F(X) 25
BG the classifying space of the group G - also the base space of a

universal G-bundle 25,83
EG the total space of a universal G-bundle 83
PF the equivariant Poincaré series 26
HZ, equivariant cohomology 26
Qx the loop—space of the space X 35
O(F) the sheaf of germs of holomorphic sections of the bundle £
HP(X,S),HP(X,S) the pt* Cech cohomology module with respect to the sheaf S
f* the pull-back of a smooth function f or the formal adjoint of a

linear map f on an inner—product space
[, ] the Lie bracket
oy the (1,0)—component of the covariant derivative dy 39
Ov the (0,1)—component of dy 39,44
(n, k) the greatest common divisor of the natural numbers n and &
N(n, k) the moduli space of stable bundles of rank n and degree k; only

defined when (n,k) =1
ck(E) the k*'~Chern class of the complex vector bundle E
ca(E)[X] the integration of the first Chern class on the fundamental cycle

of the Riemann surface base-space X of the bundle E: this is

the generator of the homology group H;(X) 42
deg(F) the degree of the complex vector bundle F 42
p(EY, p the slope, respectively type of the complex vector bundle 42,63
0, O¢ a partial connection corresponding to a holomorphic structure

£ on a smooth complex vector bundle 43
Ev the holomorphic vector bundle induced by the locally free sheaf

of germs of local solutions to to the equation Oys =0 44
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Symbol
O(E)

C, C(E)
CS) CSS
Cpr Ay
A

|- Ny

L

AL, G

dﬂ

J(X), Je(X)
COO

p
Llco

)

Description

the orbit of connections {g - V|g € G(E)®} such that Ey 2 F
the space of holomorphic structures on the smooth bundle £
the subspace of C of stable, respectively semi-stable bundles
the strata of C, respectively, the induced strata of A

the Laplacian of a complex

the Sobolev (p, k)—norm

the Sobolev space

the Sobolev space of connections, respectively gauge transformations
the codimension codimcC,,

the Jacobian variety of a Riemann surface X, the latter case
parametrising the line bundles over X of degree k

the space of smooth functions with compact support

the closure of C° in LY

91

Page
44
60
68,60
60

44
44,71
44,71

63

69,86
71
71
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