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STJMIvIARY

In this thesis annular jets, falling vertically (when

gravity is included), are considered. Thus in any horizontal

plane the jet lies between two concentric circles. The three

nain jet pararneters examined are surface tension, jet thickness

and a pressure difference across the annulus. Various types of

dynamic behaviour are also considered, including formation of

jets from noz,zles and stability of jets.

Techniques are developed where the behaviour of such jets

may be described mathematically, and solutions for a wide

spectrum of jet paraneters presented.
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I

This thesis describes

behaviour of axisymnetric

as follows:

INTRODUCTION

research on three aspects of the

annular jets. These are categorized

(i)

(ii)
Fornation of a jet from a nozzle (Chapter 1),

Conputation of the free surfaces for a fz'ee slender

jet (Chapter 2),

(iii) Stability of an annular column (Chapter 3).

Each of these topics, though distinctly different in so far as

the analysis is concerned, is unified by the practical considerations

of real annular jets. Such jets have a wide spectrum of applications,

ranging frorn irrigation sprinklers to rrshrouding" of nuclear

reactors. However, díscussion of these and other applications is

omitted from this thesis.

In general, throughout this thesis we examine irrotational

flows of an ideal fluid, usually thought of as water. However, at

tines, the influence of surface tension on the free surfaces of

the jet are included. This allows us to use potential theory for

the mathenatical formulation of the problem, that is, we aim to

find the velocity potential in the region of flow, together with

the free boundaries enclosing this region. Although, in general,

the problem thus fonnulated cannot be solved exactly, the following

three chapters introduce approximations that facilitate the

solution task.

Problem (i) ís composed of a flow with mixed rigid boundaries

(pipes) and free boundaries; this leads to a boundary-value problem
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with nixed normal and tangential (derivative) boundary conditions.

For the case of a slender nozzle this problem nay be linearized in

the rrtransition" region, close to the pipe orifice, where the flow

is necessaríLy not sLender. The free jet downstream from the

transition region depends on one parameter, K, obtained by

solving the I'transition f1ow" problem. This parameter is related

to the "initial" slope of the slender jet discharging fron the

orifice, which if known pennits the free boundaríes to be conputed

(cf. Chapter 2).

For a certaín class of nozzle (those with the orifice in a

horizontal ptane), the linearized problem can be solved using

eigenfunction expansions. The resultant algebraic system is

solved numerically on the computer, and results for rc presented.

Problen (ii) in exact forn is sinplified by making use of

slenderness approximations. That is, we seek asymptotic expansions

for the velocity potential and the free boundaries. This leads to

a non-linear ordinary differential equation to solve, which is

accomplished using a standard numerical algorithm (see page 28.).

Solutions for a variety of parameters (related to jet thickness,

surface tension and a plessure difference across the annulus) are

investigated, primarily discussed with respect to a geometric

property of annular jets, the "col1apse-1ength". This length is

the distance from the source of the jet, where the "initialt'

conditions aTe applied, to where the ínner free surface coalesces

and the jet becones a solid cylinder.

Further work in Chapter 2 discusses thin annular jets, where

analytic solutions are found when these jets are also slender.

Theories exist in the literature for such thin (non-slender)
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annular jets, or rrwater-bells" as they are sometimes known, and

comparisons of the results are made. Our more-rigorous techniques

(formal asymptotic analysis) provide a better understanding than

some of these theories.

Chap"er 3, discussíng problem (iii), uses an infinitesi-mal

wave-1j.ke theory to aid ín the understanding of how disturbances

grow in time (temporally), on the surfaces of annular columns.

That is, a periodic time dependent perturbation to the free surface

is considered, and terrns to first-order in anplitude are retained

throughout the analysis. We obtain fron this analysis a dispersion

relationship and an amplification relationship, which describe

respectively, the growth rate in time (as a function of disturbance

wavelepgth) and the interaction of the disturbances on either

free surface. The analysis is not entirely rrnew?r, however a

different interpretation is given to these rroldrr resuits, augmented

by some new results. This appears to lead to more satisfactory

conclusions than have appeared in the literature. In particular

explicit physical explanation is given for the case of the rrbreak-up"

of annular columns, where the inner air core is a snall perturbation

to the jet as a whole.



CHAPTER 1

AAINULAR NOZZLES

I. INTRODUCTION

It was recently shown, Tuck (1982), that the free surfaces

r = a(z),b(z) of a slencter free annular jet nay be conpute<i by

solving a non-linear ordinary differential equation, as an initial-

value problem. This task is relatively straightforward, and such

solutions may be considered almost analytic, in comparison with

the enorrnous nunerical task of computing the free surfaces of

slender streáms with arbitrary cïoss sections. The latter problem

has been tackled by Geer and Strikwerda (1981).

The elnphasis of this chapter is to quantify the initial

pararneters of the free annular jet, namely the inner and outer

radii, and one of the initial longitudirral slopes, given that the

jet issues from a slender, annular, pipe. We define a nozzle as

the abrupt end of a pipe from where a jet may issue. The "pipe flowrr

is readily computed, to leading order in slenderness, by conservation

of rnass at each z-section along the pipe. This gives the velocity

in the z-direction and also the direction of flow at the inner and

outer pipe rvalls.

It is important to note, as was indicated in Tuck (1982),

that the initial free jet flow is not just an extrapolation of tÌre

energing pipe flow. The reason for this is that, in the pipe florv,

there are four parameteïs at each section, narnely the two pipe radii

and two longitudinal slopes of the pipe walls. If these are all

índependently specified, the longitudinal velocity U(z) is deternined
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at each section, by conservation of mass. .However, once the jet

is formed, the velocity is specified at each z section by the

condition that the free surface pressure be atnospheric, and

conservation of mass then requires that the inner and outer radii

and the comesponding slopes are no longer independent. Thus a

jet cannot be thought of as an extension of the pipe. Tuck (1982)

resolves this paradox by noticing there must be a region of flow,

the nozzle or transition region, which is non-sIender.

The transition flow problem is far nore difficult to analyze

than either the slender pipe flow or the slender jet flow. However

the region of this flow is confined to very near the actual

termination of the pipe and is to leading order independent of the

local pipe curvature at the nozzle. Thus, I^/e may assume that the

pipe geonetry varies linearly with z, and the velocity, Uo = U(0)

say, dominates the flow, and is constant in the transition region.

Using these assumptions Tuck (I982) formulated the axisyrunetric

boundary-value problen and gave the matching procedure needed to

deternine Ehe initial parameters of the free jet. In particular

the initial radii of the jet are equal to the nozzle radii, and the

prinary task is to determine the initial jet slopes, given the

nozzle slopes.

The equivalent two-dimensional class of problems has been

studied extensively, Geer and Keller (1979) giving comprehensive

techniques and rnatching procedures to solve a wide range of problems.

However the liniting case of thin annular jets, rvhich nay be

approximated by the analogous two dinensional problern, and, for

which Tuck (1982) gives the required natching formulae for the

initial parameters, does not seem to be included in Geer and Keller

results.
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2. EQUATIONS FOR INITIAL SLOPE

The basic problen we address ourselves to is the canonical

"potentialil problem defined in Tuck (f982). We also adopt the

notation from this publication, namely V is the canonical

potential, â0,b0 the inner and outer radii respectively and 0_

denotes the pipe part of the transition zone whil" 0* denotes the

jet part of the transition zone. Thus at(0_) is the slope of the

inner pipe and b'(0 ) the slope of the outer pipe. The output

pararneter that we wish to compute is the j et's j-nitial inner slope

at (0*). The nost general problem also allows the nozzle to be

offset, that,is, the outer pipe terminates at z=0, sâY, and the

inner pipe at z = L. We shall initially confine our attention to

the case L=0; thus the pipe encis at z=0, at both sides of the

annulus, and the free jet begins.

The boundary-value problen for U in this case is the follor,iing.

We solve the axisymmetric Laplace equation,

e:!
ðr2

ã1l,l++
âr #= o, (2.r)

in the pipe and jet (ao ( r ( bs), together with the boundary

conditions,

,lr, =Q on r=agrbg z(0, (2.2)

and

v" =zon 1= â9rb9 zÞ 0. (2.3)

Once this problem is solved for V, a parameter K is defined by

(bo-ao)t< = lim t!, (ao,z)

1+-
1

z -+@

(2.4)
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It is of interest to note that (2.L) - (2.3) define q, only

up to an arbitrary constant; however, in view of the differentiation

in (2.4), this non-uniqueness is irrelevant, and it is convenient to

inpose the artificial condition ü * O as z -> -û . Thg solution

of (2.1) - (2.3) together with this added condition is unique.

The natching equation, with (2,4) as the definition of K, is

given by Tuck (1982) (p. 15 Eqn. (5.11)) and is

a' '(0*) = a' (0_) (bo-ao)"{#%-+ (bob'(0 )-aea'(0 )) (2.s)

where g is,the usual gravitational constant and Us the dominant

velocity component of the stream. The problem for rc is independent

of the nozzle slopes at(0_) and bt(0 ) and can be further

sinplified if we scale all lengths with respect to âs and put

ß = þ as the new geometrical parameter. The nev/ r'non-dirnensionaltl'âo
canonical potential, scaled with respect to azs, satisfies the

following boundary-value problem, namely the axisyrunetric Laplace

equation,

sa
âr2

_av #= 0 for 1 a r < ß,âr
1+-
T

+ (2.6)

with boundary conditions

U, =Q on r=1,ß and z(0, (2.7)

and

1l)r=z on r=1,ß and zÞ0. (2.8)

K is now a function of $ only (and L also in the general case)

and is given by the revised form of (2.4) as

(ß-l)rc = 1i¡n ü (1, z) , (2.9)
Z ->æ
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together with the new ñatching equation,

+ (2.10)

Conservation of mass in the free jet, z Þ O, leads to the fol'lolving

equation

ßb' (o+) a'(0.)î - ffirø'-t¡
(2 . 11)

which determines the outer initial free surface slope, once the

inner slope a'(0*) is found fron (2.10).

3. SEPARATION OF VARIABLES EQUATIONS

To solve the boundary-value problen (2.6) - (2.B), we need to

use a nurnerical approach. Because of the geometry involved it is

logical to use a separation of variables technique, and this

approach is outlined below.

In the upstream region, z ( 0, subject to the boundary

condition (2.7), we use the eigenfunction expansion

a'(0*) = a' (0_) (ß-1)*{f¡cou' (o-) -a' (o-) )
gao IÍT,

þ(r,z) I R" u o (cr,, r1 ec' '
æ

n= 1

, (3.1)

for the canonical potential {,. In (3.1) Ue(4,,r) is a cylinder

function defined by

Us(CI.,rr) = Y1 (o,r)Jo(cr,,r) - Jl(crn)Yo(ctnr) (s.2)

where Jo (r),Yo (r) are the zeroth order Bessel functions of

the first and second kind respectively. Sirnilarly Jr (r),Yr (r)

are the first order Bessel functions. The forn of (3.1) satisfies

the axisymmetric Laplace equation and the eigenvalues, or,, are

conputed by requiring
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= Uf (ct"ß) = Q

which leads to the follorving equation,

U¡ (ct, ß) = Yr (o,, ¡.r¡ (o" ß) - Jr (or,1V1 (o" ß) =Q (3.3)

Thus (3.1) satisfies the boundary value problem for z ( 0, but

as yet, the coefficients Ar, are únknown.

In the downstream region, z Þ 0, subject to the boundary

condition (2.8), we use the eigenfunction expansion

ui (o" )

\t(r,z) r),'-!"¡ + Bologr + Ao I g.Po (y-r¡e-Y'"' (3.4)+

æ

n=l

In this case the cylinder function 2o (y*r) is given by

?o (y_r) = Yo (y_)Jo (y*r) - Jo (y,n)Yo (y ï
nr

) (5.s)

from which the boundary conditions

3o (y-) = 3o (Y,,,ß) =Q

lead to

Yo (Y^)Jo (Y",ß) - Jo (Y-)Yo (Y-ß) =0 (3 .6)

for the determination of the eigenvalues y_. The remaining terrns

in (3.a) serve to make the boundary conditions for the cylinder

function, 0o(y*r), homogeneous. The logarithm term contains the

essential output quantity of this investigation, Bo, which is the

only (non-constant) non-zero term at downstream infinity.

Equation (3.4) satisfies the boundary value problem for zÞ 0;

however the coefficients Br,, as were the Ar,, for n=Orl ,2r...

are as yet undetermined. To solve for these remaining unknowns we
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require (3.1) and (3.4\ and the corresponding z derivatives, to

natch at the mutual boundary z=0. This lea,:"]s to the set of

equations which must hold for all r in I ( r ( ß :

æ æ

I I,, uo (an t) +
I,
4r- B logr+Ao I B" 3o (y" t) (s.7)+

0
n=l n= I

and

a A U^la r)n n v'n Y' Br,2o (Y,, r¡ , (5.8)

These can, in principle, be solved for the unknown coefficients

Arr, Bn for n=Orl ,2r.... No solution, however, in closed form,

can be found to this set of equations.

4. NIIMERICAL PROCEDURE

We first consider the problem of solving (3.5) and (3.6) for

the eigenvalues or, and yn respectively. For large o' and Y,,

asymptotic formulae, for these eigenvalues, are given in Abranowitz

and Stegun (1970) (p. 374, Eqn. 9.5.28). These equations provide

good initial iterates, for an iteration procedure to solve the

non-linear equations (3.3) and (3.6). Using Newtonfs iteration

rapid convergence to the correct root is found for ß not too large.

In the latter case the asymptotic fornulae are not valid for the

first few roots and an alternative neans is required for providing

initial guesses. Tables, again from Abramowitz and Stegun (1970)

(p. 415) and linear interpolation are adequate for this purpose.

An inítial attenpt to solve the equations (3.7) and (3.8) was

by the method of collocation. This, however, proved to be entirely

unsatisfactory, due probably to the highly oscillatory nature of the

Bessel functions in (3.1) and (3.4),for large eigenvalues. The

i
=l nn

i
=l
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resulting matrices obtained by requiring equations (3.7) and (3.8)

to be satisfied at N+l points, and truncating the infinite series

after N terms, are highly il1-conditioned, and unreliable results

are obtained with any of the inversion packages tried.

The next attempt at solving equations (3.7) and (3.8) for the

unknowns Ar,, Br, (n=0,1,...) is to use the orthogonality of

Cylinder functions. More precisely it will involve a hybrid nethod

of solution, conbining orthogonality and collocation to arrive at

a consistent, and invertible, system of algebraic equations.

We first differentiate (3.7) and (3.8) with respect to r to

arrive at the new equations

æ

I o,,4,, u, (4,, r) Bs/r + Y' Br, ?, (Y' r¡ (4.1)
n=l

æ
and

æ

I
n

1

2t

æ

I
=lnn= I

I a2R u, (cr, r)gnn¡n \28 o, (v r)'nn|n (4 -2)

and (4.2) will become

U, (cr,, r) and 2, (y,, r:)

The reason for considering equations (4.1)

evident shortly. The cylinder functions

are given by

Ut (cr,, r) = Y, (o,, )J, (cr,r, r) - Jr (sr, )Y1 (c1,, r)

and

úr, (y,, t) = Ys (yn )J1 (y,, r) - Jo (yn )Yr (yn r) . Ø -4)

Now from Watson (1958) (p.466) we get the following definite

integrals

¡ß
jrt2r(y"r)0,(y*tldr=o if nln

= ttø'o1(ßy") - o1(\,)l ir n = m.

(4.3)
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Thus, using this orthogonality relation, and also noting that

fua,cr-"ldr = [- ,]ocv-'ll| = o,

we find that equations (4.1) and (4.2) become, after nultiplying

by rD1 (y_r) and integrating with respect to r,

@j a"n"Â; = lrr;*v-n-!fø'oi(v-ß) -DlU^))
n=l

i cr"n"/[ = -\: y^!fø'ol(v-ß) - lltt^))
n=l

and

where

^r
Ím

and

for m=\,2,3,... . Furthermore, upon elimination of

equations reduce to give

B , these
m

for m=L ,2, . . . (4. s)

(4.6)

"ur"or(Y-r; 

u, (o-r) dr

Iur*o'(Y-r)dr '
f!lt-

m

lt',
2'^(1'I o,

n=I
+

c[_i_)rr A =y'rnn
lm

t

The integrals /\r and f I may be written in closed form as
mn m

and

^r
rm ft-¡or, 

(1"ß)uo (cr" ß) = ?, (y*)ue (c" ) Ì

= llføor(v-ß) - ?,(v-)Ìfr

The algebraic systen (4.5) rnay be wrítten in a more compact

form as

Â4 = l, (4.7)



where

L3.

(4. 8)

^-
[^,- ] lcr,, (1 . *rn*,

tA

I
and | = [f.] = täf;l , with 

^; 
and f' as given in (4.6)

This resultant forn of, algebraic equations illustrates that (4.1)

and (4.2) are indeed the correct equations to study when applying

this solution procedure. (4-7) is a consistent system to solve for

the unknowns A
n

n=I,2,... , and from these we deternine the

renaining unknowns.

The numejrical procedure we adopt is to truncate the series in

(4.5) and solve for the unknowns A(N) for Ír=I,2,... rN. The

superscript N indicates this solution i, in sone sense an

approximation to the actual solution, Ao, we seek. The approxinate

problern we nov/ solve can be expressed as

^( 

N) 
A( 

N)

lmI

_( N)
=I

where 
^( 

N) is an NxN natrix given by [^,,- ] for il,rt=l,2, . . . ,N.

1t"' is the Nxl solution vector and lt*' is an Nxl column

vector given by [f,n] for m=I,2,...,N. Any standard package nay

be used to invert 
^( 

N) 
and thus obtain the solution A( 

N) to this

systen of equations.

This numerical procedure is satisfactory provided the approximate

solution 1t"' converges to a limit as N + -. I'laturally we require

this limit to be bounded and we furthermore expect 4!Ð -+ Q as

n,N -à æ. This latter condition is an a priori ¡usti-tication of the
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trtrncation of the series (4.5) which results in this algebraic,

solvable, system of equations. One further check on this numerical

solution is the comparison of the linit ß * 1, or thin annular

jet limit and we do this later on.

5. COMPUTING KAPPA

Having conputed the coefficients 4,, by orthogonality we now

wish to compute K. This requires solving for the unknowns Ae and

Bs. We note that the 4,, tt uniquely define the Br, tt .for n > 1.

To do this we return to the method of collocation, specifically

evaluating (3.7) at r=1 and r=ß. The resulting equations are

Ao I R" uo {cr" )
I

= 4*
æ

n= I
and

æ

Bslogß+A¡ jø' + I R uo(o ß)n
n= I

Eliminating As from these two equations gives

ó
+

n=l

and by virtue of the definition of K we have

K=(Bo 1) -l (s.2)

The corresponding approximate numerical results are given by

the equations

N

I
=1

Bo log ß = |ß'-r) I n" {uo (cl,' ß) - us (cr,, ) } (s.r)

nlÐ rog ß = å(ß2-1) nl$ {uo (o" 3) - uo (dn ) } (s.3)

and

K( 
N) (B!Ð - '¡ rø - r) -' (s .4)

Equations (5.3) and (5.4), in conjunction with the method

described in 54 for determining A(*) , constitute a numerical

'21cø

+

n
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nethod for solving the problen. This method is relatively simple

to program and makes 1itt1e demand upon storage and time constraints.

6. NUMERICAL RESULTS

In practice the numerical scheme in 54 works satisfactorily.

The matrices 
^(N) 

are well-conditioned and 1t"' does indeed

converge, in sorne sense, to a linit. We do find, however, that

the rast few terms of dot' , for example ol,ll , olt may be

disproportionately fttgl. Nevertheless, this numerical artefact

has little to do with the convergence of "(*), and tests, omitting

or including these last few terms from (5.3) , indicate little effect

on the computation of K( 
*) . For the remainder of this section we

discuss the numerical results for K.

Although the convergence rates are relatively s1ow, with (for

¡noderate ß) decay of error terms like N-t, the actual nagnitude

of errors is snall enough to a1low three-figure accuracy with ¡ t 20.

For $ close to 1 convergence is more rapid and N tu 10 suffices.

Difficulties begin to occur when $ becomes large, sãY greater

than 20. The rate of convergence is even slower and good results

need N "r,40. It is interesting to note that this nurnerical scheme

converges only for even N. If ll is odd o(2n+l) is erratic as

n + æ and appears not to converge. fn view of the satisfactory

results when N is even this does not concern us overly much.

Results for K, accurate to three figures, are plotted on

Figure I. The dashed line is a large $ linit discussed next.
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7. LARGE ß LIMIT

Itle consider equation (5.1) . Nunerical evidence suggests An

is at nost o{rog2ß}. Thus, neglecting terns of o{rogßß-1} from

equation (5.1) and (5.2) we find that

K(ß) tu (7.1)

(7 .2)

(7.3)

(2.IL) and eíther of

thus we have

(7 .4)

(7 .s)

ß+1
41ogß as 3*-

as ß*-

as ß*-

We have as yet little insight into the physical interpretation of

(7.L). However, if we consider the gravity-free case, 8=0, ü/e

can verify the relative magnítudes of the large ß limit intuitively.

Fron the matching equation (2.10) , (7 .I) inplies that a' (0*)

behaves like

a'(o*) " ,-1f,tC'(o-) as ß * -,

provided bt(0 ) is non-zero, otherwise

a' (0. )Ì

b' (0

The behaviour of b' (0+) is given by equation

(7.2), (7.3) depending on tlrc value of b'(0 ),

b'(o+)'**à as ß*-

provided b'(0 ) is non-zero, otherwise

)+

So clearly as S gets large the inner radius plays a decreasing role

in the determination of the outer radius. The expected, straight

cylinder, limit is verified by equations (7.4) and (7.5), giving

b'(0+) tu 0. The sizes of the limits (7.2) and (7.3) can also be
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rationalized. Supposing bt(0_) is non-zero firstly, then initially

there is some small change in the outer radius of the jet

Correspondingly, because of the large outer radius relative to the

inner radius, a more dramatic change occurs at the inner radius,

in order to conserve mass. This is evident since la'(0*) I - - as

ß * - in this case. If bt(0_) is zero then it is not unreasonable

to expect ?rcontinuíty" of slope across the nozzle for the outer radius.

In any respect, the slope b'(0+) is an order of magnitude less than

when bt(0_) is non-zero. This is then reflected in the much slower

change in the inner radius as indicated by equation (7.3) .

Although we can explain the disparity of sizes of a'(0*) and

b'(0+) using the concept of conservation of mass in a slender jet,

more complicated concepts are needed to verify the actual limits

given by (7.1). This work is not pursued at the moment.

8. OFFSET PIPES

When the pípe is offset at the nozzle, say the inner pipe ends

at L/2 and the outer pipe at -L/2, there is a third region

-L/2 < z 4 L/2 with mixed normal and longitudinal derivative

boundary conditions. In the upstream region z =< -L/2 we may

still use the eigenfunction expansion given by (3.1) . Similarly,

downstream, z Þ L/2 l{te use (3.4). Honever, in the central region

-L/2 < z 4 L/2 we require a new expansion. It is simple to verify

that

æ

y(r,z) = 
tt'-It'*lrrogr*co* | (an 

"^"' 
*D,,"-^"" )co (l,rt) (B. 1)

n= I

satisfies the required boundary conditions and the axisymmetric

Laplace equation for -L/2 < z 4 L/2. Ce(À,,") is the cylinder
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functi.on defined as

and the eigenvalues, are roots of

C¡ (À,, r) = Yr (À,, )Js (À,, r) - Jr (Àn )Ye (Ào r) , (8 .2)

I
n

co (À, ß) - vr (trn )Jo (À" ß) - Jr (Àn )Y0 (tr ß) =Q (8 .3)

The unknowns AorBorÇg,Arr,Brrrc,r,Drr, n=Lr2r... are nor'ü conputed by

natching (3.1) and (8.1) at z = -L/2, and (3.4) and (8.1) at

z = L/2 much in the same way as is done in the L=0 case.

Preliminary attempts to solve this offset problem have failed.

The natrices,produced when using orthogonality are generally ill-

conditioned and, if not, no convergence is evident after truncating

the series at N=20. Of course, to use higher truncations becomes

very expensive sínce the matrices are 2¡ x 2N and a better numerical

nethod is more desirable than lengthy computel runs. One case where

good results are obtained by this metho<i is the large L linit,

(that is large relative to ß-1), where K rapidly tends to zeÏo,

implying continuity of the inner slope a'(0*) = a'(0-). This is

as expected. As of yet, we have not devised a nìeans of computing

K(ß,L) for more general L and this remains as future work.

9. CONCLUSION

We have devised a satisfactory numerical method for conputing

K(ß) for nozzles with no offset. Fortunately, this is common for

practical nozzles and the remaining task of computing K(ß,L) , Lt},

is of Iesser importance.

There is considerable evidence that K(ß), computed in 55, is

correct. We have the analytic t¡o dimensional, comparison as ß * 1,
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nanely K + 0.5, which follows frorn Tuck (1982) (p. L4 (5.14))

with L=0. This is clearly seen to be the case. We also have the

intuitive argunents of 56 justifying the large-ß nunerical results.

As a consequence of this work, practical problems involving

slender pipes producing annular jets nay be solved. For instance,

given a pipe extending from z = -æ to z=0, sâY, and specified

by r -- a(z),b(z) w.e nay solve for the free annular jet produced.

The initial (z=0) velocity of the jet is given by

t (s.1)

where a is,the nass flux in the pipe and nay be given by

n(U1-a|U-. The local nozzLe slopes at z=0 are b'(0), at (0)
@

Ðd, given I = bo/ao, we now know K. Thus, the initial jet slopes

are known, a'(0*) by (2.10), bt (0+) by (2.11). The free stream-

lines nay now be computed as described in Tuck (1982).
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CHAPTER 2

ANNULAR JETS IYITH SURFACE TENSION

1. INTRODUCTION

Tuck (1982) gives an analysis of slender, annular, jets of

water. The water is assumed to be an ideal fluid and also to be

flowing irrotationally. Two features, nanely surface tension

forces and a finite pressure difference across the annulus, are

not included in the analysis of Tuck. The former, surface tension,

utas assuned by Tuck to be negligible, and in this chapter we examine

circurnstances when this assunption is likely to be invalid. Not

surprisingly, thin annular jets, sometimes cal1ed "water-be1lsrr or

annular sheets of water, depend predominantly on surface tension

forces and also upon the previously mentioned pressure difference.

Literature on water bells dates back to Boussinesq (1869).

More recently this area of research has been pursued by Lance and

Perry (1953), Taylor (1959) and Hoffman, Takahashi and Monson (1980),

the last of these also in the context of slender jets. In all of

these publications, the authors assume tliat the annulus is sufficiently

thin, so that radial variations across the annulus may be disregarded.

In particular then, the velocity and shape of the water bell depend

only on the longitudinal coordinate (or equivalently the arc-length),

thus reducing the problem to an ordinary, though non-linear,

differential equation for the shape of the strearn. We shall see

however that the thin jet linit is only formally correct when the

surface tension forces (and pressure difference) are of conparable

nagnitude with 4 , where a0 is the initial inner radius, Uo

the initial velocity and h the annular thickness, that is the
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difference between the inner and outer radii, which is supposed snall.

Indeed, if this assumption is not true, nanely if these forces are

of nagnitude nuch greater than the annulartrthicknesd'we propose

rrnewrr equations governing the jet rs shape.

In the following sections we derive, and solve, the equations

of notion for a thick, but slender annular jet. This analysis is

much the same as Tuck's, though incorporating surface tension and

pressure differences. Given the assumption of an ideal fluid,

flowing irrotationally we seek the velocity potential and the

boundaries as a solution. The solution of this non-1inear, boundary-

value proble4, after slenderness approximations, can be reduced to the

task of solving a non-linear ord.inary differential equation, as an

initial value problem. This is readily accomplished numerically.

We then choose to examine the thin-jet limit via this differential

equation, by letting the thickness tend to zero in the thick-jet

probl en.

For the nonent we do not consider the capillary instability

of these jets, a question which is intinately connected with surface

tension, but rather the shape of the free boundaries. In particular

we shal1 be concerned with the longitudinal length measured from the

genesis of the jet to the point, if it exists, where the jet ceases

to be an annulus and becomes a "solid" cylindrical jet. This length

is sometirnes called the collapse or convergence length. In the

ideal fluid case, without surface tension and a pressure difference,

as studied by Tuck (1980), the convergence length is a function

of the initial ratio of surface radii and longitudinal surface slope.

In particular there exists some such jets that fail to collapse.
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Including surface tension alters this conclusion somewhat, and it

appears that ultimately surface tension dominates and causes the

jets to collapse, regardless of the initial conditions.

The inclusion of the pressure jump across the annulus is

analogous to having a finite cavitation number in the theory of

cavities (see for example Gilbarg (1960)). Fornally however, to

use the slender flow'approximation this pressure can only be of the

order of t+ or less, that is to say srnall when compared to the

square of the jet velocity. The added feature of the pressure jump

raises an inportant question, namely whether this pressure junp is

specified a pt"ior"i, and thus may take arbitrary, albeit small, values.

Alternatively is there sorne physical constraint that determj-nes a

unique pressure difference for a given jet? Such questions are

likely to be related to the stability of these annular jets, and

unsteady evolution of such jets. For the moment, we treat P, the

plessule difference, as an input paraneter and proceed to solve for

the free jet surfaces.

2. EQUATION FOR THICK, SLENDER ANNULAR JETS

The notation we adopt is taken from Tuck (1982), namely we

put o equal to the total velocity potential in the jet and have

r = a(z),b(z) as the inner and outer radii of the free jet. Under

the assumpt-ion of slenderness Tuck (1982) giyes the following

equations for 0, the perturbation potential,

0 = -Ut(z), for zÞ 0, ã 1r ( b, (2.1)

where U(z) is the

boundary conditions

leading order velocity in the jet. The kinematic

1_+-QT¡rl

(no normal flow) are approximated by
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o, = at(z)U(z) z2 o, t = a(z) (2.2)

and 0, = b'(z)U(z) zÞ o, r = b(z) (2.3)

The dynamical boundary condition (constant pressure on the free

surfaces) given by Tuck (1982) are augnented by two additional terms,

namely the pressure jump p, and the contribution to pressure on

the free surface by uniform tension T. The resultant equations in

exact forn are,

L,:
p

+gz++Loî

+
l"a"
¿z 'zoî gz+

on r = a(z), (2.4)

on r = b(z), (2.5)

(2.6)

p

together with

p

where C is a constant. P(r,z) is the surface tensíon pressure,

given by

P (r,z) +
1\

ú)

where Rr is the radius of curvature at (r,z) in the horizontal

(z = constant) plane and R2 the radius of curvature in the

vertical (0 = constant) plane. We now wish to make the appropriate

slender flow approximations to (2.4) and (2.5). The existence of

a leading order velocity U(z) requires the cross flow to be srnall,

which can only occur when
z)

and for
p

all z Þ 0. Provided these inequalities are true we can makethe

norrnal slender flow assumptions and furtherlnore must have Rz >> Rt.

Intuitively these inequalities say that a slender annular jet cannot

sustain a Lange pressure difference acloss the annulus, and remain

P(r ..rrv'ç") 'zu't'lP<<
p
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slender. Similarty, for large values of the tension T, the

strean will tend to have large curvature R1, however for typical

pararneters, in practical situations, T is sufficiently small

nunerically. Given that we have a slender jet, we may approximate

(2.4) and (2.5) as follows. Equation (2.4) reduces to

U(z) 0
z

and (2.5) becomes

U(z) 0

+ lo2
2't

.tzrî. 
ä #

T1
óa(¡

+P=C-
p

rru2
0

on t=a(z), (2.7)

on r=b(z) (2.8)=f,- ,ru;
z

The leading oïder equations from (2.4) and (2.5) give

u (z) â+ gz z Þ 0. (2.e)

It is important to note the difference in sign of the radius of

curvature, Rr, oD r = a(z) and r = b(z). This is because one

surface is convex and the other concave with respect to the fluid-

air interface. For our purposes it is unlìecessary to evaluate the

constant C, but in principal it can be evaluated as the left hand

side of (2.7) at z = 0. Uo is the velocity of projection of the

jet at the z = O section, and g the acceleration due to gravity.

We use the notation a0 = a(0) and bo = b(0) to denote the

initial radii of the free jet surfaces.

The boundary value problern we have to solve is (2.1) subject

to the conditions (2.2), (2.3) and (2.7), (2.8). We next consider

the solution of this systen.

3. SOLUTION OF THE BOUNDARY VALUE PROBLEM

Y2(u )

Equation (2.I)

Õ(r, z) =

has the general solution
rrt'u'ç'7À'(z) log r + U'(z) t (3. 1)
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involving two unknown functions of z, denoted by À'(z) and U'(z),

where the dash denotes differentiation with respect to z. These

functions are determined by satisfying the four boundary conditions

(2,2), (2.3) and (2.7), (2.8), remembering that both boundaries are

also unknown functions of z. The bcindary conditions (2-2) and

(2.3) require, as in Tuck (1982), that

À (z) = 'rurr)a2 (z) , for zÞ0, (s.2)

and also that

)uø la2 e) -az e)l = Co, for zÞ o, (3.3)

where Co is a constant determined by the initial conditions.

(3.3) is the statement of conservation of rnass in the jet, since

the area of cross section of the jet is proportional to the difference

in the square of the radii. The further equations to close the

system are obtained fron the dynamic conditions (2.7) and (2.8).

Etiminating the unknown U'(z) we find,

CU,,(z) - U2(b,2-a,2) I
d

+
I2T

+ ?L
À" (z) b (3.4)

2U log (
a

which together with (3.2) and (3.3) constitutes a quasi 3rd order

non-linear ordinary dífferential equation for determining \(z) '
thus a(z) and b(z). The third order character is due to the

constant Ce in (3.3). Analytic solution of this system is out

of the question, though it is straightforward to solve it numerically

It is convenient to non dinensionalize the equations, and we choose

to scale vertical lengths, the z direction, with respect to Ég



We scale radial

respect to Uo

become

À" (z)

lengths with respect to â0,

and pressure with respect to

27.

velocities with

pUî. The equations

and

Lurr, (b"-^') I (ß2-1) ,

u(z) (I + 2z)
+5

t

')

(ß2-f)Uf, - U(bt2-¿t2¡1

2
-1 1-_ Kt-+EJ

(3 .s)

(3.6)

(3.7)

(3.8)

(3.10)

+A
t

2U log

where the constants K, A and ß

- _ zrut
^ - szptil

zpuî
ær4

)a

are given by

[=

and

I = bo/ao. (3.s)

Therrinitial" conditions for the jet, that is, the pararneters at

the z = 0 cross sectíon are a(0) = 1, b(0) = ß and

at(0) = o = +P where al is the specified, dimensional, slope

of the free surface at z = 0. The parameters K and 
^, 

although

arbitrary, are always snal1 for slender jets. The non-dinensional

parameter rc is a neasure of the surface tension, and is related

to more standard non-dimensional parameters, the l\leber number W

and the Froude number F, , by

F:
*=t"

To solve the equation we begin at z = 0.0, with the

afore¡nentioned initial conditions and compute numerical approximations
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to tr(2,, ), where ,n = n(Az), using the Runge-Kutta-Nyströn

algorithm (see Kreyszig, L979, p. 802). This method is accurate

to fourth order with respect to the increment (Az). fn our

conputations the collapse length is the prinary output, and to

ensure accuracy, the increment Lz is reduced as the inner radius

approaches zero. In a.11 our computations Az = 0.001 gives

sufficient accuracy.

4. COMPUTED RESULTS AND DISCUSSION

In Figure I we present actual jet shape profiles for thin

jets, ß = l.l, and thick jets, ß = 2.0. In each case two different

values of the surface tension parameter K vlere chosen. Qualitatively

the shape of a jet influenced by surface tension is nuch the sane

as ideal jets discussed by Tuck (1932). The fundamental difference

is quantitative, and the influence of surface tension is to reduce

the collapse length 2". Indeed as we shall see surface tension

nay in fact cause some jets to have a finite Z" value where other-

wise, for the K = 0.0 case, they do not collapse. The influence

of surface tension is illustrated in Figure 2. The parameter space

explored is the K-ß space, with reference to the collapse length

Zc. It is clear that, in the thick jet linit, ß * -, the role

of surface tension is negligible. This is not so for thin jets,

ß * 1, and it is apparent that only a very sma1l value of K is

needed to cause the jet to col1apse, whereas K = 0 gives Z" -> æ.

In Figure 5 we exarnine the 
^-ß 

parameter space, again with respect

to Zc. In this case we can have A both positive, and negative-

A negative value of A indicates an over-pressure' where the

exterior pressure, presumably atnospheric, is greater than the
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pressure in the hollow region of the jet. A positive Â similarly

indicates an underpressure. At once we note the similarity,

qualitatively, of Figures 2 and 3. This is no doubt due to the

roughly equivalent nature of the forces involved, that is., both

acting normally to the annular surface. It would seem an over-

pressure results in the jet always collapsing and this is perhaps

not surprising. .As the pressure difference is increased, ultinately

becoming an under-pressure, the jet is more reluctant to co11apse.

Once again thin jets are most sensitive to the A parameter,

thick jets insensitíve. To compare the pressure-surface tension

interaction Figure 4 presents results for the collapse distance

in the ¡<-Á parameter space. This shows that jets with an under-

pressure will not collapse even with surface tension, unless K

is sufficiently 1arge. This behaviour is investigated for thin

jets in Figure 4, having ß = 1.1. The corresponding results for

a thick jet, ß = 2.0 are given in Figure 5. We draw similar

conclusions for thick jets. The most significant difference is

due to the insensitivity of thicker jets to both surface tension

and pressure forces. This results in Z" generally being greater

and the less rapid growth of Z" as A increases. The final two

figures, Figure 6 and Figure 7 consider the effect of initial slope,

paraneterised by o. From Figure 6 we see that jets initíalIy

directed outward, o ) 0, will generally collapse, even for

relatively small values of K. The sa¡ne is trtre for Figure 7,

this time however with reference to the pressure jump. For over-

pressures, jets will ultimately collapse even with o > 0. For

underpressures, however, it nay be that o need be less than zeto'

that is, the jet is initially directed in, for collapse to occur-



II
¿&

I

J5

+ 02 +01

6o

fo

lo

00

Ío

{o

lo

20

0

l0

JO

,tAlv

00

00 +01

v6.

^(
þ=1'1 ., ú=où

K=0u

'02 A.l-L/ I

z"

ftouRE +.

A



54

t lo
.¿"

I

lo

l0

/.o

6 0

fo

4o 4o

lo

2o

-l r'l10

0.0 01 02 ol

Zrv6 A (p-2'o , t=o'o)

t' = O'Ol

-02 -0 1

FrcukE l.

Á -->



I
I

I

6o

lo

&o

Jo

t.ft

1o

00

55
6o

,0

*.0

Jo

1o

00 0.1 ol
_o _)

4 rt. o-. (l=o.o,ê=zo)

= oL

= OOJ

-o) -0 7

Ftçua,e 6

02
0o



36

+60
24

I

6o

to

JO

lo

/o

0/ro

fo

Jo

L.U

1o

00

-01 00 ol 0l

,4 uo, c (r'=oo, p=2 0)

A" - o2

-02

fiouPE 7.

0¿

00



37.

We have seen that thin jets ar.e greatly influenced by surface

tension and pressure forces. For this reason non-slender theory

has been developed in the literature for the treatnent of thin

annular jets. References to this theory were given in the

introduction. This theory is not entirely satisfactory and a

consistent, formally corïect theory will be given in a later section.

For the monent however, we shal1 consider thin-slender-annular jets,

via the equations aLteady derived for thick jets, namely (3.5)

(3.7) .

5. THIN-SLENDER ANNULAR JETS

The linit we are concerned with is

and

(s. 1)

(s.2)

ß*t ,

b (z) -> ¿ç77

We shall put h(z) = b(z) - a(z), that is, h is the

thickness of the annular jet. We assume that equations (3.5)

(3.7) govern the jet behaviour, and we examine the 1ímits (5.1)

and (5.2) in these equations. The velocity ll(z), as given by

(3.5), is unchanged. Equation (5.6), however, gives

u(z) a(z)h(z) (ß- 1) (s .3)

It is important to note that although we consider the formal linit

ß * l, wê nust retain the first orcler terms in (ß-1), as in (5.5).

lrTe also need expansions for b'(z) 2-a'(z)2 and log (b/a). These

are given by

b' (z) 2-a' (z)2 = 2at (z) [h'(z) ] * 0{h2i (s .4)
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and
log (

Lru"I" (z) a2 + 2lJt aat + iUal 2 * ga;un

b h + 0{h2}) (s .s)

(s .6)

a a

We also reduce the term À"(z) to the equivalent in terms of

a(z) and U(z). Fron (3.2) we find that

Using (5.3) to (5.6)' in equation (3.7) results finally with

Yt -Yt(L+22) a" (z) + (t+22) a'(z) E:1'
(z) (s.7)

^
Kcr + t

which is the fundanental equation for deternining the shape of the

annular jet,, a(z), It is immediately obvious that thin jets,

3 = I, are indeed sensitive to K and A. This follows from the

t'arnplificationrr factor, Gltt , nnrltiplying the right-hand-side

of (5.7). For a consistent theory we must have r and A both

of the order of (ß-1), which says that thin-slender-j ets do not

eæíst for large K or A. Later, we shall see that this assumption

is also inherent in the other thin annular jet, orttwater-bellfr,

theories. It is convenient to transform the equation (5.7) by

putting

I"L-2r tr (5.8)

This leads to

ä(t) -r' (.r+1) + Ar ('r+1) a(r) , (s .s)

where ¡4r = Fï and At = t5 The dot denotes differentiation

with respect to T. The variable 'r is tine-Like, and, as in

Hoffman, Takahashi and Monson (1980), this problem may be tackled

in an unsteady context where T=0 corresponds to the genesis of
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the jet. Equation (5.9), with Ar=0, is obtained by the above

authors, although their approach is inconsistent. The assumption

of slenderness ís nade initially, however for most of the analysis

the longitudinal curvature is retained. This is evident in the

numerical work of Hoffman et al., since solutions of (5.9) with

Áf=0 are compared with solutions fron the fully non-linear equations,

including longitudinal curvature, and are found to differ by no nore

than 5% for the appropriate range of the Kt parameter. We conclude

then, that (5.9) is the correct, consistent, form for a slender

but thin annular jet. It appears that no solutions of (5.9) have

been published for the case Ar / 0 Although these are straight

forward to obtain they provide much insight into the dynamics of

thin annular jets.

6. SOLUTIONS FOR THIN-SLENDER ANNULAR JETS

It is appropriate firstly to consider the gravity-free case,

namely when g = 0. The equation governing the be1l's shape is

a T -Ktt + A"a(t) (6. 1)

where the constant.s Kr? and Art are given by

)(

and

(6.2)

(6 .3)t" = ¡¡iS:Ð
The solution of (6.1) subject to a(0)

is

1 and a'(0) = or = aå



a(r) = - Lrr,r2 + cosh (/L,,r) * füsi"t ç/L,,r¡ , (6.4)

provided 
^rr 

> 0. In this case there is an under-pressure outside

.of the jet and collapse only occurs if

cosh(/Â"'r"l .ftsinh(/l"t"7=)r<""r!, (6.5)

has a real positive root, Í", for the collapse tine r

colLapse length 2", is given by

The

z

fron equatioí (5.8). In general (6.5) wilt only possess a root

for T" if or is sufficientty large, in the negative sense. This

can be seen if we consider K"=0, that is neglect surface tension.

T is now a root of

tanh (/4"'r" )
/1,,=-- gl , (o'Éo)

40.

(6.6)

T
c

+
l-2
2'cc

an equation which has positive real roots only if

-1./!(0,- or

whence ot < -,/L"; that is, or is sufficiently srnall. In the

case gr = 0, there is no collapse.

We now suppose 
^rr 

is negative, say Aft = -î2. The solution

of (6.1) in this case is

a(t) = -!rr'\2 + Cos(nt) * 9lsi.r,(nt) (6.7)

This results in the following equation for the collapse tine T-,

rr12I
2K t

t'l

Cos (nt. ¡ * {sir,(nr" ) c
(ó.8)
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which always has a positive real root for Tc .

Thus we rnay conclude that bells with an overpressure, A" ( 0,

always collapse, regardless of the initial conditions. However

for an underpressure, At? > 0, only jets initially direited inuard

at a sufficiently great angle (that is, those with ot sufficiently

negative) will collapse. This atl applies of course to the gravity-

free case. Never-the-less equation (5.9) may be solved, in general,

in terms of Airy Functions (see Abramowitz and Stegun, Handbook of

Mathematical Functions p. 446). These functions are however,

qualitatively very sinilar to the hyperbolic cosine and sine functions

when 
^t 

) 0, and trigonometric functions when 
^t 

< 0. It would

seem then, that 1ittle new qualitative information is to be gained

by repeating the above analysis with gravity included.

7. THIN ANNULAR SHEETS OF WATER

In the preceding sections we have described slender annular

water jets. Proceeding from this, thin-slender jets were examined.

It was found that such thin jets are extrenely sensitive to strrface

tension forces, and to any pressure difference across the annulus.

rndeed it was found that these pressures must be of t{ttúr} for

the appropriate slender-f1ow approxinations to be valid. In this

section we analyze thin annular sheets of water, but with no a pr"Lori

assumptions of slenderness. The analysis does however serve as a

check on the previously obtained thin-slender jet equations, (5.7),

since we may alternatively obtain these equations by assuming

slenderness after thinness. The previous work published in connection

with thin annular water sheets, for instance Boussinesq (1869) or
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Lance and Perry (1953), have given solutions which appear to be

for arbitrary values of the surface tension and pressure parameters,

T and p. However, the thin-jet theory is really valid only for

a restricted range of these parameters, and in the following

consistent asynptotic analysis, we shalt find necessary conditions

on these parameters for the solutions, as given by the above authors,

to be correct. (In the sense of asymptotic expansions).

We choose to analyze the problem from the exact (inviscid,

irrotational) equations, under the sole premise that the annulus is

thin. Consider the jet in the cylindrical polar coordinate system,

as in the prqvious sections. Let þ(t,z) be the total, axisyrnmetric,

velocity potential in the jet. Itre require that Q satisfies, as

before, the axisyrunetric Laplace equation,

+Q =Q (7 .1)
zz

Introducing the following notation for the free surfaces, namely

that r = f*(z) represents the outer circular surface, while

r = f (z) represents the inner, we have the following two kinematic

boundary conditions,

0, =fl(z)Q, on r=f*(z) (7 .2)

and

on r=f(z) (7.3)

Physicatly (7.2) and (7 .3) enforce the condition of no nornal flow

across the free boundariet f* ancl f The exact dynarnical

equations (Constant pressure on the water air interface) on the

surfaces r = f*(z) are given by

iq+
1r0

0 = f '(z)0
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on r = f (z), (7.4)

and

(t+f'')tl'

fr:?

*P=A
p

)oî rrr:+

(t*t'*')tl '

t *(z) +f _(z)
2

=A on r = f*(z).. (7.5)

(8.1)

The derivation of these equations (in particular, the surface tension

pressure terms) follow from 52, remembering that the curvature in

the longitudinal plane on a surface r = S(z) is given by S" 
,

(1+s |')'l '
ü_,V* are the angles that the surfaces r = f_(z),f*(z) make

with the horizontal, and so col tÞt 
is the radius of curvature,

nornal to the ,,rtr".", in the 
"rli"an"J' 

direction. Figure B illustrates

this notation. The constant A, occurring in equation (7.4) , (7.5)

will be given a value later in this section. We now examine the

limit f. + f in this system of equations (7.1) - (7.5).+-

8. EQUATIONS FOR A THIN JET

Firstly we put a(z) equal to the mean surface shape, namely

a(z) t

and also put h(z) equal to the half thickness of the annulus at

the cross section z, so

f (z)-f (z)
h (z) + (8.2)

2

The rnathematical procedure to derive the equations for thin jets

is to find a small h expansion of the relevant quantities of

interest, and the exact equations which describe these quantities.

As we shall see we need to retain first order terms in h, that

is 0{h} terms, for a consistent theory. Alternatively this may

be thought of as neglecting erroï terms of 0{h2}.
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lYe now forrnulate the problem in a new coordinate system,

(p,0,E), defined as

E = z, (8.3)

and
9 = r - a(z), (8.4)

fron the (r,0,2) coordinate system. ,The axial angle coordinate

0 is actually redundant, since the jet is supposed to be axisyrunetric.

The (p,9,8) coordinate system is not orthogonal and we can expect

considerable change to the equations describing the jet. The

differential operators in equations (7.1) - (7.5) are now given in

the new .ootdin"te system by replacing # with È - "'# and

by a

e¡ The axisynunetric Laplace equation, (7.I), becomes

(l+ar 2)S #, + þrr- 2a']ó
Ep

at'0 =Q (8 .s)+
pp p

following the above substitutions. Furthernore the kinematic

boundary conditions, (7 .2) and (7 .3) become,

0 (a'+h') [0r-a'ô01 on 9 = h (8 .6)
p

and

a

ãr

t

oo= (a'-h') [0 -a'0 ] on 0=-h (8.7)
E p

The dynanic conditions will not be needed at the monent, and the

appropriate transforrned equations are given later. In the (p'0,E)

coordinate system we have the jet region defined by

-h(p(h, for E>-0. (8.8)

Thus the thin-annular jet potential, 0, should be given by a small

p expansion, since for a thin annulus h << 1. This suggests trying

a velocity potential of the form,
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0(p,t) = Õo(E) * pÕr (E) (8.e)

where Õ0,@r,Q2,... are yet to be determined functions of E.

In practice we tnrncate the expansion in (8.9) after the three

terrns shown. Using further terms leads to a solution of 'higher

order accuracy but the resulting system of equations becomes

exceedingly difficul.t to solve. The zero order terms in h (i.e.

O{ho}) fron equation (8.5) give

* rro'ørlE)
+

(1*a' 2) Õz I + 0t - 2atÕl ât 0r 0lo
a

+ (8.10)

In obtaining,equation (S.10) we have neglected terms of O{p}

Sinilarly the boundary conditions (8.6) and (8.7) become,

01 + h02 = (a'+hr) [0[+h@r-a'Õr-a'h0z], (8 . 11)

and

Q1 - hÕ2 = (ar-h') [0å-h01-a'0r+a'h0z], (8.r2)

where zero-order and first-order terms in h and h I have been

retained. Intuitively we justify retaining these terms as follows.

The leading-order terms in equations (8.5), (8.6) and (8.7) convey

information only concerning the mean shape a(z). The fírst-order

terms of (8.6) and (8.7), however, describe the thíclstess effects,

which must be treated as an unknown, and so retained. The equations

(8.10), (8.11) and (8.12) together with two dynarnical equations

(zero and fírst order equations) gives five ordinary differential

equations for the five unknown functions 00,0r,Q2,a and h. In

principle this can be solved.

Adding (8.rr) and (8.12) and neglecting 0{h} and 0{h'}

terms, results in
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(8.13)

(8. 17)

(8.18)

while subtracting (8.I2) from (8.11) gives

(l+ar z)Qz = a,Ql. Oå+ - "'OrI:
(8. 14)

Equation (8.13) is the zero-order kinematic condition and equation

(S,14) the first order condition. While physical significance can

be attached to these equations there is 1ittle benefit from doing

this at this stage. From this set of equations (8.10), (8.13) and

(8.14) we can expect to derive a conservation law, analogous to

equation (3.3,), expressing conservation of nass along the jet.

Differentiation of (8.13), with respect to E, results in

. þrl + (a,, - a1ilr, (8. 1s)Otot = (a t

and upon elinination of 0'd,02 between equations (8.15) , (8.10)

and (8.14) leads to

Õ1rh+# il+,.þ; =Q (8.16)

which simply states

å,þ'l = o

or upon integration with respect to E,

0 ah
LTT Constant, Co say.

By virtue of equation (8.13) we then have

ahÕi - Í-
Tlìf,rf - "o ' (8.1s)

which is the appropriate conservation of mass constraint. To see
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this nore clearly we consider V(E), the velocity of the water

tangential to the sheet. Locally, at the section z, the sheet

has mean slope a'(z) and so makes an angle qr with the horizontal

such that tan { = âr. Thus fron sinple trigononetric rules we

have

cos. rf = (I+a-t2)-% a¡rd sin rp = at(l+ar')-".

The tangential velocity, V(E), is then given by, to zeroth-order,

v(E) = cos !.t Q, + sin P 0, (8.20)t

which reduces to

oå

(L+at 27k

cos tÞ

V(E) (8.21)

in terms of our "thin-jet functionsfr. Equation (8.19) now has the

form

a (E) V (E) h ([) costf = 6 o (8.22)

which represents constant mass flux in the jet since h([)costf

is the norrnaL thickness of the annulus at each f cross section.

This equation is of course intuitively obvious and has been obtained

by previous investigators. It now remains to consider the

appropriate form of the dynarnic equations. From these equations

we can expect to derive the velocity V(E), as a function of E

alone, and an equation representing a balance of inertia normal to

the stream. Sone prelininary expansions will be needed, these are

a
I + 0{h}} (8.2s)
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and

1 1 (8.24)
(l+f t')tl' (1+a'")tl'

Equations (S.23) and (8.24) give the zeroth-order curvatule terms,

and it will be seen that terns of this order only shall be needed

in the following analysis.

9. THE DYNAMIC EQUATIONS

The exact form of these equations , (7.4) and (7.5) when

transformed into the (p,0,E) coordinate system becomes

fil

'za ,'2rør-"'ço)' - sE . I

fil+t13. t2ror-"'þr)' TJ-pl

+

(1+f' ")t' '
*P=A

p
on 9=-h, (9'1)

- A on 9=h. (9-2)

atl (e .3)

and

sl

Substitution of the expansion given in equation (8.9), and the zeroth

order curvature terms, leads to the following set of equations,

(t*f I')tt '

costf.t
+

a (l+af')tl'

d

(l+a'')t''

| [0, *r,or]'.'rL, å+ho r -a' or -a' h@21 
2 -tE.ä{ *Ë=o,

I to,-t o,I t.rrtað-ho1 -a'0r*a'hQzI t-tf-f{* .
and

Inmediately rve see that P and
p

atl

(1+a'')tl'

= A'. (9.4)

must be no more

jet velocity.

yet cannot

T. There is

than where U o

This is because the above

satisfy both of equation

is a measure of longitudinal

terms are independent of h,

(9.3) and (9.4) to zeroth otde

.{tú" i

no avoiding this constraint for f; thus if 
Ë - + equations

(9.3), (9.4) cannot both be satisfied in a smal1 h linit. This

lnerely states that thin annular jets cannot sustain a large pressure
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difference across the annulus. In practice if there is a large

pressure difference, the water be11 either collapses or expands

extremely rapidty, and an alternative formulation, rather than

the one we have chosen, is necessary to describe this behaviour.

For the surface-tension pressure there are two porribitiai",

whereb

value

is of

y the constraint nay be

of i may be sufficient

t{S} , and ín genera

satisfied. Firstly, the n

ly small so that l{+g .pL a

umerical
atl

(l+a'')'1 "
1 this will be so. However, if

h is exceedingly snall, and the mass fltx not too great, then it

is necessary that the zeroth-order term + * "t' ., = bea (l+at2)31 2

snall, that is the formally correct equation (in the sense of

asynptotic expansions) for the water bellts radius a(E) is

-ttd

(1+ar2) -0 (e.s)

since cosrf = (l+at ")-". This states, to leading order, that the

water be1l is a spherical shel1, or bubble, given by

(t*o2) (z-o)2 (e .6)

1

a
+

a(z)

where o is the mean slope of the sheet at z=0. This result is

to be expected whenever, as here, surface tension is the dominant

force. It sinply says the water bell is a f'bubble'r to leading

order.

For the rernainder of this section we assume that the former

,

T
p

T u 72 cmz -2 and for a = I cm, Us

condition ho1ds, that is, that is s¡nalll. The leading order

I rn C.G.S. system

we have
pa

hn,
10

Cm+

s,

1

I

2
hUo ^ ^ _,

tu 10" cmts
A0

.rn * hu3 tu lo2 .rtr-'
A0

htu 1õõ-

100 cm s -t



51.

equation from (9.5) and (9.4) is obtained by adding these two

equations, and neglecting 0{h} terms. We find that

lrrrl" - (r*a,\01) - st = A ,

all

(1+a'')'l'

)"Y

(e .6)

(s.7)

*P = 0. (e .8)
p

which fron equation (8.13) gives

=#t 
=u| * 2eE:

where we suppose the I'initial" velocity V(0) is Uo, thus

deternining the constant A. This too is a faniliar result, being

obtained by previous authors. It reflects the fact that the

normally directed pressure and surface tension forces do not

accelerate the fluid tangentially along the jet; such acceleration

is solely acconplished by gravity.

Subtracting (9.4) fron (9.3) leads to the first order

equation,

V(E) = (U3 * 2sE)h ,

h(Q102+Õl0i -", Õl@5a, @rOi +a' 2Õr orl .f(¡jry .

or

However this can be rearranged to yield,

horoi Tl t ""=,=Ì+p=0, (9.9)-ã= . Oi.,r.*- gy.,"rrtrri 
. ;

where we have used equation (8.13). Now F can be replaced by

Co/a, from equation (8.18), and since, from (8.13)

tt, = #-,f u,r, we have
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o1 = -31 - v¡E¡ (r.f;; v(E) (e.ro)

The resulting forn of the first-order equation after substituting

(9.r0) in (9.9) is

Ce a" (Ufr+2g[) CoBat 1 ^ila 0. (e.11)+
T+-
I

+P
p

a(1+¿r ')tl ' a(t+¿r 27% 
çuf,*zg¿yk (l+af')tl'

A more convenient form is obtained when aLL lengths are scaled with
2

Uo

g
respect to which gives

att
_ta

1 atlY2 (r+28) al + + +S 0 (s.12)L+21) + t

a(1 *^'')%

a(l+a' ")'l a(I+at 21% (I+^t zrv' (1+a' ')tl '

where the paraneters o,ß are given by

T
Cf = 

---:------------p$asnscosl|,l¡

and

o - pu;'
ß = pszã:ffiosT; (e ' 13)

Íte and ho are the 'rinitialt' (z=0) mean radii and half thickness

respectively, while üo is the initial angle of projecti.on.

Equation (9.12) represents a balance of inertia normal to the water

sheet. Direct derivation of equation (9.L2) is possible fron

physical arguments, based on the rrbalance of inertiail concept. This

is precisely the equation obtained by Lance and Perry (1953), and

subsequently solved by them, for a variety of values of the o and

ß paraneters.

We choose to check the slender jet equation (5.7) fron equation

(9.12). For the jet to be slender requires that at is everywhere



snall; thus we elect to neglect this quantity squared, and

additionally we neglect the longitudinal curvature since

"".,= .. Thus (9.12) reduces to
(l+a' 2)31 2 a(l+at z7%

(L+2Ç¡Y'a". _+_n= -q,r+ ß'a, (9.14)
(L+21)'-

__2

with the new constants ctr = , T, and ßt = Puo
pgaoho - pgãñ '

This is exactly equation (5.7) with crr = Kt and ßt = Âr, obtained

in 55 from the thick-slender jet equations, and verifies the thin-

slender jet results thus far obtained. That is, it is of no

consequence in which order we carry out the limits of slenderness

and thinness.

53.

10. CONCLUSIONS

We do not solve the ordinary differential equation (9.12) for

the radius of water-bells, as this has been extensively covered by

previous authors. In general the solutions must be computed

numerically, although when g=0 and ß=0 Taylor (1959) has

obtained exact analytic solutions. lllhat is interesting from these

solutions is the fornatíon of cusps on the sheet at finite radii,

that is before collapse. This phenomenon is entirely absent fron

the slender jet theories and one may expect that the effects of

thickness, in an exact theory, counteract this.

The fornal asymptotic derivation of equation (9.12) has shown

several new points, which i^Iere somewhat obscured by the previous

derivations. Most inportantly the pressure jump parameter 1SP
p

necessarily smal1, otherwise a closs flow within the annulus, of
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co¡nparable order to the tangential f1ow, is needed to satisfy the

dynamic boundary conditions. This would then require a full

solution of the exact equations, which at present is not considered.

We have also seen that if the sheet is too thin and the ¡nass flux

(that is velocity Uo) small the water bell assu¡nes the shape of

a sphere, as if it were a static bubble. This of course is only

valid away from the collapse point, whãre in general our solutions

are invalid.
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CHAPTER 3

STABILITY OF ANNULAR COLUMNS OF WATER

1. INTRODUCTION

When a jet, such as those described in the previous chapters,

issues into the arnbient atmosphere j-t will be subject to a number

of disturbances, not considered thus far in this thesis. These

disturbances, perhaps vibrations or imperfections of the nozzle,

or possibly srnall variations in the atnospheric pressure along

the jet, may ultinately be responsible for breakup of the jet-

In effect, this means that the disturbance grows in time (temporally)

or in space, say along the jet (spatially).

This phenomenon, known as instability, has been widely

investigated for round jets, as far back as Rayleigh (1879).

Subsequent authors have extended and improved on Rayleights analysis,

to the point where non-linear aspects of iet fragnentation can be

describ ed.

The case for annular jets is much less advanced. The analysis

for linear, tenporal instability has been provided by Ponstein (1959) '

but, aS we Shall See, some Of his cOncluSions a1e elroneous' and a

nore detailed exanination of these results is warranted. We also

discuss some aspects of spatial instability, as it seems that this

type of instability is nore plausible in practical situations (see

Keller, Rubinov and Tu (L973) ) .

2. TEMPORAL INSTABILITY OF AN ANNULAR COLUMN

To illustrate the mechanism for j et breakup we examine an

annular cylindrical jet, moving with constant velocity Uo. We
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neglect gravity; thus, the unperturbed jet always has r = â0

and r = be for its inner and outer free surfaces, respectively

ItIe assume that the j et extends from z = -Ø to z = *i that is,

there is no nozzle in the region of flow. If there is a nozzle

tenporal instability is no longer satisfactory physically. At

sorne time, t=0 sâ)r, the surfaces of the jet are perturbed. The

exact nature of this disturbance is unnecessary to know, since, as

the following analysis is linear, it is appropriate to consider

Fourier components of such perturbations.

Let S(r,z,t) be the velocity potential in the jet and

r = nt ,z(z) the inner and outer surfaces respectively, after

t=0. We assurne that the disturbances to the free surfaces are

small, ild take the following form,

and

nr (z) âo + Êtê

nz?)=þ¡+82ê

Ot ikz
e

Ot lkz
e

(2.r)

(2.2)

o is the principal unknown, since o real and o > 0 gives

the rate at which the disturbance groh/s in time.

We note that (2.L) and (2.2) only admit axisynmetric modes

of disturbances; however, as shown by Ponstein (1959), these are

the most important, as far as instability is concerned. k is

essentially a reaL input parameter; thus, our task is to find a

dispersion relationship o = o(k). The concept introduced by

Rayleigh, that of mode of maximum instability, now says that the

jet breaks up due to disturbances with k = kr"*, where o(krÐ*)

is the largest positive, real value of o(k).



57.

3. EQUATIONS OF MOTTON

We assume that the jet is inviscid, and is flowing

irrotationalty. Thus we require 0, the velocity potential, to

satisfy the axisyrunetric Laplace equation

+þ = 0, (3.1)
zz

1.
-ôr'¡+0,,

in cylindrical pcilar coordinates. Furi:hermore, we try for a

solution of the form,

S(t,z,t) = "ott"r 
*'O (t) , (3.2)

which, fron (3.1), inmediately gives

0(r) = AIo (kr) + BKe (kr) , (3.3)

where Io and Ko are nodified Bessel functions of zeroth order.

A and B are yet to be deternined constants.

Before introducing the boundary conditions for this problem,

it is appropriate to transform the spatial coordinate s1ight1y.

This is acconplished by replacing z with z* - Ust, which

reduces the jet-1ike character to a static cylinder-Iike character.

The boundary conditions are more convenient in this latter context,

and for the renainder of this chapter hre assume this substitution

has been made, dropping however the * superscript. Moreover,

because the disturbances on the column are small we shall approximate

the boundary conditíons to leading order in these disturbances.

4. KINEIvIATIC BOUNDARY CONDITIONS

The kinernatic boundary conditions (no flow across the free

boundaries) are approxinated by
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(4. 1)Stlt':- = 6 on
C'L î

where we have neglected li,rÔ"

T = lr ,z(z),

which is <<

or 0, . Furthernore we evaluate (4.1)

the leading-order equations, which are,

Ê¡t,û = t{Rrt (kao) -BKr (kao) }

and

82(I) = k{AIr ßbo) -BKr (kbo) }

Ín (4.2) and (4.3) o is related to o by

û)=o-kUoi

on r = ag,bs, to give

(4.2)

(4.3)

(4.4)t

because of the ner{, no$r rrmovingrr, coordinate system

are nodified Bessel functions of first order.

11 and K1

5. DYNAMIC BOUNDARY CONDITIONS

Before introducing the appropriate pressure conditions on

the boundaries r = ît ,z(z), we consíder the undisturbed annular

cylinder. Given that we know the free surfaces r = a0 and r = bo

this uniquely prescribes the pressure difference (cf. Chapter 2)

to be

- ^(t 1\p=-r(ñ.;) , (s.r)

that is an underpressule which keeps the surface tension forces

in equilibriun. If the pressure difference between the inside and

outside of the annulus is not the value given in (5.1) then the

straight annular cylinder is not an equilibriurn situation, and in

actual fact must be either tlcontractingil or rrexpanding" in the

sense of Chapter 2. We cannot study the instability of these jets

with the analytic techniques of this chapter. However, we can
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expect some insight into the general mechanism of instability, for

annular jets, by studying the annular cylinder subject to (5.1).

The appropriate approximation to the dynamic boundary

condition is given by (Bernoullits Equation)

tr_
p

on r = aorbo (s.2)

Here, we have neglected the velocity head, which is small, and

again evaluated the expression on r = ao,bg. I is the pressurep'
on the surface of the jet resulting fron surface tension forces

and pressure differences across the annulus. ry is the
p

equilibriun pressure outside the jet, that is for r > bo.

Equation (5.2) , upon invoking (5.1) and using the surface-

tension-curvature results from Chaptet 2, leads to the following

two equations,

(s. 5)

D
*r-=

p0

t¡{Aro(kao) + BKoftao)} * erär* - k2} = 0 ,

and

o{Alo(kbo) + BKoftbo)t - trlrfr.- k2} = 0 (s.4)

These two equations, together with (4.2) and (4.3) give four

equations for the unknowns, 0,A,8 and

Y=
Êr
ê2

(s.s)

Thus in principal hre can now find ûJ,A,B and Y as functions

of k, ild, in particular, determine the dispersion relationship

(tl = o(k).

'i



60.

6. THE DISPERSION RELATIONS

It is convenient to non-dimensionalíze (4.2), (4.3), (5.3)

and (5.4) by scatíng radial and axial lengths with respect to bo.

The following equations result,

\etn -- rc{nrr (r<ß) - BKr (rß) } , (6.1)

82(lJ = r{nr11r1 - BKr (r)} , (6.2)

(6. 3)

and 
,

û,{Aro(K)+BKe(rc)}=rro-#t-,<2}, (6.4)

where ¡< = kbo and B = ao/bo. Thus, the jet we are now concerned

with has outer radius 1.0 and has 0 < ß < l. Eliminating the

constants A and B from these four equations leads to

$oittro (rß) Kr (r<) +K0 (Kß) rr (r<) ]-{ro (rcß) Kr (rß)+Ko (r<ß) rr (r<ß) }}

o{Rr6¡rg¡ + BKq(rcß)} = - ,.rõfr{B+ - "'}

=-Y "')
(6 .s)

and

Sittf ro (r<)Kr (r<) +Ke (r<) rr (rc) I -[ro (rc) Kr (rcg) +Ks (r) rr (r<ß) ] ]

= #oft - r2j , (6'6)

where A = Kr(K)Il(Kß) - Ir(rc)Kr(rß) / 0, for any real K,ß

except if ß = 1. In addition, if we scale time with respect to

/r\%
(5ft , and use the relations 9.6.15 from page 375 of Abrarnowitz

and Stegun (1972) the following equations result, namely

4#trro(r<ß)Kr(rc)+ro(r<ß)rr(r)r - å] = -t{Bi - -'} , (6.7)

and

5o{l [ro (r)Kr(r<ß)+Ks(r<)rr (r<ß)]] = {r - 12}. (6.8)
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Ponstein (1959) elects to eliminate y fron (6.7), (6.8) and

obtain a fourth order polynomial for 0J, in fact a quadratic in

62, where the coefficients are functions of K. This can be

misleading, and we shall see it is necessary to retain both y

and o to clearly understand the instability process. This is

particularly so when. considering the ß * 0 limit, when Rayleights

results should be obtained. The equations we choose to work with

are the following,

,"1++]å,. r,ro (rß) Kr (rc)+Ke (rg) rr (<) q+) (I o (r) Kr (rß) +Ko (r<) r r (rcß) ) l

(6 .e)

(6 .10)

(6. r1)

I
rß =Q,

UJwhich arises when
EÃ

is eliminated between (6.7) and (6.8), and

t12
rA {1-r2}

i I ro (rc) Kr (<ß) +Ks (r) r r (r<ß) ]

I
-,, (*, . 'e+;hl-,)'

(6.10) is a símple rearrangement of (6.8), however this enphasises

our approach. Nanely, for a particular K, we solve (6.9) for

two roots yr and \z which represent two different modes of

instability. Corresponding to each of these modes, there ís a

growth rate, in time, given by substituting Yr and \z into (6.f0).

We nay represent the solution of equation (6.9) as

'(i ¡z =

n'here g is the coefficient of y in (6.9). Now the discriminant

(terms under the square root sign in (6.11)) can be reduced to the
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discrininant arising in the quadratic equation examined by

Ponstein (1959), which can be shown to be non-negative. Thus

equation (6.9) always has real roots \t, \2. The physical

significance of this is that for y > 0 the disturbance.on the

outer free surface has the same phase as the disturbance on the

inner free surface. If y < 0 the disturbance on the inner free

surface lags the disturbance on the outer free surface by half a

wavelength, spatially. (That is, considering the jet at any

particular instant of time. )

The magnitude of y indícates to what extent a disturbance

is anplified'fron the inner surface to the outer surface or viçe

versa, and this provides inportant qualitative information on the

breakup of annular columns.

Because y is always rea1, equation (6.10) always gives ul2

reat, or (o-iuok)2 [scaled wirh respect to (fi)., real.

Thus, as far as instability is concerned, that is for roots with

o real and positive, we only need consider positive values of ti2

from equation (6.10). Figures 1 to 4 present the results for o(t<)

and y(K), for two different rnodes of instability. These modes

have clear physical interpretations in the two limiting cases ß * 0

and ß * t. Holever in the intermediate region their nature is

somewhat more obscure.

7. RESULTS

The first ímportant difference between the modes of instability,

is the scales on the vertical axes. The axis for mode-one

disturbances is stretched, approxinately by a factor of 1000,

relative to the axis for mode-two disturbances. It is not correct,
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however, to assume that mode-two instability, while having a

far greater growth rate, is ultinately responsible for the break-

up of the jet. An inportant case that highlights this featu¡e is

presented later.

Mode-one disturbances are only unstable for wave numbers

less than 1.0. Thís merely states that the wavelength of the

disturbance must be greater than the outer circumference. This

mode bears great sinilarity to Rayleights solid-cylinder

instability; indeed, the lirnit ß * 0, for this mode reproduces

Rayleights solution. Figure 5 shows this clearly, and results for

the naxinum rate of instability, as mentioned in 92, are also

shown.

It is clear however, that node-one disturbances, by Rayleighrs

naxirnum-mode principle, are of lesser importance than rnode-two

disturbances. Mode-two disturbances, while having nuch larger

growth rates, are also unstable for much shorter wavelengths, down

to Zrao. As far as the ß * 0 limít is concerned, this is

somewhat disturbing, sínce strictly speaking it inplies that the

solid cylinder (Mode-one) results are not recovered. Ponstein

obtains two solutions to the asymptotic dispersion equation as

ß * 0, namely Rayleighrs solution and another, much larger, value

for the growth rate. Rather than reco gníze these two solutions as

separate modes of instability, with quite different physical

interpretations, Ponstein argues that the second, larger, solution

is a spurious root, arising fro¡n the neglect of air velocities in

the inner core (r < ao). Whíle there is no doubt the neglect of

air velocities in the inner core for this problen is increasingly

dubious as ß * 0 the explanation we propose is far more satisfactory.
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8. SMALL ß LIMIT

As ß * 0, there are two solutions to the dispersion

equation. Clearly, frorn Figures ,5 and 4 the mode-two disturbances

have y + -, and except for very short wavelengths, o à -'

Asynptotic formulae for these solutions, as found by Ponstein

(for the growth rate) and fron equation (6.9) for the amplification

factor, are

and

as ß*0

as ß*0

(8. 1)

(8.2)û)2+-

where K is required to be in the range

I0<<r<<
ß

That is, r< is not too small and not too large. Now clearly

(8.2) irnplies extremely large glov/th rates; however this does not

necessarily mean a rapid break up of the jet into droplets. we

¡nust first interpret the result that Y is large, frorn (8.1).

Given the definition of y from (5.5) the obvious conclusion when

y + - is that ez -> 0, which says for mode-two disturbances there

is no disturbance on the outer free surface. Thus, for this mode,

the oscillation of the free surface occurs onLy at the imer fz'ee

surfqce. The rapid growth of these disturbances does not ultínately

result in the jet breaking up, but rather of the inner air core

disintegrating into smaller bubbles. This disturbance, even the

non-Línea.z, fragmentation of the air core' is still only a snall

perturbation to the outer free surface, so the instability of the

outel free surface, thus the jet as a whole is governed by the



70

farniliar Rayleigh solid-cylinder solution.

The problem of fragmentation of the air core into smaller

bubbles is analogous to the ttHollow jet" problem discussed in

Chandrasekhar (1968), Furthermore, the time scale for such hollow

jets is (#)'t thus the disparity in sizes of the growth rates

for mode-one and mode-two disturbances is no rnore than a

reflection of greatly different time scale from the hoIIow jet

to solid jet regirnes.

We now have the following physical interpretation of jet

breakup, when the inner air core is small. A jet (with s¡nall ß)

is disturUed ifigntly from equilibrium; initíally (and for a very

short time only) mode-two dominates, and the inner air core breaks

up into smaller bubbles. This whole stage is nothing but a smal1

perturbation to the outer free surface, however it is to be expected

that this perturbation is precisely the disturbance that grows,

governed by the mode-one dispersion relationship, and results in

the fragnrer,rtation of the jet into smaller droplets. Thus Rayleights

results for a solid cylinder are recovered from the ß * O limit,

provided $re recognize that the inner core is only a perturbation

to the j et as a whoIe.

A further unusual feature of the small-S lirnit is the

instability of extremely long wavelengths, for node-two type

disturbances. This prediction is absent in the I'hollow jetrr theory

and makes the limit atrsingular perturbation[ ty¡re where an alternate

asymptotic solution is required for small K. Physically it means

the inner core will be highly unstable for small long range changes,

for example slol variation of the ambient pressure along the jet.
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In practice however, jets will not be of sufficient length to

adnit long wavelength instabilities.

Clearly, for snall ß (i.e. thick jets), the interpretation

of nodes one and two is straightforward. Another case where such

distinction can be nade is for vety thin jets, that is, ß * 1.

9. THIN JET LIMITS.

Equation (6.9), when considered in the limit ß * 1 produces

two solutions for ^(, namely y = tl. These lepresent 'two

different types of waves on thin sheets, namely sfmmetrical and

antisymnetrical, which are illustrated in Figure 6. Taylor (f959a)

discussed such waves, on a plartan sheet of liquid. Ponstein does

not recognize the two forms of disturbance, but observes that thin

annular sheets are extrenely unstable. This is because, for anti-

symmetrical waves, (¡2 + - as ß * I . Symrnetrical waves on the

other hand appear to be much more stable.

10. INTERMEDIATE MODES

Insight into the physical interpretation of node-one and

¡node-two disturbances, away from the extreme linits of 58 and 59,

is ¡nuch less clear. There must now be significant interaction

between disturbances on either free surface; however it is still

possible to generalize the symnetric and anti-symmetric waves of

59. We see that for mode-one oscíllations, y is restricted to

the range 0 > y > -1. For example, mode-one disturbances on the

inner surface 1ag behind the mode-one disturbance on the outer

surface by half a wavelength. This is analogous to the symnetrical
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waves on thin sheets. On the other hand, ¡node-two disturbances

always have y > 0 and thus have no phase difference across the

annulus. These nay be thought of as anti-syrunetrical waves. The

general conclusion is that anti-symmetric waves (disturbances) are

much more unstable than the corresponding symnetric disturbance.

This can be rationalised by recognízing that for sylrunetric

disturbances, thé rneän radíus of the annulus is altered by less

than for anti-symmetric disturbances. This is likely to result

in greater stability for synnetric disturbances.
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