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SUMMARY

In this thesis annular jets, falling vertically (when
gravity 1s included), are considered. Thus in any horizontal
plane the jet lies between two concentric circles. The three
main jet parameters examined are surface tension, jet thickness
and a pressure difference across the annulus. Various types of
dynamic behaviour are also considered, including formation of

jets from nozzles and stability of jets.

Techniques are developed where the behaviour of such jets
may be described mathematically, and solutions for a wide

spectrum of jet parameters presented.
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INTRODUCTION

This thesis describes research on three aspects of the
behaviour of axisymmetric annular jets. These are categorized

as follows:

(i) Formation of a jet from a nozzle (Chapter 1),
(ii) Computation of the free surfaces for a free slender
jet (Chapter 2),

.(iii) Stability of an annular column (Chapter 3).

Each of these topics, though distinctly different in so far as
the analysislis concerned, is unified by the practical considerations
of real annular jets. Such jets have a wide spectrum of applications,
ranging from irrigation sprinklers to 'shrouding'" of nuclear
reactors. However, discussion of these and other applications is
omitted from this thesis.

In general, throughout this thesis we examine irrotational
flows of an ideal fluid, usually thought of as water. However, at
times, the influence of surface tension on the free surfaces of
the jet are included. This allows us to use potential theory for
the mathematical formulation of the problem, that is, we aim to
find the velocity potential in the region of flow, together with
the free boundaries enclosing this region. Although, in general,
the problem thus formulated cannot be solved exactly, the following
three chapters introduce approximations that facilitate the
solution task.

Problem (i) is composed of a flow with mixed rigid boundaries

(pipes) and free boundaries; this leads to a boundary-value problem



with mixed normal and tangential (derivatiVe) boundary conditions.
For the case of a slender nozzle this problem may be linearized in
the "transition' region, close to the pipe orifice, where the flow
is necessarily not slender. The free jet downstream from the
transition region depends on one parameter, K, obtained by
solving the "transition flow'" problem. This parameter is related
to the "initial" slope of the slender jet discharging from the
orifice, which if known permits the free boundaries to be computed
(cf. Chapter 2).

For a certain class of nozzle (those with the orifice in a
horizontal plane), the linearized problem can be solved using
eigenfunction expansions. The resultant algebraic system is
solved numerically on the computer, and results for Kk presented.

Problem (ii) in exact form is simplified by making use of
slenderness approximations. That is, we seek asymptotic expansions
for the velocity potential and the free boundaries. This leads to
a non-linear ordinary differential equation to solve, which is
accomplished using a standard numerical algorithm (see page 28.).
Solutions for a variety of parameters (related to jet thickness,
surface tension and a pressure difference across the annulus) are
investigated, primarily discussed with respect to a geometric
property of annular jets, the '"collapse-length'. This length is
the distance from the source of the jet, where the "initial"
conditions are applied, to where the inner free surface coalesces
and the jet becomes a solid cylinder.

Further work in Chapter 2 discusses thin annular jets, where
analytic solutions are found when these jets are also slender.

Theories exist in the literature for such thin (non-slender)



35
annular jets, or '"water-bells'" as they are sometimes known, and
comparisons of the results are made. Our more-rigorous techniques
(formal asymptotic analysis) provide a better understanding than
some of these theories.

Chap.er 3, discussing problem (iii), uses an infinitesimal
wave-like theory to aid in the understanding of how disturbances
grow in time (temporally), on the surfaces of annular columns.

That is, a periodic time dependent perturbation to the free surface
is considered, and terms to first-order in amplitude are retained
throughout the analysis. We obtain from this analysis a dispersion
relationship and an amplification relationship, which describe
respectively, the growth rate in time (as a function of disturbance
wavelength) and the interaction of the disturbances on either

free surface. The analysis is not entirely ''new', however a
different interpretation is given to these 'old" results, augmented
by some new results. This appears to lead to more satisfactory
conclusions than have appeared in the literature. In particular
explicit physical explanation is given for the case of the "break-up"
of annular columns, where the inner air core is a small perturbation

to the jet as a whole.
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CHAPTER 1

W

ANNULAR NOZZLES

1. INTRODUCTION

It was recently shown, Tuck (1982), that the free surfaces
r = a(z),b(z) of a slender free annular jet may be computea by
solving a non—lineaf ordinary differential equation, as an initial-
value problem. This task is relatively straightforward, and such
solutions may be considered almost analytic, in comparison with
the enormous numerical task of computing the free surfaces of
slender streams with arbitrary cross sections. The latter problem
has been tackled by Geer and Strikwerda (1981).

The emphasis of this chapter is to quantify the initial
parameters of the free annular jet, namely the inner and outer
radii, and one of the initial longitudinal slopes, given that the
jet issues from a slender, annular, pipe. We define a nozzle as
the abrupt end of a pipé from where a jet may issue. The ''pipe flow"
is readily computed, to leading order in slenderness, by conservation
of mass at each =z-section along the pipe. This gives the velocity
in the =z-direction and also the direction of flow at the inner and
outer pipe walls.

It is important to note, as was indicated in Tuck (1982),
that the initial free jet flow is not just an extrapolation of the
emerging pipe flow. The reason for this is that, in the pipe flow,
there are four parameters at each section, namely the two pipe radii
and two longitudinal slopes of the pipe walls. If these are all

independently specified, the longitudinal velocity U(z) is determined



at each section, by conservation of mass. .However, once the jet
is formed, the velocity is specified at each z section by the
condition that the free surface pressure be atmospheric, and
conservation of mass then requires that the inner and outer radii
and the corresponding slopes are no longer independent. "Thus a
jet cannot be thought of as an extension of the pipe. Tuck (1982)
resolves this paradox by noticing there must be a region of flow,
the nozzle or transition region, which is non-slender.

- The transition flow problem is far more difficult to analyze
than either the slender pipe flow or the slender jet flow. However
the region of this flow is confined to very near the actual
termination of the pipe and is to leading order independent of the
local pipe curvature at the nozzle. Thus, we may assume that the
pipe geometry varies linearly with =z, and the velocity, U, = U(O0)
say, dominates the flow, and is constant in the transition region.
Using these assumptions Tuck (1982) formulated the axisymmetric
boundary-value problem and gave the matching procedure needed to
determine the initial parameters of the free jet. In particular
the initial radii of the jet are equal to the nozzle radii, and the
primary task is to determine the initial jet slopes, given the
nozzle slopes.

The equivalent two-dimensional class of problems has been
studied extensively, Geer and Keller (1979) giving comprehensive
techniques and matching procedures to solve a wide range of problems.
However the limiting case of thin annular jets, which may be
approximated by the analogous two dimensional problem, and, for
which Tuck (1982) gives the required matching formulae for the
initial parameters, does not seem to be included in Geer and Keller

results.



2. EQUATIONS FOR INITIAL SLOPE

The basic problem we address ourselves to is the canonical
"potential' problem defined in Tuck (1982). We also adopt the
notation from this publication, namely ¢ is the canonical
- potential, ap,by the inner and outer radii respectively and O
denotes the pipe part of the transition zone while 0 denotes the
jet part of the transition zone. Thus a'(0_) is the slope of the
inner pipe and b'(0_) the slope of the outer pipe. The output
parameter that we wish to compute is the jet's initial inner slope
a'(0+). The most general problem also allows the nozzle to be
offset, that.is, the outer pipe terminates at 2z=0, say, and the
inner pipe at z = L. We shall initially confine our attention to
the case L=0; thus the pipe ends at 2=0, at both sides of the
annulus, and the free jet begins.

The boundary-value problem for Y in this case is the following.

We solve the axisymmetric Laplace equation,

@
N
<
+
=1
o)
|2
+
(5]
N
-<-
1

=0, (2.1)

Q
2]
N

in the pipe and jet (ao, < r < by), together with the boundary

conditions,

N
o

Yy =0 on 1 = ag,byp 2z (2.2)

and

V
o

Y =2z on r = ag,by z (2.3)

Once this problem is solved for Y, a parameter k 1is defined by

(bo-a0)k = lim ¥, (ao,2) - (2.4)

z —»®©



It is of interest to note that (2.1) : (2.3) define ¢ only
up to an arbitrary constant; however, in view of the differentiation
in (2.4), this non-uniqueness is irrelevant, and it is convenient to
impose the artificial condition ¢ -0 as 2z - -» ., The solution
of (2.1) - (2.3) together with this added condition is unique.

‘The matching equation, with (2.4) as the definition of «k, 1is

given by Tuck (1982) (p. 15 Eqn. (5.11)) and is
a'(0,) =a'(0) + (bo-ao)K{gz—%?(bob'(O")'aoa'(0_)) = fz} » (2.5)
0 0 0

where g is the usual gravitational constant and U, the dominant
velocity component of the stream. The problem for k is independént
of the nozzle slopes a'(0_ ) and b'(0_) and can be further
simplified if we scale all lengths with respect to ap, and put

= Do
B =3

as the new geometrical parameter. The new '"non-dimensional"
canonical potential, scaled with respect to aj, satisfies the
following boundary-value problem, namely the axisymmetric Laplace

equation,

2
%%—+ 0 f =0 for 1 <r<2§8, (2.6)

3%y
or2 * 9z

M

with boundary conditions

$p =0 on r=1, and 2z <0, (2.7)
and

Y =z on r=1,8 and z = 0. (2.8)

K 1is now a function of B only (and L also in the general case)

and is given by the revised form of (2.4) as

(B-)x = lim ¥y (1,2), (2.9)

Z oo



together with the new matching equation,

a'(0,) = a'(0) + (B 1)|<f6221(sb'(o )-a'(0)) - ga"} . (2.10)

Conservation of mass in the free jet, z > 0, leads to the following

equation

1 - 1 ga
Bb'¢0,) = a'(0,) - EU%—(BZ-U , (2.11)

which determines the outer initial free surface slope, once the

inner slope a'(0+) is found from (2.10).

3. SEPARATION OF VARIABLES EQUATIONS

To solve the boundary-value problem (2.6) - (2.8), we need to
use a numerical approach. Because of the geometry involved it is
logical to use a separation of variables technique, and this
approach is outlined below.

In the upstream region, z < 0, subject to the boundary

condition (2.7), we use the eigenfunction expansion
(20}
Qnz
Y(r,z) = XlAnUO(anr)e“ s 3.1)
n:

for the canonical potential ¢. In (3.1) Uo(anr) is a cylinder

function defined by
Uo(anr) =Y, (ocn)Jo(anr) - Jl(an)Yo(ocnr) 5 (3.2)

where Jo(r),Yo(r) are the zeroth order Bessel functions of

the first and second kind respectively. Similarly J;(r),Y:(r)
are the first order Bessel functions. The form of (3.1) satisfies
the axisymmetric Laplace equation and the eigenvalues, o , are

computed by requiring



Ule) = VS B) = 0,
which leads to the following equation,

Up(e B) = Yi(@)J1 (0 B) - Ji(a)Y1(eB) =0 .  (3.3)

N
A
()

Thus (3.1) satisfies the boundary value problem for but
as yet, the coefficients A.n are unknown.

In the downstream region, =z = 0, subject to the boundary

condition (2.8), we use the eigenfunction expansion

il g o 5 .
Y(r,z) = (32%-37%) + Bologr + Aq + [ B Dy(y r)e of | (3.4)

n=1

’

In this case the cylinder function Do(Ymr) is given by

Do(YmT) = Yo(y )Jdo(y 1) - Joly )Yo(y 1) (3.5)

from which the boundary conditions

Do(y) = Doy B) = O

lead to

Yo(y }Jdo(y B) - Jo(y )Yo(y B) =0 (3.6)

for the determination of the eigenvalues Y, The remaining terms
in (3.4) serve to make the boundary conditions for the cylinder
function, Do(Ymr), homogeneous. The logarithm term contains the
essential output quantity of this investigation, By, which is the
only (non-constant) non-zero term at downstream infinity.

Equation (3.4) satisfies the boundary value problem for 1z = 0;
however the coefficients Bn, as were the Ah’ for n=0,1,2,...

are as yet undetermined. To solve for these remaining unknowns we
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require (3.1) and (3.4) and the corresponding 2z derivatives, to
match at the mutual boundary z=0. This leads to the set of

equations which must hold for all r in 1<r<2©g:

o 1 oo
-X AU (1) = -z7% + By log T + Ay + _21 B Dy (v, 1) (3.7)

n=1 n=

and
[o 0]

" [+ o]
LaAUpr) =~y B0k, (3.8)
n=1 n=1

These can, in principle, be solved for the unknown coefficients
A, q\ for n=0,1,2,.... No solution, however, in closed form,

can be found to this set of equations.

4. NUMERICAL PROCEDURE

We first consider the problem of solving (3.3) and (3.6) for
the eigenvalues o and Y, respectively. For large o and i,
asymptotic formulae, for these eigenvalues, are given in Abramowitz
and Stegun (1970) (p. 374, Eqn. 9.5.28). These equations provide
good initial iterates, for an iteration procedure to solve the
non-linear equations (3.3) and (3.6). Using Newton's iteration
rapid convergence to the correct root is found for B not too large.
In the latter case the asymptotic formulae are not valid for the
first few roots and an alternative means is required for providing
initial guesses. Tables, again from Abramowitz and Stegun (1970)
(p. 415) and linear interpolation are adequate for this purpose.

An initial attempt to solve the equations (3.7) and (3.8) was
by the method of collocation. This, however, proved to be entirely
unsatisfactory, due probably to the highly oscillatory nature of the

Bessel functions in (3.1) and (3.4), for large eigenvalues. The



i

resulting matrices obtained by requiring equations (3.7) and (3.8)
to be satisfied at N+1 points, and truncating the infinite series
after N terms, are highly ill-conditioned, and unreliable results
are obtained with any of the inversion packages tried.

The next attempt at solving equations (3.7) and (3.8) for the
unknowns Ah’ Bn (n=0,1,...) is to use the orthogonality of
Cylinder functions. More precisely it will involve a hybrid method
of solution, combining orthogonality and collocation to arrive at
a consistent, and invertible, system of algebraic equations.

We first differentiate (3.7) and (3.8) with respect to r to

arrive at the new equations

[=2] 1 oo
Y oAU () = 5T - Bo/r + ] v BD (Y1) (4.1)
=1 =1

n n

and

Y a’A U (@) = -} y?BD (v1) . (4.2)
=1

It
M8

n n

The reason for considering equations (4.1) and (4.2) will become
evident shortly. The cylinder functions Ul(dhr) and Dl(Yﬁr)

are given by

Up(e, ) = Y (0 )J, (e 1) - Jp(a )Y, (o, 1) (4.3)

and

D, (Yn T)

Yo(¥ )1 (v, 1) - Jo(y Y1 (v, 7). 4.4

Now from Watson (1958) (p. 466) we get the following definite

integrals

B8
I D, (v r)Dl(Ymr)dr 0 if m#n
1 n

L18%02(By ) - D2(y,)] if n = m.
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Thus, using this orthogonality relation, and also noting that

B _ 1 8
J Di(y r)dr = [- ?—ﬂo(ymr)]l =
1 m

we find that equations (4.1) and (4.2) become, after multiplying

by rDI(Ymr) and integrating with respect to r,

g i
1 1
and
T 1
Lo, =-v, B 5 (B*D7(v,8) - Di(v,))
n=
where '
[B
A;m = ] rDl(Ymr)Ul(uhr)dr
1
and
I' = fsrzv (y r)dr
m J 1 Ym )
1
for m=1,2,3,... . Furthermore, upon elimination of Bm, these

equations reduce to give

, for m=1,2,... . (4.5)

mn n

E (1 + ——ar- A = ;r

The integrals A;n and Fé may be written in closed form as

n

A= R {BD) (v BV, (0 B) - Dy(y, IV, ()}

= az
and 5
r = §5{801(ym6) -0, (v )} . (4.6)
The algebraic system (4.5) may be written in a more compact
form as

AQ =T, “4.7)
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where

=
1]

=
|

+ Sy
[, (1 AT
A= [A]

and T=["]=[30"], with A' and T' as given in (4.6)
This resultant form of algebraic equations illustrates that (4.1)
and (4.2) .are indeed the correct equations to study when applying
this solution procedure. (4.7) is a consistent system to solve for
the unknowns Ah’ n=1,2,... , and from these we determine the
remaining unknowns.

The numerical procedure we adopt is to truncate the series in
(4.5) and solve for the unknowns AiN) for n=1,2,...,N. The
superscript N indicates this solution is in some sense an

approximation to the actual solution, A, we seek. The approximate

problem we now solve can be expressed as
AN oY (4.8)

where AFN) is an NxN matrix given by [Amn] for m,n=1,2,...,N.

A(N)' is the Nx1 solution vector and P(N)

is an Nx1 column
vector given by [Fm] for m=1,2,...,N. Any standard package may
be used to invert AFN) and thus obtain the solution é(N) to this
system of equations.

This numerical procedure is satisfactory provided the approximate
solution é(N) converges to a limit as N - o, Naturally we require
(N

this limit to be bounded and we furthermore expect A ° + 0 as

n,N > ®, This latter condition is an a priori justification of the
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truncation of the series (4.5) which results in this algebraic,
solvable, system of equations. One further check on this numerical
solution is the comparison of the limit B - 1, or thin annular

jet limit and we do this later on.

5. COMPUTING KAPPA

Having computed the coefficients 3Ah by orthogonality we now
wish to compute k. This requires solving for the unknowns Ao and
Bg. We note that the Ah’s uniquely define the 21'5 for n > 1.
To do this we return to the method of collocation, specifically

evaluating (3.7) at r=1 and r=8. The resulting equations are

and

132 + 2 AhUO(uhB)

Bo 10g8+A0 3

n=1
Eliminating A, from these two equations gives
Bo 1 8-1(821)+°§A{U(B) Uo (o, )} (5.1)
oog,—é—l N ln 00Ln -oOtn :
n:

and by virtue of the definition of Kk we have
1 -1
K= (B - 3)(B -1 . (5.2)

The corresponding approximate numerical results are given by

the equations

N
log 8= 28%-1) + J AP {Uo(eB) - Uo(e)}  (5.3)
=1

n=

G

and

1

(N) 1 -
- @ -1,

K( N = (Bo

(5.4)

Equations (5.3) and (5.4), in conjunction with the method

. . . N . ;
described in §4 for determining A( 7 constitute a numerical
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method for solving the problem. This method is relatively simple

to program and makes little demand upon storage and time constraints.

6. NUMERICAL RESULTS

In practice the numerical scheme in §4 works satisfactorily.

N) (N)

The matrices A( are well-conditioned and A does indeed

converge, in some sense, to a limit. We do find, however, that

the last few terms of A(N), for example A;Ti, A;N) may be

disproportionately large. Nevertheless, this numerical artefact

. ? N i
has little to do with the convergence of < ), and tests, omitting
or includinglthese last few terms from (5.3), indicate little effect

N . . .
: ). For the remainder of this section we

on the computation of Kk
discuss the numerical results for K.

Although the convergence rates are relatively slow, with (for
moderate B) decay of error terms like N'l, the actual magnitude
of errors is small enough to allow three-figure accuracy with N v 20.
For B close to 1 convergence is more rapid and N v 10 suffices.
Difficulties begin to occur when £ becomes large, say greater
than 20. The rate of convergence is even slower and good results
need N ~ 40. It is interesting to note that this numerical scheme

1 . .
) is erratic as

. 2n+
converges only for even N. If N is odd Af "
n > « and appears not to converge. In view of the satisfactory
results when N is even this does not concern us overly much.

Results for Kk, accurate to three figures, are plotted on

Figure 1. The dashed line is a large B limit discussed next.
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7. LARGE B LIMIT

We consider equation (5.1). Numerical evidence suggests Ah
is at most O{log?B}. Thus, neglecting terms of 0{1og88-1} from

equation (5.1) and (5.2) we find that

k(B) ™ Z—%%%—g as B>, (7.1)

We have as yet little insight into the physical interpretation of

(7.1). However, if we consider the gravity-free case, g=0, we

can verify the relative magnitudes of the large B 1limit intuitively.
From the matching equation (2.10), (7.1) implies that a'(0+)

’

behaves like

a'(0,) ~ » 1Sg P10) as B, (7.2)

provided b'(0_) 1is non-zero, otherwise

a'(0.)

'j*'i‘a'g——-s- as B > o= | (7.3)

a'(0+) -

The behaviour of b'(0+) is given by equation (2.11) and either of

(7.2), (7.3) depending on the value of b'(0_), thus we have

b'(0-)

iTo‘g—B' as B + o | (7.4)

b'(0+) n

provided b'(0 ) 1is non-zero, otherwise

; a'(0.) ©
b (0+) N 26 log B as B~ . (7.5)

So clearly as B gets large the inner radius plays a decreasing role
in the determination of the outer radius. The expected, straight
cylinder, limit is verified by equations (7.4) and (7.5), giving

b'(0+) n 0, The sizes of the limits (7.2) and (7.3) can also be
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rationalized. Supposing b'(0 )} is non-zero firstly, then initially
there is some small change in the outer radius of the jet
Correspondingly, because of the large outer radius relative to the
inner radius, a more dramatic change occurs at the inner radius,
in order to conserve mass. This is evident since [a'(0+)| + © 3§
B+« in this case. If b'(0 ) 1is zero then it is not unreasonable
to expect "continuity" of slope across the nozzle for the outer radius.
In any respect, the slope b'(0+) is an order of magnitude less than
when b'(O_) is non-zero. This is then reflected in the much slower
change in the inner radius as indicated by equation (7.3).

Although we can explain the disparity of sizes of a'(0,) and
b'(0+) using the concept of conservation of mass in a slender jet,
more complicated concepts are needed to verify the actual limits

given by (7.1). This work is not pursued at the moment.

8. OFFSET PIPES

When the pipe is offset at the nozzle, say the inner pipe ends
at L/2 and the outer pipe at -L/2, there is a third region
-L/2<z<L/2 with mixed normal and longitudinal derivative
boundary conditions. In the upstream region z < -L/2 we may
still use the eigenfunction expansion given by (3.1). Similarly,
downstream, z = L/2 we use (3.4). However, in the central region
_L/2 <2< L/2 we require a new expansion. It is simple to verify

that

[o¢]
r2+1l0griCo+ § (Cne)‘“z+Dne_>‘"z)Co()\nr) (8.1)

Y(r,z) = %22 3

1
4
n=1

satisfies the required boundary conditions and the axisymmetric

Laplace equation for -L/2 <z < L/2. Co(xnr) is the cylinder
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function defined as

Coy 1) = YiA)Te( 1) - J1(A)Yo(A 1), (8.2)

and the eigenvalues, An, are roots of
Co(A,B) = Ya(A)Jo(A B) - J1 (A )Yo(X B) = 0 . (8.3)

The unknowns Ao’Bo’Co’Ah’B;’cn’Dn’ n=1,2,... are now computed by
matching (3.1) and (8.1) at z = -L/2, and (3.4) and (8.1) at
z = L/2 much in the same way as is done in the L=0 cgse.
Preliminary attempts to solve this offset problem have failed.
The matrices produced when using orthogonality are generally ill-
conditioned and, if not, no convergence is evident after truncating
the series at N=20. Of course, to use higher truncations becomes
very expensive since the matrices are 2N x 2N and a better numerical
method is more desirable than lengthy computer runs. One case where
good results are obtained by this method is the large L limit,
(that is large relative to B-1), where k rapidly tends to zero,
implying continuity of the inner slope a'(0+) = a'(0 ). This is
as expected. As of yet, we have not devised a means of computing

k(B,L) for more general L and this remains as future work.

9. CONCLUSION

We have devised a satisfactory numerical method for computing
k(B) for nozzles with no offset. Fortunately, this is common for
practical nozzles and the remaining task of computing «(B,L), L#0,
is of lesser importance.

There is considerable evidence that «(B), computed in 85, is

correct. We have the analytic two dimensional, comparison as B > 1,
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namely k - 0.5, which follows from Tuck (1982) (p. 14 (5.14))
with L=0. This is clearly seen to be the case. We also have the
intuitive arguments of 66 justifying the large-8 numerical results.
As a consequence of this work, practical problems involving
slender pipes producing annular jets may be solved. For'instance,
given a pipe extending from z = -© to z=0, say, and specified
by r = a(z),b(z) we may solve for the free annular jet produced.

The initial (z=0) velocity of the jet is given by

Up = (9.1)

ﬁ(bg—ag) iy

where Q is.the mass flux in the pipe and may be given by
ﬂ(bi—ai)Uw. The local nozzle slopes at z=0 are b'(0), a'(0)

and, given B = bp/ap, we now know «. Thus, the initial jet slopes
are known, a'(0+) by (2.10), b'(0+) by (2.11). The free stream-

lines may now be computed as described in Tuck (1982).
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CHAPTER 2

ANNULAR JETS WITH SURFACE TENSION

1. INTRODUCTION

Tuck (1982) gives an analysis of slender, annular, jets of
water. The water is assumed to be an ideal fluid and also to be
flowing irrotationally. Two features, namely surface tension
forces and a finite pressure difference across the annulus, are
not included in the analysis of Tuck. The former, surface tension,
was assumed by Tuck to be negligible, and in this chapter we examiﬁe
circumstance§ when this assumption is likely to be invalid. Not
surprisingly, thin annular jets, sometimes called 'water-bells" or
annular sheets of water, depend predominantly on surfaeéktension
forces and also upon the previously mentioned pressure difference.

Literature on water bells dates back to Boussinesq (1869).

More recently this area of research has been pursued by Lance and
Perry (1953), Taylor (1959) and Hoffman, Takahashi and Monson (1980),
the last of these also in the context of slender jets. In all of
these publications, the authors assume that the annulus is sufficiently
thin, so that radial variations across the annulus may be disregarded.
In particular then, the velocity and shape of the water bell depend
only on the longitudinal coordinate (or equivalently the arc-length),
thus reducing the problem to an ordinary, though non-linear,
differential equation for the shape of the stream. We shall see
however that the thin jet limit is only formally correct when the
surface tension forces (and pressure difference) are of comparable
magnitude with p%%?—, where ao 1is the initial inner radius, Up

the initial velocity and h the annular thickness, that is the
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difference between the inner and outer radii, which is supposed small.
Indeed, if this assumption is not true, namely if these forces are
of magnitude much greater than the annular''thickness'we propose
'new" equations governing the jet's shape.

In the following sections we derive, and solve, the.equations
of motion for a thick, but slender annular jet. This analysis is
much the same as Tuck's, though incorporating surface tension and
pressure differences. Given the assumption of an ideal fluid,
flowing irrotationally we seek the velocity potential and the
boundaries as a solution. The solution of this non-linear, boundary-
value problem, after slenderness approximations,can be reduced to the
task of solving a non-linear ordinary differential equation, as an
initial value problem. This is readily accomplished numerically.
We then choose to examine the thin-jet 1limit via this differential
equation, by letting the thickness tend to zero in the thick-jet
problem.

For the moment we do not consider the capillary instability
of these jets, a question which is intimately connected with surface
tension, but rather the shape of the free boundaries. In particular
we shall be concerned with the longitudinal length measured from the
genesis of the jet to the point, if it exists, where the jet ceases
to be an annulus and becomes a '"solid" cylindrical jet. This length
is sometimes called the collapse or convergence length. In the
ideal fluid case, without surface tension and a pressure difference,
as studied by Tuck (1980), the convergence length is a function
of the initial ratio of surface radii and longitudinal surface slope.

In particular there exists some such jets that fail to collapse.
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Including surface tension alters this conclusion somewhat, and it
appears that ultimately surface tension dominates and causes the
jets to collapse, regardless of the initial conditions.

The inclusion of the pressure jump across the annulus is
énalogous to having a finite cavitation number in the theory of
cavities (see for example Gilbarg (1960)). Formally however, to
use the slender flow approximation this pressure can only be of the

2
order of p%ﬁ?—or less, that is to say small when compared to the
square of the jet velocity. The added feature of the pressure jump
raises an important question, namely whether this pressure jump is
specified a priori, and thus may take arbitrary, albeit small, values.
Alternatively is there some physical constraint that determines a
unique pressure difference for a given jeé? Such questions are
likely to be related to the stability of these annular jets, and
unsteady evolution of such jets. For the moment, we treat p, the

pressure difference, as an input parameter and proceed to solve for

the free jet surfaces.

2. EQUATION FOR THICK, SLENDER ANNULAR JETS

The notation we adopt is taken from Tuck (1982), namely we
put ¢ equal to the total velocity potential in the jet and have
r = a(z),b(z) as the inner and outer radii of the free jet. Under
the assumption of slenderness Tuck (1982) gives the following

equations for @, the perturbation potential,

L=
+
t

©
1l

-U'(z), for z> 0, a<r <b, (2.1)

where U(z) is the leading order velocity in the jet. The kinematic

boundary conditions (no normal flow) are approximated by
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- a(z) (2.2)

L=
1}

a'(z)U(z) 220, r

and o)

b'(z2)U(z) z20, T

b(z) . (2.3)

The dynamical boundary condition (constant pressure on the free
surfaces) given by Tuck (1982) are augmented by two additional terms,
namely the pressure jump p, and the contribution to pressure on
the free surface by ﬁniform tension T. The resultant equations in

exact form are,

%¢: + %¢f - gZ + g +-B£%$El = on T = a(z), (2.4)

together with

Plr,z) | C on r
(Y

%‘1’5 * %4’,2 - gz b(z), (2.5)

where C 1is a constant. P(r,z) 1is the surface tension pressure,

given by

P(r,z) = T(%T + ﬁ%} s (2.6)

where R; 1is the radius of curvature at (r,z) 1in the horizontal
(z = constant) plane and R, the radius of curvature in the
vertical (6 = constant) plane. We now wish to make the appropriate
slender flow approximations to (2.4) and (2.5). The existence of

a leading order velocity U(z) requires the cross flow to be small,

which can only occur when EL%fil

1.2 P 12
<< 2U (z) and 5 << 2U (z) for
all z > 0. Provided these inequalities are true we can makethe
normal slender flow assumptions and furthermore must have Rz >> Rj.

Intuitively these inequalities say that a slender annular jet cannot

sustain a large pressure difference across the annulus, and remain
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slender. Similarly, for large values of thé tension T, the
stream will tend to have large curvature R,, however for typical

. parameters, in practical situations, T 1is sufficiently small
numerically. Given that we have a slender jet, we may approximate

(2.4) and (2.5) as follows. Equation (2.4) reduces to

12 T 1 p_ 2 _
U(z)@z + §®r - = + 5= c - 3U on r = a(z), (2.7)

and (2.5) becomes

=C - %Uﬁ on T =b(z) . (2.8

1.2 T 1
U(Z)@z + 2®t + 5

b(z)

The leading order equations from (2.4) and (2.5) give
2 %
U(z) = (U + gz), z = 0. (2.9)

It is important to note the difference in sign of the radius of
curvature, R;, on r = a(z) and r = b(z). This is because one
surface is convex and the other concave with respect to the fluid-
air interface. For our purposes it is unnecessary to evaluate the
constant C, but in principal it can be evaluated as the left hand
side of (2.7) at z = 0. Uy is the velocity of projection of the
jet at the z = 0 section, and g the acceleration due to gravity.
We use the notation ag = a(0) and by = b(0) to denote the
initial radii of the free jet surfaces.

The boundary value problem we have to solve is (2.1) subject
to the conditions (2.2), (2.3) and (2.7), (2.8). We next consider

the solution of this system.

3. SOLUTION OF THE BOUNDARY VALUE PROBLEM

Equation (2.1) has the general solution

d(r,z) = A'(z) logr + u'(z) - %rZU'(z) y (3.1)
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involving two unknown functions of 2z, denoted by A'(z) and u'(z),
 where the dash denotes differentiation with respect to z. These
functions are determined by satisfying the four boundary conditions
(2,2), (2.3) and (2.7), (2.8), remembering that both boundaries are
also unknown functions of z. The bcindary conditions (2.2) and

(2.3) require, as in Tuck (1982), that

A(z) = %U(z)az(z), for z =2 0, (3.2)

and also that
%U(z)[bz(z)-az(z)] - C,, for z3>0, (3.3)

where Cy 1is a constant determined by the initial conditions.

(3.3) is the statement of conservation of mass in the jet, since

the area of cross section of the jet is proportional to the difference
in the square of the radii. The further equations to close the

system are obtained from the dynamic conditions (2.7) and (2.8).

Eliminating the unknown u'(z) we find,

CUM(z) - U(b'%-a'?) - 2cluly o 22
A(z) = pab p , (3.4)

2U log (g)

which together with (3.2) and (3.3) constitutes a quasi 3rd order
non-linear ordinary differential equation for determining A(z),

thus a(z) and b(z). The third order character is due to the
constant Cg in (3.3). Analytic solution of this system is out

of the question, though it is straightforward to solve it numerically.

It is convenient to non dimensionalize the equations, and we choose
2

. . . . U
to scale vertical lengths, the z direction, with respect to E? .
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We scale radial lengths with respect to ag, velocities with
respect to Up and pressure with respect to pUg. The equations

become
U@z) = (1 + 22)%, . (3.5)

U2 (b2-a?) = 3(8%-1), (5.6)
and

1 " 1 1 1_,_1 +
A(z) = 3B5-DU - UMb %-at®) - k(z+p) + A ’ 5.7)

2U log (g)

where the constants kK, A and B are given by

_ 21U
K —m » (3.8)

and

B = bg/ao. (3.9)

The '"initial" conditions for the jet, that is, the parameters at

the z = 0 cross section are a(0) =1, b(0) = B and

a'(0) =0 = 3%%31- where a} 1is the specified, dimensional, slope
of the free surface at z = 0. The parameters Kk and A, although
arbitrary, are always small for slender jets. The non-dimensional
parameter K is a measure of the surface tension, and is related

to more standard non-dimensional parameters, the Weber number W

and the Froude number F_, by
Y
K = EE— (3.10)
. we - -

To solve the equation we begin at z = 0.0, with the

aforementioned initial conditions and compute numerical approximations
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to A(zn), where z = n(Az), using the Runge-Kutta-Nyster
algorithm (see Kreyszig, 1979, p. 802). This method is accurate
to fourth order with respect to the increment (Az). In our
computations the collapse length is the primary output, and to
ensure accuracy, the increment Az is reduced as the inner radius
approaches zero. In all our computations Az = 0.001 gives

sufficient accuracy.

4. COMPUTED RESULTS AND DISCUSSION

In Figure 1 we present actual jet shape profiles for thin
jets, R =1.1, and thick jets, B = 2.0. In each case two different
values of the surface tension parameter Kk were chosen. Qualitatively
the shape of a jet influenced by surface tension is much the same
as ideal jets discussed by Tuck (1982). The fundamental difference
is quantitative, and the influence of surface tension is to reduce
the collapse length 2Z . Indeed as we shall see surface tension
may in fact cause some jets to have a finite 2 value where other-
wise, for the k = 0.0 case, they do not collapse. The influence
of surface tension is illustrated in Figure 2. The parameter space
explored is the k-8 space, with reference to the collapse length
Zc. It is clear that, in the thick jet limit, B =+ «, the role
of surface tension is negligible. This is not so for thin jets,
B > 1, and it is apparent that only a very small value of Kk is
needed to cause the jet to collapse, whereas Kk = 0 gives Zc > o,
In Figure 3 we examine the A-B parameter space, again with respect
to Z . In this case we can have A both positive, and negative.
A negative value of A indicates an over-pressure, where the

exterior pressure, presumably atmospheric, is greater than the
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pressure in the hollow region of the jet. A positive A similarly
indicates an underpressure. At once we note the similarity,
qualitatively, of Figures 2 and 3. This is no doubt due to the
roughly equivalent nature of the forces involved, that is, both
acting normally to the annular surface. It would seem an-over-
pressure results in the jet always collapsing and this is perhaps
not surprising. As the pressure difference is increased, ultimately
becoming an under-pressure, the jet is more reluctant to collapse.
Once again thin jets are most sensitive to the A parameter,

thick jets insensitive. To compare the pressure-surface tension
interaction Figure 4 presents results for the collapse distance

in the «k-A parameter space. This shows that jets with an under-
pressure will not collapse even with surface tension, unless K

is sufficiently large. This behaviour is investigated for thin
jets in Figure 4, having B = 1.1. The corresponding results for

a thick jet, B = 2.0 are given in Figure 5. We draw similar
conclusions for thick jets. The most significant difference is

due to the insensitivity of thicker jets to both surface tension
and pressure forces. This results in Zc generally being greater
and the less rapid growth of Z  as A increases. The final two
figures, Figure 6 and Figure 7 consider the effect of initial slope,
parameterised by o. From Figure 6 we see that jets initially
directed outward, o > 0, will generally collapse, even for
relatively small values of k. The same is true for Figure 7,

this time however with reference to the pressure jump. For over-
pressures, jets will ultimately collapse even with o > 0. For
underpressures, however, it may be that o mneed be less than zero,

that is, the jet is initially directed in, for collapse to occur.
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We have seen that thin jets are greatly influenced by surface

" tension and pressure forces. For this reason non-slender theory

has been developed in the literature for the treatment of thin
annular jets. References to this theory were given in the
jntroduction. This theory is not entirely satisfactory and a
consistent, formally correct theory will be given in a later section.
For the moment howevér, we shall consider thin-slender-annular jets,
via the equations already derived for thick jets, namely (3.5) -

(3.7).

5. THIN-SLENDER ANNULAR JETS

The limit we are concerned with is

g~>1 , (5.1)

and b(z) - a(z) . (5.2)

We shall put h(z) = b(z) - a(z), that is, h is the
thickness of the annular jet. We assume that equations (3.5) -
(3.7) govern the jet behaviour, and we examine the limits (5.1)
and (5.2) in these equations. The velocity U(z), as given by

(3.5), is unchanged. Equation (3.6), however, gives
U(z)a(z)h(z) = (B-1) . (5.3)

It is important to note that although we consider the formal limit
B > 1, we must retain the first order terms in (B-1), as in (5.3).
We also need expansions for b'(z)z—a'(z)2 and log (b/a). These

are given by

b' (z)2-a' (z)2 = 2a'(z)[h'(2z)] + O0{n?} , (5.4)
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and
log(2) = 1 + 0fn?} . (5.5)

We also reduce the term A''(z) to the equivalent in terms of

a(z) and U(z). From (3.2) we find that
A(z) = ;_U"a2 + 2U'aa' +iUa'? + Uaa" . (5.6)
Using (5.3) to (5.6) in equation (3.7) results finally with

S —{S—la(z) , (5.7)

@22)an () + 20 et () = - fr e g

which is the fundamental equation for determining the shape of the
annular jet, r a(z). It is immediately obvious that thin jets,

B~ 1, are indeed sensitive to k and A. This follows from the
"amplification'" factor, TE%TT-’ multiplying the right-hand-side
of (5.7). For a consistent theory we must have Kk and A both

of the order of (B-1), which says that thin-slender-jets do not
exist for large k or A. Later, we shall see that this assumption
is also inherent in theé other thin annular jet, or 'water-bell",

theories. It is convenient to transform the equation (5.7) by

putting
7 = %TZ + T . (5.8)
This leads to
a(t) = -k'(1t+1) + A'(t+1D)a(1), (5.9)
where «K' = E§T and A' = E%T- . The dot denotes differentiation

with respect to T. The variable T 1is time-like, and, as in
Hoffman, Takahashi and Monson (1980), this problem may be tackled

in an unsteady context where T=0 corresponds to the genesis of
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the jet. Equation (5.9), with A'=0, is Abtained by the above
authors, although their approach is inconsistent. Thé assumption

of slenderness is made initially, however for most of the analysis
the longitudinal curvature is retained. This is evident in the
numerical work of Hoffman et al., since solutions of (5.9) with

A'=0 are compared with solutions from the fully non-linear equations,
including 1ongitudinél curvature, and ;re found to differ by no more
than 5% for the appropriate range of the k' parameter. We conclude
then, that (5.9) is the correct, consistent, form for a slender,

but thin annular jet. It appears that no solutions of (5.9) have
been publishea for the case A' # 0 . Although these are straight
forward to obtain they provide much insight into the dynamics of

thin annular jets.

6. SOLUTIONS FOR THIN-SLENDER ANNULAR JETS

It is appropriate firstly to consider the gravity-free case,

namely when g = 0. The equation governing the bell's shape is

a(t) = k" + A"a(1) , (6.1)

where the constants k' and A" are given by

" o 2T
<" " Gpa, (D) e

and
P

A = _pU_z_o Iy (6.3)

i
Q
1}

V]
o=

The solution of (6.1} subject to a(0) =1, and a'(0)

is
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a(t) = - %K"Tz + Cosh(VA"T) + éEﬁSinh(/A"T) s (6.4)

provided A" > 0. 1In this case there is an under-pressure outside

of the jet and collapse only occurs if
o' - 1
Cosh(/A"T ) + 7Zﬁ81nh(/A"Tc) = QK"T: , (6.5)

has a real positive root, T, for the collapse time T, - The

collapse length Z , is given by
2
c
from equation (5.8). In general (6.5) will only possess a root

for T, if o' 1is sufficiently large, in the negative sense. This

can be seen if we consider «k'"=0, that is neglect surface tension.

T, is now a root of

tanh (/A"T ) = - % ,  (0'#0) (6.6)

an equation which has positive real roots only if

_1<.@'_'.<0
o'l

b

whence ¢' < -/A"; that is, o' is sufficiently small. In the
case 0O' = 0, there is no collapse.
We now suppose A" is negative, say A" = -n?. The solution

of (6.1) in this case is

a(t) = —%K"Tz + Cos(nt) + %%Sin(nT) . 6.7)

This results in the following equation for the collapse time T ,

o'.. _ 1 2
Cos(nTc) + ?T81n(ntc) = QK"TC : (6.8)
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which always has a positive real root for T, -

Thus we may conclude that bells with an overpressure, A" < 0,
always collapse, regardless of the initial conditions. However
for an underpressure, A" > 0, only jets initially directed Znward
at a sufficiently great angle (that is, those with o' sufficiently
negative) will collapse. This all app}ies of course to the gravity-
free case, Nevef—the—less equation (5.9) may be solved, in general,
in terms of Airy Functions (see Abramowitz and Stegun, Handbook of
Mathematical Functions p. 446). These functions are however,
qualitatively very similar to the hyperbolic cosine and sine functions
when A' > d, and trigonometric functions when A' < 0. It would

seem then, that little new qualitative information is to be gained

by repeating the above analysis with gravity included.

7. THIN ANNULAR SHEETS OF WATER

In the preceding sections we have described slender annular
water jets. Proceeding from this, thin-slender jets were examined.
It was found that such thin jets are extremely sensitive to surface
tension forces, and to any pressure difference across the annulus.

. 5 1 hugl
Indeed it was found that these pressures must be of Olp-E;] for
the appropriate slender-flow approximations to be valid. In this
section we analyze thin annular sheets of water, but with no a priori
assumptions of slenderness. The analysis does however serve as a
check on the previously obtained thin-slender jet equations, (5.7),
since we may alternatively obtain these equations by assuming

slenderness after thinness. The previous work published in connection

with thin annular water sheets, for instance Boussinesq (1869) or
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Lance and Perry (1953), have given solutions which appear to be
for arbitrary values of the surface tension and pressure parameters,
T and p. However, the thin-jet theory is really valid only for
a restricted range of these parameters, and in the following
éonsistent asymptotic analysis, we shall find necessary conditions
on these parameters for the solutions, as given by the above authors,
to be correct. (In the sense of asymptotic expansions).

We choose to analyze the problem from the exact (inviscid,
irrotational) equations, under the sole premise that the annulus is
thin. Consider the jet in the cylindrical polar coordinate system,
as in the previous sections. Let ¢(r,z) be the total, axisymmetric,
velocity potential in the jet. We require that ¢ satisfies, as
before, the axisymmetric Laplace equation,

0} + %¢r + ¢ =0 . (7.1)

Irr zz

Introducing the following notation for the free surfaces, namely
that r = f+(z) represents the outer circular surface, while
r = £ (z) represents the inner, we have the following two kinematic

boundary conditions,

-©-
|

= f;(z)¢z on T = f+(z) . (7.2)

and

-
1

E f:(z)cbz on T = f_(z) . (7.3)

Physically (7.2) and (7.3) enforce the condition of no normal flow
across the free boundaries f+ and f . The exact dynamical
equations (Constant pressure on the water air interface) on the

surfaces r = f (z) are given by
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1, 1., chos v_ £ 1 P
. - o+ = + ~ = A = f R 7.4
2% % TRl £ (1+g12)% 2] "o on r=£(z), (7.4
and
1, 1,2 TJcos Vs i 1
= + = - & = A on r=°F (z). (7.5
el e, a2 i SR

The derivation of these equations (in particular, the surface tension

pressure terms) follow from §2, remembering that the curvature in

13
the longitudinal plane on a surface r = S(z) is given by st .
(1+5'2)*/?
w_,w; are the angles that the surfaces r = f_(z),f+(z) make
: . cos Vs . .
with the horizontal, and so —F  1is the radius of curvature,
+

normal to the surface, in the azimuthal direction. Figure 8 illustrates
this notation. The constant A, occurring in equation (7.4), (7.5)
will be given a value later in this section. We now examine the

limit f+ > f_ in this system of equations (7.1) - (7.5).

8. EQUATIONS FOR A THIN JET

Firstly we put a(z) equal to the mean surface shape, namely

£, (2)+f_(2)

a(z) = mSmm——— (8.1)

and also put h(z) equal to the half thickness of the annulus at
the cross section 2z, so

£,(2)-£_(2)

h(z) = ———

(8.2)

The mathematical procedure to derive the equations for thin jets
is to find a small h expansion of the relevant quantities of
interest, and the exact equations which describe these quantities.
As we shall see we need to retain first order terms in h, that
is 0{h} terms, for a consistent theory. Alternatively this may

be thought of as neglecting error terms of 0{h?}.
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We now formulate the problem in a new coordinate system,

(p,0,8), defined as

£ =1z, (8.3)
and
p=1-a(z), (8.4)
from the (r,6,z) coordinate system. The axial angle coordinate
® is actually redundant, since the jet is supposed to be axisymmetric.
The (p,6,%) coordinate system is not orthogonal and we can expect

considerable change to the equations describing the jet. The

differential operators in equations (7.1) - (7.5) are now given in
N ; 3 ; ) , 0
the new coordinate system by replacing Nz with 3 C a 3 and
g%— by g%—. The axisymmetric Laplace equation, (7.1), becomes
1
1+ 12 + - 23! _ a" =0, 8.5
(1+a )¢pp + 5;5¢p ¢g£ a ¢gp a ¢p (8.5)

following the above substitutions. Furthermore the kinematic

boundary conditions, (7.2) and (7.3) become,

6, = (a'+h')[o.-a'¢ ] on p=h (8.6)
and

¢p = (a'-h')[¢£-a'¢p] on p=-h. 8.7)

The dynamic conditions will not be needed at the moment, and the
appropriate transformed equations are given later. In the (p,6,&)

coordinate system we have the jet region defined by

-ch<p<h, for £=20 . (8.8)

Thus the thin-annular jet potential, ¢, should be given by a small
p expansion, since for a thin annulus h «1. This suggests trying

a velocity potential of the form,
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$(0,E) = 9 (E) + pi (E) + 30202 () + ... (8.9)

where 94,9;,%,,... are yet to be determined functions of £.

In practice we truncate the expansion in (8.9) after the three
terms shown. Using further terms leads to a solution of higher
order accuracy but the resulting system of equations becomes
exceedingly difficult to solve. The zero order terms in h (i.e.

0{h’}) from equation (8.5) give
(1+a'2)0, + 3@1 + 0y - 2a'0! - a'®; =0 . (8.10)

In obtaining equation (8.10) we have neglected terms of O0{p}.

Similarly the boundary conditions (8.6) and (8.7) become,

®, + hd, = (a'+h')[®)+hd;-a'®;-a'hd,], (8.11)

and

&, - hd, = (a'-h')[d}-hd;-a'®, +a'hd,], (8.12)

where zero-order and first-order terms in h and h' have been
retained. Intuitively we justify retaining these terms as follows.
The leading-order terms in equations (8.5), (8.6) and (8.7) convey
information only concerning the mean shape a(z). The first-order
terms of (8.6) and (8.7), however, describe the thickness effects,
which nust be treated as an unknown, and so retained. The equatiéns
(8.10), (8.11) and (8.12) together with two dynamical equations
(zero and first order equations) gives five ordinary differential
equations for the five unknown functions &,%,,%5,a and h. In
principle this can be solved.

Adding (8.11) and (8.12) and neglecting 0{h} and O0{h'}

terms, results in
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a'®! = (1+a'?)%, , (8.13)

while subtracting (8.12) from (8.11) gives

h' h'
(1+a'2)d, = a'd] + O - 20 (8.14)

Equation (8.13) is the zero-order kinematic condition and equation
(8.14) the first order condition. While physical significance can
be attached to these equations there is little benefit from doing
this at this stage. From this set of equations (8.10), (8.13) and
(8.14) we can expect to derive a conservation law, analogous to
equation (3.3), expressing conservation of mass along the jet.

’

Differentiation of (8.13), with respect to &, results in

"
o = (a' + ;—.)‘P{ + (a" - %2')@1 s (8.15)

and upon elimination of @},®, between equations (8.15), (8.10)

and (8.14) leads to

ah! a''ah ah

@1[h+a—'--?2—] +-;<D1' =0 (8.16)
which simply states
d rah_.
or upon integration with respect to §,
8,21 - constant, C (8.18)
1?— onstant, 0o Ssay. .
By virtue of equation (8.13) we then have
ah®g
TTTE%TT = C, , (8.19)

which is the appropriate conservation of mass constraint. To see
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this more clearly we consider V(§), the velocity of the water
tangential to the sheet. Locally, at the section 1z, the sheet

has mean slope a'(z) and so makes an angle Y with the horizontal
such that tan ¢ = a'. Thus from simple trigonometric rules we
_have

cos Y = (1+a}2)_% and sin ¢ = a'(1+a'2)_%.
The tangential velocity, V(E), is then given by, to zeroth-order,

V(E) = cos Y ¢z + sin ¢ ¢r , (8.20)

which reduces, to

o

V(&) = —— (8.21)
(1+a'?)
in terms of our ''thin-jet functions'. Equation (8.19) now has the
form
a(&)V(&)h(g)cosy = Co , (8.22)

which represents constant mass flux in the jet since h(&)cosy

is the normal thickness of the annulus at each £ cross section.
This equation is of course intuitively obvious and has been obtained
by previous investigators. It now remains to consider the
appropriate form of the dynamic equations. From these equations

we can expect to derive the velocity V(£), as a function of £
alone, and an equation representing a balance of inertia normal to

the stream. Some preliminary expansions will be needed, these are

cos Py
£y

= COZ w{1 + 0{h}} , (8.23)
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and
1 - 1
a+£12*?  (14a'?)

3/2{1 + 0{h'}} . (8.24)

Equations (8.23) and (8.24) give the zeroth-order curvature terms,
and it will be seen that terms of this order only shall be needed

in the following analysis.

9. THE DYNAMIC EQUATIONS

The exact form of these equations, (7.4) and (7.5) when

transformed into the (p,0,&) coordinate system becomes

1 1 ; T[cosV_ ! 1. p
§¢; + 2(¢g—a ¢p)2 - gE + 5{ £ + THf & s A on p=-h, (9.1)

and

TICOS¢+ . £

My * 508 - 6 - G A on psh. (9.2)
+

372

Substitution of the expansion given in equation (8.9), and the zeroth

order curvature terms, leads to the following set of equations,

1 2.1 2, Tfcosy at 1. p._

2[@1"’1’1@2] +2[®6+h®1—a'©1—a'h¢’2] —g5+51 2 + r 3/2J' + 5 = A, (9.3)
(1+a'?)

and

1 2 1 2 TICOSU) all 1 a

2[®1-h®2] +2[®5—h®1-a'¢1+a'h®2] —gE—El — + (1+a|2)3/2I =A. (9.4)

Tfcosy a" 1
ol a 2 312

[hus ‘ (1+a'")
than O)—EQ} , where U, is a measure of longitudinal jet velocity.

Immediately we see that g and must be no more
This is because the above terms are independent of h, yet cannot
satisfy both of equation (9.3) and (9.4) to zeroth order. There is
no avoiding this constraint for g; thus if g >> h%ﬁ. equations

(9.3), (9.4) cannot both be satisfied in a small h 1limit. This

merely states that thin annular jets cannot sustain a large pressure
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difference across the annulus. In practice if there is a large
pressure difference, the water bell either collapses or expands
extremely rapidly, and an alternative formulation, rather than
the one we have chosen, is necessary to describe this behaviour.

For the surface;tension pressure there are two possibilities
whereby the constraint may be satisfied. Firstly, the numerical
value of H may be -sufficiently small so that chosw + 3k |

[nug] 2 )
is of Ol—zij , and in general this will be so. However, if

h is exceedingly small, and the mass flux not too great, then it

cosy . a" be

(1+a'2)3/ 2
small, that is the formally correct equation (in the sense of

is necessary that the zeroth-order term

asymptotic expansions) for the water bell's radius a(§) 1is

all

+(1—+ai7)—'=0, (9.5)

1
a

; - . .
since cosy = (1+a'?) *. This states, to leading order, that the

water bell is a spherical shell, or bubble, given by
a(z) = (1+0?) - (z-0)% , (9.6)

where o 1is the mean slope of the sheet at z=0. This result is
to be expected whenever, as here, surface tension is the dominant
force. It simply says the water bell is a "bubble" to leading
order.

For the remainder of this section we assume that the former

condition holds, that is, that g is smalll, The leading order

1 2

In C.G.S. system -g% ~v 72 cm

we have

s-z, and for a =1 cm, Ug = 100 cm s7!
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equation from (9.3) and (9.4) is obtained by adding these two

equations, and neglecting O{h} terms. We find that

1
5(952 - (1+a'®)e]) - g = A, (9.6)
which from equation (8.13) gives

&2 2 :
ﬁ:a'—z)— Up + 28t
or

VEE) = (U2 + 2g8)" (9.7)

where we suppose the "initial" velocity V(0) is Ug, thus
determining the constant A. This too is a familiar result, being
obtained by previous authors. It reflects the fact that the
normally directed pressure and surface tension forces do not
accelerate the fluid tangentially along the jet; such acceleration
is solely accomplished by gravity.

Subtracting (9.4) from (9.3) leads to the first order

equation,

h(¢1¢2+¢>5¢;-a'q>5q>2-a-¢>1<1>;+a'2®1¢>2)+T< L — 2 )+B = 0. (9.8)
P a(1+a'2) (1+a'2) P

However this can be rearranged to yield,

héyof |, Tf 1 a1,
P EY

+
]
a P a(1+a'2)l/z (1+a‘2)

oS

(9.9)

where we have used equation (8.13). Now %gL can be replaced by

Co/a, from equation (8.18), and since, from (8.13)

¢ = — V(E) , we have
(1+a'2)
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or = —2' V(E) + __a" V(e . (9.10)
' (1+a'2)yz (1+a'2)3l2

The resulting form of the first-order equation after substituting
(9.10) in (9.9) is

2
Coa" (Ug+2gE) N Co g a' N Tf 1 o a' }+E = 0. (9.11)
) . ]

aear ) a2 22g0"  Plageary® (vart)?

A more convenient form is obtained when all lengths are scaled with

2

respect to %f , which gives

-t
an v (+28) Far |1 a" :
; 377 L*28) + S —* 7 * B =0, (9.12)
2
a(l+a'®) a(l+a'") a(l+a'”) (1+a'“)
where the parameters o,B are given by
o= — T
pgaohgocosy, ’
and
u?
B = p-0 : (9.13)

pgZaghgcoso

ag and hyg are the "initial" (z=0) mean radii and half thickness
respectively, while Yo is the initial angle of projection.
Equation (9.12) represents a balance of inertia normal to the water
sheet. Direct derivation of equation (9.12) is possible from
physical arguments, based on the "balance of inertia' concept. This
is precisely the equation obtained by Lance and Perry (1953), and
subsequently solved by them, for a variety of values of the o and
B parameters.

We choose to check the slender jet equation (5.7) from equation

(9.12). For the jet to be slender requires that a' is everywhere
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small; thus we elect to neglect this quantity squared, and

additionally we neglect the longitudinal curvature since

1"
- 3/ 2 : m Thus (9.12) reduces to
(1+a| 2) a(1+a|2)
% at '
(1+28)7a" + ———5 = -a! + fla, (9.14)
(1+28)
T U2
with the new constants o' = ——— and B' = - % 0 ]
pgaohy pgZaghg

This is exactly equation (5.7) with o' =«k' and B' = A', obtained
in §5 from the thick-slender jet equations, and verifies the thin-
slender jet results thus far obtained. That is, it is of no
consequence in which order we carry out the limits of slenderness

and thinness.

10. CONCLUSIONS

We do not solve the ordinary differential equation (9.12) for
the radius of water-bells, as this has been extensively covered by
previous authors. In general the solutions must be computed
numerically, although when g=0 and B=0 Taylor (1959) has
obtained exact analytic solutions. What is interesting from these
solutions is the formation of cusps on the sheet at finite radii,
that is before collapse. This phenomenon is entirely absent from
the slender jet theories and one may expect that the effects of
thickness, in an exact theory, counteract this.

The formal asymptotic derivation of equation (9.12) has shown
several new points, which were somewhat obscured by the previous

P

derivations. Most importantly the pressure jump parameter : is

necessarily small, otherwise a cross flow within the annulus, of
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comparable order to the tangential flow, is needed to satisfy the
dynamic boundary conditions. This would then require a full
solution of the exact equations, which at present is not considered.
We have also seen that if the sheet is too thin and the mass flux
(that is velocity U,) small the water bell assumes the shape of

a sphere, as if it were a static bubble. This of course is only
valid away from the Eollapse point, where in general our solutions

are invalid.
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CHAPTER 3

STABILITY OF ANNULAR COLUMNS OF WATER

1. INTRODUCTION

When a jet, such as those described in the previous chapters,
issues into the ambient atmosphere it will be subject to a number
of disturbances, not considered thus far in this thesis. These
disturbances, perhaps vibrations or imperfections of the nozzle,
or possibly small variations in the atmospheric pressure along
the jet, may ultimately be responsible for breakup of the jet.

In effect, this means that the disturbance grows in time (temporally)
or in space, say along the jet (spatially).

This phenomenon, known as instability, has been widely
investigated for round jets, as far back as Rayleigh (1879).
Subsequent authors have extended and improved on Rayleigh's analysis,
to the point where non-linear aspects of jet fragmentation can be
described.

The case for annular jets is much less advanced. The analysis
for linear, temporal instability has been provided by Ponstein (1959),
but, as we shall see, some of his conclusions are erroneous, and a
more detailed examination of these results is warranted. We also
discuss some aspects of spatial instability, as it seems that this
type of instability is more plausible in practical situations (see

Keller, Rubinov and Tu (1973)}.

2. TEMPORAL INSTABILITY OF AN ANNULAR COLUMN

To illustrate the mechanism for jet breakup we examine an

annular cylindrical jet, moving with constant velocity Uo. We
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neglect gravity; thus, the unperturbed jet always has r = ag
and r = bp for its inner and outer free surfaces, respectively.
We assume that the jet extends from z = - to 2z = «; that is,
there is no nozzle in the region of flow. If there is a nozzle,
temporal instability is no longer satisfactory physically. At
some time, t=0 say, “the surfaces of the jet are perturbed. The
exact nature of this disturbance is unnecessary to know, since, as
the following analysis is linear, it is appropriate to consider
Fourier components of such perturbations.

Let ¢(r,z,t) be the velocity potential in the jet and
T =n,2(2) ihe inner and outer surfaces respectively, after

t=0. We assume that the disturbances to the free surfaces are

small, and take the following form,

ag + €167 ¢ *F (2.1)

Ny (z)

and

by + £,e e ¥, (2.2)

na2(z)

0 is the principal unknown, since o vreal and ¢ > 0 gives
the rate at which the disturbance grows in time.

We note that (2.1) and (2.2) only admit axisymmetric modes
of disturbances; however, as shown by Ponstein (1959), these are
the most important, as far as instability is concerned. k is
essentially a real input parameter; thus, our task is to find a
dispersion relationship ¢ = o(k). The concept introduced by
Rayleigh, that of mode of maximum instability, now says that the
jet breaks up due to disturbances with k = kmax’ where O(kmax)

is the largest positive, real value of o(k).
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3. EQUATIONS OF MOTION

We assume that the jet is inviscid, and is flowing
irrotationally. Thus we require ¢, the velocity potential, to

satisfy the axisymmetric Laplace equation
6 +-¢ +¢ =0, (3.1)

in cylindrical polar coordinates. Furthermore, we try for a

solution of the form,

o(r,z,t) = e*'e o (r), (3.2)

which, from (3.1), immediately gives
®(r) = Aly(kr) + BKy(kr) , (3.3)

where I, and Ko are modified Bessel functions of zeroth order.
A and B are yet to be determined constants.

Before introducing the boundary conditions for this problem,
it is appropriate to transform the spatial coordinate slightly.
This is accomplished by replacing =z with z* - Ugt, which
reduces the jet-like character to a static cylinder-like character.
The boundary conditions are more convenient in this latter context,
and for the remainder of this chapter we assume this substitution
has been made, dropping however the * superscript. Moreover,
because the disturbances on the column are small we shall approximate

the boundary conditions to leading order in these disturbances.

4, KINEMATIC BOUNDARY CONDITIONS

The kinematic boundary conditions (no flow across the free

boundaries) are approximated by
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a .

T2 -9 on T =mi22), (4.1)
where we have neglected n{,2¢z , which is << than E%ﬁ%Q
or ¢‘. Furthermore we evaluate (4.1) on r = ag,bg, to give
the leading-order equations, which are,

e,w = k{AI; (kao)-BK; (kao)} , (4.2)
and

g, = k{AI; (kbo)-BK;(kbg)}} . (4.3)
In (4.2) and (4.3) w 1is related to o by

w=0 - kUpi , (4.4)

because of the new, now "moving', coordinate system. I; and K

are modified Bessel functions of first order.

5. DYNAMIC BOUNDARY CONDITIONS

Before introducing the appropriate pressure conditions on
the boundaries r = nl,z(z), we consider the undisturbed annular
cylinder. Given that we know the free surfaces r = ap and T = by
this uniquely prescribes the pressure difference (cf. Chapter 2)
to be

p=—T{1 L L) (5.1)

that is an underpressure which keeps the surface tension forces

in equilibrium. If the pressure difference between the inside and
outside of the annulus is not the value given in (5.1) then the
straight annular cylinder is not an equilibrium situation, and in
actual fact must be either "contracting" or "expanding" in the
sense of Chapter 2. We cannot study the instability of these jets

with the analytic techniques of this chapter. However, we can
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expect some insight into the general mechanism of instability, for
annular jets, by studying the annular cylinder subject to (5.1).
The appropriate approximation to the dynamic boundary

condition is given by (Bernoulli's Equation)
¢ + g = %?— on r = ap,bp . (5.2)

Here, we have neglected the velocity head, which is small, and
again evaluated the expression on 1 = ag,bo. g is the pressure
on the surface of the jet resulting from surface tension forces
and pressure differences across the annulus. %f- is the
equilibrium ﬁressure outside the jet, that is for r > byg.
Equation (5.2), upon invoking (5.1) and using the surface-

tension-curvature results from Chapter 2, leads to the following

two equations,

N{AIo(kaoj + BKg (kao)} + El'g{;—z - kz} =0, (5.3)
]

and

\
(]

w{AIo (kbo) + BKo(kbo)} - ezg{glf - K2} = (5.4)
0

These two equations, together with (4.2) and (4.3) give four

equations for the unknowns, w,A,B and
€
y==L . (5.5)

Thus in principal we can now find w,A,B and y as functions
of k, and, in particular, determine the dispersion relationship

w = wlk).
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6. THE DISPERSION RELATIONS

It is convenient to non-dimensionalize (4.2), (4.3), (5.3)
and (5.4) by scaling radial and axial lengths with respect to by.

The following equations result,

k{AI, (kB) - BK;(xB)} , (6.1)

YE2W =
ew = K{AI; (K) - BKl(k)} ) (6.2)
W{ATy (KB) + BKo(KB)} = - yeoLodik - k21 (6.3)
' pb3\B ]
and .
WlATo(K) + BKo(K)} = amiell - 2}, (6.4)
pbj

where k = kbg and B = apg/bg. Thus, the jet we are now concerned
with has outer radius 1.0 and has 0 < B8 < 1. Eliminating the

constants A and B from these four equations leads to

2 .
WLy (<8) Ky (€) +Ko (KB) Ty () }-{To (B) K (kB) +Ko (kB) I, (kB) 1}

T [1 1
— oB3\B7 - KZI , (6.5)

and

2
LY [To (K () +Ko () T1 (€) 1= [To (€) Ky (KB) +Ko () T3 (k) 1}

T
= BBE{I - %}, (6.6)

where A = K;(K)I;(kB) - I;(K)K;(xB) # 0, for any real «,B

except if B = 1. In addition, if we scale time with respect to
%
(6%3> , and use the relations 9.6.15 from page 375 of Abramowitz
0

and Stegun (1972) the following equations result, namely

2
‘:—A{y[Io(KB)KI (K)+Ko (kB)YI1 (k)] - kl—s} -Y{Bl—z - KZ} s (6.7)

and

it
—
[
[}
~
N
—

w? v
—{1 - [To (K)K1 (kB)+Ko (K)I; (xB)]} (6.8)

KA K
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Ponstein (1959) elects to eliminate vy from (6.7), (6.8) and
obtain a fourth order polynomial for w, in fact a quadratic in
mz, where the coefficients are functions of k. This can be
misleading, and we shall see it is necessary to retain both ¥y

and w to clearly understand the instability process. This is
particularly so when_considering the 5 -+ 0 1limit, when Rayleigh's

results should be obtained. The equations we choose to work with

are the following,

1 2 1 2
=7 - K - K
YZ[B ]- + Y[IO(KB)KI(K)+KO(KB)II(K)‘(_T )(Io(K)K1(KB)+Ko(K)Ix(KB))]
1 1 -
1
s = 0, (6.9)
2
which arises when %Z- is eliminated between (6.7) and (6.8), and
W2 = kA {1-k2} - (6.10)

:zf - [To (k) Ky (kB)+Ko () 11 (kB)]

(6.10) is a simple rearrangement of (6.8), however this emphasises
our approach. Namely, for a particular k, we solve (6.9) for

two roots 7y; and Yz which represent two different modes of
instability. Corresponding to each of these modes, there is a

growth rate, in time, given by substituting <y, and <Yz into (6.10).

We may represent the solution of equation (6.9) as
1 2

(2, B2 V1Y
-g 2 igt v 4=y
Yi2 = \ i \12' <SRBI, (6.11)
BZ " C 1
\1-«Z)«k

where g is the coefficient of Yy in (6.9). Now the discriminant

(terms under the square root sign in (6.11)) can be reduced to the
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discriminant arising in the quadratic equafion examined by
Ponstein (1959), which can be shown to be non-negative. Thus
equation (6.9) always has real roots Y1, Y2. The physical
significance of this is that for y > 0 the disturbance on the
outer free surface has the same phase as the disturbance on the
inner free surface. If 7y < 0 the disturbance on the inner free
surface lags the disturbance on the outer free surface by half a
wavelength, spatially. (That is, considering the jet at any
particular instant of time.)

The magnitude of <y indicates to what extent a disturbance
is amplified ‘from the inner surface to the outer surface or vice
versa, and this provides important qualitative information on the
breakup of annular columns.

Because 7Yy 1is always real, equation (6.10) always gives w?
real, or (0-iUg¢k)? [scaled with respect to \5%§>1] real.
Thus, as far as instability is concerned, that is for roots with
o real and positive, we only need consider positive values of w?
from equation (6.10). Figures 1 to 4 present the results for o(k)
and vy(k), for two different modes of instability. These modes
have clear physical interpretations in the two limiting cases B - 0

and B > 1. However in the intermediate region their nature is

somewhat more obscure.

7. RESULTS

The first important difference between the modes of instability,
is the scales on the vertical axes. The axis for mode-one
disturbances is stretched, approximately by a factor of 1000,

relative to the axis for mode-two disturbances. It is not correct,
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however, to assume that mode-two instability, while having a

far greater growth rate, is ultimately responsible for the break-
up of the jet. An important case that highlights this feature is
presented later.

Mode-one disturbances are only unstable for wave numbers
less than 1.0. This merely states that the wavelength of the
disturbance must be greater than the outer circumference. This
mode bears great similarity to Rayleigh's solid-cylinder
instability; indeed, the limit B - 0, for this mode reproduces
Rayleigh's solution. Figure 5 shows this clearly, and results for
the maximum rate of instability, as mentioned in 82, are also
shown.

It is clear however, that mode-one disturbances, by Rayleigh's
maximum-mode principle, are of lesser importance than mode-two
disturbances. Mode-two disturbances, while having much larger
growth rates, are also unstable for much shorter wavelengths, down
to 2mag. As far as the B - 0 1limit is concerned, this is
somewhat disturbing, since strictly speaking it implies that the
solid cylinder (Mode-one) results are not recovered. Ponstein
obtains two solutions to the asymptotic dispersion equation as
B - 0, namely Rayleigh's solution and another, much larger, value
for the growth rate. Rather than recognize these two solutions as
separate modes of instability, with quite different physical
interpretations, Ponstein argues that the second, larger, solution
is a spurious root, arising from the neglect of air velocities in
the inner core (r < ap). While there is no doubt the neglect of
air velocities in the inner core for this problem is increasingly

dubious as B > 0 the explanation we propose is far more satisfactory.
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8. SMALL £ LIMIT

As B~ 0, there are two solutions to the dispersion
equation. Clearly, from Figures .3 and 4 the mode-two disturbances
have y - », and except for very short wavelengths, T > «.
Asymptotic formulae for these solutions, as found by Ponstein
(for the growth rate) and from equation (6.9) for the amplification

factor, are

v+ 2 as g0, (8.1)
and
. 2 1 N
w" > - B-ﬁg—“gs as B 0 s (8.2)

where Kk 1is required to be in the range

0<<K<<]-'

B

That is, K is not too small and not too large. Now clearly

(8.2) implies extremely large growth rates; however this does not
necessarily mean a rapid break up of the jet into droplets. We
must first interpret the result that <y 1is large, from (8.1).
Given the definition of vy from (5.5) the obvious conclusion when
y o is that e, » 0, which says for mode—two'disturbances there
is no disturbance on the outer free surface. Thus, for this mode,
the oscillation of the free surface occurs only at the inner free
surface. The rapid growth of these disturbances does not ultimately
result in the jet breaking up, but rather of the inner air core
disintegrating into smaller bubbles. This disturbance, even the
non-linear fragmentation of the air core, is still only a small
perturbation to the outer free surface, so the instability of the

outer free surface, thus the jet as a whole is governed by the
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familiar Rayleigh solid-cylinder solution.

The problem of fragmentation of the air core into smaller
bubbles is analogous to the '"Hollow jet" problem discussed in
Chandrasekhar (1968). Furthermore, the time scale for such hollow
jets is (ng/%; thus the disparity in sizes of the growth rates
for mode-one and mode-two disturbances is no more than a
reflection of greatl& different time scale from the hollow jet
to solid jet regimes.

We now have the following physical interpretation of jet
breakup, when the inner air core is small. A jet (with small B)
is disturbed slightly from equilibrium; initially (and for a very
short time only) mode-two dominates, and the inner air core breaks
up into smaller bubbles. This whole stage is nothing but a small
perturbation to the outer free surface, however it is to be expected
that this perturbation is precisely the disturbance that grows,
governed by the mode-one dispersion relationship, and results in
the fragmemta}ion of the jet into smaller droplets. Thus Rayleigh's
results for a solid cylinder are recovered from the £g - 0 1limit,
provided we recognize that the inner core is only a perturbation
to the jet as a whole.

A further unusual feature of the small-f 1limit is the
instability of extremely long wavelengths, for mode-two type
disturbances. This prediction is absent in the "hollow jet' theory
and makes the limit a '"singular perturbation' type where an alternate
asymptotic solution is required for small k. Physically it means
the inner core will be highly unstable for small long range changes,

for example slow variation of the ambient pressure along the jet.
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In practice however, jets will not be of sufficient length to
admit long wavelength instabilities.

Clearly, for small B (i.e. thick jets), the interpretation
of modes one and two is straightforward. Another case where such

distinction can be made is for very thin jets, that is, B8 > 1.

9. THIN JET LIMITS-

Equation (6.9), when considered in the limit 8 - 1 produces
two solutions for Yy, namely vy = *1. These represent two
different types of waves on thin sheets, namely symmetrical and
antisymmetrical, which are illustrated in Figure 6. Taylor (1959a)
discussed such waves, on a planar sheet of liquid. Ponstein does
not recognize the two forms of disturbance, but observes that thin
annular sheets are extremely unstable. This is because, for anti-

2

symmetrical waves, w° > as B > 1. Symmetrical waves on the

other hand appear to be much more stable.

10. INTERMEDIATE MODES

Insight into the physical interpretation of mode-one and
mode-two disturbances, away from the extreme limits of §8 and §9,
is much less clear. There must now be significant interaction
between disturbances on either free surface; however it is still
possible to generalize the symmetric and anti-symmetric waves of
§9. We see that for mode-one oscillations, Yy 1is restricted to
the range 0 >y > -1. For example, mode-one disturbances on the
inner surface lag behind the mode-one disturbance on the outer

surface by half a wavelength. This is analogous to the symmetrical
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waves on thin sheets. On the other hand, mode-two disturbances
always have y > 0 and thus have no phase difference across the
annulus. These may be thought of as anti-symmetrical waves. The
general conclusion is that anti-symmetric waves (disturbances) are
much more unstable than the corresponding symmetric disturbance.
This can be rationalised by recognizing that for symmetric
disturbances, the mean radius of the annulus is altered by less
than for anti-symmetric disturbances. This is likely to result

in greater stability for symmetric disturbances.
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