_I‘E"rr) “\"i'\

A |

5| =8 2]
\ _‘F Ny

)
e i)
"‘5?.0?‘}7;'%_‘;"’/

VISORA+-+:
A SOFTWARE VISUALISATION TOOL FOR
TASK-PARALLEL OBJECT-ORIENTED PROGRAMS

Hendra Widjaja

A THESIS SUBMITTED FOR THE DEGREE OF
MASTER OF APPLIED SCIENCE
IN THE DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF ADELAIDE

March 1998

visor n 1. (hist) Movable part of a helmet, covering the face. 2. Peak
of a cap. 3. (’sun-)~, oblong sheet of dark-tinted glass hinged at the top
of a windscreen in a car to lessen the glare of bright sunshine.

(Ozford Advanced Learner’s Dictionary of Current English,
by A.S. Hornby, Ozford University Press,
3rd edition, 1980, page 959.)

VISOR Acronym for Visual Instrument and Sensory Organ Re-
placement. A remarkable piece of bioelectronic engineering that allowed
Geordi La Forge to see, despite the fact that he was born blind. A slim de-
vice worn over the face like a pair of sunglasses, the Visor permitted vision
in not only visible light, but across spectrum, including infrared and radio
waves.

(The Star Trek Encyclopedia, A Reference Guide to the Future,
by M. Okuda, D. Okuda and D. Mirek,
Pocket Books, New York, 1994, page 368.)

il

Abstract

Applying software visualisation to task-parallel object-oriented programs poses inter-
esting questions. The reason for this is that, typically, such programs exhibit complex
behaviour as a result of the complex interaction among the program entities. Such
interaction is caused, in part, by concurrency and distribution.

With the exception of a limited number of tools, many existing tools only focus on
a narrow selection of language features for visualisation. However, to enable users to
form a deep understanding, and subsequently fine-tune a program, a wide selection of
such features is necessary for visualisation. Furthermore, multiple views depicting the
program from multiple angles are also necessary.

This thesis describes Visor++, a tool for visualising programs written in CC++, a
task-parallel, object-oriented language derived from C++. Visor++ provides a frame-
work of visualising task-parallel object-oriented programs in the absence of language
support for visualisation. In other words, Visor++ provides support for the visualisa-
tion of programs written in languages which are not “visualisation-conscious”; CC++
is one such language.

This thesis describes the techniques developed to enable the visualisation of task-
parallel object-oriented programs by using a wide selection of language features. The
effectiveness of this approach is testified by the experimentation with the tool. The
design and experimentation with Visor++ are all described in this thesis.

Although the framework of Visor++ is implemented on specific platforms, it can

also be applied to other similar systems.

11

Declaration

This is to certify that this thesis contains no material which has previously been ac-
cepted for the award of any degree or diploma in any university or other tertiary
institution. To the best of my knowledge and belief, it contains no material previously
published or written by another person, except where due reference is made in the text
of the thesis.

If this thesis is accepted for the award of the degree, permission is granted for it to

be made available for loan and photocopying.

Hendra Widjaja
March 1998

v

A cknowledgements

First of all, I would like to thank my supervisor, Dr Michael J. Oudshoorn, for his
advice, encouragement, and superb guidance during my candidature as a Master’s
student. He is the one who introduced me to the exciting field of software visualisation.
I am also much indebted to Dr Jiannong Cao, who acted as co-supervisor during the
first semester of 1995, particularly when Dr Qudshoorn was away from March to June
1995. His advice and guidance were of utmost importance during the infancy of the
project.

In 1997, I presented a paper in San Jose, USA. Once again, | am much indebted
to my supervisor, Dr Oudshoorn, for his tireless efforts in obtaining financial support
for the trip. He is indeed a super ”Visor”. I also wish to thank Garuda Indonesia for
providing special arrangements for the trip.

I owe special thanks to Prof. Peter Eades and Dr. Kang Zhang for reading the the
thesis. Their comments are particularly insightful and invaluable, especially for further
enhancements of the work.

Acknowledgment and thanks also go to the staff and members of the Department
of Computer Science for all their help and support, particularly to Matthew, Stuart,
Sam and Heath for their superb technical assistance. Special thanks to the DHPC
(Distributed High-Performance Computing) group at the department for letting me
print portions of the thesis by using their colour printer. Other members of the staff,
the postgraduate students and visiting speakers have also contributed in many ways.
Many thanks also to my office colleague, Lin Huang, for teaching me how to make
dumplings.

I also wish to acknowledge the technical help I received that has made my work

possible. Special thanks to the CC++ language developers at California Institute of
Technology, who made their system accessible, and provided much technical support
through electronic mail by answering my questions, even the stupid ones. I would
also like to express my special thanks to Professor John Stasko at Georgia Institute of
Technology, who made his POLKA system publicly available, upon which my work is
based.

Thank you, too, to all my friends, both at home in Indonesia, and here in Australia.
They have made my stay in Adelaide more enjoyable. Many thanks, too, to the staff
at CISSA (Council for International Students of South Australia), who have provided
international students such as myself a chance to glimpse into the lives of Australians
and the people of other cultures. I would also like to extend my thanks to AusAID
for providing the Australian Development Cooperation Scholarship (ADCOS), without
which my work and stay in Australia would not have been possible.

Finally, I would like to express my deepest gratitude to my parents and family, who

have constantly supported and prayed for me from afar.

vi

Contents

Abstract i1l
Declaration iv
Acknowledgements v
1 Introduction 1
1.1 Motivation . . . s w s wias s amvmian o6 a6 w55 % e = 5 5
1.2 Experimentation 8
1.3 Terminology . - v m s wiaw da % s &8 & o oo & U a ¥ % &5 & 6w s % 8
1.4 Thesis Structure. « « e s o v e s wosm o % oo 5o e m wa o e m e o5 9
2 Software Visualisation 10
2.1 Aspects of Software Visualisation 10
211 Ideals comaman e nom e Gn e m e 11

2.1.2 Purposes e e e e e e e e e e e 12
2.1.2.1 Understanding & o v @5 #% #6659 &% o0& w0 a 13

2.1.2.2 Debugging . . . s e wons o5 6w s s v oo s mew 13

2.1.2.3 Performance Analysis 15

2.1.3 Mechanisms s@swes ws shimaibi &5 @59 ¢4 17
2.1.3.1 Data Collectiono v v v i 17

2.1.3.2 Visualisation 18

2.2 Visualisation Systems L L L L e e 20
2.2.1 Sequential Systemsol o e 21

vil

2.2.2 Concurrent Systems e e e 22
2.2.3 Concurrent Object-Oriented Systems 26
2.2.3.1 Visualisation of uC++ programs 26

2.2.3.2 Visualisation of pC++ programs 28

2.2.3.3 Visualisation of LAMINA programs 29

2.2.3.4 Visualisation of PARC++ programs 30

2.2.3.5 Observations . . i s w e as's s s @ 58 &5 31

2.3 SUMIMATY « o s 50 5 5 o 5 5 % o0 % % 8 % 762 5 0K 5 066 3 W 8 B GRS W NG ® @ H 6 © & 31
3 Overview of the CC++4 Language 34
3.1 The CCH+ Language i s &% s io &6 g &is w5 &8 #5 34
3.1.1 Concurrency csmew o5 «6@e a5 55 35
3.1.1.1 Synchronous threads 35

3.1.1.2 Asynchronous threads 36

3.1.2 Synchronisation and Determinism 37
3.1.2.1 SynchronisationG imes 55 sawsmsh 85 » 37

3.1.2.2 AtomicFunctionsw s m s s @ s w v wian o6 37

3.1.3 Locality e e e e e e e 39
3.1.3.1 Processor Objectso v v v v v v v v v un 39

3.1.3.2 Remote Procedure Calls . « « « s v v v v v vvs s s 40

3.2 Visualisation Support L e 43
4 Visor++ 45
4.1 General Framework i i e v v n v e e e e 46
4.2 Program Instrumentation Subsystem 48
4.2.1 Program Entities 0000 49
4.2.2 Program Static Analysis . . & s s s m oa waw s wns s s 50
4.2.3 Program Instrumentation 52
4231 Events. . ..emes s oismid eo®swss 854 53

4232 Location-ID v e v ia en s 55

4.2.3.3 Instrumenting Functions 57

viil

4.2.3.4 Instrumenting Destructors 62

4.2.3.5 Instrumenting Processor Object Classes 66

4.2.3.6 Instrumenting Synchronous Threads. 70

4.2.3.7 Instrumenting Asynchronous Threads. 73

4.24 Observations v v it v e e e e e e e 74

4.3 Event Collection Subsystemo 78
4.3.1 Establishing the Monitoring Environment 78
4.3.2 Collecting Traces« . i i it 80
4.3.3 Consolidating traces o v v vt i e e 83
4.3.4 Observations ca s maewss 65 dae s w65 b 85

4.4 Event Visualisation Subsystem oL 87
441 POLKA 5 ¢35 nowipmon i sfosmin s ddssmansn s 87
4.4.2 Architecture and Implementation 88
443 The Views v v v v v i it et e e e e e e e e e 92
4.4.3.1 Design Considerations 93

4432 StaticViews .« s v wn moms wen ns naw s wou o 97

4.43.3 Auxiliary Views. o v o i e 101

4.43.4 Dynamic Views o s v s w s o #5 &5 & 5% 5 & o v s 102

4.4.4 Observationsot e e e e 119

4.5 Summary msmEs ihEEmEA s AN A A 119
4.6 Applicability to Other Systems oL 123
5 Using Visor++4 125
5.1 Experiments L e e e e e e e e e e e 125
5.1.1 A Simple Example & 50 v w v% #5555 5 &5 & @ e s 126
5.1.2 Distributed Merge-Sort o . h 0o i i e e 127
5.1.3 Concurrent String Search 131
5.1.3.1 Implementation-1. 131

5.1.3.2 Implementation-2 i .« ¢ w o5 % % o @ wow oo 05 s e 131

5.1.3.3 Implementation-3. 135

5.1.4 An Electronic Transaction System 136

X

5.1.4.1 Implementation-1., 138

5.1.4.2 Implementation-2. 140

5.1.43 Implementation-3 . « « + ¢ v o s oo v s 6 s 0 s b 0w 146

5.1.44 Implementation-4 oo oo 148

B.2 DISCUSSION . v v v v v v v v v v b e e e e e e e e e e e e e e e e e e 151
521 Merits GG EBEWEVER B4 wY w3 151
5.2.2 Limitations on Visor++ Usage 152
Conclusions and Future Work 155
6.1 Summaryssrd 52 giGiieii 63 A6@EEEE A AR 155
6.2 Conclusions . . .a s wa vu oo e e e s o6 @@ s w b & a B ¥ e w . 158
6.3 Future Work e e e e e e 158
An Instrumentation Example 161
Al TheOriginal Code4 cswumes an canmn man o5 &5 = 161
A.2 The Instrumented Code 163
Transaction Subsystem Code 167
B.1 The Transaction Requests 167
B.2 The Stock and Customer Databases 168
B.3 The Business Logic Unit 170
B.4 The Transaction Servers i v oo 170
B.5 The Transaction Resolution Subsystem 171

List of Tables

5.1 Timing information from the merge-sort program. 129
5.2 Timing information from the parallel text-searching programs. 135
5.3 Timing information from Implementation-3 and Implementation-4.. . . 149

xi

List of Figures

1.1 Data visualisation of air flow near the airfoils of an aireraft.
1.2 Constructing a procedure in Hyperpascal.
1.3 The Processor Communication View in ParaGraph.

1.4 Algorithm animation of the Tower of Hanoi, using POLKA.

1.5 Mental models in software or program comprehension.

2.1 Aspects of software visualtsation.o o0
2.2 The Classy tool in the TAU visualisation toolset.
2.3 The Coarse Grained View in TPM.
2.4 The control panel of the parallel debugger Breezy in TAU.
2.5 Visualising data structures in Breezy.
2.6 The Utilisation View in ParaGraph.
2.7 Transformations to produce software visualisation.
2.8 The different views in visualisation tools.
2.9 The Spacetime Diagram in ParaGraph.
2.10 Statistics of communication traffic in ParaGraph.
2.11 The History View and the Mutex View in Gthreads.
2.12 Trace visualisation in MVD (POET).

3.1 Usage of the par construct. « v v v v v v v v vt e e
3.2 Implicit synchronisation barrier at the end of a par or parfor block.

3.3 Usage of the parfor construct. o oo
3.4 Usage of the spawn construct.« . v v v v v v i v it e

3.5 Usage of the sync construct. o v v i v i v i i

xil

-] Ot s W N

3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24

Usage of the atomic construct.
Mapping of threads and processor objects in CC++.
Implementation of a processor object class.
Usage of global pointers. oo
Data communication and RPC between two processor objects.

A transfer function. L. oL e

General framework of Visor++. . . . v v v v v v v i i e e
Information on functions in the static repository.
Information on classes in the static repository.
Ill-partitioned, but valid program.«
Automatically obtaining a unique identifier for a processor object.

A light-weight atomic function to obtain unique thread identifiers.

Program trace structure. o 0 e
Erxample of function instrumentation. o000
A function can have many exit paths.
Profiler class in for the instrumentation subsystem.
A function instrumented with an EntityProfiler object.
Example of an altered function call.
Constructor and destructor called from different threads.
Instrumentation of a class. e
Changing the call to an object destructor.
Instrumenting a member function of a processor object class.
Marking the start and end of a RPC.
The generation of events for a RPC. o0 v
A drawback in RPC instrumentation.
Simple re-arrangment of source-code for RPC instrumentation.
Instrumentation of a parfor or par block.
Instrumenting a parfor block and its threads.
Instrumenting a par block and its threads.

Instrumenting a spawn block. oo

69

4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46
4.47
4.48

4.49
4.50
4.51
4.52

An unfortunate consequence of introducing a new scope. 76

Simple re-arrangement of source code as a way out. 77
Allocation of monitoring processes.0 o w e e 79
Collecting program traces. v v v cu v s v o ws e5 5 e 81
Consolidating program traces. v v v v v v v v v 84
Causality violations in event ordering. 86
The corrected DAG reflecting the “happened-before” relationships. . . . 86
Classes in POLKA, and their has-a relationships. 88
Ezxample program of the animation of a circle. 89
The event visualisation subsystem. . v « ¢« s 4 v vi v v v v o0 s 91
Visor++ in e2eculion. . e s w5 o @ aie o oo s 6 oaie s wmn s 6w 8w e 94
Relationships among views. v v v v v b v e e e e 95
The Source-Code View. oo i v v i i v v v v n o 98
The Class Hierarchy View. 99
The Class Information View. 100
Information onanode. Gomaw o5 asvmsmsee s & 101
Information on a processor object. 101
The Thread View. 103
The Status Information View. 104
Auziliary view showing information of a function. 105
The Navigation View.o v v it v v v oo 107
The RPC Statistics View, with the option menu popped up. 109
Auziliary view on the number of RPCs from one PO to another. 110

The Processor/Processor-Object Activity View, with its option
MENY POPPEd UP. « o v wow e w5 % o % 5 s @ % 0p 5@ N oEe w wcw 8 e s 111

Auziliary view from the Processor/Processor-Object Activity View.112

Program execution in a processor-object. 113
Two processor-objects executing on a processor. o .. 114
The Function Usage View. 116

xXiv

4.53 Selecting a function in the Function Usage View brings up further
information. va sw @ aa Eu w8 P ETE R e e E @ W e % 0K e E
4.54 The Composite Function View.

4.55 The auziliary view from the Composite Function View.

5.1 The Thread View of the simple master-slave program.
5.2 Merge-sort using a 4-level binary tree. The left figure shows the initial
placement of the nodes on processors, and the right figure the optimised
placement. L L e e e e e e e e e e e e e e
5.3 The Processor/Processor-Object Activity View reveals the ineffi-
CIENCY Of PTOCESSOT USAGE. . + v o v v v e e e e e e e et e e
5.4 The merge-sort program is heavy with RPC activity.
5.5 Higher efficiency in processor usage after program tuning.
5.6 The Thread View shows that the master-PO is idle while the slave-POs
ATe eTECULING. . -« o« v e v e e e e e e e e e e e e e e e e e e e
5.7 The Source-Code View shows the source-code area where the master-
PO is blocked. s cwsiin vo smms ssim 65 6y s sma 8@ w e
5.8 The Thread View of Implementation-2, with the compute-thread.
5.9 The interrupt-signaling mechanism in work.
5.10 Three-tier architecture for the electronic transaction system.
5.11 The Thread View shows the unfairness of transactions.
5.12 Auziliary view showing a transaction request being handled by a TS-PO
on the machine “achilles”. oo 0 e
5.13 The Source-Code View reveals the inadequacy of the implementation
of the lransaction SETVET. . . . v s & s as s wrw it & & o 0w 6 e 6w s e
5.14 The Function Usage View reveals those functions which are heavily
used or take much time to execute.o
5.15 Together with the Source-Code View, the Class Hierarchy View
shows that the time-stamp subsystem does not depend on the implemen-

tation of other classes.o

XV

5.16 The Class Information View of the class “TimeStampClass”, dis-
played upon clicking the associated node on the Class Hierarchy View. 144
5.17 The Composite Function View shows which functions can be opti-
mised for each processor-object. oo 145
5.18 This auziliary view is the result of selecting the longest function bar in
the second row from the top of the Composite Function View. . . . 146
5.19 The Function Usage View now reveals that the functions are within
reasonable frequency and average time of execution. 147

5.20 The Function Usage View reveals approzimately similar function pro-

files to those in Implementation-3. oo 150
B.1 Definition of the transaction request class. 168
B.2 The customer database class. . . s waw s s wam na s gmeam on on e 168
B.3 The stock database class. e 169
B.4 Definition of the business logic unst.o 170
B.5 Definition of the transaction server. 00 171
B.6 Definition of the transaction resolution subsystem. 172

Xvi

