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visor n 1. (hisú) Movable part of a helmet, covering the face. 2. Peak
of a cap. 3. ('sun-)-, oblong sheet of dark-tinted glass hinged at the top
of a windscreen in a car to lessen the glare of bright sunshine.

(Orford Adtsanced Learner's Dictionary of Current English,
by A.S. Hornby, Orford Uniuersity Press,

Trd edition, 1980, page 959.)

VISOR Acronym for Visual Instrument and Sensory Organ Re-
placement. A remarkable piece of bioelectronic engineering that allowed
Geordi La Forge to see, despite the fact that he was born blind. A slim de-

vice worn over the face like a pair of sunglasses, the Visor permitted vision
in not only visible light, but across spectrum, including infrared and radio
waves.

(The Star Trele Encyclopedia, A Reference Guide to the Future,
by M. Okuda, D. Okuda and D. Mirek,

Pocket Books, New Yorlc, 1994, page 368.)



Abstract

Applying software visualisation to task-parallel object-oriented programs poses inter-

esting questions. The reason for this is that, typically, such programs exhibit complex

behaviour as a result of the complex interaction among the program entities. Such

interaction is caused, in part, by concurrency and distribution.

With the exception of a limited number of tools, many existing tools only focus on

a narrow selection of language features for visualisation. However, to enable users to

form a deep understanding, and subsequently fine-tune a program, a wide selection of

such features is necessary for visualisation. Furthermore, multiple views depicting the

program from multiple angles are also necessary.

This thesis describes Visor{}, a tool for visualising programs written in CC**, a

task-parallel, object-oriented language derived from C**. Visor** provides a frame-

work of visualising task-parallel object-oriented programs in the absence of language

support for visualisation. In other words, Visor** provides support for the visualisa-

tion of programs written in languages which are not "visualisation-conscious"; CC-l-*

is one such language.

This thesis describes the techniques developed to enable the visualisation of task-

parallel object-oriented programs by using a wide selection of language features. The

effectiveness of this approach is testified by the experimentation with the tool. The

design and experimentation with Visor** are all described in this thesis.

Although the framework of Visor** is implemented on specific platforms, it can

also be applied to other similar systems.
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