
qê.tc -98

VISOR**:
A SOFTWARE VISUALISATION TOOL FOR

TASK-PARALLEL OBJECT-ORIENTED PROGRAMS

Hendra Widjaja

A THESIS SUBMITTED FOR THE DEGREE OF

MRsrpn op Appt len Sctplcp
IN THE DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF ADELAIDE

March 1998

visor n 1. (hisú) Movable part of a helmet, covering the face. 2. Peak
of a cap. 3. ('sun-)-, oblong sheet of dark-tinted glass hinged at the top
of a windscreen in a car to lessen the glare of bright sunshine.

(Orford Adtsanced Learner's Dictionary of Current English,
by A.S. Hornby, Orford Uniuersity Press,

Trd edition, 1980, page 959.)

VISOR Acronym for Visual Instrument and Sensory Organ Re-
placement. A remarkable piece of bioelectronic engineering that allowed
Geordi La Forge to see, despite the fact that he was born blind. A slim de-

vice worn over the face like a pair of sunglasses, the Visor permitted vision
in not only visible light, but across spectrum, including infrared and radio
waves.

(The Star Trele Encyclopedia, A Reference Guide to the Future,
by M. Okuda, D. Okuda and D. Mirek,

Pocket Books, New Yorlc, 1994, page 368.)

Abstract

Applying software visualisation to task-parallel object-oriented programs poses inter-

esting questions. The reason for this is that, typically, such programs exhibit complex

behaviour as a result of the complex interaction among the program entities. Such

interaction is caused, in part, by concurrency and distribution.

With the exception of a limited number of tools, many existing tools only focus on

a narrow selection of language features for visualisation. However, to enable users to

form a deep understanding, and subsequently fine-tune a program, a wide selection of

such features is necessary for visualisation. Furthermore, multiple views depicting the

program from multiple angles are also necessary.

This thesis describes Visor{}, a tool for visualising programs written in CC**, a

task-parallel, object-oriented language derived from C**. Visor** provides a frame-

work of visualising task-parallel object-oriented programs in the absence of language

support for visualisation. In other words, Visor** provides support for the visualisa-

tion of programs written in languages which are not "visualisation-conscious"; CC-l-*

is one such language.

This thesis describes the techniques developed to enable the visualisation of task-

parallel object-oriented programs by using a wide selection of language features. The

effectiveness of this approach is testified by the experimentation with the tool. The

design and experimentation with Visor** are all described in this thesis.

Although the framework of Visor** is implemented on specific platforms, it can

also be applied to other similar systems.

llr

Declaration

This is to certify that this thesis contains no material which has previously been ac-

cepted for the award of any degree or diploma in any university or other tertiary

institution. To the best of my knowledge and belief, it contains no material previously

published or written by another person, except where due reference is made in the text

of the thesis.

If this thesis is accepted for the award of the degree, permission is granted for it to

be made available for loan and photocopying.

Hendra Widjaja

March 1998

lv

Acknowledgernents

First of all, I would like to thank my supervisor, Dr Michael J. Oudshoorn, for his

advice, encouragement, and superb guidance during my candidature as a Master's

student. He is the one who introduced me to the exciting field of software visualisation.

I am also much indebted to Dr Jiannong Cao, who acted as co-supervisor during the

first semester of 1995, particularly when Dr Oudshoorn was away from March to June

1995. His advice and guidance were of utmost importance during the infancy of the

project.

In 1997, I presented a paper in San Jose, USA. Once again, I am much indebted

to my supervisor, Dr Oudshoorn, for his tireless efforts in obtaining financial support

for the trip. He is indeed a super "Visor". I also wish to thank Garuda Indonesia for

providing special arrangements for the trip.

I owe special thanks to Prof. Peter Eades and Dr. Kang Zhang for reading the the

thesis. Their comments are particularly insightful and invaluable, especially for further

enhancements of the work.

Acknowiedgment and thanks also go to the staff and members of the Department

of Computer Science for all their help and support, particularly to Matthew, Stuart,

Sam and Heath for their superb technical assistance. Special thanks to the DHPC

(Distributed High-Performance Computing) group at the department for letting me

print portions of the thesis by using their colour printer. Other members of the staff,

the postgraduate students and visiting speakers have also contributed in many ways.

Many thanks also to my office colleague, Lin Huang, for _teaching me how to make

dumplings.

I also wish to acknowledge the technical help I received that has made my work

possible. Special thanks to the CC++ language developers at California Institute of

Technology, who made their system accessible, and provided much technical support

through electronic mail by answering my questions, even the stupid ones. I would

also like to express my special thanks to Professor John Stasko at Georgia Institute of

Technology, who made his POLKA system publicly available, upon which -y work is

based.

Thank you, too, to all my friends, both at home in Indonesia, and here in Australia.

They have made my stay in Adelaide more enjoyable. Many thanks, too, to the staff

at CISSA (Council for International Students of South Australia), who have provided

international students such as myself a chance to glimpse into the lives of Australians

and the people of other cultures. I would also like to extend my thanks to AusAID

for providing the Australian Development Cooperation Scholarship (ADCOS), without

which my work and stay in Australia would not have been possible.

Finally, I would like to express my deepest gratitude to my parents and family, who

have constantly supported and prayed for me from afar.

vl

Contents

Abstract

Declaration

Acknowledgements

1 Introduction

1.1 Motivation .

1.2 Experimentation

1.3 Terminology . .

I.4 Thesis Structure

2 Software Visualisation

2.1 Aspects of Software Visualisation

2.1.1 Ideals

2.I.2 Purposes

2.I.2.L Understanding

2.1.2.2 Debugging.

2.1.2.3 Performance Analysis

2.L.3 Mechanisms . .

2.I.3.1 Data Collection

2.1.3.2 Visualisation

2.2 Visualisation Systems .

2.2.1 Sequential Systems

lll

lv

1

5

8

8

9

10

10

11

T2

13

13

15

t7

t7

18

20

2t

vll

2.2.2

2.2.3

Concurrent Systems

Concurrent Object-Oriented Systems

2.2.3.1 Visualisation of ¡tC** programs

2.2.3.2 Visualisation of pC** programs

2.2.3.3 Visualisation of LAMINA programs

2.2.3.4 Visualisation of PARC++ programs

2.2.3.5 Observatiorrs

22

26

26

28

29

30

31

31

34

34

35

35

36

.)/

37

37

39

39

40

43

4ó

46

48

49

50

52

53

b,5

5(

2.3 Summary

3 Overview of the CC++ Language

3.1 The CC*t Language

3.1.1

3.L.2

Concurrency . .

3.1.1.1 Synchronous threads

3.7.1.2 Asynchronous threads

Synchronisation and Determinism

3.1,.2.7 Synchronisation

3.1.2.2 Atomic Functions

3.1.3 Locality

3.1.3.1 ProcessorObjects

3.1.3.2 Remote Procedure Calls

3.2 Visualisation Support . . .

4 Visor**
4.I General Framework . . .

4.2 Program Instrumentation Subsystem

4.2.I Prograrn Entities

4.2.2 Program Static Analysis

4.2.3 Program Instrumentation

4.2.3.1 Events .

4.2.3.2 Location-ID . .

4.2.3.3 Instrumenting Functions

vlll

4.2.3.4

4.2.3.5

4.2.3.6

4.2.3.7

Instrumenting

Instrumenting

Instrumenting

Instrumenting

Destructors

Processor Object Classes

Synchronous Threads.

Asynchronous Threads.

62

66

70

73

74

78

78

80

83

85

87

87

88

92

93

97

101

r02

119

119

723

4.2.4 Observatiorrs

4.3 Event Collection Subsystem

4.3.1 Establishing the Monitoring Environment

4.3.2 Collecting Traces

4.3.3 Consolidating traces

4.3.4 Observations

4.4 Event Visualisation Subsystem .

4.4.1 POLKA

4.4.2 Architecture and Implementation

4.4.3 The Views .

4.4.3.I DesignConsiderations

4.4.3.2 Static Views

4.4.3.3 Auxiliary Views .

4.4.3.4 Dynamic Views

4.4.4 Observations

Summary4.5

4.6 Applicability to Other Systems

5 Using Visorf*
5.1 Experiments .

5.1.1 A Simple Example

!26

125

726

L27

131

131

131

135

136

5.t.2 Distributed Merge-Sort

5.1.3 Concurrent String Search

5.1.3.1 Implementation-1

5.1.3.2 Implementation-2

5.1.3.3 Implementation-3

5.7.4 An Electronic Transaction System

IX

5.1.4.l

5.7.4.2

5.1.4.3

5.I.4.4

5.2 Discussion

Implementation-1

Implementation-2

Implementation-3

Implementation-4

138

740

746

148

151

151

t52

155

lbb

158

158

161

161

163

t67

r67

168

170

170

17t

5.2.1 Merits

5.2.2 Limitations on Visor** Usage

6 Conclusions and Future'Work

6.1 Summary

6.2 Conclusions

6.3 Future Work .

A An Instrumentation Example

4.1 The Original Code

4.2 The Instrumented Code

B TYansaction Subsystem Code

B.1 The Transaction Requests

8.2 The Stock and Customer Databases

8.3 The Business Logic Unit

8.4 The Transaction Servers

8.5 The Transaction Resolution Subsystem

X

List of Tables

5.1 Timing information from the merge-sort program.

5.2 Timing information from the parallel text-searching programs.

5.3 Timing information from Implementation-3 and Implementation-4

I29

135

. t49

xl

List of Figures

Data uisualisation of air flow near the airfoils of an aircraft.

Constructing a procedure in Hyperpascal

The Processor Communication View in ParaGraph.

Algorithm animation of the Tower of Hanoi, using POLIA.

Mental models in software or prograrn cornprehension.

1.1

t.2

1.3

t.4

1.5

2.2

2.3

2.4

3.1

3.2

3.3

3.4

3.5

2

3

4

5

7

2.1 Aspects of software uisualisation

?åe Classy tool in the TAU uisualisation toolset.

7åe Coarse Grained View in TPM.

The control panel of the parallel debugger Breezy in TAU.

2.5 Visualising data structures in Breezy.

2.6 ?åe Utilisation View in ParaGraph.

2.7 Transforrnations to produce software uisualisation.

2.8 'l'he diJJ'erent uiews in uisualisation tools

2.9 7å,e Spacetime Diagram in ParaGraph.

2.10 Statistics of cornmunication traffic in ParaGraph.

2.II The History View and the Mutex View in Gthreads.

2.12 Trace uisualisation in MVD (POET).

Usage of the par construct.

Implici,t synchronisation barrier at the end of a par or parfor bloclc

Usage of the parfor construct.

Usage of the sparvn construct.

Usage of the sylnc construct.

10

T4

t4

15

16

16

t7

20

23

24

24

27

35

36

36

JI

38

xll

3.6

tnr).1

3.8

3.9

3.10

3.11

38

39

40

4t

42

43

Usage of the atomic construct.

Mapping of threads and processor objects in CC++.

Implementation of a, processor object class.

Usage of global pointers.

Data communication and RPC between two processor objects

A transfer function.

4.1 General framework of Visor**

4.2 Information on functions in the static repository.

4.3 Information on classes in the static reytository

4.4 Ill-partitioned, but ualid program.

Automatically obtaining a unique identifi,er for o, processor object.

A light-weight atomic function to obtain unique thread identifiers.

Program trace structure.

4.5

4.6

4.7

4.13

4.14

4.15

4.16

4.8 Erample of function instrumentation

4.9 A function can haue rno,ny erit paths.

4.I0 Prof,ler class in for the instrumentati,on subsystern.

4.ll A function instrumented with an EntityProfiler object

4.12 Erample of an altered function call

Constructor and destructor called from different threads.

Instrumentation of a class.

Changi,ng the call to an object destructor

Instrumenting a member function of a processor object class

4.17 Marking the start and end of a RPC.

4.18 The generation of euents for a RPC.

A drawback in RPC instrumentation.

Simple re-arro,ngrnent of source-code for RPC instrumentation

Instrumentation of a parfor or par block.

4.22 Instrumenting ø parfor block and its threads

4.23 Instrurnenting ø par block and i,ts threads.

46

50

51

52

58

59

59

61

62

63

64

65

66

o(

68

69

70

7t

7r

72

tó

74

75

76

4.r9

4.20

4.2t

4.24 Instrumenti,ng ¿ spawn block.

xlll

4.25

4.26

4.27

4.28

4.29

4.30

4.3r

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

4.41

4.42

4.43

4.44

4.45

4.46

4.47

4.48

4.49

4.50

4.5r

4.52

An unfortunate consequence of introducing a new scope. 76

Simple re-arrangement of soltrrce code as a way out 77

Allocation of monitoring processes.

Collecting progrünx traces.

Consolidating program traces.

79

CausalitE uiolations in euent ordering. 86

The corrected DAG refl,ecting the "happened-before" relationships. 86

Classes in POLI(A, and their has-a relationships. 88

Erample prograrn of the animation of a circle. 89

The euent uisualisation subsystem. 91

Visorli'in erecution. 94

Relationships among uiews. . 95

81

84

99

100

101

101

103

704

The Source-Code View.

7åe Class Hierarchy View.

?l¿e Class Information View

Information on o, node.

Information on o, processor object. .

The T}nread View.

The Status Information View.

98

Auriliary uiew showing information of a function

7he Navigation View. 107

The RPC Statistics View, with the option nlenu popped up.

Auriliary uiew on the number of RPCs from one PO to another.

The Processor/Processor-Object Activity View, with its option

rnenu popped up. . 111

Auriliary ui ew fro rn the P r o cessor/P ro cessor- Obj ect Activity View. 1 1 2

Program erecution in a processor-object.

Two processor-objects erecuting on a processor.

105

109

110

. 113

. 114

. 116?åe Fhnction Usage View.

XlV

4.53 Selectins a function in the F\rnction lJsage View brings up further

information.

4.54 The Cornposite Ftrnction View

4.55 The auriliary uiew from the Composite F\rnction View.

5.1

5.2

The Tlnread View of the simple master-slaue prograrn

Merge-sort using a l-leuel binary tree. The left fi,gure shows the initial

placement of the nodes on processors, and the right fi'gure the optimised

placement

5.3 The Processor/Processor-Object Activity View reueals the ineffi-

ciency of processor usage.

The merge-sort prograrn is heauy with RPC actiuity.

Higher efficiency in processor usage after prograrn tuning

5.6 TheT},read View shows that the master-PO is idle while the slaue-POs

are erecuting

5.7 The Source-Code View shows the source-code area where the rnaster-

PO is blocked.

5.8 The Thread View o/Implementation-2, with the compute-thread

5.9 The i,nterrupt-signaling mechanism in worlc.

5.10 Three-tier architecture for the electronic transaction system.

5.11 The Thread View shows the unfairness of transactiot'¿s.

5.12 Auri,liary ui,ew showing a transaction request being handled by a TS-PO

on the machine "achilles".

5.13 7åe Source-Code View reueals the inadequacy of the i,mplernentation

of the transaction seruer.

5.14 The F\tnction Usage View reueals those functions which are heauily

used or talce much time to erecute

5.15 Together with the Source-Code View, the Class }lierarchy View

shows that the tirne-stamp subsystem does not depend on the implemen-

r77

118

118

5.4

5.b

t26

1.27

r28

r29

130

732

133

134

136

138

139

74r

t41

r43

XV

tation of other classes. r44

5.16 ?åe Class Information View of the class "TimeStampClass", dis-

played upon cliclcing the associated node on úåe Class Hierarchy View. 144

5.17 The Cornposite F\rnction View shows which functions can be opti-

rnised for each processor-object.

5.18 This auriliary uiew is the result of selecting the longest function bar in

the second row from the top of the Composite F\rnction View.

5.19 The F\nction Usage View now reueals that the functions &re within

reasonable frequency and auerage time of erecution.

5.20 TheF\nction lJsage View reueals approrirnately similar function pro-

fi,les to those in Irnplementation-?. .

t45

746

747

150

168

168

169

170

t7t
172

8.1

8.2

B.3

8.4

B.5

8.6

Def,nition of the transaction request class

The customer database class. .

The stock database class.

Definition of the business logic unit.

Definition of the transaction seruer.

Defi,nition of the transaction resolution subsystem.

xvl

