
qê.tc -98

VISOR**:
A SOFTWARE VISUALISATION TOOL FOR

TASK-PARALLEL OBJECT-ORIENTED PROGRAMS

Hendra Widjaja

A THESIS SUBMITTED FOR THE DEGREE OF

MRsrpn op Appt len Sctplcp
IN THE DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF ADELAIDE

March 1998



visor n 1. (hisú) Movable part of a helmet, covering the face. 2. Peak
of a cap. 3. ('sun-)-, oblong sheet of dark-tinted glass hinged at the top
of a windscreen in a car to lessen the glare of bright sunshine.

(Orford Adtsanced Learner's Dictionary of Current English,
by A.S. Hornby, Orford Uniuersity Press,

Trd edition, 1980, page 959.)

VISOR Acronym for Visual Instrument and Sensory Organ Re-
placement. A remarkable piece of bioelectronic engineering that allowed
Geordi La Forge to see, despite the fact that he was born blind. A slim de-

vice worn over the face like a pair of sunglasses, the Visor permitted vision
in not only visible light, but across spectrum, including infrared and radio
waves.

(The Star Trele Encyclopedia, A Reference Guide to the Future,
by M. Okuda, D. Okuda and D. Mirek,

Pocket Books, New Yorlc, 1994, page 368.)



Abstract

Applying software visualisation to task-parallel object-oriented programs poses inter-

esting questions. The reason for this is that, typically, such programs exhibit complex

behaviour as a result of the complex interaction among the program entities. Such

interaction is caused, in part, by concurrency and distribution.

With the exception of a limited number of tools, many existing tools only focus on

a narrow selection of language features for visualisation. However, to enable users to

form a deep understanding, and subsequently fine-tune a program, a wide selection of

such features is necessary for visualisation. Furthermore, multiple views depicting the

program from multiple angles are also necessary.

This thesis describes Visor{}, a tool for visualising programs written in CC**, a

task-parallel, object-oriented language derived from C**. Visor** provides a frame-

work of visualising task-parallel object-oriented programs in the absence of language

support for visualisation. In other words, Visor** provides support for the visualisa-

tion of programs written in languages which are not "visualisation-conscious"; CC-l-*

is one such language.

This thesis describes the techniques developed to enable the visualisation of task-

parallel object-oriented programs by using a wide selection of language features. The

effectiveness of this approach is testified by the experimentation with the tool. The

design and experimentation with Visor** are all described in this thesis.

Although the framework of Visor** is implemented on specific platforms, it can

also be applied to other similar systems.

llr



Declaration

This is to certify that this thesis contains no material which has previously been ac-

cepted for the award of any degree or diploma in any university or other tertiary

institution. To the best of my knowledge and belief, it contains no material previously

published or written by another person, except where due reference is made in the text

of the thesis.

If this thesis is accepted for the award of the degree, permission is granted for it to

be made available for loan and photocopying.

Hendra Widjaja

March 1998

lv



Acknowledgernents

First of all, I would like to thank my supervisor, Dr Michael J. Oudshoorn, for his

advice, encouragement, and superb guidance during my candidature as a Master's

student. He is the one who introduced me to the exciting field of software visualisation.

I am also much indebted to Dr Jiannong Cao, who acted as co-supervisor during the

first semester of 1995, particularly when Dr Oudshoorn was away from March to June

1995. His advice and guidance were of utmost importance during the infancy of the

project.

In 1997, I presented a paper in San Jose, USA. Once again, I am much indebted

to my supervisor, Dr Oudshoorn, for his tireless efforts in obtaining financial support

for the trip. He is indeed a super "Visor". I also wish to thank Garuda Indonesia for

providing special arrangements for the trip.

I owe special thanks to Prof. Peter Eades and Dr. Kang Zhang for reading the the

thesis. Their comments are particularly insightful and invaluable, especially for further

enhancements of the work.

Acknowiedgment and thanks also go to the staff and members of the Department

of Computer Science for all their help and support, particularly to Matthew, Stuart,

Sam and Heath for their superb technical assistance. Special thanks to the DHPC

(Distributed High-Performance Computing) group at the department for letting me

print portions of the thesis by using their colour printer. Other members of the staff,

the postgraduate students and visiting speakers have also contributed in many ways.

Many thanks also to my office colleague, Lin Huang, for _teaching me how to make

dumplings.

I also wish to acknowledge the technical help I received that has made my work



possible. Special thanks to the CC++ language developers at California Institute of

Technology, who made their system accessible, and provided much technical support

through electronic mail by answering my questions, even the stupid ones. I would

also like to express my special thanks to Professor John Stasko at Georgia Institute of

Technology, who made his POLKA system publicly available, upon which -y work is

based.

Thank you, too, to all my friends, both at home in Indonesia, and here in Australia.

They have made my stay in Adelaide more enjoyable. Many thanks, too, to the staff

at CISSA (Council for International Students of South Australia), who have provided

international students such as myself a chance to glimpse into the lives of Australians

and the people of other cultures. I would also like to extend my thanks to AusAID

for providing the Australian Development Cooperation Scholarship (ADCOS), without

which my work and stay in Australia would not have been possible.

Finally, I would like to express my deepest gratitude to my parents and family, who

have constantly supported and prayed for me from afar.

vl



Contents

Abstract

Declaration

Acknowledgements

1 Introduction

1.1 Motivation .

1.2 Experimentation

1.3 Terminology . .

I.4 Thesis Structure

2 Software Visualisation

2.1 Aspects of Software Visualisation

2.1.1 Ideals

2.I.2 Purposes

2.I.2.L Understanding

2.1.2.2 Debugging.

2.1.2.3 Performance Analysis

2.L.3 Mechanisms . .

2.I.3.1 Data Collection

2.1.3.2 Visualisation

2.2 Visualisation Systems .

2.2.1 Sequential Systems

lll

lv

1

5

8

8

9

10

10

11

T2

13

13

15

t7

t7

18

20

2t

vll



2.2.2

2.2.3

Concurrent Systems

Concurrent Object-Oriented Systems

2.2.3.1 Visualisation of ¡tC** programs

2.2.3.2 Visualisation of pC** programs

2.2.3.3 Visualisation of LAMINA programs

2.2.3.4 Visualisation of PARC++ programs

2.2.3.5 Observatiorrs

22

26

26

28

29

30

31

31

34

34

35

35

36

.)/

37

37

39

39

40

43

4ó

46

48

49

50

52

53

b,5

5(

2.3 Summary

3 Overview of the CC++ Language

3.1 The CC*t Language

3.1.1

3.L.2

Concurrency . .

3.1.1.1 Synchronous threads

3.7.1.2 Asynchronous threads

Synchronisation and Determinism

3.1,.2.7 Synchronisation

3.1.2.2 Atomic Functions

3.1.3 Locality

3.1.3.1 ProcessorObjects

3.1.3.2 Remote Procedure Calls

3.2 Visualisation Support . . .

4 Visor**
4.I General Framework . . .

4.2 Program Instrumentation Subsystem

4.2.I Prograrn Entities

4.2.2 Program Static Analysis

4.2.3 Program Instrumentation

4.2.3.1 Events .

4.2.3.2 Location-ID . .

4.2.3.3 Instrumenting Functions

vlll



4.2.3.4

4.2.3.5

4.2.3.6

4.2.3.7

Instrumenting

Instrumenting

Instrumenting

Instrumenting

Destructors

Processor Object Classes

Synchronous Threads.

Asynchronous Threads.

62

66

70

73

74

78

78

80

83

85

87

87

88

92

93

97

101

r02

119

119

723

4.2.4 Observatiorrs

4.3 Event Collection Subsystem

4.3.1 Establishing the Monitoring Environment

4.3.2 Collecting Traces

4.3.3 Consolidating traces

4.3.4 Observations

4.4 Event Visualisation Subsystem .

4.4.1 POLKA

4.4.2 Architecture and Implementation

4.4.3 The Views .

4.4.3.I DesignConsiderations

4.4.3.2 Static Views

4.4.3.3 Auxiliary Views .

4.4.3.4 Dynamic Views

4.4.4 Observations

Summary4.5

4.6 Applicability to Other Systems

5 Using Visorf*
5.1 Experiments .

5.1.1 A Simple Example

!26

125

726

L27

131

131

131

135

136

5.t.2 Distributed Merge-Sort

5.1.3 Concurrent String Search

5.1.3.1 Implementation-1

5.1.3.2 Implementation-2

5.1.3.3 Implementation-3

5.7.4 An Electronic Transaction System

IX



5.1.4.l

5.7.4.2

5.1.4.3

5.I.4.4

5.2 Discussion

Implementation-1

Implementation-2

Implementation-3

Implementation-4

138

740

746

148

151

151

t52

155

lbb

158

158

161

161

163

t67

r67

168

170

170

17t

5.2.1 Merits

5.2.2 Limitations on Visor** Usage

6 Conclusions and Future'Work

6.1 Summary

6.2 Conclusions

6.3 Future Work .

A An Instrumentation Example

4.1 The Original Code

4.2 The Instrumented Code

B TYansaction Subsystem Code

B.1 The Transaction Requests

8.2 The Stock and Customer Databases

8.3 The Business Logic Unit

8.4 The Transaction Servers

8.5 The Transaction Resolution Subsystem

X



List of Tables

5.1 Timing information from the merge-sort program.

5.2 Timing information from the parallel text-searching programs.

5.3 Timing information from Implementation-3 and Implementation-4

I29

135

. t49

xl



List of Figures

Data uisualisation of air flow near the airfoils of an aircraft.

Constructing a procedure in Hyperpascal

The Processor Communication View in ParaGraph.

Algorithm animation of the Tower of Hanoi, using POLIA.

Mental models in software or prograrn cornprehension.

1.1

t.2

1.3

t.4

1.5

2.2

2.3

2.4

3.1

3.2

3.3

3.4

3.5

2

3

4

5

7

2.1 Aspects of software uisualisation

?åe Classy tool in the TAU uisualisation toolset.

7åe Coarse Grained View in TPM.

The control panel of the parallel debugger Breezy in TAU.

2.5 Visualising data structures in Breezy.

2.6 ?åe Utilisation View in ParaGraph.

2.7 Transforrnations to produce software uisualisation.

2.8 'l'he diJJ'erent uiews in uisualisation tools

2.9 7å,e Spacetime Diagram in ParaGraph.

2.10 Statistics of cornmunication traffic in ParaGraph.

2.II The History View and the Mutex View in Gthreads.

2.12 Trace uisualisation in MVD (POET).

Usage of the par construct.

Implici,t synchronisation barrier at the end of a par or parfor bloclc

Usage of the parfor construct.

Usage of the sparvn construct.

Usage of the sylnc construct.

10

T4

t4

15

16

16

t7

20

23

24

24

27

35

36

36

JI

38

xll



3.6

tnr).1

3.8

3.9

3.10

3.11

38

39

40

4t

42

43

Usage of the atomic construct.

Mapping of threads and processor objects in CC++.

Implementation of a, processor object class.

Usage of global pointers.

Data communication and RPC between two processor objects

A transfer function.

4.1 General framework of Visor**

4.2 Information on functions in the static repository.

4.3 Information on classes in the static reytository

4.4 Ill-partitioned, but ualid program.

Automatically obtaining a unique identifi,er for o, processor object.

A light-weight atomic function to obtain unique thread identifiers.

Program trace structure.

4.5

4.6

4.7

4.13

4.14

4.15

4.16

4.8 Erample of function instrumentation

4.9 A function can haue rno,ny erit paths.

4.I0 Prof,ler class in for the instrumentati,on subsystern.

4.ll A function instrumented with an EntityProfiler object

4.12 Erample of an altered function call

Constructor and destructor called from different threads.

Instrumentation of a class.

Changi,ng the call to an object destructor

Instrumenting a member function of a processor object class

4.17 Marking the start and end of a RPC.

4.18 The generation of euents for a RPC.

A drawback in RPC instrumentation.

Simple re-arro,ngrnent of source-code for RPC instrumentation

Instrumentation of a parfor or par block.

4.22 Instrumenting ø parfor block and its threads

4.23 Instrurnenting ø par block and i,ts threads.

46

50

51

52

58

59

59

61

62

63

64

65

66

o(

68

69

70

7t

7r

72

tó

74

75

76

4.r9

4.20

4.2t

4.24 Instrumenti,ng ¿ spawn block.

xlll



4.25

4.26

4.27

4.28

4.29

4.30

4.3r

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

4.41

4.42

4.43

4.44

4.45

4.46

4.47

4.48

4.49

4.50

4.5r

4.52

An unfortunate consequence of introducing a new scope. 76

Simple re-arrangement of soltrrce code as a way out 77

Allocation of monitoring processes.

Collecting progrünx traces.

Consolidating program traces.

79

CausalitE uiolations in euent ordering. 86

The corrected DAG refl,ecting the "happened-before" relationships. 86

Classes in POLI(A, and their has-a relationships. 88

Erample prograrn of the animation of a circle. 89

The euent uisualisation subsystem. 91

Visorli'in erecution. 94

Relationships among uiews. . 95

81

84

99

100

101

101

103

704

The Source-Code View.

7åe Class Hierarchy View.

?l¿e Class Information View

Information on o, node.

Information on o, processor object. .

The T}nread View.

The Status Information View.

98

Auriliary uiew showing information of a function

7he Navigation View. 107

The RPC Statistics View, with the option nlenu popped up.

Auriliary uiew on the number of RPCs from one PO to another.

The Processor/Processor-Object Activity View, with its option

rnenu popped up. . 111

Auriliary ui ew fro rn the P r o cessor/P ro cessor- Obj ect Activity View. 1 1 2

Program erecution in a processor-object.

Two processor-objects erecuting on a processor.

105

109

110

. 113

. 114

. 116?åe Fhnction Usage View.

XlV



4.53 Selectins a function in the F\rnction lJsage View brings up further

information.

4.54 The Cornposite Ftrnction View

4.55 The auriliary uiew from the Composite F\rnction View.

5.1

5.2

The Tlnread View of the simple master-slaue prograrn

Merge-sort using a l-leuel binary tree. The left fi,gure shows the initial

placement of the nodes on processors, and the right fi'gure the optimised

placement

5.3 The Processor/Processor-Object Activity View reueals the ineffi-

ciency of processor usage.

The merge-sort prograrn is heauy with RPC actiuity.

Higher efficiency in processor usage after prograrn tuning

5.6 TheT},read View shows that the master-PO is idle while the slaue-POs

are erecuting

5.7 The Source-Code View shows the source-code area where the rnaster-

PO is blocked.

5.8 The Thread View o/Implementation-2, with the compute-thread

5.9 The i,nterrupt-signaling mechanism in worlc.

5.10 Three-tier architecture for the electronic transaction system.

5.11 The Thread View shows the unfairness of transactiot'¿s.

5.12 Auri,liary ui,ew showing a transaction request being handled by a TS-PO

on the machine "achilles".

5.13 7åe Source-Code View reueals the inadequacy of the i,mplernentation

of the transaction seruer.

5.14 The F\tnction Usage View reueals those functions which are heauily

used or talce much time to erecute

5.15 Together with the Source-Code View, the Class }lierarchy View

shows that the tirne-stamp subsystem does not depend on the implemen-

r77

118

118

5.4

5.b

t26

1.27

r28

r29

130

732

133

134

136

138

139

74r

t41

r43

XV

tation of other classes. r44



5.16 ?åe Class Information View of the class "TimeStampClass", dis-

played upon cliclcing the associated node on úåe Class Hierarchy View. 144

5.17 The Cornposite F\rnction View shows which functions can be opti-

rnised for each processor-object.

5.18 This auriliary uiew is the result of selecting the longest function bar in

the second row from the top of the Composite F\rnction View.

5.19 The F\nction Usage View now reueals that the functions &re within

reasonable frequency and auerage time of erecution.

5.20 TheF\nction lJsage View reueals approrirnately similar function pro-

fi,les to those in Irnplementation-?. .

t45

746

747

150

168

168

169

170

t7t
172

8.1

8.2

B.3

8.4

B.5

8.6

Def,nition of the transaction request class

The customer database class. .

The stock database class.

Definition of the business logic unit.

Definition of the transaction seruer.

Defi,nition of the transaction resolution subsystem.

xvl



Chapter 1

Introduction

A picture speaks a thousand words. This proverb supports the belief that pictures

have been used by mankind to convey information more effectively than words. Before

the invention of written texts, pre-historic cavemen used pictures as a communication

medium. Even after writing was invented, pictures were, and still are, widely used.

Nowadays, engineers and architects, for example, use pictures to convey their ideas

and to communicate with their colleagues.

The idea of conveying information through pictures also extends to the comput-

ing milieu to support new forms of human-computer interactions. Supported by the

advances in computer graphics technology, such interactions are possible because they

take advantage of the human visual capability, which can generally discern pictorial

information better than textual information [45, 113]. These new forms of interaction

include uisualisation, which is concerned with the use of computer-generated graphical

representation in the computing milieu [113].

Visualisation is a broad field which can be divided into three categories: scientific

data visualisation, visual programming, and software visualisation [45, 109, 113].

Scientific data ui,sualisation, sometimes called sci,entific uisualisation, deals with

the graphical representation of bulk scientific data. Such data can be acquired through

experiments, or through simulations. To display the data within the limited real estate

of a computer screen, the data is transformed, for instance, by data aggregation. Sci-

entific visualisation is deployed in various fields such as meteorology, aeronautics, and

1



'f':

Figure l.I. Data uisualisation of air fl,ow near the airfoils of an aircraft

chemistry. Often, the graphical representations depict the real-world physical aspects

of the data. For example, the huge numerical data relating to unsteady air flow near

the airfoils of an aircraft can be represented on the screen as particle dots and lines.

Figure 1.1 is the graphical rendering of such data, based on the position and other

scalar quantities of the particles [85].

The second field, uisual progra,nxrning, is concerned with the use of graphical arti-

facts to specify or create computer programs. Through visual programming, iconic or

graphical representations of language features can be manipulated interactively in some

specific manner [9a]. For example, a visual programming language may provide icons

which represent program units (such as procedures), and other icons which represent

control structures. A programmer then composes a program by using these icons, and

by manipulating them graphically. Some examples of visual programming systems are

HyperPascal [90] and Hence [9].

Figure 1.2 shows the construction of a procedure in Hyperpascal. This figure shows

the graphical icons a programmer must use to create a procedure for the iterative

multiplication of two integers, r and y. The topmost node, labeled product is the

procedure to be created. The two boxes on the left of this node are the two input

values. The other box on the right is the output type. The boxes above the product

2



æmpf x

x* v

Y -* æ*P

If y is larger zeÍo

yls
than

While
greater

productmake multiolier
the lesser välue

integerv

integer
productintegerx

integertemp

1 v

productxproduct +

Figure 1.2. Constructing a procedure in Hyperpascal.

node specify entities local to the procedure. The two links extending from below the

node specify two actions to be executed sequentially.

The third freld, software uisualisation, is concerned with the use of graphical con-

structs and methods to represent both the static and the dynamic aspects of soft-

ware [109]. Software visualisation generically encompasses some other terms, whose

definitions somewhat overlap with one another.

o Prograrn uisualisation is defined as the use of graphical artifacts to enhance the

understanding of programs [45, 109, 113]. In program visualisation, the focus is

usually on the graphical representations of program execution. The execution

states, or elements of a program, such as function calls, or changes in data struc-

tures, can be represented as graphical icons which interact with one another on

the computer screen. Several tools, such as Ovation [39], TraceViewer [73], and

ParaGraph [69] are in this category. Figure 1.3 shows a communication diagram

from ParaGraph which depicts the instantaneous communication among pÌoces-

sors on which a message-passing program executes. Each processor is assigned a

colour to indicate whether it is busy, idle, transmitting data,, or receiving data.

or)



¡dle Fecvserìdbusy

RIHG

Figure L.3. The Processor Communication View in ParaGraph.

o Algorithm animation is focused on the use of animation to depict a high-level

description of algorithm operation. For example, the behaviour of a sorting

algorithm inside a program can be represented as the animation of the movements

of the data being sorted [5, 18]. Figure 1.4 shows the algorithm animation of the

Tower of Hanoi through the use of the POLKA [122] toolkit. Other tools such as

Zeus [18] and BALS A l22l are also examples of algorithm animation tools.

o Code uisualisation is concerned with the graphical representation of the structures

and elements of the source-code. This includes, for example, static program

structures, class hierarchies in object-oriented programs, or the actual program

text itself. The tools PIE [86], and TAU [17, 97] include code visualisation as

part of their framework. Some other similar tools include SEE [6], and the work

by Ball [7].

The above three fields have a common denominator in that they use graphics.

However, the emphases are different. Scientific visualisation places empha,sis on the

representation of scientific data; visual programming focuses on program or software

specification; and software visualisation highlights the static and dynamic aspects of a

program or software system.

4



s 45

7

6

1

Figure L.4. Algorithm animation of the Tower of Hanoi, using POLKA

Scientific visualisation has proved successful and effective in presenting many types

of scientific and engineering data to aid human comprehension. This is partly because

scientific data usually has a natural correspondence to the physical world [71]. This

is not so in visual programming and software visualisation. Software visualisation is

of particular interest, because it is an attempt to provide users with a mental model

of software execution, which can then be used for understanding, or for identifying

defects in the software (see the next section). In addition, software visualisation is also

interesting because it can be used for a variety of purposes, such as understanding,

performance tuning, and debugging. Each purpose requires a different approach to

ensure appropriate presentation. The focus of this thesis is software visualisation.

1.1- Motivation

Software visualisation can be used in different hardware and software domains [45, 103].

For example, it can be used for the visualisation of sequential, concurrent, or object-

oriented software. In turn, the software can be executed on single-processor systems,

tightly-coupled systems, or loosely-coupled multi-processor systems.

The usage of software visualisation is motivated by the fact that software execution

5



is usually a complex interaction of a collection of abstract objects which can be difficult

to fathom 1221. It has been shown that in order to understand a program or software

system, programmers and users form mental models which represent the software [51,

106]. This mental model formation generally relies on a textual representation, such as

source code listings, and software design documents. However, software visualisation

can be used to assist in the formation of this mental model, and to help confirm or

strengthen any existing models. Software visualisation may also give users more insight

into the static and dynamic aspects of the software.

The usage of software visualisation itself can be put into the framework of Fig-

ure 1.5 [103]. Firstly, a programmer creates a mental model of a program or software

which is being developed [90, 106]. This original mental model is then transformed

into the corresponding static model by using tools, such as text editors, CASE tools,

and compilers. In this context, a static model comprises source code, the associated

object code, and other intermediate code forms. After the static model is created, it is

mapped into the corresponding dynamic mode1, which depicts the run-time behaviour

of the program. The mapping is performed by using the program environment run-

time control, such as operating systems and run-time libraries. This dynamic model

can, furthermore, be mapped into the programmer's execution mental model, which

is a mental representation of the program execution. This mapping is important [40],

because it enables the programmer to superimpose the execution mental model onto

the original mental model, which was conceived during the creation of the program.

This makes it possible to understand, or identify defects in the program.

Software visualisation can be effective if it assists programmers or users of software

visualisation tools to form or strengthen their mental models. However, unlike scien-

tific visualisation, software visualisation usually does not have any apparent physical

world correspondencel [71]. Therefore, in software visualisation, the choice of graphical

lscientific visualisation usually has a clear physical world correspondence. For example, bulk
scientific data on ocean currents (such as salinity, velocity, and pressure) can be naturally represented

as ocean currents on the computer screen [74]. Another example is the graphical representations of
the unsteady air flow near the airfoils of an aircraft (see Figure 1.1). Software execution, on the other
hand, typically has no such natural correspondence. Therefore, different software visualisation tools

represent, for example, function execution in widely different ways'

6



Static
Model

Run-Tíme Conlrol

Progrømmer's
Control

Traditional Tools &
Progrøm

Visualisatíon Tools

<_-----_>
Conespondence

Searching

Figure L.6. Mental models in software or progrúnù comprehensior¿

representation must be made carefully.

The above problem is exacerbated by the fact that software visualisation can be

used in different combinations of hardware and software domains, such as the domain

of distributed object-oriented programming.

This thesis examines program visualisation for concurrent object-oriented programs,

particularly declarative task-parallel pïograms. This paradigm is chosen partly because

it is relatively new, and little research on program visualisation in this area has been

conducted. Consequently, there is still much to explore. In this regard, this thesis

attempts to answer the following questions:

1. In order to help to form or strengthen users'mental models, how to best visualise

task-parallel object-oriented programs? This is important, since such programs

typically contain a rich collection of semantics and features 111,,23,,35, 129].

2. To ensure greater portability, what methods can be used to provide visualisation?

Furthermore, how much information can be obtained from the programs, and

what types of views can be generated?

7

Dynamic
Model

Programmerts
Initial

Mental Model

Programmerts
Execution

Mental Model



I.2 Experimentation

To answer the above questions, a visualisation tool, called Visor** (Visualisation of

Software in the Task-Parallel Object-Oriented Realm)2 is developed. It is used to

visualise programs written in the CC++ language [32, 33]. This language is a declar-

ative language which supports object-oriented task-parallel computation. Although

the whole system, by implementation, is specific to CC*f , nevertheless the findings

uncovered are applicable to other similar systems or languages.

By nature, CC++ is a language of combined paradigms, i.e. it combines the con-

current, and the object-oriented paradigms. Furthermore, CC** programs can be

distributed. In this regards, the thesis examines the language and the manner in which

CC++ programs can be sensibly visualised.

CC++ does not provide direct support for visualisation. In particular, it does not

provide run-time data which can be used to produce sensible visualisation. Further-

more, CC++ is a declarative language, in the sense that, for example, thread or task

invocation is implicit. Compared with imperative-style languages, it is more difficult to

produce the necessary run-time data. Therefore, the thesis also presents the methods

by which such data to drive the visualisation process can be produced. The methods

are realised at the source-code level to ensure greater portability.

1.3 Terminology

The terms which are used throughout this thesis are explained below.

The terms visualisation system, visualisation tool, and tool are interchange-

ably used to refer to programs, tools, or systems which provide software visualisation

or program visualisation.

A programmer is a person who writes or maintains a piece of software or program.

This term also refers to the person who reads and tries to understand a program. On the

other hand, the term user refers to the user of a visualisation tool, while a visualiser

2As the references on page ii suggest, in other contexts, the term "Visor" also refers to devices

which are used to help the human vision or visual information processlng.

8



is a person who produces a visualisation tool.

For the sake of simplicity, the term concurrent systems is used to denote systems

employing concurrency and parallelism, including distributed systems3.

The term task-parallelism implies the creation of independent threads of control,

including synchronisation and communication among the threads. A closely related

term is data-parallelism, which entails the synchronous/parallel application of a se-

quential or atomic operator over a set of operands [35, 3S]. In connection thereof,

concurrent object-oriented paradigms refer to both task-parallel and data-parallel

obj ect-oriented paradigms.

L.4 Thesis Structure

Chapter 2 examines some aspects of software visualisation tools. Some representative

visualisation systems are also described. These include tools for sequential, concurrent,

and concurrent object-oriented software. The focus of this chapter, however, is more on

progroln, uisualisation. Chapter 3 provides an overview of CC**. Chapter 4 discusses

the framework and architecture of Visorff , along with its implementation. Chapter

5 gives some examples of how Visor** can be used to assist users in understanding

the static and dynamìc aspects of CC** programs, and subsequently to carry out

some program analysis and tuning. An evaluation of the Visor** is also undertaken.

Finally, Chapter 6 provides some concluding remarks.

3Followingthe definition by Fidge [49], the three terms can be defined as follows. Concurrencyis
"the logical concept of two or more actions appearing to occur at the same moment. Parallelismis
the actual embodiment of this concept via a system which is physically capable of performing more
than one action at a time ... A distributed system is a hardware architecture incorporating multiple
processing units, and thus capable of implementing parallelism ..."

9



Chapter 2

Software Visualisation

2.L Aspects of Software Visualisation

In general, software visualisation has three inter-related aspects (see Figure 2.1) [103].

Firstly, it has some general ideals which can be achieved. Secondly, it may be used for

different purposes. Finally, based on the ideals and purposes, software visualisation is

generated by using some specific mechanism. For each programming paradigm, and

possibly for different application domains, these purposes, ideals, and mechanisms may

differ. However, they generally share some common characteristics. The three aspects

are described below.

Ideals

Purposes Mechanisms

Figure 2.1. Aspects of software uisualisation

Visualisation

10



2.t.L ldeals

The ideals of software visualisation may vary under different circumstances. Further-

more, since software visualisation involves the use of graphics, these ideals are sub-

jective. Nevertheless, a small set of general ideals may be shared among the different

tools [39, 79, 103, 109].

The ideals of visualisation can be loosely divided into two perspectives: the system's

perspective, and the user's perspective. From the system's perspective, the ideals are

as follows:

1. Scalability.

A tool should be sufficiently scalable in terms of the problem size it can handle.

For example, with a parallel program, the visualisation should be scalable in

terms of the number of processors involved in the computation.

2. Extendibility.

The mechanisms implemented in the tool should be flexible enough to accommo-

date new concepts or ideas, and to be changed accordingly. In a practical sense,

this means that new views or displays can be added or changed relatively easily.

3. Portability.

Portability means that neither the implementation nor the concepts of the tool

significantly obstruct its applicability to other platforms. Minor changes are to

be expected as different platforms may require slightly different implementations.

From the user's perspective, a visualisation tool has the following ideals:

1. Minimal disturbances to the execution of user's program.

To drive visualisation, information must be obtained from a program. Obtaining

such information may generate probe effects (Section 2.1.3.1) as the program

executes. These probe effects are often inevitable [82]. However, it is desirable

that they be kept to a minimum.

11



2. Little or no programmer's intervention.

The generation of visualisation events should be automated as far as possible

so that little or no programmer's intervention is necessary. This requirement

stems from the fact that manually generating visualisation is both tedious and

error-prone, especially for programs under development.

3. Handle real-world problerns.

One good way to test or measure a tool is to examine the size and nature of

the problems it can handle. It is desirable that the tool can handle real-world

problems. If this cannot be achieved, then at least an extended version of the

tool should be able to achieve the same effects.

4. Present the '(right" things to the user.

From the perspective of the user interface, a good tool provides its user with the

"right" information in the "right" way. What constitutes the "right" information

and display mechanisms is subjective, and depends on the purpose served by a

tool. In any case, a tool should help its users form or strengthen the mental

models [31, 51] of the program being visualised. Providing a variety of views to

present the same information goes some \l/ay to ensuring that the "right" views

are available fal].

2.t.2 Purposes

Software visualisation and, in particular, program visualisation, can be used for several

purposes. These purposes serve to specify the nature of the correspondence searching

between the programmer's initial mental moclel anr] the exectttion mental model (see

Figure 1.5).

In general, the majority of the purposes for software visualisation can be categorìsed

into: understanding, debugging, and performance tuning.

I2



2.1.2.L IJnderstanding

In terms of mental models, when used for understanding, software visualisation serves

to help programmerc form the mental models of the software. As described by De-

Pauw [40], a visualisation tool supporting this purpose bridges the gap between the

static specification and the software run-time behaviour. This is especially useful in

the program development and maintenance process.

Different software aspects,, i.e. static and dynamic aspects, can be visualised for the

purpose of understanding. Visualisation of static aspects includes the visualisation of

static elements, such as source-code, or in the case of object-oriented programs, the

static class hierarchies. Tools such as Zeus [18] and BALS A l22l provide source-code

views. Another example is the tool LOOK! [133], which dìsplays static class hierarchies

in C** programs. Figure 2.2 shows the tool Classy, for browsing the class hierarchies

in pC** [15] programs. Classy itself is part of the TAU visualisation toolset [97] for

visualising pC** programs.

The visualisation of the dynamic aspects of software/program execution may take

a variety of forms, such as the high-level animation of algorithms, and symbolic views

of code execution. For the animation of algorithms (see Chapter 1), only a high-level

description of the algorithm operation is visualised. Symbolic views of code execution,

on the other hand, depict entities in a program by using symbolic icons. For example, a

function may be represented as a coloured circle. Interactions among program entities

are then visualised (and often, animated) on the screen as interactions among these

symbolic entities. As an example, Figure 2.3 depicts the Coarse Grained View from

the Transparent Prolog Machine tool (TPM) 144]. The view depicts the execution

of a Prolog program as an AND/OR tree, in which nodes represent the goals of the

program.

2.L.2.2 Debugging

Used for debugging, software/program visualisation serves to help programmers form

program execution mental model, and compare it with the initial mental model. Dis-

crepancies found can then be used to correct the program. In other cases, software

13



-l 

$TorKmE r-+fitusqrrne¡¡r¿r l

-
lffiFr,=l

E
@
@
l6ffiit¡o,rl

lè.¡cøEl

lrtFo_HEf,q I

Figure 2.2. The Classy tool in the TAU uisualisation toolset.

Figure 2.3. The Coarse Grained View in TPM.

{

+
4uroffi

tr
Þl)>

b i Fthdf,U fr iênds

r;UJrnmrnE

sod

Eoarse Gralned Uieu

t4



Figure 2.4. The control panel of the parallel debugger Breezy i'n TAU

visualisation can be used to help users to reconstruct the original mental model (i.e. the

"reverse-engineering" of the mental model). Such debugging by using software visual-

isation is sometimes called uisual d"ebugging.

One example of a visual debugging system is the tool Breezy [17], which is part

of the TAU [97] tool system. Figure 2.4 shows the control panel of Breezy, while

Figure 2.5 shows the display of the Breezy interactive window through which users

can select portions of the data structures to view. Other examples include the tool

KAESTLE [12] for visualising the dynamic list data structures in LISP programs, and

Centerline ObjectCenter [109] for visually debugging C++ programs.

2.L.2.3 Performance Analysis

Software visualisation can also be used for performance analysis. Such analysis is

often carried out on parallel programs, for performance is generally the driving force

for using parallel computation [104]. To be effective, performance visualisation tools

should provide displays which provide insight into the relationship between a program's

performance characteristics and its structure and operation [70]. Examples include

tools such as ParaGraph [69] and AIMS ll42l for the performance analysis of parallel

(message-passing) programs. Figure 2.6 shows the Utilisation View in ParaGraph.

The view displays the utilisation of processors in the execution of a message-passing

program. It shows the amount of time processors spend performing useful computation

15



Figure 2.6. Visualising data structures inBreezy

Figure 2.6. The Utilisation View in ParaGraph.

I

I

I

I

li

I
l

i

l

i

trilltl

ì

I

I||
¡r

ú
lll

ll

I

I

I
I

I

I
ì

I

ll

IIT-Ef}JER}CRI)EUSY

P

R

0
c
E

s
s
0
R

s

0
F

N

U

tI
É

E

R

UÍILIZÊTIÍ}I COWT

ø

1

3

4

6

7

s

16



Program &
Program Execution

Data Collection

Intermediate

Visual Representation

Figure 2.7. Transformations to produce software uisualisation

(being busy), performing computation overheads, and being idle.

2.L.3 Mechanlsrns

Following [tOa] and [113], software/program visualisation can be regarded as the map-

ping of programs or their execution into their visual representations (see Figure 2.7).

To do this, several phases are followed. The first phase involves the collection of data to

drive the visualisation. This phase is termed data collection. The data is then used in

the next phase, uisualisation, to produce and drive the final graphical representation.

These two phases are discussed in the following sections. More detailed information

can be found in [S2] and [134].

2.1.3.L Data Collection

Data collection involves the collection of data used for producing visualisation. The

visualisation-driving data may be obtained, for example, from the program's source

corie, and from the progra,m's execntion. Norma,lly, the da,ta, is then processed into an

internal format, suitable for visualisation. This internal format is referred to as the

intermediate uisual repres entaúion (IVR).

Obiained from source code, the visualisation-driving data represents the software

or program static structures, such as program source code and its block structures. In

the case of object-oriented programs, the data could be the static class hierarchies.

17



On the other hand, the visualisation-driving data can also be derived from the

program execution. To achieve this, a tool must have access to information on the

program run-time states. Installing "probes" into the program is the most common

approach. During program execution, these probes emit the program run-time states

in the form of trace records. The trace records, possibly with the program static

structures, are processed into the intermediate visual representation.

Installing probes into a program has its own difficulties. In particular, it produces

a side effect known as probe effects 124,82, ß4]4. The probe effects typically refer

to the alteration of the duration of program execution due to the probe execution.

In this context, the alteration means an additional timing factor. In multi-threaded

programs, such timing variation may well cause the relative ordering of thread execution

to be altered. Probe effects sometimes also refer to the alteration of the frequency of

inter-task synchronisation errors 160] due to the probe execution. In this context, the

synchronisation errors already exist in the program before the probes are installed. In

this thesis, the latter type of probe effect is termed a synchronisation-error effect, while

the previous is referred to as a ti,ming effect.

Both synchronisation-error effects and timing effects cause the captured traces of

a program to reflect only the states of the altered program. When the traces are used

to drive the visualisation of the program, an incorrect interpretation of the program

execution may occur. Therefore, the probes must be designed such that the program

perturbation is minimal.

2.L.3.2 Visualisation

After the intermediate visual representation is obtained, it is mapped into views in

which different types of graphical representations may be used. Graph-based views

and statistics-based views are, perhaps, the most commonly used. Using graph-based

views, software/program entities are represented as nodes, with their interactions as

edges. Examples include Zeus [18], Virtual Images 1132], GraphTrace [80], Ovation [39],

and TPM (see Figure 2.3). For statistics-based views, graphical representations such

aProbe effects are sometimes also jokingly referred to as "Heisenbugs" [104]

18



as bar graphs and matrix-like views are used. Tools such as PIE [86], Pablo [4], and

Traceview [91] incorporate such views (Figure 2.6 is the Utilisation Statistics View in

ParaGraph [69]). Some other types of these views are novel or very specific to their

environment. For example, the tool SItrVE [114] displays parailel program performance

data using spreadsheet abstractions. Another exampleis the tool Voyeur [119], which

uses fish and shark figures to symbolise performance data values.

The visualisation phase can be carried out concurrently (on-the-fl,y) with the data-

collectìon phase. On the other hand, the two phases can also be executed separately

in that the visualisation phase is carried ort after data collection. Such a processing

scheme is known as a post-mortem approach.

The on-the-fly approach has the advantage that the visualised software/program

and the visualisation system interact directly [34, 81, 82]. This mechanism is partic-

ularly desirable for the debugging of concurrent prograrns 124,47, 105, 139]. How-

ever, it also means that the monitored program may experience more timing effects or

synchronisation-error effects due to the interaction. Furthermore, the rapid torrents of

trace data may force the user to slow down the pace of the visualisation tool, thereby

slowing down the monitored program as well [41]. Therefore, on-the-fly visualisation

has to be carefully designed so as to minimise the probe effects. In contrast, with the

post-mortem approach, the visualisation is devised by using traces collected during

program execution. It has the advantage of providing the user with program traces

which can be repeatedly analysed without having to re-execute the program. This re-

sults in relatively less program perturbation. However, the disadvantage is that it does

not allow a direct interaction with, and manìpulation of, the monitored program. Ei-

ther the on-the-fly or the post-mortem approach may be more suitable for a particular

visualisation scheme.

The above discussion provides a general overview of the various ideals and purposes

of software/program visualisation and the general mechanisms by which visualisation

can be devised. The discussion applies to many language paradigms, including the

concurrent object-oriented paradigm, the focus in this thesis.

19



VIEWS

S

Raw
Slructures

Dßtílled
Structures

Dynamic

Code Datn Algorithms

Figure 2.8. The different uiews in uisualisation tools.

2.2 Visualisation Systerns

In the light of the discussion in Chapter 1, software visualisation can be realised in a

variety of forms. In practical terms, this means a variety of views can be constructed.

The different views can be loosely categorised as in Figure 2.8. The discussion in this

section places more emphasis on progra,In uisualisation.

A tool can provide static and dynamic views. Static views refer to those which

display a program in terms of its source code. The views can display raw structures,

in which the "raw" form of the source code is used. Source-code browsers, and pretty-

printing of source code are in this category. Alternatively, distilled structures can also

be used. The source code can be "distilled" to produce, for example, class hierarchy

diagrams (for object-oriented programs) [97, 133], Nassi-Schneiderman diagrams [20],

or code block structures [20, 36].

Dynamic views, on the other hand, are the views which depict program dynamic

execution. Following the subdivision of software visualisation (Chapter 1), the views

may pertain to code,, data, or algorithms. Code views are those depicting code exe-

cution. Data views are those concerned with the dynamic changes in data structures

and their contents during program execution, while algorithm views depict high-level

algorithmic views of the program.

The above categorisation extends to the visualisation of concurrent object-oriented

systems. Such systems are, to some extent, related to sequential, object-oriented and

20



concurrent systems as well. In fact, the concurrent object-oriented paradigm can be

thought of as a blend of those paradigms. A discussion on the visualisation of concur-

rent object-oriented systems, therefore, is not complete without discussing the visual-

isation of sequential, object-oriented, and concurrent systems. The following sections

describe the visualisation for these systems.

2.2.L Sequential Systems

In this section, sequential systems refer to the systems or programs with sequential ex-

ecution, while object-oriented systems are sequential systems which employ the object-

oriented paradigm. They are grouped together because they share many features. For

brevity, both are referred to as sequential systems.

Tools dealing with sequential systems typically use dynamic views. Some, however,

provide only static views. For example, the tool SEtr 16] displays the pretty-printed

versions of C programs. Another tool, developed by Ball [7], displays the source code

of large programs in a miniature format, tied to program execution. The colour in each

of the miniature source code lines shows the frequency with which the line is executed.

These tools provide important views. However, the effectiveness of the static views

can be enhanced if they can be linked more vividly to dynamic views displaying the

associated program execution.

The majority of the tools for sequential programs, as a matter of fact, display

only program's dynamic aspects. For example, tools displaying algorithm animation

include BALSA 122) and Zeus [18]. Meanwhile, tools incorporating only code views

include the Transparent Prolog Machine (TPM) (Section 2.I.2.I), VizBug** [79],

Ovation 139,40], and LOOK! [133]. Finally, views displaying data structures and their

contents are typically employed by visual debuggers. These include KAtrSTLE [12]

for visualising dynamic list data structures in LISP programs and VIPS [78, 117],

which display the list structures of Ada programs. More general-purpose tools include

ObjectCenter [109] and DDD [143], which can both be used to visually debug C and

C++ programs.

From the discussion, a general trend can be observed. The majority of the tools

21



use the strategy of exclusively employing the program's dynamic aspects. While this is

a viable approach, the tools would be more effective by presenting both the static and

dynamic aspects concurrently. However, this predicament is offset by the fact that the

tools generally use a wide selection of program features for visualisation. For example,

the tool LOOK! focuses not only on objects and classes; rather, it also uses function

invocations, messages and pointer structures for visualisation. Other such tools include

ObjectCenter, and DDD.

Another observation, which is minor, is that the majority of the tools for visualising

sequential systems are used for understanding or debugging. Very few, if any, are used

for performance tuning. The reason is, perhaps, that performance is not the main focus

in such systems, as compared with concurrent systems.

2.2.2 Concurrent Systems

Software visualisation has also been extensively applied to concurrent systems. For

these systems, code views appear to be the ones most frequently used. As previously

described (Section 2.I.3.2), these code views are typically embodied as graph-based

and statistics-based views. Some of the relevant tools are described below.

Graph-based views are most frequently used by visualisation tools for concurrent

programs. The graphs used may take a variety of forms. For example, program ac-

tivities may be presented as space-time diagrams depicting interactions among tasks

(typically in message-passing programs), such as in ParaGraph [66, 69], AIMS ll42],

XPVM [65, 81], and ATEMPT [83]. Other graph-based views are used to depict history

of program events in thread-based environments 148,73,144]. Yet, other graph-based

views are used for depicting machine and process activity 127,92]'

These tools are invaluable in that they depict interaction among program entities

in terms of the key features of the programs. For example, the tools for depicting

message-passing programs provide visualisation in terms of message exchange among

tasks, typically exemplified by Figure 2.9. Using these tools, patterns of program

execution are generally easy to identify. However, the tools usually do not provide

explicit pointers as to why a program behaves the way it does. Such assistance can be

22



t5
l4
l3
t2
l1
lø
9

7

6

5

4

3

2

,
ø

TITlE

N

U

t1

E

E
R

P

R

o
c
E
S

s
o
R

SPÊCETIIlE IIIHGRHH

Figure 2.9. The Spacetime Diagram in ParaGraph

facilitated by linking the views with the program's static structures, and by providing

a variety of closely related views which depict other language/program features as well.

Tools for visualising concurrent systems can also use statistics-based views to dis-

play program performance. Bar-charts, pie-charts, matrices, and scatter-plots are some

of the most commonly used views. Figure 2.10 is one of the views in ParaGraph, show-

ing the statistics of communication traffic in a message-passing program. Other tools in

this category include Medea [29] and Traceview [91]5. Such tools provide a general idea

to the user of how well a program performs, and of whether the desired performance

has been acÈieved. However, without other views (including the program's static struc-

tures), it is difficult for users to pin-point potential sources of difficulty should they

wish to improve the performance of the program.

Some tools present novel or unusual views for visualising concurrent systems. One

example is the Gthreads visualisation tool [145], which visualises the execution of

thread-based programs running on Kendall Square Research (KSR) machines. Fig-

we 2.II illustrates two views in Gthreads. The left view is the the History View, a

space-time diagram depicting thread execution, while the right figure displays a mutex

variable (the larger/outer circle) being accessed by a thread (the smaller inner cir-

cle). Other examples include SIEVE llI4], which visualises performance data by using

sTraceview is not to be confused with TraceViewer [73], another tool

23



+

UOLIJIE FoR H0DE lE

TIl1E

OOI1IIUHICÊTION TRBFFIC

296 799
ø

42

168

126

81

Figure 2.1O. Statistics of communication trffic in ParaGraph-

Figure z.LL. TheHistory View and the Mutex View in Gthreails.

24



spreadsheet-like views; and Voyeur [119], which uses fish and shark figures to symbolise

performance data value. These novel views provide breakthroughs in program visual-

isation. Their use, however, would be more effective if they are used in conjunction

with other types of views to provide users with a multiple perspective of the program.

Based on the above discussion, some observations can be made as follows. Firstly,

although many of the above systems employ both static and dynamic views, there is

also a relatively large number which employ only dynarnic views. This is the case, for

example, in Voyeur. What is rather surprising is that a significant number of them

only emphasise a limited number of aspects of the visualised programs. XPVM, for

example, mainly depicts communication/message exchanges among tasks in its views.

This, perhaps, is based on the notion that only the most important and distinguishing

program elements or features should be displayed. However, the notion of what is

"important" may differ from one user to another in a subjective manner.

Secondly, the tools generally include views which provide the information of what

happens in a program. Sometimes, the notion of time is also considered; in other words,

when a particular event happens is also indicated. However, most do not provide assis-

tance to indicate why and where it happens in the program. This is problematic, since

program understanding and program tuning require that such knowledge be available.

Providing a set of inter-related views which expose a wide variety of program elements

(or language features) can assist the user in obtaining such knowledge. Subsequently,

the user would be able to form the program execution mental model, using it to modify

the program) as necessary. Still, this scheme would be more effective if program's static

structures are also visualised and linked to the rest of the system in a coherent manner.

Thirdly, another interesting side observation is that in the realm of concurrent

systems, the majority of the tools seem to deal with the visualisation of message-

passing programs. Perhaps this can be attributed to the fact that such programs have

an inherently "clean" semantics in that program execution can be seen in a simplified

\l/ay as a set of tasks communicating with each other. In contrast, in concurrent

object-oriented systems, many program entities (such as threads, functions and RPCs,

to name a few) interact in a complex manner. Once again, this may explain why there

25



are relatively few visualisation tools for concurrent object-oriented systems. The next

section examines some of these tools.

2.2.3 Concurrent Object-Oriented Systems

There are relatively few tools for visualising concurrent object-oriented programs. Some

of these are described in this section. For each, the associated concurrent object-

oriented language is also described.

2.2.3.L Visualisation of pC++ programs

p,C-l-l 123, 261is a language extension of C++ with some concurrency features. It

is based on the notion of single-memory model execution in that it can operate on

single-processor or shared-memory systems. ¡L,C*-l extends C++ by providing four

basic abstractions: coroutine, monitor, coroutine-monitor, and taslc. p,C-l-l supports

visualisation as part of its language design.

The visualisation of ¡;C** programs is embodied in the tool MVD (Monitoring,

Visualisation and Debugging) 124,25, 7271. As the name suggests, ìt comprises a set

of tools for monitoring, visualising, and debugging the execution of ¡;C** programs.

MVD is designed to help users understand the dynamic execution of the prógrams, and

thereby debug them as necessary.

MVD supports two types of visualisation: statistical visualisation, and trace visu-

alisation. Statistical visualisation is performed by taking program execution samples

at regular time intervals and subsequently visualising them. The resulting view is dis-

played as icons representing tasks along with their activity status and stack high-water

marks.

Trace visualisation, on the other hand, means that complete program events are

visualised. These include important language elements, such as coroutine and thread

operations. Such visualisation is carried out by using the tool POET lI27l, which is

part of the MVD tool-set. The monitoring and visualisation can be done on-the-fly or

through post-mortem analysis. In trace visualisation, entities such as coroutines and

monitors are visualised in a view similar to a space-time diagram.

26



El---|------G--- Ð

l'liddle: identifu; Left/RÍght: scroII

!tr---.|_'---o--

t} ---r--+--{l

--.|-É--D--.++-- --.l.{---f----= /

ain (0xa3F08) {

fFer (0xabadB)(

ns(Oxab9eB) {

d(OxabBFB) <

Functions Re-order traces 0ptions

nt Trace

Figure 2.12. Trace uisualisation in MVD (POET)

Figure 2.12 shows an example view from the tool POET. The figure shows the trace

visualisation of a producer-consum,erprogram, in which four tasks (uMain, buffer, cons,

and prod) execute. A small empty square along the time-line of a task denotes an event

causing the task to block, while a filled square represents an event causing the task to be

ready. Vertical arrows represent inter-task communication. Finally, a solid horizontal

line indicates that the task is ready, while a dashed line indicates that it is blocked.

MVD is relatively easy to use for visualisation. One factor which contributes to

this fact is that both monitoring and visualisation are supported and integrated at the

language level. Such support and integration has not been widely adopted in other

languages. Secondly, MVD provides a number of different tools (or, rather, sub-tools)

which can be used for different purposes. In particular, it provides statistical views [24],

program trace views lI27), and a concurrent debugger [25]. These sub-tools provide a

rich metaphor for exploring the different aspects of program execution.

Although MVD has rich visualisation metaphors, there are also some difficulties.

Firstly, the rich set of tools available are not well integrated, but are, rather, designed

as separate sub-tools. This makes it difficult for users who need the assistance from

the views concurrently to validate or compare observations from the views in one sub-

tool with those in another. Secondly, MVD only uses a narrow selection of language

features in the visualisation. In particular, it only visualises coroutines, monitors,

coroutine-monitors, and tasks. Other language features, such as objects, and functions

are not considered. Furthermore, except for the debugger, linkage to the program static

27



structures is rather poor. Resolution of these problems may make MVD more effective

in helping users to understand and to pin-point sources of problem'

2.2.3.2 Visualisation of pC++ programs

TAU [17, 97, 98] is a program visualisation too1, which is part of the pC** program-

ming language system. pC*t [13] itself is an extension of the C++ language with

additional constructs to support data parallelism.

TAU tools are implemented as a graphical hypertool in that it is a composition of

several sub-tools, each supporting unique capabilities. The tools are divided into two

groups. The first group is the static analysis tools. These include Fancy for browsing

global functions and class methods, Cagey for displaying static program call-graphs,

and Classy for displaying static class hierarchy. The second group of sub-tools are the

dynamic analysis tools, which include Racy for displaying usage profiles of functions

and concurrent object member functions, Easy for displaying program events on an X-Y

graph, and Breezy (Figure 2.4 and Figure 2.5), which is a breakpoint-based debugger.

The views in TAU are hierarchical. They also provide multi-faceted views of the same

entities. There is also a consistent link-back into the program static structures.

The visualisation of programs via TAU are supported by the pC** language en-

vironment. During program compilation, a program is transformed into an abstract

syntax tree (AST) which can be manipulated by the tool Sagel* [14] for instrumen-

tation. After manipulation, the AST is transformed into native C++ code. Through

command line switches during compilation, the AST can be instrumented for profiling,

tracing, or break-point debugging.

TAU provides a rich set of sub-tools which can be used to analyse both the static

and the dynamic aspects of a program. Furthermore, unlike MVD, the sub-tools are

integrated and can be used concurrently. This enables a user to compare the same

program aspects or events from different angles, thereby helping users to more easily

understand the program and pin-point sources of problem. It would, therefore, be in-

teresting to see whether such a rich visualisation support is possible in other languages,

such as CC++.

28



2.2.3.3 Visualisation of LAMINA programs

The LAMINA visualisation tool is used to visualise the execution of LAMINA [37]

programs. The LAMINA language itself is a LISP-style concurrent object-oriented

language, based on the notion of actors [101]. Both LAMINA and the LAMINA vi-

sualisation tool are built upon a simulation system for simulating parallel hardware

models.

In the LAMINA language model, concurrent objects communicate with one another

asynchronously, via the streammechanism. In LAMINA, a message names the method

to be executed and the parameters to be used. If object A wishes to invoke a method

of object B, it sends a message to the task stream of object B. As soon as the message

is sent, object A continues execution. Therefore, objects in LAMINA are asynchronous

and message-driven.

The LAMINA visualisation tool provides a number of views which can be used for

performance debugging. The Network Operator Map displays the load on each pro-

cessor, and the communication among them. Latency and utilisation of each processor

are also displayed. Another view, the Activity Table, textually displays the activities

of each concurrent object, such as the number of messages which have been processed,

the average execution time, and so forth. These views are produced by solely using the

traces obtained by monitoring the messages exchanged during program execution.

There are several difficulties with the LAMINA visualisation tool. Firstly, the

tool only provides program execution statistics, with a minimal reference to program's

static structures. Secondly, the monitoring system of the visualisation tool is very

platform-specific. It assumes that message exchanges among objects are the only factor

that drives program execution. Other similar platforms may not behave similarly.

Therefore, the portability of the concepts of the LAMINA visualisation tool is difficult.

Finally, it uses a very limited number of program features, particularly only those

pertaining to messages.

29



2.2.3.4 Visualisation of PARC++ programs

PARC++ [129] extends the C++ language with a set of ciass libraries for the con-

struction of parallel programs. These libraries provide abstractions, such as thread

management, communication, and synchronisation. Some of these abstractions relate

to shared-memory (such as monitors), while others relate to message-passing (such

as mailboxes). PARC++ is essentially the C++ language equipped with a library

for supporting parallelism. This is in contrast with other languages such as pC**,

ICC++ [35], and pCll, which provide new constructs.

There are three varieties of visualisation schemes supported in PARC++. The first

method is by using the tool Visit [129]. Using Visit, threads, locks, mailboxes, and

processoï utilisation are visualised. The second method is by using ParaGraph [69] in

which entities in PARC**, such as threads and mailboxes are each translated to nodes

in the ParaGraph context. The third method is by utilising the tool POPAI [129], which

is similar to Visit, except that threads are not visualised. All of the above visualisation

schemes are supported by PARC++ through its libraries and run-time environments.

The visualisation of PARC** programs has some merits. Firstly, it is supported

by the language environment, in that program views are produced automatically by

the system without user intervention. Secondly, it provides three different tools to the

user for the visualisation. The tools provide relatively different views, enabling users

to understand their programs better. However, there are also some difficulties, which

are discussed below.

Firstly, the visualisation tools do not provide a comprehensive presentation of pro-

gram activity. For example, the tool Visit does not provide views of monitors, and the

tool POPAI does not visualise thread execution, while both monitors and threads are

important concepts in PARC-|-*. Secondly, the views provided by the tools do not

address the visualisation of program's static structures. Understanding a program and

subsequently pin-pointing sources of problem are, therefore, difficult. Providing static

views, and merging the tools POPAI and Visit into a one coherent system may make

the system more useful.

30



2.2.3.6 Observations

The concurrent object-oriented paradigm has a rich semantics in that it combines the

notion of objects with concurrency. This, unfortunately, results in programs which

may be difficult to understand. The visualisation of such programs, therefore, needs to

incorporate a wide selection of language features in order to present program activity

fuoln rnultiple angles by using multiple views. The incorporation of these schemes, in

turn, enables users to deduce the behavioural aspects of the programs, and change

them as necessary.

The difficulty in visualising concurrent object-oriented programs can be testified

by the relatively low number of tools, each having widely differing ways of presenting

similar concepts. The tools, however, present several trends, as follows.

Firstly, with the exception of a few tools such as TAU, many of these tools provide

only program's dynamic aspects. Secondly, from a wide variety of the available dynamic

aspects, generally the tools only present a few of them. This trend can be seen in MVD

and POET for ¡;C** programs, the LAMINA tool, and the tools Visit and POPAI for

PARC++ progÌams. Thirdly, some tools present a number of sub-tools which present

different aspects of a visualised program. However, these sub-tools are most frequently

not related and not integrated. Usage of such sub-tools, therefore, present problems,

especially for users who concurrently need the capabilities from all of the tools.

So far, it seems that the TAU visualisation framework has the most extensive sup-

port. The tool has been successfully used for visualising and tuning a number of pC**

programs. Therefore, it is interesting to see whether similar concepts can be applied

to other similar languages, such as CC++.

2.3 Summary

The above discussion can be summarised as follows

1. Firstly, the visualisation of programs written in "combined-paradigm" languages

is usually more complex than the visualisation of those in "single-paradigm" lan-

guages. For example, in general, the visualisation of a sequential object-oriented

31



program is more complex than a purely sequential program. This may be the

reason that the visualisation of combined-paradigm programs typically only fo-

cuses on a narrow selection of language features, compared with the visualisation

of single-paradigm programs employing a wide selection. In Section 2.2.2, for

example, it has been observed that many visualisation tools for message-passing

programs only selects messages and communication as the basis of visualisation.

These approaches are viable. However, a wide selection of features for visualisa-

tion could generate more in-depth knowledge and analysis of the visualised pro-

grams. Such a wide selection need noú necessarily mean a cluttered display [123].

Rather, the structuring of such information in a sensible manner is necessary.

2. Secondly, a good visualisation tool provides users with the necessary assistance to

visualise programs, in terms of what, when, where, and why. Without such qual-

ities, users of a visualisation tool are frequently left to "guess" from the views

what the real activity of a program really was. Many existing tools, however, do

not seem to be equipped with these qualities. In the case of the visualisation of

concurrent object-oriented programs, these qualities are of utmost importance.

The reason is that such programs typically involve complex interactions of pro-

gram elements, that it is difficult to understand their visualisation without good

assistance from the tool.

3. Thirdly, based on the first observation, it can be seen that the visualisation of

concurrent object-oriented systems poses an interesting venue for experimenta-

tion. As such visualisation is typically used for the purpose of understanding

and fine-tuning programs, it is necessary that it use a wide selection of program

features. As the concurrent object-orientecl paracligm is rela,tively complex, such

features need to be visualised from multiple angles by using multiple coherent

views. These two schemes can ensure that a more thorough understanding of

programs is possible. TAU, for example, is highly successful in this respect.

It has been used by researchers to understand and fine-tune programs. Other

tools are, of course, also successful. However, extending their functionalities and

32



capabilities by using the TAU approach can make them more effective.

4. Finally, the majority of the tools for concurrent object-oriented programs, as

described in Section 2.2.3, use language support for providing visualisation. Such

support is a highly desirable, as it facilitates automatic generation of visualisation.

Unfortunately, many languages are not designed in this manner. In other words,

visualisation is an after-thougl¿t. For such languages, visualisation support must

be created as added functionality. It is one of the goals of the thesis to show

how this can be achieved, particularly for task-parallel object-oriented languages

derived from the C++ language.

Based on the above discussion, and on Section 1.1, the goals of the thesis are refined

and re-formulated as follows:

1. To study how the visualisation of task-parallel object-oriented systems can be car-

ried out. The visualisation should help form and strengthen users' mental models

of the programs and subsequently enable them to understand and fine-tune the

programs. In particular, the views should help users to determine what, when,

where, and why program events occur. This should be achieved by employing a

wide selection of language features as the basis of visualisation.

2. To study how such visualisation can be generated, particularly in absence of

explicit support from the language environment. In other words, how sensible

program visualisation can be generated in languages without visualisation sup-

port.

As a vehicle of experimentation, the language CC*l is used. It is a task-parallel

object-oriented language without explicit/extensive visualisation support. Although

the findings are specific to this platform, nevertheless it is expected that the concepts

uncovered can be applied to other similar systems. To appreciate the relevant issues

involved in providing such visualisation, the next chapter provides a brief overview of

the CC** language.

33



Chapter 3

Overview of the CC++ Language

3.1- The CC++ Language

The Compositional C++ language (CC*+) [eO,32,,33,53] is a strict superset of the

C++ language 146,I24), with a small number of extensions. These extensions allow

the construction of parallel programs from simpler components by using sequential and

parallel composition. For example, to compose a distributed merge-sort program, the

best algorithms can be used to create merging and sorting components. Later, these

program components are composed to form a single concurrent or parallel program.

The CC** extensions include six basic abstractions which can be loosely cate-

gorised into three groups, as follows:

o concurrency,

o synchronisation and determinism, and

o locality.

In the following discussion, it is assumed that the reader is familiar with the basic

concepts of C**.

34



Par {
masterO;
slave(1);
slave(2);

)

Figure 3.L. Usage of the par construct.

3.1.1- Concurrency

Concurrency in CC++ is achieved via threads which can be synchronous or asyn-

chronous.

3.1.1.1 Synchronous threads

Synchronous threads can be created through the use of one of two constructs. The first

construct, par, is used as follows.

par { St; Sú...; ,S¡r; }
The above construct results in each statement in the block being executed concurrently

with all other statements in the same block. In other words, the statement ^91 executes

concurrently with the statements 52, 53, and so on. Each such statement can be any

valid CC** statement, provided that it does not result in non-local changes to the

flow of control, such as a return statement.

Figure 3.1 shows three threads being spawned by the par construct. One thread

executes the masterO function, while the other two execute the same slave O function

with different parameters.

The execution of the par block terminates when all of its component statements

terminate. This, in effect, means that barrier synchronisation is implicit at the encl of

the construct (Figure 3.2).

The second construct is parfor. Its syntax is identical to the C++ f or keyword,

except that the keyword is replaced by parf or. Similar to the par construct, a parf or

block terminates when all of its threads have finished execution. Each such thread holds

a copy of the loop control variable along with all other variables declared inside the

35



T1

Start ofpat or parfor

End of pãr or parfor
Implicit barrier

T1

Legend
T = Thread

Figure 3.2. Implicit synchronisation barrier at the end of ø par or parfor block.

parfor (int i=0 ; i<N ; i++) {
think(i);
eat(i);
sleep(i);

)

Figure 3.3. Usage of the parfor construct

block. Global variables are accessible by all threads, and the access can be controlled

via sync variables or atomic functions. Figure 3.3 gives an example of a parf or block

in which l/ threads are created, each of which executes 3 functions.

3.L.1.2 Asynchronous threads

Asynchronous threads can be created by using the spawn construct. This construct

can only be used to spawn a thread executing a function which returns a void result.

Unlike par or parfor threads, a spawned thread executes concurrently with its creator

thread. The spawned thread is terminated when the function it executes finishes.

The syntax of the call is:

spawn some-function O;

Figure 3.4 gives an example of the usage of spawn.

36



void independentO;

spawn independentO;

Figure 3.4. Usage of the spawn construct.

3.L.2 Synchronisation and Determinism

Synchronisation and interleaving among threads in CC** can be controlled by using

sync variables and atomic functions. They provide a powerful mechanism to ensure

data integrity and correctness of execution.

3.1.2.1 Synchronisation

A sync variable is a single-assignment variable which is used for synchronising thread

execution. Any thread trying to read a sync variable will be blocked until a value

is assigned to it. After assignment, the variable behaves as a constant; attempts to

change its value result in run-time errors.

In Figure 3.5, the two slave threads will block until the master thread assigns a

value to data. In principle, the sync construct can be used for synchronisation by any

thread, be it synchronous or asynchronous.

3.t.2.2 Atomic F\rnctions

CC++ guarantees the fairness of thread execution. However, it makes no guarantee on

their order or interleaving which may vary from one execution to the next. The order

of thread execution is sometimes important, particularly to ensure data integrity. The

keyword atomic can be used in this respect. In CC*f , only class member functions

can be declared atomic. The execution of such a function will not be interleaved with

the execution of other atomic functions of the same object.

Figure 3.6 shows the construction and usage of a class implementing a simple mem-

ory reader and writer. The class Readerl,'lriterCl-ass contains two atomic functions:

readO and writeO. After the object Rhl-Obj is instantiated, each of its atomic func-

tions is executed by a different thread. Therefore, the execution of the threads may

ùr



sync int data;
void master(int va1) {

data = val;

Ì
void slave(int id) {

int masterdata = data;

par {
slave(1);
slave(2);
naster(0);

Ì

Figure 3.5. Usage of the sync construct

class Readert'lriterClass {

public
atomic int readO;
atomic void write(int internal-data) ;

Ì

)

Reader!,lrit erClass RÌt-Obj ;

par {
Rlü-Obj .readO;
Rhl-Ob j . write (something) ;

l

// thread L

// threa¿ z

Figure 3.6. Usage of the atomic construct.

38



***rü
f||

I

o
ii

I
Processor

Objects

\/ \/ ,l

Physical
Processors

Figure 3.7. Mapping of threads and processor objects in CC++

start with readO, then followed by writeO., or vice versa.

3.1 .3 Locality

The concepts of locality and computation are separated in CC++, in the sense that the

specification of address space and threads of control are separated. In CC++, locality

is specified by the notion of processor object (PO). A computation can be comprised

of one or more POs, which can be executed on one physical processor, or distributed

across a set of physical processors. In turn, a processor object may contain zero6 or

more threads executing concurrently (Figure 3.7).

3.1.3.1 ProcessorObjects

The concept of processor object (PO) is an extension of the C** object concept [33],

in that a PO embodies a separate address space. Analogous to the C++ object and

class concepts, a PO is an instantiation of a specific PO class. A PO class is specified

in the same manner as a C** class is, but prefixed with the keyword gIobal. The

C++ class inheritance mechanisms also apply to PO classes. However, for the POs

themselves, only those members which are declared under the keyword public are

accessible outside their address space through the RPC and data transfer mechanisms.

6Wh"n a PO does not contain any thread, it is said to be idle.

39



//
// f ¡te: activity.h
//
global class ActivityClass {
private:

int internal-datal;
protected:

char internal-data2;
public:

int status;
int walk(int activity-no) ;

int sit(int activity-no) ;

Ì;

/ / Inaccessible from without

// taen

/ / Onty these public members

/ / are accessible from
/ / wítl.out

//
// ftle: activity.cc++
//
#include "activity.h"

int datal;
void functionl (void);

/ / ltso inaccessible fron
/ / withottt

int ActivityClass : :wa1k(int activitl-no)
{

[function bodyJ

Ì

Figure 3,8, Implementation of a processor object class.

All other data and functions are considered as private to the PO. This is illustrated in

Figure 3.8.

3.1.3.2 Remote Procedure Calls

Cooperation among POs is achieved by accessing the public members of other POs.

The public member accessed could be a piece of data or a function. Both types of

access are facilitated through global pointers. Such pointers represent those data or

functions which are potentially expensive to access. In the CC++ implementation, a

global pointer is declared in the same manner as an ordinary C** pointer, prefixed

40



1

2

3

4
tr

6

7

8

9

10

tt
L2

13

74

char node-names hOl [64] ; / / nanes of physical processors
ActivityClass *globa1 gphOl ;

parfor (int i=0 ; i<10 ; i++) {
proc-t location = proc-t("activity.out", node-names[i] ) ;

/ / instantiation and placement of P0 of type "ActivityClass"
gptiJ = new(location) ActivityClassO ;

[user's code]
if (gptil-)status == 0)

gp tiJ ->wa1k(i) ;

else
Sptil->sit(i);

[user's code]
)

Figure 3.9. Usage of global pointers

with the keyword global (line 2 of the code section in Figure 3.9).

When a processor object P1 invokes a public member function of another processor

object P2, a RPC is issued. A new thread is then created in Pz to handle the remote

call, while the calling thread suspends. When the thread in Pz has finished execution,

the calling thread continues its execution flow. The results, if any, are transferred from

the callee to the caller. Line 10 and 12 in Figure 3.9 are examples of such a RPC. The

whole scheme is illustrated in the lower part of Figure 3.10

When the PO P1 only accesses a piece of data in P2, no thread is created in P2;

only data transfer occurs. Line 9 of the program in Figure 3.9 is one such example,

and the mechanism is illustrated in the upper part of Figure 3.10

Both types of access, be it remote data access or remote function invocation, involve

data transfer from the callee to the caller thread. The data transfer mechanisms can

be defined by the user as transfer functions. This is especially necessary for non-

trivial data structures, such as an array or a C** structure. These transfer functions

are essentially used for the marshaling and unmarshaling of data. These functions are

automatically invoked whenever the associated type is to be transferred from one PO to

another [32]. Figure 3.11 illustrates two transfer functions for the type ComplexClass.

One such function (operator<<) i. used for marshaling, and the other (operator>>)

4l



Processor
Object 1

Processor
Object 2

read (gp[i]->stafus)

Legend

= Threød ß blocked

-- Thread flow

Figure 3.10. Data comn¿unication and RPC between two processor objects

i

V

)
I

return

vølue == 0

teturn

if (gplil->status == 0)

gp[i]->walk(i)

I

I

I

I

I

I

I

v

)
t

*(gplil)

walk(i)

status

42



cLass ComplexC1ass {
private:

double real-part;
double imaginary-part ;

friend CCVoid& operator(<(CCVoi¿¿,const Comp1exC1ass &) ;

friend CCVoid& operator)>(CCVoiat,ComplexClass &) ;

Ì;

//--- marshaling ---//
// CCVo¡A is a special type in CC++, used for data
/ / transfer across different address spaces.
CCVoid& operator(<(CCVoid &v, const ConplexClass &c)

{
v (( c.real-part (( c.imaginary-part;
return v;

)

/ / --- unmarshaling ---/ /
CCVoid& operator)>(CCVoi¿ &v, ConplexClass &c)

{
v )) c.real-part )) c.inaginary-part;
return v;

]

Figure 3.11. A transfer function.

for unmarshaling.

3.2 Visualisation Support

Unlike the pC** language [13], CC+* does not provide full support for program

visualisation. pCt*, on the other hand, provides a source-code transformation tool,

Sage** [14], which is part of the language design. This tool can be used for program

instrumentation. This facility is used by the program visualisation toolset TAU [97] to

instrument pC** programs for producing visualisation.

Although such support for visualisation is not available in CC**, some limited

support is made available through its underlying run-time system. However, the sup-

port is rather rudimentary [63, 75, 130], and is not a part of the CC** language

43



design [30, 33].

The visualisation support in CC** is provided by the Nexus run-time system [55,

56], which serves as the target of the CC++ compiler. Nexus provides low-level facili-

ties to support interactions between concurrently executing components of a program.

These facilities include support for multiple threads of control, dynamic processor ac-

quisition, and dynamic creation of address space.

Nexus allows the generation of profiling data of the execution of its applications.

Since a CC** program is essentially a Nexus application, it means that profiles of

CC++ program execution can be obtaìned. This is achieved by providing appropriate

switches during CC++ program compilation. The profiling data obtained can then be

visualised by using Pablo [4].

Visualising the Nexus profile data, however, has several serious disadvantages.

Firstly, the profiling data obtained is only in terms of low-level Nexus entities and

contains the minimum amount of data necessary to drive meaningful visualisation. For

example, the Nexus thread-creation profile does not contain information concerning

which thread created a particular thread, or which line in the source code contributed

to this event 154, 1281. Consequently, relating the views of these entities to the user's

mental model is difficult.

Secondly, since the profile structures are fixed, to get further profiling information

means changing Nexus itself. This can be difficult, and may lead to undesirable effects

such as altered system behaviour. Furthermore, Nexus is designed as a compilation

target, not a final system in itself. Atry changes to Nexus, if necessary, must be done

carefully.

Finally, Pablo requires that for different program profiles (i.e. different CC*t pro-

grams), different configuration files have to be created. This is cumbersome for users,

especially non-experts. The approach of providing a specialised tool will provide sig-

nificantly more benefits to more users [17].

44



Chapter 4

Visor++

This chapter describes the framework and architecture of Visorl* (Visualisation of

Software in the Task-Parallel Object-Oriented Realm), the tool for visualising CC**

programs.

As expounded in Section 1.1, and Section 2.3, lor the visualisation of concurrent

object-oriented programs, there are two questions to be addressed. Firstly, in order to

help form or strengthen the mental models of users, what features of the program or

software system can be used for visualisation, and how should they be visualised? The

answer hypothesised by Visor** is that both the static uiews and dynamic uiews of. a

program should be visualised. The static views are the views of the static properties of

a program. They include, for example, the views of source code and class hierarchies.

Dynamic views refer to the views which depict program execution. These two types

of views are important precisely because they represent a program static and dynamic

models. This makes the comparison between a programmer's initial mental model and

execution mental modei possible (Figure 1.5).

Secondly, in the absence of adequate support for visualisation from the language

system, what can be done to generate useful visualisation, and to what extent can this

be done? The answer put forward by Visor** is that meaningful visualisation can

still be obtained, provided that two conditions are satisfied.

1. First, the visualiser must be able to obtain program execution snapshots (event

traces). Such snapshots can be obtained by instrumenting the program either at

45



Instrumentator Static
Analysis

Consolidated
Event

Database
Program

Views

Compiler

User
Collection

Event-

Run-time
Environment

Event-

Program
Instrumentation

Event
Collection

Event
Visualisation

Figure 4.1. General framework of Visor**.

the source-code level or at other system levels, such as compilers or operating

systems.

2. Second, the program snapshots must also include and reflect relationships among

abstract program entities that they capture. For example, program snapshots on

function execution must include information of which function and which thread

invoked a particular function.

This chapter explores the above questions and answers. Specifically, the architecture

and implementation of Visor** are described.

4.L General Fþamework

Visor** [135, 136, 137] is implemented as a set of subsystems which transform the

abstractions or constructs of a CCI* program from their initial forms to the final

views. As Figure 4.1 shows, to provide the visualisation of a CC** program, three

steps are needed.

46



First, a program to be visualised is instrumented. This is achieved by automaticaily

inserting probes into it. Simultaneously, static analysis is carried out on the program to

extract the program static structures. These structures include such information as the

original source code, class hierarchy, line numbers, and file names. This information is

saved into a static data repository,, which is later used by the visualisation subsystem.

The instrumented program is then compiled by using the CC** compiler, producing

the instrumented object program. Note that both the instrumentation and the static

analysis are carried out automatically by Visorl*, without user intervention.

During program execution, the probes in the program emit traces depicting the

program states. These records are captured by the Visor** run-time environment,

which is essentially a monitoring system. When the instrumented program has fin-

ished execution, all of the captured trace records are post-processed by the event col-

lection subsystem. The records are then saved into a consolidated euent database. The

database, therefore, contains information on program states from all parts of the pro-

gram, which may have executed on a single-processor or a multi-processor system.

The event database, together with the static data repository, are then fed into the

visualisation subsystem for producing the views. In other words, Visor*f employs the

post-mortem visualisation approach. The same views can be reproduced at any time as

long as the same static data repository and event database are used. Henceforth, the

term traces, trace records, and events are used interchangeably. The term event

file and trace file are also used to refer to the event database.

The event visualisation subsystem produces both static and dynamic views. The

static views depict the program's static aspects, while the dynamic views the program's

execution aspects. Both types of views are coordinated and animated coherently to

reflect the original program structurcs and execution timing. The user can control and

interact with the views and the visualisation subsystem through the graphical interface

in the form of control panels.

By using the views, the user can gain an in-depth understanding of the program.

The user can then fine-tune and modify the program as necessary. Subsequently, the

modified program can be instrumented, visualised, and modified again. The cycle can

47



be repeated until the program behaves as expected.

From the diagram, it can be seen that the subsystems in Visort* are loosely-

coupled. The link from one subsystem to another is substantiated only through the

event database and the static data repository. The design and implementation of these

subsystems are described in the following sections.

4.2 Program fnstrumentation Subsystem

Program instrumentation is executed only on programmer-defined entities (such as

classes and functions). Those entities which are not defined by the programmer (hence-

forth termed system code) are not instrumented. Such system code includes, for ex-

ample, the iostrearn library and the system-defined string functions such as strcpyO.

There are three main reasons for not carrying out instrumentation on system code.

Firstly, programmers are generally interested only in their own code. Secondly, system

code typically consists of many entities, such as classes and functions which are not

efficient to extract, instrument and visualise. Even if the number of such entities

were small compared to a programmer's code, it is still best to exclude them. This is

necessary so that a user's cognitive perception is not inundated when using the system.

Finally, the source code of the system code is typically not available for alteration or

instrumentation.

The program instrumentation subsystem is constructed as a two-pass system. The

first pass is the static analysis phase, which automatically extracts the information on

programmer-defined entities from a program. The analysis is always carried out before

the second pass, the program instrumentation. The reason is that program instru-

mentation neecls to instrument only programmer-defrned entities. The information on

which parts of the source code constitute programmer-defined entities is precisely the

one gathered during the static analysis. The entities instrumented are described in the

next section.

48



4.2.t Program Entities

As explained in Chapter 3, the CC++ language comprises many types of entities.

These include C++ entities such as classes and functions, and CC++ extensions,

such as threads and processor objects. However, not all of them are used, specifically

variables and data structures. The reason is that a CC** program can be distributed

across a network of processors. This means that a CC++ computation may be large,

in terms of CPU usage. For example, there may be a significant number of references

to functions, objects, and threads. In such computation, in order not to inundate the

users with excessive information, Visorf* does not display or focus on fine-grained

program entities, such as data structures and pointers. Interactions and visualisation

of such entities are perhaps better dealt with by a visual debugger. Furthermore,

variables and data structures are typically used for temporary storage areas, and that

Visor** is not intended to be a debugging tool.

The CC** entities visualised by Visorf* are described below.

o Threads. These include synchronous and asynchronous threads, including those

initiated to cater for RPCs (Section 3.1.3.2).

o Fhnctions. These include atomic functions, object member functions, ordinary

C++ functions, and constructors and destructorsT. Invocations of these functions

reflect the activities of the threads in which they occur.

o Logical Processor Objects. The status and activity of processor objects also

form an important part of visualisation. Such status information and activity are

reflected by the operations of threads inside processor objects.

o Remote Procedure Calls. Remote procedure calls (RPCs) are an important

mechanism by which cooperation among different parts of a CC** computation

is achieved. RPC activity, therefore, must be visualised.

TObject constructors and destructors, by definition, are not regarded as functions [124]. However,
they can be treated as such for convenience.

49



struct FctlnfoStruct {
IdType Functionld;
IdType InhrhichClass;
IdType InWhichFile;
IdType LineNurnber;

/ / Assigned by system
// Ctass index, -1 == ordinary function
/ / Sovce-f ile index
/ / tst Iine of function declaration

NameType FunctionName;
RetValType ReturnValue;
ParamType Parameters;

);

Figure 4.2. Information on functions in the static repository

4.2.2 Program Static Analysis

As previously described, the static analysis is used to automatically extract static in-

formation from a program. During the analysis, two types of information are extracted:

o Source file information

This includes the names of the source files, and the number of lines and characters

for each file. Each file is given a unique identifier which is used for identifying

the file in which a program event occurs.

o Static program entities.

These include information on functions and classes. Information on functions

comprises both ordinary functions and class member functions. The fields of

function information in the static repository are shown in Figure 4.2. Class in-

formation, on the other hand, contains such information as class names, member

functions, and friend classes. This information is illustrated in Figure 4.3.

Note that all such information contains the following properties:

- Source-file identifier, for identifying in which file a function or class rs

declared.

- Source line number, for identifying the first line in which the entity dec-

Iaration occurs in the source file.

50



enum AccessType { pRrvlrg, PR0TECTED, PUBLIC };

struct ClasslnfoStruct {
IdType Classld i / / Assigned by systen
IdType In!'lhichFile; // Source-file index
IdType LineNu¡nber; // Lst' line of cl-ass definition

NameType CIassName;

IdType *MemberFuncts;
AccessType *MemberFunctAccess ;

int NumMenberFuncts;

IdType *ParentClasses;
AccessType *ParentCIas sAcces s ;

int NumParentClasses;

/ / Array, pointing to funct-record
/ / Access, for each funct-record
// Number of member functions

//
//

idx to other class-info record
Inheritance FROM parents

IdType *ChildClasses;
AccessType *childcrassAccess; / / Tnner¡tance T0 children
int NumchildClasses;

IdType
int

IdType
int

*FriendFuncts;
NumFriendFuncts ;

Ì;

*FriendClasses;
NunFriendClasses;

Figure 4.3. Information on classes in the static repository.

51



//--- File: included.h
int a;
struct structl *s;

Ì;

/ /--- File: progran.cc++

class classl {
#include "included.h"

Figure 4.4. Ill-partitioned, but ualid progrúrn

Note that like C+*, a CC*t program may span several files, and each file

may include other files. In any case, the source line number of an entity is

considered to be the first line in which the entity is fully declared. An entity is

said to be fully declared if the body of the entity is fully specified. For example,

a function header declaration with its body specified is said to be fully declared.

On the other hand, a function prototype is not considered as a full declaration.

In fact, it is sometimes known as a forward declaration lI24). It follows that for

every function, there is only one full declaration. Therefore, the source-file and

line number of a function are considered to be the first file and line number in

which the header of a full function declaration occurs. This notion applies to

other entities as well.

The example in Figure 4.4 illustrates an ill-partitioned, but otherwise valid

CC++ program. In the example, the class class1 is a fully declared class, which

partly resides in the file progrâIr.cc**, and partly in included.h. In such a

case, the source file and line number for the class are considered to be the first

file and line number in which it occurs, which, in this case, is in program. cc++.

4.2.3 Program Instrumentation

Program static information, which is automatically extracted during the static analy-

sis, is saved into a static repository. This repository is then used in the second pass,

52



program instrumentation, to automatically instrument only programmer-defined enti-

ties. The entities and the method of instrumentation are described in the following

sections.

4.2.3.1 Events

The activities of CC++ program entities, as described in Section 4.2.I, are traced by

"probes" which are automatically inserted into the program. A probe produces/trans-

mits traces each time an entity in which the probe is installed starts and fi'nishes

execution. Such a design is necessary for several reasons. Firstly, it enables some

performance data to be gathered, i.e. how much time is spent in each function, each

thread, and so on. Secondly, it enables causality analysis to be carried out more

accurately. For example, if a RPC is carried out by a thread, then since the CC**

RPC is synchronous, it follows that the RPC start and finish times must be "enclosed"

by the thread start and finish times.

The eventss implemented by Visor{* are as follows:

o Threads.

In Visor**, events associated with threads are divided into two groups. The

first group is associated with thread blocks, i.e. it records the entry and exit from

par and parf or blocks. In the implementation, the events are given the following

names.

_ EV-PARFOR-START

_ EV-PARFOR-FINISH

_ EV-PAR-START

_ EV-PAR-FÏNÏSH

The second group is associated with threads themselves. This records the entry

and exit from each thread, either synchronous (the threads created by a par or

sAll CC++ events are given names with the prefix "EV", meaning "event". These names are

self-explanatory.

i)')



parfor construct), or asynchronous (the threads created by the spawn construct).

The event names are as follows:

_ EV-PARFOR-THREAD-START

_ EV-PARFOR-THREAD-FINISH

_ EV-PAR-THREAD-START

_ EV-PAR-THREAD-FINISH

_ EV-SPAI'IN-THREAD-START

_ EV-SPAI'IN-THREAD-F INISH

o Functions.

For functions, Visorf* events record function entry and exit. They include

ordinary functions, and object member functions, including atomic functions.

The event names, which are self-explanatory, are as follows:

_ EV-MAIN-START

- EV-MAIN-FINISH

_ EV-FUNCTION-START

_ EV-FUNCTION-FINISH

_ EV-CONSTRUCTOR-START

_ EV-CONSTRUCTOR-FINISH

_ EV-DESTRUCTOR-START

_ EV-DESTRUCTOR-FINISH

_ EV-MEMBER-START

_ EV-MEMBER-FINISH

Note that the function mainO has its own event names (EV-UIIU-START and

EV-MAIN-FINISH). The reason is that in CC**, like C++, mainO is a special/

function from which program execution starts.

54



o Logical Processor Objects and RPCs.

The status and activities of processor objects comprise RPCse, and the creation

and destruction of processor objects.

_ EV-GLOBAL-CONSTRUCTOR-STARTIO.

- EV-GLOBAL-CONSTRUCTOR-FINI SH

_ EV-GLOBAL-DESTRUCTOR-START

_ EV-GLOBAL-DESTRUCTOR-FINISH

_ EV-GLOBAL-MEMBER-START

_ EV-GLOBAL-MEMBER-FINI SH

_ EV-RPC-MARK-START

_ EV-RPC_MARK-FINISH

The instrumentation methods and the generation of these events are explained in

the next sections.

4.2.3.2 Location-ID

In order to obtain meaningful visualisation, relationships among program entities must

be obtained. For example, for a function call, the traces for the events EV-FUNCTION-

_START and EV-FUNCTIoN-FINISH should contain information on the callee. The traces

should also contain, among others, the information on the thread in which the caller

resides. In other words, the location of both the caller and the callee must be known.

This gives rise to the notion of bcati'on-IDs.

A location-ID is defined as the tuple <Node-Id, Processor-Object-Id, Threatl-

Id>. It describes the "location" in which the invocation of an entity (".g. . function)

eFrom the definition of CC**, PO creation and destruction do not involve RPCs [30] . However,

they are similar to remote invocation of PO member functions. For this reason, and for convenience,

they are also regarded as RPCs.
10The event names relating to processor objects are prefixed with "EV-GLOBAL", meaning that

this is an event, which is generated through the use of a global pointer for invoking a RPC. For RPCs,

some secondary events are generated, with their names prefixed ì/ith "EV-RPC" (Section 4.2.3.5).

55



occurs. It also describes the location from which the invocation is made. This location

includes the physical node, the processor object, and the thread. The identifiers in the

tuple can be generated by the system (such as compilers and run-time systems), or

artificially generated by the program visualisation system.

The location-IDs in the generated traces make it possible to infer the run-time

computation structure of a program. With this knowledge, a more compact layout and

organisation of the views can be constructed.

However, in contrast to other imperative progïamming systems and languages, such

as Pthreads [100] and PRESTO [11], such location-IDs do not exist in CC++ (Sec-

tion 3.2). Pthreads and PRESTO involve, for example, the use of unique identifiers for

thread operations. These identifiers, which are supplied by the programmer, are not

available in CC**.

Nexus, the underlying run-time system of CC** does, in fact, have internal struc-

tures which keep information on threads and contexts. Howevet, this information is

opaque to CC** and is not meant to be accessible through CC++ programs. The

reason is that exposing such information poses many scalability and portability prob-

lems in a dynamic distributed system [130]. As a solution, such identifiers must be

artificially generated by the instrumentation subsystem for each CC++ program to be

visualised. This involves the artiflcial generation of physical-node identifiers, processor-

object identifiers, and thread identifiers.

A physical-node identifier is assigned to each node participating in a computation.

Program traces from each processor-object are collected by a monitoring process which

resides on the same physical node as the processor-object. The local monitoring pro-

cesses are allocated by a central monitoring process, which gives each of them a unique

idcntificr. This idcntifier acts as a unique node identifier for the physical processor

in which the associated local monitoring process resides. Implementation details are

addressed in Section 4.3.

Next, each processor object has a unique pair of physical node identifier and pro-

cessor object identifier (PO-ID). The node identifierof the processor object is the same

as the node identifier of its local monitoring process. The PO-ID, however, is allocated

56



by the local monitoring process and given to a processor object whenever the processor

object is allocated (constructed). To achieve this effect, the code of each processor-

object is instrumented in such a way that upon processor-object construction, the local

monitoring process is automatically contacted for such a unique identifier pair. This is

achieved by instrumenting the processor object with the static object Instr, which is

instantiated from the class RECORD-cIass. When the PO is constructed, the construc-

tor of the object Instr is also invoked. The constructor of Instr, in turn, invokes a

special function Ask-Monitor-For-IdO, which contacts the local monitoring process

for a unique pair of (Node-Id, PO-Id>. This is illustrated in Figure 4.5.

For threads, unique thread identifiers can be obtained by contacting a thread-

identifier seruer within the processor object in which the threads reside. This mech-

anism is invoked every time a thread (either synchronous or asynchronous) is allo-

cated. The identifier server is implemented as a light-weight atomic member function

get-thread-idO in the class REC0RD-cIass (Figure 4.5 and Figure 4.6).

For generating event traces, the member function generate-traceO of the class

RECORD-cIass is used. With appropriate parameters, the function generates a trace

record, and sends it to the local monitoring process (Section 4.3). The trace record

itself is defined as in Figure 4.7.

4.2.3.3 Instrumenting F\rnctions

In Visor**, instrumenting a function involves two steps. First, the body of the func-

tion declaration rnrsT, be instrumented. Second, the calls made to the function must

also be instrumented. In this discussion, the term "function" refers to ordinary func-

tions, including member functions, constructors and destructors of ordinary classes and

processor-object classes.

The general method of instrumenting the body of a function is to modify the pa-

rameter list of the function, and to place two trace calls - one at the beginning (entry

code) and one at the end (erit code) of the function body. The parameter list of the

function is augmented with parameters denoting the location-ID of the caller, along

Ðt



//---- Initial cod.e for processor object class ----//
/ / gl-obal- class P01 {

// j;

//---- Instrumented code ----//
class RECORD-cIass {
private:

IdType thread_idt // keep track number of threads so far
void Ask-Monitor-For-Id O {

/ / code for contacting local monitoring
// process to get a unique <Node-Id, PO-Id>

Ì

public:
IdType processor-id; // comnunicated by monitoring process
IdType P0-id; // obtained by Ask-Monitor-For-Ido
REC0RD-cIass O {

Ask-Monitor-For-Id O;
//--- other setup code here

Ì

//--- for obtaining unique thread-id
atomic ldType get-threa¿-id O;

//--- A trace includes
generate-trace (IdType

IdType
IdType
IdType
IdType

Location-ID of caller and callee
EventType, IdType Node-Id,
PO-Id, IdType Thread-Id,
From!ühichNode-Id, IdType FromlthichP0-Id,
FromWhichThread-Id, IdType Function-Id,
File-Id, IdType LineNumber) ;

deterrnine-PO-thread-id (IdType FrornllhichNode-Id,
IdType FromlthichP0-Id,
IdType FromlthichThread-Id) ;

);
static RECORD-cIass Instrt // static, automatic object

globaI class P01 { / / t¡e instrumented class

Ì;

Figure 4.5. Automatically obtaining a unique i,dentifi,er for a processor object

58



atomic ldType REC0RD-class: :get-thread-id o
{

thread-id ++;
return (thread-id);

Ì

Figure 4.6. A light-weight atomic function to obtain unique thread identifi,ers.

struct TraceStructure {
IdType event;
double t;

IdType function-id;
IdType source-file;
IdType source-line;

Ì;

// lrla¡e of an event
/ / tíne-stamp taken by a probe

/ / Used for function-related events
/ / P:-te infornation

Figure 4.7. Program trace structure

IdType node-id;
IdType process-id;
IdType thread-id;

/ / Location-ID of this event

IdType from-node-id; // Location-ID of caller
IdType from-process-íd; // used if applicable
IdType from-thread-id ;

59



with the file-ID and line number to indicate the invocation pointll. In particular, the

location-ID is necessary because the same function can be invoked by another function

or thread which may have a different location-ID. As a result, the same function can

have different location-IDs in different calls. Subsequently, the location-IDs are used

by generate-traceO to generate the associated events.

For the trace calls inside the function body, the requirement is that the entry code

must be the first statement to be executed in the function block, and the exit code

the last, before function return. Figure 4.8 illustrates this approach. The approach,

however, has difficulties with respect to exit code, particularly for functions which have

many exit points. For functions, an exit point can be reached when the execution path

encounters an exitO statement, a return statement, or when the end of the function

block is reached (Figure 4.9).

To overcome this problem, a simple technique of using automatic objectsl2, can be

used [94, 96]. If an automatic object is declared as the first line inside a function block,

it ensures two things. First, the constructor of the object is called before other parts of

the function are invoked. Second, its destructor is the last statement executed before

the block is exited. The constructor can then be made to call the intended entry code

and the destructor the exit code. To do thìs, a light-weight class EntityProfiler,

which only contains a constructor and a destructor, must be constructed (Figure 4.10).

Using this method, the function in Figure 4.9 is instrumented by inserting the object

ep of class EntityProfiler as the first line in the function body. This is illustrated

in Figure 4.11.

Since the parameter list of each user-defined function is altered, any call to such a

function must also be altered. This is illustrated in Figure 4.12. Note that in the exam-

ple, the call to f unctionl O is supplied with thc paramctcrs Instr. processor-id and

Instr.P0-id, both being member data of Instr, the instantiation of R¡CORI-cIass

(Figure 4.5). The parameter Ann-Thread-Id is the identifier of the current thread in

11The augmented parameters are placed before the programmer's initial parameter list. This is to
guard against the possibility that the initial parameter list may contain default parameters [124] .

12An automatic object is defined as an object which is local to the invocation of a block. The object
is created upon entry to the block, and automatically destroyed upon block exit 146, I24].

60



//
//
//
//

//--- Initial function declaration ---//

int functionl
{

( [user's param-list] )

[user's code here]

//--- Instrumented code ---//
int functionl (IdType Ann-Node-Id , IdType Ann-PO-Id,

IdType Ann-Thread-Id, IdType Ann-File-Id
IdType Ann-Line-No,
luser's param-list] )

{
/ / Generate function-entry trace
/ / "Instr" is an instantiation of REC0RD-cIass

// Yor ordinary function, Location-IDs of caller and

/ / ca]-l-ee are the same

Instr.generate-trace (EV-FUNCTI0N-START, / / instr'ed statically
Ann-Node-Id, Ann-PO-Id, Ann-Thread-Ïd,
Ann-Node-Id, Ann-PO-Id, Ann-Thread-Id,
[function-id], // ínstr'ed statically
Ann-FiIe-fd, Ann-Line-No) ;

[user's code here]

/ / generate function-exit trace
Instr.generate_trace (EV-FUNCTI0N-FINTSH, / / instr'ed statically

Ann-Node-Id, Ann-PO-Id, Ann-Thread-Id,
Ann-Node-Id, Ann-PO-Id, Ann-Thread-Id,
lfunction-id], // instr'ed statically
Ann-File-Id, Ann-Line-No) ;

Figure 4.8. Erample of function instrumentation.

Ì

)

61



int functionl ( [user's param-Iist] )
{

if (a) ttren
return (1); // nay exit from here

if (error == 1)
exit (-1) ; / / or from here

Icode]
/ / or here at the end of function block

Figure 4.9. A function can haue ma,nA erit paths

which the call occurs. Note that for ordinary functions, both the caller and the callee

have the same Location-ID. The other two parameters, Ann-Fi1e-Idand Ann-Line-No,

indicate the source file and line number from which a call is invoked.

4.2.3.4 Instrumenting Destructors

The above approach applies to ordinary functions as well as the member functions and

constructors of ordinary classes. Instrumentation for destructots, however, is a little

different. This is because C++ and CC** object destructors do not take any param-

eters, whereas the method described above works by modifying function parameters.

This problem is particularly acute, because an object may be constructed in one thread

and destroyed in another (Figure 4.13). Without parameters, it is virtually impossible

to "inform" the trace calls in a destructor of whìch thread it is currently in.

To circrrmvent this problem, every cla,ss is augmented with a set of private members

to record the location-ID of the call to a class constructor. When an object is con-

structed, the location-ID of the caller is recorded. If the object is an automatic object,

then the destructor is automatically called when the object is out of scope [46]. When

this happens, it means that the calls to the constructor and destructor both have the

samelocation-ID. The location-ID saved into the augmented private members are then

Ì

62



class EntityProfiler {
private:

IdType ep-EventType;
IdType ep-Node-fd;
IdType ep-P0-Id;
ïdType ep-Thread-Id;

public:
EntityProfiler (IdType EventType,

IdType Node-ïd,
IdType PO-Id,
IdType Thread-Id,
IdType FromhrhichNode-Id,
IdType FronlrrhichPO-Id,
IdType FronhrhichThread-Id,
IdType Function-Id,
IdType File-Id, IdType LineNunber)

{
ep-EventType = EventType;
ep-Node-Id = Node-Id;
ep-PO-Id = PO-Id;
ep-Thread-Id = Thread-ïd;

/ / Instr==globa1 variable, RECORD-class instantiation
Instr.generate-trace (ep-EventTyp., ep-Node-Id,

ep-P0-Id, ep-Thread-Id );

-EntityProfiler o
{

/ / t¡rrd-exit-event O is a sinple function that returns
// tne "matching exit event" of an event. E.g.
/ / ¡t ev-EventType==EV-PAR-START, return EV-PAR-FINISH,
IdType exit-event = find-exit-event (ev-EventType) ;

Instr.generate-trace (exit-event, ep-Node-Id,
ep-P0-Id, ep-Thread-Id, .. . );

Ì

Figure 4.10. Profiler class in for the instrumentati,on subsystem.

)

etc

Ì

63



/ / " Ann" == Annotated/instrunented
int functionl (IdType Ann-Node-Id,

IdType Ann-PO-Id,
IdType Ann-Thread-Id,

iåiii: tTT_illl_il:
[user' s para-n-list] )

{
EntityProfiler ep (uv-ruNcTI0N-sTART,

Ann-Node-Id,
Ann-PO-Id,
Ann-Thread-Id,

);

// ínstr'ed statically

if (a) ttren
return (1) ; / / nay exit fron here

if (error == 1)
exit (-1) ; / / or fron here

Icode]
/ / or here at the end of function block

Figure 4.tL. A function instrumented with øn EntityProfiler object

Ì

64



//--- The original fct-declaration & fct-call
/ / int functionl ( [function paran-Iist] )
// {
/ / function2 ( [user's paraurs] ) ;

//
// Ì
//
// a = functionl ([user's pararnsJ);

//--- The instrunented ones
int functionl (IdType Ann-Node-Id,

IdType Ann-PO-Id,
IdType Ann-Thread-Id,
IdType Ann-Fi1e-Id,
IdType Ann-Line-No,
[funct ion param-listJ )

{
EntityProf iler ep (nv_r'uucrl0N_START, );

/ / t¡e function call occurs in file 3 , Line 24
function2 (Ann-Node-Id, Ann-PO-Id, Ann-Thread-Id,

3, 24, [user's paramsl ) ;

// tlte function call occurs in file 3, line 56

a = functionl (Instr.processor-id, Instr.PO-id,
Ann-Thread-Id, 3, 56, [user's paransJ);

Figure 4.I2. Erample of an altered function call.

Ì

65



nain O {

SomeC1ass *sc = new SomeC1ass (...); // created in one thread

parfor (int i=0 ; i<3 ; i++) {

if (i==0) delete sc; // destroyed in another thread!

)
]

Figure 4.13. Constructor and destructor called from different threads.

used for generating the proper trace.

However, the calls to the constructor and destructor may have different location-

IDs. This is normally the case if they are invoked within different threads, as shown

in Figure 4.13. To overcome this problem, each class is also augmented with a pub-

lic member function, Ann-deleteO, whose parameters are used for "recording" the

location-ID. The destructor of the class is then explicitly called from within this func-

tion (Figure 4.14). Calls to the class destructor within a program are correspondingly

replaced with calls to Ann-deleteO, as shown in Figure 4.15.

4.2.3.6 Instrumenting Processor Object Classes

Instrumenting a processor object class and its member functions is similar to instru-

menting an ordinary class. The only difference is that each time a member function of

a processor object is called from another processor object, a RPC occurs, and a thread

is created in the address space of the callee to cater for the call.

For this reason, member functions of processor object classes are augmented with

a call to a member function of ngCORO-c1ass, determine-P0-thread-idO, to get a

new thread identifier, if applicable. This means that each time a PO member function

is called, the function deternine-P0-thread-idO will be invoked to return a thread

identifier ?. If the PO member function is cailed from within the same PO (i.e. the same

address space), the identifier 7 will be the same as the thread identifier of the caller.

66



//--- Initial class declaration ---//
/ / class SoneClass {
/ / public:
// SoneClass O { [user's code] ]
// -SomeClass O { [user's code] ]
//
// );

//--- Instrumented class declaration ---//
class SomeClass {
private:

IdType Ann-Node-Id, Ann-PO-Id;
IdType Ann-Thread-Id;
IdType Ann-File-Id, Ann-Line-No;

public:
virtual Ann-delete (tatype Node-Id , IdType P0-Id,

IdType Thread-Id, IdType File-Id,
IdType Line-No) {

this-)Ann-Node-Id = Node-Id;
this-)Ann-P0-ïd = PO-Id;
this-)Ann-Thread-Id = Thread-Id ;

this-)Ann-File-Id = File-Id;
this-)Ann-Line-No = Line-No;
this-)-SoneClassO; // caIL destructor here

)
SomeClass (IdType Node-Id, IdType P0-Id, IdType Thread-Id,

IdType File-Id, IdType Line-No) {
this-)Ann-Node-Id = Node-Id;
this-)Ann-P0-Id = PO-Id;
this-)Ann-Thread-Id = Thread-Id ;

this-)Ann-File-Id = File-Id;
this-)Ann-Line-No = Line-No;
EntityProfiler ep (Ev_coNSTRUCT0R_START,

Ann-Node-Id, Ann-PO-Id, );
[user's code]

)
-SoneClass O {

EntityProfiler ep ( nv_onsrnucroR_srART,
Ann-Node-Id, Ann-PO-Id, )

luser's code]
Ì

Figure 4.14. Instrumentation of a class.

67

Ì;



SomeClass *sc = new SomeClass (. . . )
parfor (int i=0 ; i<3 ; i++) {

/ / Changing the call "delete sc'"
if (i==0) sc-)Ann-delete (. . . ) ;

Figure 4.16. Changing the call to an object destructor

Otherwise, a new and unique thread identifier is returned. The resulting location-ID

is then used in generating the associated trace record. Figure 4.16 shows the code

of determine-P0-thread-idO and how the function is used in instrumenting a PO

member function.

The events relating to PO member functions, as previously described, are associated

with the processor object in which the functions are invoked. These events alone

enable Visort* to determine the amount of time spent in remote function inuocation.

However, the amount of time needed for RPC ouerheads is not known. To compute such

overhead time, two secondary events, EV-RPC-MARK-START and EV-RPC-MARK-FINISH

are generated in the address space of the caller PO. The event EV-RPC-MARK-START

marks the start of a RPC, and EV_RPC_MARK_FINISH marks its end.

Using these secondary events, Visor** recognises RPC execution as a three-phase

execution: the call-setup phase, the remote-er,ecution phase, and the call-return phase.

For a RPC, the call-setup phase begins from the time when the EV-RPC-MARK-START

event is generated up to the generation of the EV-GL0BAL-MEMBER-START event. The

remote-execution phase is the execution phase between the generation of the events

EV_GL0BAL_MEMBER_START and EV_GLoBAL_MEMBER_FINISH. Finally, the call-return

phase refers to the time between EV-GLOBAL-MEMBER-FINISH and EV-RPC-MARK-FINISH.

This notion extends to PO construction and destruction as well.

To illustrate the point, suppose the function function3O in processor object P1,

as illustrated in Figure 4.16, is invoked by a thread in another processor object P2.

Figure 4.17 illustrates the instrumentation of the source code. By having the two

I

68



IdType RECORD-cIass : : deternine-P0-thread-id (
IdType from-node-id,
IdType from-PO-id,
IdType from-thread-id)

{
if (this->processor-id != from-node-id I I

this->P0-id != fron-P0-id)
return (ttris->get-thread-i¿O) ;

else
return (fron-thread-id) ;

Ì

int SonePO-Class : :function3 (IdType Ann-FromlthichNode-Id,
I dType Ann-From!'lhichP0 - Id,
IdType Ann-Fromtr'lhichThread- Id,
IdType Ann-File-Id,
IdType Ann-Line-No,
[function paran-listJ )

{
Ann-Thread-Id = fnstr. determine-PO-thread-id

(Ann-FronlthichNode-Id, Ann-FronWhichP0-Id,
Ann-From!'lhi chThrea¿- Id ) ;

EntityProfiler ep (EV-CL0BAL-MEMBER-START, Instr.processor-id,
Instr. PO-id, Ann-Thread-Id,
Ann-Fro¡n!'lhi chNode- Id,
Ann-From!'lhi chP0 - Id,
Ann-From!,lhichThread-Id, );

[user's code]
Ì

Figure 4.L6. Instrumenting a member function of a processor object class

69



/*----------- Originar code

a = gptr-Xunction3 ( [some paramsJ ) ;

/ / tne instrumented code

Instr.generate-trace (EV-RPC-MARK-START, . . . ) ;

a = gptr-)function3 (Instr.processor-id, Instr.P0-id,
Ann-Thread-Id, 4, 57,
[some paramsJ ) ;

Instr.generate-trace (EV-RPC-MARK-FINISH, );

Figure 4.t7. Marking the start and end of a RPC,

additional events, both RPC start overhead and RPC finish overhead time can be cal-

culated. The diagram, illustrating the generation of the events, is given in Figure 4.18.

The above approach, however, has a minor drawback, as illustrated in Figure 4.19.

The figure shows that for the two functions functionlO and function2O,only one

pair of EV_RPC_MARK_START and EV_RPC_MARK-FINIsH events is generated. Fortu-

nately, a simple re-arrangement of the code can solve this problem. This is shown in

Figure 4.20.

4.2.3.6 fnstrumenting Synchronous Threads.

For synchronous threads, i.e. threads spawned by the par and parfor constructs,

instrumentation is applied both to the par and parf or blocks, and to the individual

thread.

For a parfor block, the start of the block is recorded as the EV-PARFOR-START event,

and the end of the block the EV-PARFOR-FINISH event. Unlike the instrumentation for

functions, the automatic object of type EntityProf iler need not be used. The reason

is that the entry and exit points are fixed. The entry point for a parf or block is always

70



l-Ev npc MARK sr¡nil
L - geñerated hire -l

Caller PO

Caller is blocked

here

Called PO

l- ev-cLosnL-MEMBER-srARr I

| - genãrated here - -l
t

function30 starts

function30 ends

T

l- eu-cLoeeL-MEMBER-FIN IS H]
L generated here -l

l-ev npc MARK FINßH]
L - geìerated here -l

Figure 4.18. The generation of euents for a RPC.

/tr----------- Original- code

a = gptr-)functionl ( [sone paramsJ ) +

gptr-)function2 ( lsome parans] ) ;

/ / tne instrumented code

Instr.generate-trace (EV-RPC-MARK-START );
u = gptr-)functionl (Instr.processor-id, Instr.PO-id,

Ann-Thread-Id, 4, 89,
[sone paramsJ ) +

gptr-Xunction2 (Instr.processor-id, fnstr.P0-id,
Ann-Thread-ïd, 4, 90,
[some paramsJ ) ;

Instr.generate-trace (EV-RPC-MARK-FINISH, ) ;

Figure 4.19. A drawback in RPC instrumentation.

7t



/,r----------- Re-arranged code

SomeDataType a;

a = gptr-Xunctionl
a += gptr-)function2

( [some paramsJ ) ;

( lsone parars] ) ;

/ / tne instrumented code

SoureDataType a;

Instr.generate-trace (EV-RPC-MARK-START, . . . ) ;

a = gptr-)functionl (Instr.processor-id, Instr.P0-id,
Ann-Thread-Id, 4, 89,
[some paramsl );

Instr.generate-trace (EV-RPC-MARK-FINISH, );

Instr. generate-trace

(EV-RPC-MARK-START );
(Instr.processor-id, Instr. P0-id,
Ann-Thread-Id, 4, 90,
[sone paramsJ ) ;

(EV-RPc-MARK-FINISH, );

Figure 4.2O. Simple re-arrangnùent of source-code for RPC instrumentahon

Instr . generate-trace
a += gptr-)function2

72



Instr.generate-trace (EV-PARF0R-START, Instr.processor-id,
Instr.P0-id, Ann-Thread-Id );

parfor (int i=0 ; i<5 ; i++) {

[user's code here]

T / / inpticit barrier synchronisation here
Instr.generate-trace (EV-PARF0R-FINISH, fnstr.processor-id,

Instr.P0-id, Ann-Thread-Id, );

Figure 4.2L. Instrumentation of a parfor or par bloclc

at the block beginning, and the exit point always at the end of the b1ock13. This is

illustrated in Figure 4.21.

Each thread spawned by a parfor block must, in turn, be instrumented. For

each such thread, a new thread identifier must be obtained by using the function

get-thread-idO of the object Instr (the global instantiation of the class RECORD-

-cIass, Figure 4.5). Such an instrumentation method is shown in Figure 4.22. Note

that the field Function-Id of the automatic object ep is set to "-1", since a thread is

not a function.

Instrumenting a par block is similar to instrumenting a parf or block, except that

each program statement inside the par block is instrumented by introducing a new

scope region for each program statement inside the block. This is illustrated in Fig-

we 4.23.

4.2.3.7 Instrumenting Asynchronous Threads.

Instrumenting an asynchronous thread (i.e. a thread created by the spawn construct)

is quite straightforward. The spawn construct can orrly be usetl to spawn a thre¿r,d

executing a function which returns a void result (Section 3.1.1.2). Therefore, instru-

menting the spawn construct essentially means instrumenting the function used by the

construct. Similar to the instrumentation of par and parfor threads, a new thread

13An implicit synchronisation barrier is placed at the end of the scope of such a par or a parfor
block (Section 3.1.1).

¡t)



Instr.generate-trace (EV-PARF0R-START );
parfor (int i=0 ; i<5 ; i++) {

IdType Ann-Parent-Id = Ann-Thread-Id;
//--- get a new thread-id
IdType Ann-Thread-Id = Instr.get-thread-id O ;

EntityProf iler ep (EV_PARF0R_THREAD_START,

Instr.processor-id, Instr. P0-id,
Instr.processor-id, Instr. P0-id,
-1, 5,56);

Ann-Thread-Id,
Ann-Parent-Id,

[user's code here]

) / / inpticit barrier synchronisation here
Instr.generate-trace (¡V-pmf'OR-FINISH, .. . ) ;

Figure 4.22. Instrumenting a parfor block and its threads

identifier is also needed for each spawn statement. An additional scope is introduced

so that the destructor of the profiler object ep of the class EntityProfiler is called

upon block termination. This approach is illustrated in Figure 4.24.

The introduction of a new scope, as used for instrumenting spawn threads and

pør threads (Section 4.2.3.6), has a minor unfortunate consequence, especially if the

new scope encloses a variable or data structure declaration. Figure 4.25 illustrates the

case. In the figure, the user's code is instrumented such that the newly introduced

scope serves to make the variable "a" local to the block. This forced locality could be

dangerous, particularly if the code immediately after the instrumented block assumes

the usage of the variabÌe. This unfortunate effect may be nuilified through compiler

support. Fortunately, such a situation can be avoided by a simple re-arrangement of

the source code, as shown in Figure 4.26.

4.2.4 Observations

Based on the experiments conducted during implementation, some remarks can be

made. The instrumentation subsystem as described above is quite powerful, in that it

can automatically extract important program elements and automatically instrument

74



//----- The original code -----//
// par {
/ / [statement 1]

/ / [statement 2]
//
// Ì

//----- The instrumented code -----//
Instr.generate-trace (EV-PAR-START, ) ;

par {
/ /---> block 1

{
IdType Ann-Parent-Id = Ann-Thread-Id;
//--- get a new thread-id
IdType Ann-Thread-Id = Instr.get-thread-id O ;

EntityProfiler ep (EV-PAR-THREAD-START,

Instr.processor-id, Instr. P0-id,
Instr.processor-id, fnstr. P0-id,
-1, 5, 56) ;

[statement 1]

)

//---> block 2

{
IdType Ann-Parent-Id = Ann-Thread-Id;
/ /--- get a new thread-id
IdType Ann-Thread-Id = Instr.get-thread-id O ;

EntityProfiler ep (EV_PAR_THREAD_START,

Instr.processor-id, Instr. P0-id,
Instr.processor-id, Instr. P0-id,
-1, 5, S7);

[statenent 2]
Ì

\ / / ínpticit barrier synchronisation here
Instr.generate-trace (EV-PAR-FINISH, );

Figure 4.23. Instrumenting a par block and its threads.

Ann-Thread-Id,
Ann-Parent-Id,

Ann-Thread-Id,
Ann-Parent-Id,

íÐ



//----- Initial code -----//
/ / void f ( [user's paramsJ )
// {
/ / [user's code]
// )
//
// spawn (f ( [user's supplied paramsJ );

//----- Instrumented code -----//
{ / / (--- scope introduction

IdType Ann-Parent-fd = Ann-Thread-Id;
//--- get a new thread-id
IdType Ann-Thread-Id = Instr.get-thread-id O ;

EntityProfiler ep (nv-slAhrN-THREAD-sTART,

Instr.processor-id, fnstr.P0-id, Ann-Thread-Ïd,
Instr.processor-id, Instr.PO-id, Ann-Parent-Ïd,
-1, 5, S6);

spawn (f (Instr.processor-id,
[user's supplied paramsJ );

Ì

Figure 4.24. Instrumenting a spawn block.

/tr--------- The initial code ---------*
[code block 1]

int a = some-functionO;

/ /--- The instrumented version
lcode block 1]

{ / / (--- introducing a nen scope

int a = some-function([instrumented paramsJ) ;

j // scope end

[code block 2]

Figure 4.26. An unfortunate consequence of introducing a new scope

76



/*--------- The re-arranged code ---------*
int a;
[code block 1]

a = some-functionO;

//--- The instru¡nented version
int a;
lcode block 1]

{ / / (--- introducing a neúI scope

a = some-function( [instrurnented paramsJ ) ;

j // scope end

[code block 2]

Figure 4.26. Simqtle re-arrangement of source code as a way out'

a program with powerful probes. This is significant, because CC++ is a declarative

language with virtually no support for program visualisation. This is in contrast, for

example, with many imperative and message passing systems (such as PVM [65] and

PThreads [100]) in which interactions among program elements are effected by issuìng

specific library primitives. Generally, these primitives are available to programmers for

instrumentation. Such manual instrumentation can usually be done relatively easily.

This is, perhaps, the primary reason that instrumentation and visualisation of message-

passing programs generally focus exclusively on these primitives.

Atthough the instrumentation method previously described is powerful, there are

some limitations. Firstly, these methods may be insufficicnt whcn low-level information,

such as data structure access, is required. Furthermore, due to the approach used,

the activities of some CC++ entities, particularly the transfer functions, cannot be

traced. In this case, compiler support, such as that provided by the pC** language

environment [13, 97] is required.

Secondly, the instrumentation methods have some minor drawbacks. These pertain

77



to the possibility of improperly instrumenting RPC events (Section 4.2.3.5), and the

introduction of new scope regions (Section 4.2.3.7). However, as described in the

sections, these minor unfortunate consequences can be easily rectified by simple re-

arrangements of the source code. A better solution to nullify such effects may need full

compiler support.

Finally, the instrumentation methods described in this chapter do not cater to cus-

tomised instrumentation. In other words, insertion and execution of instrumentation

probes can not be controlled by users. Such control, however, is important because it

enables users to control the amount of perturbation that can occur to instrumented

programs [111]. Provision of such control is outside the scope of Visor*t. Incorpo-

ration of the control can, perhaps, be experimented with in future enhancements of

Visort*.

The instrumentation subsystem has been successfully implemented by using the

approach described in [138]. A program to be instrumented is first parsed into its

associated syntax graph. The graph is then annotated in the manner described in the

previous sections of this thesis. The resulting annotated graph is then written into

output files which constitute the instrumented version of the program.

Appendix A provides a simple example program, along with its instrumented ver-

sion. The program is simple, yet provides a compact summary of the instrumentation

approach used in Visor*Ì.

4.3 Event Collection Subsystem

The event collection subsystem executes in three phases. First, the event monitoring

environment is estahlished. Second, progra,m tra,ces are collected, and third, the traces

are consolidated.

4.3.t Establishing the Monitoring Environment

When an instrumented program is executed, the probes in the program transmit event

traces which are captured by the event collection subsystem. The monitoring environ-

78



Process
Monitoring

Moniloring
Process

Moníloring
Process

Manager
Collection

Event

USER Central
Control
Process

System
Configuration

Other functions
&

House-keeping

of

Figure 4.27. Allocation of monitoring processes.

ment essentially consists of a central control processwhich allocates one local monitoring

process to each physical node on which the program to be monitored executes.

Prior to the execution of an instrumented program, the event-collection subsystem

must already be active and ready to monitor and collect traces. The central control

process is activated by the user by passing along a system confi,guration file. This file

contains the names or network addresses of all the physical nodes participating in the

computation. The central control process can be activated on any one node, provided

that there is a communication path between the node of the central control process and

all other nodes specified in the system configuration file. This mechanism is illustrated

in Figure 4.27.

The central control process itself consists of three major parts. The first part is

the start-uyt functions, which are used for establishing the environment for monitoring.

The second part is the euent collection mana,ger) ûsed for managing the collection of

event-traces. Finally, the third part is house-lceeping functions, used for the internal

management of the process itself.

79



Upon activation, the central control process executes its start-up functions. The

process allocates a local monitoring process to each of the nodes as specified in the

system configuration file. Subsequently, the central process establishes a dedicated

communication path with each local monitoring process. Through this path, the cen-

tral process allocates a unique node identifier to each local monitoring process. This

identifier then becomes the node-identifier for all the traces transmitted by the probes

on that particular node (Section 4.2.3.2). After the allocation of the local monitoring

processes, the central control process switches its functionality to that of an event-

collection manager.

4.3.2 Collecting Tbaces

When a local monitoring process is allocated to a node, the process performs three

activities. First, it establishes an euent queue which accepts all the traces transmitted

by the processor objects of a program being monitored on that node. Next, an internal

buffer which holds the traces is created. Finally, a queru portis set up for the processor

objects to query/obtain a unique processor object identifier (Section 4.2.3.2). When

each local monitoring process is ready on each node, the instrumented program can

commence executiorr.

When an instrumented program executes, it may create one or more processor

objects. Upon creation, each processor object contacts its local monitoring process to

obtain a unique pair of <Node-Id, PO-Id>. This request is made to the monitoring

process via its query port. Upon receipt of the request, the monitoring process allocates

a unique pair of <Node-Id, PO-Id> and sends it back to the processor object. The

handling of this request is synchronous. Therefore, it is designed as a lightweight

computation.

After a unique <Node-Id, PO-Id> is received by a processor object, it continues its

execution. During this execution, the probes residing in the processor-object generate

program traces. These traces are transmitted, asynchronously to the event queue of

the monitoring process. This means that once a trace record is constructed, it is sent

immediately by the associated trace call in the processor object, without blocking.

80



Evelt-Queue

Machine 1 Machine +

QueryPort----
Allocation of

dode-Id, PO-Id >

Events

(c)

I

v

(b)

E

Å
I

I

I
Communication

amons
Processor-objects

Figure 4.28. Collecting progra,rn traces.

Therefore, a thread (or PO) is neuer blocked in dispatching trace records.

For each trace arriving at the event queue, the monitoring process buffers it in its

internal buffer. When the buffer is full, it is dumped to a local event log file. This

happens in the address space of the monitoring process. In other words, the manage-

ment of the traces are not delegated to each processor object, but rather, centrally

managed. This reduces the amount of program perturbation which would otherwise

be more invasive.

The whole lrechanism, which is repeated until prograrn termination, is shown in

Figure 4.28. The figure shows the query port of the local monitoring process, which is

being contacted for a unique PO-ID (label ø). The figure also shows the POs of the

monitored program sending events (trace records) asynchronously to the event queue

of the monitor (label ó). Finally, the figure shows the events being recorded by the

monitoring process into a local event log file (label c).

Local
Event
Logs

Processor
Object

Processor
Object

Processor
Object

Monitoring
Process

Local
Event
Logs

Processor
Object

Processor
Object

Monitoring
Process

81



By the definition of the CC++ (and C**) semantics, the execution of a program

is terminated whenever one of the following cases occurs.

1. The mainO function of the program terminates normally, i.e. the end of the

function is reached. Note that CC** retains the C** semantics in that there

is only one function called nainO in a program.

2. An exit O statement is executed in any part of the program.

3. The program receives an error signal, which is not caught by an exception handler.

Such a condition usually forces the program to terminate prematurely. In C++

and CC**, this can be caused, for example, by the abortO statement [a6].

The above cases can occur in any processor object of a program. If the first or

the second case occurs, then by the semantics of C**, the destructor of the static

object Instr, i.e. instantiation of RnCOnO-cIass (Section 4.2.3.2), is called automat-

ically. This mechanism is used to signal program termination, hence the termination

of monitoring activities, to all local monitoring processes and the central monitoring

pïocess. When one of the above two cases occurs in a processor object, the destructor

of fnstr (Instr.-RECORD-classO)in that processor object sends an internal termi-

nation signal to the local monitoring process before it terminatesla. This signal is then

propagated to the central monitoring process, which then broadcasts it to the rest of

the local monitoring processes.

If, however, the third case occurs, then the destructor of the object Instr (and, in

fact, the destructors of all static objects 146,124]) is not invoked. When this happens,

there is no way for both the central and the local monitoring processes to detect that the

monitored program has terminated (abnormally). Two rnethotls can be used to handle

this condition. First, the system can supply an option to the user to manually invoke a

termination signal to the monitoring system. This is quite simple and straightforward.

The second method involves the use of specially designed system interrupts which

laThe allocation of the static object "Instr" is the first statement in every processor object (Sec-

tion 4.2.3.2).

82



generate such a signal upon detecting an abnormal termination. Visor*f adopts the

first method.

In any of the above three cases, when a local monitoring process has sent or received

a termination signal, the process begins its shutdown sequence. The process carries out

three activities. Firstly, it shuts down its event queue, and its query port. Subsequently,

it also clumps to a local file any remaining trace records which still reside in its internal

buffer (Figure 4.29). Secondly, the local trace file is sent to the central monitoring

process for consolidation. This is achieved by using the dedicated link between the

local monitoring process and the central monitoring process (Section 4.3.1). Thirdly,

both processes engage in an activity to synchronise their clocks (both processes may

reside within the same or different nodes). The description of this activity is given

in the next section. The shutdown sequence is complete once the third step has been

executed.

4.3.3 Consolidating traces

Trace consolidation at the central monitoring process begins when it carries out clock

synchronisation with each local monitoring process. The result of clock synchronisation

is used to adjust the timestamps of the traces sent by each local monitoring process.

Clock synchronisation is used to determine both the drift and offset between two

clocks 12,, 43,110, 126]. The clock synchronisation algorithm used in Visor** is the

Christian algorithm [126]. The idea is to estimate clock drift and offset by using

the timestamps from a series of message exchanges between two processes or physical

nodes. Such clock synchronisation ìs carried out between the node in which the central

monitor resides with all the other nodes. It is assumed that the clocks as seen by the

program probes in all processor objects of each node are synchronised (because they

reside on a physical node which uses only one clock).

The clock drifts and offsets are then used by Visor** to adjust the timestamps of

the traces against the clock of the central monitoring process as the reference point.

Such a choice is, in fact, arbitrary. Any other clock could have been used.

After the timestamps of the traces are adjusted, it is possible that some of the traces

83



Local
Event
Logs Logs

Local
Event

Local
Event
Logs

ProcessProcessProcess

M

Consolidated
Event

Database

Event Collection
Manager

Control
Process

Functíons
&

House-
Keeping

Other

Start-up

Log data passed
to the central proces

is read
Events saved by
the monitoring process

Figure 4.29. Consolidating program traces

84



still violate the causality relationships [8a]. This can cause, for example, an event of

type EV-PAR-THREAD-START seemingly to happen before its associated EV-PAR-START

event, or a EV-GL0BAL-MEMBER-START before its associated EV-RPC-MARK-START event.

Such "impossible" pairs of events are also sometimes called "tachyons" [10,82]15. To

eliminate the tachyons, a causality analysis is carried out so that the traces obey Lam-

port's "happened-before" relationships [10, 82, 84].

Causality analysis is performed in two steps. Firstly, a directed acyclic graph (DAG)

is formed of all the events, based on their location-IDs. Secondly, the DAG is traversed

to correct their timestamps according to the approach used in [10] and [S ]. This

traversal is repeated until no further causality violations are found.

Figure 4.30 partially shows the DAG formed of one possible instance of the execu-

tion of the program in Figure 4.1716. The DAG shows the events, with their already

synchronised timestamps. However, the happened-before notion is still violated. As-

suming that the timing correction is carried out at the microsecond order, the adjusted

timestamps of the events are as shown in Figure 4.31. At this point, the traces are

ready for input into the visualisation subsystem.

4.3.4 Observations

Several remarks can be made about the implementation of the event collection suh-

system. For the processing of trace records, the clock synchronisation as previously

described works well. To obtain still better accuracy, however, more refined algorithms

may be needed, particularly for program execution on machines with very high clock

resolution [a3]. Such an approach assumes that the machines which produced the trace

files are accessible to carry out clock synchronisation. If such on-line clock synchro-

nisation is not possible, an offiine clock synchronisation mechanism is needed, as is

described in 12,43, 110]. Such work, however, typically deals with message-passing

15In particle physics, a tachyon is an hypothetical particle which can travel faster than the speed of
light [1a6].

16See also Figure 4.18.

85



t = 3.001082'' EV-FUNCTION_START

t = 2.00 1 078" EV-RPC-MARK-START

t = 2.ee200 1 " EV-RPC-MARK-FINISH

EV-GLOBAL-MEMBER-START t= 2.e34113"

EV_GLOBAL-MEMBER-FINISH t = 3.OO2O]6,,

Legend

= Event with correcled timestamp

t = 3.121542" EV-FUNCTION-FINISH

Figure 4.30. Causality uiolations in event ordering

t = 2.OO] 078" EV_RPC_MARK_START

EV_GLOBAL-MEMBER_START t=2.934113''

EV_GLOBAL_MEMBER_FINISH t = 3.002016,'

t = 3.00201

t=

'l

t = 3.121542" EV_FUNCTION-FINISH

Figure 4.3L. The corrected DAG refl,ecting the "happened-before" relationships

EV RPC MARK FINISH

EV FUNCTION START

86



programs which are communication-intensivel7. For CC*f programs which are typi-

cally compute-intensive, nevr' algorithms may be needed. This is because the underlying

assumptions for both types of programming styles are quite different.

4.4 Event Visualisation Subsystem

The visualisation subsystem uses two inputs to produce displays. The first one is the

static repository, which is obtained during program static analysis. The second is the

consolidated event database, which is produced as the result of post-processing program

traces. The visualisation subsystem then converts these two inputs into displays.

To make the visualisation subsystem more manageable, it is implemented by using

the POLKA program visualisation toolkit from Georgia Institute of Technology [121,

122]. This system is described in the next section, followed by descriptions of the

architecture of the visualisation subsystem and the views.

4.4.L POLKA

POLKA is a general-purpose graphical animation toolkit, particularly suited to build-

ing visualisation of concurrent programs. It has two-dimensional and three-dimensional

versions, implemented in Ct-l-, and executes on top of the X-Window system 11,72,

102]. POLKA provides many types of objects and primitives for generating smooth,

concurrent, overlapping animation in multiple windows. In effect, it provides the ca-

pabilities to properly reflect concurrent operations of a program.

Figure 4.32 shows the POLKA classes which are used to create visualisation/animat-

ion. Each animation program derives an animation-specific subclass of the abstract

class Animator. This subclass can contain one or more objects, instantiated from

user-deflned subclasses of the abstract class View, each being a separate animation

window.

The animation in each POLKA window is realised by using various animation

17For example, the author has tried to adapt one such approach to the CC++ trace files with little
success

87



Animator

View View View

Locations AnimObjects

Actions

Figure 4.32. Classes in POLI{A, and their}ras-a relationships.

objects (mi.mOU¡ ect), operated and animated by using Location and Action objects,

and animation frames. Location objects are used to specify the locations (coordinates)

of animation objects. Movements or animations from one window coordinate to another

are then specified by using Action objects. These animations are decomposed into a

sequence of animation frames, each of which specifies which actions are to be executed

on which objects. These frames are indexed by a POLKA timer, which is advanced

manually in a program. Figure 4.33 gives a short example of how to create a smooth

animation of a circle, moving from coordinate A(0.2,0.2) to coordinate B(0.8,0.8).

4.4.2 Architecture and Implementation

The general architecture of the event visualisation subsystem is shown in Figure 4.34.

The uisualisation mana,ger is the entity which drives the whole visualisation. Its oper-

ation is controlled by the user. It creates several views each of which is controlled by a

uiew controller. Each view controller translates the input stream provided by the visu-

alisation manager into actions to update its view respectivcly. Thc vicws produccd arc

linked together in the sense that they are updated coherently. When the user interacts

with any part of the views, changes are propagated to other views as well, whenever

applicable.

The architecture of the visualisation subsystem is fully implemented in POLKA.

To suit the needs of Visor**, some slight modifications and additions are made to

88



//--- global variables ---//
double x, Vi
int tine;

/ /--- Subclass of the "View" class ---/ /
class CircleView : public View {
private:

Circ1e *c;
public:

int move-circl-e (double neÌr-x, double new-y);
Ì;

int CircleView: :rnove-circle (double new-x,
{

Location *Ioc = c-)l,fhere(PART-C) ;

float old-x = loc-)XCoordO;
float old-y = loc-)YCoordO;
float diff-x = neür-x - old-x;
float diff-y = nerr-y - old-y;

double new-y)

f / ttltt == 1 frame
Action *mov = new Action ("MOVE", 1,
c-)Program (tine, mov) ;

&diff-x, &diff-y);

//--- Subclass of the abstract class "Animator" ---//
class ProgranAnimator : public Animator {
private:

CircleView *cv;
public:

int Controller O;
);

Figure 4.33. Erample progranx of the animation of a circle.

)

89



int ProgramAninator: :Controller O {

if (!strcnp (AlgoEvtNane, "MoveCircle"))
cv-)nove-circle(AninDoubte[0], AninDouUlehl ) ;

Ì

ProgranAninator MyAnirnator ;

/ /--- Main program ---/ /
naino
{

MyAnimator.RegisterAlgoEvt ("MoveCirc1e", .'ff") 
;

x = y = 0,2i
tine = 0;
while (x < 0,8) {

x = x + 0.05;
y=x;
MyAninator. SendAlgoEvt ( "MoveCircle" ,
time = MyAninator.Aninate (time, 1);

Ì

x, y);

l
Figure 4.33 (Conti,nued).

90



Static Data

Event

Visualisation Command

Action

Figure 4.34. The euent uisualisation subsystem

POLKA. The modifications are relatively minor, the biggest one being the addition of

a new subclass of View to permit the creation of windows with multiple subwindows.

This is necessary for the Thread View (Section 4.4.3).

Some views which are otherwise difficult or cumbersome to implement with POLKA

are also added. There are three such views. The first one is the Source-Code View,

which displays the source code of the program being visualised (Section 4.4.3.2). The

second view added is the Class Information View, which shows the details of a class

hierarchy (Section 4.4.3.2). The third are the auri,liary uiews, which are used to display

additional information on entities from the dynamic views (Section 4.4.3.3). All three

views are similar in that they textually display information which frequently changes.

Implementing such views with POLKA would be cumbersome, for it would be memory-

intensive and relatively difficult to handle. The Source-Code View, for example, may

have multiple source files to handle, and each source file may have hundreds of lines

of code. In POLKA, each such line would have to be represented as an animation

object, which is memory-intensive and likely to be slow. Implementing such views

View Linkage / Interaction

View NView 2Vi¿w I

Actíon

Local
View

Controlle12

Local
View

Controllerl

Local
View

Visualisation
Manager

91



with Motif [72] is more convenient and straightforward.

Using the modified POLKA system and the additional modules previously de-

scribed, the implementation of the visualisation subsystem is straightforward. The

visualisation manager is implemented as a subclass of the Animator class. Each local

view controller is implemented as a set of object methods that translate each visuali-

sation command into local actions. In other words, they translate the command into

a set of transformations on their animation objects to effect the required changes in

their views.

The visualisation commands issued by the visualisation manager can be divided into

two groups. The first is the uisual update command group, which instructs the local

view controllers to change their view displays. Such a command consists of an event

with an instruction to the controllers to effect the required changes. The command

could also consist of an instruction to the controllers to update and refresh the views

to animate the passage of timel8 in the program being visualised. These visual update

commands are automatically constructed by the visualisation manager based on its

two inputs (static repository and event database).

The second group of commands is the auriliary con¿rnand group, which instructs

the controllers to perform auxiliary actions, such as reducing the speed or pausing

the animation. These actions are issued by a user and translated by the visualisation

manager into their corresponding auxiliary commands, which are then sent to the local

view controllers.

4.4.3 The Vrews

The CC*t event database along with the program static repository are processed to

produce Visor** views. In designing the view, however, there are several issues which

must be considered. These issues are described in the next section.

18In Visor+*, the timestamps of the trace records are proportionately mapped to the internal
POLKA timing. Given any three events A, B, and C from the trace file, Visor** will map their
recorded timestamps tA,tB, and f6 into their internal POTKA timefi, t'p,andt'". The mappingis
suchthattheratio (t'o-ir)lþ'u- ràismaintainedtobeascloseaspossibleto(ú¿-tB)l(tn-tc).
In effect, the passage of time between any two events is also reflected and animated by Visor*f .

92



4.4.3.I Design Considerations

In designing the views, two considerations must be taken into account: the uiew con-

tents and presentati,on structures, and the human-computer interaction issues.

As discussed in Chapter 1, there are two types of mental model which can be formed

of a program: the original mental model, and the execution mental model. To help form

(or reconstruct, in the case of the original mental model) both mental models, Visorf f
provides three types of views: the prograrn static uiews, the prograrn dynamic uiews,

and the auriliary uiews. The overall Visor** appearance is shown in Figure 4.35.

The static views depict the static aspects of a program. These include the class

information, and the source code. These views are generated by using the program

static repository. The dynamic views, however, depict the execution aspects of the

pïogram. The views are mainly generated by using the event database. Both the

static and dynamic views are strongly inter-related and coherent.

The static and dynamic views are structured and presented in a hierarchical struc-

ture. Such organisation can make the incorporation of either horizontal or vertical

expansion of the views more natural. Such a presentation layout is chosen because

hierarchical structures, so far, seem to be the most natural way for presenting complex

information [16].

To make the presentation of the views more effective and helpful to users, the third

type of view, the auxiliary views, are used. The purpose of the auxiliary views is to

help users to better grasp the meaning of the entities presented in other views. This,

in turn, enables the user to form a consistent and more compact mental representation

of the program. These views functionally serve to help "inform" users of the meanings

of the entìties in the views. Another way is to look at the auxiliary views as a "glue"

of the static views with the dynamic views.

Both the static and the dynamic views are grouped into high-level and low-level

views. High-level views are those which describe computation-wide program activity or

components, while low-level views describe those of lower-level program entities. Such

a division and the relationships among the static, dynamic and the auxiliary views are

illustrated in Figure 4.36. More detailed descriptions of the static views, the dynamic

93



{Ééêd6{
lÉ€êll6
êa€Ð€€o
éê68êê?
êEEÉËËË

ËÉaËt66

{
FÊÉ{ åê5 IÈFF

^t¡ .i¡rD
^,ãÈ. 

'Hr
vvv ú ãrrrE^^.8
I I I YyY¡
lÐ¿11avEÊr'i.tt{
¡¡¡¡¡¡¡¡3a¡¡¡¡¡¡6ü¡úli'l;;r!
lÈåÊ.8åå
AêA¡¡ø'
iiiüt.I

rilrlllcftrllllllrotl

t
fl
I
I
o
o
I
fl

II

tl

I
I€€
c5

t€ê

{
t

È
5
É

F

Þ
É

ä
5
ü

{
6
úÈú

ö

T

oú*,
ti
d!9oií
g=
nI
ür

äE

EE
É¡ ti

Es
ËË

äå

-

-aeeËSbEbê

Þ,ø
E

H
F¡ê

EÉ
a
N

Ia
F

I
E€

I

f

o

t

ltt
I

Figure 4.36. Vi,sor** in erecution

94



Static Views Dynamic Views

Navigation
View

Higher-tevel Views

<+>

Class-Hierarchy
View

Source-Code
Víew

Processor/PO
Activity View

Function Usage
View

RPC Activity
View

Composite Function
View

+ I
Auxiliaqy Views

T Lower-Level Views rClass Information
View Thread View

Legend

<_ = parto.f

..l-----> = Interaclions

Figure 4.36. Relationships among uiews

views and the auxiliary views is given in the next sections.

The second consideration when designing the views relate to the human-computer

interaction issues. These issues cover two domains as follows.

1. Colour consistency. Colour is an important element in a graphical interface.

Inappropriate use of colour can seriously reduce the effectiveness of the interface.

There are many guidelines which can be used to achieve such effectiveness [99,

141], especially for software visualisation [5]. However, they can generally be

summed up into the following notions: simplicity, consistency and clarity. These

notions translate into Visor*t view design, as follows:

o Economy of colours. Only a limited number of colours are used. The

reason is that the human short-term memory can only handle a limited

number of items at one time [59, 95]. This is the reason, for example, that

the Class Hierarchy View only uses a single colour for the coloured circles

which represent classes (Section 4.4.3.2).

o Minimal overlapping of colour usage. Colours in Visor]-* are also used

95



in a non-overlapping manner as far as possible. For example, the colours

representing processor objects are not used for other purposes.

2. Presentation consistency. The views and the entities inside the views are also

presented consistently. This includes the following:

o Shape consistency. Shapes are maintained, as far as possible, to be con-

sistent in all the views. For example, both physical nodes and processor

objects are represented as coloured circles in all the views which contain

them.

o Behavioural consistency. Entities representing the same concept but lo-

cated in different views maintain the same behaviour. For example, the

coloured circles representing processor objects may contain a small empty

circle (o), u black frll (o), or a bow-tie symbol (x) in it to indicate their

status. This applies to all views which contain a representation of processor

objects. Changes to any one of such entities are propagated in a coher-

ent manner to other views as well. In other words, Visor*t employs úåe

principle of least astonishmentrs.

o Placement consistency. The placement of entities representing the same

concept is also made as consistent as possible. For example, the coloured

circles representing both the physical processors and the processor objects

are arranged identically in both the Navigation View and the Cumulative

RPC Statistics View (Section 4.4.3.4). The arrangement is different, how-

ever, in the Processor/Processor-Object Activity View. The reason is that

while the Navigation View and the Cumulative RPC Statistìcs View rep-

resent almost identical concepts, the Processor/Processor-Object Activity

View represents something entirely different. However, all these views still

maintain shape and behavioural consistency.

leThe use of this term in the discipline of building large-scale object-oriented software can be found
in [16].

96



Visor** views are designed by using the above principles.

In this thesis, it is assumed that a user interacts with Visorf* by using a three-

button mouse2o. Selecting a graphical entity (a function representation, for example)

in a dynamic view (Section 4.4.3.4) by clicking the left button of the mouse causes the

associated source code line to be highlighted in the Source-Code View (Section 4.4.3.2).

Selecting the entity by using middle button causes additional information on the entity

to be displayed in an auxiliary view (Section 4.4.3.3). Finally, using the right button

expands the entity into a detailed view.

4.4.3.2 Static Views

Static views are the views of the static properties of a program. These views are

constructed by using the program static repository. There are two such views: the

Source-Code View and the Class Hierarchy View.

o Source-Code View.

The Source-Code View displays the origìnal source files of the program being

visualised. This view does not operate alone, rather it works in conjunction with

other views. When an entity in a dynamic view is selected, the associated source

code line in the original program, rather than the instrumented program, is high-

Iighted. This is shown in Figure 4.37. Such source code link-back, however, does

not apply to every graphical entity in the dynamic views. For example, physical

nodes, as displayed in the Cumulative RPC Statistics View (Section 4.4.3.4), do

not have an associated source-code line. Finally, depending upon context, refer-

ence to the Source-Code View can be made to declaration points or inuocation

points. For example, in the Thread View, when an entity representing a function

invocation is selected, the associated invocation point in the source code is high-

lighted. On the other hand, selecting an function entity in the Function Usage

20The operation of a three-button mouse can generally be simulated in a two-button or a single-
button mouse. One way to do this is to "map" the mouse button events into other event combinations,
as desired. In the X Window environment [1, 102] , pressing the middle mouse button can be changed,
for example, to a combination of pressing a mouse button and one key on the keyboard. A more
obvious example can be found in the Macintosh computer.

97



Figure 4.37. The Source-Code View

View (Section 4.4.3.4) brings up its declaration point instead

o Class Hierarchy View.

The Class Hierarchy View displays the class hierarchy graph, in which each class

is represented as a coloured oval (circle), with a label indicating its name. In the

view, CC++ processor-object classes are represented as double-edged ovals. A

directed edge with an arrow pointing from an oval representing class A to another

oval representing class B indicates that A is the superclass or parent of B. This

view is shown in Figure 4.38. By the principle of the economy of colours, only

two colours are used in this view. The colour blue is used to represent the class

entities, while the colour magenta is used for class names.

When an oval in the Class Hierarchy View is selected, a Class Information

Viewis constructed and displayed. This view contains detailed information on the

selected class, such as its member functions, its friend functions, friend classes,

and other general information. This is shown in Figure 4.39.

98



r

.5

j,rl.
. i'

Figure 4.38. The Class Hierarchy View

99



Figure 4.39. The Class Information View

100



Figure 4.4O. Information on a node

Figure 4.41. Inforrnation on ú processor object

4.4.3.3 Auxiliary Views

Auxiliary views provide additional information as needed by the user. The additional

information is chosen by the user by selecting (clicking the middle mouse button)

any graphical entity on the dynamic views. For example, selecting the representation

of a physical node brings up an auxiliary view as shown in Figure 4.40. As another

example, selecting the representation of a processor object brings up the view as shown

in Figure 4.41. Auxiliary views are, therefore, contentual.

The next section describes each of the dynamic views. Whenever applicable, the

associated auxiliary views will be described concurrently.

101



4.4.3.4 Dynamic Views

Dynamic views are those views which depict the execution of a program. These views

are constructed by using the program event database. As shown in Figure 4.36, there

are two types of such views: low-leuel uiews and high-leuel uiews.

High-level views describe program activities computation-wide, while low-level views

display program activities inside a particular processor object. In particular, the low-

level views display thread creation and function invocation. There are two types of

low-level views: the Thread Actiuity Vi,ew and the Function Stack View. Since the

two views are closely related, they are displayed collectively as a stack of two subwin-

dows of a single view. For brevity, they are collectively referred to as the Thread View

(Figure 4.42).

1. Thread Activity View.

This view is displayed as the topmost subwindow in the Thread View. The

Thread Activity View displays the threads which are active at each point in

time. This view is essentially a space-time diagram, in which the vertical axis

represents the threads, and the horizontal axis represents time. At the bottom

of the view, a line extending to the right shows the program execution time in

seconds. Each thread is then displayed as a light-green bar, extending to the

right, as execution time advances. Thread creation and destruction is indicated

by an up-arrow and a down-arrow respectively. A function invocation by a thread

is represented as a segment inside the bar, with a unique colour. If this function

calls another function, then the invoked function is, again, represented as another

segment, juxtaposed to the right of the caller function's segment. When the

invoked function returns, the caller segrnerrl, corrlinues Lo be extended to the

right, until it returns. In this view, several colours are used, as follows:

o Light green. This indicates that a thread is active, but no function is being

invoked (i.e. it is executing its own local code).

o Brown. This colour indicates that a par or a parfor block is active.

102



û- 000110" 8- glo¡li¡'4- ¡l5Ezl.n

Figure 4.42. The Thread View.

103



BPC-Stdstic¡ Vlew
Scalæ:

Tlueailïiew
I Ïfuead
I næ{m.¡æ.s¡aìrm
f Èyrteni:nq¡lfeilfi¡rctimr¡

t_ oootor0_ oo*

25- OO*

RPC}drg¡lmê

60 - oo*

?5 - OO*

Poþet =
13_ ¿Stl'je"l.trO- OOr MSORT PROJ

10Û6llü -
E\rErú
Total Ë{dE

N*nþ. imli:wtrr
il
T
I
I

ürre¡ú sYt¡¡t - l00l0l
Crrrerútimß = 12.8ú818"

ßPC
RPC
RPC

Figure 4.43. The Status Information View

o Yellow, dark green, and red. The colour yellow indicates that the thread

is invoking a RPC in another PO; the thread being in the call-setup phase.

The colour dark green indicates that the RPC is in its remote-execution

phase, while the colour red indicates the call-return phase (Section 4.2.3.5).

e Other colours indicate function invocations.

This colouring scheme is summarised in a special auxiliary view, the Status In-

formation Víew (Figue 4.43).

2. Function Stack View.

The Function Stack View is displayed as the lower subwindow in the Thread View.

This view is essentially similar to the Thread Activity View, except that for each

thread on the vertical axis, a thread stack gro\rys to the right when a function

is called, and shrinks to the left when it returns. Each function being invoked

is represented as an oval, with its unique colour. When such an oval is selected

(i.e. mouse-clicked), an auxiliary view is popped up as shown in Figure 4.44.

Source-code link-back to the original source code can also be exercised to show

the invocation point of the function. The same auxiliary views also pop up if a

bar segment in the Thread Activity View is selected in the same manner. Similar

r04



Figure 4.44. Auriliary uiew showing information of a functi'on.

to the Thread Activity View, if a thread is active but no function is being invoked

in it, then only one green oval is displayed for the thread.

Figure 4.42 shows an example of a Thread View. The title bar indicates that this

is the Thread View of a processor object executing on the machine "chook", and its

PO-ID is 1. There are four threads in the PO. \ /ith the auxiliary view, it is revealed

that the lower-most bar represents the nainO thread. This thread executes a parfor

block which creates three threads. The first of these threads (the second bar from the

bottom) executes several functions and is destroyed after approximately 3 seconds of

execution. The other two threads execute RPCs to other POs.

The above two subviews can be used to analyse the details of thread execution,

including function invocations and thread call structures. Such analysis can reveal

some program inefficiencies, for example which functions are most often called, or

which functions use excessive amounts of time to execute within a processor object.

It is worth noting that the Thread View of a processor object is not displayed until

the user specifically requests so by selecting (i.e. mouse-clicking) a processor object

representation in one of the global views, which are described below.

Global views depict program activities at the node/processor level. These include

105



the following:

1. Navigation View.

The Navigation View is a matrix-like view displaying the RPC activities of the

visualised program. As Figure 4.45 shows, this view consists of the X and Y

axes, each of which has nodes and processor objects as axis points. The first

row of circles below the X-axis are the PO-circles. A PO-circle is a coloured

circle representing a processor object that participated in the computation of the

visualised program. The second row of circles, below the PO-circles are the node-

circles, each representing a physical node participating in the computation. Each

PO-circle may have a smaller circle inside it to indicate its operating status.

When a PO-circle does not have such a circle, it means that it has not been

allocated yet. A small empty circle (o) denotes that the processor object is being

allocated/constructed. Later, it may change to a black fill (o), indicating that the

PO is currently active (has been constructed). In the end, each PO is deallocated,

which is indicated by a small bow-tie symbol (X).

The node-circles and the PO-circles are arranged in such a way that the PO-

circles are clustered together based on the node to which the associated POs

belong. For example, Figure 4.45 shows that the first physical node has six POs,

all of which are already constructed and active. On the other hand, the third

node only has three POs, one of which is being constructed and the other two

are not active yet. To accommodate the principle of the economy of colours, only

two colours (dark turquoise and grey) are used for both the PO-circles and the

node-circles. The use of these colours are for visual differentiation only. The two

colours arc assigned to the node-circles in an alternating fashion. Each PO-circle,

in turn, is assigned the same colour as the node-circle to which it "belongs".

The Y-axis is similar to the X-axis, i.e. they both represent the same entities

with the same graphical properties. The Y-axis effectively is the X-axis rotated

ninety degrees counter-clockwise. It is worth noting that the location-IDs (Sec-

tion 4.2.3.2) are used as the "k"y" to arrange the placement of the circles. In the

106



{laaaaara.aaaaarataü.

I
a

lr
a
a

lr
t
a
a

lr
I
a
a
a
a

lr

ü
I

n

Figure 4.45. ?he Navigation View.

107



view, the node-circles and the PO-circles are arranged in an "ascending" order.

These location-IDs are also used in auxiliary views.

The X and Y-axes, as previously described, form a grid system. When both

the node-circles and PO-circles are present, a coloured rectangular point in the

grid at coordinate (r,y) represents a RPC being made by one PO (represented

by a PO-circle at the X-axis position r) to another PO (represented by a PO-

circle at the Y-axis position y). Such a rectangular point is given a colour which

represents the status of the call. The colouring scheme for the rectangles follows

that for RPC bars in the Thread View. However, a PO may place more than

one RPC to another PO. If this is the case, then if any one of the RPCs is still

active, the rectangle is given a light green colour.

If the number of processor objects in a program is relatively large, then the

above display is difficult to discern. Therefore, the user has the option to "col-

lapse" the view. In such a collapsed view, only the physical nodes are repre-

sented. A grid coordinate (*,y) then represents the aggregate RPC activities

from one node to another. This "collapse" operation is performed by clicking

the right button of the mouse on any one of the node-circles. Clicking again on

one of the node-circles expands the view. When this view is collapsed or ex-

panded, other views which have similar node-circles and PO-circles (such as the

Processor/Processor-Object Activity View) also collapse and expand accordingly.

Each of the PO-circles in this view can also be selected (by clicking the right

button of the mouse) to "expand" its view. When this happens, a Thread View

is displayed for the associated processor object. Another important operation

is to select the entities in the view by clicking the middle button of the mouse.

This is used to bring up additional information of an entity in an auxiliary view.

Some examples of auxiliary views of nodes and processor objects are shown in

Figure 4.40 and 4.4I.

Used in conjunction with other views, the Navigation View can be used to vi-

sualise the current distribution of RPCs among nodes or processor objects. This

108



tt
I

I
I

tto
I

ll

Figure 4.46. The R.,PC Statistics View, wi,th the option nzenu popped up

can be used to re-arrange a program to have a better distribution of communi-

cation patterns, for example.

2. Cumulative RPC Statistics View.

This view is similar to the Navigation View, except that it shows the cumulative

RPC statistics among nodes and processor objects (Figure 4.46). For each grid

point, the smaller the value of the statistics it represents, the brighter its colour.

The colour shades, reflecting the relative value of the statistics, is summarised in

Figure 4.43.

There are several types of statistics in this view. To change or toggle the

display from one view to another, the user can use the option menu at the bottom

right-hand corner of the view. The statistics provided are as follows:

109



Figure 4.47. Auriliary u'iew on the number of RPCs frorn one PO to another.

(a) Number of RPCs. This shows the number of RPCs made so far between

physical nodes or processor objects.

(b) Total RPC overhead time and the average value. In this view, RPC

overhead time comprises both the call-setup and the call-return overhead

times, but excludes the RPC remote-execution times (Section 4.2.3.5). The

user can also elect to display the average value.

(c) Total remote-call time and its average. In contrast to the total RPC

overhead time, this shows the total time spent in the remote-execution phase

alone. The user can also opt to display its average.

(d) Total RPC time and its average. This displays the total time spent in

RPCs, i.e. the summation of RPC overhead times and remote-call times.

Once again, its average can also be displayed.

When selected, a grid point in this view can bring up an auxiliary view, such

as shown in Figure 4.47.

Used with the Navigation View, this view can show the (cumulative) pattern

of the distribution of communication among nodes or processor objects. This

is important, since in CC** RPCs are expensive activities. Minimising or bal-

ancing the execution of RPCs is highly desirable. Another use of this view is to

110



IDLE

BUSYllr
Buey
Ifl€

t

100%09É

2ts 7t96

5[16 5ÛÍt

2t%?59ú

0túlÛt9ú

*l

Figure 4.48. TheProcessor/Processor-Object Activity View, uith i,ts opti,on

nlenu popped up.

re-arrange the placements of processor-objects in such a way that those which

communicate frequently with each other can be placed on the same physical node.

3. Processor/Processor-Object Activity View.

This view shows the percentage of time that processor-objects or physical pro-

cessors spend in computation, and being idle (Figure 4.48). Selecting one of the

display regions brings up an auxiliary view as in Figure 4.49.

In the view, information on computation time (busy time) actually consists

of the time that a processor or processor-object spent doing real computation

and cornrnunication. This is in contrast to the visualisation of message-passing

programs, in which the two quantities are separated. The reason is that each pro-

cessor object can consist of more than one thread, whose execution (i.e. either

111



Figure 4.49. Auriliary uiew from the Processor/Processor-Object Activity
View.

computation or communication) is automatically interleaved (context-switched)

by the system. To present highly precise information on such an activity as in

message-passing programs, low-level information on such context switching is re-

quired. Acquiring such information is costly, if not impossible. To worsen the

situation, there is also a difference between thread blocking caused by thread con-

text switching and the blocking caused by communication wait-time. For these

reasons, both computation and communication time are aggregated as computa-

tion time.

The above concept is illustrated in Figure 4.50. The figure schematically shows

events relating to the execution of a processor-object. The program execution

starts at the time ús, and has been animated in the visualisation up to the time /6.

Meanwhile, the PO starts executing at the time f1; at the time 16, it has not been

deallocated yet. In this scheme, the computation time (busy time) is defined as

tbusy : (t" - tr) * (¿u - fa). For the PO, two metrics can be defined. In efficiency

statistics, the fraction of the PO busy time is defined as F6u"o: tuu"al(ta-tr),

and the fraction of the PO idle time as F¿u" -- l- Fou"a. For utilisation statistics,

rtz



t4 tst2 t6t1to t3

r^+.
1

thread
start

PO

I parfor
finish

th¡ead
finish

Program
start

allocation

Tíme FIow

Legend
r\_/^.- = Thread
-::::: = RPC activity

Figure 4.60. Program efiecutàon in a processor-obiect

113



t2

Time Flow

Program
start

allocation

Legend

= Aggregated computation time-spans of a PO

Figure 4.51. Two processor-objects erecuting on a processor'

however, the fraction of busy time is defined as F6u"r: tuu"ol(ta - úo), while the

fraction of idle time is, again, defined as F¿¿¡. - 1- Fbusa. In other words, for the

utilisation statistics, time reference is made against the prograrn execution time,

while for the efficiency statistics, reference is made against the local PO execution

time. These two metrics are provided to enable the user to carry out both local

and global optimisation of the program.

The computation time (busy time)of a physical processor, on the other hand, is

defined as the aggregated computation time-spans of the POs it hosts. Figure 4.51

illustrates this concept. The figure depicts one of the processors in a program

execution. The program starts execution at the time f¡, and it has been animated

up to the time ú13. The processor hosts two POs, one of which starts from ú2 to

Í11, and the other from ú1 to tp. The busy time of the processor is then defined

as t6u,o: (úu - úr) * (lto - tz). For both the effi.ciency and utilisation statistics,

the fraction of the processor busy time is defined as F6u"o : tuu"ol(t6 - lo),

13tttt11ttt7tç tt
I

I
I

I

I

I

I

I

I

I

i
I

I

I

I

I

I

I

I

t
4

I

PO

ts t¿ t6ts tst6 10

t l
l

PO

I

7t4



and the fraction of the processor idle time as F¿¿¡" - 1 - Fbu"u. Note that both

metrics are similarly defined because processor-level activity is consìdered to be

program-\'rlide activity, i.e. global activity. The metrics, therefore, should refer to

the global program timing.

Either the efficiency statistics or the utilisation statistics can be displayed in

the view. The statistics to be displayed can be selected by using the option menu

button at the lower right-hand corner of the view. When the view is expanded,

i.e. when the PO-circles are displayed, the view depicts the relevant statistics for

POs. When the view is collapsed, it shows the statistics for processols.

The statistics shown by these views, can be useful for determining the com-

putation efficiency, and for subsequently making the necessary alterations to the

program.

4. Function lJsage View.

This view (Figure 4.52) shows the frequency of invocations and the average invo-

cation time of all the functions computation-wide. Note that the bar graphs for

the average times are scaled to fit into the window. Selecting a function in this

view can bring up an auxiliary view as in Figure 4.53. Function declaration in the

original source code can also be displayed through link-back to the Source-Code

View.

By the principles set out in Section 4.4.3.1, the bar graphs are assigned a

Iimited number of colours2l, specific only for the representation of functions.

The colour assignment is consistent with that in other views, such as the Thread

View, and the Composite Function View.

The Function Usage View can be useful for optimising the functions which are

most often used, thereby reducing overall computation time'

21The colours can be assigned to the functions by using some "hashing" scheme. For example, if
only 5 colours are to be used, then every function starting with the letter o, f, k, . . . are assigned

the first colour, while those starting with å, g, l, . . are assigned the second colour, etc. Some

other grouping scheme, such as based on class membership, may also be used. Visor*f uses the first
approach.

115



String: : String(cur*t Stfjnqr ¡)
String: : rtsinqr( l
Tr'úr5¡Þti.únEl¡s,¡: : Trrsr¡¡cüi.oncf-.ssl )

rr.ür¡arti.or¡cJ¡lls: :Tr'ffi¡{Êti.t¡Gt¡5t{ - -

Irür¡¡Gt'i¡mcJ.agt: : Tt'ü¡¡Eti,uncl¡5c( )

Tirnel¡tülTllcl¡s.s: : linef tropcl¡ss( ]
Tiñêst{lrllc.l¡s3: :f irnestsrtrrc.l¡3E( )
TiricstünDc¡r.5.r: : clreck-ti¡ne=tstUt (int l
Îi¡ñest{Ðcl¡s.r: : rebrrrr-t-i¡nEstütD( )

Ti'lèStsrÌIlGL¡s3: : rtn¡s'#-tifi EstgtU¡ ( i¡rt)
¡IE¡Ëner: : Ilts€r¡9tr( )

¡IDstrrËr: : lltsêrT€r( )
¡IDsGrver: : init lDservêr-3(strirr$)
¡Its¿ner: : DrÐcÊs5_5trteffi ( Stri¡¡grl

I'tr5èrrer: : Tnstreer( int, irt, int)
TDlGncf::Îfs€rrÊr( )

Ttr.5€raer: : Irlrocr5E_ürrtrsÊti.on( iÍt,T - -

ftocL: : lltocÈ{ch¡r *,jnt tlre-i.d =-}
ttoclt: : fitock( )
Stoc}: : Stock(con¡t Stoek Íl
Stûcl(.: : lt$ile_rrtllE(ch¡r * l
atoclf.: : rsüÈ_ji(int.}
Stock: : gpt_i.ù( )
Stoclû.ist: : gEt'_indÊx{ch¡r * )

t¡

4

15

t
ü'

2

It

EES

It

4
1

0

1

1

2

o

Ë

4

o

o

0

o

It

Ë

It- oooltlt

o_ t¡to21
r_ re20G

t_ oor00

t_otloür
o_ ÛotÛÊ

o_ oottto
t-ootxG
t_ oootto

o_ ottaT
o_ Ûto1t
o- ott0tt
+_ ?¡ÍtÊ4

o- 52:130

o_ o?5¡flt

o_ otttoo
o- a4?stt

o-ttoofÈ
o_ t¡otoo

o_ otttoo
o_ ooooo

o-oooot
r_üÍ¡0n
It_ ooüoa

t

rDGO rlEI¡f{IilE (5€c) IIEIH{IIilE (grryh}ruHtrr.trf tBtE

Figure 4.52. The lunction Usage View

i16



Figure 4.63. Selecting a function in the Function Usage View brings up further
r,nformation.

5. Composite F\rnction View.

The view (Figure 4.54) shows the average invocation time of functions for each

node or pïocessor object. The node-circles and PO-circles are placed on the left-

hand side of the view, with a bar extending to the right. Each bar depicts a

maximum of ten functions with the largest average invocation times compared

with other functions in the same node or processor object. Each such function is

denoted as a bar segment, having a distinctive colour, with a colouring scheme

consistent with that used in other views. For each bar, the function segments

are placed in a ttdescending" order to the right. The bars are drawn to scale to

fit into the available window space. Selecting one of the bar segments brings up

an auxiliary view as shown in Figure 4.55. Similar to the Function Usage View,

source-code link-back can also be exercised.

The colour assignment for the functions in this view is the same as that of

the Function Usage View. However, the Composite Function View is different

from the Function Usage View in that the previous depicts function usage time

per node or processor object. Used together, these two views can identify the

particular functions in which a particular node or PO spends the most time.

This, in turn, facilitates the improvement of function implementation.

TI7



a t
I o
I

a t

Figure 4.64. The Cornposite f\rnction View.

Figure 4.56. The auni,liary uiew from the Composite Fìrnction View

118



4.4.4 Observations

The design and architecture of the views in Visorl* are clean in that it is modular and

allows relatively easy expansion and addition of new views. Such expansions could be

horizontal (i.e. adding new views), or vertical (adding new level of view abstractions).

This is possible because the views are designed by observing sound principles in user-

interface design (Section 4.4.3.L).

The views, however, have some limitations. Most of these iimitations are not in-

herent in the design of the views. Rather, they are caused by the lack of information

which can be gathered by the instrumentation methods which are employed by Vi-

sor**. In the light of the goals of Visor**, these limitations are rather minor. They

are described below.

4.5 Summary

Visor** is a post-mortem visualisation tool for visualising CC** program execution.

The CC*f language itself does not provide visualisation support as in pC** and

p,C-l*. However, by using the Visor** framework, a sensible visualisation scheme is

possible. In fact, by using the methods described in this chapter, a wealth of important

information can be visualised. The framework is embodied in the tool Visor*t.

Visorl* has several desirable properties. Firstly, to make the framework and

implementation of Visor** portable, it is designed to work at the source-code level.

It provides automatic instrumentation of users' programs, which can then be used to

produce visualisation. Visor** views are implemented by using POLKA, which makes

them more portable, and relatively easy to implement.

Secondly, Visor** uses a wide selection of language features as the basis for visual-

isation. In particular, it uses threads, functions, objects, processor objects, and RPCs

to drive the visualisation. Such a wide selection provides the possibility of constructing

multiple views representing aspects of a program from multiple angles.

Thirdly, Visor** provides both the static and dynamic aspects of CC++ pro-

grams. The types of views and their representation make it easy for users to determine

119



what, when, where, and why CC++ events occur. Furthermore, Visorf * also presents

auxiliary views, which are also vaguely used in several tools such as MVD ,24, I27l

and Interaction Network [3]. However, the use and construction of auxiliary views are

formalised in Visorl* for the first time.

Finally, the views in Visor** are constructed by using some strong principles in

the graphical user interface. In particular, it employs the notions of colour consistency

and presentation consistency. These principles make the views relatively easy to un-

derstand. Furthermore, unlike the majority of other tools for visualising concurrent

object-oriented programs, the views in Visor-l-* are integrated. They are presented in

a hierarchical manner with their visuals animated coherently.

As with many other tools, the implementation of Visor** has some limitations.

These limitations are discussed in terms of the instrumentation subsystem, the event-

collection subsystem, and the visualisation subsystem.

In the instrumentation subsystem, certain constructs cannot be handled well by

the tool. In some cases, the instrumentation method changes program semantics to

some extent. This pertains to the introduction of new scopes into the program (Section

4.2.3.7), and the instrumentation for RPCs (Section 4.2.3.5). However, as shown in

the associated sections, these can generally be overcome with relative ease.

The subsystem also does not provide the ability to gather lower-level information,

such as information on data structures, global pointers, ar'd sync variables, in terms of

their contents and changes during program execution. Such information can be impor-

tant, especially for debugging and for the visualisation of data-parallel programs. The

instrumentation approach as described in this thesis does not seem to be adequate for

such a task. This, to some extent, confirms the notion that source-code instrumenta-

tion cannot accommodate the broad needs of visualisation [111]. On the other hanrì,

such low-level information may not be needed, especially for large programs which

involve a large number of processors, processor objects, and threads.

The current implementation of the system also does not cater to the provision of

control for the insertion and execution of instrumentation probes. Such control is im-

portant for users to control the amount of perturbation in program execution [111].

720



Incorporation of this feature can, perhaps, be experimented with in future enhance-

ments of the system.

The instrumentation methods described in this thesis also assume that the organ-

isation and structure of the compiler-generated code are similar to that in the source

code [108]. This can be achieved, to some extent, by using traditional compilers which

do not violate this principI"". For the above reasons, compiler-supported instrumenta-

tion and visualisation) as in pC*-F and TAU [13, 97] seem to be one possible solution.

Finally, ìt is to be noted that the instrumentation approach as described in this

chapter applies primarily to C** based languages. However, the fundamental ideas

are relatively flexible to be applied to other language systems, as described in the next

section (Section 4.6).

In terms of the event collection subsystem, the execution of the instrumented version

of a program causes probe effects, which include timing effects and synchronisation-

error effects (Section 2.1.3.1). Generally, the probe effects are inevitable [S2]. For

the timing effects, at best the visualiser (the person designing the tool) could strive

to minimise such effects [24]. One method to minimise these effects is by providing

control of insertion and execution of instrumentation probes, as described above. The

synchronisation-error effects, however, depend highly on the user's programs them-

selves [60]. If the programs contain synchronisation error, then timing effects only

serve to exacerbate synchronisation-error effects. In this context, Visor** cannot be

used effectively to visualise programs with synchronisation errors. However, as to the

timing effects, significant effort has been put into Visor** to minimise them. In par-

ticular, the probes have been designed in such a \ /ay as to minimise the amount of

information contained in the generated traces. Furthermore, unlike some other visuali-

sation systems 124,341, the handling of the traces is the responsibility of Visorl*, i,e. it

is separated from the user's pïogram. Finally, the generation and dispatching of these

traces from the program to Visor*f are carried out in an asynchronous manner. The

exact measurements of the timing effects are established and discussed in Chapter 5.

22Turning off the optimisation options in a compiler during the compilation of both original and

instrumented programs may be of assistance.

\27



In the event visualisation subsystem, program traces are visualised by using a set

of views composed of high-level and low-level views, with a clean architecture which

allows for smooth integration and expansion of new views. Furthermore, the views

are constructed by adhering to some strong principles, as described in Section 4.4.3.L

However, the types of views, and the information provided by the views are bounded by

the information collected by the tool. These boundaries are determined by the power

of the instrumentation method used. For example, the views on data structures are

not available. As another example, the nature of the instrumentation methods used

and the nature of the CC++ language itself limit the ability of the system to gather

information on thread context switching and thread blocking. Until such issues are

resolved, no associated views can be produced.

Finally, the presentation of the views can still be improved. For example, the code

structure diagram (CSD) [36], pretty-printing [5], the Nassi-Schneiderman diagram [20],

and better graph drawing algorithms [62, 83] can be used to enhance the presentation

of the static views. Further improvement can also be carried out on the dynamic views.

In particular, the addition of a high-level algorithmic view would be useful. Another

area of improvement is the provision of customised visualisation constructs [77] which

enable users to construct and/or customise views. Given the complexity of concurrent

object-oriented systems, such provision warrants further investigation.

Although Visortt has some limitations as described above, it can indeed be used

in a variety of circumstances for understanding and fine-tuning programs. In some

cases, it can even be used as a debugging tool.

Visor** itself has been successfully implemented by using C++, CC++, and

POLKA. The system sizes, in terms of the instrumentation subsystem, the event-

collection suhsystem, and the visualisa,tion subsystem, are approximately 6,500 lines,

4,000 lines, and 10,000 1ìnes respectively, excluding program comments.

122



4.6 Applicability to Other Systerns

Given the open architecture and implementation of Visor*-l-, the tool framework,

particularly the instrumentation subsystem, can also be applied to other languages

which are similar to CC*f .

Concurrent languages based on C+* can generally be divided into two main groups:

those using library ertensions, and those using language ertensions [38]. In languages

with library extensions, concurrency is implemented by a set of libraries which are

opaque to users. With language extensions, concurrency is implemented by the intro-

duction of new language constructs.

The implementation of the Visor** framework on language libraries is rather

straightforward. The reason is that the libraries are implemented with standard

C++. As such, the libraries can be instrumented to implement the Visor*-f concepts.

PRESTO 111] and PARC++ [129] are examples of such language libraries.

For languages with extensions, the implementation of Visor** can be carried out,

provided that several preconditions are met. Firstly, the language constructs can be

instrumented such that program traces reflecting full program states can be obtained.

Secondly, the concurrency constructs in the language express guaranteed concurrency.

This means that the application of the constructs to a program block should guarantee

that the block ìs executed concurrently. Languages with such constructs include CC**

and Concurrent Cf * [64]. If these two preconditions are satisfied, then the Visor**

framework can be adapted for the associated language. If either one of the precondi-

tions is violated, then the application of the Visor** framework may need either new

approaches for source-level instrumentation, or full compiler support. In particular,

compiler support would be needed if program traces cannot be conveniently produced

by the source-code instrumentation. The support may also be needed if the language

has constructs which provide potential concutrency, i.e.application of the construct to

a program block may or may not result in concurrency. Examples of languages which

do not fulfill the preconditions are ICC** [35], and Mentat [68].

The framework of the Visor* I uisualisation subsystem, however, can be applied to

t23



any of the above types of languages, provided that program traces conforming to the

Visor** ìnstrumentation requirements can be obtained. Once the traces are obtained,

program analysis can be commenced. The next chapter describes several experiments

and their analysis by using Visor**.

724



Chapter 5

Using Visor++

By using Visorlf , program analysis and tuning can be done. The typical sessron ln us-

ing Visor{-þ is as follows. First, the instrumentation subsystem of Visor** is invoked

by the user to automatically instrument a program. Next, the instrumented program

is executed, and the resulting traces are visualised. Note that during visualisation, all

references to the program static structures are made to the original program, not the

instrumented one (Section 4.4.3.2 and Section 4.4.3.4). Using the views, the user may

find anomalies or loopholes for optimisations. Equipped with this knowledge, the user

may modify the pïogram, which, again, is instrumented and visualised by using Vi-

sor*f . The whole cycle is repeated until the program exhibits the desired behaviour.

The final product is the modified, uninstrumented program with the desired properties.

This chapter describes some experiments in using Visor**. A discussion of the

merits and limitations of Visorf * usage is also given.

5.1 Experiments

Four experiments are conducted for visualising CC++ programs. The description of

these experiments is given in the order of their complexity, from the most simple

experiment to the most complex.

t25



0_207Ët'm0m,

Figure 6.L. The Thread View of the simple rnaster-slaue progranx.

5.1.1 A Simple Example

The first experiment is the visualisation of a small and simple distributed master-slave

program, adapted from the CC++ tutorial [32]. The program involves one master

processor object (PO) spawning one or more slave POs, each of which carries out some

data processing, sends a message to be printed back to the master PO, and terminates.

In this example, the program is executed with two slave POs. The master PO and the

slave POs are placed on different physical processors.

Figure 5.1 illustrates the Visor** Thread View of the program's master PO. The

view indicates that there are three threads running in the PO. The first thread, pG

sitioned at the lowest position, is the main thread. This thread subsequently creates

two synchronous threads by using the parfor construct (execution of this construct

is indicated in the figure by the colour brown and two up-arrows). The colour yellow

in the child threads indicates that each of the threads is engaged in a RPC call-setup

overhead. The Thread View and the Cumulative RPC Statistics View reveal that this

overhead takes approximately 3 to 4 seconds, which occupies a considerable portion of

the overall program execution of 6 seconds. Upon following the link-back to the source

code, it is apparent that the overhead is mainly for the creation of the slave POs. This

can be explained by the fact that the creation of a PO means using a RPC to create a

t26



LEGENDS

- Merge-Node

= Sort-Node
,:----_-_., = Processor placement

Figure 6.2. Merge-sort using a y'Jeuel binary tree. The left figure shows the initial
placement of the nodes on processors, and the right fi,gure the optimised placement.

separate execution address space, possibly on a different physical processor. The same

views also reveal that RPCs, in general, are very expensive in terms of execution time.

The full source code of the program, as well as its instrumented version, can be found

in Appendix A.

Although this example is simple, it illustrates how the usage of Visor** can reveal

important facts about a program, hence assisting programmers to better understand

their code. In the following examples, it is demonstrated that using Visor** views

can help programmers both to understand and to fine-tune their programs.

5.L.2 Distributed Merge-Sort

The second experiment is the optimisation of a distributed merge-sort program, also

adapted from [32]. The program uses a master-slave configuration in the form of a

binary tree of processor-objects (POs). The internal nodes are the merge-POs which

implement the merge operation, while the leaves are the sort-POs implementing the

sorting operation. Each merge-PO divides the data it receives into two equal halves,

spawns two other merge-POs (or two sort-POs at the leaves of the tree), merges the

results, and passes them back to its parent PO.

An analysis of a merge-sort program using a 4-level binary tree is conducted with

Visor**. Initially, each merge-PO is placed on a different physical processor (the left

portion of Figure 5.2), using 7 different machines. The rationale is that as each merge-

t27



IDLE

BUSY

oülGaÐa
I¡[E
Ewy

100*609ó

?5525%

f0ñ 5ûñ

237g?ú

100* rt6

rlr ,j J. L r r i ,ì;lil ! '

Figure 1.3. The Processor/Processor-Object Activity View T'euea,ls the
inefficiency ol processor usage.

PO is computationally expensive, it needs to be placed on a separate processor. Each

sort-Po, however, is placed on the same processor as its parent. The rationale is that

since a UNIX time-sharing system is being used, as many processor cycles as possible

should be used for sorting, while at the same time reducing the amount of time spent in

RPCs. Using Visorf{, the program is automatically instrumented, and the execution

traces of the instrumented program are visualised.

During visualisation, the Processor/Processor-Object Activity View reveals that

the POs do not have much idle time. However, the overall utilisation of the physical

processors is rather poor (Figure 5.3). As in the first example, by using the Cumulative

RPC Statistics View, the Thread View, and the link-back to the corresponding source-

code, it is found that synchronous RPCs dominate the computation. One of the views

that reveal this is the Cumulative RPC Statistics View (Figure 5.4). By using the

Thread View, it is also revealed that while a merge-PO is performing two RPCs to

its slave merge-POs (or sort-POs), it is effectively blocked, hence being idle. This

t28



aata.r.aaaaI atr a I .aaaa
a

I
I

I
I

I
T

I
I

t
I

I

I

I
a

Or
o
a

l¡
a
a

lr
ü
a

lr
ür
lr

a
lr

Figure 6.4. The rnerge-sort progrûnl is heauy with RPC actiuity

22r.3t %185.70 %Improvement
11.981 secs 23.29.723 secsFinal placement

46.8 %26.515 secs18.057 secsOriginal placement
7o changeInstrumentedUn-instrumented

Table 5.1. Timing information from the merge-sort program.

observation leads to the idea of placing those POs into a reduced number of physical

nodes to increase efficiency. The final placement is shown on the right side of Figure 5.2,

and the resulting processor utilisation is shown in Figure 5.5.

Table 5.123 provides the timing information of the program for sorting 20,000 in-

tegers. The program with the initial PO placement takes approximately 18 seconds

to execute. With the alternative placement, execution time is reduced to 9.7 seconds

while using less processors. The column "instrumented" gives the measurements of

23To level out the spikes in machine and network loads, the original program, the un-instrumented
and the instrumented versions, are executed 10 times in an interleaved fashion, and the averages a,re

taken. This measurement is carried out on both the original program and the improved program in a
similar fashion. Other tables in this chaptet are produced in a similar fashion.

r29



IDLE

BUSÍoots
Buey
I¡lle

t00fi09É

2SB 75tú

5tt6!il¡s

7S% 2516

0rtl00tÉ

I

Figure 6.6. Higher efficiency in processor uso,ge after program tuning

the instrumented versions of the same programs. The column "To change" refers to

the difference in execution time between the un-instrumented and the instrumented

versions of the program. It is computed as (i - u)lu, where i is the execution time for

the instrumented version of a program, and z for the un-instrumented one. Finally,

the row "improvement" gives the speedup of the program. It is calculated as of f ,

where o is the execution time of the original version of the program, and / for the final

version. As a comparison, the sequential version of the merge-sort program, employing

the same sorting algorithm, takes approximately 49 seconds.

Further optimisations are, of course, possibie. For example, the Function Usage

View can be used to highlight which functions are most frequently invoked or are

the longest to execute, and optimise accordingly. However, it is the intention of the

discussion here to show that optimisation is possible by cleverly arranging computation

structures, even without changing a single line of code. This insight is achieved by using

Visor**.

130



5.1.3 Concurrent String Search

The third example is the visualisation of a parallel text-searching program, which is

also briefly described in [136]. A particular string or text,S is to be searchedfor among

a given set of l/ text files. The final output is a list of ,[ files in which the string is

found, where 0 < L ( N. In the implementation, P processor-objects (POs) are used,

in which N mod P of them are assigned flú/Pl files, and each of the remainder is

assigned lNlPl files. Such a system can be adapted to many situations, one of which

is for an Internet search engine.

5.1.3.1 Implementation-1

The solution is implemented as a branch-and-bound algorithm, in which a master-

PO allocates and places slave-POs on separate physical processors. The master-PO

then initiates RPCs to obtain results from the slave POs. To do this, the master-PO

creates P threads, each of which allocates, places, and performs RPCs to a slave-

PO. Henceforth referred to as Implementation-l, the program is instrumented and

visualised by Visor**.

Using Visor*-l- views, an optimisation loophole is pin-pointed. The Thread View

in Figure 5.6 shows that the master-PO is idle while the slave-POs are executing. The

view shows that the master-PO creates two synchronous threads using the parfor

construct (colour brown). The two threads are indicated as the two bars above the

parf or bar. The colour yellow indicates that the thread is experiencing a RPC call-

setup overhead, while dark green indicates that the RPC is being executed. The Thread

View, with the source-code link-back (Figure 5.7), ìndicates that the master-PO has

been idle (blocked) for more than 10 seconds. Consequently, the implementation of the

master-PO can be modified so that instead of being blocked, it also participates in the

search. This modiflcation is embodied in Implementation-2.

6.L.3.2 Implementation-2

In Implementation-2, another thread is created in the master PO to carry out similar

computation as the slave POs. This new thread is referred to as the master PO's

131



t¡l- ¡tt82t ¡E.2lfitltrmaoû.

Figure 6.6. The Thread View shows that the master-PO is íille whi,le the
slaue-POs are erecuting.

L32



Figure 6.7. The Source-Code View shous the source-cod"e area where the
master-PO is blockeil,.

133



t- ll¡¡¡lili,l- ¡ü521f00Û00n

Figure 6.8. The Thread View o/Implementation-2, with the compute-thread.

compute-thread. Figure 5.8 shows the Thread View generated by Visor**. In the view,

the compute-thread is represented as the second bar from the bottom. It is apparent

that the compute-thread finishes execution much sooner than the two threads executing

the RPCs. There are two possibilities. First, the compute thread is given too few files

to work with, hence it finishes its execution quickly. Second, it is also possible that the

compute-thread doeshave enough files to work with. However, it stops quickly because

it has found exactly .t number of files in which the string .9 occurs. In other words, the

string S occurs inatleast.t numberof files among thelNlQ*1)l or lNle+I)] files2a

with which the compute thread is assigned to work. Hence, it is useless to continue the

search. Accordingly, it is possible to improve program performance by incorporating

two changes. Firstly the compute-thread is modified so that it is given more files to

work with. Secondly the program can be modified such that as soon as .t files are

found, the remaining POs (possibly including thc computc thrcad) arc instructcd to

stop executing. Hence an interrupt-signaling system is developed. These changes are

incorporated in Implementation-3.

2aln the original implementation (Implementation-1) P processor objects are used, in which each

PO is assigned lNlPl or lNlPl files to work with. With the addition of the master PO's compute
thread, this number becomes I N I e f 1)'l and lN le * 1)l respectively.

134



174.43 %764.10 %fmprovement
27.6 %16.640 secs13.043 secsImplementation-3
35.6 %29.025 secs21.403 secsImplementation-1

%o clr'angeInstrumentedIJn-instrumented

Table 5.2. Timing information from the parallel text-searching programs.

5.1.3.3 Implementation-3

In Implementation-3, it is found that using the same set of inputs and the same

operating environments, the program does exhibit better performance. The Thread

View in Figure 5.9 shows that the interrupt-signaling mechanism is working. The

right-hand green portion in the second bar from the bottom shows that the compute-

thread is not calling any more functions. In fact, by using the Source-Code View, it can

be deduced that the thread is ready to exit from the parf or block. The third bar from

the bottom, with its down arrow, indicates that the RPC to one of the slave POs has

finished execution. Although it is not very indicative2s, it is very likely that the slave

PO has received a signal from the compute-thread. Note that the dark green portion of

the thread represents a RPC being active. As indicated by the view, the RPC finishes

execution after the compute-thread does not call any further functions (the colour

green). Therefore, it is likely that the compute-thread signals the other two threads

to finish, after which the compute-thread itself terminates. This is "supported" by

the fourth bar from the bottom, which represents the second RPC. It is apparent that

the RPC (the remote-execution phase, excluding the RPC call-setup and call-return

overheads) is short-lived, considerably shorter than the first RPC. Hence, it may also

have received the signal from the compute-thread.

The results of this experiment is presented in Table 5.2, where L : 5, l/ : 150,

P : 2, with the files having various sizes, ranging from 6 Kbytes to 80 Kbytes, and

the word to search for is "nanocomputer". Note that the table only shows the timing

information for Implementation-1 and Implementation-3.

25It is not indicative because the actual interleaving of thread execution is not known. With the
current implementation, such information cannot be easily captured by Visor** (Section 5.2.2).

135



Figure 6.9. The intercupt-signaling mechan'ism in work.

6.L.4 An Electronic TYansaction System

The final example is the development and refinement of an electronic transaction sys-

tem. This section shows how Visor** can be used not only in understanding and

tuning of ready-made programs. It can also be used during lhe program deuelopment

stage. In this perspective, Visor** is used as a refining tool, to achieve the desired

results.

The problem is to build an electronic transaction subsystem which can record the

transactions that occur among a set of parties. Building all the components of such

a large system at once is not a recommended approach. On the contrary, it is best

to build such systems as a set of subsystems. It means that the system should be

decomposed into meaningful subsystems, possibly orthogonal and independent, which

are later composed to build the final product [16]. Therefore, the components of the

electronic transaction system must be identified, and should be designed in a highly

decoupled manner.

An electronic transaction system could consist of many subsystems, for exarnple:

the user-interface subsystem, the database subsystem, the network subsystem, and the

transaction subsystem itself. The discussion in this section pertains to the development

of one of the subsystems, namely the transaction subsystem (referred to as the trans-

136



action system). Therefore, the scope of the problem is the development of a prototype

of a transaction system.

The prototype to be developed is the transaction system for a commodity market,

whereby many parties may commit transactions. In particular, a transaction occurs

whenever a party P1 who wants to seil rn units of a commodity C, can be matched with

another party P2 who wants to buy n units of the same commodity. Note that it is not

necessary that n - m. I1, for example, the party P1 cannot find any other party to buy

the commodity, then Pr's intention to sell is kept by the system until there is another

party P2 who declares an intention to buy the same commodity. The two parties are

then matched by the system, and the transaction is recorded in a transaction database.

If m ) n, then, after the transaction, Pr's intention to sell (* - ") units of commodity

C is retained by the system. On the other hand, if m < n, then Pz's intention to

buy (n - rn) units of C is retained by the system. Otherwise, both intentions can be

safely discarded. The term intention is used to denote either an intention to sell or an

intention to buy.

In this system, no party can have any bias or preference. In other words, no party

can choose its preference as to whom it wants to sell to or to buy a commodity from.

The system must also be designed in such a way that it guarantees fairness. It means

that it must employ a first-come-first-served (FCFS) approach. For example, a party

P1 declares first an intention to sell a commodity C, and then followed by another

party Pz who declares the same intention. If there is another party P3 who declares an

intention to buy that commodity, then the system will first match Pr with P3. If, after

the transaction is completed, Pz's intention to buy is still retained by the system, only

then will P2 be matched with Ps.

The system is developed in CC++, as a three-tier client-server system, consisting

of the clients, the servers, and the business logic unit (BLU) in between [67]. The

clients are the entities which are used to place buyers' intentions to buy and sellers'

intentions to sell. The servers are those entities which try to match the buyers and the

sellers. The BLU is the entity which translates the intentions from clients into their

corresponding transaction requesús (Figure 5.10). These transaction requests are then

r37



Client

Client Business
LogicU

Client TR-server

Intentions

Trønsøction
Requests

LEGEND
TR-server = Transaction Semer

Figure 5.10. Three-tier architecture for the electronic transaction system

redirected to suitable transaction servers for processing. The results of this processing

are then passed from the servers back to the BLU, to be redirected to the clients. In

other words, the BLU regulates the flow and transformation of information between

the clients and the servers. The general architecture of the whoÌe system is illustrated

in Figure 5.10. Without loss of generality, the prototype developed here consists only

of one client, one BLU, and multiple transaction servers.

6.L.4.L Implementation-1

In the initial implementation (henceforth referred to as Implementation-1), the client

accepts intentions to sell and to buy from any party or customer. Each intention is then

passed to the business logic unit which translates it into a suitable internal data format

as a transaction request. This translation is carried out by using the customer database

and the commodity (stock) database. In other words, both databases are placed in the

BLU. Later, the transaction request is passed on to one of the transaction servers for

processing. It is these servers that match potential buyers with potential sellers. The

decision as to which transaction server handles a request is based on the stock specified

in the request. In other words, the transaction servers are stock-partitioned. When

a transaction server succeeds in matching a buyer and a seller, a transaction is then

TR-server

TR-server

138



Figure 5.11. The Thread View shows the unfairness of transactions

committed and recorded in a transaction database. The resulting transaction is also

coded in a status ualue which is passed back to the BLU, and subsequently to the client.

To increase program efficiency the BLU is implemented such that it does not send off

a transaction request to servers as soon as the associated intention arrives. Instead,

the requests are batched until a certain number are accumulated. At this point, the

processing of these requests on the transaction servers is invoked by the BLU via the

RPC mechanism.

The client, the BLU, and the transaction servers are all implemented as processor

objects. They are referred to as the client-PO, the business logic PO (BL-PO), and the

transaction server PO (TS-PO). The code is implemented such that the placement of

the client-PO, the BL-PO and the TS-POs is parameterised. The number of transaction

servers is also parameterised. In this example, the program is executed with one

client, and two transaction servers. For analysis, the code of this implementation is

instrumented and visualised using Visor**.

During visualisation, it transpires that the system does r¿oú exhibit the required

transaction fairness criteria. The Thread View of the BL-PO indicates this (Fig-

ure 5.11). The figure shows that the main thread in BL-PO buffers four transaction

requests (to sell or to buy), processes them, then dispatches them concurrently to the

139



transaction servers. This action is repeated until the requests are exhausted. In the

figure, the main thread is the lower-most bar, while the concurrent dispatching of re-

quests is handled by the four threads created by the main thread. This is indicated

by subsequent groups of four bars above the bar representing the main thread. By

using the auxiliary views, it is revealed that the threads represented by the left-most

group of four bars execute RPCs to the same TS-PO located on the machine "achilles"

(Figure 5.12). Similar information can also be obtained from the Navigation View.

If the fairness criteria is satisfied, then for any two threads A and B in the thread

group, if thread A is created earlier than B, then thread A should finish its execution

earlier than thread B. However, the view shows that thread 3 finishes before thread 2

(thread 2 is represented by the second lower-most thread bar in the group). Further-

more, by using the source-code link-back facility, it is revealed that the the concurrent

dispatching of transaction requests by the BLU does not guarantee that the order of

request dispatching is preserved. This is not a problem if the transaction ordering can

be resolved by the transaction servers. However, the Source-Code View of the imple-

mentation of the transaction servers shows that this is not the case (Figure 5.13). This

analysis is confirmed by inspecting the transaction databases in the transaction servers.

The ordering of the transactions does not preserve the ordering of the intentions to sell

and to buy from the client.

The above analysis shows that Implementation-l is not a sufficient and correct

implementation. The implementation needs modification in such a way that the order-

ing of the resolution of transaction requests is preserved to satisfy the fairness criteria.

The modification is embodied in Implementation-2.

6.L.4.2 Implementation-2

In Implementation-2, each transaction request is time-stamped by the BLU. As in

Implementation-1, the requests are then dispatched by the BLU to the transaction

servers via the RPC mechanism. The following scenario, however, is possible.

The BLU could invoke the first RPC to one transaction server to dispatch trans-

action request A, and then the second RPC to the same server for request B. Each of

140



Figure 6.12. Auriliary uiew showing a transaction request being hanilled by a TS-PO
on the machine "a,ch'illes".

Figure 5.13. The Source-Code View reueals the inad,equacy of the implementation
of the tra,nsaction seruer.

r47



the RPCs would then create a thread in the server. It is possible, however, that the

thread for request B would be started before the thread for request A. To guarantee

serialisation, each transaction server maintains a time-stamp subsystem. Each thread

in the server then checks and compares the timestamp of the request it is to handle with

the time-stamp subsystem. Only when permission is granted by the subsystem will the

thread complete the request. Therefore, it uses an arbitration mechanism. The buffer-

ing/batching of requests and their concurrent dispatching, as in Implementation-l,

are still maintained.

By using Visorf f to instrument and visualise the execution of Implementation-

2, it is revealed that the fairness criteria is now satisfied. However, the views also

reveal that due to the method used by the transaction servers to handle transaction

requests, many processor cycles are wasted in dealing with the time-stamp subsystem.

This is illustrated in Figure 5.14.

The Function Usage View in Figure 5.14 shows that the function TimeStamp-

Class::check-tirnestampO is most frequently invoked. Other views, i.e. the Thread

View and the Composite Function View, reveal that the number of threads invoked in

the transaction servers is less than the frequency of invocations of check-tirnestamp.

Consequently, the operation of the time-stamp subsystem can be improved. The Class

Hierarchy View (Figure 5.15) and the Class Information View in (Figure 5.16) show

that the class TimeStampC1ass, of which the function is a member, does not inherit

from any other class. The Source-Code View also shows that in the implementation,

the subsystem does not depend on other objects (classes). Therefore, modifying the

time-stamp subsystem does not entail modifying other parts of the code.

The Function Usage View also shows that DBserver::init-TRserversO takes a

relatively long time to execute. Aided by the Composite Function View (Figure 5.17),

this observation is confirmed. By using the auxiliary view, it is found that the func-

tion init-TRserversO is called in the BL-PO placed on the machine "chook" (Fig-

ure 5.18). The auxiliary view is displayed by selecting the left-most (longest) function

bar in the second row from the top of the Composite Function View. However, upon

source-code inspection, it is apparent that no significant improvement can be made to

t42



Strinq: : etring'(conrt St.rinq r)
string; : atring( |
Tr'ü¡Jrctior¡Gl¡s.¡: : 1r'ürstcti.dnE.låsÉ( l
Trr¡s¡Êti.oncltss: : f r'flrrÍfti.ilnGl¡5.r( - -

Trl¡nlrl'ti¡mc.l¡l'¡: : lrsr¡¡.ctionc.le5.3( l
Tine3tonpcl-ass: : Tin*Stot¡tc.ltsc{ I
TiJnestüTllc.lr.5É: : Iineatantpc.ltss{ I
TiæctolTl¡cl¡rÉ: : clrrck_t*i¡ne-t¡ry { int }
Ti¡llr3tsrItcJ-es.3: : rehllr¡_t irne¡tsllll ( ì
.riilEst$rl¡CJ-o.5s: : Itenerc_üifi e-t$lTlt (i¡¡t)
tlD¡trtr: : ¡E¡arlFer( l
!TEÍ[HET: :TTE¡¿ITCT{ }
¡IErtFÊr: : init_TDs¿ner=( ctringl
t¡eFrr: : DrocesÉ-st'Ittaì ( f tringl
aTreFCr: : TT5¿rver( int, int, intl
fnsencr: :TT5+raer( ¡
TD.¡sHCr: : Irrtocê-s_trla¡¡tcti.ür { ifl t,T- -

Eltock: : altoclr(ch¡r *,int tùe-id =-¡
Stock: :3tock(l
Stocl(': : stocÌ.(con3t atoc¡É åI
Atock: : 5dllt_ilüìe(clra.r * )

Stock: : ¡ore-i.d.{ int}
stoc*.: : gtt-il( l
ÍtocllLi.5t: : grt'-inalÊx(cl¡¡r * )

o

+

15

It

13

x,

It

ÊGS

o

4

I
It

1

1

2

o

Ë

z

Û

Û

It

t
0

6

o_ 00000

It_ot¡t?I.

t_ teztG
t_ ttoooo

t- ttootiÈ

t- Ûo00Ê

o_ ttoto0
t_ toteE
t_ tt0ttlilt

It_ ttûlla?

t_t0ttls
It_tttilto
3_74{tË4

It_ 52it30

t_ t?E{o
o- ttooot

o_44?st

o- o00at

o_ ottooo

o-ott000
It_ oo000

tÌ_ 00000

t_ t0Ûo0

t_ tooot

¡

I

rßEQ ÌilEflt-tlrrc (!¡eGI lrlEñlI{IIIE (gryrh}rllll¡trlllH ¡qlilE

Figure 5.14. The îunction Usage View reueo,ls those functions which are heauily
used, or talce rnuch time to erecute.

t43



I
).sd

Figure 5.15. Together wi,th the Source-Code View, the Class llierarchy View
shows that the tirne-stamp subsystem does not depend on the implementation of other

classes.

Figure 5.16. Tl¿e Class Information View of the class "TimeStarnpClass",
displayed upon clicleing the associated node on úåe Class Hierarchy View.

L44



a o
I o
a

a o

Figure 6.1,7. The Cornposite Function View shows which functions can be

optimised, for each processor-object.

the function. All the above views are taken when Visor** is visualising the program

after 5.30 seconds of the overall execution of 5.96 seconds.

As a final note on Implementation-2, the program analysed above operates with

approximately less than 50 transactions. Upon closer observation, for a bigger trans-

action count, e.g. 300 or 400 transactions, the arbitration mechanism as previously

highlighted does not guarantee an upper bound on program execution time. During

experimentation, using a transaction count of approximately 300, it is observed that

sometimes the program completes in less than 10 seconds, while on other occasions,

it might complete in more than 50 seconds. This fact makes it is safe to deduce that

fmplementation-2 is not a correct solution.

Based on the above analysis, the implementation of the transaction servers is al-

tered, which is embodied in Implementation-3.

r45



Figure 5.18. This auriliary uiew is the result of selecting the longest function bar in
the second row from the top of the Composite F\rnction View.

6.L.4.3 Irnplementation-3

In Implementation-3, the threads in the transaction servers do not actively check

and compare the timestamp of the transaction request it has to handle, with the

time-stamp subsystem. Instead, whenever such a thread is created, it will register its

transaction request along with the time-stamp of the request to a central transaction

resolueÊg. The transaction resolver contains a seller queue and a buyer queue. Trans-

action requests received by the threads in the transaction server will be channeled to

the resolver into the appropriate queue. In other words, transaction requests repre-

senting the intentions to sell will be channeled into the seller queue, and the intentions

to buy into the buyer queue. These requests are queued based on their timestamps. In

other words, the seller queue and the buyer queue are both priority queues. It is also

the transaction resolver which will match buyers and sellers to complete transactions

by using the priority queues.

During visualisation, it is apparent that some improvements have been made. The

Function Usage View in Figure 5.19 shows that all the functions are relatively low in

their call frequencies and average execution time. The view shows that although the

function init-TRserversO have not been changed, yet its average execution time

26Each transaction server has one transaction resolver

746



Strinq: : String(conrt Strin$ tl
lltring: : Strin$( )

Trü¡srßLior¡c.l¡.9¡: : lrÚl¡¡.cti.cnE.aos.-( l
Tr-ü¡f¡EtimrEl¡¡3: :Tr:ÌÍr5¡Êti.flncl¡5.f( - -

THnsrDt*i¡mcl¡.5r: : Trìú¡saßti.flnc.lt.5.+( I
IIErtFrr: :IlE¡erver{ I
mncHÊr: :tlE!¡€rger( I
IIE¡eFrr: : ifi it._18.¡crvcr:s( Atrirrgl
tlËfsHer: : Irl|oce5ls_'tüefltl ( Strinql
TD.scFCr: : TBiêrtver( il¡t, ilrtr irrtl
TD.seFCr: :lTstFer{ }
T*!¡rFCr: : IrrïDce¡É_tnrnf¡Êti,on ( int,T - -

TirnêÍtúrTDrür-ürs_Pri,ûriql¡Q : : T irnest¡- -

Tirne3ton¡reü r-û¡¡_Fri.oriq¡C : : T irnef t¡- -

TiilEgtflÍDEùr-ür5_PrinriqJt{ : : ÊnquÊürE - -

Ti]llt3tsltr¡eùrE¡sJri.oriq¡[: : d.equcile- -

Tirìsstsllreùr.srs_Prirriqf{ : : f orce_il- -

gltock: : altoclr(ch¡r *,int tlre_id =-¡
Stock: : ttoclr{ }
Stock: : ftocn(con+t stoclt tI
Stoak: : fflñc_rlüñt(clr¡.r *)

Stoclc: : ¡ste-id.{ inù}
stoclr.: : ryt_i,il{ I
at{cLLi.5t: : gEt_i¡rdÊxlch¡.r * }

It_t0000

t_ too52

It_ tÛt?G

o- ttotoo

r¡_ Ûoo52

o_ ttoÛL?

o_ oooott

2_ 831ße

It_ t2?3?

t_ttz1s2

n_ olrfllo
It- tot$3
n- oot1.lt

o_ o0000

It- oÛ005

o_ tooos
o_ tro000

o- 000rt
l¡_ rotoo
It- Û000tt

It_ ttttltlt
t_ ttliltoo

t_ tt0000

o_ ttools

22

t
2

o

o

o

It

t
s

ZL

1

t
1

E

2

o

T

z

o

E

72

o

5

ru

rtE{ ilErH{IilE (s€GI lGlElf-TII¡lE (gry¡h}FIIIEIIITH ¡úIiIE

Figure 5.19. TheF\nction Usage View nou reueüls that the functi,ons are within
rea,sono,ble frequency and auerage time of erecution.

t47



has slightly dropped compared with its execution time in Implementation-2 (Fig-

ure 5.14). This can be explained by the fact that the improved time-stamp mechanism

in Implementation-3 has contributed to lowering the function execution time (i.e. the

function also uses the time-stamp subsystem for system initialisation). Ceteris paribus,

except for the changes in the transaction servers, the execution of Implementation-3

is now reduced to 3.32 seconds. All the figures are snapshots of Visor** views after

3.21 seconds of execution2T.

All the above implementations, Implementation-1, Implementation-2, and

Implementation-3 are implemented such that the customer database and the stock

database are handled by the BLU. Using the databases, it is the job of the BLU to

translate the intentions issued from the client into their associated transaction requests.

As the number of transactions grow, the BLU may well become a bottleneck in terms

of execution speed. The question is: what would the effect be if the databases are repli-

cated in th,e transaction seruers instead? What would the perfornl,a,nce increase be?

These questions are explored by accommodating the changes in Implementation-4

and analysing it using Visor**.

5.I.4.4 Implementation-4

Implementation-4 is exactly the same as Implementation-3, except that the stock

database and the customer database are replicated and placed in the transaction

servers. This is done to reduce the bottleneck experienced by the BLU. This means

that the intentions to sell and to buy from the client are distributed, without processing

by the BLU, to the transaction servels.

Comparing the views of Implementation-4 with those of Implementation-3, it

is found that for slight differences in the frequency and average function call timc, thcrc

27In the analysis, the comparison of the average execution time of "init-TR-server0" in Implemen-
tation-2 and Implementation-3 is carried out at different visualisation snap-shot times. In other
words, the average execution time of the function at 3.21 seconds of a total of 3.32 seconds for the
execution of Implernentation-3 is compared with the same entity at 5.30 seconds of a total of 5.96
seconds execution time for Implementation-2 (see Section 5.I.4.2). Superficial observation suggests

that such comparison is invalid. However, the function is used only once in both implementations. At
such a snap-shot in time, the invocation of the function has been completed in both implementations.

148



%o changeInstrumentedUn-instrumented

109.79 %Improvement 100.54

27.8 %5.185 secs4.228 secsImplementation-4
22.6 %5.693 secs4.456 secsImplementation-3

Table 5.3. Timing information from Implementation-3 and Implementation-4.

seems to be no other significant difference (Figure 5.20). However, the total execution

time is increased to approximately 3.83 seconds, which is more than the 3.32 seconds for

Implementation-3 (Section 5.1.4.3). Logically, Implementation-4 should perform

slightly faster than Implementation-3. This "anomaly" can be explained by the fact

both programs a e executed on a network of UNIX time-sharing system, in which both

the network load and the machine load can differ unpredictably from time to time. The

above anomaly can, perhaps, be attributed to this condition. To justify this hypothesis,

a measurement is done on both Implementation-3 and Irnplementation-4, by exe-

cuting both programs 10 times, in an interleaved fashion. Both programs are executed

under the same condition with the same inputs of approximately 300 transactions. The

results are shown in Table 5.3.

Table 5.3 indicates that Implementation-4 is indeed slightly better than Imple-

mentation-3. However, under certain conditions, Implementation-3 may perform

better than Implementation-4. For example, if the cost of maintaining a centralised

database (as in Implementation-3) is relatively less expensive than maintaining a

distributed one, then clearly Implementation-3 will perform better, and vice versa.

Another factor that should be taken into account is the interaction of the subsystem

with its operating environments. For example, on a network of machines with a heavy

operating load, the performance of the programs will be affected. In the case of flux-

tuating load, measurements may suggest that one implementation is better than the

other, whereas under different conditions the reverse may be the case.

Appendix B illustrates the code used in Implementation-3 and Implementati-

on-4. However, since both implementations are relatively large (approximately 1500

lines), only the common skeleton of both impiementations is given.

L49



Strinq: : String(can+t St.rirrg f I
Ít"ring: : string( l
rrr¡¡¡cti.oncl¡ss: : llltr5¡.Gti.tnc.lss.-( l
Trìr¡5¡Gti.fl¡GI¡3¡: :Tr'ür5¡Gti.flncl¡5.f( - -

Trrs¡s¡cti.or¡El¡ss: : Îr'ff ¡¡.cüi.¡nc.lsgs( )
IE¡rFEr: :tlB¡¿ner{ I
NDÍCHÊT: :üE:¡ÈITET( T

m¡rFrr: : ir¡it-IÎl¡êFerE( Atri¡lgl
IIEÍSHET: : I¡rrûce53_3trEfln (Stringl
TnsGFCr: :aB.!¡êrer( int, i¡¡t, i¡rtl
lD.¡GFGf: :TE.¡EFer{ }
ln.3Êrrcr: : IrrfocÊf.s_tüÍlt¡Gti,rn ( int, 3- -

Ti¡nÉStrllrÊùr'sr5_Dri.oriqlil : : rinest¡- -

Tinre8to4reùr:ur--Dri.oriþlt : : f ineSt¡- -

TirnclttflÌDeùr-ür5_Pri.oriqf[: : snqürsürË- -

Tiil€Atsur€ùr-urs_fri.oriþr{: : d.equcnr.e- -

TiilGstüDeùr.ffi -_lri.oriþrQ : : f orce_il- -
fitock: : stocÈ(ch¡r *,int tlre_i.il =-¡
stock: :3tûGl¿( )
ftÐelÉ: : ÍtoslÉ{cor¡st at0clr. tI
ftûcl(.: : ¡ore_rrore(che¡ * I
Stoclr: : ¡ote-i.d.{ int)
EtocL: : get_i.il( l
3t¡cl(Li-¡t: : gut_indpx(cl¡¡r * I

30

o

o

o

1

1
1

3

2

z

Ð

z

2

Ð

'.fi
E

z

+

o

o

0

t
$

It_ ttooo0

It_ ttoo?o

It_ot¡t¡t¡o

t_ tttooo

o_ ottotto

It_tmofß

It_ ttoÛl,il

3_ 38ÐG:t

It_ tt2019

It_ tzcËÊ

It_ Ûottlt8

t_ o03t5

o_ ootto6

o_ o0to5

o_00010

Û- ooollt
o_ nttooE

il- oooan

r_ oooos

It- 00000

t_ toÛto
o_ oÛ0tto

o_ tì0000

ü- t¡ooos

t

re

rBEQ ilEIrfrTIlG (!¡ecl llEf,iI{IllE (grr4lh)r]ltrTllüli IqilE

Figure 6.20. TheE\nction Usage View reueo,ls a,pproúnxa,tely simi,lar function
profiles to those in Implementation-?.

150



5.2 Discussion

Visor** has some notable merits. These include the ability of the tool to support

program understanding, fine-tuning, and even refinement during program development.

Both the merits and limitations2s are discussed in the following two sections.

6.2.I Merits

The results in the previous sections indicate that when properly used and interpreted,

the views in Visor** can help users to understand and fine-tune their programs. By

using the views, once program understanding is achieved, fine-tuning can be performed.

Some tuning does not require source code modification, but only a re-arrangement of

task structures. This is demonstrated in Section 5.7.2. Others may require slight

program modification, as exemplified in Section 5.1.3. Still, some others may require

a major overhaul of program implementation, as demonstrated in Section 5.1.4. This

means that Visor** can be used in a variety of meaningful ways. Furthermore, the

visualisation is provided on an automatic basis, without the need for the users to

manually intervene.

As demonstrated in Section 5.1.4, Visor** can also be used for refining design

during program development. The full-scale version of the electronic transaction sys-

tem could have a large number of subsystems. With the current implementation of

Visorlf , the visualisation of all the subsystems at once would pose difficulties to the

user. The reason is that the user may be confused by the many entities in the views

vying for attention. One possible solution is to design a higher level algorithmic view

which can present the program in a more compact manner. Another solution is to

divide the user's large system into scvcral orthogonal subsystems, possibly indepen-

dent of each other. Program development can then be carried out on these smaller

subsystems. At this level, Visor** can sensibly be used.

By using Visorf{, many program facets can be uncovered with relative ease. The

28The limitations discussed in this section pertain to the usage of Visor**. In contrast, the limi-
tations discussed in Section 4.5 pertain to the implementation of the tool.

151



multi-faceted perspective of the user's program is represented by highly inter-related

views. These views incorporate a wide cross-section of program features, taking into ac-

count the important elements of task-parallel object-oriented programs. These include,

among others, functions, threads, concurrent objects, and their interactions. These el-

ements are represented in both high-level and low-level views which incorporate the

static, dynamic, and auxiliary views. The views preserve some principles such as inter-

face consistency, and the principles of least astonishment (Section 4.4.3.1). As a result,

the views can closely link the user's mental model with the program itself. All this

confirms the merits of Visor-l-*. However, during experimentation, some limitations

are also uncovered. These limitations are discussed below.

6.2.2 Limitations on Visor++ Usage

Through experimentation, it is clear that Visor** is effective for small and medium-

sized programs. This is approximately equal to 5,000 lines of code and less than 200,000

events. These numbers represent the usage feasibility of the tool. In other words, they

represent the upper bound with which Visor*t can be sensibly used. They do not,

however, represent the technical feasibility of the tool. The "limitation" on the usage

feasibility is partly due to the tool design itself, and partly to the natural complexity of

task-parallel object-oriented programs. With respect to the tool design, visualising a

large program would instantiate views with many graphical entities vying for the user's

attention. This can cause confusion and difficulty on the user's behalf to understand

the program, or to pin-point problems. This problem can be alleviated by uertical

erpansion of the tool to include higher-level, preferably algorithmic, views. Such views

can transcend the existing views, supplying the user with an overview of program

activities at a higher level. However, due to the natural complexity of task-parallel

object-oriented programs, such views may be difi.cult to construct. At the time of

writing, there seems to be no tool which provides such high-level algorithmic views for

large scale programs. This provides a fertile ground for further study. As a "short-cut"

to work around this problem, the strategy of dividing a large program into smaller

orthogonal subsystems can be used (Section 5.2.1).

r52



To some extent, Visor** preserves the principles of immediacy [131]. These prin-

ciples state that the separation between cause and effect in terms of time, space, and

program semantics has to be minimised. Visor** supports temporal immediacy in

that user control against the views are instantly effected. This is due to the fact that

the post-mortem visualisation approach used by Visortf can give greater control to

the user. Visor** also provides support for sernantic immediacy. Sernantic immedi-

acy itself means that "the conceptual distance between semantically related pieces of

information is kept to a minimum" [131]. In Visor**, this translates into colour and

presentation consistencies (Section 4.4.3.1). Furthermore, relating similar information

on the views is also relatively easy, particularly through close linkage among the views,

and through the usage of auxiliary views. For example, obtaining further information,

or opening a new view takes only one or two mouse-clicks away. However, Visor** has

a drawback in terms of spatial immediacy. Spatial immediacy states that "the physical

distance between causally related events is kept to a minimum" [131]. In Visor**,

this drawback is caused by the wide separation among the views. Further research into

this area is, therefore, warranted.

Measurements in the experiments with Visor*-| also verifies the fact that program

instrumentation produces probe effects. This can be seen from the tables in Section 5.1.

The exact effects of such probes depend on the program being instrumented. However,

some measures have been taken in Visorf f to minimise them (Chapter 4). Observa-

tions have indicated that the additional amount of time needed by an instrumented

plogram as opposed to its un-instrumented version varies consistently between 70% to

47%. This is still acceptable, taking into account that the resulting gain in execution

time can be potentially much more than such perturbations. Even if this is not the

case, the use of Visor** can still facilitate better program design through refinement.

In other words, the refined program will, generally, perform better than its predeces-

sor. The final product is the associated un-instrumented program with better design

or performance.

The data presented in the tables are, in fact, measurements of the degree of tim-

ing effects, not synchronisation-error effects, induced by Visorf * instrumentation.

153



However, in some cases, Visor-f-l- can also be used to uncover synchronisation errors

(Section 5.1.4.1)2e. As shown by Gait [60], synchronisation-error effects may not be as

predictable as the timing effects. Hence, this chapter has not attempted to measure

these effects.

The experiments also uncover the fact that there are at least two types of infor-

mation which, if present, can make the tool more effective. The first is information

relating to the interleaving of thread execution. Source-code transformation, as used

in Visor*f, cannot capture such information during program execution. Having this

information would enable the tool to more accurately present information, for instance,

on how much time a particular thread is really idle, and how much blocking time is

incurred on a particular RPC.

The second type of information is that of data structures and their contents. This

is important for those programs which, on the greater part, manipulate different por-

tions of a piece of data concurrently by using the same method. In other words, the

information is important for data-parallel programs.

At the current stage of implementation, the types of information, as previously

described, cannot be captured solely through source-code transformation. Compiler

support, as in [13, 97], may be needed. A similar notion for the instrumentation of

data-parallel programs has also been noted by Reed [111].

All the above limitations could become the agenda for further fruitful study.

2elmplementation-1 of the electronic transaction system contains a synchronisation error

754



Chapter 6

Conclusions and Fbture Work

6.1 Summary

Applying software visualisation to task-parallel object-oriented programs poses inter-

esting questions. The reason is that, typically, such programs exhibit complex be-

haviour as a result of the complex interaction among the program entities. Such inter-

action is, among others, caused by concurrency and distribution.

With the exception of several tools, such as AIMS and TAU, many existing tools

only focus on a narrow selection of language features for visualisation. Observations

indicate that the breadth of such selection varies in inverse proportion to the number of

language features, and to the complexity of the language or programming environment

of the visualised programs. For example, tools for inherently "simpler" paradigms,

such as the sequential paradigm, use a wider selection of features for the associated

paradigm. On the other hand, the majority of the tools for message-passing parallel

programs, for instance, only focus on message exchanges.

'l'he approaches used by the tools, as indicated by the above "trend", are viable.

However, the reverse of the trend does not necessarily imply non-viability. Rather, a

wide selection of language features can be used. Furthermore, based on the selected

features, the visualisation can employ multiple coherent views depicting a visualised

program from multiple angles. In other words, the wide selection of the features are

visualised holistically. In such cases, the organisation of information to be displayed,

155



and how to display it, are of utmost importance. For the visualisation of dafu-parallel

object-oriented programs, this proposition iq exemplified by such tools as TAU. In such

tools, a wide selection of language features, including concurrency and distribution, are

visualised.

Perhaps, due to the complexity of task-parallel object-oriented programs, relatively

few, if any, tools have been designed for the visualisation of such programs. Apply-

ing the wide-selection approach to visualising task-parallel object-oriented programs,

therefore, poses an interesting challenge. This challenge is even greater, consider-

ing that the majority of programming languages do not provide support for produc-

ing the necessary visualisation. In other words, the majority of the languages are

"visualisation-unconscious", i.e. visualisation is an after-thought. This thesis presents

a framework with which visualisation of task-parallel object-oriented programs written

in visualisation-unconscious languages can be realised, particularly for those languages

derived from Cl*. The framework is embodied in the tool Visor**.

Visor** is tailored for the visualisation of CC++ programs. It covers a wide

selection of CC** features, including sequentiality (such as functions and objects),

concurrency (such as threads and atomic functions), and distribution (processor ob-

jects and RPCs). These features form the base on which the program visualisation is

produced.

To make the framework and implementation more portable, Visor** presupposes

three conditions. Firstly, the target language allows an instrumentation method which

can produce program traces that can depict program events and the relationships

among program elements. Secondly, the visualisation (including the necessary instru-

mentation) can be produced by working on the source-code level. In other words, no

low-lcvcl systcms cnvironmcnt (such as operating systems instrumentation) are nec-

essary. Finally, the target language employs the notion of guaranteed concurrency

(Section 4.6) in its constructs. The last condition is essentially a minor requirement,

but is nevertheless a desirable property.

The views in Visor*-l- are presented by using some strong principles, namely: layout

consistency and behavioural consistency (Section 4.4.3.1). To some degree, it also

156



exhibits the application of the immediacy principles [131], i.e. semantic and temporal

immediacy (Section 5.2.2). The provision of these views also revolves around program

source-code. In other words, Visor** employs source code transformations to generate

visualisation. This ensures greater portability of the concepts and implementation

to other similar platforms. Additionally, Visorf-l- provides the static, dynamic, and

auxiliary views of the proglams. Such a configuration and application of the above-

mentioned principles make Visor** easy to use for helping users understand and fine-

tune their programs. Experiments with the tool, as exemplified in Chapter 5, testify

to this statement.

As with other similar tools, Visor** also exhibit some (minor) limitations, particu-

larly for the instrumentation and the visualisation subsystems. In particular, Visorf f
produces some minor effects on the introduction of new scope regions and on the instru-

mentation methods for RPCs. Fortunately, both minor problems can easily be rectified

(Section 4.2.3.5 and Section 4.2.3.7). Second, Visor** is unable to instrument and

visualise data structure information (Section 4.5). Such capability may well be useful

for visualising data-parallel operations. Third, Visor*t also produces probe effects.

However, measurements indicate that these effects only account for an additional tim-

ing factor of consistently less than 50% of the original program timing (Section 5.2.2).

This, however, is relatively small, considering the gain in performance which can be ob-

tained. Furthermore, these effects are only present in the instrumented versions of the

programs. Fourth, the Visort* views admittedly still have to be improved to provide

better visual presentation. In particular, the views have some difficulties with spatial

immediacy (Section 5.2.2). Wide separations among different windows on the screen

could cause difficulty for users during visualisation. Fifth, Visor** provides automatic

visualisation without the need of user intervention. This is a desireable property. How-

ever, in some cases, customised visualisation may be more desireable. Visor** does

not provide customised visualisation in terms of instrumentation (Section 4.2.4) and vi-

sualisation (Section 4.5). In instrumentation, Visor** does not provide the capability

to control insertion and execution of instrumentation probes. In terms of visuaiisation,

it does not provide customised view construction. Given the complexity of concurrent

757



object-oriented systems, incorporation of the above constructs warrants further inves-

tigation. Finally, Visor** is effective for visualising small to medium-sized programs.

This does not represent the inherent technical limitation of the tool, but, rather, its

usage feasibility (Section 5.2.2). For visualising larger systems, the program may need

to be decomposed into smaller orthogonal subsystems, then visualised and tuned sep-

arately (Section 5.2.I).

6.2 Conclusions

Visor** embodies a unique approach in that it provides a framework for visualis-

ing task-parallel object-oriented programs written in languages based on Clf. The

approach is suitable for languages without (explicit) visualisation support.

For visualisation, Visor** uses a wide selection of program features as the basis.

Program events are then represented with a hierarchically structured views, which

encompass static, dynamic, and auxiliary views. This approach proves to be useful for

understanding, and subsequently fine-tuning users' programs.

In terms of the ideals as set out in Section 2.LI, Visor** is relatively portable

and extendible. The reason is that the Visor-l-* framework assumes only the minimal

source-code level capability of the language environment to produce visualisation. In

terms of technical feasibility, Visorf { is scalable, but in terms of usage feasibility, it is

only partial/y scalable, because it can effectively visualise only small to medium-sized

programs. Visor** also provides automatic visualisation without the need of user

intervention. The experience with Visor** shows that the visualisation, with minimal

probe effects, is effective for conducting program analysis.

6.3 Future 'Work

The Visor** framework can also be extended with additìonal capabilities. Such ex-

tensions are regarded as future work.

Ideally, the instrumentation subsystem is designed as part of the language system

158



design. In other words, the language is designed to be "visualisation-conscious" [97].

Another direction is to make the system more portable by using language-independent

visualisation. One such system has been developed in which source code is tagged

with language-independent markup code. The application of this method for the vi-

sualisation of source-code is described in [36]. The eligibility of such an approach for

visualising task-parallel object-oriented programs is yet to be studied.

Although probe effects can hardly be eliminated, their reduction is desirable. Probes

which are more light-weight must be designed. To make the visualisation more able to

accurately reflect the real program execution, the probe effects can be "eliminated" by

employing a probe-compensator. Using such an approach, timing delays due the execu-

tion of the probes are eliminated [61,89, 115, L16,142]. Other approaches, such as the

logical clock approach 127,,28], the event-ordering analysis [50], and adaptive dynamic

tracing [111] may also be adapted. Background processing load of the computers can

also be taken into account for more effective probe-effect analysis and elimination [142].

This especially applies to time-sharing systems such as UNIX.

The spatial immediacy of Visorf * views needs to be addressed. One method is to

provide intelligent support in the presentation and interpretation of views. Intelligent

agents 1f25, I40] and expert systems [87] can be used for this purpose. Spatial immedi-

acy can also be addressed through vertical expansion to include high-level algorithmic

views. Given the complex nature of task-parallel object-oriented programs, automatic

generation of such views is an interesting study.

Newly emerging paradigms, such as immersive environments, virtual reality, and

multimedia can also be used for visualisation [107, 112]. In such environments, mul-

timodal interfaces, such as sound, can enhance the presentation of the visualisation

[19, 58, 118]. Another merging trend is the use of the Internet as the platform for

visualisation. Some successful software visualisation has been constructed using the

Worid Wide Web technology 12I,34, 42,761. It is worth noting that the tool POLKA,

on which Visor** is built, is being ported to the Java language [52, 120]. Of interest,

the Nexus run-time system, on which CC++ is build, has also been implemented in

Java [57]. In short, both POLKA and Nexus use Java as a common platform. It would

159



be interesting to explore this platform commonality to provide a better visualisation

scheme than that currently implemented in Visor++.

As indicated in Section 6.1, customised visualisation, in terms of customised in-

strumentation and customised view construction, is another area worth investigating.

Customised instrumentation support is important for users to determine the constructs

to instrument and visualise. It also allows users to co control the amount of perturba-

tion during program execution [111]. By the same token, customised view construction

enables users to construct more meaningful views to cater to their own needs [77].

Finally, testing the framework of Visor*t by applying it to other systems and

performing a comparison among the visualisation of such systems can also be done.

It is interesting to note that the CC*-l- language (which is task-parallel) is currently

being merged with pC*f (which is data-parallel) into a new language HPC*+ [8]. It

would, therefore, also be interesting to study how the framework of Visorf* can be

applied to it.

160



Appendix A

An Instrumentation Example

This appendix contains the full source code of the master-slave program as described

in Section 5.1.1. It consists of three source files:

1. Slave.h. This file contains the definition of the slave processor object

2. Slave. cc++. This is the implementation of the slave processor object.

3. Master. cc++. This is the implementation of the master processor object

Both the original and the instrumented versions are included. It is to be noted that

the source files reproduced in this appendix are eractly those used in the experimenta-

tion. This example program is small. It is chosen as as an appendix precisely for this

reason. This, however, does not hamper the description of the major features of the

instrumentation subsystem.

For readability, the code in this appendix is reproduced with appropriate indenta-

tion and spacing.

,A..1 The Original Code

This section contains the original code of the program

161



1. Slave.h

#include (iostrean.h)

global class S1ave {
public:

S1aveO {}
void say-hi (int id);
-SIaveO {}

Ì;

2. Slave.cc++

#include "S1ave.h"

void Slave::say-hi (int id)
{

cout (( "Hello world from Processor Object #" << id << endl;

3. Master.cc++

#include(iostream. h)
#include "Slave.h"

int rnain (int argc, char **argv)
{

int P=atoi(argvtfl);

Slave *globa] G-slave h0l ;

parfor (int p=g ; p<P ; p++) {
proc-t placenent = proc-t("Slave.out",
G-slave[p] = new (placenent) Slave;
G-slave [pJ ->say-tri (p) ;

Ì

argv [z+pJ ) ;

for (int p=9 ; p<P ; p++) {
delete C-s1ave[pJ;

Ì

)

Ì
return 0;

r62



^.2 
The Instrumented Code

This section contains the instrumented version of the code in Section 4.1. Several

notes are relevant here.

o Firstly, the instrumented code is produced automatically by the instrumentation

subsystem of Visor**. Such instrumented code contains a number of macros (for

example: ANN_GL0BAL_CLASS_PRIVATE_MEMBER, and ANN_FP_GLoBAL_CLASS_PA-

RAM). When the macros are expanded, the code is exactly as that described in

Chapter 4.

o Secondly, some differences also exist between the methods as outlined in Sec-

tion 4.2 and the real implementation. For example, in the implementation, each

RPC is instrumented with a unique identifier which is used for the EV-RPC-MARK-

-START and EV-RPC-MARK-FINISH events. However, since such implementation

differences are of little importance, they are not described in the body of this

thesis.

o Thirdly, in addition to instrumenting user's code, the Visor** instrumentation

subsystem also adds code øs necessary. For example, if the user's code does not

contain a default constructor, one will be added and subsequently instrumented

to the final code. The copy constructors and the destructor, are also added as

needed.

The instrumented code is as follows.

1. Slave.h

#include "probe.h" // f le Id == 2

#include (iostream.h)

globa1 class Slave {
private:

ANN-GL OBAL- CLASS-PRIVATE-MEMBER ;

public:

163



virtual void Ann-delete (ANN-GL0BAL-CLASS-PARAM) {
ANN-GLO BAL-CLASS-ANN-DELETE-HEADER ;

this-)Slave : : -Slave O ;

Ì

public:
S1ave (const S1ave &other) {

ANN- GL O BAL-CLASS-COPY-CONSTRUCTOR-HEADER ;

Ì

public :

SlAVE (ANN-GLOBAL-CLASS-PARAM-DEFAULT) {
ANN-GL OBAL-CLASS-CONSTRUCTOR-HEADER ;
EntityProf iler Ann_FP (EV_GL0BAL_C0NSTRUCT0R_START,

ANN-FP-GLOBAL-CLASS-PARAM,
O, Ann-RPC-Marker, 2, S);

Ì
void say_hi (ANN_GL0BAL_CLASS_PARAM, int id) ;

-Slave O {
ANN-GLOBAL-CLASS-MEMBER-FUNCTÏ ON-HEADER ;

EntityProfiler Ann_FP (EV_GLoBAL_DESTRUCTOR_START,

ANN-FP-GLOBAL-CLASS-PARAM, 2,
Ann-RPC-Marker, 2, 7);

Ì;

2. Slave.cc++

#include "probe.h"
#include "Slave.h"

// P¡te rd == 1

void S1ave: :say_hi (ANN_GL0BAL_CLASS_PARAM, int id)
{

ANN- GL O BAL- CLASS -MEMBER-FUNCTI ON-HEADER ;

EntityProf iler Ann_FP (EV_GL0BAL_MEMBER_START,

ANN-FP-GLOBAL-CLASS-PARAM,

1, Ann-RPC-Marker, 1, g);
cout (( "Hello world from Processor Object #" << id (( endl

)

)

764



3. Master.cc++

#include "probe.h" // Y¡te Id == 0

#include (iostream.h)
#include "Slave.h"

int main (int argc, chart* argv)
{

EntityProfiler Ann_FP (EV_MAIN_START,

ANN- FP -MAI N-C ONSTRUCT-PARAM,

3, -1, 0, 4) ;

int P = atoi (argv tll ) ;

Slave ,tglobal G_slave t10] ;

/ /--- PARFOR-BLOCK START

Instr . synchronous _thread_b1 ock (EV_PARFoR_START,

Ann-Thread-Id, 0, g);
parfor (int p=9 ; p<P ; p++) {

IdType Ann-Parent-Id = Ann-Thread-Id;
IdType Ann-Thread-Id = fnstr.get-thread-idO ;

EntityProfiler Ann_FP (EV_PARF0R_THREAD_START,

Ann-Thread-Id, -1, -1, Ann-Parent-Id,
-t , -1, -1, -1, o, g);

proc-t placement = proc-t ("Slave.out", argv [2+pJ)

IdType Ann-RPC-Marker = Instr.get-RPC-markO ;

EntityProf iler Ann_FP (EV_RPC_MARK_START,

ANN-FP-RPC-MARKER-PARAM, O,

G-s1ave tpl = nerr (placement)
SlAVE (ANN-GLOBAL-CLASS-CALL-PARAM) ;

r1);

{
IdType Ann-RPC-Marker = Instr.get-RPC-markO ;

EntityProfiler Ann_FP (SV_npC_I,IARK_START,

ANN-FP-RPC-MARKER-PARAM, O, T2) ;

G_s1ave [pJ ->say_hi (ANN_GL0BAL_CLASS_CALL_PARAM, p) ;

Ì
)
Instr. synchronous_thread_block (EV_PARFoR_FINISH,

//----- 
'ARF'R-BL'.K 

FrNrs, ----1""-Thread-rd' 
o' r3);

{

Ì

165



Ì

for (int p=9 ; p<P ; p++) {
/ /----- Global-object delete -----
{

IdType Ann-RPC-Marker = Instr.get-RPC-markO ;

EntityProfiler Ann-FP (EV-RPC-MARK-START, Ann-Thread-Id,
-1, -1, -1, -1, -t, -1,
Ann-RPC-Marker, 0, f6) ;

G_slave [p] ->lnn_delete (ltrltrl-crogAL-cLASS-cALL-PARAM) ;

Ì
)

return 0 ;

166



Appendix B

Thansaction Subsystern Code

This appendix provides only the common skeletal code for Implementation-3 and

Implementation-4 of the experiments with the electronic transaction system (Sec-

tion 5.1.4). In particular, the skeleton includes the code for the following:

1. the transaction requests,

2. the stock and customer databases.

3. the business logic unit,

4. the transaction servers, and

5. the transaction resolution subsystem

Description of the code is also given as necessary

8.1 The Transaction Requests

As described in Section 5.1.4, intentions from buyers and sellers are translated by the

business logic unit into their associated transactions. In the system, a transaction

is defined as a 4-tuple of <Transaction-type, CustomerlD, StockID, Quantity).

The generic code of the transaction class is given in Figure 8.1.

767



class TransactionClass {

public:
TransactionClass (Id Transaction-type,

fd CustomerfD, Id StockID,
Numeric Quantity);

-TransactionClass O;

);

Figure B.l. Defi,nition of the transaction request class.

class CustomerDataBase {
private:

[some internal data & functions]

public:
CustomerDataBase O;
-CustomerDataBase O;
Id get-DbaseEntry (CustomerData cd) ;

Figure 8.2. The customer database class

8.2 The Stock and Customer Databases

The implementation of the customer databases (holding the data of buyers and sellers)

is straìghtforward. The databases are impiemented as a class (CustomerDataBase),

with the necessary functions to initialise, search, and update the databases, as shown

in Figure 8.2.

The implementation of the stock databases is a little different. The reason is that

the databases are also used by the transaction resolution subsystem to match buyers

and sellers. The code for the databases is given in Figure B.3.

)

168



class StockDataBase {
private:

[sone internal data & functions]

public:
StockDataBase
-StockDataBase

Ì;

o;
o;

/ / Use¿ by the BLU or trans-server to hold
// portíons of the stock database.
atomic void prepare-StockDataBase

(I¿ StockPartitionStart,
Id StockPartitionEnd,
Dbase &db);

/ / Usea by the transaction resolver to
// natct- a buyer r¡ith a seller, and vice versa.
atomic void do-transaction

(Id transaction-type, Id custourer-id,
Id stock-id, Numeric quantity,
TirneStanp t) ;

Figure 8.3. The stock database class

169



//--- The business logic unit
global class DBserver {

StockDataBase sdbt // stock/cornmodity
CustomerDataBase cdb; // buyers and sellers

public:
DBserver (
"DBserver

/ / to initialise the transaction servers
void init-TRservers (NodeName TRserver-NodeNames) ;

/ / fo translate intentions into transaction
// reqtests, and regulate the flow of information
void process-stream (Intention the-stream) ;

Ì;

Figure 8.4. Definition of the business logic unit

8.3 The Business Logic Unit

The business logic unit is responsible to regulate the flow of information between the

client and the transaction servers. In the implementation, it is implemented as a

processor object class (DBserver). The business logic unit, in turn, is also responsible

for creating and initialising other POs which represent the transaction servers.

Figure 8.4 is an outline of the code for the business logic unit in Implementation-

3. The code for Implementation-4 is similar, with some minor alterations.

8.4 The Transaction Servers

Transaction servers is responsible for matching potential buyers with potential sellers.

This matching is carried out by using a transaction resolution subsystem, which is

described in Section 8.5.

The transaction servers are initialised by the business logic unit through the func-

tion void DBserver: : init-TRservers (NodeName TRserver-NodeNames). The skele-

);
o;

170



globat class TRserver {
private:

[sone internal data & functions]

public:
TRserver (fa Uyfa, Id StockPartitionStart,

Id StockPartitionEnd) ;
-TRserver O;

// "to process a transaction request, i.e. to queue

// tne request into the transaction resolver.
// Later on, the trans-resolver will try to match
// potential buyers with sellers.
void process-tra¡sactiqn (TineStarnp t,

TransactionClass r);
Ì;

Figure 8.6. Definition of the transaction seruer

tal code for the transaction server is given in Figure B.5

El.5 The Transaction Resolution Subsystem

The transaction resolution subsystem is part of each transaction server. The subsystem

contains two queues: the seller queue and the buyer queue. Both priority queues are

used by the transaction servers to match buyers and sellers. The code is given in

Figure 8.6.

77r



class TimeStarnpedTrans-PriorityQ {
private:

ldeclarations for buyer & seIler queues]

public:

TimeStarnpedTrans-PriorityQ O ;
-TimeStampedTrans-PriorityQ ( )

/ / Catte¿ by TRserver: :process-transactionO to
/ / pttt a transaction request. The queue to be
// used is determined automatically by the systern,
/ / basea on the transaction type.
int enqueue-trans (Id TransTyp", Id Custumerld,

Id Stockld , Numeric Quantity,
TimeStamp t);

// Si-mi.tar to enqueue-transO, ttris function is
/ / cal-l-ed by TRserver: :process-transactionO whenever
// a bryer can be natched with a server, i.e.
// process-transactionO accesses both the seller
/ / and the buyer queues.
int dequeue-trans (Id &TransType, Id &Custumerld,

Id &Stockld , Numeric &Quantity,
TimeStamp &t);

Ì;

Figure 8.6. Definition of the transaction resolution subsystem.

772



Bibliography

[1] P.J. Asente, R.R. Swick, and J. McCormack. X Window System Toolkit: the

Complete Programmer's Guide and Specifi,cation. Digital Press, 1990.

12] P.Ashton. Algorithms of off-line clock synchronisation. Technical Report TR-
COSC 72195, Department of Computer Science, University of Canterbury, New
Zealand,, December 1 995.

[3] P. Ashton. The Amoeba Interaction Network Monitor - Initial Results. Tech-
nìcal Report TR-COSC 09/95, Department of Computer Science, University of
Canterbury, New Zealand, October 1995.

[4] R.A. Aydt. An Informal Guide to Using Pablo. Department of Computer Sci-

ence, University of Illinois at Urbana-Champaign, January 1995. Availabie from
ftp: f f www-pablo.cs.uiuc.edu/pub/Release/Documentation/PabloGuide.ps.Z.

[5] R. Baecker, C. DiGiano, and A. Marcus. Software Visualization for Debugging.
Communications of the ACM, a0@):aa-54, April 1997.

[6] R.M. Baecker and A. Marcus. Design Principles for the Enhanced Presentation of
Computer Program Source Text. In Proceedings of Human Factors in Computing
Systems (CHI'88), Washington D.C., pages 51 58. ACM Press, May 1988.

[7] T. Ball. Software Visualisation in the Large. IEEE Computer,2g@)ß3-a3, April
1996.

[8] P. Beckman, D. Gannon, and E. Johnson. Portable parallel programming in
HPC++. In H.J. Siegel, editor, Proceedings of the 1996 ICPP Worlcshop on
Challenges for Parallel Processing, pages 732-139.IEEE Computer Society Press,

Augustus 1996.

[9] A Beguelin, J. Dongarra, A. Geist, and V. Sunderam. Visualisation and De-
bugging in a Heterogeneous Environment. IEEE Cornputer,26(6):88 95, June
1993.

[10] A. Beguelin and E. Seligman. Causality-Preserving Timestamps in Distributed
Programs. Technical Report CMU-CS-93-I67, School of Computer Science,

Carnegie-Mellon University, 1993.

773



[11] B.N. Bershad, D. Lazowska, and H.M. Levy. PRtrSTO: A System for Object-
Oriented Parallel Programming. Softw(rre - Practice and Erperience,l8(8):713-
732, August 1988.

[12] H. Bocker, G. Fischer, and H. Nieper. The Enhancement of Understanding
through Visual Representations. In Proceedings of the Computer Human In-
teraction, 1986 Conference, Hurnan Factors in Computi,ng Systems - III, pages

44-50, 1986.

[13] F. Bodin. Implementing a Parallel C++ Runtime System for Scalable Paral-
lel Systems. In Proceedings of the Supercomputing'93 Conference in Portland,
Oregon, November 1993.

[14] F. Bodin, P. Beckman, D. Gannon, J. Gotwals, S. Narayana, S. Srinivas, and
B. Winnicka. Sagef *: An Object-Oriented Toolkit and Class Library for Build-
ing Fortran and C++ Restructuring Tools. In Proceedings of OONSI{I'L4, Ore-
gon, 1994.

[15] F. Bodin, P. Beckman, D. Gannon, S. Yang, S. Kesavan, A. Malony, and B. Mohr.
Implementing a Parallel C++ Runtime System for Scalable Parallel Systems. In
Proceedings of the 1993 Supercomputing Conference, Portland, Oregon, pages

588 597, 1993.

[16] G. Booch. Object-Oriented Analysis and Design wi,th Applications. Addison-
Wesley Longman, Inc., Reading, Massachusetts, second edition, 1994.

[17] D. Brown, S. Hackstadt, A. Malony, and A. Malony. Program Analysis Environ-
ments for Parallel Language Systems: The TAU Environment. In Proceedings of
the ?nd Workshop on Enuironments and Tools for Parallel Scientific Computing,
Townsend, Tennessee, USA, pages I62-77L, 7994.

[18] M.H. Brown. Zeus: A System for Algorithm Animation and Multi-View trditing.
Technical Report 75, Systems Research Center, Digital Equipment Corporation,
February 1992.

[19] M.H. Brown and J. Hershberger. Colour and Sound in Algorithm Animation.
Technical Report 76a, The Systems Research Centre, Digital Equipment Corpo-
ration, Palo Alto, California, August 1991.

[20] M.H. Brown, B.A. Myers, and E.P. Glinert. Introduction to Visual Program-
ming Enuironment. ACM Press, New York, 1989. ACM SIGGRAPH '89 course
notes/SIGGRAPH '89.

[21] M.H. Brown and M.A. Najork. Collaborative Active Textbooks: A Web-Based
Algorithm Animation System for an Electronic Classroom. Technical Report
I42, The Systems Research Centre, Digital Equipment Corporation, Palo Alto,
California, May 1996.

t74



[22] M.H. Brown and R. Sedgewick. A System for Algorithm Animation. Computer
Graphics, 18(3) :177-186, July 1984.

[23] P.A. Buhr, G. Ditchfield, R.A. Stroobosscher, B.M. Younger, and C.R. Zarnke.
pc++t Concurrency in the Object-Oriented Language C++. Software - Prac-
tice and Erperience, 22(2):137-172, February 1992.

[24] P.A. Buhr and M. Karsten. ¡tC++ Monitoring, Visualisati,on and Debugging,
Annotated Reference Manual, Prelimi,nary Draft. Department of Computer Sci-
ence, University of Waterloo, Waterloo, Canada, version 1.1 edition, December
1996. Also available from ftp://plg.uwaterloo.ca/pub/MVD/Visualization.ps.gz.

[25] P.A. Buhr, M. Karsten, and S. Jun. I{DB: Concurrent Debugger, Reference
Manual. Department of Computer Science, University of Waterloo, Waterloo,
Canada, version 1.1 edition, February 1997. Also available from ftp://plg.uwa-
terloo. ca/pub/MVD /KDB.ps.gz.

[26] P.A. Buhr and R.A. Stroobosscher. ¡"rC++ Annotated Reference Manual, Ver-
sion /¡.1. Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada, N2L 3G1, September 1995. Technical report unnumbered,
available from ftp : / /plg.uwaterloo. ca/pub/uSystem/uC + +.ps. gz.

[27] W.T. Cai and S.J. Turner. Process Scheduling and Program Monitoring on
Transputers. In S. Atkins ancl A.S. Wagner, editors, Transputer Research and
Applicati,ons, NATUG-6, Proceedings of the 6th Conference of the North Ameri-
can Transputer Users Group, pages 290-305. IOS Press, 1993.

[28] W.T. Cai and S.J. Turner. An Approach to the Run-Time Monitoring of Parallel
Programs. The Computer Journal, 37(4):333-345, 1994.

[29] M. Calzarossa, L. Massari, A. Merlo, M. Pantano, and D. Tessera. Medea: A Tool
for Workload Characterisation of Parallel Systems. IEEE Parallel and Distributed
Technology, 3(4):72-80, 1995.

[30] P. Carlin, K.M. Chandy, and C. Kesselman. The Compositional C** Language
Definition. Technical Report CS-TR-92-02, Department of Computer Science,
California Insitute of Technology, Pasadena, California, 1993.

[31] J.M. Carroll and J.R. Olson. Mental Models in Human-Computer Interaction.
In M. Ilelander, editor, Ilandbook of IIun"ran-Con'tputer Interactiotz, chapter 2,

pages 45-65. Elsevier Science Publishers 8.V., North-Holland, 1990.

[32] CC++ Designer Team. CC++ Tutorial. Department of Computer Science,

California Insitute of Technology, Pasadena, California, 1994.

[33] K.M. Chandy and C. Kesselman. CC++: A Declarative Concurrent Object-
Oriented Programming Notation. In G. Agha, P. Wegner, and A. Yonezawa,
editors, Research Directions in Concurrent Object-Oriented Programming, chap-
ter 11, pages 282-313. The MIT Press, Cambridge, Massachusetts, 1993.

775



[34] P. Chen. Data Generation and Data Visualization Using Different Platform Com-
puters in the World Wide Web Environment. In Proceedings of the Conference of
Visual Data Erploration and Analysis IV, IS€íT/SPIE Syrnposi,um on Electronic
Imaging: Science and Technology, San Jose, California, February 1997, pages
2-13, San Jose, California, February 1997.

[35] A.A. Chien, U.S. Reddy, J. Plevyak, and J. Dolby. ICC++ - A C++ Dialect for
High Performance Parallel Computing. In K. Futatsugi and S. Matsuoka, editors,
Proceedings of the ?nd International Symposium on Object Technologies for Ad-
uanced Software, I(anazawa, Japan, March 1996, pages 76-95,, Berlin, Germany,
March 1996. Springer-Verlag.

[36] J.H. Cross and T.D. Hendrix. Language Independent Program Visualisation.
In P. Eades and K. Zhang, editors, Software Visualisation, pages 27 45. World
Scientific Publishings Co Pte. Ltd., Singapore, 1996.

[37] B.A. Delagi, N.P. Saraiya, and S. Nishimura. Monitoring Concurrent Object-
Based Programs. In G. Agha, P. Wegner, and A. Yonezawa, editors, Research
Directions in Concurrent Object-Oriented Programming, chapter 15, pages 479-
509. The MIT Press, Cambridge, Massachusetts, 1993.

[38] Department of Computer Science, California Institute of Technology. Summary
of Workshop on Parallel Programming in C++, June 1993. Available from
http : f f cs. caltech. edu f comp f p ap ers / cppworkshop / cppworkshop. tex.

[39] W. DePauw, R. Helm, D. Kimelman, and J. Vlissides. Visualising the Behaviour
of Object-Oriented Systems. AC M S I G PLA N Notices, 28(10) :326 -337,453-454,
October 1993.

[40] W. DePauw, D. Kimelman, and J. Vlissides. Modeling Object-Oriented Pro-
gram Execution. Proceedings of the 9th European Conference on Object-Oriented
Programming 1991, pages 163-182, July 1994.

[41] K. Dincer and G.C. Fox. Using Java and JavaScript in the Virtual Programming
Laboratory: a Web-based Parallel Programming Environment. Concurrency:
Practi,ce and Erperience, 9(6):aS5-508, June 1997.

142] J. Domingue and P. Mulholland. Fostering Debugging Communities on the Web.
Communications of the ACM, a0@):65-71, April 1997.

[43] T.H. Dunigan. Hypercube Clock Synchronisation. Concurrency: Practice and
Erperience, 4(3):257-268, May 1992.

[44] M. Eìsenstadt and M. Brayshaw. The Transparent Prolog Machine (TPM): An
Execution Model and Graphical Debugger for Logic Programming. Technical
Report 21, Human Cognition Research Laboratory, The Open University, Milton
Keynes, MK7 6AA, UK, 1986.

776



[45] S. Ellershaw and M.J. Oudshoorn. Program Visualisation - The State of the
Art. Technical Report TR94-19, Department of Computer Science, University of
Adelaide, November 1994.

[46] M.A. trllis and B. Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley Publishing Company, Reading, Massachusetts, 1990. ANSI Base Docu-
ment.

[47] R.F. Erbacher. Visual Debugging of Data and Operations for Concurrent Pro-
grams. In Proceedings of the Conference of Visual Data Erploration and Analysis
IV, IS€iT/SPIE Symposium on Electronic Imaging: Science and Technology, San
Jose, California, February L997, pages 120-728, San Jose, California, February
1997.

[48] C.H. Ferguson. Multiview: An Integrated Approach to Visualisation of Parallel
Programs. Technical Report UCS C-CRL-90-20, Computer Research Laboratory,
University of California at Santa Cntz, May 1990.

[49] C.J. Fidge. Dynam,ic Analysi,s of Euent Orderings i,n Message-Passing Systems.
PhD thesis, Department of Computer Science, The Australian National Univer-
sity, March 1989.

[50] C.J. Fidge. Logical Time in Distributed Computing Systems. IEEE Computer,
2a$):28-33, August 1991.

[51] V. Fix, S. Wiedenbeck, and J. Scholtz. Mental Representations of Programs by
Novices and Experts. In S. Ashlund, K. Mullet, A. Henderson, tr. Hollnagel, and
T. White, editors, Proceedings of the Conference on Human Factors in Comput-
ing Systems, INTERACT'93 and CHI'93, The Netherlands, pages 74-79. ACM,
April 1993.

[52] D. Flanagan. Jaua in a Nutshell. O'Reilly & Associates, 2nd edition, May 1997.

[53] I. Foster. Designing and Building Parallel Programs. Prentice-Hali Publishing
Company, 1st edition, 1995.

[54] I. Foster, J. Garnett, and S. Tuecke. Nexus User's Guide, August 1994. Available
from ftp : / /ftp.mcs. anl. gov/pub/nexus /reports/nexus iguide-v2. 0.ps.Z.

[55] I. Foster, C. Kesselman, R. Olson, and S. Tuecke. Nexus: An Interoperability
Layer for Parallel and Distributed Computer Systems, August 1994. Available
from ftp: //ftp.mcs. anl.gov/pub/nexus/reports/nexus-spec-v2. 0 .ps.Z.

[56] L Foster, C. Kesselman, and S. Tuecke. Nexus: Runtime Support for Task-
Parallel Programming Languages. Available from ftp://ftp.mcs.an1.gov/pub/-
nexus/reports /nexus -paper. ps. Z.

[57] I. Foster, G.K. Thiruvathukal, and S. Tuecke. Technologies for Ubiquitous Super-
computing: a Java Interface to the Nexus Communication System. Concurrency:
Practice and Erperience, 9(6):a65-475, June 1997.

177



158] J.M. Francioni and J.A. Jackson. Breaking the Silence: Auralisation of Parallel
Program Behaviour. Journal of Parallel and Distributed Computing, 18:181-194,
1993.

[59] C. Fry. Programming on an Already Full Brain. Communications of the ACM,
a0(a):55-64, April 1997.

[60] J. Gait. A Probe Effect in Concurrent Programs. Software - Practice and
Erperience, 16(3) :2252-2330, 1 986.

[61] J.A. Gannon, K.J. Williams, M.S. Andersland, T.L. Casavant, and J.E. Lumpp.
Trace recovery in multi-processing systems: architectural considerations. In Pro-
ceedings of the 1991 International Conference on Parallel Processing, St. Charles,
Illinois, volume II, pages 97 101, August 1994.

[62] E.R. Gansner, S.C. North, and K.P. Vo. DAG - A Program that Draws Directed
Graphs. Software - Practice and Erperience, 18(11):1047-7062, November 1988.

[63] J. Garnett, May 1996. Private communication.

[64] N.H. Gehani and W.D. Roome. Concurrent C++: Concurrent Programming with
Class(es). Software - Practice and Erperience, 18(12):1157-1177, December
1988.

[65] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Parallel Vi,rtual Machine, A User's Guide and Tutorial for Networlced
Parallel Computing. The MIT Press, 1994.

[66] G.A. Geist, M.T. Heath, B.\ /. Peyton, and P.H. Worley. A User's Guide to PICL,
A Portable Instrumented Communication Library. Technical Report ORNL/TM-
11616, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Math-
ematical Sciences Section, Oak Ridge, Tennessee, USA, October 1990.

[67] M.M. Gorman. Enterprise Database in a Client/Seruer Enuironmenú. John Wiley
& Sons, Inc., New York, 1994.

[68] A.S. Grimshaw. An Introduction to Parallel Object-Oriented Programming with
Mentat. Technical Report TR-91-07, Department of Computer Science, Univer-
sity of Virginia, April 1991.

[69] M.T. Heath and J.A. Etheridge. Visualising the Performance of Parallel Pro-
grams. IEEE Software, 8(9):29-39, September 1991.

[70] M.T. Heath, A.D. Malony, and D.T. Rover. Parallel Performance Visualisation:
From Practice to Theory. IEEE Parallel and Distributed Technology, S(4):44 60,
1995.

[71] M.T. Heath, A.D. Malony, and D.T. Rover. The Visual Display of Parallcl
Performance Data. I E E E C omputer, 28(lI) :2I-28, November 1 995.

178



[72] D. Heller. Motif Programrning Manual for OSF/Motif Version -1.-1, volume six.
O'Reilly and Associates, Inc., 1991.

[73] D.P. Helmbold, C.tr. McDoweli, and J.Z. Wang. TraceViewer: A Graphical
Browser for Trace Analysis. Technical Report UCSC-CRL-90-59, University of
California at Santa Cntz, California, October 1990.

[74] W.L. Hibbard, B.E. Paul, D.A. Santek, C.R. Dyer, A.L. Battaiola, and M.F.
Voidrot-Martinez. Interactive Visualisation of Earth and Space Science Compu-
tations. IEEE Computer, 27(7):65-72, Júy 1994.

[75] M. Hsu, September 1996. Private communication.

[76] B. Ibrahim. World Wide Algorithm Animation. Available from http://www.-
oac. uci. edu f indiv f fr anklin/ do c / ibrahim /paper. html.

[77] KGT Inc. AVS/trxpress Viz: The Leading Multi-Platform Visualisation So-
lution for Scientific, Technical and Commercial Applications. Available from
http : I I tit an. kgt . co.j p I av s I Y iz I viz -e. htm.

[78] S. Isoda, T. Shimomura, and Y. Ono. VIPS: A Visual Debugger. IEEE Software,
4(3):8-19, May 1987.

[79] D.F. Jerding and J.T. Stasko. Using Visualisation to Foster Object-Oriented
Understanding. Technical Report GIT-GVU-94-33, Graphics, Visualisation and
Usability Centre, College of Computing, Georgia Institute of Technology, July
7994.

[80] M.F. Kleyn and P.C. Gingrich. GraphTrace - Understanding Object-Oriented
Systems Using Concurrently Animated Views. In Proceedings of Object-Oriented
Programming Systems, Languages, and Applications OOPSLA 1988, pages 191-
205, September 1988.

[81] J.A. Kohl and G.A. Geist. The PVM 3.4 Tracing Faciiity and XPVM 1.1. In
H. El-Rewini and B.D. Shriver, editors, Proceed'ings of the Twenty-Ninth Hawaii
International Conference on System Sciences, uol.1, pages 290-299, 1996.

[82] tr. Kraemer and J.T. Stasko. The Visualisation of Parallel Systems: An Overview.
Journal of Parallel and Distributed Computing, 18:105-117,1993.

[83] D. Kranzlmüller, S. Grabner, and J. Volkert. Program Analysis through Visuali-
sation. In P. Eades and K.Zhang, editors, Software Visualisation, pages 183-202.
World Scientific Publishings Co Pte. Ltd., Singapore, 1996.

[84] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Commun'ications of the ACM,21(7):558-565, July 1978.

179



[S5] D.A. Lane. Visualisation of Numerical Unsteady Fluid Flows. Technical Re-
port NAS-95-017, Computer Sciences Corporation, NASA Ames Research Cen-
tre, Moffett Field, California, 1995. Available from http:f fwww.nas.nasa.-
gov/NAS /TechReports/ NASreports/NA S950 1 7.html.

[36] T. Lehr, Z. Segall, D.F. Vrsalovic, E. Caplan, A.L. Chung, and C.tr. Fineman.
Visualising Performance Debugging. IEEE Computer, 22(10):38-51, October
1989.

[87] K.C. Li and K. Zhang. A Performance Advicer for the Development of Parallel
Programs. International Journal of High Speed Computing, 8(8):658-669, 1995.

[SS] T. Lin and P. Eades. Layout Creation Methods for Software Visualisation. In
P. Eades and K. Zhang, editors, Software Visualisation, pages 61-82. World
Scientific Publishings Co Pte. Ltd., Singapore, 1996.

[S9] J.tr. Lumpp, T.L. Casavant, J.A. Gannon, K.J. Williams, and M.S. Anders-
land. Trace Recovery for Debugging Parallel and Distributed Systems. The ?rd
ACM/ONR Workshop on Parallel and Distributed Debugging, San Diego, pages

208 210,, May 1993.

[90] P. Lyons, C. Simmons, and M. Apperley. Hyperpascal: A Visual Language to
Model Idea Space. ln Proceedings of the 13th New Zealand Cornputer Society
Conference, pages 492-508, New Zealand, August 1993.

[91] A.D. Malony, D.H. Hammerslag, and D.J. Jablonowski. Traceview: A Trace
Visualisation Tool. IEEE Software, 8(9):19-28, September 1991.

[92] G. Marwaha and K. Zhang. Parallel Program Visualisation for a Message-Passing

System. In Proceedings of the 13th Annual IEEE International Conference on

Computers and Communications, Phoenir, USA, pages 200-205. IEEE Press,

April 1994.

[93] D. Mclntyre. Comp.Lang.Visual - Frequently-Asked Questions (FAQ) List. The
Internet Newsgroup comp.lang.visual, April 1996. Updated weekly.

[94] S. Meyers. Effectiue C++. Addison-Wesley Publishing Company, Reading, Mas-
sachusetts, 1992.

[95] G. Miller. The Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information. Th,e Psychological Reuiew,63:81-97, March
1956.

[96] B. Mohr. A portable dynamic profiler for c** based languages. Available from
ltp : I I ftp.extreme.indiana. edu/pub/ sage/instr.ps. gz, September 1 993.

[97] B. Mohr, D. Brown, and A. Malony. TAU: A Portable Parallel Program Analysis
Environment for pCl*. In B. Buchberger and J. Volkert, editors, Lecture Notes
in Computer Science, uolume 85f , Proceedings of the Internati,onal Conference

180



Ies]

Iee]

[1oo]

[101]

on Vector and Parallel Processing, CONPAR'?4, pages 29-40. Springer-Verlag;
Berlin, Germany, 1994.

B. Mohr, A. Malony, and K. Shanmugam. Speedy: An Integrated Performance
Extrapolation Tool for pC** Programs. In H. Beilner and F. Bause, editors,
Proceedings of the Joint Conference PERFORMANCE TOOLS'95 and MMB'95,
20-22 September 1995, Heidelberg, Germany, pages 254-268. Springer-Verlag,
Berlin, Germany, 1995.

G.M. Murch. Physiological Principles for the Effective Use of Colour. IEEE
Computer Graphics and Applications, a(11):a9-54, November 1984.

B. Nichols, D. Buttlar, and J.P. Farrell. Pthreads Programming, A POSß Stan-
dard for Better Multiprocessing. O'Reilly and Associates, Inc., 1996.

O. Nierstrasz. Composing Active Objects. In G. Agha, P. Wegner, and
A. Yonezawa, editors, Research Directions in Concurrent Object-Oriented Pro-
gramrning, chapter 5, pages 151-171. The MIT Press, Cambridge, Massachusetts,
1993.

J. Oliver. Introduction to the X Window System. Prentice Hall, 1989.

M.J. Oudshoorn, H.W. Widjaja, and S.K. Ellershaw. Aspects and Taxonomy of
Program Visualisation. In P. Eades and K. Zhang, editors, Software Visualisa-
tion, pages 3-26. World Scientific Publishings Co Pte. Ltd., Singapore, 1996.

C.M. Pancake, M.L. Simmons, and J.C. Yan. Performance Evaluation Tools for
Parallel and Distributed Systems. IEEE Computer, 28(11):16-19, 1995.

C.M. Pancake and S. Utter. A Bibliography of Parallel Debuggers, 1990 Edition.
SIG PLAN Notices, 26(l):21-37, January 1991.

N. Pennington. Stimulus Structures and Mental Representations in Expert Com-
prehension of Computer Programs. Cognitiue Psychology, 79:295-341, 1987.

L.D.S. Perry, C.M. Smith, and S. Yang. Current Virtual Reality Interfaces.
CROSSROADS, The ACM Student Magazine, pages 23-28,1997. Spring edition.

P.A. Pierce. A Concurrent File System for a Highly Parallel Mass Storage Sub-
system. In Proceedi,ngs of the Fourth Con.ference on Hypercubes, Concurrent
Computers and Applications (Monterey, California),pages 459-467. Association
for Computing Machinery, May 1989.

B.A. Price, R.M. Baecker, and I.S. Small. A Principled Taxonomy of Software Vi-
sualisation. Journal of Visual Languages and Computing, aQ):2lI-266, Septem-
ber 1993.

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[10e]

[110] P. Ramanathan, G.S. Kang, and R.W. Butler. Fault-Tolerant Clock Synchroni-
sation in Distributed Systems. IEEE Computer,2S:33-42, 1990.

181



[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[11e]

[120]

[121]

lr22l

[123]

lr24l

D.A. Reed. Performance Instrumentation Techniques for Parallel Systems. In
L. Donatiello and R. Nelson, editors, Lecture Notes i,n Computer Science, LNCS
uolume 729, pages 463-490. Springer-Verlag, 1993.

D.A. Reed, K.A. Shields, W.H. Scullin, L.F. Tavera, and C.L. Elford. Virtual
Reality and Parallel Systems Performance Analysis. IEEE Computer,28(11):57-
67, November 1995.

G. Roman and K.C. Cox. Program Visualisation: The Art of Mapping Programs
to Pictures. In Proceedings of the llth International Conference on Software
Engineering, Melbourne, Australiø, pages 412-420, May 1992.

S.R. Sarukkai and D. Gannon. SIEVtr: A Performance Debugging Environment
for Parallel Programs. Journal of Parallel and Distributed Computing, 18:747-
168, 1993.

S.R. Sarukkai and A.D. Malony. Perturbation Analysis of High Level Instrumen-
tation for SPMD Programs. SIGPLAN Notices,2S(7):aa-53, July 1993.

T.tr. Scheetz,T.A,. Braun, and T.L. Casavant. Effectiveness of Software Trace
Recovery Techniques for Current Parallel Architectures. ln Proceedings of the
1995 International Conference on Hi,gh-Performance Computing, New Delhi, In-
dia,7995. To appear.

T. Shimomura and S. Isoda. Linked-List Visualisation for Debugging. IEEE
Software, 8(3):a -51, May 1991.

C.M. Smith. Human Factors in Haptic Interfaces. CROSSROADS, The ACM
Student Magazine, pages L4-16, 1997. Spring edition.

D. Socha, M.L. Bailey, and D. Notkin. Voyeur: Graphical Views of Parallel
Programs. ACM SIGPLAN Notices,, 2aQ):206-215, January 1988. Proceedings
of the Workshop on Parallel and Distributed Debugging.

J. Stasko, February 1997. Private communication.

J.T. Stasko. POLKA Animation Designer's Package, August 1995. Available
from ftp : / f ftp . cc. gatech. edu /pub /people/ st asko / polka.ï ar .Z.

J.T. Stasko and E. Kraemer. A Methodology for Building Application-Specific
Visualisations of Parallel Programs. Journal of Parallel and Distributed Comput-
ing,18258-264, 1993.

M.D. Storey, H.A. Müller, and K. Wong. Manipulating and Documenting Soft-
ware Structures. In P. Eades and K. Zhang, editors, Software Visualisation, pages

244-263. World Scientific Publishings Co Pte. Ltd., Singapore, 1996.

B. Stroustroup. The C++ Programming Language. Addison-Wesley Publishing
Company, Reading, Massachusetts, second edition, 1993.

t82



[125]

[126]

lr27l

[12s]

[12e]

[130]

[131]

[132]

[133]

[134]

K. Sycara, K. Decker, A. Pannu, M. Williamson, and D. Zeng. Distributed
Intelligent Agents. IEEE Erpert,11(6), 1996.

A.S. Tanenbaum. Modern Operating Systems. Prentice-Hall Publishing Company,
Englewood Cliffs, N.J, 1992.

D. Taylor and P.A. Buhr. POET with p,C++, Reference Manual. Department
of Computer Science, University of Waterloo, Waterloo, Canada, February 1997.

Also available from ftp: I I plg.rwaterioo.ca/pub/MVD/Poet.ps.gz.

The Nexus Development Team. Nexus source code. Available from ftp:/ fltp-
mcs. anl. gov/pub /nexus.

K. Tödter and C. Hammer. PARC**: A Parallel C++. Software - Practice
and Erperience, 25(6):623-636, June 1995.

S. Tuecke, October 1996. Private communication.

D. Ungar, H. Lieberman, and C. Fry. Debugging and the Experience of Immedi-
acy. Communications of the ACM,, a0(a):38-a3, April 1997.

J.Y. Vion-Dury and M. Santana. Virtual Images: Interactive Visualisation of Dis-
tributed Object-Oriented Systems. ACM SIGPLAN Notices,2g(10):65 84, Oc-
tober 1994. Proceedings of Object-Oriented Programming Systems, Languages,
and Applications 1994.

A. West. Making a Case for Animating Cf* Programs. Dr. Dobb's Journal,
19(11):5a-60, October 7994.

H. Widjaja and M.J. Oudshoorn. Devising a Program Visualisation Tool for Con-
current and Object-Oriented Programs: A Survey. Technical Report TR95-14,
Department of Computer Science, University of Adelaide, Australia, December
1995.

[135] H. Widjaja and M.J. Oudshoorn. Visualisation of Concurrent and Object-
Oriented Systems. In Proceedings of the Eighth International Conference on Com-
puting and Information (ICCI'96), Uniuersity of Waterloo, Waterloo, Canada,
pages 518-535, Waterloo, Canada, June 1996.

[136] H. Widjaja and M.J. Oudshoorn. Concurrent Ob.ject-Oriented Programming

- A Visualisation Challenge. In Proceedings of the Conference of Visual Data
Erploration and Analysis IV, IS€jT/SPIE Symposium on Electronic Imaging:
Science and Technology, San Jose, California, February 1997, pages 310-321,
San Jose, California, February 1997.

[137] H. Widjaja and M.J. Oudshoorn. Design and Use of a Visualisation Tool for
Concurrent Object-Oriented Programs. Technical Report TR97-08, Department
of Computer Science, University of Adelaide, Australia, September 1997.

183



[138]

[13e]

[140]

[141]

lL42l

[143]

.1441

[145]

[146]

N. Wirth. Algorithms i Data Structures : Programs. Prentice-Hall, Inc., En-
glewood Cliffs, New Jersey,7976.

L.D. Wittie. Debugging Distributed C Programs by Real. Time Replay. ACM
SIGPLAN Notices,2a$):57-67, January 1989. Proceedings of the ACM SIG-
PLAN and SIGOPS Workshop on Parallel and Distributed Debugging.

M. Wooldridge and N.R. Jennings. Intelligent Agents: Theory and Practice. The

I{nowledge Engineering Reuiew, 10(2):115-152, 1995.

P. Wright, D. Mosser-Wooley, and B. Wooley. Using Colour in Computer In-
terface Design. CROSSROADS, The ACM Student Magazine, pages 3-6, 1997.

Spring edition.

J. Yan, S. Sarukkai, and P. Mehra. Performance Measurement, Visualisation
and Modelling of Parallel and Distributed Programs using the AIMS Toolkit.
Software - Practice and Erperience,2S(4):429-461, April 1995.

A. Zeller and Lütkehaus. DDD - A Free Graphical Front-End for UNIX Debug-
gers. ACM SIGPLAN Notices, ST(I):22-27, January 1996. Also available from
ltp : I I ftp.ip s. cs. tu-b s. de/ pub / local / softech f pap er s f tr- 9 5- 0 7. p s. gz.

D. Zernik, M. Snir, and D. Malki. Using Visualisation Tools to Understand
Concurrency. IEEE Software, 9(3):87-92, May 1992.

Q.A. Zhao and J.T. Stasko. Visualising the Execution of Thread-based Paral-
lel Programs. Technical Report GIT-GVU-95-01, Graphics, Visualisation and

Usability Centre, College of Computing, Georgia Institute of Technology, 1995.

G. Zukav. The Dancing Wu Li Masters. Rider Books, London, 1995.

184




