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SUMMARY

Populations in industrialised countries are living longer. One aspect of the

proposed theories of the human ageing process relates to alterations in the

microvasculature. Vascular permeability, which is directly proportional to

changes in the ultrastructural dimensions of endothelialjunctional complexes

(Bundgaard, 1988), decreases with ageing (Hruza, 1977). An increased

number of endothelialjunction tight regions correlates with a reduction in

permeability of microvessels (Rippe and Haraldsson, 1994). Therefore, any

changes in the number and distribution of tight junctions in the microvascular

bed endothelium may indicate alterations in vascular permeability with ageing

and an effect on orthodontic tooth movement. Any such data from animals

would be of value for initial extrapolation to humans.

The general aim of the present study was to investigate the effects of ageing

on the morphology of periodontal ligament (PDL) endothelialjunctions. The

null hypothesis to be tested was that no changes occur in proportions of 'tight'

and'close' regions, and the dimensions of endothelialjunctions in the

microvascular bed of aged mouse PDL.

Tissue specimens used in the present study were from Freezer's (1984) and

Sims' (1987) studies and consisted of molar PDL from four young (35 days)

and four aged (365 days) AlOA-strain mice. Anaesthetised mice were

perfused with 5.6% glutaraldehyde and 0.9% osmium tetroxide WA/ solution

in cacodylate buffer. The right and left mandibular first molars and their bony

sockets were dissected en block. The tissue blocks were demineralised at

4'C with 0.1M EDTA in 2.5/" glutaraldehyde and embedded in resin. The

mesiobuccal portion of the PDL was sectioned parallelto the occlusal plane

from the alveolar crest to the tooth apex. Sections were collected at 160 pm

intervals resulting in 7 to 9 levels per root. Sections were stained and

processed for transmission electron microscopy (TEM).

The results of a pilot study showed that within the available PDL samples

there were only sufficient numbers of postcapillary-sized venules (PCV) for

analysis. Therefore, five PCV with one complete endothelialjunction were

selected from each level. These junctions were assessed and photographed

using a TEM goniometer to allow identification of the junction type, i.e., tight

or close junctions. Measurements of widths and lengths along the junctions



X

were completed on standardised micrographs magnified x150K, using a

Manual Optical Picture Analyser (MOP-3) and digital callipers. The junction

type and junction dimensions were analysed with a chi-square analysis and a

multiple regression technique, respectively, using GenstatTM 5, Release 3

(AFRC lnstitute of Arable Crops Research, Clarendon Press, Oxford, UK). A
value of p < 0.05 was taken as significant.

Analysis of the measurement error, using a paired t-test or Wilcoxon signed

rank test, indicated there was no significant difference between the

measurement at different time intervals. The coefficient of variation for the

measurements ranged from 1.8%lo 4.8/". The kappa coefficient was used

to test the precision in classification of tight and close regions between first

and second obseruations. This calculation yielded a measure of 1.00,

indicating that no significant differences were found between the first and

second classif icatio ns.

The types of junction found were: (1)junctions with tight regions, (2) junctions

with close regions, (3)junctions with tight and close regions, and (4)junctions

with no tight or close regions. No open or gap junctions were found. A chi-

square analysis showed that the junction types changed significantly with age

(p < 0.001). The percentage of tight regions was 1 4.1% + 3.5% higher in the

old mice. The percentages of close regions for young and old mice were

88.8% and74.7"/", and for tight regions 11 .2T" and 25.3y", respectively. The

aged mice had an increased proporlion of tight /close regions and greater

numbers of tight regions at every PDL level (p < 0.01). With respect to PDL

level (coronal to apical) effects, significantly (p . 0.05) higher numbers of tight

regions were found at the alveolar crest by comparison with the apex for each

age group. The majority of tight junctions (86.1% in young and 90.0% in old

mice) were located at the luminal third of the PCV endothelial wall (p < 0.05).

Close regions also were more common at the luminal third (66.7% in young

mice and 65.5% in old mice).

There was no effect of age on endothelialjunction length, thickness, or size.

For both groups, the junction length at level 160 pm was higher than other

PDL levels, but overall this effect was not significant. There was, however, a

significant (p < 0.05) effect of PDL level for young and old mice, on the

thickness of the PCV wall at the location of the endothelialjunction. An

increased wall thickness occurred from slightly above average at the alveolar
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crest, rising to a maximum at 160 pm and then steadily declining towards the

apex.

Junction width changed with age. The junction width a third of the distance

along the intercellular cleft from the luminal side of the PCV, at the apex of

the PDL, was (1) 3.6 nm + 0.88 nm wider (p < 0.05) in old mice, and (2)

increased significantly (p . 0.05) for young and old mice, from the 960 pm

PDL level to the apex. The junction width at the luminal entrance increased

significantly (p . 0.05) at the apex by comparison with the alveolar crest in

each age group. Age had no effect on the location of the junction region

between luminal and abluminal limits of the PCV endothelial wall. Junction

size did not change with PDL level (coronal to apical). Tight regions were 2.8

+ 2.4 nm shorter than close regions, but this difference was not statistically

significant.

There was no effect of age on either pericytic or apericytic PCV or PCV

diameter. A smaller (by 2.5 ¡rm) PCV diameter was found in the old mice

compared with the young mice, however, this difference was not significant.

In young and old mice, the major proportion of randomly assessed PCV were

apericytic. The number of pericytic PCV in each age group increased

significantly (p < 0.05), relative to the total number of PCV, at the alveolar

crest by comparison with the apex.

Significantly more (p < 0.05) PCV were found for each group in the PDL

circumferential bone third, with fewer in the middle third, and a minimum

number in the tooth third. ln aged mice, there was a significant increase

(p < 0.01) in the number of PCV located in the tooth third of the PDL, most of

which were apericytic PCV (p < 0.001). In the PDL middle circumferential

third halfway down the young mice PDL, the number of PCV decreased

significantly (p < 0.001).

ln the present study, the null hypothesis was rejected. The demonstration of

significant changes in the proportion of tight and close regions found may

lead to decreased permeability of the aged PDL microvasculature.

Endothelialjunction morphology and structural alterations of PCV in the PDL

of mice may represent functional modification of PDL microvasculature during

ageing. lonic tracer studies can assess permeability in aged PDL to confirm

this hypothesis. Assessment of the clinical significance of these changes is

required.




