BIOCHEMICAL ASPECTS OF SELF-INCOMPATIBILITY IN PETUNIA HYBRIDA.

by LOR-WAI TAN, B. Sc (Hon.)

A thesis submitted in fulfilment of the requirements for the degree of **Masters of Agricultural Science**

Department of Agricultural Biochemistry, Waite Agricultural Research Institute, The University of Adelaide. May, 1988.

PREFACE

Part of the work described in this thesis has been published or presented at scientific meetings as indicated below:

Incompatibility in cereal rye. L.W. Tan and Jackson, J.F. Proceedings of the Australian Biochemical Society **16**,22 (1986)

Self incompatibility in *Phalaris coerulescens*. L.W. Tan and Jackson,J.F. Abstracts Plant Molecular Biology Conference, University of Auckland, New Zealand **1**,2 (1987)

Stigma proteins of the two loci self-incompatible grass *Phalaris coerulescens*.L.W. Tan and Jackson, J.F.Sexual Plant Reproduction 1 (in press) 1988

ACKNOWLEDGEMENTS

I wish to thank Dr. Peter Langridge for advice throughout the course of this investigation. To Professor D.J.D. Nicholas I am eternally grateful for the friendly advice and suggestions in the preparation of this manuscript. I would like to thank Dr. J. F. Jackson for the supply of plant material used in this study.

I would also like to thank Drs. Margaret Sedgely and Sally Smith, Ms. Jan Nield, Ms. Rose Smith and Mr. Richard Batt for technical assistance at various stages of my studies.

The U.R.G. Scholarship awarded by the University of Adelaide is duly acknowledged.

To Russell I am grateful for his culinary delights at the time of preparation of this manuscript.

Finally to my constant but quiet companion Andrew Lloyd-Webber, thanks for being there.

DECLARATION

I hereby declare that this thesis contains no material which has been accepted for the award of any other degree or diploma in any university. To the best of my knowledge and belief, no material described herein has been previously published or written by another person except when due reference is made in the text.

This thesis may **not** be loaned for the purpose of photocopying or used in any form for publications unless expressed permission is given by the author.

Lor-wai TAN

LIST OF ABBREVIATIONS

bluscrb	plasmid vector bluescribe
bp	base pair
cDNA	complementary deoxyribose nucleic acid
2,4-D	2,4-dichlorophenoxyacetic acid
dATP	deoxyadenine triphosphate
dCTP	deoxycytidine triphosphate
dGTP	deoxyguanidine triphosphate
dTTP	deoxythymidine triphosphate
EDTA	ethylenediamine tetra acetic acid
IAA	indole-3-acetic acid
IEF	isoelectric focusing
IPTG	isoproplythiogalactoside
kinetin	N-furfurylaminopurine
mRNA	messenger ribonucleic acid
NAA	α -naphthalene acetic acid
PMSF	phenyl methyl sulphonyl fluoride
SDS	sodium dodecyl sulphate
Tris	2-amino-2-hydroxyl methyl amino methane

X-gal

5-bromo-4-chloro-3-indonylgalactopyranoside

UNITS AND SYMBOLS

oC	degree Celsius
Ci	curie
g	unit of gravitational force
gm	gram
h	hour(s)
kda	kilodaltons
М	molar
mCi	millicurie
mg	milligram
mm	millimetres
mM	millimolar
min	minute
μCi	microcurie
μl	microlitre
%	percent
S	second(s)

TABLE OF CONTENTS

	Page No.
PREFACE	i
ACKNOWLEDGEMENTS	ii
DECLARATION	iii
ABBREVIATIONS	iv
UNITS AND SYMBOLS	vi
TABLE OF CONTENTS	vii
LIST OF FIGURES	x
TABLES	xii
SUMMARY	xiii

1. INTRODUCTION

	1.1 SPOROPHYTIC SELF-INCOMPATIBILITY		1
	1.2 GAMETOPHYTIC SELF-INCOMPATIBILITY		3
	1.3 PLANT TISSUE CULTURE		6
	1.3.1 Anther culture		6
	1.3.2 Ovary culture		8
2.	MATERIALS AND METHODS		
i.	2.1 MATERIALS	rić.	10
	2.1.1 Plant Materials		10
	2.1.2 Chemicals		10

2.1.3 Solutions and buffers	10
2.2 METHODS	10
2.2.1 Preparation of protein samples	10
2.2.1.1 SDS-polyacrylamide gel electrophoresis 2.2.1.2 .Isoelectricfocusing (IEF)	11 11
2.2.2 Polyacrylamide gel electrophoresis	11
2.2.2.1 SDS gels 2.2.2.2 Two dimensional gels	11 11
2.2.3 Protein determination	11
2.2.4 Detection of proteins	12
2.2.4.1 Using Coomassie Blue 2.2.4.2 By silver staining	12 12
2.2.5 Molecular biological techniques	12
2.2.5.1 Extraction of total RNA 2.2.5.2 Purification of messenger RI	12 NA 13
2.2.5.5 First and second strand core synthesis 2.2.5.4 Transformation of <i>E. coli</i> ce 2.2.5.5 Screening recombinant colo	13 ells 14 onies 15
2.2.6 In situ pollination experiments	15
2.2.6.1 Self- and cross-pollination	15
fluorescence microscopy	15
2.2.7 Plant tissue culturing techniques	16

3. <u>RESULTS</u>

3.1 Petunia hybrida

3.1.1 Expression of S-related proteins from different tissues of <i>Petunia</i>	17
3.1.2 Comparison between 2-D gel patterns of stigma, ovary and callus	22
3.1.3 Conditions affecting callus formation	22

	3.1.4 Effects of self- and cross-pollination of <i>Petunia</i> flowers	22
	3.1.5 Cloning of cDNA for a stylar glycoprotein associated with the S-alleles	26
	3.1.6 Comparison of mature and immature styles as a source of mRNA for cDNA synthesis	36
	3.2 Phalaris coerulescens	
	3.2.1 Comparison between proteins from stigmas and leaves by SDS-PAGE	36
	3.2.2 Ultra-thin IEF protein patterns of <i>Phalaris</i> stigmas	40
4.	DISCUSSION	
	4.1 Petunia hybrida	
x ² n ²	4.1.1 Comparison of S-related proteins in stigma ovary and callus	43
	4.1.2 cDNA cloning using <i>Petunia</i> pistils as a source of mRNA	46
	4.1.3 In vitro tissue culturing of styles of Petunia	47
	4.1.4 Compatible and incompatible pollinations of <i>Petunia</i> pistils	48
	4.2 Phalaris coerulescens	
	4.2.1 Expression of stigma-specific proteins in <i>Phalaris</i>	49
5.	BIBLIOGRAPHY	51
	APPENDIX	62

Ţ

ix

Figur	LIST OF FIGURES	e No.
1	SDS-PAGE (12.5%) protein patterns of mature	
-	style sections stained with Coomassie Blue	18
2	Silver-stained SDS-PAGE (12.5%) protein patterns of styles selected at different stages of maturity	19
3	Silver-stained SDS-PAGE (12.5%) protein patterns of mature and immature ovaries and callus tissue derived from styles of <i>P. hybrida</i> W166H	20
4	Silver-stained IEF patterns of proteins from style, ovary and callus tissue	21
5	Silver-stained two-dimensional gel eletrophoretic patterns of the style, ovary and callus tissue	23
6	Induction of callus from stylar tissue	24
7	The effect of self-pollination after a 24h period on pistils at different stages of development	30
8	The effect of cross-pollination after a 24h period on pistils at different stages of development	31
9	The effect of self- and cross-pollination after a 72h period on mature styles exhibiting surface secretions	33
10	Detection of cross-compatible pollen tubes by fluorescence microscopy on mature stigmas exhibiting surface secretions	34
11	Detection of self-incompatible pollen tubes by	ſ
	surface secretions	35
12	Detection of total RNA extracted from mature and immature pistils of P. hybrida visualized on an agarose (1.5%) gel	37
13	Autoradiogram of single stranded cDNA of mature and immature pistils	38
14	Recombinant colonies bearing the putative S-gene insert	39

7

T G T AND RECEIPT

の日間に回いたよう

1

(1) 日本の日本の

i

15	Silver-stained SDS-PAGE (12.5%) protein patterns	
	of stigma and leaf of P. coerulescens	41
16	Ultra-thin IEF of stigma proteins of P. coerulescens	42

.

<u>Table</u>	No.	<u>Page No.</u>
1	Effect of different concentrations of growth factors on callus development	25
2	No. of self-incompatible and cross-compatible polle tubes detected in lower style region of <i>P. hybrida</i> after 3h	en 27
3	No. of self-incompatible and cross-compatible polle tubes detected in lower style region of <i>P. hybrida</i> after 7h	en 28
4	No. of self-incompatible and cross-compatible polle tubes detected in lower style region of <i>P. hybrida</i> after 24h	en 29
5	No. of self-incompatible and cross-compatible polle tubes detected in lower style region of mature <i>P. hybrida</i> pistils with stigma surface secretions	en
	after 72h	32

ł

SUMMARY

- The S2- and S3-related proteins in pistils of *Petunia hybrida* W166H were expressed uniformly throughout the length of the mature styles.
- 2. There were no detectable differences in the level of expression of these proteins in either immature or mature styles of *P*. *hybrida* W166H.
- 3. Two-dimensional gel patterns of pistil proteins revealed a prominent cluster mainly in the acidic region in contrast to the basic nature of these proteins reported earlier (Kamboj and Jackson, 1986).
- 4. By the use of tissue culture techniques, callus was successfully generated from style tissues of *P. hybrida* W166H.
- 5. The protein profiles of the dedifferentiated callus tissue were very similar to those of stigmas and ovaries of *P. hybrida* W166H.
- 6. A cDNA library constructed from *P. hybrida* W166H styles showed no homology when screened with a 30 base sequence from a stylar-specific *Nicotiana alata* glycoprotein.
- 7. Messenger RNA prepared from immature styles were found to be a better source of templates for cDNA synthesis than mature styles.
- 8. The production of stigma surface secretions in *P. hybrida* W166H coincided with the onset of the self-incompatible reaction. By the method of fluorescence microscopy, only compatible pollen tubes were observed to traverse the lower portion of the styles intact.

9. Differences in the stigma protein patterns observed in the two loci self-incompatible system of *P. coerulescens*. could not be correlated simply to the S- and Z-alleles.