Geographically constraining the South Australian Heat Flow Anomaly

Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geophysics.

Henry Oscar Johnson

November 2014

ABSTRACT

The South Australian Heat Flow Anomaly is a large contiguous region of anomalously high heat flow (>90 mWm⁻²) in otherwise tectonically quiescent Proterozoic lithosphere. The broad anomaly (>400 km) is nearly 40 mWm⁻² greater than the global average for terranes of similar tectonic age, but is poorly constrained geographically due to relatively few and poorly distributed heat flow data. This study reports four new heat flow determinations, located to improve the spatial sampling. The product method and thermal resistance were used to calculate heat flow.

Data were obtained from drillhole core samples that traverse the anomaly. The samples were then scanned for thermal conductivity using a Thermal Conductivity Scanner. Temperature logs of the drillhole are used to determine the thermal gradient with depth. The product of thermal conductivity and thermal gradient determines surface heat flow.

The spatial extent will become better defined with each new heat flow datum as well as increase the confidence of the pre-existing data source of the anomalously high heat flow was ascertained by evaluating bias in previous data measurements, recent tectonic and magmatic activity. Using existing data and measurements made in this study, evidence for and against a primarily deep mantle and shallow crustal radiogenic source will be examined.

KEYWORDS

Heat Flow, Thermal Conductivity, South Australia, Anomaly, Drillholes

Table of Contents

Introduction	1
Background	3
Heat Flow	3
Geological setting	4
Drill Hole Descriptions	5
14DDCT001	5
CHDCu001	5
GP004D	5
MMDD1	6
Methods	6
Drillholes	6
Thermal gradient	6
Density and porosity	7
Thermal conductivity scanner	8
Preparation of core	9
Scanning of core	9
Processing of data 1	.0
Corrections	1
Heat flow calculations	2
Error propagation	3
Observations and Results 1	4
Thermal gradient and reduced temperature	4
Thermal conductivity	7

Saturated versus unsaturated	25		
Heat flow	25		
Discussion			
Interpretation of results	30		
Thermal Conductivity	30		
Corrections	32		
Heat Flow	33		
Sources for anomalous heat flow	34		
Bias	34		
Recent tectonic and magmatic activity	35		
High basal heat flow and/or upper crustal radiogenics	35		
Conclusions	38		
Acknowledgements	38		
References	39		
Appendix A: TCS Optical Scanner manual	42		
Appendix B: Drillhole Samples	44		
Appendix C: Thermal Conductivity	51		
Appendix D: Porosity	55		

List of Figures

1.	Location map of study area including key geological provinces in South	
	Australia and locations of heat flow sites	2
2.	An analysis of thermal variations with depth, within drillhole 14DDCT001	15
3.	An analysis of thermal variations with depth, within drillhole CHDCu001	16
4.	An analysis of thermal variations with depth, within drillhole GP004D $$.	17
5.	An analysis of thermal variations with depth, within drillhole MMDD1 $$.	18
6.	Thermal conductivity of the different lithologies of 14DDCT001	19
7.	Thermal conductivity of the different lithologies of CHDCu01	20
8.	Thermal conductivity of the different lithologies of GP004D	21
9.	Thermal conductivity of the different lithologies of MMDD1	22
10.	Relationship between the inhomogeneity of the saturated and unsaturated	
	samples of all four drillhole	26
11.	Relationship between the thermal conductivity of the saturated and un-	
	saturated samples of all four drillhole	27
12.	Heat flow of all four drillhole	28
13.	Bullard Plot of all four drillhole	29
14.	Heat flow map of Australia	37

List of Tables

1.	Table of standards for the Thermal Conductivity Scanner	9
2.	Correction factors for HQ core	11
3.	Correction factors for NQ core	11
4.	Drillhole descriptions	23
5.	Weights of samples of core from drillhole CHDCU01 with depth	45
6.	Weights of samples of core from drillhole MMDD1 with depth	48
7.	Saturated thermal conductivity of MMDD1	51
8.	Thermal Conductivity of CHDCu01	52
9.	Porosity of 14DDCT01	55
10.	Porosity of CHDCu01	56
11.	Porosity of GP004D	57
12.	Porosity of MMDD1	58