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ABSTRACT

GENERA LIZED INTERPHAS E TRANS P ORT PHENO MENA IN

NEWTONIAN VISCOUS FLOW

- A single viscous drag relationship applicable to both internal flows through conduits

of arbitrary cross-section and external flows over axisymmetric bodies has been developed.

- This has led to a generalised expression for the Chilton-Colburn heat/mass transfer

factor, and generalised Sherwood/Graetz relationships.

- The model results have been compared with existing Leveque/Levich type solutions

with excellent agreement.

- The work has enabled formulation of an analogy between momentum, mass and

heat transport for slow flow conditions.

ACTIVE PARTICLE MOTION IN THE EMULSION PHASE OF A

FLUIDIZED BED

- An equation of motion for an active, moving particle in liquid and gas fluidised beds

(of inert particles) has been developed and solved.

- Comparisons have been made with the literature, and with experiments as part of

the present work.

- The study has illustrared the importance of the formation of a defluidised cap of

smaller particles on the top surface of the larger, active, upward moving particle'

- Necessary and sufficient conditions to determine whether an active particle will float

or mix in particulate or bubbling fluidised beds have also been developed.
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CHAPTER I

INTRODUCTION

1.1 OVERVIE\ry

The theory presented in the thesis extends the research of Agarwal and

co-workers on Newtonian transport phenomena in multi-particle systems (Agarwal and

O'Neill, 1988; Agarwal, 1988; Agarwal et al., 1988) to two other distinct areas of

research interest.

In Agarwal and O'Neilt (1988) and Agarwal (1988), expressions that predict the

convective transport coefficients to spheres in multi-particle systems were developed.

These model expressions were applicable over the whole range of porosity: from 0.26

for cubic close packed spheres to 1.0 for the isolated sphere. This was by virtue of a

shape or cross-section factor, z, which could charactenze the flow channel geometry at

different bed porosities. Consequently, these papers effectively bridged the hydraulic

radius (or equivalent conduit) model - conventionally applicable to only low bed

porosities - with the submerged object (or individual particle) approach used most

often at higher porosities. These results lend weight to the possibility of convective

transport phenomena to a conduit or a tube being treated on the same basis (or by the

same expressions) as an axisymmetric body (be it in an infinite fluid or a particle

assemblage). This problem has been addressed in the first part of the thesis, for the

viscous flow regime, by the methodology outlined below'
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A generalized Reynolds number has been defined in terms of a generalized length

parameter that is simply the ratio of the hydraulic radius, m, to the cross-section factor,

z. This Reynolds number has been used to obtain a single drag relation that is

applicable to flow through conduits, to flow over axisymmetric bodies and flat plates,

and to flow over spheres in multi-particle systems in the viscous flow regime. Use of

this drag relation in the thin thermal (concentration) boundary layer equations for well

developed flow over flat plates and through conduits permits a more general solution

for the transport coefficients under the constant wall temperature boundary condition.

Appropriate reanangement of this solution yields a simple expression for the

Chilton-Colburn transfer factor. Alternatively, the generalized Sherwood (Nusselt)

number is expressed in terms of a generalized Graetz number, Gzo (which reduces to

the Peclet number for a sphere). The results are compared with existing Leveque type

solutions for different conduit geometries with excellent agreement. For axisymmetric

bodies, the solution of the boundary equations involves a cumbersome integral (t ochiel

and Calderbank, 1964); however, the simple expression for flow in conduits compares

well with the rigorous results for creeping flow transfer from spheroids over a wide

range of aspect ratios (E > 0.5). Further, this conduit solution has also been transformed

to the particle-fluid heat (mass) transfer expression derived earlier by Agarwal (1988)

and modif,red by Agarwal et al. (1988) for spheres in multi-particle systems. The good

agreement obtained for different flow geometries has enabled the formulation of an

analogy between momentum and mass (heat) transport for Gzo -> - âDd slow flow

conditions. Finally, in analogy with the approximation obtained by bridging the

pe-+- and the pe->o solutions for a sphere (Clift et al., 1978), simple empirical

correlations have been developed for laminar forced convection heat (mass) nansfer in

conduitd'of different cross-section geometries over the whole Graetz number range.

The second part of the study was motivated by the current interest (LaNauze,

1985) in the estimation of the mass transfer of oxygen to coal particles burning in
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fluidized bed combustors. In Agarwal et al. (1988), a mechanistic model for mass

transfer to an active-sphere in bubbting gas fluidized beds of inert particles was

developed. As in the fluidized bed combustion of coal, the active particle was

considered. to have a different size and density to that of the inert bed material (the

inerts were assumed to make up over 957o of the bed). The model assumed that the

active particle could reside in both the emulsion or particle rich phase (where the

particle was assumed to move down) and the bubbte or particle lean phase (where the

particle moves up). The analysis of the emulsion phase assumed that the active-particle

would move at the same velocity as the inert particles. However, the different size and

density of the active particle would be expected to produce a motion different from that

of the inert particles. To determine its effect on the mass transfer rate to the active

particle, it is obvious that an expression for this velocity is required. This problem has

been addressed in the second part of the thesis by solving the force or momentum

balance (that is, the equation of motion) for the active particle. To do this the relevant

forces acting on the particle, whilst in the emulsion phase, need to be determined.

These have been identifred as:

1) a fluid drag force (the expression used allowed for the increase in drag due to

the presence of neighbouring pa¡ticles);

2) a weight plus buoyancy force that was assumed to be proportional to the

difference in density between the active particle and the suspension;

and 3) a particle interaction force that accounted for collisions between the active and

inert particles (as a direct result of their relative motion).

An analytical expression for the steady-state or terminal segregation velocity has been

obtained by neglecting the acceleration terrn. Comparison with literature experimental

data for the terminal velocities of heavy spheres falling through both liquid and

particulate gas fluidized beds is excellent. Further, the dynamic response is obtained by
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numerical integration of the full force balance equation. Experiments, where light

particles would rise to the top of a liquid fluidized bed, have been performed by the

author to verify the behaviour predicted by the model. A criterion that predicts the

conditions when the active particles may float at the top of either particulate or

bubbling fluidized beds is also developed by consideration of the active particle force

balance coupled with knowledge of the inert particle movement (in the case of bubbling

gas fluidized beds). The model is in exact agreement with the experiments of Chiba et

al. (1980). Finally, implications for mass transfer studies in gas fluidized beds are also

discussed.
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CHAPTER tr

GENERALIZED INTER.PHASE TRANSPORT PHENOMENA ITg

VISCOUS FLOW

2.1 INTRODUCTION

2.1.1 Background

There is a wide range of important applications in several engineering

disciplines that require knowledge of the interphase forced convection transpofi

phenomena that occur in conduits of different cross-sections and from particulate

systems in the viscous flow regime: for example, knowledge of the pressure drop

and the heat transfer rates in plate, and shell and tube heat exchangers;

determination of the mass transfer rate from spheroidal bubbles in fermenters and

bubble column reactors as well as mass and heat transport rates to and from

spherical catalyst particles in fixed and fluidized bed reactors.

Flow in the viscous flow regime results in a drag coefficient that is inversely

proportional to the Reynolds number

(Dragcofficient) = K¿(Reynoldsnumber)-r (1)

The effect of the flow geometry is considered by appropriate definition of the

proportionality factor, Ko, and the inclusion of a suitable length palameter in the

Reynolds number.
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Mass/heat transfer correlations in this flow regime and under high Graetz

number conditions (or Peclet number for a sphere) can be derived from the

Leveque (L928) and,/or the Levich (1962) type solution as

(Sherwood.number)=B(Graetznumber)t't (2)

where B is a proportionality constant. As for momentum transport, the definition

of the factor, B, as well as the inclusion of an appropriate length parameter in the

Nusselt number accounts for the effect of flow geometry" At low Graetz

numbers, the Nusselt number solution asymptotes to a constant value.

The main research effort has been directed at the determination of the

coeff,rcients Ko and B for different geometries with the Reynolds or Nusselt

number being based on an "equivalent" diameter (for example, the hydraulic

diameter if conduits are being considered).

To extend the results for momentum transfer to healmass transfer,

analogies between transport phenomena have been proposed in the literature

(Jakob, L949). These analogies, however, are more successful in the turbulent

flow regime.

Recent work on unifying the hydraulic radius and submerged object

approaches for modelling macroscopic momentum transfer in multi-particle

systems (Agarwal and O'Neill, 1988) and its extension to particle-fluid healmass

transfer (Agarwal, 1983) indicates, however, that there is a possibility for treating

the Newtonian viscous flow transfer processes in conduits and around

axisymmetric bodies on a corrìmon basis.
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2.1.2 Objectives

The main objectives of this study, applicable only to viscous flow

conditions, are to:

1) collapse the various expressions for the drag coefficient in different

geometries to a single expression by incorporating the geometry factor,

Ko, in the definition of a generalized length parameter;

2) collapse the various high Graetz number corelations for the heaVmass

transport coefficients in different geometries to a single expression by

expressing the geometry factor, B, as a function of the generalized

Iength parameter;

3) obtain an analogy between momentum and heat/mass transport;

and 4) extend the healmass transfer analysis to develop correlations applicable

to the whole Graetz number range.



8

2.2 LITERATURE SURVEY

Most of the literature involved with research on viscous flow transport

phenomena are already available in the form of comprehensive reviews. So rather

than rewrite them, only the salient aspects of the reviews will be presented here.

DUCTS: Pressure loss in conduits of arbitrary shape under viscous flow

conditions have been analysed by Davies and White (1929) as discussed by Jakob

(1949). The constant, K, in the drag coefficient expression (equation 1), was

expressed as N/,/d^ where d, is the hydraulic diameter and N, is an individual

constant for each shape of the cross-section. Values of N, for different geometries

are presented in Table 1. More recently, Shah and London (1978) have presented

more extensive data for the Ku factor as ( J)Rer,Lld^ where / is the Fanning friction

factor. An example of the fRer^ data tabulated by Shah and London (1978) for

elliptical ducts is shown in Table 2.

An extensive compilation of the available solutions for forced convection heat

transfer in the viscous flow of Newtonian fluids through conduits of different

geometries, up to 1975, has been given in Shah and London (1978). Solutions were

presented for:

1) all the common duct geometries such as rectangular, elliptical, triangular,

parallel plates, and annulii;

2) a\l possible flow conditions, that is, fully developed flow as well as both

hydrodynamically and/or thermally developing flow;

and 3) va¡ious boundary conditions (amongst them being, the constant wall

temperature and constant wall heat flux conditions).



9TABLE 1

Constant \ for use in the Pressure Drop Equation of Davies and White (1929) for

Different Conduit Geometries (from Jakob, 1949)

Conduit geomeüy AsPect ratio, E N

Ellipse

Rectangle

Equilateral triangle

1.000
0.700
0.s00
0.300
0.200
0.100

1.000
0.500
0.333
0.250
0.200
0.100
0.000

64
65
68
73
76
78

57
62
69
73
76
85
96

530.866



TABLE 2

fRer,factor for the Estimation of the Pressure Drop in Eltiptical Conduits (from

Shah and London, 1978)

10

Aspect ratio,
E

fReo^

1.000
0.900
0.800
0.750
0.667
0.600
0.500
0.400
0.333
0.250
0.200
o.167
0.t25
0.100
0.050
0.000

2.000
2.003
2.012
2.020
2.039
5.493
2.r03
2.162
2.210
2.280
2.325
2.356
2.393
2.4L4
2.450
2.467
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Numerical data derived from these solutions were given over the whole Graetz

number range, that is, incorporating the Leveque solution for high Graetz numbers

and the constant asymptotic solution for low Graetz numbers. Data for the constant

wa1l temperature condition are given in Appendix C. The proportionality constant,

B, in the Leveque solution (equation 2) was derived in terms of the /Rer^ product (as

used in the Ko factor above) from intuitive arguments. Churchill and Ozoe (1913)

bridged the high Graetz solution, ¡¡u- with the low Graetz solution, Nuo for an

isothermal tube by assuming the form

(Nu)' = lNuo)" + (Nu-)' (3)

to obtain a rather complex correlation for the Nusselt number, Nu that was

applicable for all Graetz numbers. The adjustable parameter, n was chosen as 8/3

and the length parameter in the Nusselt number was the tube diameter. The authors

themselves admit that the final relation "appears to be somewhat ungainly" but claim

that thek expression is the still the simplest possible.

AXISYMMETRIC BODIES: Transport phenomena associated with isolated

spherical and non-spherical bodies have been reviewed by Clift et al. (1978).

The drag force for spheroidal particles was expressed in terrns of a "principal

translational resistance", Cr.This resistance factor could be interpreted in terms of

the Ko factor as (4nCr)ta where a is the equatorial radius of the spheroid. Values for C¡

are given in Table 3 for the oblate and the prolate spheroid as determined from

Happel and Brenner (1983).



t2TABLE 3

Resistance Factor, C, to Calculate the Drag Coefficient for Spheroids in Creeping

Flow (from Happle and Brenner, 1983)

axial flow

Exact solution
\na(I - E2) 8na(82 - I)

G -28\cos-'(¿'¡rftt I nI)+ n (28'- 1) ln( (E + r[¿'' - t) ¡¡t[çB'- ¡¡ - n

Approximate solution
L.2na(4+ E) I.2na(4+ E)

normal flow

Exact solution
l6rca(L - E2) I6æa(Ez -l)

Q -ZE\ cos-'(E G - E\) - E (28'- 3) ln( (E + (E'- t) (82 -Ð)+ E

Approximate solution
I.hrn(3+28) l.hcn(3+28)

- 2ais the maximum dimension normal to the axis of symmetry (i.e. equatorial
diameter)

the approximate solution
solution over the whole
flowwhenE<5)

gives a good estimate of the more complex exact
E range for axial flow and within l.OVo fot normal
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The Levich solution constant, B, for spheroidal particles was presented in

graphical form from the calculations of Sehlin (1969) over the range of aspect ratio

0.1 to 10 (see Figure 3). The length parameter used in the Nusselt number was twice

the equatorial radius of the spheroid.

MULTI-PARTICLE SYSTEMS: Experimental data and hydraulic radius

models for pressure loss in porous media have been discussed by Carmen (1956) and

Scheidegger (1960). Criticism has been directed at the hydraulic radius approach

(Molerus, 1980); the major objection being that the limiting resistance for a single

particle is not predicted as € -+ 1 where e is the bed porosity. A submerged object

approach has also been applied, but the resulting expressions predict too small a

dependence on solids concentration. However, extension of the hydraulic radius

approach to higher porosities has been successfully achieved by Andersson (1961).

A porosity dependent cross-section factor, z that accounts for the dependence of the

viscous flow drag loss on the flow geometry was defrned. The viscous flow pressure

drop can be written as

Lp ,(l -e)'þ,,T='n'\fr, Ø)

where q is the tortuosity factor, p is the fluid viscosity and Uo is the superficial fluid

velocity. Agarwal and O'Neill (19SS) combined this expression with a submerged

object model to obtain an expression for the particle drag coefficient, so that the Ko

factor could be written as 482(1-e) for this flow geometry. The length parameter

used in the Reynolds number was simply the particle diameter.

Agarwal (1938) presented a comprehensive review of the work done on

healmass transfer to spheres in multi-particle systems. A model for forced

convection healmass transfer was also proposed with good agreement with
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experiment over a wide range of Reynolds and Schmidt numbers. Problems with the

viscous flow data for gases (tow Schmidt numbers) were rationalized by Agarwal et

al. (1988). Under viscous flow conditions the model can be reduced to the standard

Levich solution with the B factor being a complex function of the bed properties. It

is important to note that a number of experimental studies have been performed in

the viscous flow regime and under high Pe conditions which will allow model

verification (at least for ransport in multi-particle systems)

-)
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2.3 MODEL DEVELOPMENT

2.3.1 Momentum Transfer: derivation of the mlzfzctot

The generalized Reynolds number, Re6, is defined as

Reo=eY\e\ (4)

[' )[uJ

where 7 is the average approach velocity, v is the kinematic viscosity and m is

the hydraulic radius d.efined in the conventional sense as the ratio of the

cross-sectional area to the wetted perimeter. The cross-section factor, z, is a

geometric par¿uneter which depends on the shape of the cross-section of the flow

path perpendicular to the direction of the flow (Andersson' L96I1, Agarwal and

O'Neill, 19SS). For regular conduits, z is identical to the Kozeny shape factor

(Carman, 1956). The values of zfor different cross-sections and aspect ratios are

plotted, as calculated from the tabulations provided by Shah and London (1978)'

in Figure 1. For multi-particle systems, z depends on the System voidage, e, Since

e cha¡acterises the flow channel geometry (Andersson, 1961). Expressions for z

as a function of bed porosity ale presented in Table 4 in terms of the modified

Kozeny factor, zq. (equation 4). In the limit of e -+ I for multi-particle systems,

the ratio (m/z) approaches a constant value independent of the porosity; the

limiting values for different axisymmetric bodies are discussed later. It is

postulated that (m/z) is the generalized length parameter for inclusion in the

Reynolds number. This definition of the Reynolds number was fust proposed by

Andersson (1961) for liquid fluidized beds; however, its general applicability was

not recognized. The factor of 3 is introduced in equation 4 to ensure that for an

isolated sphere of diameter do, Reçreduces to the conventional particle Reynolds

number Rer:(Jdrlv since the approach velocity is equivalent to the superficial



16TABLE 4

Modified Kozeny Factor and Tortuosity Factor Expressions for the Evaluation of z

in Mu1ti-Particle SYstems

Parameter Equation

2 e < 0.5:

e> 0.5:

7q

1 e3 ( t+q.t$-e) I
t1-eþ - 1f3(1-e),,J

1

q 1 -0.9(e- 0.25)tß (l-e)'"

taken from: , Andersson (1961); , Reed and Anderson (1980) as derived in
Agarwal and O'Neill (1988)
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velocity and (Agarwal and O'Neill, 1988)

18

(s)

(6b)

(7)

m dP

3z

For an assemblage of spheres, the average approach (interstitial) velocity is uqle

where 4 is a tornrosity factor. Using the conventional definition of the hydraulic

radius for granular porous media composed of spherical particles (m = d.oel6(r-e)),

it can be shown thatRe"reduces to Re":RerqlLz(L-e), a multi-particle Reynolds

number used earlier by Agarwal and O'Neill (1988).

The generalized drag factor, Q, is defined as

0
(FdtA")

(6a)
ú,p

where tr', is the average drag force on the surface afea A". FdlA, may be related to

the pressure loss per unit length, LP lL,, as

L. is the total length of the flow channel. Also by analogy with Jakob (1949) we

may write

^P lzlllll:l (6c)

ñ=[;J[;)lú)
Equations 4 and 6a-c may be used to obtain the generalizeddragrelation as

Fd LP
-=-mA. L,

6
0 Rec

It may be verified that equation 7 applies to conduits as well as to an isolated

sphere (keeping in mind that the drag factor used here is based on the surface

area whereas the conventional drag coefficient for a sphere is based on the

maximum projected area normal to the flow).



The applicability of the generalizedReynolds number would be limited for

external flows if the knowtedge of the relevant (m/z) factors was conf,rned only to

the sphere. In Appendix A, however, the drag force expression given in equation

6a is compared with expressions available in the literature for drag on

axisymmetric bodies in the viscous flow regime. This step yields an equation for

(m/z) applicable to all axisymmetric bodies

(Ð

K, is defined in equation 4.3 in Appendix A. Several bases can be used to define

the equivalent sphere diameter, d.(Clift et al., 1978); however, (d.Kt) is

independent of the def,rnition. Values of (m/z) for different axisymmetric bodies

under axiaVnormal flow can be obtained using equation 8 and are presented in

Table 5.

To obtain (mlz) for a flat plate of length L, the analytical solution (Jakob,

L949) for the corresponding friction factor in terms of Re"=ÚLlv

q = (4t3)Re"tn (9)

is combined with equation 7 (as for axisymmetric bodies) to give

gA"
TcKtd"

(9/20)ô-

T9

(8)

(10¿)

(10b)

(10c)

(+)
plot,

where ô., the surface average boundary layer thickness, is given by

ô", = (10/3) LRert'z

and

Reo = Ql2)Re|z

The above expressions for (m/z) have been obtained using viscous flow

solutions simply because it was convenient to do so. Conceptually, the (m/z)
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TABLE 5

(mlz) factors for axisymmetric bodies

Body 4 f(E)=A"/(2na2)

Flow
Direction K,

Sphere
(E=1)

Prolate
Spheroid
(E>1)

Oblate
Spheroid
(E<1)

t +4sin t

e

2a

2a

24

24

2
axial

normal

axial 4.8(4+ E)

2a

Ĵ

2a

Ĵ

e

E

8af(E)
4.8(4+ E)

8af(E)
4.8(3 +28)

8af(E)
4.8(4+ E)

8af(E)

2a

e= E2 -l normal 4.8(3+28)

,.i7^(i+) axial 4.8(4+ E)

e =.,[1 - B' normal 4.8(3 +28) 4.8(3+28)

* : from Clift et al. (1978) and Happel and Brenner (1983)
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factor is thought to be a geometric quantity. This is clearly so for internal flow

through ducts (Figure 1) and external flow over axisymmetric bodies (Table 5).

Additional work is required to determine the applicability of mlz for these cases

to turbulent flow conditions. Recent work on multiparticle systems (Agarwal and

O'Neill, 1983) however, indicates thatmlz obtained from viscous flow

considerations can apply to the turbulent flow regime as well. The flat plate

remains an anamoly because, although m/z depends on the boundary layer

thickness, ô^ (which is a geomeûry factor), it also depends on the flow conditions

since õ^ is a function of Re".

2.3.2 Heat and Mass Transfer

'We next consider mass transfer f¡om different bodies under the thin

concentration boundary layer limit. The mass transfer rate across any surface

element of area dA may be found by applying Fick's law

kî(c" - còdA= -" l*l dA (1 1¿ )
[dY /' =o

where ç is the peripheral average (tocal) mass transfer coeff,rcient (based on the

initial concentration difference) and D is the mass diffusivity. The co-ordinate

systems defining x and y are considered in detail in Appendix B. The overall

transfer rate is given by

klA"(c"-co)= -J^3(*),=,^ (11b)

where ç is the surface average mass transfer coefficient (also based on the initial

concentration d.ifference). In tefms of the dimensionless concentration, c,

(defrned in Appendix B)
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o;=-rLI,1#), =l*0, (Lz)

where P* is the local wetted perimeter which, in general, depends on the distance,

x, along the flow path of length, L,. The local wetted perimeter may be

represented as (P,).=r.'r ; where for a flat plate 1r,;.=,.0 is the plate width and 2æ for

axial flow over an axisymmetric body. Using the expressions for the

dimensionless concentration gradient at the surface (equation 8.15) and dy

(equation 8.12b) given in Appendix B, we obtain in the thin concentration

boundary layer limit

k-=
(P.)' 

= r.o 1

A" f(4ß)91t3T,=,
d"¡

(uo'r)
v2 rdx

(13)

(14)

xto

Integration leads to the general expression for the mass transfer coefficient as

k;-o"9ìrlo#FU,
Lt

For flow over axisymmetric bodies, equation 14 is similar to that obtained

by Lochiel and Calderbank (1964). Since, in this case, the dimensionless

velocity gradient is a function of x, analytical integration has been considered

cumbersome (tochiel and Calderbank, 1964; Clift et al., 1978).

For fully developed flow over a flat plate and through conduits, r is

constant and will be cancelled from the above expressions. The velocity gradient

is also constant i.e. ro': (zo)- and can be shown, using equations 6a and 7, to be

(u)^=åtò (1s)



Hence using equations 14 and 15, for the flat plate and conduits,
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(16)

(r7a)

where ju is the Chilton-Colburn transfer factor and .sl : klÚ

The generalized Sherwood number is def,rned as

sh.-(?)t#)

and the generalized Graetz number as

or in terms of the generalized Sherwood number,

i¿= stî,scz3 = 1.68 (T)''' *r='

sh;,=, "(+)''' 
*,y, r,,,,

Gzo-(ÐW)nn"s' (t,b)

The reason for choosing the form of equation 17b will be clarif,red later. From

equations 16 and l'la-b,

shãn=, *(+)''' *r,' sc'o =GzI' (1s)

Similarly, local peripheral average values of the mass transfer coefhcient

are derived by solving equation 1la directly, yielding

sti scn = t.rz(r!z\''' nr-:' (1e)
\f )

(20)
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The above ¡elations have been derived for mass transfer only; equivalent

expressions for heat transfer can be obtained by replacing Shoand Sc by Nuo

(defined in an analogous manner) and Pr respectively.
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2.4 RESULTS AND DISCUSSION

2.4.1 Momentum Transfer

As discussed earlier, the generalizd drag relation given by equation 7

applies to flow through conduits as well as over flat plates and axisymmetric

bodies using appropriate values of the (m/z) factor. For an assemblage of

spherical particles, combining equations 6a and b, and using Ú = Uoqlewith

m = d.pt¡(6(t- e)) and L"= 8L, it may be shown that

*=(å)[f)t#,)t^fu) era,

where L is the bed height. This multi-particle system friction factor differs from

the one proposed earlier (Agarwal and O'Neill, 1988) by only a constant. In

Figure 2, the generalized drag factor, Q, is plotted as a function of Re". The data

for multi-particle systems analyzed ea¡lier by Agarwal and O'Neill (1988) based

on experimental observations reported in the literature have also been transposed,

for Re"< lffi, on this generalized plot. Limitations to the applicability of our

generalized drag model, due to the onset of turbulence or increased contribution

from the inertial term, are still dictated by the flow geometry. The critical Reo for

the onset of turbulence is about 860 for a tube of ci¡cular cross-section, and about

3200 for a flat plate. For multi-particle systems, the agteement is generally good

for Re"< 10. Since the inertial contribution, for an isolated sphere, becomes

increasingly importan t for Re" > 0.1 , it is thought that the transition Re. for

particulate systems would also depend on the system voidage. This could explain

the relatively large scatter obtained by Agarwal and O'Neill (1988) for the

experimental data in the intermediate region as compaled with the good

agreement obtained in the lower and higher Reynolds number regimes.
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2.4.2 Heat/Mass Transfer in the Thin Thermal/Concentration

Boundary Layer Limit (high Graetz number)

DUCTS: The conventional form for the Leveque type solution, under the

thin thermal boundary layer (or Gz" -; -) and fully developed flow assumptions,

for laminar heat transfer in ducts of arbitrary cross section is

Nui, =n^ne!Í rr"(l)'" Q2)

whereB.dependsonlyongeometryand{(=4m)istheconventionalhydraulic

diameter. Equation 16 can be rearranged, with Lr=Lu in terms of {resulting in a

form similar to the above expression for ducts

Nui, = (r.282ztt') Rel,"/"(+)o ,,r,' "^ \L")

This leads to

B^= l.282zrt3 Qaa)

and likewise for the peripheral average expression

B,= 0.855 zrt! (24b)

Equations 23 and24a-b,in a different form and obtained from intuitive

arguments, have been used ea¡lier by Shah and London (1978). Comparison of

B- and B, values reported in the literature with the expressions given in equations

24 a-b are presented in Table 6. Conduit geometries considered are elliptic

(including the slit and cylinder), rectangular (including parallel plates) and

triangular cross-sections. For elliptic ducts, the calculated values of B' and B- are

in good agreement with the results of James (1970) and Richardson (1980)

respectively, for the entire range of aspect ratios. The values of B- and B'

obtained by Rao et al. (1969), though in agreement with the present theory for

extreme values of E, show a marked maximum for intermediate values of the

aspect ratio. However, experimental work reported more recently (Oliver and



Table 6

Local and Average Nusselt Numben for Heat Transfer in Conduits

Conduit

Type

Aspect
Ratio, z

E (Fie This
Theory

(eqn 24b)

Mean o
Error
(Vo) (Vo)

Mean o
Kn Error

(Vo) (7o)

B, Nu[,.þe,^r, *l'^ o 
^= 

Nu;,-þ",^ r, t,-) Nur.., for all Gzo Nur,,. for all Gzo
(eqn 34c) (eqn 34b)

Nu 0
dh

Elliptical 1.000
0.400
0.250
0.r25
0.010
0.000

Rectangular 1.000
0.s00
0.333
0.250
0.200
0.167
0.000

Triangular

1.070
1.093
1.1 10
T.T27
1.140
1.141

1.234 t.233

1.014

Literature
Results

1.658
1.690

70s 3.488

1) Literature This
Results Theory

(eqn 24a)
K5

2.000
2.r62
2.280
2.393
2.4t4
2.467

077
1

1

1

1

1

1

I
1

I
1

1

1

1

I
I
1

I

I
1

I
I
I
I
I
I

1

1

.6r5

.6s8

.687

.715

.720

.732

.553

.600

1.687
t.773
r.731

615
64r
6s9
680
103

0.9
1.8
1.3
1.6

s20
s69

3.6s7 4.7 1.7 2.3 4.6 0.7 0.8
06
25
44
47
55

792
725

J
J

r.778
r.944
2.136
2.279
2.384
2.463
3.000

2.916 3.8
3.39r 4.8
3.9s6 s.3
4.439 6.0

1.5
2.0

0.5
t.7
0.9
0.9

0.7
2.7

3.7
4.5
4.9
5.4

4.7
4.0

1.0
0.2
0.3
0.1

3.7
t.2

0.7
0.2
0.2
0.1

0.2
0.6

5.r37 7.0
7.541 7.9

6.1
7.9

0.3
0.8

1.000 r.644
0.866 r.667 r.520 r.46r

2.34 4.t 2.5
2.47 4.0 2,2

2.5
1.5

2.r
0.8

taken from: , Shah and l,ondon (1978); , James (1970); , Richa¡dson (1980);

Krishnamurty (1967); , Krishnamurty and Sambasiva Rao (1967).

l\)
co
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Rao, 1979) reveal that, while in good agreement with the work of James (1970),

the model of Rao et al. (1969) can overpredict the data by as much as 40Vo for

0.07 < E < 0.39. The agreement between the present theory and literature results

, (Krisnamurty, L967; Krisnamurty and Sambasiva Rao, 1967; Shah and London,

1978) for rectangular and triangular geometries is seen to be good. For flat

plates, using equations 10 and 18, it may be shown that

Nui = (2t3)Re;t2Prtt3 (25)

in agreement with the analytical solution (Jakob, 1949)'

AXISYMMETRIC BODIES : For flow over axisymmetric bodies, the

rigorous evaluation of equation 14 is cumbelsome. For a sphere, however, using

equation 5 and noting that L, is the semi-circumferential length,

TtdP (26)Lr
2

in equation 17b, it may be shown that Gzo: Pe ' The reduction of Gzo to Pe is

indeed the reason for choosing the form of equation 17b implying that the

Gzo ->- condition for conduits corresponds to the Pe -) * condition for a sphere

and multi-pa¡ticle systems. Further, for the spherical geometry, equation 18

reduces to

Shi = P¿ttt (27)

Equation 27 is inexcellent agreement with the more rigorous solution (Lochiel

and Calderbank, 1964; Clift et al., 1978). In Figure 3, the application of equation

18 to spheroids of any aspect ratio is considered. Values of

ShÇn*,;a( __ (28)
Sh;
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calculated using equations 8, 18 and appropriate semi-circumferential lengths are

compared with the detailed calculations reported by Sehlin (1969) as discussed

by Clift et al. (1978). The prolate spheroid with the long axis parallel to the flow

can be considered as a slender/flat body in the limit of large E. In this region, t4'

would not vary significantly with x, and the conduit solution with uo': constant

could become more applicable with increasing aspect ratio. For an oblate

spheroid, however, the longer length is perpendicular to the flow and assuming ro'

as invariant with x is not a good representation. Further, the effect of form drag

has not been taken into account in obtaining the expression for uo'(equation 15).

The excellent agreement obtained for E > 0.5 is then surprising. It seems that for

prolate spheroids, the error due to neglecting the form drag is almost perfectly

compensated by treating 14'as constant in equation 14. The computational ease

afforded by these results, however, cannot be ignored. These results, obviously,

do not extend to the local transfer coefficients.

MULTI-PARTICLE SYSTEMS: To apply equation 18 to multi-particle

systems, a suitable measure of L, must be postulated. Taking into account the

presence of stagnant regions (Agarwal and O'Neill, 1988), it is reasonable to

expect that the effective flow length around a sphere in the assemblage should be

less than that for an isolated sphere (equation 26) by a factor of 1e- e,)/e where e,

is the stagnant voidage. This term represents the fraction of the void space

available for flow. By equating the flow tortuosity, 4, in the hydraulic radius

model with the fraction of void space available for flow in the submerged object

model, Agarwal and o'Neill (1988) obtained q =e/@-E)' Consequently' for a

multi-particle system,

(L¡)^n-o*,rr=+ Qg)
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Since q ) Ias€ -) 1 , equation 29 reduces to equation 26 in the isolated sphere

limir Using equations 16 and 29, andnoting that the Stanton number is based on

the average approach velocity, [:(uoqle), it may be shown that

sh;=o6es?,,iY[å)*r",,, (30)

In an ea¡lier paper (Agarwal, 1988), considering an individual particle to be an

object submerged in the sphere assemblage and using the boundary layer theory,

the following result was obtained

-- ( ^ q\"'(gr\o ,r,,, (3ra)sho=*,V',;) trJrc''"
where Co":(24q)lRe" for the slow flow conditions being considered here. From

comparisonwithexperimentaldata,I!=0'6hadbeenchosen'Subsequently'to

model the gas-solid multi-particle systems data for Pe < 10,

^ -^ (1 + Pe)tt3 -1¡Kz=o'69V GLb)

has been recommended (Agarwal et al., 1983). Noting that Reo = Re.for a

multi-particle system, it can be verified that equation 30 is in complete agreement

with eiuations 31a-b for high Pe. To model pressure drop in granular media, the

submerged object and hydraulic radius approaches have been employed very

often (Scheidegger, 1960; Foscolo et al., 1983); the complementary nature of

these approaches has been established earlier (Agarwal and O'Neill, 1988). For

heat and mass transfer, the use of the hydraulic radius approach - confined to

packed bed voidages - has been attempted only very recently (Kawase and

Ulbrecht, 1935). The result described in this section is seen as the unification of

the submerged object and hydraulic radius approaches for heaVmass transfer in

multi-particle systems, at least for low Reynolds and high Peclet number

conditions.
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In Figure 4, ¡o1q^r"¡rt¡'o, is plotted as a function of Reo. The theory

(equation 16) represents detailed solutions for conduits, the flat plate and

spheroids with E > 0.5. It may be noted that the mass transfer factor for

multi-particle systems is conventionally defined îs (ShotReoSc)Scæ. In this paper,

the Stanton number is based on the average approach velocity; leading to

jo=Gtq)(shptRersc)sc/3. Solid-liquid mass transfer data for particulate systems with

0.26 < € < 1 - the entire range of voidage possible for monosized sphere

assemblages - have been plotted in Figure 4 with very good agfeement for Reo <

10. As in the case of the generalized drag relation, deviations from equation 16

would occur at critical values of Reo which depend on the flow geometry.

2.4.3 Ãnalogy between the transport processes

In view of the success of equations 7 and 16 in representing the transfer

solutions for various conduit cross-sectional geometries, the flat plate,

axisymmetric bodies and the data for multi-particle systems, an analogy between

transfer processes was sought. Combining equations 7 and 16, gives

j¿=o.640*{+}* (3za)- 
luLt)

or

j^{+l'o - o.rr *" (32b)

lu¡ )

Equations 32a-b, though identical for the viscous flow regime, have different

exponents on the generalized drag factor. It may be pointed out that the form of

equation 32ahas been used successfully to model healmass transfe¡ in

multi-particle systems with Re, < 1ü. (Agarwal, 1988; Agarwal et al., 1988).
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2.4.4 Heat/Mass Transfer for other Graetz Numbers

The results presented above are applicable only in the thin concentration

boundary layer limit. It is of obvious importance to develop simple correlations

for the entire range of Graeø numbers. It is known that different geometries

have different asymptotic values for the Sherwood (or Nusselt) number in the

Gz" --> O limit. The relevant asymptotic values for flow and heat transfer in

conduits (Shah and L,ondon, 1978) have been summarized in Table 6; for

axisymmetric bodies, a tabulation has been provided by Clift et al. (1978). A

generalizaúon over a wide range of geometries \¡/as not possible as these limiting

values do not correlate with the cross-section factor, z. However, some

encouraging simplifications have been obtained for ducts and are presented in the

following.

Clift et al. (1978) have linked the Pe + æ solution with the Pe + 0 solution

for a sphere using

Sho:I+(L+Pe)tß (33)

Equation 33 has already been used to obtain the expression for interphase

heat/mass transfer in multi-particle systems given by equations 31a-b (Agarwal et

al., 1987). Further, in view of the excellent conespondence obtained between the

spherical geometry and flow through conduits (equations 18 and 27), this

empirical form for ducts was written as

Nuc, = (Nu!,'-&) + (Krt+Gzo)t't Qaa)

Equation 34amay be rearranged to

Nu,^, = (*"î,, -"ì * 
þ'*Nu;-)"' 

(i4b)
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where Ko= (4213)IE. A similar expression may also be chosen for the peripheral

average Sherwood number,

Nu. = l*u9 -/â + fK.'+ Nu; -ì"' eac)-'-d¡tr 
f -*" ') \ ' '^* )

Values of Ç and K' determined by fîtting the numerical tabulations compiled by

Shah and London (1978) for different conduit geometries, are included along

with the resulting average error and standard deviation in Table 6 þage 28)' It

may be noted that in several cases the range of Graetz numbers for which

numerical computations have been reported is somewhat limited. Though the

agreement is excellent (model and literature data are tabulated in Appendix C),

the values of Ç and K, do not appear to correlate with z or with the asymptotic

Nusselt number. However, the simplicity of these one-parameter forms is

appealing in comparison with correlations available previously (Churchill and

Ozoe,1973; Shah and London, 1978). The highest standard deviation is

observed for the right angled isoceles triangular ducts; however, this is not

surprising in view of the low body curvature assumption (Appendix B) being

invalid at the 45'vertices.
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2.5 CONCLUSIONS

The proposed definition for the Reynolds number permits the formulation of a

general drag curve which is applicable for a wide range of geometries under viscous

flow conditions. The use of this drag relation in the thin concentration/ thermal

boundary layer equations yields a solution for the healmass transfer factor which is

strictly applicable for flat plates and conduits" This solution also provides excellent

agreement with the available theoretical results for spheroids for E > 0.5. This is

thought to occur because the error in neglecting the effects of form drag is

compensated for by treating the surface average velocity gradient as constant" The

conduit solution, with appropriate tra¡rsformations, also applies to interphase

heat/mass transfer in assemblages of multi-particle systems. The expression

obtained is identical to the equation developed earlier based on a submerged object

model. The agreement over such a wide range of flow geometries enables the

formulation of an analogy between transport phenomena for viscous flow under the

Gzo ->- conditions. Though the interphase transport phenomena for different flow

geometries follow common curves in the viscous flow regime, deviations occur at

critical values of Reo - due to turbulence or increased inertial contribution - which

still depend on the flow geometry. Extension of the approach to cover the entire

range of Gzo, though not entfuely generalized, can be used to obtain simple

one-parameter empirical correlations for surface and peripheral average interphase

heaVmass transfer coefficients in conduits.
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CHAPTER trI

ACTIVE PARTICLE MOTION IN THE EMULSION PHASE OF'A

FLUIDIZED BED

3.l INTRODUCTION

3.1.1Background

'When a fluid is passed upward through a bed of uniform particles at such a

velocity that the upwards fluid drag force acting on the particles becomes equal

to the downward weight of the particles, the particles will become suspended in

the fluid. This is the onset of fluidization and the velocity at which this occurs is

the minimum fluidization velocity, U*

If the fluidizing fluid is a liquid, the bed will expand homogeneously as the

velocity is increased above U* so that the emulsion (or particle rich) phase

porosity, e, increases. Although there is no bulk convective movement of solids

within the bed, particles are observed to move about in a random mariner (that is,

a diffusive solids mixing mechanism exists).

When a gas is used, bubbles or 'pockets' of gas form in the bed at

superficial velocities greater than U-, allowing the gas to pass through the bed

either through the bubbles or through the emulsion phase. Bed expansion, as the

superfîcial velocity is increased, results primarily from the increase in the size of
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bubbles in the bed. The emulsion phase remains essentially at e,ú, the porosity at

minimum fluidization conditions, for Group B and D powders (Geldart, 1973;

Valenzuela and Glicksman, 1985). As a bubble rises in the bed, a wake of solids

at its base is carried up. So, to maintain steady state conditions, there must be a

net convective velocity of solids, Uo, downwards in the emulsion phase. An

expression fo¡ this velocity has been determined by a mass balance on solids

(Kunii and Levenspiel, 1969).

When an active pa-rticle of a different size and density to the inert particles

that make up the bed is added to the emulsion phase of the bed, a movement that

is d.istinct from that of the inert bed material results. This segregation, or

classification, process is caused primarily by the density difference between the

particles but size difference can also cause it.

For example, if a sufficiently heavy particle is added to a liquid fluidized

bed of inert particles, the active particle will sink through the emulsion to the

bottom of the bed and will probably stay there (called a jetsam particle).

Likewise a sufficiently light particle will float to the top and stay there (called a

flotsam particle). Note that the mechanism for mixing in liquid beds, namely

random motion of the particles, is small and will probably be insufficient to move

the active particle back into the bed bulk.

However, the mixing process that results from bubble motion in a gas

fluidized bed is considerably more significant when compared to the segregation

process rhat occurs in the emulsion phase. A sufficiently heavy particle will

move down in the emulsion phase to the bottom of the bed (as in liquid beds),
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however, the particle may be swept into the wake of a passing bubble and lifted

back upwards into the bed bulk. A sufficiently light active particle that moves

upwards with respect to the inert emulsion particles, may still move downwards

in relation to the container walls, if the rise velocity of the active particle with

respect to the emulsion is less than the bubble-induced emulsion phase velocity,

Ç, downwards. Once again, the active particle is swept upwards by being

picked up by a passing bubble wake. Consequently, if mixing of the active

particle within the gas fluidized bed is to occur, then it must move downwards

with respect to the container walls whilst in the emulsion phase. The particle will

always move upwards in the bubble phase.

3.1.2 Objectives

The main objectives of this snrdy are to:

l) develop an expression, that is appticable to both gas and liquid fluidized

beds, for the emulsion phase segregation velocity of the active particle

from first principles;

2) develop criteria (necessary and sufficient conditions) that determine,

from the properties of the fluidized system, whether the active particle

will float, sink or mix in a particulate (no bubbles) as well as a bubbling

fluidized bed;

and 3) test the predictions that result from 1 and 2 above with data available in

the literature and with data determined from experiments performed by

the author.

It should be pointed out that this study is applicable only when there are

relatively few active particles fluidized along with the inert bed material, that is,
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less than ten percent by volume. Consequently, the bulk bed properties such as

U- and bed porosity, e, can be assumed to be dependent on the inert particle

properties only.

3.1.3 Why Bother? :Applications for the Study

Both liquid fluidized beds and incipiently fluidized gas beds (that is, the

fluidizing velocity is at U-) can be used as classification devices to separate

pafiicles with a sufficient difference in either size or density, since there will be

no significant mixing mechanism that opposes the desired segregation process in

these configurations (section 2.L.1). The removal of loose solid impurities from a

valuable ofe or mineral, such as Stone dusts from coal (Daniels, 1961), is an

example of such a process. It is obvious that the design of these classifiers

would be improved if an expression for this segregation rate was available during

the design process.

As mentioned in Chapter 1, the fluidized bed combustion of coal was the

initiat motivation for this work. This process involves burning coal particles in a

hot air fluidized bed of inert limestone particles that are both heavier and smaller

than the active coal particles. As expected, the combustion rate of the coal within

the bed is an important design parameter. This rate is directly related to the mass

transfer rate of oxygen to the particle surface. Whilst in the emulsion phase, the

convective mass transport coeff,rcient that governs this transfer rate is influenced

by the relative velocity between the interstitial air and the active coal particle-

Consequently, any accurate modelling study of the reaction and mass transfer

rates requires knowledge of the coal particle velocity. It is also important that the

coal particle resides in the bed bulk: one of the reasons being that SO, generated
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by the combustion process can then be removed in situ by reaction with the

limestone particles. Being able to predict, therefore, whether the coal particle

will float or mix within the bed will also be important in the design process.
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3.2 LITERATURE SURVEY

3.2.l Segregation Studies in Liquid Fluidized Beds

BINARY MIXTURES - general: In liquid fluidized beds of binary

particles that differ in size and/or density, segregation will occur to produce two

sepamte particle layers: one of jetsam particles at the bottom of the bed and the

other of flotsam particles at the top. The diffusion or mixing process (due to the

particles random motion) produces an interfacial region that contains a fraction of

both particles. The size of this region will depend on the relative magnitudes of

the mixing and segregation processes. To determine these characteristics

Kennedy and Bretton (1964) expressed the mixing process in terms of a

one-dimensional diffusive flux and the seglegation process in terms of a

convective flux based on a segregation velocity (details of this velocity are

presented in the next section). Steady state concentration profiles of the jetsam

within the bed were obtained by equating these fluxes. This model remains the

most widely used for mixing and segregation in particulate beds; its limitations

have been discussed recently (Gibilaro et al., 1985).

SEGREGATION VELOCITY: The segregation process in liquid fluidized

beds has been modelted primarily from hydrodynamic considerations, and only

the steady state or terminal segregation velocity appears to have been considered.

Prudhoe and Whitmore (1964) reported terminal velocity data for various

heavy spheres falling through oil fluidized beds of glass beads in an attempt to

determine the effective viscosity of a fluidized bed. The highly viscous oil

ensured that inertial fluid drag effects could be neglected. Only two fluid

velocities were considered. The modelling study assumed that the falling sphere
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also assumed to displace the suspension so that the buoyancy force was

proportional to the suspension density, p". To account for the influence of the

upward flow of fluidizing liquid on the terminal velocity it was assumed that

uo-vu- uo' (35)

where U" is the true terminal velocity of the sphere, (Jo' is the terminal velocity

that would result if the sphere was falling through a stagnant suspension and V,

the effective upward velocity of fluid within the bed. An additional empirical

correction factor had to be added to the model expression so that the predicted

effective viscosity, [, determined from fitting their own terminal velocity data,

would not have an apparent active particle diameter dependence.

Kennedy and Bretton (1966) in their mixing/segregation model for a

particulate fluidized bed (as mentioned in the previous section) used an intuitive

argument to obtain an expression for the segregation velocity in a bed of porosity,

€, as
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(36)

where (Uo), is the fluid velocity required to fluidize a bed of only active spheres to

a porosity e, and (Uo), is, likewise, the velocity required to fluidize a bed of only

inert spheres to the same porosity. The primary forces assumed to act on a

segïegating particle in this analysis are, therefore, fluid drag, gravity and

buoyancy since the fluidizing velocity (upon which equation 36 is based) is

determined solely by equating these forces. No direct attempt at verification of

the model by comparison with experiment was made.



Martin et al. (1981) measured the terminal velocity of heavy ion exchange

beads falting through a water fluidized bed of lighter beads and investigated the

dependence of this velocity on the fluidizing velocity. The segregation velocity

predicted from equation 36 was poor in comparison with their experimental data;

it would overpredict the velocity at low porosities and underpredict at medium to

high porosities. Hence, a modification to the Kennedy and Bretton expression

was proposed and an empirical fit to the data gave

u"=2.59,49^(lo-u,!,) (3i)" (u*),

where U- is the terminal velocity of an isolated particle (i = inert, a = active) in an

infinite fluid. The agreement between model and experiment for e > 0.8, however,

was still poor.

In his review paper on solid-liquid fluidization, Joshi (1983) used the

concept of a turbulence intensity to account for the increase in fluid drag on a

particle when it is placed in a multi-particle system. By equating this upwards

fluid drag force with the gravity force and the buoyancy force (which was

assumed proportional to the volume of liquid displaced), an expression for the

se$egation velocity of an active particle was obtained. In the laminar flow

region, this expression was

u"=(u-)^[rr -n,=l')-u' (38¿)

\. 1-rRj ) e

where
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^,=[,.?&1o\''"
(38å )
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It is interesting to note the explicit dependence on the inert particle diameter, d'.

Agreement with the lamina¡ regime data of Prudhoe and'Whitmore (1964) was

claimed to be good. On closer inspection, however, it is apparent that the

comparison involved only a small amount of data points in the low segregation

velocity range (up to 13 mm/s) out of a possible range up to 50 mm/s (Figure 9 in

Joshi, 1983). A more detailed comparison with the Prudhoe and'Whitmore data

is given in Figure 5. The fit is good, as claimed, in the low velocity region but

can be seen to be poor at higher velocities. It was also reported that the Kennedy

and Bretton (1966) and the Martin et al. (1981) models (equations 36 and 37

respectively) could not corelate the Prudhoe and'Whitmore data.

3.2.2 Segregation Studies in Gas Fluidized Beds

BINARY SYSTEMS - general: The mixing process in bubbling gas

fluid.ized beds has considerably more influence on the segregation process than

that in liquid or particulate fluidized beds discussed in the previous section,

simply because of the bulk convective velocity of solids within the bed induced

by the bubbles. Consequently, both the competing mixing and segregation

mechanisms in gas fluidized beds of binary mixtures are impoÍant in any

analysis of segregation.

The majority of work in this area has originated from Rowe, Nienow and

co-workers at University College, London. The salient aspects of their work are

presented in the following.
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Rowe et aI. (1972), in a qualitative analysis of their segregation experiments

in gas fluidized beds of binary mixtures, concluded that the primary mechanisms

for segregation are:

1) the lifting of particles in the enclosed wake of passing bubbles

(this may aid segregation but is more often associated with

mixing);

2) the falling of large, dense particles (etsam) through bubbles to

descend through the bed;

3) the falting of jetsam, with respect to the flotsam, in those regions

of the emulsion phase recently disturbed by a rising bubble;

and 4) the quasi-hydrostatic effect that causes light particles at the top

to remain there (that is, flotsam). Under no circumstances were

these light particles found to sink into the bed.

If the powders that make up the mixture differ in density, the denser becomes the

jetsam; if they differ in size, it is the larger that settles to the bottom.

The first model to determine the steady state concentrations within the

segegating gas fluidized bed \¡/as presented by Gibilaro and Rowe (1974). The

bed was assumed to consist of two phases; a bulk or emulsion phase and a wake

phase which travels upwards with the bubbles. Four adjustable parameters were

defined to describe the three possible modes of mixing (namely, bulk ci¡culation,

exchange between the phases and axial diffusion) and the one of segregation,

which was assumed to occur only in the bulk phase. The model was applicable

only to those cases where the jetsam fraction in the bed is less than 507o by

volume.
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Naimer et al. (1982) expressed the adjustable parameters in the Gibilaro and

Rowe model in terms of the system properties, thus allowing the parameters to be

estimated from first priciples. The axial mixing effect was neglected. The

segregation rate parameter was related to the bed and bubble properties by using

the corelation of Tanimoto et al. (1981) which is outlined in the next section.

Chiba et al. (1980) presented experimental data which show that the denser

pa¡ticles, under some conditions, may be flotsam in contradiction with previous

observations (Rowe et a1., 1972).

'When the jetsam fraction is greater than 90Vo by volume, the segtegation

patterns observed were distinctly different from those in low jetsam fraction

systems. An additional overlayering mechanism was assumed to exist, which can

cause flotsam particles at the top of the bed to sink back into the bed bulk

(Nienow et al., 1978a). For the case of a few large active particles in a jetsam

rich bed (as in the fluidized bed combustion of coal), Nienow et al. (1978b) found

that the large flotsam particle would float at gas velocities little in excess of U-.

However, at quite moderate bubbling rates, it would be constantly drawn beneath

the surface by overlayering or downwards convective flow of the jetsam' The

flotsam particles would move back upwards by short rides in passing bubbles.

SEGREGATION VELOCITY: As for the corresponding studies in liquid

beds, most of the models in the literature determine the steady state segregation

velocities only. They are mainly based on a mass balance approach which

effectively makes them inapplicable to a single active particle analysis.
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Gibilaro and Rowe (1974) expressed the segregation rate as an oveÍtaking

downward velocity of the jetsam particles with respect to the flotsam particles. It

was assumed that the segregation occuring at a point was proportional to the

concentration of jetsam at that point. Solids balance over a volume element of

the bulk phase revealed that

du"
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(3e)k" ?Å,1(1
dxt
dI)

dI

where U" is the seglegation velocity of jetsam in the bulk phase at a height, l, x, is

the jetsam fraction and e, is an adjustable segregation factor that is assumed to be

constant throughout the bed.

Tanimoto et al. (1981), as suggested by Rowe et aI. (1972), considered

segïegation between the jetsam and the flotsam particles to be possible only in

the drift produced by a passing bubble. The relative displacement between the

two particles, ¡l, was measured under different experimental conditions and

empi.icatly correlated as

t=0,ø[#)[#)"' (40)

{ is the bubble diameter and the J and F subscripts refer to the jetsam and

flotsam fractions respectively. Note that if Uo equals U.,, so that fi is zero,

equation 40 predicts no relative motion between the particles.

Using the the above correlation for segregation displacement, Naimer et al.

(1982) derived an expression for the segregation factor, &,, in equation 39 in

terrns of the bubble and particle properties

, 3y E.k"=;i;;;;u, (41)
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,where U, is the bubble rise velocity and e, is the fraction of the bubble phase

(including the wake phase) in the bed.

Beeckmans er a]. (1985) found that the relative settling velocity between

magnetite particles (p¡ = 4500 kgtm3, d,¡: l7O pm) and sand particles (p¡ = 265O

kstm3, dp = 232 wn) in a gas fluidized bed that contained2To magnetite particles

(by volume) was approximately 3.2 mm/s. The gas velocity used was twice the

bed minimum fluidization velocity. An expression for this segregation velocity

was obtained by using the solids balance approach, used firstly by Kunii and

Levenspiel (1969) to determine the bulk convective velocity, Uø, in a uniform

particle fluidized bed, to give

a(U o - u *) ((x) 
" - 

(xr)r))u"=ffi (42)

The ratio of wake volume to the bubble volume is cr, and the w and b subscripts

denote the wake and bulk/emulsion phases respectively.

As part of a study on the drag force on spheres moving through particulate

gas fluidized beds, Daniels (1962) measured the terminal velocity of metallic

particles falling through a fluidized bed of sand particles. It is interesting to note

that these results indicate that segtegation occurs in the emulsion phase without

the presence of bubbles.

3.2.3 Forces that act on a Particle in a Fluidized Bed

It is apparent from the previous sections that a satisfactory hydrodynamic

model for the seglegation velocity is still required. To achieve this goal, the

relevant forces acting on a particle while in the emulsion phase must be both
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identified and quantified.

FLUID DRAG FORCE: Pressure drop resulting from the drag resistance to

fluid flow through assemblages of particles has received wide research attention

over the past fifty years. Flow through the medium has been modelled as that

through a collection of equivalent tubes (hydraulic radius models) or as that over

a collection of individual particles (submerged object models). Limitations to

both models have been discussed already in section 2.2 in the last chapter.

The most widely used hydraulic radius model for pressure loss results from

Ergun (1952)

+--36c,ryu,*c,Su3 (ß)
L E"d; tdo

where C, is the Kozeny factor (Carman, 1956) and C, is an inertial drag factor.

For packed beds, C, : 150/36 and C, = 1.75 were used. This model is applicable

to low bed porosities, 0.4 < € < 0.6, and Re, < 2000. The submerged object has been

used to predict the pressure loss behaviour at higher porosities (e > 0.8).

As mentioned in Section 2.2, Andersson (1961) extended the hydraulic

radius approach to high bed porosities by using the cross-section factor, z, to

account for the variation of the flow channel cross-section geometry with

porosity. This allowed him to write

LP ,(t - e)'w ur+ 6c,ry u: (44)L = totq æo tdo

where zq" is a modified Kozeny factor, 4 is the tornrosity factor and c, 1=

Co*-24lRer,-) is an inertial drag coefficient. The first tenn on the right side of
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equation 44 represents the viscous drag and was used in the viscous flow analysis

presented in Chapter 2 (equation 4).

Foscolo er al. (1983), in determining the expansion characteristics of

par:ticulate fluidized beds from the packed bed state to the isolated particle

regime, modifred the Ergun hydraulic radius model (equation 43) by the inclusion

of a torn¡osity factor (equal to 1/e) in the viscous term and a porosity dependent

inertial drag factor in the inertial term. This modifred form was assumed to be

applicable over the complete voidage range. The fluid drag on a particle within

the suspension was then obtained from the modified Ergun equation by implicitly

assuming that the buoyancy force acting on the the particle will be proportional

to the suspension density. Extension to the isolated particle regime (e -+ 1) was

possible only after the force on a single particle was added to the force balance.

Verif,rcation of the model was achieved by comparing the expansion predictions

of the model with the Richardson andZaki correlation (1954). Agreement in the

intermediate flow regime (0.2 < Re-< 500) was poor due to the interpolatory nature

(between the viscous and inertial flow regimes) assumed by the Ergun

expressron.

A combination of the submerged object and hydraulic radius approaches

was also used by Agarwal and O'Neill (1983) in their formulation of a model for

the porosity dependent drag force. The Andersson hydraulic radius expression

(equation 44) was used since it already was applicable over a wide range of

porosity. It should be pointed out that, as for the development of Foscolo et al.

(1983), the combination of the two approaches was achieved assuming that the
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buoyancy force results from the displacement of the suspension as a whole and

not just the interstitial fluid. Separate functions for the three parameters in the

Andersson equation, namely z, qand C, were developed.

PARTICLE-PARICLE INTERACTION FORCE: When a body moves

relative to a suspension of particles then the suspension as a whole will be

sheared and a shear force opposing the motion will result. This force is produced

by fluid and particle interactions, both with the shear boundary and within the

suspension bulk itself (Cheng, 1980b).

For dilute gas-solid flows (as in pneumatic transport), the importance of this

force has been recognised. Arastoopour et al. (1980) (as discussed by

Arastoopour et al., 1982) concluded that, although pressure drops over a

pneumatic transport line carrying a binary solids mixture were predicted well by

a hydrodynamic model, the calculated degree of segregation would deviate

significantly from experiment. The deviation was ascribed to the neglect of a

binary collision force in the model. Doss (1985), as discussed by Srinivasan and

Doss (1985), came to the same conclusion. He found that inclusion of a particle

interaction force in the particle momentum balance produced a better fit to his

experimental data obtained from multi-particle solids/gas flows in a variable area

duct.

For more concentrated suspensions of fluid and solid, the particle

momentum balance approach becomes less valid. However, a considerable

amount of work has been done in characterizing this force in terrns of an effective

suspension shea¡ viscosity, [.
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(i) Liquid Suspensions:

Theoretically, the viscosity of suspensions, [, of neutrally buoyant spheres

can be determined from either the velocity gradient

(4s)

or from the energy dissipation due to shearing, E, as

- r ðujP:tr.Y\* 
Ø6)E¿=-tL"J"¿-[ãt. ,L y,

The many theoretical and semi-theoretical approaches used in the literature have

been reviewed by Jinescu (L974), the salient points of which are presented in the

following.

Einstein (1906) published the first work on suspension viscosity. He

accounted for longe range interactions between fluid and particles and found

u=t+2.5Q" 
Ø7)

tr

This equation is only applicable for solid volume fractions, 0,, of less than ten

percent. With more concentrated suspensions it is necessary to account for more

compléx interactions. The viscosity-concentration relation becomes non-linear;

the rate of increase of viscosity accelerating as concentration increases (Cheng,

1980a). Many of the existing theoretical and emp.irical equations for this

concentration region have been expressed as a power series in the solids

concentration, Q". Alternatively, models for I have been proposed which give the

viscosity-concentration relation in a closed form. For example, Thomas (1965)

proposed the function

ru=_*1(#.v)

P" 
= t + 2.50" + 10.0503 + o.00273exp(16.6Q") (48)
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where the Q" term accounts for long distance interactions, the Q: term for particle

collisions, doublet rotations and the rolling of doublet spheres one over the other,

and the exponential term accounts for the rearrangement of particles, as the

suspension is sheared, from one shear plane to another. The experimental results

of thirteen investigators were correlated to within twelve porcent for Q" < 0.5.

Frankel and Acrivos (1967) theoretically determined, for high concentrations,

E=t+9 (0"/(0")*".)t"._ 
(4g)

tl ^' 8 1 -(0"/(0")-",)t"

where (0,)-- is the maximum attainable concentration for a more or less compact

Íurangement of the solids. For example, (0,).- is 0.26 for the most compact

arrangement - the hexagonal lattice.

In conclusion, Jinesct (L974) stated that the collected theoretical and

experimental results for the suspension viscosity remain inconclusive. As a first

approximation, the model of Thomas (1965) (equation 47) was recommended.

Cheng (1980a), summarizing the work on viscosity-concentration equations

for suspensions, concluded that the studies done up to 1980 are still inconclusive

and that no correlation or model could be singled out as being superior.

More recently, Kawase and Ulbrecht (1983) proposed a correlation for the

viscosity of suspensions of solid spheres in power law liquids. Starting from a

cell model they obtained (only the Newtonian fluid solution is given here)

tr"= t+g.zO¡O: _ (50)
tr 7 -2.478þ"+ 18.4560: -20.326þi

This relation was in good agreement with the extensive experimental data of
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Rutgers (1962).

Comparison of this model with the model of Thomas (equation 48) is given

in Figure 6. Fore>0.7or0"<0.3, thepredictions of the two models are close but

significant deviation occurs at higher solid fractions.

It must be made clear at this point that the definition of the effective

suspension viscosity, [, given in equations 45 and 46 does not include those

effective viscosities of Hawksley (1951) and Barnea and Mizrahi (1973). In the

first case, the viscosity represents the suspension as a whole and is measured by

viscometers. In the second case, the calculated viscosity is that experienced by

the fluid only and is used in calculating the porosity dependent fluid drag on the

suspended particles.

(ii) Gas Suspensions:

A gas-solid suspension can only be produced when the particles are

fluidized by an upward flow of gas since the large density difference makes it

impossible to have neutrally buoyant particles. It should be noted that, unlike

solid-fluid suspensions which can have variable solid fractions, the emulsion or

particle rich phase in a gas fluidized suspension remains essentially at the

minimum fluidization porosity, €,y, oven under bubbling conditions. Moreover,

the effective viscosity is much higher than that obtained for liquid-solid systems

ar rhe same voidage (Saxton et a1., 1970) due to the higher internal friction

amongst the dry particles (that is, the particle surface is not wetted by liquid).
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The experimental methods that have been used to determine the emulsion

phase (or suspension) viscosity fall into two categories

1) Techniques coÍtmonly used to determine the viscosity of Newtonian

fluids.

Schugerl et al. (1961) and Hagyard and Sacerdote (1966) used a rotating

cylinder viscometer to measure U. Care was taken to ensure that the fastest

rotation of the body was slow compared with the fluidizing velocity, thus

minimizing bed disturbance. Daniels (1962) and King et al. (1985) used the

falling sphere technique. A problem with these methods is that the local state of

fluidization is disturbed.

2) Indirect methods based on the behaviour of bubbles in the fluidized bed.

This method allows the effective viscosity to be determined from bubble

properties, thereby removing problems that arise from external measurement

disturbances.

Murray (1967) inferred I from his estimates on the viscous drag coefficient

for the rising bubbles. However, the resulting expression for the viscosity was

found to be dependent on the bubble diameter. Stewart (1968) obtained values of

I from the difference between predicted and observed pressure measurements as

a bubble passed a probe. Grace (1970) estimated the viscosity from the shape of

a bubble by comparing the fluidized bed bubble wake angle with those of bubbles

rising in a liquid of known viscosity.

Table 7 summarizes the data of the various investigators.
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Experimental Suspension Viscosities, [, for Gas-Solid Fluidized Beds
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Reference
Pa¡ticle
Type

Particle Size
(t 

")
Suspension Viscosity

[ (Pa.s)

Schurgel (1961) sharp edged quarz and
silicon carbide

Daniels (1962)
(see section 3.5.1)

Stewart (1968)

smooth glass and
polystyrol beads

coa¡se sand

Grace (1970)

magneslte

glass ballotini

silver sand

synclyst catalyst

magnesite

glass ballotiniKing et al. (1985)

silver sand

200 - 350

200 - 350

t1,4

500

240

60 - 550

72 - 500

52

240

64 - 475

0.5 - 1.0

0.1 - 0.5

t.7

<2.5

< 1.5

0.4 - r.2

0.5 - 1.4

0.4

0.9

0.25 - 2.2
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WEIGHT FORCE: The effective weight of a particle, w., iî a

fluidized suspension is given by

W"=Wt - P"Vog QIa)

where IV, is the buoyancy force on the submerged active particle of volume Iz,

and density p".

The buoyancy force acting on a particle has traditionally been described in

terns of the density of the fluid alone flMen and Yu, 7966; Kunii and Levenspiel,

1969) by

Wt = PV"g (51å)

Other workers have, however, indicated that it should be described based on the

density of the suspension which is a blend of fluid and solid (Richardson and

Meikle, 1961; Reitema,1982; Foscolo et al., 1983; Agarwal and O'Neill, 1988)

AS

Wr= lt"V"g (51c)

where p" = ep + (1 - e)p, is the suspension density.

Recently, arguments have been put forward for both cases (Epstein, 1984;

Gibila¡o et al., 1984; Clift et al., 1987; Gibilaro et al., 1987). However, the

problem has still not been resolved.
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3.3 EXPERIMENTAL SYSTEM

Experiments to test the developed model (as outlined in the next section) were

performed in a liquid fluidized bed using light active particles that rose in the bed of

heavier inert particles.

3.3.1Apparatus

The liquid fluidized bed system used is shown in Figure 7a. The column

was made of perspex with a diameter of 150 mm and a height of approximately

500 mm. Distilled water (the fluidizing liquid) entered the bottom of the column

through a calming section that controlled the water velocity profile to eliminate

channelling before passing through a sintered bronze distributor plate into the

fluidizing section. Glass ballotini (size range: -425 +250 tm; P¡=24lokstm') was

used as the inert bed material and the active particles were made from acrylic

spheres.

The water flow rate was measured by one of three rotameters. Each meter

was calibrated for flow over the low, middle and high flow regions to cover all

the flow rates tested with good accuracy. The bed porosity was inferred from

pressure readings made by a manometer tube inserted into the bed.

To insert and release the active particles within the bed, a simple sampler

apparatus using a thin plastic tube (6 mm in diameter) and a 10 mI syringe was

constructed. The active particle was attached to the bottom end of the tube by

applying suction at the top end by the syringe. The suction efficiency was

improved by coating a thin frlm of silicon sealant around the tube circumference
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at the bottom end. To give the flexible tube a greater rigidity, it was wedged into

the gap of an aluminium channel, 585 mm in length. The sampler device is

shown in Figure 7b.

3.3.2 Active Particle Preparation

The active particles used in the experiments were made from acrylic

spheres (p"=rL94kst^'), 11.0 and 12.5 mm in diameter. Particles of different

density were made by drilling holes into two of the larger spheres. A heavier

particle (p"=rs22kst^') was produced by adding lead powder to the hole; a lighter

particte (p"=totg*etnr') was produced by leaving it empty. The holes were sealed

by Araldite glue.

3.3.3 Procedure

The bed was fluidized with water at a pre-determined flow rate. Sufficient

bed material was added to maintain an expanded height of at least 300 mm. The

sampler, with the active particle attached, was inserted to the desired depth (in

this case, 280 mm) and the particle was released into the bed by removing the

syringe from the tube. To ensure that the particle was released at the same time

the syringe was removed, water was d¡awn up into the tube (before the particle

was attached) so that the internal pressure at the bottom end of the tube exceeded

the external fluid pressure at the bed depth of interest. The time taken for the the

particle to move from rest to the top of the bed was measured, allowing an

average velocity to be determined.
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3.4 MODELLING

3.4.1 General Development

The equation of motion (or force balance) for the active pafiicle whilst in

the emulsion phase can be written as

dU,"1=2Fu, (52)

where M. is the effective inertial mass of the sphere, U, is the active particle

velocity in relation to the inert bed particles and IF-, is the sum of the external

forces that act on the particle (positive upwards). It is supposed that these forces

can be written as

ZFu,=F¿*w"+F, (53)

where F, is the fluid drag force, W, is the effective weight force of a particle in

the suspension (weight plus buoyancy) and F, is a particle-particle interaction

force (as discussed in section 3.2.3). To solve equations 52 and 53 for the

segregation velocity of an active particle, expressions for these forces in terms of

this velocity are required.

FLUID DRAG FORCE: The model of Agarwal and o'Neill (1988) is used

and can be expressed in the standard form as

p.=c^-nd3pe-u")_lv-u"l 64a)t'd-vDe 4 z

where v(:qU/e) is the interstitial fluid velocity relative to the inert particles and

Cr" iS the porosity dependent drag coefficient which in terms of Re", the
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generalized Reynolds Number (section 2.3.1), is

co.=nft(J-\*") 64b)
\. 

'[R'o'J- "''J

where C,(:Co--z4tRe"*) accounts for the inertial fraction of the total drag.

Correlations for Cr-, the drag coefficient for the particle in an infinite fluid, are

well known and generally can be expressed in the form

)¿. K,/- _ -- + --' +K" (é4c)vD-- 
Rro- Rr|' ",

Note that the active particle Reynolds number, Reo, is based on the superficial

approach velocity, which for this problem, will be lu-U" le/4. Equation 54c in

equation 54b gives

co,=#(22(t-.,D.r(h."1 64d)

For the conditions considered in this study, it is expected that Re", will always be

less than 1000. Consequently, the Cr- conelation of Lapple (1951) is used since

for this Reynolds number region, this relation has a deviation of less than five

percent. The coefficients def,rned in equation 54c are K, :3, Kz:O, and n =0.28.

Equation 54a, with manipulation, now becomes

F¿= at(v-(J")+ arlv-u"l'-" (u-u")+ar(v-u")lv-u"l (55)

where the coeffîcients a,, a" and a, are solely functions of the bed properties and

are given in Table 8.

The z factor is derived from the Hawksley (1951) relation for UoiU- (as

discussed by Agarwal and O'Neill, 1988)

zqz=;å*r( 
)

(s6)
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TABLE 8

a,Coefficients for use in the General Fluid Drag Force Model (equation 55)

Coefficient Expression

npd?q
K2

8

8

ar

a,

a,

6n"q\3pd"

"rt:r(ffi)
Kr
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The tortuosity factor has already been presented in Table 4. It may be noted that

this expression is different from that used in Chapter 2 (Table 4). There is no

significant difference between the two zq'expressions for e>0.53; the expression

in Table 4, however, is discontinuous at a porosity of 0.5 Now, the analysis

presented here in this study is strictly applicable to 'only fluidized beds; the

previous analysis in Chapter 2 sought to unify transport phenomena for both

packed and fluidized beds under viscous flow conditions. Consequently, there is

no need to use the discontinous expression outlined in Table 4 for zq' which

implicitty accounts for the transition between the packed and fluidized state at a

porosity between 0.4 and 0.5. The relation given in equation 56 is a continous

function that will be applicable over the whole Íange of fluidized bed porosities

and is consequently easier to use in this case.

WEIGHT FORCE: As discussed in the literature survey

(section 3.2.3), the exact form of this relation is controversial. However, the

approach of Agarwal and O'Neill (1988) (in their development of the fluid drag

model given in equation 54a) assumes that the buoyancy force is given in terms

of the suspension density. Hence to be consistent this form is also used here, so

that

w,=F"-o)(s = oo (s7)

PARTICLE-PARTICLE INTERACTION FORCE: This force represents

the resistance provided by the inert particles to the relative motion of the active

particle. The suspension viscosity relations discussed earlier in section 3.2.3

characterise this force in terrns of shea¡ing both the particles and the fluid.

However, the fluid drag expression given in equation 55 has already accounted
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for the effects of the fluid. Hence, to use the suspension viscosity relations, this

fluid shea¡ effect must be deleted, thus leaving only the particle interaction

effects with the shear boundary (that is, the active particle surface) and the

transfer of this shea¡ to the suspension bulk via collisions, rotations and so on.

For solid fractions in which the particle interaction force will be significant,

the suspension viscosity will be high. Consequently, it would be reasonable to

assume that the rate of shear will be low and under these conditions the

suspension can be modelled as a Newtonian fluid (Cheng, 1980a). This allows us

to write

1= -3qt"d"U" (58)

where { is the shear force produced from shearing the suspension as a whole' As

a first approximation, one may consider this force as a linea¡ combination of the

individual fluid and particle interactions with the shear boundary; that is

F" = F o+ F, (59a)

F, is the fluid drag contribution and F" is that part of the total force due to particle

interactions. Noting that for liquid suspensions, the viscosities a¡e derived for

particles suspended in a stagnant fluid and assuming low shea¡ rate conditions

U, = lr" - l, (59å)

where Ç is an effective viscosity that characterises the particle interaction force.

Hence,

Fo=-3nltodoUo=-Qs(Jo (60)

In terms of the Thomas model for[ (equation 48)' pr becomes

[ = p(2.5Q" + 10.0503 +O-00273exp(16.6Q") (614)

or in terms of the Kawase and Ulbrecht model (equation 50)

r I u,tb)
Po = lrl,P '|.. 

)
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For gas beds, I is in the range 0.5 to 2.0 Pa.s (Table 7) and p is of the order

r0-5 Pa.s . Hence, equation 60 can be used for the particle interaction force with

Ç taken as I for these suspensions.

Substitution of equations 55, 57 and 60 in equation 52 gives

du"
M" a r(v -U ") 

+ a, I v -(J " | 
- ^ (u -U ") 

+ ar(v -(J ") I 
v -(J " I +a o - a rU "(62)

Two separate conditions can occur:

1) the active particle moves at a velocity less than the intersitial fluid; Fo will be

directed upwards (and positive) and lv-U" I will equal (v-U"). Equation 62

becomes

du-*"1 = at(v -(J")+ ar(v-u")z-n + arçv -u')' + ao- ar(Jo {(3a)

2) the active particle moves upwards faster than the interstitial fluid so that Fo will

be downwards (and negative) and lv-U" lwill equal (U.-v). For this case

du-M-+ = -at(v -(Jo) - ar(v -u")'-" - ar(v -u")2 * ao- ar(Jo (ff'3b)
"dt

The first and second cases above will hereafter be referred to as the low and high

velocity models respectively.

dt

The coefficients, ar through a5, are all known functions of the bed properties.

To obtain an analytical solution for the segregation velocity, U., the

troublesome non-integer power term (that is, x'-') must be removed. This is

achieved by using a Taylor Series approximation. Expansion to the second term

of the series should be sufficient since the non-integer power, 2-n, will between 1
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and 2 (for example, n is 0.28 from the Lapple (1951) model). The series is

centered at the point, U,o e{ud to tv, where for the low velocity model (u-U" > 0),

k equals k, (which is less than 1), and for the high velocity model (r-(1".0), k

equals Ç (which is greater than 1). The expansion (as outlined in Appendix D)

yields for the low velocity case

(u-(J")'-" - bt-br(1"+brul $aa)

so that equation 63a becomes

M"(dU"ldt) = (arv*arbr+ arvz+ao) - (ar* arbr+2arv*ar)(J"

+ (ar+ arb) U| (64b)

= Az- Az(Jo+ Ap:
and likewise for the high velocity case

(u"-v)'-" = bo+ br(J"+ b6u:

and equation 63b

M"(dU"ldt) = (arv -arbo- arv2+ao) - (ar* arbo-2a"rv *ar) (J"

-(a.,+ arb)Ul

$ac)

(6sa)

(6sb)

=A'-A5(J"+A.U! (65c)

The coefficients b, through bu, in their most general form, are given in Table 9.

3.4.2 Steady State Analysis - Terminal Segregation Velocities

The equation of motion for the low velocity case (equation 64c) with the

acceleration terrn neglected becomes

0 = As - ArU"+ ArU! (66c)

This quadratic has the solutions



TABLE 9

b,Coefficients for use in the High and Low Velocity Models for the Fluid Drag

Force (equations 64 and 65)

73

Coefficient Expression

b,

b,

b3

b4

bs

bu

t
L - k r)' 

- n 
+ (2 - n) (t - k r)' 

-' k, - ?Ðfa 0 - k r)-" k)vz - "

((2 - n)(1 - k,)t -" + (2 - n) (I - n) (L - kr)-^frr) v' -'

(2- n)(I - n)
2

(,, - r)'- ^ - (z - n) (tc" - L)' - ^ 4.?ÐfA G" - rf" É)
2-nv

((2 - n) (lq - t)' - " - (2 - 12 ) ( 1 - n) (k - !f" lcr) u' - "

rr -r,f')v'

(-=$,-,) ì
-^v

')
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(U")r=
A2- A1- 4AA3

(66b)
24,

(U")r=
Ar* A1- 4AA3

(66c)
2AL

Likewise for the high velocity case,

(u"),
As* A? - 4A4A6

(67 a)
2Ao

(U")z=
As- A? - 4AA6

(6tb)
2Ao

The correct solution is (u,),, since (U"), violates the velocity condition for both of

the above cases; that is, (U.), is gfeater than v for the low velocity model and is

less than v for the high velocity model.

The exact value for 1U"), may be determined by varying k, (or Ç depending

on the model being considered), until the (U,)¡/v ratio becomes equal to k, (or Ç.

Va¡iation of this k value around the exact solution gave a small (if any) change in

the (U.), solution; the (U,), value however is very sensitive to k and could change

by over I00Vo even for a small variation.

3.4.3 Unsteady State Analysis

When the external forces applied to the active particle are not balanced,

acceleration will occur. The particle velocity, under these conditions, is given by

equâtions 64 and 65 for the low and high velocity models respectively.
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The effective inertial mass of the particla, M", must account for the

acceleration of the nearby suspension as well. This effect is expressed in terms

of a virtual mass coefficient, V(e), as

M"= M"(I + Y(e)) (68)

Bassett (1888) derived

v(e= D =; 6ea)

for a particle accelerating in an infinite fluid. For solid-fluid suspensions,

Reitema (1982) recommends

v@) =; 6sb)

This form is assumed in this analysis.

To obtain an analytical solution for the dynamic response of the active

particle, integration of equations 64 and 65 is required. However, this step

requires the quadratic in these equations in a factorised form, that is, for the low

velocity case

A3-A2(J"+ Ap:= Ar(U"-U")(U"-U"r) (70)

However, as pointed out above, the (U"L root is physically meaningless, as well as

extremely sensitive to k,. This in turn implies that integration of the factorised

equation results in a solution that is also physically meaningless. It is therefore

not possible to solve analytically, and numerical solution of the general force

balance was sought. Putting Y (= u - U.) into equation 62 gives

dY
-M,l=(at-ar)Y +arY lY 1t-" +arY lY l+(a4*ar)v (71)

Numerical integration of this equation will allow the determination of the

unsteady particle velocity at any time, t (for a specif,red initial velocity).
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3.4.4 Criteria for Flotsam

In the general case, the necessary condition for the active particle to be

flotsam is that the particle moves upward with respect to the inert bed particles.

The sufficient condition is that the active particle will move up in relation to the

container walls whilst in the emulsion phase. These conditions are expressed

more fully in the following.

NECESSARY CONDITIONS: Assume at t = 0, u" : 0. The general

equation of motion (equation 62) reduces to

(72)

The term in brackqts is the initial fluid drag force (which is always positive) and

ao is the effective weight force acting on the particle (equation 57). For the active

particle to move upwards, the initial acceleration, (du"tdt),=o must be positive, that

1S'

arv+arv2-" +arv',) -aq (73)

Equation 73 represents the necessary flosam condition. If ao is positive (that is,

p" < p,), then the condition will always be satisfîed since both forces act upwards.

However, if aois negative (p" r p,), this condition will not always hold.

As expected, the particle interaction force has no influence on this

condition.

SUFFICIENT CONDITIONS: For particulate fluidized beds, there is no

net motion of the inert bed material. Consequently, the necessary flotsam

condition given in equation 73 is also sufficient.

, "(#) =o= 
(o,v +a,v2- n +a,v'¡ + ao
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The inert particles in the emulsion phase of a bubbling fluidized bed,

however, have a non-zero downwards convection velocity, Uo (section 3.1.1).

Kunii and Levenspiet (1969) have estimated this velocity as

rr - 
- 

(74)
'*'to - l-86-a.86

where U, is the bubble rise velocity, a is the fraction of a bubble that is solids

(assumed to be 1/3) and e, is the bubble fraction. To estimate (Jo, (J, may be

obtained using (Davidson and Harison, 1963)

ut = (uo- u,.¡) +o.7l(gfi)ttz (75a)

and the height averaged bubble diameter, 4, can be determined from the model

of Darton er aI. (L977)

U _0.3(uo:!,,òoo rØ +q{^)0.'_ 1+{-ao¡o'1 (75b)o go''L 
L!

Ao is the a¡ea of a multi-orif,rce distributor per hole and is taken as 0.56

0i6x10{ m, for a porous plate distributor. The bubble fraction can then be

estimated (Valenzuela and Glicksman, 1985) as

,,=t#Lu* (75c)

Keeping in mind that the active particle can only move downwards in the

emulsion phase (section 3.1.1), the sufficient condition can be w¡itten as

U"+Uo>o Q6)

since (U" + Ur) is the segregation velocity of the particle in the emulsion in

relation to the container walls. The steady state velocity, u" (equations 66b and

67a), is used since if the particle spends suff,rcient time in the emulsion, it will

accelerate to this velocity.
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3.5 RESULTS AND DISCUSSION

Details of the literature data used in the model comparisons below are given in the

literature survey (section 3.2).

3.5.1 Steady State Segregation Velocity

The terminal falling velocity data of Martin et al. (1981) are compared with

the model predictions in Figures 8a-d. Since (v - U.) is positive in this case, the low

velocity model (equation 66b) is used. Predictions assuming both the Thomas

model (equation 61a) and the Kawase and Ulbrecht model (equation 61b) for the

particle interaction viscosity, t o, ate presented. The model predictions that result

assuming Ç as zero are also given. The agreement between the data and model is

generally good over the entire flow range considered; some deviation occurs at the

intermediate flow velocities in the Figures 8c and d. The Ç equal to zero solution

deviates from the data significantly at lower porosities. At high porosities, there is

no difference between the Kawase and Ulbrecht and Thomas expressions as

expected (Figure 5). At lower porosities, the Kawase and Ulbrecht model is more

severe (that is, I is higher). When the fluid velocity reaches the isolated terminal

velocity of the inert particles, U¡-, they will be ca¡ried away and the bed porosity

becomes one. Now, any increase in the fluid velocity before Ur- is reached,

decreases the positive buoyancy force and the negative particle interaction force

(since porosity rises), which results in a faster falling velocity of the active particle

as observed in Figure 8. However, if the fluid velocity is increased above Ur* the

falling velocity decreases because only the upwards fluid drag changes. This

behaviour is also shown in Figure 8.

In Figures 9a and b, the terminal segregation velocity data of Prudhoe and

Whitmore (1964) are plotted against the active particle diameter, d", wíth the active
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particle density, p,, as a parameter. Oil was used to ensure viscous flow conditions

prevailed; consequently, the generalized viscous flow drag expression from Chapter

2 applies (equation 7). The general force balance (equation 62), therefore, becomes

under steady state conditions

o = ¿r(v -U")* a+- huo Qla)

So for viscous flow conditions

(Jo-aq* atv (7ib)
ar+ a.t

Using equations 57 ,60 and Table 8 in equation7'lb gives

ua=+ÍP"--ùs d!+2zq=l (77c)
Qrlp+2zq(l-e)/e)[ tgl, ø ' e )

so that U, is proportional to d"', which is an expected result for this flow regime.

Comparison of equation 77c with the experimental data in Figures 9a and b is

excellent with the data trends being well predicted by the model for all cases. The

model tends to overpredict experiment for the lighter particles. In addition, the

following points need to be made:

1) the model, as plotted is not a true ¿' form because the experiments were

performed under conditions where the d"lD, ratio was sufficiently high for

. the retarding effects of the walls to be significant. Prudhoe and Whitmore

(1964) verifred that the Francis equation

( t-¿lo. \o(tJ")*=nt " ' | (iid)"'[t - 0.475d"tD, )
accounts for this effect in the fluidized beds they tested. Hence, deviation

from the d'law at higher d" values would be expected.

2) the model predictions presented in Figure 9 assumed the Thomas model for

the particle interaction viscosity. No distinction between this model and

the Kawase and Ulbrecht model need be applied in this case because the

experiments were performed at porosities greater than 0.7 .
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The laminar flow expression is certainly much easier to use than the full expression

(equation 66b) since there is no k factor to be adjusted. A quick check revealed,

however, that the predictions from the laminar flow model was within ten percent of

this more detailed solution for all the conditions considered. The maximum

deviation occurred at the high d" atd u" values where the low Reynolds number

assumption is expected to be less valid.

It is also interesting to note that the solution obtained by assuming k, as zero in

the full steady state model (equation 66b) was within one percent of the exact

solution for the conditions of Martin et al. (1981) and within six percent for the

conditions of Prudhoe and V/hitmore (1964).

Figure 10 presents the segregation velocity data of Daniels (1962) who

measured the rate of fall of metallic spheres through a pafiiculate air fluidized bed

of sand particles. A preliminary calculation revealed that for the conditions used,

fluid drag effects could be neglected. The full force balance (equation 62), under

steady state conditions, gives

,, _(p"-p)g o, (78)tro- 
181,1, 

wa

where the particle interaction viscosity, Ç, for the gas-solid suspension, may be

used as an adjustable parameter (within the range 0.5 to 2.0 Pa.s (Table 7)).

Excellent agreement between the model predictions (equation 78) and the data was

obtained with I equal to 1.73 Pa.s (Figure 10). This high value of I is reasonable

since the coarse sand particles would be expected to produce a higher resistance to

shear than smooth round particles (which have a low Ç value).
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3.5.2 Unsteady State Segregation Velocity

To obtain a more complete test for the model, a preliminary experimental

study was set up to determine the segregation velocities of active particles that are

lighter than the inert bed particles and hence will rise. This is more in line with the

conditions in a fluidized bed combustor. However, to delete the mixing effects of

bubbles, the experiments had to be performed in a liquid fluidized bed.

Details of the active and inert particles used in the experiments are given rn

Table 10.

The experimentally determined porosity, €, versus superficial velocity, Uo

curye is given in Figure 11. Comparison with the Richardson and Zaki (1954)

correlation for bed expansion is also given and can be seen to be good. It can also

be seen, however, that a dip in the experimental curve occurs at about Uo equal to 13

mm/s which is unexpected and can only be due to a series of faulty readings at that

flow rate.

The experimental data obtained from the preliminary study are presented in

terrns of an average rise velocity, L/t, where L is the length travelled (280 mm) in

time, t, from rest (Figures l2a-d). The raw data is given in Appendix E.

To produce model predictions for the average rise velocity, the time taken for

the particle to rise the 280 mm (from rest) was required. This time was obtained by

numerically integrating the unsteady state model given in equation 71 twice.

For all the cases considered, the average rise velocity was found to increase as

the fluid velocity (or bed porosity) was decreased until a critical fluid velocity (or
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TABLE 10

Properties of the Inert and Active Particles used in the Experimental Study

Particle Type Particle Material
Particle

Diameter
(rnrn)

Particle
Density
(*srm')

t,

I

I

I

A1

A2

A3

A4

inert

acrylic plus lead powder

acrylic

acrylic

acrylic

glass ballotini

12.6

12.5

12.5

11.0

0.33

1522

It94

r079

LL92

2470
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porosity) was reached, whereupon the active particle ascent would be slower.

Ultimately, the packed bed state would be reached and the particle velocity would

be expected to drop to zeÍo. Although there is significant disagreement between

model and experiment on a quantitative basis, the data trends are predicted perfectly

by the numerical solution of the unsteady state model (equation 71) when to,it
given by the Kawase and Ulbrecht model. The less severe expression of Thomas

(that is, Ç is not as high) also predicts these trends but with a slight lag.

This observed behaviour, which at ffust may seem surprising, can be

rationalized by the following argument. Since the active pafiicle is lighter than the

inert particles that make up the bed, the effective weight force acting on the particle

(weight plus buoyancy) wilt act upwards as will the fluid drag force. The

downwards acting force is the the particle interaction force that opposes the upward

motion of the active particle in relation to the inert par:ticles. In the high porosity

region (Uo = 12 - 18 mm/s), the particle interaction force is small and the particle

accelerates upwards relatively freely. As the velocity is decreased, both the

effective weight force, W., (by virtue of the suspension density) and the particle

interaction force, Fo, increase. The fluid drag, Fo, stays approximately constant (if

anything it will probably drop slightly) since the decrease in Uo is offset by the

decrease in the effective flow channel area. Now at velocities greater than about 4

mm/s (for the system considered), the increase in Fo is offset by the increase in the

buoyancy or W., so that the particle continues to rise faster as the fluid velocity is

decreased. However, when this velocity is dropped below 4 mm/s, the active

particle velocity begins to slow indicating that the particle interaction force is

dominant; that is, the inert particles exhibit a large resistance to shearing that is able

to negate the considerable upwards buoyancy force that exists in this porosity

region.
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However, despite the success of the model from a qualitative point of view the

point still remains that there is a significant difference in the numerical values

predicted by the model and the experimental data. To explain this deviation an

additional resistance that has not yet been accounted for must be considered.

Visual observations indicate that when a large active particle was held in the

fluidized bed of smaller inert particles (near the perspex walls), a defluidized cap of

inert particles and fluid was formed on the top of the large particle. The effect of

this cap would be two-fold:

1) it would increase the effective inertial mass of the sphere thus making its

response to change more sluggish;

2) it would increase the absolute weight and effective volume of the particle.

To account for these effects, the following simplified analysis was applied.

The cap is assumed to have a density, p"(=(t-Çp,+erp), and mass, M., such

that

M"=f"Mo Q9)

and f, is expected to depend on porosity, €, the diameter ratlo, d,ld", and the density

ratio, p"/p¡. Therefore, the total inertial mass, M,, of the active particle becomes

M,= M"* Mo= (f"+ l)M" (80a)

and the total volume, V,, is

v,=v"*vo=[tä- t)u (8ob)

V/ith this understanding, the modified effective weight force and effective inertial

mass can be determined as

w"'-[(,r";.tÞ- ff"*Dp")+s=a4' (8rø)
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and

( c\nd?
M.'= I ø + 1) +: l; (81b)

\ z/o

Substitution of these modif,red values in the general force balance for the active

particle then allows estimates for f. to be made, so that the numerical solution

matches the experimental data. The results are presented in Table 11.

It is apparent from the Table that as the particle density increases, f becomes

smaller (compare the 41, A2 and A3 particles in Table 11). This behaviour is

expected, because as the particle becomes denser, the effect of the defluidized cap

on the active particles movement becomes less significant (due to the increasing

inertial mass of the sphere). Consequently, the analysis already presented for heavy

particles falling through fluidized beds would not be affected by this cap. ¿ is also

expected to decrease as the diameter Íatio, d"ldi drops; ultimately going to zero as the

ratio reaches unity. This trend has not been predicted by the results in Table 11,

mainly due to the lack of variable diameter data.

Finally, it must be pointed out that the rise appearing in the model predictions

at a fluid velocity of approximately 13 mm/s in Figures l2a, b and d is not a result

of some factor inherent in the model, but more a result of the dip in the experimental

porosity-superhcial velocity curve (given in Figure 11) at the same velocity. The

use of this lower porosity produces a larger effective weight force which in turn

results in a faster transit time.

3.5.3 Flotsam conditions

PARTICULATE FLUIDIZATION: In the previous analyses, all of the

experimental observations followed the obvious: the heavy active particles would
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TABLE 1 1

Defluidized Cap Coefficient, Í (equation 79) determined from Experimental Study

Particle Type

uo

(mm/s)

M"
f. Mo

A1

A2

A3

A4

18.2
t3.7
6.1
3.2
2.r

18.2
t3.7
6.1
3.2
2.L

18.2
13.7
6.1
3.2
2.r

18.2
13.7
6.1
3.2
2.1

0.19s
0.s7
4.24

0.09
0.s0
0.79
1.85
6.92

0.26
0.76
t.29
2.50
7.56

0.09
0.51
0.88
1.85
5.81

- details on each particle type are given in Table 10
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sink and the light active particles would rise. The necessary flotsam condition given

in equation 73 (which is sufficient since all the experiments were performed under

pafiiculate conditions) predicts this behaviour. This, unfortunately, is no great

verif,rcation of the model.

Chiba et al. (1980), however, have performed experiments where, contrary to

previous experience, the heavy particles (glass beads; p"=2s2o tglz3) would float in a

particulate air fluidized bed of light inert particles (hollow char; p¡= 1080 kgtm3).

Since no bubbling occurs, the necessary flotsam condition (equation 73) will be

sufficient. This behaviour can be explained by considering this flotsam condition in

detail" If a heavy active particle (so that an is negative) is small enough, then the

absolute value of ao (which varies as aj) can be less than the value of the initial drag

force, a,+a.l-^ (a, is zero from Lapple's correlation for Cr-), which at most varies as

aj. This gives rise to flotsam behaviour. The necessary flotsam condition is

presented graphically in Figure 13. AU the data points represent experiments with a

different combination of active and inert particle sizes, different air flow rates and

different bed fractions of the active particles. For points that lie above the 45' line

drawn in the Figure,

I aol> ar+ ervz-" (82)

which implies the active particles will be jetsam under the conditions considered for

those particular data points. For the points that lie below this line the opposite is

true and the active particles will be flotsam. The experimentally determined

condition for each data point is indicated on Figure 13 as (J) for jetsam and (F) for

flotsam. The model is seen to be in exact agreement with the experimental

observations. No effect of the defluidized cap of spheres is considered since the

d,ld, ratio is much greater than unity. The above can be interpreted as a more

rigorous verification of the model.
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Í t'(
BUBBLING FLUIDIZATION: As discussed, the detailed modeiling the

fluidized bed combustion of coal requires the elucidation of the mass transfer

processes around large active particles in bubbling fluidized beds of smaller inert

pafiicles. To obtain experimental data for this configuration, experiments that use

light napthalene spheres subliming in air fluidized beds of glass ballotini (Prins et

al., 1985; boeho and Guedes de Carvalho, 1987) as well as those that use light

carbon particles burning in a hot air fluidized bed of sand particles (LaNauze et al.,

1984; Prins, 1987) have been performed.

However to obtain their napthalene sublimation data, Coelho and Guedes de

Carvalho (1987) had to coat steel spheres with napthalene to obtain an active

particle that would sink into the bed bulk. It was claimed that if pure napthalene

pafiicles .were used (as in the study of Prins et al., 1985) the active napthalene

spheres would just float on the top of the bed.

The model predictions for the steady state segregation velocity, IJ., as well as

the predictions for the downwards emulsion phase velocity, Uo (equation 24), are

given for the sublimation and the combustion experiments described above, in Table

l2a-c. îhe particle interaction vicosity was assumed to be in the range 0.5 to 2.0

Pa.s . The effect of the defluidized cap is not accounted for in the U.values given.

According to the sufficient flotsam condition given in equation 76, the active

particle will be flotsam if (U. * Uo) is positive; the necessary condition is no longer

sufficient for the bubbling bed. In Table 12a (conditions of Prins et al., 1985) it is

therefore apparent, for the range of inert and active particle sizes considered, the

light napthalene spheres will have a definite tendency to float. Even allowing for

the defluidized cap of inert material on the large napthalene sphere, which would at
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TABLE 12a

Mass Transfer Experiments in Gas Fluidized Beds - Napthalene Sublimation data of Prins (1987)

P;

(kg/m3)

di

(mm)

UD

(mm/s)

do

(mm) (Pa.s)

uo

(mm/s)

u,ú, u"lu,{

(mm/s) (mn/s)

Iro

2800 0.098 12.0

2870 0.229 65.0

2850 0.620 360.0

2 -3.5

2 -r7.3

2 -81.5

3"0

10.0

15.0

22.0

3.0

10.0

15.0

20.0

3.0

10.0

15.0

20.0

0.5
2.0
0.5
2.0
0.5
2.0
0.5
2.0

0.5
2.0
0.5
2.0
0.5
2.0
0.5
2.0

0.5
2.0
0.s
2.O
0.5
2.0
0.s
2.0

7.1
1.8

78.3
19.6

176.2
44.r

379.2
94.8

77.2
19.3

r73.5
43.4

308.4
77.1

9.5
2.4
92.0
23.1

204.5
51.2

361.5
90.6

7.0
1.8

- the active napthalene particle density equals 7015 *srn'
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TABLE 12b

Mass Transfer Experiments in Gas Fluidized Beds - Napthalene Sublimation data of Coelho and

Guedes de Carvalho (1987)

P;

(kg/m3)

di

(mm)

do

(mm) (Pa.s)

uo

(mmis)

u,{ u.lu,u, uD

(mm/s) (mrr/s) (mm/s)

to

2900 0.20 48.5

2900 0.46 185.0

2900 1.04 603.0

2 -13.8

2 -44.9

2 -129.5

5.0

10.0

15.0

20.0

5.0

10.0

15.0

20.0

5.0

10.0

15.0

20.0

0.5
2.0
0.5
2.0
0.5
2.0
0.5
2.0

0.5
2.0
0.5
2.0
0.5
2.0
0.5
2.0

6.4
1.6
14.3
3.6

25.3
6.3

39.5
9.9

8.3
2.7
11.9
4.5
3r.3
7.8
48.4
12.1

6.7
t.7

10.8
2.7
15.8
4.0
21.8
5.5

0.5
2.0
0.5
2.0
0.5
2.0
0.5
2.0

- the active napthalene particle diameter equals 1700 *sr^'
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TABLE 12c

Mass Transfer Experiments in Gas Fluidized Beds - Coke

Combustion data

Reference P;

(kslm?)

ur!,

(mm/s)

u"/u,,a,

(mm/s)

UD

(mm/s)

di

(mm)

do

(mm)

uo

(mm/s)s)

lro

(Pa.

LaNauze et al.
(1e84)

P"=L7a0kglm'

Prins (1987)
P"= l82O kg lms

2650 0.655 19.5 2.72 -107.1

2650 0.780 20.5 r.34 -1r.26

3390 0.670 230.0 2.00 -s4.6

1.0

2.0

10.0

1.0

2-0

10.0

0.5
2.0
0.5
2.0
0.5
2.0
0.5
2.0
0.5
2.0
0.5
2.0

0.4
0.1
0.1
0.0

-tL.2
-2.8
0.5
0.1
0.2
0.1

-11.1
-2.8

2.1
0.5
16.8
4.2
27.9
7.0

3.0

10.0

13.0

0.5
2.0
0.5
2.0
0.5
2.0



105

most decrease the segregation velocities by fifty percent, the same result would be

obtained. This conclusion is in exact agreement with the observations of Coelho

and Guedes de Carvalho (1987).

The conclusions from Tables 12b and c are less dramatic. For the napthalene

coated steel sphere experiments of Coelho and Guedes de Carvalho (1987), the

sufficient flotsam condition indicates that the majority of the data were obtained

with a non-floating active particle. Those data points where (U. + Uo) is positive

(thus indicating a flotsam condition) are only slightly so, and allowance for the cap

of defluidized inerts on the particle would be expected to make this sum negative.

The ca¡bon combustion experiments of LaNauze et al" (1984) and Prins (1987) will

not have active spheres that will float since (U. + Uo) is negative for all the cases

considered. Allowance for the defluidized cap will make this more so.



106

3.6 CONCLUSIONS

Consideration of the equation of motion of an active particle in the emulsion

phase of a fluidized bed, as well as identification of the relavant forces acting on the

pa-rticle, allow one to infer:

1) the relative velocity between the inert bed particles and the active pafiicle;

and 2) necossary and sufficient flotsam conditions that determine whether a particle

will float or mix in a particulate or a bubbling fluidized bed.

To complete the analysis the following must be addressed:

1) The effect of the defluidized cap of inert particles on large, light active

particles that rise in the emulsion must be more completely investigated. This

includes correlating the parameter, f. (def,rned in equation 79), in terrns of the

bed porosity, e, and the size, d"ld,, and density, p,/p,, ratios.

2) For bubbling gas fluidized beds, this model for motion in the emulsion phase

must be combined with studies on the motion of the particle, both in the

bubble phase and between the two phases to obtain a complete description of

the ci¡culation patterns of an active particle that is different from the rest of

the bed material.
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2a

A"

a,

Ao

A"

2b

B

bi

NOMENCLATTJRE

equatorial diameter of axisymmetric body, m

maximum projected area nonnal to the flow, m2

coefficients defined in equation 55

area of a multiorifice distributor per hole, m2

surface area, m2

axial length of axisymmetric body, m

Leveque/Levich geometry constant; defined in equation 2

coefficients defined in equations 64 and 65

solute concentration in solvent, kgmole m-3

Kozeny factor

inertial drag factor

inertial drag coefficient

(c - c)l(c,-co) , dimensionless solute concentration in solvent

inlet or upstream solute concentration in solvent, kgmole mr

saturated solute concentration at the body surface, kgmole m'3

drag coefficient

porosity dependent drag coefficient; defined in equation 54a

principal translational resistance for axisymmetric bodies, see Table 3

active particle diameter, m

bubble diameter, m

inert particle diameter, m

equivalent.sphere diameter upon which the drag force is based (equation 4.3), m

4m, hydraulic diameter, m

spherical particle diameter, m

diffusivity of solute in solvent, mzs't

c

C,

C,

C,

cl

co

c

co

Co"

cr

d.

d

d¡

d.

4.

dp

D
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D, tube diameter, m

E b/a, aspect ratio of axisymmetric body

E Mc/lvt", defluidized cap coefficient

Fd surface average drag force, N

F, particle-particle interaction force, N

F¿" porosity dependent drag force; defined in equation 4.2, N

G"o generalized Graetz number defined in equation 17b

h heat transfer coefficient,'W m-z K

H. curvature of body surface, m{

jo stsc!3 , Chilton-Colburn transfer factor

k fluid phase mass/heat transfer coefficient, m s-r

k. fluid phase thermal conductivity, W m-t K-t

k" segregation rate constant, defined in equation 39, m s-l

k, U/v ratio for use in Taylor Series expansion (Appendix D)

K sh;h*"alsh;

Kd drag geometry constant, dehned in equation I

K, parameter that defines the viscous component of the drag coeff,rcient

K, parameter in equation 3la for viscous flow analysis (Chapter 2); coefficient
defined in equation 54c for particle motion analysis (Chapter 3)

K, va¡iable dehned in equation 34a

K. parameter in equation 34b

K5 parameter in equation 34c

I co-ordinate length, m

L bed height or plate length, m

L" total flow length of the channel, m

L, fluid flow length over or through a body, m

m hydraúlicradius, m

À4 effective inertial mass of a particle, kg

M. mass of defluidized cap of particles, kg



109

N

\
Nu,

Nuo

Nu"

AP

Pe

Pr

P*

q

r

Re'

Re.

Reo

Re,-

R"n 
.

Re,

Re"

RD

Sc

Sh

S\

Sho

St

t

u

Ito'

uo

U

L(I -e)lVo, number of particles in a unit cross-section of the assemblage, m-2

effective drag factor for different conduits, see Table 1

(hdh):k", Nusselt number based on the hydraulic diameter

(h(3m lz))l k", generalized Nusselt number

hLlk., Nusselt number for the flat plate geometry

pressure loss, Pa

(Ud)tD, Peclet number

Prandtl number

local wetted perimeter, m

tornrosity factor

polar radius; defined in Figure 8.1, m

Udntv, Reynolds number based on the hydraulic diameter

Ud./v , Reynolds number based on active particle diameter

generalized Reynolds number defined in equation 4

ALN , Reynolds number for the flat plate

UdpN, Reynolds number based on a sphere diameter

(Jd,N , Reynolds number based on an equivalent sphere diameter

Reoql(22(l - e)) , multi-particle Reynolds number

parameter defined in equation 38b

Schmiát number

(kQa))lD, Sherwood number based on the equatorial diameter

kdplD , Sherwood number based on particle diameter

generalized Sherwood number defined in equation 17a

&Ø-, Stanton number

time, s

tangential velocity component in the x direction, ffi S-r

(duldy)r=o, tangential velocity gradient at the surface, s-r

superFrcial velocity, m s{

average approach velocity of the fluid, m s't
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LJ" segregation velocity of the active particle with respect to the inert particles, m s{

(U.)* segregation velocity of the active particle with respect to the inert particles in the
presence of significant wall effects, m s-l

Uo bubble rise velocity, ûì S-r

UD convective velocity of emulsion solids in bubbling fluidized beds, m s'

U* minimum fluidization velocity, m sr

v normal velocity component in the y direction, in the viscous flow analysis, m s"
(Chapter 2); qUJe, interstitial fluid velocity in the pafiicle motion analysis, m s"
(Chapter 3)

\ particle volume, m3

W. effective weight force acting on a particle, N

'W, effective buoyancy force acting on a particle, N

xr volume fraction of jetsam particles

x position along the flow path on the surface; defined in Figure 8.1, m

y distance from the surface in the di¡ection normal to the flow path; defined in
Figure 8.1, m

y average seglegation displacement; defined in equation 40

z cross-section factor

Greek symbols

cr wake fraction in a bubble

v fluid phase kinematic viscosity, m2s-'

e bed voidage

Eb bubble fraction

fl dummy variable used in equation 8.14

X variable dehned in equation 8.12b, ¡¡¡en{tz

n variable def,rned in equation B.6c, mtas'a

f gamma function

p fluid phase viscosity, kg m'5-'

tr" suspension viscosity, kg m{ s{

W particle-particle interaction viscosity; defined in equation 59b, kg m-'5-'

0 generalized drag factor; defined in equation 7
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0" solids volume fraction

p fluid density, kg m"

p. defluidized cap density; defined in equation 79, kg m3

p" active particle density, kg m"

ft inertparticle density, kg mt

p" suspension density, kg m'

o standard deviation of the error, To

ç {\4%)}u', variable

Subscripts

a active particle

i inert particle

F flotsam particle

J jetsamparticle

m surface average

x peripheral average

æ isolated particle in infinite fluid conditions

Superscripts

0 Gzo -+ 0 solution

æ Gzo --l - solution
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APPENDICES



From equation 3, the drag force on a body of any shape in the viscous flow

regime can be written as

F¿=QA"ry (4.1)

where.4, is the surface area and t is the approach velocity. Using the conventional

definition of the drag coefficient we can write

F¿=cnA:,-ry Ø.2)
2

tL7

APPENDX A

Derivation of the mlz factor for external flow over axisymmetric bodies

where.4, is a projected area norrnal to the flow. Values of the drag coefficient for

axisymmetric bodies are available in the literature (Clift et al., 1978; Happel and

Brenner, 1983) in terms of an equivalent sphere with diameter, d.as

K,
co= ni Ø.3)

where Re,=[¿,¡, and An, in equation 4.2, is the maximum equivalent sphere area

normal to the flow i.e. Qc¿1)t+. K,is a parameter which depends on the orientation of the

body with respect to the flow direction and the basis upon which the equivalent sphere

diameter is defined. It may be noted however, that the (4K,) product is independent of

this basis.
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Consequently, equating equations 4.1 and 4.2 and using equation 4.3 gives the

(m/z) factor for a general axisymmetric body

m 84"
(A.4)

nKrd"

Values of (m/z) for different body and flow geometries are summarizedin Table 1. The

method used is illustrated below for a prolate spheroid.

Happel and Brenner (1983) present the drag force on a prolate spheroid

(equatorial radius a, axial radius b) in terms of the drag on a sphere with an equivalent

equitorial radius (i.e. d = 2a) as

(co)*,^"=ß#P (4.5)
rphzro¡¿ r \ çs

where E (= b/a) is the aspect ratio. Thus by comparison with equation 4.3

For a prolate spheroid 
Kt = 4'8(4 + E) (A '6)

A"=,'[É""'[r@.t) (A.7)

(A.8)

Using equations 4.6 and 4.7 in equation 4.4 then gives

m E2

z E2-l
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APPENDD( B

Derivation of the dimensionless concentration gradient at the surface

The boundary layer equation for species conservation in flow through conduits

and over axisymmetric bodies with low curvature, and the flat plate can be reduced to

u!*uP= D ^+ (8.1)
dx dy dy.

The coordinate systems are shown, for each of the above geometries, in Figure 8.1.

For configuration (a) in Figure 8.1, the continuity equation is

!rru>*3rrv)=odx dy
(8.2)

and for configuration (b) we have (Goldstein, 1965)

*. u+n$,,t -H"v)v) =o (8.3)

where H. is the body curvature. In the thin concentration boundary layer however

(r - H,y)-r and so the continuity equation for conduits ¡educes to that for the flat plate

(configuration c)

ðu dv;:+ï=0 (8.4)
dx dy

Hence, equation 8.2 can represent the continuity equation for all three geometries with

r = I for conduits and flat plates.
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Co-ordinate Systems used for flow:

(a) over axisymmetric bodies;

(b) through conduits;

and (c) over flat plates
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In the thin concentration boundary layer limit, the mass transfer processes will

occur in a layer of fluid in which the tangential velocity gradient may be considered as

constant
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(B.s)

(8.6a)

(8.6b)

(8.6c)

(8.7)

tt = Ito'!

Substitution of this expression into equation 8.2 and integration yields

"=-:ti[ry)
t â ln'l

=---l 
- 

|

rðx\z )

where

y1= y (uo' r)tE

The dimensionless concentration is defined as

c-co
cr

Using this definition along with equations 8.5 and 8.6 reduces the species boundary

layer equation 8.1 to

âc, _'¡rFþ =rtrr= (8.8)(uo'v) a.--i a. a, -, ar,

C"-Co

For a fixed set of flow conditions, we have

cr= cr(x,y) (8.9a)

rl =r1(¡,y) (8.9b)

so, altematively, we may write

c, = cr(x,q) (8.9c)

Using the definition of the total differential then allows the partial derivatives in

equation B.8 to be determined as



t22

ðc, _ âcr âr1

òy dn dy

ôc, &r,
11 

-=-
'' ðx an'

(B.l0a)

(8.10b)

(8.10c)

(8.1 1)

(B.r2a)

(8.12b)

(8.13)

(8.r4)

These equations further reduce equation B.1 to

and

and noting that

as well as defining

where ç=qt(9þta leading to

ð'r, ð'"t lanl'
ar'= at1' t ÐJ

(uo,y)þ=o#(#l

An

ðy

gives equation B.11 in the standard form

V/ith the boundary condiúons c, = 1 at ) = 0 and c, = 0 at y +-, the general solution

obtained is

T
ç
exp(-83)dp

ct=L-
f(4t3)

| (uo'r)t'2

f(4t3) (%Ò,"
(8.1s)
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Note that for conduits and flat plates the above expressions are independent of r

as r is taken as 1 (equation 8.4).
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APPENDIX C

Comparison of model with literature data for ducts for all Graetz number

conditions

The literature data used in the following tables a.re taken from the numerical

computations of Shah and London (1978).
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TABLE C.l

Comparison for Rectangular Ducts

Surface average

Nusselt number,

Nu¿^,'

Peripheral average

Nusselt number,

NU¿r*

Reo,Pr(d^lx)

Literature

Results

This

Theory

(equation 34b)

Literature

Results

This

Theory

(equation 34c)

aspect ratio : 1.00
0
10
20
30
40
60
80,
100
120
140
160
180
200

aspect ratio = 0.500
0
10
20
30
40
60
80
100
r20
140
160
180
200

aspect ratio = 0.333
0
10
20

2.65
3.50
4.03
4.47
4.85
5.50
6.03
6.46
6.86
7.22
7.56
7.87
8.15

2.65
3.40
3.96
4.42
4.80
5.46
6.00
6.47
6.89
7.27
7.6r
7.93
8.23

3.39
3.98
4.46
4.87
5.23
5.8s
6.37
6.83
7.24
7.62
7.96
8.28
8.s8

2.65
2.86
3.08
3.24
3.43
3.78
4.r0
4.35
4.62
4.85
s.03
5.24
5.41

2.65
2.89
3.10
3.30
3.48
3.80
4.09
4.35
4.s8
4.80
s.00
5.19
5.37

3.39
3.56
3.72
3.87
4.01
4.27
4.51
4.74
4.94
5.r4
5.32
5.50
s.66

6.37

3.39
3.9s
4.46
4.86
5.24
5.85

6.84
7.24
7.62
7.97
8.29
8.s8

3.96
4.54
s.00

3.39
3.43
3.54
3.70
3.85
4.r6
4.46
4.72
4.93
5. l5
5.34
5.54
5.72

3.96
4.52
4.98

3.96
4.02
4.r7

3.96
4.tt
4.26
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TABLE C.1 (continued)

Surface average

Nusselt number,

Nu¿r,n

Peripheral average

Nusselt number,

Nu¿^*

Reo,Pr(d^lx)

Literature

Results

This

Theory

(equation 34b)

Literature

Results

This

Theory

(equation 34c)

30
40
60
80
100
720
t40
160
180
200

5.39
5.74
6.35
6.89
7.33
7.74
8.11
8.45
8.77
9.07

4.5t
5.00
5.44
5.81
6.16
6.73
7.24
7.7t
8.13
8.50
8.86
9.tl
9.47

5.22
5.66
6.04
6.37
6.70
7.26
7.77
8.17
8.63

5.38
5.74
6.3s
6.89
7.34
7.76
8.14
8.49
8.81
9.r2

4.5r
5.01
5.44
5.82
6.15
6.75
7.26
7.72
8.13
8.51
8.86
9.18
9.49

4.29
4.42
4.67
4.94
5.r7
5.42
5.62
5.80
s.99
6.18

4.5r
4.53
4.65
4.76
4.87
s.08
5.32
5.55
5.17
s.98
6.18
6.37
6.57

5.22
5.24
5.34
5.4r
5.48
5.64
s.86
6.07
6.27

4.40
4.53
4.78
5.01
5.22
5.42
5.61
5.79
5.96
6.r3

aspect ratio :0.250
0
10
20
30
40
60
80
100
120
140
160
180
200

aspect ratio : 0.167
0
10
20
30
40
60
80
r00
r20

5.22
5.6s
6.04
6.37

4.5r
4.64
4.76
4.88
4.99
5.22
5.42
5.61
5.79
5.97
6.14
6.30
6.4s

s.22
5.32
5.42
5.52
5.62
5.80
5.97
6.14
6.30

6.69
7.26
7.75
8.19
8.s9



127

TABLE C.l (continued)

Surface average

Nusselt number,

Nu¿r¿,

Peripheral average

Nusselt number,

Nu¿^,

Reo^Pr(dJx)

Literature

Results

This

Theory

(equation 34b)

Literature

Results

This

Theory

(equation 34c)

140
160
180
200

9.00
9.35
9.67
10.01

8.96
9.31
9.63
9.94

6.47
6.66
6.86
7.02

6.46
6.60
6.75
6.89
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TABLE C.2

Comparison for Parallel Plates (aspect ratio, E = 0.000)

Surface average

Nusselt number,

Nu¿r^

Peripheral average

Nusselt number,

Nu¿"¡

Reo,Pr(d^lx)

Literature

Results

This

Theory

(equation 34b)

Literature

Results

This

Theory

(equation 34c)

1000000
s00000
200000
t42857
100000
s0000
20000

14285.7
10000
5000
2000

t428.57
1000
s00
200

t42.857
100
50
20

t4.2857
l0
5
0

184.548
146.425
107.833
96.375
85.557
67.890
50.027
44.731
39.736
31.598
23.416
21.O09
t8.752
15.1,25
rr.623
t0.662
9.825
8.713
8.010
7.876
7.775
7.658
7.54r

t84.542
t46.401
t07.783
96.3r4
85.484
67.793
49.89s
44.586
39.579
3r.42r
23.235
20.837
18.599
ls.043
11.708
10.817
to.o42
8.959
8.165
7.996
7.865
7.706
7.540

r22.943
97.538
7r.83
64.200
s6.999
45.245
33.379
29.867
26.s60
21. r 88
15.830
14.270
12,822
10.545
8.517
8.053
7.741
7.550
7.541
7.541
7.541
7.54r
7.54r

t22.964
97.s31
71.787
64.r43
56.927
45.r49
33.259
29.144
26.438
2t.090
15.830
14.333
12.970
10.909
9.180
8.770
8.437
8.013
7.736
7.68r
7.639
7.590
7.54r
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TABLE C.3

Comparison for Triangular Ducts

Surface average

Nusselt number,

NU¿r,

Peripheral average

Nusselt number,

NU¿r*

Reo,Pr(d^lx)

Literature

Results

This

Theory

(equation 34b)

Literature

Results

This

Theory

(equation 34c)

aspectratio = 1.000 (equilateral triangle)
0 2.47 2.47
10 3.10 3.10
20 3.66 3.59
30 4.07 4.00
40 4.43 4.36
50 4.75 4.68
60 5.02 4.97
80 5.49 s.48
100 5.93 5.93
r20 6.29 6.33
140 6.61 6.69
160 6.92 7.02
180 7.18 7.33
200 7.42 7.62

2.47
2.57
2.73
2.9
3.08
3.26
3.44
3.73 ,

4.00
4.24
4.47
4.67
4.85
5.03

2.34
2.40
2.53
2.70
2.90
3.05
3.20
3.50
3.17
4.01
4.21
4.40
4.57
4.74

2.47
2.68
2.86
3.04
3.20
3.3s
3.49
3.7s
3.99
4.2r
4.41
4.60
4.78
4.95

2.34
2.50
2.66
2.80
2.94
3.06
3.r9
3.42
3.63
3.83
4.01
4.19
4.35
4.51

aspect ratio = 0.866
0
l0
20
30
40
50
60
80
100
t20
140
160
180
200

(right- angled i soceles trian gle)
2.34 2.34
2.87 2.85
3.33 3.27
3.70 3.64
4.01 3.96
4.28 4.26
4.s2 4.53
4.9r 5.01
5.23 5.43
5.52 5.81
5.78 6.16
6.00 6.48
6.17 6.78
6.33 7.06
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TABLE C.4

Comparison for Circular Ducts (aspect ratio, E = 1.000)

Surface average

Nusselt number,

Nu¿^_

Peripheral average

Nusselt number,

Nu¿^"

Reo,Pr(dJx)

Literature

Results

This

Theory

(equation 34b)

Literature

Results

This

Theory

(equation 34c)

1000000
500000
200000
r42851
100000
s0000
20000

14285.7
10000
s000
2000

1428.57
1000
s00
2m

r42.857
100
50
20

14.2857
l0
5
0

160.358
t27.05r
93.334
83.332
73.869
58.429
42.8r3
38.1 8 1

33.815
26.685
19.501
17.379
15.384
t2.152
8.943
8.014
7.155
5.814
4.640
4.367
4.116
3.906
3.6s7

160.080
126.759
93.023
83.000
73.536
58.075
42.424
37.118
33.392
26.235
19.014
16.881
14.877
11.640
8.474
7.580
6.771
5.5s9
4.565
4.334
4.t48
3.9r4
3.657

106.538
84.34r
6r.877
55.208
48.9r4
38.637
28.254
25.r78
22.275
17.558
12.824
1r.433
10.130
8.036
6.O02
5.430
4.916
4.r72
3.7r0
3.669
3.6s8
3'657
3.6s7

106.284
84.063
61.565
54.884
48.575
38.270
27.849
24.760
2t.847
17.r07
t2.365
10.982
9.697
7.673
5.817
5.334
4.920
4.357
3.960
3.876
3.812
3.736
3.657
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APPENDX D

Taylor Series Expansion of the Non-Linear Term in the General Equation of

Motion (equation 63)

Only the low velocity case (v - U"r 0) wilt be considered in detail here; the

argument is the same for the high velocity model"

The Taylor series to the second for a general function, /(x) about the point x equal

to xo can be written as

r(x) = r(x). 
[#)" 

(x - xr .;(#) 
^(* 

-,ò' (D.1)

(D.2a)

(D.2b)

(D.2c)

(D.3)

Putting x = v - U"and Í(x)=x'-" and noting that xo= (1 - k,)v (since LJ.o: k,v) gives

=(z-r2)(l -&,)t-nut-n

= (2-¿) (1 - n) (1 - kr)-n y-n

and

Í - xo= (krv -U")
Equation D.l now becomes

(, -U ")' 
- " = ( 1 - kr)' - " v' - " +72- r? ) ( I - kr)t 

- ^ ut - 
n (k, u -U ")

LÐf_Ð(L _ k,)-^ v-^(k,, _u"),

Manipulation yields

)' = 
[, 

r - k,), - ^ + (2 - n) (r - k,), - 
n k,.9!#A e - k)-" k?) u,-'-n( -uo

- ( (2 - n) (l - kr)' 
- " + (2 - n) (l -r¿ ) ( I - krf" kr) u' - n 

U o



+ [ ( r-n,)-^)n" r,

r32

(D.aa)

(D.4b)- br- brU"+ brU]

The b.coefficients for both cases are tabulated in Table 9.
I



r33

APPENDD( E

Experimental data

The data presented in the following tables are the raw experimental times that

each active particle took to rise a height of 280 mm in the liquid fluidized bed. Details

of the experimental system and technique are given in section 3.3. Details of the active

particle types are given in Table 10.



734

TABLE E'.1

Raw Data for A1 particles

uo

(mm/s)

Transit time

(s)

18.2

\3.7

6.1

3.2

2.1

Sinks

Sinks

18.93

3.25
3.04
3.00
3.04
3.22

20.69
19.40
r1.41
2r.74
19.6r
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TABLE 8.2

Raw Data for A2 particles

u,
(mr/s)

Transit time

(s)

18.2

13.7

6.1

3.2

4.27
4.10
3.32
3.44
3.34
3.53
3.73

2.76
2.25
2.80
2.66
2.7r

1.42
r.39
1.35
1.40
t.40

1.56
t.54
1.s3
t.49
1.54

3.21
3.04
2.98
2.97
3.00

2.1
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TABLE E.3

Raw Data for A3 pafiicles

uo

(mm/s)

Transit time

(s)

18.2

73.7

6.1

1

1

2
1

1

1

1

1

I
1

1

1

.86

73
76

.96

.99

.05

.76

.87

.82

.97

1.19
1.38
r.22
r.33
1.34

.88

.79

3.2

2.1

1.40
1.26
t.41
1.35
1.28

2.36
2.40
2.28
2.28
2.33
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TABLE E.4

Raw Data for A4 particles

uo

(mm/s)

Transit time

(s)

18.2

t3.7

6.1

2.91
3.9L
4.25
4.rt
3.15
3.s0
3.24
4.18
3.34

2.92
2.69
2.74
2.81
2.9r

1.61
r.46
1.52
t.62
1.74
t.33
t.69
1.60

t.62
1.69
1.61
r.67
1.71

3.23
3.00
2.91
2.89
3.43
3.2r
3.15

3.2

2.1

-)




