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Poincare´ covariant Faddeev equations for the nucleon andD are solved to illustrate that an internally
consistent description in terms of confined-quark and non-point-like confined-diquark correlations can be
obtained.pN-loop induced self-energy corrections to the nucleon’s mass are analyzed and shown to be
independent of whether a pseudoscalar or pseudovector coupling is used. Phenomenological constraints sug-
gest that this self-energy correction reduces the nucleon’s mass by up to several hundred MeV. That effect does
not qualitatively alter the picture, suggested by the Faddeev equation, that baryons are quark-diquark compos-
ites. However, neglecting thep loops leads to a quantitative overestimate of the nucleon’s axial-vector diquark
component.
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I. INTRODUCTION

Contemporary experimental facilities employ large m
mentum transfer reactions to probe the structure of had
and thereby attempt to elucidate the role played by qua
and gluons in building them. Since the proton is a read
accessible target its properties have been studied most e
sively @1#. Hence an understanding of a large fraction of t
available data requires a Poincare´ covariant theoretical de
scription of the nucleon.

At its simplest the nucleon is a nonperturbative thre
body bound-state problem, an exact solution of which is d
ficult to obtain even if the interactions are known. Hither
therefore, phenomenological mean-field models have b
widely employed to describe nucleon structure; e.g., soli
models @2–4# and constituent-quark models@5–7#. These
models are most naturally applied to processes involv
small momentum transfer (q2,M2, M is the nucleon mass!
and, as commonly formulated, their applicability may be e
tended to processes involving larger momentum transfe
working in the Breit frame@8#. Alternatively, one could de-
fine an equivalent, Galilean invariant Hamiltonian and re
terpret that as the Poincare´ invariant mass operator for
quantum mechanical theory@9# but this path is less wel
traveled.

Another approach is to describe the nucleon via a Po
carécovariant Faddeev equation. That, too, requires an
sumption about the interaction between quarks. An anal
@10# of the global color model@11–13# suggests that the
nucleon can be viewed as a quark-diquark composite. Pu
ing that picture yields@14# a Faddeev equation, in which tw
quarks are always correlated as a color-antitriplet diqu
0556-2813/2002/65~5!/055204~17!/$20.00 65 0552
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quasiparticle~because ladderlike gluon exchange is attract

in the 3̄c quark-quark scattering channel! and binding in the
nucleon is effected by the iterated exchange of roles betw
the dormant and diquark-participant quarks.

A first numerical study of this Faddeev equation for t
nucleon was reported in Ref.@15#, and following that there
have been numerous more extensive analyses; e.g., R
@16,17#. In particular, the formulation of Ref.@17# employs
confined quarks, and confined, pointlike-scalar and -ax
vector diquark correlations, to obtain a spectrum of octet a
decuplet baryons in which the rms deviation between
calculated mass and experiment is only 2%. The model a
reproduces nucleon form factors over a large range of m
mentum transfer@18#, and its descriptive success in that a
plication is typical of such Poincare´ covariant treatments
e.g., Refs.@19–22#.

However, these successes might themselves indica
flaw in the application of the Faddeev equation to t
nucleon. For example, in the context of spectroscopy, stu
using the cloudy bag model~CBM! @5# indicate that the
dressed-nucleon’s mass receives a negative contribution
much as 300–400 MeV from pion self-energy correctio
i.e.,dM 152300 to2400 MeV@6,23#. Furthermore, a per-
turbative study, using the Faddeev equation, of the mass
induced by pointlike-p exchange between the quark and d
quark constituents of the nucleon obtainsdM 152150 to
2300 MeV @24#. Unameliorated these mutually consiste
results would much diminish the value of the 2% spect
scopic accuracy obtained using only quark and diquark
grees of freedom.

It is thus apparent that the size and qualitative impact
the pionic contribution to the nucleon’s mass may prov
©2002 The American Physical Society04-1
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material constraints on the development of a realistic qua
diquark picture of the nucleon, and its interpretation and
plication. Our article is an exploration of this possibility an
we aim to clarify the model-dependent aspects. We emp
size, in addition, that chiral corrections to baryon magne
moments and charge radii are also important@25#, and their
model-independent features furnish additional constraints
any quark model, including those based on the Fadd
equation, thereby guiding their improvement. We note, t
that lattice-QCD studies of baryon masses, especially a
function of the current-quark mass@26#, also provide infor-
mation that can guide these considerations; e.g., a re
lattice-QCD exploration of the connection betweenN andD
masses is consistent with the pion self-energies descr
above@27#.

In Sec. II we recapitulate on the Faddeev equation and
solution for theN andD in a simple model. Section III dis
cusses model-independent aspects of the Dyson-Schw
equation~DSE! @28# that describes the pionic correction
the N’s self-energy and therein we also present exemp
estimates for the magnitude of the effect. Section IV is
epilogue.

II. FADDEEV EQUATION

The properties of light pseudoscalar and vector mes
are well described by a renormalization-group-improv
rainbow-ladder truncation of QCD’s DSEs@29–31#, and the
study of baryons via the solution of a Poincare´ covariant
Faddeev equation is a desirable extension of the appro
The derivation of a Faddeev equation for the bound s
contribution to the three quark scattering kernel is poss
because the same kernel that describes mesons so well is
strongly attractive for quark-quark scattering in the col
antitriplet channel~see Sec. II A 2!. And it is a simple con-
sequence of the Clebsch-Gordon series for quarks in the
damental representation of SUc(3):

3c^ 3c^ 3c5~ 3̄c% 6c! ^ 3c51c% 8c8% 8c% 10c , ~1!

that any two quarks in a color singlet bound state must c
stitute a relative color antitriplet. This supports a truncat
of the three-body problem wherein the interactions betw
two selected quarks are added to yield a quark-quark sca
ing matrix, which is then approximated as a sum over
possible diquark pseudoparticle terms: Dirac-scalar1
-pseudovector1@•••#—essentially a separable two-body i
teraction@32#. A Faddeev equation follows, which describ
the three-body boundstate as a composite of a dressed q
and nonpointlike diquark with an iterated exchange of ro
between the dormant and diquark-participant quarks.
bound-state is represented by a Faddeev amplitude

C5C11C21C3 , ~2!

where the subscript identifies the dormant quark and, e
C1,2 are obtained fromC3 by a correlated, cyclic permuta
tion of all the quark labels.

The Faddeev equation is simplified further by retaini
only the lightest diquark correlations in the representation
05520
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the quark-quark scattering matrix. A simple, Goldston
theorem-preserving, rainbow-ladder DSE model@33# yields
the following diquark pseudoparticle masses~isospin sym-
metry is assumed!:

(qq)JP (ud)01 (us)01 (uu)11 (us)11

mqq (GeV) 0.74 0.88 0.95 1.05

(qq)JP (ss)11 (uu)12 (us)12 (ss)12

mqq (GeV) 1.13 1.47 1.53 1.64

~3!

The mass ordering is characteristic and model indepen
~see Refs.@34,35#, lattice-QCD estimates@36# and studies of
the spin-flavor dependence of parton distributions@37#!, and
indicates that a study of theN andD must retain at least the
scalar and pseudovector (uu) and (ud) correlations if it is to
be accurate.~Of course, the spin-3/2D is inaccessible unles
pseudovector correlations are retained.!

A. Model for the nucleon

To provide a concrete illustration and make our presen
tion self-contained we consider a simple model@21# wherein
the nucleon is a sum of scalar and pseudovector diqu
correlations

C3~pi ,a i ,t i !5C3
01

1C3
11

, ~4!

with (pi ,a i ,t i) the momentum, spin, and isospin labels
the quarks constituting the nucleon, andP5p11p21p3 the
nucleon’s total momentum. The scalar diquark componen
Eq. ~4! is

C3
01

~pi ,a i ,t i !5FG01S 1

2
p[12] ;K D G

a1a2

t1t2

D01
~K !

3@S~ l ;P!u~P!#a3

t3 , ~5!

where@38# the spinor satisfies

~ ig•P1M !u~P!505ū~P!~ ig•P1M !, ~6!

with M the mass obtained in solving the Faddeev equat
and is also a spinor in isospin space withw15col(1,0) for
the proton andw25col(0,1) for the neutron;K5p11p2

5:p$12% , p[12]5p12p2 , lª(2p$12%12p3)/3; D01
(K) is a

pseudoparticle propagator for the scalar diquark formed fr
quarks 1 and 2, andG01

is a Bethe-Salpeter-like amplitud
describing their relative momentum correlation; andS, a 4
34 Dirac matrix, describes the relative quark-diquark m
mentum correlation. (S, G01

, andD01
are discussed below.!

The pseudovector component is
4-2
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C11
~pi ,a i ,t i !5F t iGm

11S 1

2
p[12] ;K D G

a1a2

t1t2

Dmn
11

~K !

3@A n
i ~ l ;P!u~P!#a3

t3 , ~7!

where the symmetric isospin-triplet matrices are

t15
1

A2
~t01t3!, t05t1, t25

1

A2
~t02t3!, ~8!

with (t0) i j 5d i j and t1,3 the usual Pauli matrices, and th
other elements in Eq.~7! are obvious generalizations of thos
in Eq. ~5!.

The color antisymmetry ofC3 is implicit in GJP
, with the

Levi-Civita tensorec1c2c3
expressed via the antisymmetr

Gell-Mann matrices; i.e., defining

$H15 il7,H252 il5,H35 il2%, ~9!

thenec1c2c3
5(Hc3)c1c2

. @See Eqs.~32!, ~33!.#

The Faddeev equation satisfied byC3 yields a set of
coupled equations for the matrix valued functionsS, A n

i :

F S~k;P!u~P!

A m
i ~k;P!u~P!

G524E d4l

~2p!4
M~k,l ;P!F S~ l ;P!u~P!

A n
j ~ l ;P!u~P!

G ,

~10!

where one factor of ‘‘2’’ appears becauseC3 is coupled sym-
metrically toC1 andC2, and we have evaluated the nece
sary color contraction (Ha)bc(H

a)cb8522dbb8 .
The kernel in Eq.~10! is

M~k,l ;P!5F M00 ~M01!n
j

~M10!m
i ~M11!mn

i j G ~11!

with

M005G01
~kq2 l qq/2;l qq!S

T~ l qq2kq!

3Ḡ01
~ l q2kqq/2;2kqq!S~ l q!D01

~ l qq!, ~12!

where l q5 l 1P/3, kq5k1P/3, l qq52 l 12P/3, kqq52k
12P/3; S is the propagator of the dormant dressed-qu
constituent of the nucleon~Sec. II A 1!; and

~M01!n
j 5t jGm

11

~kq2 l qq/2;l qq!S
T~ l qq2kq!

3Ḡ01
~ l q2kqq/2;2kqq!S~ l q!Dmn

11

~ l qq!, ~13!

~M10!m
i 5G01

~kq2 l qq/2;l qq!S
T~ l qq2kq!

3t i Ḡm
11

~ l q2kqq/2;2kqq!S~ l q!D01
~ l qq!,

~14!
05520
-

k

~M11!mn
i j 5t jGr

11

~kq2 l qq/2;l qq!S
T~ l qq2kq!

3t i Ḡm
11

~ l q2kqq/2;2kqq!S~ l q!Drn
11

~ l qq!.

~15!

In Eqs.~10!–~15! it is implicit that u(P) is a normalized
average ofw6 so that, e.g., the equation for the proton
obtained by projection on the left withw1

† . To clarify this,
by illustration, we note that Eq.~14! generates an isospi
coupling betweenu(P)w1

on the left-hand side~LHS! of Eq.
~10! and, on the right-hand side~RHS!

A2A n
1u~P!w22A n

0u~P!w1
. ~16!

This is merely the Clebsch-Gordon coupling of isospin

% isospin-12 to total isospin-12 and means that the scalar d
quark amplitude in the proton (ud)01u is coupled to itself
and the linear combination

A2~uu!11d2~ud!11u. ~17!

The general forms ofS andA m
i , the Bethe-Salpeter-like

amplitudes that describe the momentum-space correla
between the quark and diquark in the nucleon, are discus
at length in Ref.@17#, wherein a detailed analysis of th
Faddeev equation’s solution is presented. Requiring thatS be
an eigenfunction ofL1(P), Eq. ~A8!, entails

S~ l ;P!5 f 1~ l ;P!I D1
1

M
~ ig• l 2 l • P̂I D! f 2~ l ;P!, ~18!

where (I D) rs5d rs , P̂2521, and, in the nucleon rest frame
f 1,2 describe, respectively, the upper, lower component of
bound-state nucleon’s spinor. Requiring the same ofA m

i re-
duces to only six~from an original 12! the number of inde-
pendent Dirac amplitudes required to specify it complete
However, we simplify this by retaining only those two am
plitudes that survive in the nonrelativistic limit:

A m
i ~ l ;P!5a1

i ~ l ;P!g5gm1a2
i ~ l ;P!g5g• l̂ l̂ m , l̂ 251.

~19!

Assuming isospin symmetry, thenaj
15aj

25aj
3 , j 51,2.

The Faddeev equation for the nucleon is Eq.~10! with the
kernelM given by Eqs.~11!–~15!: to complete its definition
we must specify the dressed-quark propagator, the diqu
Bethe-Salpeter amplitudes and the diquark propagators.

1. Dressed-quarks

The general form of the dressed-quark propagator is

S~p!52 ig•psV~p2!1sS~p2!, ~20!

5@ ig•pA~p2!1B~p2!#21. ~21!

It can be obtained by solving the QCD gap equation; i.e.,
DSE for the dressed-quark self-energy, and the many s
studies@28,39,40# yield the model-independent result that th
wave function renormalization and dressed-quark mass
4-3
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Z~p2!51/A~p2!, M ~p2!5B~p2!/A~p2!, ~22!

respectively, exhibit significant momentum dependence
p2&1 GeV2, which is nonperturbative in origin. This be
havior was recently observed in lattice-QCD simulatio
@41#, and Refs.@42,43# provide quantitative comparisons b
tween those results and a modern DSE model. The infra
enhancement ofM (p2) is an essential consequence of d
namical chiral symmetry breaking~DCSB! and is the origin
of the constituent-quark mass. With increasingp2 the mass
function evolves to reproduce the asymptotic behavior fam
iar from perturbative analyses, and that behavior is una
biguously evident forp2*10 GeV2 @29#.

While numerical solutions of the quark DSE are read
obtained, the utility of an algebraic form forS(p) is self-
evident. An efficacious parametrization ofS(p), which ex-
hibits the features described above, has been used e
sively in studies of meson properties@39,40# and we use it
herein. It is expressed via

s̄S~x!52m̄F@2~x1m̄2!#1F~b1x!F~b3x!@b01b2F~ex!#,
~23!

s̄V~x!5
1

x1m̄2
$12F@2~x1m̄2!#%, ~24!

with x5p2/l2, m̄ 5 m/l, F(x)5@12exp(2x)#/x, s̄S(x)
5lsS(p2), and s̄V(x)5l2sV(p2). The mass scalel
50.566 GeV and parameter values

~25!

were fixed in a least-squares fit to light-meson observa
@44#. The dimensionlessu5d current-quark mass in Eq.~25!
corresponds to

m55.1 MeV. ~26!

@e51024 in Eq. ~23! acts only to decouple the large- an
intermediate-p2 domains.#

The parametrization expresses DCSB, giving a Euclid
constituent-quark mass

Mu,d
E 50.33 GeV ~27!

defined@29# as the solution ofp25M2(p2), whose magni-
tude is typical of that employed in constituent-quark mod
@6,7# and for which the value of the ratioMu,d

E /m565, is
definitive of light quarks@45#. In addition, DCSB is also
manifest in the vacuum quark condensate

2^q̄q&0
1 GeV2

5l3
3

4p2

b0

b1b3
ln

1 GeV2

LQCD
2

5~0.221 GeV!3,

~28!

where we have usedLQCD50.2 GeV. The condensate
calculated directly from its gauge invariant definition@46#
after making allowance for the fact that Eqs.~23!,~24! yield a
05520
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chiral-limit quark mass function with anomalous dimensi
gm51. This omission of the additional ln(p2/LQCD

2 ) suppres-
sion that is characteristic of QCD is a practical but not n
essary simplification.

Motivated by model DSE studies@47#, Eqs.~23!,~24! ex-
press the dressed-quark propagator as an entire func
HenceS(p) does not have a Lehmann representation, wh
is a sufficient condition for confinement@48#. Employing an
entire function forS(p), whose form is only constrained vi
the calculation of spacelike observables, can lead to mo
artifacts when it is employed directly to calculate obse
ables involving large timelike momenta@49#. An improved
parametrization is therefore being sought. Nevertheless
problems are encountered for moderate timelike mome
~see, e.g., Ref.@50#! and on the subdomain of the comple
plane explored in the present calculation the integral sup
provided by an equally efficacious alternative cannot dif
significantly from that of our parametrization.

2. Diquark Bethe-Salpeter amplitudes

The renormalization-group-improved rainbow-ladd
DSE truncation, employed in Refs.@29–31#, will yield
asymptotic diquark states in the strong interaction spectr
Such states are not observed and their appearance is an
fact of the truncation. Higher order terms in the quark-qua
scattering kernel~crossed-box and vertex corrections!, whose
analog in the quark-antiquark channel do not much affect
properties of most of the color-singlet mesons, act to ens
that QCD’s quark-quark scattering matrix does not exh
singularities that correspond to asymptotic~unconfined! di-
quark bound states@51#. Nevertheless, studies with kerne
that do not produce diquark bound states, do support a ph
cal interpretation of the masses obtained using the rainb
ladder truncation, Eq.~3!: mqq plays the role of a confined
quasiparticle mass in the sense thatl qq51/mqq may be
interpreted as a range over which the diquark correlation
propagate inside a baryon. These observations motivate
Ansatzfor the quark-quark scattering matrix that is employ
in deriving the Faddeev equation

@Mqq~k,q;K !# rs
tu5 (

JP501,11, . . .

ḠJP
~k;2K !

3DJP
~K !GJP

~q;K !. ~29!

While it is not necessary, one practical means of spec
ing the GJP

in this equation, which is consistent with th
above discussion, is to employ the solutions of the ladder
quark-quark Bethe-Salpeter equation~BSE!

GJP
~k;K !5E d4q

~2p!4
G~k2q!Dmn

free~k2q!
la

2
gm

3S~q1K/2!GJP
~q;K !Fla

2
gnS~2q1P/2!GT

,

~30!
4-4
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where the effective couplingG(k) is calculable using pertur
bation theory fork2*1 GeV2 and is modelled in the infra
red ~see, e.g., Refs.@29–31#!, andDmn

free(k) is the free gluon
propagator. The amplitude is canonically normalized:

2Km5F ]

]Qm
tr E d4q

~2p!4
Ḡ~q;2K !S~q1Q/2!G~q;K !ST

3~2q1Q/2!GU
Q5K

K252m
JP
2

. ~31!

Using the properties of the Gell-Mann matrices one fin

easily from Eq.~30! that GC
JP
ªGJP

C† satisfies exactly the
same equation as theJP color-singlet mesonbut for a halv-
ing of the coupling@52#. This makes clear that the interactio
in the (qq) 3̄c

channel is strong and attractive. The sam
analysis shows the interaction to be strong and repulsiv
the (qq)6c

channel.
A complete, consistent solution of Eq.~30! requires a si-

multaneous solution of the quark DSE, and while this co
bined procedure is not unmanageable it is a computatio
challenge@29–31#. In addition, we have already chosen
simplify our calculations by parametrizingS(p), and hence
we follow Refs.@19–22,50# and also employ that expedien
with GJP

, using the following one-parameter forms:

G01
~k;K !5

1

N 01 HaCig5i t2F~k2/v01
2

!, ~32!

t iGm
11

~k;K !5
1

N 11 HaigmCtiF~k2/v11
2

!, ~33!

with the normalizationN JP
fixed by Eq.~31!. Our Ansätze

retain only that single Dirac-amplitude which would repr
sent a point particle with the given quantum numbers in
local Lagrangian density: these amplitudes are usually do
nant in a BSE solution@29–31,33,53#.

3. Diquark propagators

Solving for the quark-quark scattering matrix using t
ladderlike kernel in Eq.~30! yields free particle propagator
for DJP

in Eq. ~29!. However, as already noted, higher ord
contributions remedy that defect, eliminating asymptotic
quark states from the spectrum. It is apparent in Ref.@51#

that the attendant modification ofDJP
can be modelled effi-

caciously by simple functions that are free-particle-like
spacelike momenta but pole free on the timelike axis. He
we employ@33#

D01
~K !5

1

m01
2 F~K2/v01

2
!, ~34!

Dmn
11

~K !5S dmn1
KmKn

m11
2 D 1

m11
2 F~K2/v11

2
!, ~35!
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where the two parametersmJP are diquark pseudoparticl
masses andvJP are the widths characterizingGJP

. It is plain
upon inspection that theseAnsätzesatisfy the constraints we
have elucidated.

B. Model for D

The D is a spin-3/2, isospin-3/2 decuplet baryon and t
general form of the Faddeev amplitude for such a system
complicated. However, as we assume isospin symmetry,
can focus on theD11, with it’s simple flavor structure, be
cause all the charge states are degenerate. The Dirac s
ture, though, remains complex and its general form is d
cussed in Ref.@17#. Herein, as we have for the nucleon, w
use that study as the guide to a minimal model

C3
D5t1Gm

11S 1

2
p[12] ;K DDmn

11

~K !Dn~ l ;P!, ~36!

with

Dn~ l ;P!5S D~ l ;P!un~P!w11A n
D~ l ;P!l'•u~P!w1 ,

~37!

whereun(P) is a Rarita-Schwinger spinor~see the Appen-
dix!, l'5 l 1 P̂l • P̂, and, again focusing on eigenfunctions
L1(P),

S D~ l ;P!5 f 1
D~ l ;P!I D1

1

M
~ ig• l 2 l • P̂I D! f 2~ l ;P!,

~38!

A m
D~ l ;P!5@a1

D~ l ;P!I D1 ia2
D~ l ;P!g• l'# P̂m . ~39!

The Faddeev equation for theD now assumes the form

Dm~k;P!54E d4l

~2p!4
M mn

D ~k,l ;P!Dn~ l ;P! ~40!

with

M mn
D 5t1Gr

11

~kq2 l qq/2;l qq!S
T~ l qq2kq!

3t1Ḡm
11

~ l q2kqq/2;2kqq!S~ l q!Drn
11

~ l qq!. ~41!

It is straightforward to construct four projection operato
that yield the coupled equations forf 1,2

D , a1,2
D .

We employ one more expedient to simplify our calcu
tions: we retain only the zeroth Chebyshev moments off 1,2,
a1,2

i , f 1,2
D , a1,2

D ; i.e., we assumef 1( l ;P)5 f 1( l 2;P2), etc. We
note that solving integral equations using a Chebyshev
composition of the solution functions is a rapidly converge
scheme for isospin symmetric systems@17,29–31# and ne-
glecting the other moments in this calculation will only ha
a small quantitative effect.

C. Faddeev equation masses

The nucleon andD masses can now be obtained by so
ing Eqs.~10!, ~40!, and that also yields the bound-state a
4-5
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TABLE I. Calculated nucleon andD masses. The results in the first and third rows were obtained u
scalar and pseudovector diquark correlationsm1150.90 GeV in row 1,m1150.94 GeV in row 3 (m01

50.74 GeV, always!. Pseudovector diquarks were omitted in the second and fourth rows.v f 1,2
are discussed

after Eq.~43!, andR in and after Eq.~48!. All dimensioned quantities are in GeV.

v01 v11 MN MD v f 1
v f 2

R

01&1 1 0.64 1.19 0.94 1.23 0.49 0.44 0.25
01 0.64 1.59 0.39 0.41 1.28

01&1 1 0.45 1.36 1.14 1.33 0.44 0.36 0.54
01 0.45 1.44 0.36 0.35 2.32
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ple.
plitudes necessary for the calculation of the impulse appr
mation toN andD form factors. The kernels of the equation
are constructed from the dressed-quark propagator, and
diquark Bethe-Salpeter amplitudes and propagators, w
are specified in Secs. II A 1–II A 3. These kernels invol
four parameters. We fix

m0150.74 GeV; ~42!

i.e., we use the calculated scalar diquark mass in Eq.~3!,
which is consistent with that obtained in recent, more sop
ticated BSE studies@35#. @N.B. m01;2ME, Eq. ~27!, and
hence it sets a good scale for nucleon observables.# This
leavesm11 and the diquark width parametersvJP. The im-
mediate goal is to determine whether there are intuitiv
reasonable values of these parameters for which one ob
the nucleon and D masses MN50.94 GeV, MD

51.23 GeV, subject to the constraintm11 /m01'1.3, as in
Eq. ~3!.

The calculated masses are presented in Table I, f
which it is apparent that the observed masses are easily
tained using solely the dressed-quark and -diquark degree
freedom we have described above. The first two lines of
table also make plain that the additional quark exchange
sociated with the introduction of pseudovector correlatio
provides considerable attraction. In this case it reduces
nucleon’s mass by 41%, in agreement with Ref.@17# and, of
course, without the 11 correlation theD would not be bound
in this approach. Furthermore, in agreement with intuitio
the nucleon andD masses increase with increasingmJP.

The values of the diquark width parameters are reas
able. For example, with

r p. l 01ª1/v0150.31 fm. l 11ª1/v1150.17 fm,
~43!

r p is the proton’s charge radius~experimentally, 0.87 fm!,
these correlations lie within the nucleon, a point also emp
sized by the scalar diquark’s charge radius, calculated as
scribed in Ref.@19#:

r 01
2

5~0.55 fm!25~0.98r p!2 ~44!

with r p calculated in the same model@44#. Furthermore, de-
fining v f 1,2

by requiring a least-squares fit ofF( l 2/v f 1,2
) to

f 1,2( l
2), magnitude matched atl 2.0, we obtain a scale char

acterizing the quark-diquark separation
05520
i-

the
ch
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l q(qq) f 1
ª1/v f 1

50.40 fm.0.15 fm5
1

2
l 01. ~45!

For the pseudovector analog

l q(qq)a1
50.36 fm.

1

2
l 11. ~46!

@a2( l 2) is small in magnitude, slowly varying and not mon
tonic. Hence, in this case, the fit is of limited use. Neverth
less, it’s momentum space width is roughly four times that
f 1( l 2).#

For theD,

l q(qq) f 2
D50.35 fm' l q(qq) f 1

D50.32 fm.
1

2
l 11 ~47!

and a1
D is important, characterized by a peak value of'

20.4f 1
D( l 250) andva

1
D*2v f

1
D, but a2

D is not: a2
D.0.

The ratio

R5 f 2~ l 250;2MN
2 !/ f 1~ l 250;2MN

2 ! ~48!

measures the importance of the lower component of the p
tive energy nucleon’s spinor and it is not small, which e
phasizes the importance of treating these systems usin
Poincare´ covariant framework. For theD, R50.17.

III. PION-INDUCED NUCLEON SELF-ENERGY

We have illustrated that an internally consistent and ac
rate description of the nucleon andD masses is easily ob
tained using a Poincare´ covariant Faddeev equation based
confined diquarks and quarks. However, since thepNN and
pND couplings are large, it is important to estimate the sh
in the masses due top dressing. Herein we focus on the sh
in the nucleon’s mass because it is a much studied exam

A. Model field theory: Linear realization of chiral symmetry

We begin by considering a modelp-N field theory de-
scribed by the local Lagrangian density
4-6
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L~x!5N̄~x!@ i ]”2MV~x!#N~x!1
f p

2

16
tr@]mV †~x!]mV~x!#

2
f p

2 mp
2

16
tr@22V~x!2V †~x!# ~49!

~in this and Sec. III B we employ a Minkowski metric!,
where ‘‘tr’’ is a trace over Dirac and isospin indices,M is the
nucleon’s non-pion-dressed mass, and thep matrix

V~x!5expS ig5

1

f p
tW•pW ~x! D , ~50!

with f p'92 MeV, the pion’s weak decay constant. Negle
ing themp

2 ~pion-mass! term, this Lagrangian exhibits a lin
ear realization of chiral symmetry

N~x!→N8~x!5V~w!N~x!, ~51!

N̄~x!→N̄8~x!5N̄~x!V~w!, ~52!

V~x!→V8~x!5V†~w!V~x!V†~w!, ~53!

where V(w)5exp(ig5tW•wW /fp), with wW a spacetime-
independent three vector.~N.B. The form of Eq.~49! can be
seen to arise from, and express, DCSB at the quark l
using, e.g., the global color model@12,13,54#. It also arises
using the rainbow-ladder truncation of the DSEs.!

Using Eq.~49! we explore the effect ofp dressing onM
via the DSE for the nucleon self-energy; i.e.,S(P) in

G21~P!5P” 2M2S~P!. ~54!

In rainbow ~Hartree-Fock! truncation that equation is

S~P!523ig2E d4k

~2p!4
D~k2,mp

2 !g5G~P2k!g5

23i
g2

2ME d4k

~2p!4
D~k2,mp

2 !, ~55!

where, from the Lagrangian,

g5
M

f p
~56!

~so thatgA51 at tree level in this model! and

D~k2,mp
2 !5

1

k22mp
2 1 i«

~57!

5
1

2vp~kW !
F 1

k02vp~kW !1 i«
2

1

k01vp~kW !2 i«
G , ~58!

with vp
2 (kW )5kW21mp

2 , is the free-pion propagator. The se
ond contribution on the RHS in Eq.~55! is a tadpole~Har-
tree! term, which vanishes if the model is defined via dime
sional regularization. It is generated by the contact term
05520
-

el

-
n

Eq. ~49!: g2/(2M )N̄pW •pW N, whose presence and strength
dictated by chiral symmetry@55,56#.

As a first step we evaluate the self energy perturbativ
To proceed with that we define the integrals in Eq.~55! by
implementing a translationally invariant Pauli-Villars reg
larization; i.e., we modify thep propagator

D~k2,mp
2 !→D̄p~k2!5D~k2,mp

2 !1 (
i 51,2

ciD~k2,l i
2!

~59!

and then, with

c152
l2

22mp
2

l2
22l1

2
, c25

l1
22mp

2

l2
22l1

2
, ~60!

Eq. ~59! yields

D̄p~k2!5D~k2,mp
2 ! )

i 51,2
~l i

22mp
2 !D~k2,l i

2!, ~61!

in which case the integrals are convergent for any fixedl1,2.
Furthermore, formp!l1→l25l

D̄p~k2!5D~k2,mp
2 !D2~k2/l2,1!, ~62!

i.e., our Pauli-Villars regularization is equivalent to emplo
ing a monopole form factor at eachpNN vertex g
→gD(k2/l2,1), wherek is the pion’s momentum@57#. Since
this procedure modifies the pion propagator it may be in
preted as expressing compositeness of the pion and reg
izing its off-shell contribution~a related effect is identified in
Refs.@58,59#! but that interpretation is not unique.

In order to better understand the structure of the s
energy we decompose the bare nucleon propagator in
sum of positive and negative energy components

G~P!5G1~P!1G2~P! ~63!

ª

M

vN~PW !
FL1~PW !

1

P02vN~PW !1 i«

1L2~PW !
1

P01vN~PW !2 i«
G , ~64!

where vN
2 (PW )5PW 21M2 and L6(PW )5(P”̃ 6M )/(2M ), P̃

5@v(PW ),PW #, are, respectively, the Minkowski space positi
and negative energy projection operators. Now the shif
the mass of a positive energy nucleon is

dM 15
1

2
trD@L1~PW 50!S~P05M ,PW 50!#. ~65!

We focus initially on the positive-energy nucleon’s co
tribution to the loop integral; i.e., theD(k)G1(P2k) con-
tribution in the first term of Eq.~55!, which we denote by
dFM 1

1 . Evaluating thek0 integral by closing the contour in
the lower half plane, thereby encircling only the thr
positive-energy pionlike poles, we obtain
4-7
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dFM 1
1523g2E d3k

~2p!3

vN~kW2!2M

4vN~kW2!

3 (
i 50,1,2

ci

vl i
~kW2!@vl i

~kW2!1vN~kW2!2M #
,

~66!

with c051, l05mp , and vl i

2 5kW21l i
2 . It is obvious that

dFM 1
1,0; i.e., the Fock self-energy diagram’s positive e

ergy nucleon piece reduces the mass of a positive en
nucleon.

It is instructive to consider Eq.~66! further. Suppose tha
M is very much greater than the other scales then, on
domain in which the integrand has significant support, o
has

vN~kW2!2M'
kW2

2M
~67!

and then

dFM 1
1'23g2E d3k

~2p!3

kW2

8M2 (
i 50,1,2

ci

vl i

2 ~kW2!
~68!

so that

d2dFM 1
1

~dmp
2 !2

'2
3g2

4M2E d3k

~2p!3

kW2

vp
6 ~kW2!

~69!

52
9

128p

g2

M2

1

mp
. ~70!

Thus, on the domain considered,

dFM 1
152

3

32p

g2

M2
mp

3 1 f (1)
1 ~l1 ,l2!mp

2 1 f (0)
1 ~l1 ,l2!,

~71!

where, as the derivation makes transparent,f (0,1) are scheme-
dependent functions of~only! the regularization parameter
but the first term is regularization-scheme independent. T
first term is nonanalytic in the current-quark mass and
coefficient is fixed by chiral symmetry.~N.B. If l1,2 are in-
terpreted as setting a compositeness scale for thepNN ver-
tex, and assume soft values; e.g.@18,20,60#, ;600 MeV,
then the quantitative value ofdFM 1

1 is completely deter-
mined by the regularization-scheme-dependent terms.!

We turn now to theD(k)G2(P2k) contribution in the
first term of Eq.~55!, which we denote bydFM 1

2 . This de-
scribes theZ diagram~antinucleon! contribution to the nucle-
on’s mass and it is most efficient in this case to close
k0-integration contour in the upper-half plane, thereby en
cling only the three negative-energy pionlike poles
05520
-
gy

e
e

is
s

e
-

dFM 1
253g2E d3k

~2p!3

vN~kW2!1M

4vN~kW2!

3 (
i 50,1,2

ci

vl i
~kW2!@vl i

~kW2!1vN~kW2!1M #
.

~72!

It is obvious thatdFM 1
2.0; i.e., the Fock diagram’s anti

nucleon contribution to the positive-energy nucleon’s mas
positive, and it is equally clear that, as evaluated with a ps
doscalar coupling@21#

dFM 1
11dFM 1

253g2E d3k

~2p!3

M

2vN~kW2!

3 (
i 50,1,2

ci

@vl i
~kW2!1vN~kW2!#22M2

;

~73!

i.e., dFM 1
11dFM 1

2.0, and hence that the negative-ener
nucleon contribution overwhelms that of the positive-ene
nucleon. IfdFM 1.0 were the final word on the mass shift
would contradict all previous results for the effect of pio
loops on the nucleon’s mass@61#.

Before addressing this issue we note that forM very much
greater than the other scales then, reapplying the ana
that led to Eq.~71!,

dFM 1
25 f (0)

2 ~l1 ,l2!1mp
2 f (1)

2 ~l1 ,l2!

1
3

32p2

g2

M
mp

2 ~ ln mp
2 21!. ~74!

The last term on the RHS of this equation is an additio
nonanalytic contribution to the nucleon’s mass, and it is
lower order in 1/M than the nonanalytic term in Eq.~71!.
This result, if it were to remain unameliorated, would also
in conflict with modern theory.

Hitherto we have neglected the last term in Eq.~55!,
which describes the tadpole diagram’s contribution to
positive-energy nucleon’s mass shift, and the resolution
these apparent conflicts lies here. It is easy to evaluate
for l1→l25l

dHM 152
3

32p2

g2

M
@l21mp

2 ~ ln@mp
2 /l2#21!#. ~75!

The inclusion ofdHM 1 solves both problems. It provides fo
an exact, algebraic cancellation of the order-1/M term in
dFM 1

2 that is nonanalytic in the current-quark mass, there
ensuring that the nonanalytic term in Eq.~71! provides the
leading O(1/M ) contribution to the nucleon’s mass. The ca
cellation occurs because the (1/M )1 contribution from theZ
diagram has the structure of a tadpole term, for reasons
are intuitively obvious given that the (1/M ) expansion be-
gins with an infinitely heavy nucleon. Furthermore, it mu
4-8
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be exact because using dimensional regularization, for
ample, all tadpole terms vanish and the leading nonana
term must be regularization-scheme independent. In a
tion, for all l.0,

dM 15dFM 1
11dFM 1

21dHM 1,0; ~76!

i.e., the pion loop reduces the nucleon’s mass.@N.B.
dM 1(l) decreases monotonically from 0 with increasingl,
see Fig. 1.#

We opened by asking for the scale of the mass shift p
duced by the pion loop. If we allow the interpretation of t
Pauli-Villars regularization procedure as introducing a mo
pole form factor at eachpNN vertex, which modifies the
pion’s off-shell behavior, then using soft values of the mon
pole scalel;0.5–0.7 GeV, as determined in quark-diqua
Faddeev-amplitude models of the nucleon@18,20# and in-
ferred from data@60#, the O(g2) shift is as depicted in Fig. 1
The magnitude is that of Refs.@5,24#. However, it is evident,
and important to note, that this magnitude is extremely s
sitive to the monopole’s scale: centered onl50.6 GeV, a
10% change inl produces a 30% change indM 1 .

B. Nonlinear realization of chiral symmetry

An alternative to Eq.~49! is to build a Lagrangian densit
that contains only derivatives of the pseudoscalar field
thereby expresses a nonlinear realization of chiral symm
@62#. In chiral quark models such a Lagrangian can be
tained via a unitary transformation of the fields in Eq.~49! to
obtain a so-called volume~pseudovector! coupling @54,63#.
The leading term in the nonlinear chiral Lagrangian can e
ily be obtained by using the equations of motion for a fr
nucleon to re-express Eq.~49!. Neglecting that part of the
Lagrangian density which describes the pseudoscalar
alone, this procedure yields

FIG. 1. Solid line: Shift in a positive-energy nucleon’s mass d
to the O(g2) p contribution to the self-energy, Eq.~76!, obtained
using a soft monopole pion-nucleon form factor to regularize
pion’s off-shell behavior. (M50.94 GeV, mp50.14 GeV, and
gA51.! dM 1(l50.6 GeV)520.15 GeV. Dashed line:dFM 1

1 ;
dot-dashed line:dAM 1

1 .
05520
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N̄~x!F i ]”2M1
g

2M
g5gmtW•]mpW ~x!1•••GN~x!, ~77!

and the rainbow truncation of this model’s DSE is

S~P!53i
g2

4M2E d4k

~2p!4
D~k2,mp

2 !k”g5G~P2k!k”g5.

~78!

No interaction survives that can generate a tadpole~Hartree!
term.

We again evaluate this self energy as a one-loop cor
tion to the positive-energy nucleon’s mass. The contribut
of the positive-energy nucleon is

dAM 1
152

3g2

16M2E d3k

~2p!3

1

vN

3 (
i 50,1,2

ci

l i
2~vN2M !12kW2~vl i

1vN!

vl i
@vl i

1vN2M #
,

~79!

with vN5vN(kW2), etc. Now, to make transparent the dire
connection between our approach and other mass-shift
culations, we rewrite Eq.~79! in the form

dAM 1
1526p

f NNp
2

mp
2 E d3k

~2p!3

3
kW2u2~kW2!

vp~kW2!@vp~kW2!1vN~kW2!2M #
, ~80!

where, as usual,f NNp
2 5g2mp

2 /(16pM2) and, obviously,

kW2u2~kW2!5
vl0

2vN
@vl0

1vN2M #

3 (
i 50,1,2

ci

l i
2~vN2M !12kW2~vl i

1vN!

vl i
@vl i

1vN2M #
.

~81!

This is useful because, formp!l1→l25l; i.e., on the do-
main in which Eq.~62! is valid, one finds algebraically tha

u~kW2!51/~11kW2/l2!, ~82!

which firmly establishes the qualitative equivalence betwe
Eq. ~79! and the calculation in Refs.@5,6,64#.

In Fig. 2 we compare the limiting form, Eq.~82!, with
u(kW ) calculated from Eq.~81!. This emphasizes the practica
utility of using a Pauli-Villars regularization to represent
pNN vertex form factor.

To provide a quantitative connection with other analys
we employ

e

e

4-9
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u~kW !53
j 1~ ukW uR!

ukW uR
~83!

in Eq. ~80!, i.e., the CBM form foru(k), whereR is the bag
radius andj 1(x) is a spherical Bessel function. The resu
are given in Table II and may be summarized as~in GeV!

2dCBM
A M 1

15~0.06560.022!gA
2 , ~84!

where gA is the nucleon’s axial vector coupling constan
@N.B. The result in Eq.~84! is also that obtained using
monopole form factor with the very soft scalelCBM50.38
60.04 GeV.# We stress that in Eqs.~49! and ~77! we used
the couplingg5M / f p , Eq. ~56!, which corresponds togA
51, whereas using the experimental valuegA51.26, Eq.
~84! gives

dCBM
A M 1

1520.10460.035 GeV. ~85!

The larger shift described in Refs.@5,6# is obtained from Eq.
~80! by using a smaller bag radius (;0.75 fm), which is
needed to describepN scattering. The value ofR employed
herein is appropriate to the calculation of nucleon elec
magnetic form factors@65#. A priori it is not clear which
should be used for the calculation of hadron masses bu
cent lattice studies@27# favor a harder value.

FIG. 2. Illustrating that Pauli-Villars regularization with finit

mass scales is a practical tool. Open circles:u2(kW ) calculated di-
rectly from Eq. ~81! using mp50.14 GeV, M50.94 GeV, gA

51, and l1→l25l50.6 GeV; solid line: least-squares fit t

kW2u2(kW2), which yields u(kW2)50.99/(11kW2/l̄2)2, l̄50.54 GeV;
dashed line: limiting form from Eq.~82!.

TABLE II. dAM 1
1 calculated using Eq.~83! in Eq. ~80!; i.e., a

CBM estimate. The optimal bag radius for a description of
neutron’s electric form factor isR50.95 fm51/(0.21 GeV)@65#.

R ~fm! 0.85 0.95 1.05
2dAM 1

1 ~GeV! 0.091 0.065 0.048
05520
.

-

e-

Returning to Eq.~78!, the mass-shift contribution from
the negative-energy nucleon; i.e., theZ diagram, is

dAM 1
25

3g2

16M2E d3k

~2p!3

1

vN

3 (
i 50,1,2

ci

l i
2~vN1M !12kW2~vl i

1vN!

vl i
@vl i

1vN1M #
.

~86!

In this case we havedAM 1
1,0 anddAM 1

2.0 but the sum

dAM 15dAM 1
11dAM 1

252
3g2

8M2E d3k

~2p!3

M

vN
~87!

3 (
i 50,1,2

ci

2kW2~vl i
1vN!2l i

2vl i

vl i
~vN1vl i

!22M2
~88!

is self-evidently negative; i.e., with a pseudovector coupl
the Z diagram is much suppressed.

Considering the heavy-nucleon limit again one obtains

dAM 1
152

3

32p

g2

M2
mp

3 1 f (1A)
1

~l1 ,l2!mp
2 1 f (0A)

1
~l1 ,l2!;

~89!

i.e., the same contribution, nonanalytic in the current-qu
mass, as in Eq.~71!, but with different regularization-
dependent terms. In this case, however, because theZ dia-
grams are suppressed by the pseudovector coupling,
leading-order contribution todAM 1

2 is O(1/M )3. This is
clear from Eq.~86!, and makes immediately unambiguou
the origin and nature of the leading-order nonanalytic con
bution to the nucleon’s mass.

Again interpreting the Pauli-Villars regularization as i
troducing a monopole form factor at eachpNN vertex, we
can estimate the magnitude of thep loop’s contribution to
the nucleon’s mass. Our results are depicted in Fig. 1. I
evident thatdAM 1

1ÞdFM 1
1 , which illustrates the difference

between the regularization-dependent terms in Eqs.~71! and
~89!. In addition, although it may not be immediately obv
ous,

dAM 1[dM 1 , ~90!

which is why there is only one solid curve in the figure. Th
result provides a quantitative verification of the on-sh
equivalence of the pseudoscalar and pseudovector inte
tions, in perturbation theory, as long as the pseudoscala
teraction is treated in a manner consistent with chiral sy
metry@56#. It also emphasizes that, at least for estimating
mass shift, it is advantageous to employ the pseudove
interaction. We note, however, that in fully embracing a L
grangian density that expresses a nonlinear realization of
ral symmetry one loses a direct correspondence with ext
ordered truncations of the DSEs, and hence also loses
4-10
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correspondence between the Lagrangian’s degrees of
dom and hadrons as composites of dressed quarks.

C. Model DSE

We now build on the above analysis and seek a nonp
turbative estimate of thep-loop contribution to the nucleon’s
mass. Returning to the Euclidean metric described in
Appendix, which is advantageous for numerical studies,
DSE for the nucleon’s self-energy using apseudovectorcou-
pling is

S~P!53E d4k

~2p!4
gPV

2 ~P,k!Dp@~P2k!2#

3g•~P2k!g5G~k!g•~P2k!g5 , ~91!

with the following equivalent representations for the nucle
propagator:

G~k!51/@ ig•k1M1S~P!#, ~92!

51/@ ig•kA~k2!1M1B~k2!#, ~93!

52 ig•ksV~k2!1sS~k2!, ~94!

whereM is the nucleon’s bare mass, which is obtained, e
by solving the Faddeev equation. In Eq.~91!, Dp(k2)
51/@k21mp

2 # is the pion propagator, andgPV(P,k) is a form
factor that we will use to describe the composite nature
both the pion and the nucleon. The self-consistent solution
Eq. ~91! yieldsA(k2) andB(k2), and thereby the nonpertur

FIG. 3. Vector piece of the inverse dressed-nucleon propaga
Dotted line:A(t) from Eq. ~96!, A(t54 GeV)51.001; solid line:
numerical result for the one-loop-dressed function in the space
region, obtained from Eqs.~100!–~103!, which overlies the dotted
line in this region; dashed line:A(t) obtained in the self-consisten
solution of Eqs. ~102!, ~103!; dot-dashed line:A(t) @A(t
54 GeV)51.002# obtained in the self-consistent solution of Eq
~110!, ~111! with Eqs.~112!, ~113! added in the continuation to the
timelike region. ~All curves obtained withM50.94 GeV, mp

50.14 GeV,gA51, L50.9 GeV.!
05520
e-

r-

e
e

n

.,

f
f

bative mass shift.@For clarity we omit a discussion of renor
malization but remark on its effects following Eq.~119!.#

We now turn to the model specified by

gPV~P,k!5
g

2M
exp@2~P2k!2/L2#. ~95!

The exponential form facilitates an algebraic evaluation
many necessary integrals and, as has been observed
where@66#, is phenomenologically equivalent to a monopo
form factor 1/@11(P2k)2/l2#, if the mass scales are relate
via L'A2l. Thus one can anticipate a quantitative cor
spondence between thel50.6 GeV monopole results of th
previous subsections and those obtained in this withL
'0.9 GeV.

Before proceeding with a nonperturbative solution of t
nucleon’s DSE we evaluate the one-loop self-energy so a
provide a direct Euclidean space comparison with Se
III A, III B. Using Eq. ~95! we can evaluate thek4 integral to
obtain

A~ t2!2152
3

32p2

g2

M2E0

`

dkk2
a~ t,k!e22k2/L2

vp~k!vN~k!
, ~96!

B~ t2!52
3

32p2

g2

M2E0

`

dkk2
b~ t,k!e22k2/L2

vp~k!vN~k!
, ~97!

wherea(t,k), b(t,k) are given in Eqs.~A19!–~A21!. A and
B are plotted in Figs. 3, 4.

r.

e

FIG. 4. Scalar piece of the inverse dressed-nucleon propag
Dotted line:B(t) from Eq. ~97!, M1B(t54 GeV)50.937 GeV;
solid line: numerical result for the one-loop-dressed function in
spacelike region, obtained from Eqs.~100!–~103!, which overlies
the dotted line in this region; dashed line:B(t) obtained in the
self-consistent solution of Eqs.~102!, ~103!; dot-dashed line:B(t)
obtained in the self-consistent solution of Eqs.~110!, ~111! with
Eqs. ~112!, ~113! added in the continuation to the timelike regio
~All curves obtained withM50.94 GeV, mp50.14 GeV, gA

51, L50.9 GeV.!
4-11
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The one-loop-corrected nucleon massMD1 is the solution
of

MD1
2 A 2~2MD1

2
!5@M1B~2MD1

2
!#2, ~98!

and it is straightforward to show thatMD12M[dM 1 ,
wheredM 1 is defined in Eq.~65!. The calculatedL depen-
dence ofdM 1 is depicted in Fig. 5, and a comparison wi
Fig. 1 reveals the equivalence between the Minkowski a
Euclidean space formulations.

The new feature in a nonperturbative study is that
position of the pole in the nucleon’s propagator is not kno
a priori: locating it is the goal, and this precludes an alg
braic evaluation of thek4 integral. The position of the pole
will depend on the strength of the interaction and the nat
of the form factor. In this case one must proceed by fi
evaluating the angular integrals in Eq.~91!, which are inde-
pendent ofG(k), noting that for a given function of (P
2k)2:

E dVkf @~P2k!2#5
2

pE21

1

dzA12z2f ~P21k222Pkz!.

~99!

This yields the kernels of the coupled, nonlinear integ
equations forA, B:

KA~P2,k2!5
1

2E dVkgPV
2 @~P2k!2#

3F2~P21k2!1
~P22k2!21mp

2 ~P21k2!

~P2k!21mp
2 G ,

~100!

FIG. 5. Dashed line: nucleon’s one-loop mass shift, calcula
from A, B in Eqs. ~96!, ~97!, dM 1(L50.9 GeV'A2l)5
20.13 GeV; dot-dashed line: one-loop mass shift obtained us
the approximate kernels in Eqs.~108!, ~109!; solid line: mass shift
obtained via the self-consistent solution of the nucleon’s DSE us
these approximate kernels,dM 1(L50.9 GeV)520.14 GeV.
The dotted line isdAM 1

1 ; i.e., Eq.~79! calculated in our Euclidean
model. ~All curves obtained with M50.94 GeV, mp

50.14 GeV,gA51.!
05520
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KB~P2,k2!5E dVkgPV
2 @~P2k!2#F12

2mp
2

~P2k!21mp
2 G ,

~101!

so that for spacelikeP2 these integral equations can be wr
ten (x5P2, y5k2)

x@A~x!21#52
3

16p2E0

`

dyyKA~x,y!sV~y!, ~102!

B~x!52
3

16p2E0

`

dyyKB~x,y!sS~y!, ~103!

and solved numerically by iteration.
To illustrate the accuracy attainable with this procedu

we evaluated the integrals in Eqs.~100!, ~101! numerically
for spacelikeP2, insertedA(k2)[1 andB(k2)5M on the
RHS of Eqs.~102! and ~103!, and calculated the integra
over y numerically. This yields the estimate of the one-loo
corrected nucleon propagator in the spacelike region
picted in Figs. 3 and 4. The agreement with the algebr
result is exact.

The self-consistent solution of Eqs.~102!, ~103! in the
spacelike region is easily obtained by iteration: the one-lo
corrected functions are inserted on the RHS to obtain
second iterate, which is then inserted on the RHS to ob
the third iterate, etc., with the procedure repeated until
input and output agree within a specified tolerance. That h
pens very quickly, with the fourth iterate from free nucleo
seed functions (A51, B5M ) agreeing with the third iterate
to better than 1024%. Hence ‘‘three pions in the air’’ are
sufficient to fully dress the nucleon. The functions obtain
in this self-consistent solution are also plotted in Figs. 3
only A(t2) is noticeably modified, cf. the one-loop result.

To locate the mass pole in the nonperturbatively dres
nucleon propagator, Eqs.~102!, ~103! must also be solved fo
timelike P2. That requires an analytic continuation of th
kernels in Eqs.~100!, ~101!. The primary nonanalytic feature
in their integrands is the pion pole and in continuing to tim
like P2 it is necessary to properly incorporate its effect. Th
is difficult when the kernels are only known numerically a
an expeditious alternative is to develop an algebraic appr
mation, which is the approach we adopt.

It is apparent that both kernels can be considered as a
of two terms. The first is proportional to the angular avera
of gPV

2 @(P2k)2#, and using Eq.~95! that integral can be
evaluated exactly

ḡPV
2 ~P2,k2!ªE dVkgPV

2 @~P2k!2#

5
g2

4M2
e22(P21k2)/L2 L2

2Pk
I 1~4Pk/L2!,

~104!

where I 1(x) is a modified Bessel function andP5AP2, k
5Ak2. The second term in both cases is proportional to

d

g

g

4-12
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vg2~P2,k2!ªE dVk

gPV
2 @~P2k!2#

~P2k!21mp
2

, ~105!

which, in general, cannot be expressed as a finite sum
known functions. However, ifgPV is regular atP5k and its
analytic structure is not a key influence on the solution, th
the approximation

vg2~P2,k2!'gPV
2 ~ uP22k2u!E dVk

1

~P2k!21mp
2

5gPV
2 ~ uP22k2u!

1

a1Aa22b2
, ~106!

5:g̃PV
2 ~P2,k2!

1

a1Aa22b2
, ~107!

wherea5P21k21mp
2 , b52Pk, is a reliable tool@67#. As

these preconditions are obviously satisfied in o
application—the dominant physical effect inpN physics is
the pion pole and that appears at a mass scale much l
than those present ingPV—we pursue our analysis using th
following algebraic approximations:

K̃A~x,y!52
1

2
ḡPV

2 ~x,y!~x1y!

1g̃PV
2 ~x,y!

~x2y!21mp
2 ~x1y!

a1Aa22b2
, ~108!

K̃B~x,y!5ḡPV
2 ~x,y!2g̃PV

2 ~x,y!
2mp

2

a1Aa22b2
. ~109!

To illustrate their efficacy, in Figs. 3 and 4 we plot the se
consistent solutions of

x@A~x!21#52
3

16p2E0

`

dyyK̃A~x,y!sV~y!, ~110!

B~x!52
3

16p2E0

`

dyyK̃B~x,y!sS~y!. ~111!

The error introduced by the approximation is never m
than 1% and is only that large forA(t250).

We can now define the model’s analytic continuation
the timelike region. The approximate kernels’ prima
nonanalyticity is a square-root branch point whose app
ance and location are tied to the simple pole in the p
propagator, and in continuing toP2,0 it is necessary to
include the discontinuity across the associated cut. Tha
accomplished@68# by adding the following additional term
to the RHS of Eqs.~110!, ~111!, respectively,

2
3

16p2Exb

0

dyyg̃2~x,y!DK̃A~x,y!sV~y!, ~112!
05520
of

n

r

er

e

r-
n

is

2
3

16p2Exb

0

dyyg̃2~x,y!DK̃B~x,y!sS~y!, ~113!

where

DK̃A~x,y!52
DKB~x,y!

2mp
2 @~x2y!21mp

2 ~x1y!#,

~114!

DK̃B~x,y!5mp
2
A~x1y1mp

2 !224xy

xy
, ~115!

and y5xb52(A2x2mp)2 is the location of the branch
point. ~N.B. These terms are present only whenP21mp

2

,0.! The self-consistent solutions of Eqs.~110!–~113! are
depicted in Figs. 3 and 4 and unsurprisingly there is lit
difference between the one-loop results and the s
consistent solution.

In Fig. 5 we compare the exact one-loop mass shift w
that obtained numerically using the approximate kernels. T
error is never more than 5% with the approximation alwa
overestimating the magnitude of the shift.@It is noteworthy
that a large part of the one-loop mass shift is due to
vector self-energy; e.g., withL50.9 GeV, (dM 1)one loop is
40% smaller if the vector self-energy is neglected.#

The fully dressed nucleon massMD is obtained by solv-
ing

MD
2 A 2~2MD

2 !5@M1B~2MD
2 !#2 ~116!

with the nonperturbative mass shift given bydM 15MD
2M . Again, this definition is completely equivalent to E
~65! evaluated atMD with the self-consistent solution of th
DSE. TheL dependence of the nonperturbative shift is a
depicted in Fig. 5 and comparison with the numerical on
loop result shows that the additional pion dressing a
&5% to udM 1u.

Thus far we have used our Euclidean model to quant
tively reproduce the perturbative results of Secs. III A, III
and thereby make transparent the equivalence of the Eu
ean and Minkowski formulations. In addition we have show
that the one-loop mass shift is;95% of the total.

However, we have not yet considered an effect of nucle
compositeness. A covariantpNN vertex function must de-
pend on three independent variablesgPV5gPV@P2,k2,(P
2k)2# @29#, and hitherto we have neglected its depende
on P2, k2. „We have already seen thatgPV5gPV@(P2k)2#
corresponds to a Pauli-Villars regularization of the pi
propagator alone.… The calculation of form factors that de
scribe interactions between composite objects; e.g., stu
of the r-v mass splitting@59,69# and electromagnetic form
factors@31,39,70,71#, indicates that thepNN vertex should
also suppress the pion-nucleon coupling when the nucle
are off shell. We conduct an initial, exploratory study of th
effect by considering the productAnsatz
4-13
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gPV~P2,k2,P•k!5
g

2M
e2(P2k)2/L2

e2(P21M21k21M2)/LN
2
,

~117!

which reduces to Eq.~95! when LN→` and guarantees
gPV(2M2,2M2,0)5g/(2M ), as required. Previous appl
cations of such a form factor in thepN sector@72# typically
require

LN /L;1.522.0. ~118!

~NB. While LN is calculable using a covariant model of th
nucleon, no such calculations exist and to constrain its va
we must currently rely on phenomenology.! The effect on the
mass shift of this off-shell suppression is depicted in Fig.
it is significant, leading to a reduction of*50% in udM 1u.
For LN→`; i.e., in the absence of the off-shell suppressi
this effect can be mimicked by a reduction inL; e.g., L
→L850.7 GeV yieldsdM 1520.07 GeV, and we note
that L8/A250.5 GeV, which is commensurate withlCBM
'0.4 GeV, after Eq.~84!.

Combining all the elements of our analysis we arrive a
result for the shift in the nucleon’s mass owing to thepN
loop ~for gA51.26, in GeV!:

2dM 1.~0.03920.063!gA
25~0.06120.099!. ~119!

In the preceding, for illustrative clarity, we did not a
count for the effects of finite vertex renormalization; i.e., w
setZ1515Z2 in Eq. ~91!. Studies using the CBM indicat
that a quantitative description ofpN vertex renormalization
requires that theD be treated on an equal footing with th
nucleon and that this is crucial to obtaining a converg
expansion@5,73#. Indeed, one finds, as here, that thep loop
acts to suppress the nucleon’s wave-function renormal
tion; i.e., it forcesZ2,1, but in the CBM this effect is com
pensated by an almost matching suppression ofZ1 so that the

FIG. 6. Effect on the mass shift produced by including nucle
off-shell suppression in thepNN vertex: Eq. ~117!, for L
50.9 GeV, mp50.14 GeV. @N.B., dM 1(L50.9 GeV,LN5`)
520.14 GeV.#
05520
e
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,

a

t
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bare and renormalizedpN couplings are little different. A
self-consistent, covariant treatment of the coup
composite-N-D system is more than we are able to descr
herein. However, the CBM studies suggest that a relia
estimate of the effect of including theD can be obtained
simply by solving an analogue of Eq.~91! with Z15Z2 for a
renormalized model.

We have done this and thereby arrive at a robust res
thepN loop reduces the nucleon’s mass by;10–20 %@74#.
Extant calculations, e.g., Refs.@5,6,64#, show that the contri-
bution from the analogouspD loop is of the same sign an
no greater in magnitude so that the likely total reduction
20–40 %. Based on these same calculations we antici
that theD mass is also reduced byp loops but by a smaller
amount (;50–100 MeV less!.

How does that affect the quark-diquark picture of ba
ons? To address this issue we again solved the Faddeev e
tions, this time requiring that the quark-diquark compone
yield higher masses for theN and D: MN50.9410.2
51.14 GeV, MD51.23210.151.332 GeV. The results
presented in the third and fourth rows of Table I, establ
that the effects are not large. In this case omitting the ax
vector diquark yieldsMN51.44 GeV, which signals a 10%
increase in the importance of the scalar-diquark compon
of the nucleon.~It is an increasebecause this componen
now requires less correction. Note, too, that the scalar
quark’s charge radiusr 0150.63 fm is 15% larger.! It also
announces a reduction in the role played by axial-vector
quark correlations in the nucleon, since now restoring th
only reduces the nucleon’s core mass by 21%, withp self-
energy corrections providing the remaining 14%. It is th
apparent that requiring an exact fit to theN and D masses
using only quark and diquark degrees of freedom leads to
overestimate of the role played by axial-vector diquark c
relations: it forces the 11 diquark to mimic, in part, the ef-
fect of pions since they both act to reduce the mass, cf.
of a quark1scalar-diquark baryon.

IV. EPILOGUE

We showed that an internally consistent description of
N andD masses is easily obtained using a Poincare´ covariant
Faddeev equation that represents baryons as composites
confined quark and diquark. We term this the ‘‘core mass’’
the baryons. They are weakly bound in the limited sense
the sum of the masses of their primary constituents is li
greater than their core mass.

The on-shellpNN and pND couplings are large and
hence it is conceivable thatpN andpD self-energy correc-
tions to the nucleon’s mass may be significant. We theref
studied the effects of thepN loop on the nucleon’s core
mass and found that, in well-constrained models, this lo
reduces that mass by&20%. Including thepD self-energy
contribution, the total reduction is likely to be between
and 40 %. While this is a material effect it does not und
mine the qualitative picture of baryons suggested by the F
deev equation; namely, that baryons are primarily qua
diquark composites. This is consistent with the fact tha
converged nonperturbative calculation of thep-induced self-

-
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energy requires only three ‘‘pions in the air,’’ but to be ce
tain we re-solved the Faddeev equation aiming at nucl
and D masses corrected for thep self-energy contribution,
and found little change in the character of the solution.

One notable effect, however, was a material reduction
the nucleon’s axial-vector diquark component. This is ea
understood: ignoringp loops forces the axial-vector di
quarks to mimic their effect. That surrogacy cannot be co
pletely effective and may have led to quantitative errors, a
errors of interpretation, in contemporary quark-diquark ba
calculations of quantities such as the neutron’s charge f
factor and the ratiompGE

p/GM
p . Our results should serve as

signal of this possibility and stimulate increased caution a
an objective reanalysis.

Our exploration of the role ofp loops was pedagogica
We made clear that the leading nonanalytic contribution
the nucleon’s mass arises from that part of the loop inte
which corresponds to a positive-energy nucleon; i.e., whe
the pNN coupling is pseudoscalar or pseudovector, theZ
diagrams do not affect the leading nonanalytic behavior. F
thermore, we showed explicitly that the one-loop mass s
calculated with a pseudoscalar coupling ispreciselythe same
as that obtained with a pseudovector coupling, so long
and only if, no diagrams are overlooked in the pseudosc
calculation. We illustrated that, using any translationally
variant regularization procedure which preserves informa
about the pion’s finite size, the tadpole~Hartree! diagram
generated by a pseudoscalar coupling cannot be negle
because it balances the very large contribution from
pseudoscalarZ diagram. This result should not be ove
looked in the phenomenological application of model fie
theories founded on hadronic degrees of freedom.
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APPENDIX: EUCLIDEAN CONVENTIONS

1. Metric and spinors

In our Euclidean formulation,

p•q5(
i 51

4

piqi , ~A1!

$gm ,gn%52dmn , gm
† 5gm , smn5

i

2
@gm ,gn#,

~A2!

tr@g5gmgngrgs#524emnrs ,e123451. ~A3!

A positive energy spinor satisfies

ū~P,s!~ ig•P1M !505~ ig•P1M !u~P,s!, ~A4!

wheres56 is the spin label. It is normalized

ū~P,s!u~P,s!52M ~A5!

and may be expressed explicitly:

u~P,s!5AM2 iES xs

sW •PW

M2 iExs
D , ~A6!

with E5 iAPW 21M2,

x15S 1

0D , x25S 0

1D . ~A7!

For the free-particle spinor,ū(P,s)5u(P,s)†g4.
The spinor can be used to construct a positive ene

projection operator

L1~P!ª
1

2M (
s56

u~P,s!ū~P,s!5
1

2M
~2 ig•P1M !.

~A8!

A negative energy spinor satisfies

v̄~P,s!~ ig•P2M !505~ ig•P2M !v~P,s!, ~A9!

and possesses properties and satisfies constraints obt
via obvious analogy withu(P,s).

A charge-conjugated Bethe-Salpeter amplitude is obtai
via

Ḡ~k;P!5C†G~2k;P!TC, ~A10!

where ‘‘T’’ denotes a transposing of all matrix indices an
C5g2g4 is the charge conjugation matrix,C†52C.

In describing theD resonance we employ a Rarita
Schwinger spinor to unambiguously represent a covar
spin-3/2 field. The positive energy spinor is defined by t
following equations:

~ ig•P1M !um~P;r !50, ~A11!
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gmum~P;r !50, ~A12!

Pmum~P;r !50, ~A13!

wherer 523/2,21/2,1/2,3/2. It is normalized:

ūm~P;r 8!um~P;r !52M ~A14!

and satisfies a completeness relation

1

2M (
r 523/2

3/2

um~P;r !ūn~P;r !5L1~P!Rmn , ~A15!

where

Rmn5dmnI D2
1

3
gmgn1

2

3
P̂mP̂nI D2 i

1

3
@ P̂mgn2 P̂ngm#,

~A16!

with P̂2521, which is very useful in simplifying the posi
tive energyD ’s Faddeev equation.

2. Euclidean one-loop calculations

In Eqs.~96! and ~97!

a~ t,k!52a0~ t,k!1a1~ t,k!1a2~ t,k!, ~A17!

b~ t,k!5a0~ t,k!1a2~ t,k!, ~A18!

where

a0~ t,k!5k2FI0@vp~k!#(
s50

1
vN~k!1~2 !svp~k!

@vN~k!1~2 !svp~k!#21t2

2I0@VN~ t,k!#
vp~k!

VN
2 ~ t,k!2vp

2 ~k!

2I0@V̄N~ t,k!#
vp~k!

V̄N
2 ~ t,k!2vp

2 ~k!
G , ~A19!
n

n

05520
a1~ t,k!5mp
2 vp~k!

3FI0~vp~k!!(
s50

1
~2 !s

@vN~k!1~2 !svp~k!#21t2

1
i

t
I0@VN~ t,k!#

VN~ t,k!

VN
2 ~ t,k!2vp

2 ~k!

2
i

t
I0@V̄N~ t,k!#

V̄N~ t,k!

V̄N
2 ~ t,k!2vp

2 ~k!
G2

i

t
vp~k!

3@VN~ t,k!I0@VN~ t,k!#

2V̄N~ t,k!I0@V̄N~ t,k!## , ~A20!

a2~ t,k!5FI2~vp~k!!(
s50

1
vN~k!1~2 !svp~k!

@vN~k!1~2 !svp~k!#21t2

2I2@VN~ t,k!#
vp~k!

VN
2 ~ t,k!2vp

2 ~k!

2I2@V̄N~ t,k!#
vp~k!

V̄N
2 ~ t,k!2vp

2 ~k!
G , ~A21!

whereVN(t,k)5vN(k)1 i t , V̄N(t,k)5vN(k)2 i t , and

I0~x!ª2E
0

`

due22u2/L2 1

x2 iu
5e2x2/L2

erfc~xA2/L!,

~A22!

I2~x!ª2E
0

`

due22u2/L2 u2

x2 iu
5xS L

A2p
2xI0~x!D ,

~A23!

where erfc(x) is the complementary error function and bo
these functions are odd underx→2x.
ys.
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