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Poincarecovariant Faddeev equations for the nucleon andire solved to illustrate that an internally
consistent description in terms of confined-quark and non-point-like confined-diquark correlations can be
obtained. wN-loop induced self-energy corrections to the nucleon’s mass are analyzed and shown to be
independent of whether a pseudoscalar or pseudovector coupling is used. Phenomenological constraints sug-
gest that this self-energy correction reduces the nucleon’s mass by up to several hundred MeV. That effect does
not qualitatively alter the picture, suggested by the Faddeev equation, that baryons are quark-diquark compos-
ites. However, neglecting the loops leads to a quantitative overestimate of the nucleon’s axial-vector diquark

component.
DOI: 10.1103/PhysRevC.65.055204 PACS nunierl4.20.Dh, 13.75.Gx, 11.15.Tk, 24.85%
[. INTRODUCTION quasiparticlgbecause ladderlike gluon exchange is attractive

in the 3. quark-quark scattering chanheind binding in the

Contemporary experimental facilities employ large mo-nucleon is effected by the iterated exchange of roles between
mentum transfer reactions to probe the structure of hadrongie dormant and diquark-participant quarks.
and thereby attempt to elucidate the role played by quarks A first numerical study of this Faddeev equation for the
and gluons in building them. Since the proton is a readilynucleon was reported in Rgf15], and following that there
accessible target its properties have been studied most extemave been numerous more extensive analyses; e.g., Refs.
sively [1]. Hence an understanding of a large fraction of the[16,17]. In particular, the formulation of Ref17] employs
available data requires a Poincarevariant theoretical de- confined quarks, and confined, pointlike-scalar and -axial-
scription of the nucleon. vector diquark correlations, to obtain a spectrum of octet and

At its simplest the nucleon is a nonperturbative three-decuplet baryons in which the rms deviation between the
body bound-state problem, an exact solution of which is dif-calculated mass and experiment is only 2%. The model also
ficult to obtain even if the interactions are known. Hitherto, reproduces nucleon form factors over a large range of mo-
therefore, phenomenological mean-field models have beementum transfef18], and its descriptive success in that ap-
widely employed to describe nucleon structure; e.g., solitorplication is typical of such Poincareovariant treatments;
models[2—4] and constituent-quark mode[§—7]. These e.g., Refs[19-22.
models are most naturally applied to processes involving However, these successes might themselves indicate a
small momentum transfeqf<M?, M is the nucleon mags flaw in the application of the Faddeev equation to the
and, as commonly formulated, their applicability may be ex-nucleon. For example, in the context of spectroscopy, studies
tended to processes involving larger momentum transfer bysing the cloudy bag moddlCBM) [5] indicate that the
working in the Breit framd8]. Alternatively, one could de- dressed-nucleon’s mass receives a negative contribution of as
fine an equivalent, Galilean invariant Hamiltonian and rein-much as 300—-400 MeV from pion self-energy corrections;
terpret that as the Poincaiavariant mass operator for a i.e.,6M ,=—300to—400 MeV[6,23]. Furthermore, a per-
guantum mechanical theof®@] but this path is less well turbative study, using the Faddeev equation, of the mass shift
traveled. induced by pointlikes exchange between the quark and di-

Another approach is to describe the nucleon via a Poingquark constituents of the nucleon obtaifisl , = — 150 to
carecovariant Faddeev equation. That, too, requires an as-300 MeV [24]. Unameliorated these mutually consistent
sumption about the interaction between quarks. An analysigesults would much diminish the value of the 2% spectro-
[10] of the global color mode[11-13 suggests that the scopic accuracy obtained using only quark and diquark de-
nucleon can be viewed as a quark-diquark composite. Pursgrees of freedom.
ing that picture yield$14] a Faddeev equation, in which two It is thus apparent that the size and qualitative impact of
quarks are always correlated as a color-antitriplet diquarkhe pionic contribution to the nucleon’s mass may provide
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material constraints on the development of a realistic quarkthe quark-quark scattering matrix. A simple, Goldstone-
diguark picture of the nucleon, and its interpretation and aptheorem-preserving, rainbow-ladder DSE mof&3] yields
plication. Our article is an exploration of this possibility and the following diquark pseudoparticle masdgsospin sym-
we aim to clarify the model-dependent aspects. We emphanetry is assumed
size, in addition, that chiral corrections to baryon magnetic
moments and charge radii are also impor{&@%], and their
model-independent features furnish additional constraints on
any quark model, including those based on the Faddeef{qq);r (ud)g+ (us)o+ (uu)+ (us),+
equation, thereby guiding their improvement. We note, toomqq (GeV) 0.74 0.88 0.95 1.05
that lattice-QCD studies of baryon masses, especially as a
function of the current-quark ma$26], also provide infor-
mation that can guide these considerations; e.g., a rece&?Q)JPG v (fi); (lljjf)?l (115213 (318)614
lattice-QCD exploration of the connection betwedmnd A Maq (GeV) ' ' ' '
masses is consistent with the pion self-energies described
above[27]. ©)

In Sec. Il we recapitulate on the Faddeev equation and its
solution for theN and A in a simple model. Section Ill dis- The mass ordering is characteristic and model independent
cusses model-independent aspects of the Dyson-Schwinggfee Refs[34,35, lattice-QCD estimatef36] and studies of
equation(DSE) [28] that describes the pionic correction to the spin-flavor dependence of parton distributifdig), and
the N's self-energy and therein we also present exemplaryndicates that a study of thé andA must retain at least the
estimates for the magnitude of the effect. Section IV is anscalar and pseudovectar) and (ud) correlations if it is to
epilogue. be accurate(Of course, the spin-3/2 is inaccessible unless

pseudovector correlations are retained.

Il. FADDEEV EQUATION

The properties of light pseudoscalar and vector mesons A. Model for the nucleon
are well described by a renormalization-group-improved To provide a concrete illustration and make our presenta-
rainbow-ladder truncation of QCD’s DSE29-31], and the  tjon self-contained we consider a simple mof&d] wherein

study of baryons via the solution of a Poincarevariant  the nucleon is a sum of scalar and pseudovector diquark
Faddeev equation is a desirable extension of the approachgrrelations

The derivation of a Faddeev equation for the bound state

contribution to the three quark scattering kernel is possible Va(pi,a ,Ti):\pg++«y%+, (4
because the same kernel that describes mesons so well is also

strongly attractive for quark-quark scattering in the color- ;i (i, ,7) the momentum, spin, and isospin labels of

antitriplet channelsee Sec. Il A2 And it is a simple con- 0 quarks constituting the nucleon, aRe:p;+ p,+ ps the
sequence of the Clebsch-Gordon series for quarks in the funy,cjeon’s total momentum. The scalar diquark component in
damental representation of §3): Eq. (4) is

3:®3,83,=(3:86,)©3,=1,08,8,010;, (1) .
w3 (piai,7)=

that any two quarks in a color singlet bound state must con-

stitute a relative color antitriplet. This supports a truncation

of the three-body problem wherein the interactions between X[S(1;P)u(P)]’3, (5)

two selected quarks are added to yield a quark-quark scatter- 3

ing matrix, which is then approximated as a sum over all here[38] th . tisfi

possible diquark pseudoparticle terms: Dirac-scalar where € Spinor satishes

-pseudovector-[ - - - |—essentially a separable two-body in- _

teraction[32]. A Faddeev equation follows, which describes (iy-P+M)u(P)=0=u(P)(iy-P+M), (6)

the three-body boundstate as a composite of a dressed quark

and nonpointlike diquark with an iterated exchange of rolesvith M the mass obtained in solving the Faddeev equation,

between the dormant and diquark-participant quarks. Thand is also a spinor in isospin space with = col(1,0) for

bound-state is represented by a Faddeev amplitude the proton ande_=col(0,1) for the neutronK=p;+p,

=Pz Prizj=P1— P2, I:=(— Pz +2p3)/3; A% (K) is a

pseudoparticle propagator for the scalar diquark formed from

+ . . .

where the subscript identifies the dormant quark and, e.gguarks 1 and 2, ani® is a Bethe-Salpeter-like amplitude

W, , are obtained fromV'; by a correlated, cyclic permuta- describing their relative momentum correlation; afida 4

tion of all the quark labels. X 4 Dirac matrix, describes the relative quark-diquark mo-
The Faddeev equation is simplified further by retainingmentum correlation.§, %", andA®" are discussed below.

only the lightest diquark correlations in the representation offThe pseudovector component is

ot 1 172 ot
r Ep[lz] K A" (K)
a1

q,:\lfl"l‘\lfz“l"\lfg, (2)

055204-2
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i _+jplt .
T (i ey 7)) = (M, =t'T, (Kqg—qq/2il4q) ST (4= Kg)

e[ L REE
t'l—‘# (Ep[lz];K” AIU,V(K) _
| gy Xtiri (|q—qu/2;_qu)s(lq)A,%:(qu)'
X[AL(PU(P)TE, ™ 1

In Egs.(10)—(15) it is implicit that u(P) is a normalized
average ofp. so that, e.g., the equation for the proton is
1 1 obtained by projection on the left wit{aT+ . To clarify this,
tT=—(2+7%), t°=7, t-=—(°-7%, (8 Dby illustration, we note that Eq.14) generates an isospin
V2 2 coupling betweertu(P)‘P+ on the left-hand side_LHS) of Eq.
(10) and, on the right-hand sid&kHS

where the symmetric isospin-triplet matrices are

N

with (7%);;=¢;; and 72 the usual Pauli matrices, and the
pther elements in Eq7) are obvious generalizations of those \;2,4:u(p)¢, — ASu( p)‘h_ (16)
in Eq. (5).

The color antisymmetry o¥ 5 is implicit in " withthe  This is merely the Clebsch-Gordon coupling of isospin-1
Levi-Civita tensorec c,c, expressed via the antisymmetric isospins to total isosping and means that the scalar di-

Gell-Mann matrices; i.e., defining qguark amplitude in the protonu@)y+u is coupled to itself
andthe linear combination

HI=iN",HZ=—i\> H3=i)?}, 9

{ ) © J2(uu)q+d—(ud)+u. (17

thene; c,c,= (H®)c,c,- [See Eqs(32), (33).] The general forms of and A" , the Bethe-Salpeter-like
The Faddeev equation satisfied My; yields a set of amplitudes that describe the momentum-space correlation

coupled equations for the matrix valued functighsA',: between the quark and diquark in the nucleon, are discussed

at length in Ref.[17], wherein a detailed analysis of the
Faddeev equation’s solution is presented. RequiringSHze

S(k;P)u(P)
{ , an eigenfunction of\ , (P), Eq. (A8), entails

AL(k;P)u(P)

B ' [S(I;P)U(P)
-4 2 P a1 pyucey

(10

S(:P) = 12(1:P) 5 171~ 1-Blo) o 1P), (18

where one factor of “2” appears becaud® is coupled sym-
metrically toW'; and¥,, and we have evaluated the neces-where (p),s= 6., P2=—1, and, in the nucleon rest frame,
sary color contractionH®),(H?) cp = —2pp - f, , describe, respectively, the upper, lower component of the
The kernel in Eq(10) is bound-state nucleon’s spinor. Requiring the sametgfre-
) duces to only siXfrom an original 12 the number of inde-

Moo (Mop)?, pendent Dirac amplitudes required to specify it completely.

(M) (Myp)! (11) However, we simplify this by retaining only those two am-
m wy plitudes that survive in the nonrelativistic limit:

MKk, P)=

with AL(P)=al(1;P) ysy, +ay(IP) ysy 11, 12=1.

_rot . T
Moo=17 (kg ladf2i10) S (laa~ka) Assuming isospin symmetry, thaf=a’=a’, j=1,2.
XF°+(Iq— qulz;_qu)S(lq)Ao+(|qq); (12) The Faddeev equation for the nucleon is Bd)) with the
kernel M given by Eqs(11)—(15): to complete its definition
where | =1+ P/3, ky=k+P/3, lqq=—1+2P/3, kqq=—k we must specify the_ dressed-quark propagator, the diquark
+2P/3: Sis the propagator of the dormant dressed-quari&ethe-Salpeter amplitudes and the diquark propagators.

constituent of the nucleo(Bec. Il A 1); and 1. Dressed-quarks

The general form of the dressed-quark propagator is
S(p)=—iy-pov(p?) +os(p?), (20
=[iy-pA(p*)+B(p*)] " (21)

It can be obtained by solving the QCD gap equation; i.e., the

DSE for the dressed-quark self-energy, and the many such

studieq28,39,4Q yield the model-independent result that the
(14) wave function renormalization and dressed-quark mass

(Mo =T (kg1 4o/2;1 0q) ST gq— kq)
oV w NPg Tqg'4rtaq aa- q
XTO (14— Kqof2i— kg S AL (149, (13)

(Mi0), =T (kg q/2:1 4) STl gq— ko)

XUT L (1= Kgo/2:— Kgq) S ) A® (1 q)
M q qq = qq q qq/»
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Z(p>)=1/A(p?%), M(p?=B(p?/A(p?), (22 chiral-limit quark mass function with anomalous dimension
ym= 1. This omission of the additional IpA%¢p) suppres-
respectively, exhibit significant momentum dependence fokjon that is characteristic of QCD is a practical but not nec-
p?<1 Ge\?, which is nonperturbative in origin. This be- essary simplification.
havior was recently observed in lattice-QCD simulations Motivated by model DSE studid47], Egs.(23),(24) ex-
[41], and Refs[42,43 provide quantitative comparisons be- press the dressed-quark propagator as an entire function.
tween those results and a modern DSE model. The infraredenceS(p) does not have a Lehmann representation, which
enhancement oM (p?) is an essential consequence of dy-is a sufficient condition for confinemef#8]. Employing an
namical chiral symmetry breakin®CSB) and is the origin  entire function forS(p), whose form is only constrained via
of the constituent-quark mass. With increaspfgthe mass  the calculation of spacelike observables, can lead to model
function evolves to reproduce the asymptotic behavior familartifacts when it is employed directly to calculate observ-
iar from perturbative analyses, and that behavior is unamables involving large timelike momenfd9]. An improved
biguously evident fop®=10 GeV [29]. parametrization is therefore being sought. Nevertheless, no
While numerical solutions of the quark DSE are readily problems are encountered for moderate timelike momenta
obtained, the utility of an algebraic form f&(p) is self-  (see, e.g., Ref50]) and on the subdomain of the complex
evident. An efficacious parametrization 8p), which ex-  plane explored in the present calculation the integral support
hibits the features described above, has been used exteprovided by an equally efficacious alternative cannot differ
sively in studies of meson properti¢39,40 and we use it  significantly from that of our parametrization.
herein. It is expressed via

_ _ _ 2. Diguark Bethe-Salpeter amplitudes
og(X)=2mF 2(x+ m?)]+ F(b1x) F(bsx)[bg+boF(ex)],

(23) The renormalization-group-improved rainbow-ladder
DSE truncation, employed in Ref§29-31, will yield
. 1 . asymptotic diquark states in the strong interaction spectrum.
oy(X)= _2{1—f[2(x+ m?)1}, (24 Such states are not observed and their appearance is an arti-
X+m fact of the truncation. Higher order terms in the quark-quark

_ gy = — scattering kernelcrossed-box and vertex correctipnshose
with x=p“/A%, m = m/\, F(x)=[1—exp(-X))x os(X)  analog in the quark-antiquark channel do not much affect the
=og(p?), and oy(x)=N%0y(p?). The mass scalex properties of most of the color-singlet mesons, act to ensure
=0.566 GeV and parameter values that QCD’s quark-quark scattering matrix does not exhibit
_ singularities that correspond to asymptatimconfined di-
m bo by by bs guark bound statefb1]. Nevertheless, studies with kernels
0.00897 0.131 290 0.603 0.185 (25 that do not produce diquark bound states, do support a physi-
cal interpretation of the masses obtained using the rainbow-
were fixed in a least-squares fit to light-meson observablegdder truncation, Eq(3): myq plays the role of a confined-
[44]. The dimensionless=d current-quark mass in ER5) quasiparticle mass in the sense thgt{=1/my, may be
corresponds to interpreted as a range over which the diquark correlation can
propagate inside a baryon. These observations motivate the
m=5.1 MeV. (260 Ansator the quark-quark scattering matrix that is employed
in deriving the Faddeev equation

[e=10"% in Eq. (23) acts only to decouple the large- and
intermediatep? domains)

The parametrization expresses DCSB, giving a Euclidean M- (k.- K)Tt= (k=K
constituent-quark mass [Maq(k.a:K) s JPZOZ’f’ (k—K)
ME ,=0.33 GeV (27) X AY (KT (g:K). (29)

defined[29] as the solution op?=M?(p?), whose magni- While it ical ¢ :
tude is typical of that employed in constituent-quark models e 'tp's’_ hot _necessgry, one.pra(_:nca m_eans 0 _speC|fy—
[6,7] and for which the value of the ratiMt /m=65, is ing the 7" in this equation, which is consistent with the

definitive of light quarks[45]. In addition, DCSB is also abPove discussion, is to employ the solutions of the ladderlike

manifest in the vacuum quark condensate quark-quark Bethe-Salpeter equatiBtE)
— 3 b 1 GeV 4 a
1 GeV_ 3 0 _ 3 q A
— =N°———In =(0.221 GeV>, Py — _ freer, _ ~\o
<qq>0 4772 b1b3 2QCD ( \J r (k,K)—f (277)4g(k q)D,uV k q) 2 Yu
(28)
b A2 T
where we have used ocp=0.2 GeV. The condensate is XS(q+K/2)TY (g;K) ?yVS(—q+ P/2)| ,
calculated directly from its gauge invariant definitipf6]
after making allowance for the fact that E¢23),(24) yield a (30
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where the effective coupling(k) is calculable using pertur-
bation theory fork’=1 Ge\? and is modelled in the infra-
red (see, e.g., Ref§29-31)), and Dzef(k) is the free gluon
propagator. The amplitude is canonically normalized:

oK =| -y d4qf-—K +Q/2)T(q:K)ST
K2=—m%
X(—q+Q/2) (31
Q=K

PHYSICAL REVIEW ®5 055204

where the two parameters;r are diquark pseudoparticle

masses and p are the widths characteriziri@lp. It is plain
upon inspection that thegnsaze satisfy the constraints we
have elucidated.

B. Model for A

The A is a spin-3/2, isospin-3/2 decuplet baryon and the
general form of the Faddeev amplitude for such a system is
complicated. However, as we assume isospin symmetry, we
can focus on thé\* ¥, with it's simple flavor structure, be-
cause all the charge states are degenerate. The Dirac struc-

Using the properties of the Gell-Mann matrices one finddUre, though, remains complex and its general form is dis-

easily from Eq.(30) thatI‘JcpzzF"PCT satisfies exactly the
same equation as thE color-singlet mesomut for a halv-

ing of the couplind52]. This makes clear that the interaction
in the (qq)gC channel is strong and attractive. The same

cussed in Ref[17]. Herein, as we have for the nucleon, we
use that study as the guide to a minimal model

+1 +
WE=t'T}, (Ep[lz];K)A,lw(K)Ay(l;P), (36

analysis shows the interaction to be strong and repulsive in

the (qq)6c channel.
A complete, consistent solution of EO) requires a si-

multaneous solution of the quark DSE, and while this com-
bined procedure is not unmanageable it is a computational

with

A(1;P)=82(1;P)u(P)g. + AP -u(P) e,
(37)

challenge[29-31]. In addition, we have already chosen to whereu,(P) is a Rarita-Schwinger spindsee the Appen-

simplify our calculations by parametrizing(p), and hence

we follow Refs.[19-22,50 and also employ that expedient

with FJP, using the following one-parameter forms:

I (k;K)=

HACiysi o F(k2 w5, (32)

A0

tiI‘f(k;K):NﬁHainCti]-'(kzlwi+), (33

with the normalization\”" fixed by Eq.(31). Our Ansaze

retain only that single Dirac-amplitude which would repre-
sent a point particle with the given quantum numbers in a
local Lagrangian density: these amplitudes are usually domi- .

nant in a BSE solutiof29-31,33,53

3. Diquark propagators

Solving for the quark-quark scattering matrix using the
ladderlike kernel in Eq(30) yields free particle propagators

dix), I-=1+PI- P, and, again focusing on eigenfunctions of
A+(P)!
A A 1 &
SA(LP)=13(1;P)Ip+ M(I v-1=1-Plp)f,(I;P),
(39
Ag(iP)=[ag(I;P)Ip+iaz(I;P)y-1"1P,. (39
The Faddeev equation for the now assumes the form

4

d A
Au(k;P)=4f (277)4M o (KGEP)A (I P)

(40
with
N
My, =t T (Kg=lqq/2: ) ST(lgg—kq)

X TL (1= Kgq/2i— Kag) S AL, (1) (41)

for A% in Eg. (29). However, as already noted, higher order It is straightforward to construct four projection operators
contributions remedy that defect, eliminating asymptotic di-that yield the coupled equations fbfz, afz.

quark states from the spectrum. It is apparent in R&f]
that the attendant modification & can be modelled effi-

We employ one more expedient to simplify our calcula-
tions: we retain only the zeroth Chebyshev moments, of

caciously by simple functions that are free-particle-like atay s, ffg, afz;_i-e-,_ we assumél(I;P):f_l(Iz;Pz), etc. We
spacelike momenta but pole free on the timelike axis. Henc@ote that solving integral equations using a Chebyshev de-

we employ[33]

ot 1 2, 2
A% (K)=——F(K%w}), (34)
Mg+
. K,K,| 1
AL (K)=| 8,,+ 5 )—2 F(Kw2y), (35
mi:+ / mj.

composition of the solution functions is a rapidly convergent
scheme for isospin symmetric systefil¥,29-31 and ne-
glecting the other moments in this calculation will only have
a small quantitative effect.

C. Faddeev equation masses

The nucleon and masses can now be obtained by solv-
ing Egs.(10), (40), and that also yields the bound-state am-

055204-5
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TABLE |. Calculated nucleon and masses. The results in the first and third rows were obtained using
scalar and pseudovector diquark correlatioms =0.90 GeV in row 1,m;+=0.94 GeV in row 3 M+
=0.74 GeV, alwayp Pseudovector diquarks were omitted in the second and fourth owsare discussed
after Eq.(43), andR in and after Eq(48). All dimensioned quantities are in GeV. '

wo+ w1+ My M, oy, wy, R
0*&1* 0.64 1.19 0.94 1.23 0.49 0.44 0.25
o* 0.64 1.59 0.39 0.41 1.28
0*&1* 0.45 1.36 1.14 1.33 0.44 0.36 0.54
0" 0.45 1.44 0.36 0.35 2.32

plitudes necessary for the calculation of the impulse approxi- 1

mation toN andA form factors. The kernels of the equations loqa),, = Lwr,=0.40 fm>0.15 fm=5lg:. (49
are constructed from the dressed-quark propagator, and the '

diquark Bethe-Salpeter amplitudes and propagators, which

are specified in Secs. Il A 111 A 3. These kernels involveFor the pseudovector analog

four parameters. We fix

1
mo+=0.74 GeV; (42) lataqy,, =0-36 fm=5 1. (46)

i.e., we use the calculated scalar diquark mass in(By.
which is consistent with that obtained in recent, more SOphiS[a2(|2) is small in magnitude' S|0w|y Varying and not mono-
ticated BSE studie$35]. [N.B. mg:~2MF, Eq. (27), and  tonic. Hence, in this case, the fit is of limited use. Neverthe-

hence it sets a good scale for nucleon observabEsis  |ess, it's momentum space width is roughly four times that of
leavesm,+ and the diquark width parametegse. The im- f,(12).]

mediate goal is to determine whether there are intuitively For theA,
reasonable values of these parameters for which one obtains
the nucleon and A masses My=0.94 GeV, M, 1
qu(zs?; GeV, subject to the constraimt; - /mgy+~1.3, as in |q(qq)f§:0_35 fm%|q(qq)fi:0_32 fm>§|1+ (47)
The calculated masses are presented in Table I, from
which it is apparent that the observed masses are easily obnd a2 is important, characterized by a peak value~of
tained using solely the dressed-quark and -diquark degrees of n 4¢A/j2_ = A CaA
freedom we have described above. The first two lines of the 0411(17=0) andwgy=2w), buta; is not: a;=0.
table also make plain that the additional quark exchange as-
sociated with the introduction of pseudovector correlations
provides considerable attraction. In this case it reduces the R=1,(12=0;—M2)/f,(12=0;—M32) (49
nucleon’s mass by 41%, in agreement with R&f] and, of
course, without the 1 correlation theA would not be bound
in this approach. Furthermore, in agreement with intuition
the nucleon and masses increase with increasimge.
The values of the diquark width parameters are reaso
able. For example, with

The ratio

measures the importance of the lower component of the posi-

tive energy nucleon’s spinor and it is not small, which em-
hasizes the importance of treating these systems using a
Poincarecovariant framework. For tha, R=0.17.

rp>lo+:=1lwo+=0.31 fm>l;+:=1/w;,+=0.17 fm,(43) IIl. PION-INDUCED NUCLEON SELF-ENERGY

_ _ _ We have illustrated that an internally consistent and accu-
rp is the proton's charge radiugxperimentally, 0.87 iy rate description of the nucleon amd masses is easily ob-
these correlations lie within the nucleon, a point also emphatained using a Poincamvariant Faddeev equation based on
sized by the scalar diquark’s charge radius, calculated as deonfined diquarks and quarks. However, since#tN and

scribed in Ref[19]: wNA couplings are large, it is important to estimate the shift
2 ) ) in the masses due to dressing. Herein we focus on the shift
ro+=(0.55 fm“=(0.98 ;) (44) in the nucleon’s mass because it is a much studied example.

with r . calculated in the same model4]. Furthermore, de-
fining wy , by requiring a least-squares fit aﬁ(lzlwflz) to A. Model field theory: Linear realization of chiral symmetry

fl,z(lz), rﬁagnitude matched &=0, we obtain a scale char- We begin by considering a moded-N field theory de-
acterizing the quark-diquark separation scribed by the local Lagrangian density
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_ f2 Eq. (49): g%/(2M)N- 7N, whose presence and strength is
L(x)=NO[14—MV(X) JN(x) + l—fstr[aMVT(x)a“V(x)] dictated by chiral symmetr}{55,56.
As a first step we evaluate the self energy perturbatively.
Zm2 : To proceed with that we define the integrals in E8p) by
16 t2=V(x)=V(x)] (49 implementing a translationally invariant Pauli-Villars regu-
larization; i.e., we modify ther propagator

(in this and Sec. Il B we employ a Minkowski metfjc
where “tr” is a trace over Dirac and isospin indiced,is the AR, M2)— A (k2)=A(K2,m?)+ 2 CAKZA2)
nucleon’s non-pion-dressed mass, and thenatrix T i B = P I o

(59)

, (500 and then, with

1. .
V(X)= exp{ i YsF T m(X)

2
T

N-AT

2
™

A

2 2
with f_~92 MeV, the pion’s weak decay constant. Neglect- Az—m _A—m
ing the mi (pion-mass term, this Lagrangian exhibits a lin-

ear realization of chiral symmetry

C1= Cz (60)

Eq. (59) yields

N(X)—=N'(X)=V(@)N(x), (51

o o . A (k2 — 2 "2 2_ .2 242

N(x) N’ (x) =N(X)V( ), (52 A0 =a0m 1T, od=madead. 6
VX)— V' (X)=VT(e) VX))V (), (53) in which case the integrals are convergent for any fixggl.

Furthermore, fom_<A;—Xy=N\
where V(¢)=explyr¢/f,), with ¢ a spacetime- _
independent three vectdN.B. The form of Eq.(49) can be A (k%) =A(K2,m2)A%(K?/N2,1), (62
seen to arise from, and express, DCSB at the quark level . . .
using, e.g., the global color modg12,13,54. It also arises I.e., our Pauli-Villars regularization is equivalent to employ-
using the rainbow-ladder truncation of the DSEs. ing a monopole form factor at eachNN vertex g
Using Eq.(49) we explore the effect ofr dressing oM~ —9A(K7/A%,1), wherekis the pion's momenturfb7]. Since

via the DSE for the nucleon self-energy; i.2(P) in this procedure modifies the pion propagator it may be inter-
preted as expressing compositeness of the pion and regular-

G YP)=P-M-3(P). (54)  izing its off-shell contribution(a related effect is identified in
Refs.[58,59) but that interpretation is not unique.
In rainbow (Hartree-Fock truncation that equation is In order to better understand the structure of the self-
energy we decompose the bare nucleon propagator into a
- d*k 5 5 sum of positive and negative energy components
%(P)=—3ig 2 Ak, m2) ysG(P—K) ys
(2m) G(P)=G*(P)+G (P) (63
gZ 4
v A(k%,m?) (55) _ 5
4 ) = —| A (P)——————
2MJ (2m) on® | B Ca Pyt ie
where, from the Lagrangian,
+A_(P) ——————|, (64)
M Pot+on(P)—ie
" where 03(P)=P2+M?2 and A.(P)=(P=M)/(2M), P
(so thatga=1 at tree level in this modeknd =[w(P),P], are, respectively, the Minkowski space positive
L and negative energy projection operators. Now the shift in
A(kz,mfr)= — (57) the mass of a positive energy nucleon is
K2—mZ+ie 1
M, =trp[ A, (P=0)3(Py=M,P=0)]. (65
1 1 1 - 2
20,(K) | ko= (K)+ie kot w (K)—ie] We focus initially on the positive-energy nucleon’s con-

tribution to the loop integral; i.e., thA(k)G*(P—Kk) con-
with wf,(ﬁ)=|22+ mf,, is the free-pion propagator. The sec- tribution in the first term of Eq(55), which we denote by
ond contribution on the RHS in EG55) is a tadpole(Har-  §=M . Evaluating thek, integral by closing the contour in
tree term, which vanishes if the model is defined via dimen-the lower half plane, thereby encircling only the three
sional regularization. It is generated by the contact term irpositive-energy pionlike poles, we obtain
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d*k  wpn(k®)—M
(2m)°  dwy(k?)

5FM1: _3ng

Ci

2 oy (K2)[ 0, (k) + on(K?) —M]’

with co=1, A\g=m,,, and wfi=I22+A?. It is obvious that
S5¢M1<0; i.e., the Fock self-energy diagram’s positive en-

(66)

PHYSICAL REVIEW ®5 055204

a3k wp(k?)+M
2m)%  dwy(K?)

5F|v|+=392f(

X > o
i=0,1,2 w)\i(lzz)[whi(ﬁz) + wN(Ez)-I- M] ‘

(72)

It is obvious thatsgM [ >0; i.e., the Fock diagram’s anti-
nucleon contribution to the positive-energy nucleon’s mass is
positive, and it is equally clear that, as evaluated with a pseu-

ergy nucleon piece reduces the mass of a positive energysscalar coupling21]

nucleon.

It is instructive to consider Eq66) further. Suppose that
M is very much greater than the other scales then, on the 5FM1+5FM;=3QZJ
domain in which the integrand has significant support, one

d3k M

(2m)% 2wy (K?)

has
Ci
- X ; 2 .22 2 ;
(K2)— M ? 67) =012 [w, (k%) +wn(k9) ] =M
o M~ ——
§ 2M (79
and then i.e., 5eM T+ 8-M7>0, and hence that the negative-energy
nucleon contribution overwhelms that of the positive-energy
d3k K2 Ci nucleon. If6cM , >0 were the final word on the mass shift it
5FM1“—392f 3o > = (68 would contradict all previous results for the effect of pion
(2m)° 8M%1=0.1.2 w) (k%) loops on the nucleon’s ma§&1].
Before addressing this issue we note thatMovery much
so that greater than the other scales then, reapplying the analysis
that led to Eq(71),
d?5eM T 3g2 [ d*%k K2 - b
(dnd)? =Tz (27 %) (69) M =F0y(N1,hp) +m7fq)(Ng,N2)
3 9% 50
9 ¢ 1 3272 Mm,,(ln ms—1). (74
T 128wz m, -
The last term on the RHS of this equation is an additional
Thus. on the domain considered nonanalytic contribution to the nucleon’s mass, and it is of
’ ' lower order in 1M than the nonanalytic term in Eq71).
3 o This result, if it were to remain unameliorated, would also be
i 9" 5 4 2 e+ in conflict with modern theory.
5FM+__EWm”Jrf(l)(M’)\Z)m”Jrf(o)()\l’)\Z)’ Hitherto we have neglected the last term in EG5),
(71 which describes the tadpole diagram’s contribution to the

where, as the derivation makes transparggt, are scheme-

positive-energy nucleon’s mass shift, and the resolution of
these apparent conflicts lies here. It is easy to evaluate and

dependent functions abnly) the regularization parameters for \;—X,=\

but the first term is regularization-scheme independent. This
first term is nonanalytic in the current-quark mass and its
coefficient is fixed by chiral symmetryN.B. If N\, , are in-
terpreted as setting a compositeness scale forrtiél ver-
tex, and assume soft values; €[8,20,60, ~600 MeV,
then the quantitative value ofM~ is completely deter-

3
5HM+:_3

2m?

2
gm[x% m2(In[m2/\?]-1)]. (75

The inclusion of6yM . solves both problems. It provides for
an exact, algebraic cancellation of the ordevtlferm in

mined by the regularization-scheme-dependent tgrms.

We turn now to theA(k)G~ (P—k) contribution in the
first term of Eq.(55), which we denote byM . This de-
scribes theZ diagram(antinucleon contribution to the nucle-

oeM7 that is nonanalytic in the current-quark mass, thereby
ensuring that the nonanalytic term in E§1) provides the
leading O(1M) contribution to the nucleon’s mass. The can-
cellation occurs because the ly* contribution from theZ

on’s mass and it is most efficient in this case to close theliagram has the structure of a tadpole term, for reasons that
ko-integration contour in the upper-half plane, thereby encir-are intuitively obvious given that the (/) expansion be-

cling only the three negative-energy pionlike poles

gins with an infinitely heavy nucleon. Furthermore, it must
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-0.05
i N(X)|[id—M+ %757M;’(9#7;’(X)+ - IN(X), (77)
-0.10 P+ and the rainbow truncation of this model's DSE is
3 3(P)=3i o J d'k A(k?,m2)KysG(P—k)k
- =3i—— ,m-)Ky —k)Kys.
& _o1s am2) (2m)* me °
= [ (78)
. No interaction survives that can generate a tadfidbrtree
=020 term.
We again evaluate this self energy as a one-loop correc-
tion to the positive-energy nucleon’s mass. The contribution
o5 | . . . . of the positive-energy nucleon is
7050 0.55 0.60 0.65 0.70
A (GeV) 2 3
VR
FIG. 1. Solid line: Shift in a positive-energy nucleon’s mass due * 16M2J (2m)2 @n
to the O@?) = contribution to the self-energy, E¢76), obtained
using a soft monopole pion-nucleon form factor to regularize the )\iz(wN_ M)+2I22(w>\_+wN)
pion’s off-shell behavior. ¥1=0.94 GeV, m_.=0.14 GeV, and X 2 Ci : ,
ga=1) 6M.(A=0.6 GeV)=—0.15 GeV. Dashed linescM " : i<01.2 oy [0\ +oy—M]

inesSAM T
dot-dashed lines"M ;. (79
be exact because using dimensional regularization, for ex- ith o= o (K2 etc. Now. t ke t t the direct
ample, all tadpole terms vanish and the leading nonanalytilf"I on=on(k?), etc. Now, to make transparent the direc

term must be regularization-scheme independent. In addfonnection between our approach and other mass-shift cal-
tion. for all A>0 culations, we rewrite Eq.79) in the form

M, =8:M T+ 5eM T + 8yM, <0; (76) - f2ur [ A3k
oM += —67T—ZJ W
i.e., the pion loop reduces the nucleon’s maps.B. Mo
6M [ (\) decreases monotonically from O with increasig k2u2(K?)
see Fig. 1] X - - - , (80)
We opened by asking for the scale of the mass shift pro- 0 (K[ w(k?) + wn(k?) —M]

duced by the pion loop. If we allow the interpretation of the

Pauli-Villars regularization procedure as introducing a monowhere, as usuakgy,,=g?m2/(16wM?) and, obviously,
pole form factor at eachrNN vertex, which modifies the

pion’s off-shell behavior, then using soft values of the mono- o o oo PN

pole scale\ ~0.5-0.7 GeV, as determined in quark-diquark ~ K°U“ (k%) =5—=[w, +oy—M]
Faddeev-amplitude models of the nucled8,2q and in- N

ferred from dat460], the O@?) shift is as depicted in Fig. 1. A2(wn—M)+ 2K () + wy)

The magnitude is that of Refib,24]. However, it is evident, e E Ci '

and important to note, that this magnitude is extremely sen- i=0,1,2 wyloytoy=M]

sitive to the monopole’s scale: centered 05 0.6 GeV, a (81)

10% change in\ produces a 30% change &M , .
This is useful because, fon,<\;—\,=\; i.e., on the do-

B. Nonlinear realization of chiral symmetry main in which Eq.(62) is valid, one finds algebraically that
An alternative to Eq(49) is to build a Lagrangian density 25 25 g
that contains only derivatives of the pseudoscalar field and u(k) =1M(1+k/\%), (82

thereby expresses a nonlinear realization of chiral symmetry ) o )

[62] In chiral quark models such a Lagrangian can be ObWh|Ch f|rm|y establishes the qualltatlve eql."Va.lence between
tained via a unitary transformation of the fields in £49) to ~ EQ. (79) and the calculation in Ref$5,6,64. _
obtain a so-called voluméseudovectdrcoupling[54,63. In Fig. 2 we compare the limiting form, Eq82), with
The leading term in the nonlinear chiral Lagrangian can easd(k) calculated from Eq(81). This emphasizes the practical
ily be obtained by using the equations of motion for a freeutility of using a Pauli-Villars regularization to represent a
nucleon to re-express E¢49). Neglecting that part of the «NN vertex form factor.

Lagrangian density which describes the pseudoscalar field To provide a quantitative connection with other analyses
alone, this procedure yields we employ
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1.0

0.8

0.6

u’(k)

0.4

0.2

0.0

k (GeV)

FIG. 2. lllustrating that Pauli-Villars regularization with finite

mass scales is a practical tool. Open circle&k) calculated di-
rectly from Eg. (81) using m,=0.14 GeV, M=0.94 GeV, g

PHYSICAL REVIEW ®5 055204

Returning to Eq.(78), the mass-shift contribution from
the negative-energy nucleon; i.e., thaliagram, is

3g2 ( d%k 1

MM, =—— —
16M2J (2m)3 on

+

Moyt M)+ 2K (0, + o)
wxi[w)\i-l-wN-i- M]

X > ¢

i=0,1,2

(86)

In this case we havé”"M <0 and§*M ;>0 but the sum

302 [ d°%k M
M, ="M+ M =— — — (8
i * T am2) (2m)3 oy (@)
ZIZZ(a))\i-l-wN)—)\izw)\i
X > ¢ (89)

i=0,12 w)\i(wN-Fw)\i)z—Mz

=1, and \;—\,=1=0.6 GeV; solid line: least-squares fit to IS self-evidently negative; i.e., with a pseudovector coupling

k2u?(k?), which vyields u(k?)=0.99/(1+ k%22, A=0.54 GeV;
dashed line: limiting form from Eq82).

. (kIR
:311(| IR)

k =
u(k) KR (83

in Eq. (80), i.e., the CBM form foru(k), whereR is the bag

radius andj,(x) is a spherical Bessel function. The results

are given in Table Il and may be summarized(iasGeV)

— 8RpyM £ =(0.065+0.02293, (84)

where g, is the nucleon’s axial vector coupling constant.
[N.B. The result in Eq(84) is also that obtained using a

monopole form factor with the very soft scalggy=0.38
+0.04 GeV] We stress that in Eq$49) and (77) we used
the couplingg=M/f ., Eqg. (56), which corresponds tgpu
=1, whereas using the experimental valgg=1.26, Eq.
(84) gives
SpgyM £ =—-0.104-0.035 GeV. (85

The larger shift described in Ref§,6] is obtained from Eq.
(80) by using a smaller bag radius-Q.75 fm), which is
needed to describeN scattering. The value d® employed

the Z diagram is much suppressed.
Considering the heavy-nucleon limit again one obtains

g2

At > 9
oM. 327 M2

M3+ £ ay (N1 A ) M2+ f oa (Vg N o)
(89)

i.e., the same contribution, nonanalytic in the current-quark
mass, as in Eq(71), but with different regularization-
dependent terms. In this case, however, because ttia-
grams are suppressed by the pseudovector coupling, the
leading-order contribution ta?"M7 is O(1M)3. This is
clear from EQq.(86), and makes immediately unambiguous
the origin and nature of the leading-order nonanalytic contri-
bution to the nucleon’s mass.

Again interpreting the Pauli-Villars regularization as in-
troducing a monopole form factor at eaetNN vertex, we
can estimate the magnitude of theloop’s contribution to
the nucleon’s mass. Our results are depicted in Fig. 1. It is
evident thats"M I # §-M T, which illustrates the difference
between the regularization-dependent terms in Egl.and
(89). In addition, although it may not be immediately obvi-
ous,

M, =6M. (90)

herein is appropriate to the calculation of nucleon electro-

magnetic form factor§65]. A priori it is not clear which

which is why there is only one solid curve in the figure. This

should be used for the calculation of hadron masses but ré&Sult provides a quantitative verification of the on-shell

cent lattice studief27] favor a harder value.

TABLE Il. M7 calculated using Eq83) in Eqg. (80); i.e., a

equivalence of the pseudoscalar and pseudovector interac-
tions, in perturbation theory, as long as the pseudoscalar in-
teraction is treated in a manner consistent with chiral sym-

CBM estimate. The optimal bag radius for a description of themMetry[56]. It also emphasizes that, at least for estimating the

neutron’s electric form factor iR=0.95 fm=1/(0.21 GeV)[65].

R (fm)
- M1 (GeV)

0.85
0.091

0.95
0.065

1.05
0.048

mass shift, it is advantageous to employ the pseudovector
interaction. We note, however, that in fully embracing a La-

grangian density that expresses a nonlinear realization of chi-
ral symmetry one loses a direct correspondence with extant,
ordered truncations of the DSEs, and hence also loses this
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sign(t) |t| (GeV) sign(t) |t| (GeV)

FIG. 3. Vector piece of the inverse dressed-nucleon propagator. FIG. 4. Scalar piece of the inverse dressed-nucleon propagator.
Dotted line: A(t) from Eq.(96), A(t=4 GeV)=1.001; solid line:  Dotted line: B(t) from Eq.(97), M+ B(t=4 GeV)=0.937 GeV;
numerical result for the one-loop-dressed function in the spaceliksolid line: numerical result for the one-loop-dressed function in the
region, obtained from Eq$100—(103), which overlies the dotted spacelike region, obtained from Eq4.00-(103), which overlies
line in this region; dashed lined(t) obtained in the self-consistent the dotted line in this region; dashed linB(t) obtained in the
solution of Egs. (102, (103; dot-dashed line: A(t) [A(t self-consistent solution of Eq$102), (103); dot-dashed lines3(t)
=4 GeV)=1.00Z obtained in the self-consistent solution of Egs. obtained in the self-consistent solution of Eq$10), (111) with
(110, (112 with Egs.(112), (113 added in the continuation to the Egs.(112), (113 added in the continuation to the timelike region.
timelike region. (All curves obtained withM=0.94 GeV, m, (All curves obtained withM=0.94 GeV, m,=0.14 GeV, g,
=0.14 GeV,ga=1, A=0.9 GeV) =1, A=0.9 GeV)

correspondence between the Lagrangian’s degrees of frebative mass shiff.For clarity we omit a discussion of renor-
dom and hadrons as composites of dressed quarks. malization but remark on its effects following E4.19).]
We now turn to the model specified by
C. Model DSE

We now build on the above analysis and seek a nonper- gpy(P.K) = iexq_(p_k)zmz]_ (95)
turbative estimate of the-loop contribution to the nucleon’s 2M
mass. Returning to the Euclidean metric described in the
Appendix, which is advantageous for numerical studies, thdhe exponential form facilitates an algebraic evaluation of
DSE for the nucleon’s self-energy usingseudovectocou- ~ Many necessary integrals and, as has been observed else-

pling is where[66], is phenomenologically equivalent to a monopole
form factor 1] 1+ (P—Kk)?/\?], if the mass scales are related
d*k ) 5 via A=~ 2\. Thus one can anticipate a quantitative corre-

E(P)=3I WgPV(P'k)AW[(P_ k)] spondence between the=0.6 GeV monopole results of the

previous subsections and those obtained in this with
Xy-(P=K)ysG(k)y- (P—K) s, (91 ~0.9 GeV.
Before proceeding with a nonperturbative solution of the
with the following equivalent representations for the nucleonnucleon’s DSE we evaluate the one-loop self-energy so as to

propagator: provide a direct Euclidean space comparison with Secs.
] I A, 11l B. Using Eq. (95) we can evaluate thie, integral to
G(k)=1iy-k+M+Z(P)], 92 obtain
— i 2 2
=1[iy-kAk?)+M+B(k%)], (93 , 3 g2 (= Za(t,K)e’Z"z’Az
At —1=— z—zf Kk——————, (96)
=—iy-koy(k?) +o4k?), (94) 3272 M?Jo o (k) on(K)
whereM is the nucleon’s bare mass, which is obtained, e.g., 2 b(t )e*Z"z’Az
by solving the Faddeev equation. In E@1), A_(k?) B(t?)=— g_J dKKZ(’K—’ (97)
=1/k?+ m?] is the pion propagator, argh\(P,k) is a form 32m2 M2Jo w (k) wn(K)

factor that we will use to describe the composite nature of
boththe pion and the nucleon. The self-consistent solution ofvherea(t, «), b(t,x) are given in Eqs(A19)—(A21). A and
Eq. (91) yields .A(k?) andB(k?), and thereby the nonpertur- 13 are plotted in Figs. 3, 4.
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2

Ky P? k2>=Jdnk92 T —L
- ’ oY (P—k)2+m? |’
-0.10 [ (101)
so that for spacelik®? these integral equations can be writ-
s - ten (x=P?, y=k?)
8 -0.15_
s’ 71— -
% - X[AX)—1]= 16772[0 dyyKA(x,y)ouy), (102
-0.20
' B00=— 5 ayyketyiogy), (103
x =- xy )
16720 YYRB(X,Y)osly
02%7 08 09 1.0 1.1 and solved numerically by iteration.
A (GeV) To illustrate the accuracy attainable with this procedure

e evaluated the integrals in Eq4.00), (101) numerically

or spacelikeP?, inserted A(k?)=1 and B(k®)=M on the
RHS of Egs.(102 and (103, and calculated the integral
%very numerically. This yields the estimate of the one-loop-

obtained via the self-consistent solution of the nucleon’s DSE usin%prrect_ed r.‘uc'e"” propagator in the sDaC.e“ke region d.e-
these approximate kernelssM , (A=0.9 GeV)=—0.14 GeV. icted in Figs. 3 and 4. The agreement with the algebraic

The dotted line iss"M 1 ; i.e., Eq.(79) calculated in our Euclidean result is exact. . . )

model. (All curves obtained with M=0.94 GeV, m, The self-consistent solution of Eqel02, (103 in the
=0.14 GeV,ga=1) spacelike region is easily obtained by iteration: the one-loop
corrected functions are inserted on the RHS to obtain the
The one-loop-corrected nucleon madg: is the solution  second iterate, which is then inserted on the RHS to obtain
of the third iterate, etc., with the procedure repeated until the
2 2 2 . 2 112 input and output agree within a specified tolerance. That hap-

Mp1A“(=Mp1) =[M+B(=Mpy) %, (98) pens very quickly, with the fourth iterate from free nucleon
P : M — seed functionsfl=1, 5=M) agreeing with the third iterate

and it is straightforward to show tha¥lp:~M=2oM., to better than 10%%. Hence “three pions in the air” are

\év:rf ég 50'\{'5”5 ?seggf)(ijctlg dEi?](IGZ?g);. -ghzrf 3 I;ul%ﬁ?ag Se gﬁ r\]/\;ith sufficient to fully dress the nucleon. The functions obtained
n . 5, ;

Fig. 1 reveals the equivalence between the Minkowski andd this self-consistent solution are also plotted in Figs. 3,4:
Euclidean space formulations only A(t?) is noticeably modified, cf. the one-loop result.

The new feature in a nonperturbative study is that the To locate the mass pole in the nonperturbatively dressed

position of the pole in the nucleon’s propagator is not knownnucleon propagator, EgeL02), (103 must also be solved for

. 2 . . . .
a priori: locating it is the goal, and this precludes an alge_nmellke P<. That requires an analytic continuation of the

braic evaluation of thé, integral. The position of the pole kernels in Eqs(100), (101). The primary nonanalytic feature

will depend on the strength of the interaction and the natur N theizr'in'tegrands is the pion poIe' and in cont!nuing to time-
of the form factor. In this case one must proceed by firs ike P it is necessary to properly incorporate its effect. That

evaluating the angular integrals in EQ1), which are inde- is difficult when the kernels are only known numerically and

: : : an expeditious alternative is to develop an algebraic approxi-
pielgtggnt ofG(k), noting that for a given function of K mation, which is the approach we adopt.

It is apparent that both kernels can be considered as a sum
. 21 T, of two terms. The first is proportional to the angular average
f dQy f[(P—k) ]=;f_1dzvl—z f(P“+k"—2Pk2). of g2,[(P—k)?], and using Eq(95) that integral can be

(99) evaluated exactly

FIG. 5. Dashed line: nucleon’s one-loop mass shift, calculate
from A, B in Egs. (96), (97), 6M.(A=0.9 GeV=\2\)=
—0.13 GeV; dot-dashed line: one-loop mass shift obtained usin
the approximate kernels in Eg.08), (109); solid line: mass shift

This yields the kernels of the coupled, nonlinear integral — > > 2 )
equations ford, B: Ipv(P% k%)= | dQygp[(P—k)“]
1 2 2
2K == 2 —k)?2 9%  _L,p2iaz A
APk )‘zJ 42 @e (P =o€ T 1 (4PkIAY),
P2—k?)2+m2(P2+k? 104
«| = (P21 + ) 2”( . ) (104
(P=k)™+ms wherel(x) is a modified Bessel function ard=\/P?, k

(100 = k?. The second term in both cases is proportional to
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9o (P—K)°] 3
“(P—k)Z+m2’ (105 16m2

0 ~ ~
ng(Pz,kZ):fdQ fdyygz(x,y)A/CB(x,y)os(y), (113
Xp

which, in general, cannot be expressed as a finite sum %here
known functions. However, ifjpy is regular atP=k and its
analytic structure is not a key influence on the solution, then

the approximation ~ AKE(X,Y)
PP AR (xy)= = = S L(x-y) P+ me(cHy))
1 o
P2'k2 ~n2 P2_k2 fdQ - (114)
wgz( ) gPV(| |) k(P—k)2+mf,
- Jx+y+m2)2—4xy
_ 2 b2 L2 AKg(x,y)=m? B , (115
= Opul[ PPk s, (106 5 Xy

and y=x,=—(y/—x—m_)? is the location of the branch
(107  point. (N.B. These terms are present only whBA+m?2
<0.) The self-consistent solutions of Eq4.10—(113 are
depicted in Figs. 3 and 4 and unsurprisingly there is little

—_p2 2 2 _ ; i
wherea=P“+k°+mz, b=2Pk, is a reliable t00[67]. As jifference between the one-loop results and the self-
these preconditions are obviously satisfied in our

o _ : : 0 P¥consistent solution.
application—the dominant physical effect #N physics is In Fig. 5 we compare the exact one-loop mass shift with

the pion pole and that appears at a mass scale much lowg{,¢ ohtained numerically using the approximate kernels. The
than t_hose prese_nt P —We pursue our analysis using the gorror is never more than 5% with the approximation always
following algebraic approximations: overestimating the magnitude of the shift is noteworthy
1 that a large part of the one-loop mass shift is due to the
KA(x,y) == 595u(X,Y)(x+Y) vector self-energy; e.g., with=0.9 GeV, M ;) one loopiS
2 40% smaller if the vector self-energy is neglected.
The fully dressed nucleon madéy is obtained by solv-

, (109 ng

1
_ .72 212
=: P4k ,
O )a+ a’—b?

(x—y)?+m(x+y)
a+a?—b?

+gB\(x,y)

, M3A%(~MB)=[M+B(-M3)]? (116

~ ~ 2m
Ks(x,)=ghv(x.y) = Gov(X,y) —===. (109
s(0Y)=Gpv(X.Y) = Gpv(x.Y a+a?—b? with the nonperturbative mass shift given &M, =Mp
) o o — M. Again, this definition is completely equivalent to Eq.
To illustrate their efficacy, in Figs. 3 and 4 we plot the self- (65) evaluated aM, with the self-consistent solution of the

consistent solutions of DSE. TheA dependence of the nonperturbative shift is also
3 depicted in Fig. 5 and comparison with the numerical one-
Ca— > loop result shows that the additional pion dressing adds

XLA(X) —1] 16772f0 dyyKaCoy)ouy), (110 _go 0 iam |

Thus far we have used our Euclidean model to quantita-
3 (e tively reproduce the perturbative results of Secs. Il A, 1l B
B(x)=— f dyyKs(X,y)os(y). (111  and thereby make transparent the equivalence of the Euclid-
1672 Jo ean and Minkowski formulations. In addition we have shown
that the one-loop mass shift is95% of the total.
€ However, we have not yet considered an effect of nucleon
. . . . . compositeness. A covariantNN vertex function must de-
We can now define the model's analytic continuation topend on three independent variablgs,=gp\[ P2,k2 (P

the timleli_k(_a region. The appéoximﬁte _kernils’ primary _ 1121 159] ‘and hitherto we have neglected its dependence
nonanalyticity is a square-root branch point whose appear- . 53 2 hapy— 2
ance and location are tied to the simple pole in the pion.. P*, K% (We have already seen thghy=gpyl (P~ k)]

propagator, and in continuing tB?<0 it is necessary to
include the discontinuity across the associated cut. That i
accomplished68] by adding the following additional terms
to the RHS of Eqs(110), (111), respectively,

The error introduced by the approximation is never mor
than 1% and is only that large fot(t>=0).

r’l:orresponds to a Pauli-Villars regularization of the pion
ropagator along.The calculation of form factors that de-
cribe interactions between composite objects; e.g., studies

of the p-w mass splitting’ 59,69 and electromagnetic form

factors[31,39,70,7], indicates that therNN vertex should

also suppress the pion-nucleon coupling when the nucleons

0 _ _ L .

f dyyP(x,y)AK 4(x,y) oY), (112) are off shell. We c_onduct an initial, exploratory study of this
Xp effect by considering the produginsatz

 16m2

055204-13



HECHT, ROBERTS, OETTEL, THOMAS, SCHMIDT, AND TANDY PHYSICAL REVIEW ®5 055204

- bare and renormalize@N couplings are little different. A
- self-consistent, covariant treatment of the coupled
-0.02 - compositeN-A system is more than we are able to describe
- herein. However, the CBM studies suggest that a reliable
estimate of the effect of including th& can be obtained
- simply by solving an analogue of E(1) with Z,=2Z, for a
-0.04 | . renormalized model.
- We have done this and thereby arrive at a robust result:
the N loop reduces the nucleon’s mass-y0-20 %[ 74].
Extant calculations, e.g., Ref&,6,64], show that the contri-
-0.06 - T bution from the analogousA loop is of the same sign and
- no greater in magnitude so that the likely total reduction is
20-40%. Based on these same calculations we anticipate
r that theA mass is also reduced hy loops but by a smaller
B T a— amount (~50-100 MeV lesp
A, (GeV) How does that affect the quark-diquark picture of bary-
ons? To address this issue we again solved the Faddeev equa-
FIG. 6. Effect on the mass shift produced by including nucleon-tions, this time requiring that the quark-diquark component
off-shell suppression in therNN vertex: Eq. (117), for A vyield higher masses for th& and A: My=0.94+0.2
=0.9 GeV, m,=0.14 GeV.[N.B., SM,(A=0.9 GeVAy=x) =114 GeV, M,=1.232+0.1=1.332 GeV. The results,
=-0.14 GeV] presented in the third and fourth rows of Table |, establish
that the effects are not large. In this case omitting the axial-
vector diquark yieldsviy=1.44 GeV, which signals a 10%
increase in the importance of the scalar-diquark component
(117 of the nucleon.(It is an increasebecause this component
now requires less correction. Note, too, that the scalar di-
which reduces to Eq(95 when Ay— and guarantees quark’s charge radiusy+=0.63 fm is 15% larger.It also
gpy(—M?,—M?0)=g/(2M), as required. Previous appli- announces a reduction in the role played by axial-vector di-
cations of such a form factor in theN sector{ 72] typically =~ quark correlations in the nucleon, since now restoring them
require only reduces the nucleon’s core mass by 21%, witself-
energy corrections providing the remaining 14%. It is thus
An/A~1.5-2.0. (119  apparent that requiring an exact fit to theand A masses
using only quark and diquark degrees of freedom leads to an
(NB. While Ay is calculable using a covariant model of the overestimate of the role played by axial-vector diquark cor-
nucleon, no such calculations exist and to constrain its valugelations: it forces the 1 diquark to mimic, in part, the ef-
we must currently rely on phenomenologyhe effect on the  fect of pions since they both act to reduce the mass, cf. that
mass shift of this off-shell suppression is depicted in Fig. 6:of a quark+scalar-diquark baryon.
it is significant, leading to a reduction &£50% in|éM ,|.
For Ay—; i.e., in the absence of the off-shell suppression,
this effect can be mimicked by a reduction in e.g., A
—A’=0.7 GeV yieldséM . =—0.07 GeV, and we note  We showed that an internally consistent description of the
that A'/\2=0.5 GeV, which is commensurate withgy N andA masses is easily obtained using a Poincaneariant
~0.4 GeV, after Eq(84). Faddeev equation that represents baryons as composites of a
Combining all the elements of our analysis we arrive at aconfined quark and diquark. We term this the “core mass” of
result for the shift in the nucleon’s mass owing to th#l the baryons. They are weakly bound in the limited sense that

M, (GeV)

2
gpyv(P?,k? P-Kk) :%e—(P—k)Z/AZe—(P2+M2+k2+Mz)/AN,

IV. EPILOGUE

loop (for go=1.26, in GeV: the sum of the masses of their primary constituents is little
greater than their core mass.
— 6M , =(0.039-0.063g5=(0.061-0.099. (119 The on-shell#NN and #NA couplings are large and

hence it is conceivable thatN and wA self-energy correc-

In the preceding, for illustrative clarity, we did not ac- tions to the nucleon’s mass may be significant. We therefore
count for the effects of finite vertex renormalization; i.e., westudied the effects of therN loop on the nucleon’s core
setZ;=1=17, in Eq. (91). Studies using the CBM indicate mass and found that, in well-constrained models, this loop
that a quantitative description ofN vertex renormalization reduces that mass bg20%. Including therA self-energy
requires that thel be treated on an equal footing with the contribution, the total reduction is likely to be between 20
nucleon and that this is crucial to obtaining a convergentind 40 %. While this is a material effect it does not under-
expansior{5,73]. Indeed, one finds, as here, that thdoop  mine the qualitative picture of baryons suggested by the Fad-
acts to suppress the nucleon’s wave-function renormalizadeev equation; namely, that baryons are primarily quark-
tion; i.e., it forcesZ,<1, but in the CBM this effect is com- diquark composites. This is consistent with the fact that a
pensated by an almost matching suppressiafy o that the  converged nonperturbative calculation of thénduced self-
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energy requires only three “pions in the air,” but to be cer- APPENDIX: EUCLIDEAN CONVENTIONS
tain we re-solved the Faddeev equation aiming at nucleon

o 1. Metric and spinors
and A masses corrected for the self-energy contribution,

and found little change in the character of the solution. In our Euclidean formulation,

One notable effect, however, was a material reduction in 4
the nucleon s aX|a!-vector diquark componen.t. This is ea.sny p-q= Z pidi, (A1)
understood: ignoringm loops forces the axial-vector di- i=1

quarks to mimic their effect. That surrogacy cannot be com-
pletely effective and may have led to quantitative errors, and

[
L :25 1 T = ’ V:_ L) vi
errors of interpretation, in contemporary quark-diquark based ol wor o V= Ve O 2[7/" 7]

calculations of quantities such as the neutron’s charge form (A2)
factor and the ratiqu,GE/G}, . Our results should serve as a _ B
signal of this possibility and stimulate increased caution and ULYsYu Yo Yo Vol =~ 4€uvpo s €1234= 1. (A3)

an objective reanalysis.

Our exploration of the role ofr loops was pedagogical.
We made clear that the leading nonanalytic contribqtion to U(P,s)(i y-P+M)=0=(iy-P+M)u(P,s), (A4)
the nucleon’s mass arises from that part of the loop integral
which corresponds to a positive-energy nucleon; i.e., whethegyheres= =+ is the spin label. It is normalized
the NN coupling is pseudoscalar or pseudovector, Zhe .
diagrams do not affect the leading nonanalytic behavior. Fur- u(P,s)u(P,s)=2M (A5)
thermore, we showed explicitly that the one-loop mass shift
calculated with a pseudoscalar couplingisciselythe same and may be expressed explicitly:
as that obtained with a pseudovector coupling, so long as,

A positive energy spinor satisfies

and only if, no diagrams are overlooked in the pseudoscalar Xs
calculation. We illustrated that, using any translationally in- u(P,s)=yM—iél o-P , (AB)
variant regularization procedure which preserves information M—ieXs

about the pion’s finite size, the tadpolelartree diagram

generated by a pseudoscalar coupling cannot be neglect _ B2 2
because it balances the very large contribution from the%ith E=TVPTH MY,
pseudoscalaZ diagram. This result should not be over- 1 0
looked in the phenomenological application of model field X+=( ) X—=< )
theories founded on hadronic degrees of freedom. 0 1

(A7)

For the free-particle spinoH(P,s) =u(P,s)"y,.
The spinor can be used to construct a positive energy
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YuUu(P;r)=0, (A12)
P,u,(P;r)=0, (A13)
wherer =—3/2,—1/2,1/2,3/2. It is normalized:
u,(P;ru,(Pir)=2M (A14)
and satisfies a completeness relation
3/2
* > P:r)u,(P;r)=A,(P)R (A15)
2M (o u/_L( :r)uy( 1 - +( uv
where
1 2, . 1 .
R,uV: /.LVI D™ § YM7V+§PMPV| p—| §[P,u,')/v_ vay]r
(A16)

with P2=—1, which is very useful in simplifying the posi-
tive energyA’s Faddeev equation.
2. Euclidean one-loop calculations
In Eqgs.(96) and(97)
a(t, k)= —ao(t,x) +as(t,xk) +ax(t,x),  (Al7)
b(t,k)=ag(t,x)+ay(t,«), (A18)

where

1
on(K)+ (=)0 (k)
()= IO[w”(K)]sZo [on(K)+(—)%w (k) ]*+12

o (k)
Qﬁ,(t,K) — wf,( K)
o (k)

Q2(t,k) — (k)

—Zo[ On(t,x)]

—Zo[Qn(t,x)]

] , (A19)

PHYSICAL REVIEW ®5 055204

a4 (t, k) =Mw ()

1
(—)°
x IO(‘””(K))SZ:O [on(K)+ ()30, (k)]*+1?

QN(t,K)

i
_ [0) -
+tz-0[ N(t,K)]Qﬁl(t,K)—a)i(K)

g _ Ot ]

t 0[ N( 1K)]5ﬁ(t,K)—wi(K) tww(K)
X[QN(t k) Lol Qn(t, )]
— QN ) L[ (L, 011, (A20)

1
on(K)+ (=) w (k)
2(t )= IZ(w”(K))go[wN(K)ﬂ—)sw (k) ]?+1t?
(k)
Q2(t, k) — 02(k)

ks

— L[ Qn(tx)]

Lt k) g
AN w2

l, (A21)
whereQ(t, k) = wy(k) +it, Qu(t, )= wy(k)—it, and

= >N erfo(x\2/A),
(A22)

P —2u2/A2
Io(x)._zfo due Ty

(A23)

Zo(X) ==2f due 2u7/A°
0

u? ( A
——=X| —=—XZp(X)

X—iu 2

where erfck) is the complementary error function and both
these functions are odd under —x.
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