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The spectral functions and light-cone momentum distributions of protons and neutréHs iand*H are
given in terms of the three-nucleon wave function for realistic nucleon-nucleon interactions. To reduce com-
putational complexity, separable expansions are employed for the nucleon-nucleon potentials. The results for
the light-cone momentum distributions suggest that they are not very sensitive to the details of the two-body
interaction, as long as it has reasonable short-range repulsion. The unpolarized and polarized structure func-
tions are examined for botfHe and®H in order to test the usefulness &fle as a neutron target. It is found
that the measurement of the spin structure function of polarftédvould provide a very clear test of the
predicted change in the polarized parton distributions of a bound proton.

DOI: 10.1103/PhysRevC.64.024004 PACS nunier21.45+v, 13.60.Hb, 14.20.Dh

I. INTRODUCTION contribution of higher partial waves to the neutron and pro-
ton spectral functions and therefore to the light-cone momen-
It is well known that a polarizedHe target can be used as tum distributions. Since we will be considering batHe and
a polarized neutron target. The question we would like to’H, we have chosen to work in an isospin basis and therefore
address is how good a polarized neutron target it is for thé@eglect the contribution of the Coulomb interaction to the
determination of the neutron spin structure functigp, in ~ >He wave function. We do, however, estimate the effect of
deep inelastic scattering. There are two questions that play zeglecting the Coulomb correction on the momentum distri-
central role in resolving this problem. The first is the sensi-bution and therefore the structure functions.
tivity of the light-front momentum distribution to the three-  In order to analyze the deep inelastic structure functions
nucleon wave function. For this we need to calculate thedf A=3 nuclei, we need to determine the neutron and proton
spectral function for realistic trinucleon wave functions. Thespectral functions. This is detailed in Sec. Ill. Here we com-
second question is a consequence of the fact that the neutr@are the results for various two-body potentials, finding that
structure function is small in comparison with the protonthe light-cone momentum distribution is not sensitive to the
structure function. This raises the question of the accuracyletails of our three-nucleon wave function. In Sec. IV we
with which one can extract the polarized neutron structurgurn to the structure functions and examine the ratio of the
function from 3He. structure function in the three-nucleon system to that in the
To examine these questions we need first to calculate thdeuteron(the EMC effect for the different interactions. We
three-nucleon wave function for a “realistic’ nucleon- also examine the possible implication of neglecting the Cou-
nucleon potential. To simplify the problem computationally, lomb interaction in®He. This opens the way for us to study
we consider a separable expansjahof the Paris potential the sensitivity of the unpolarized and polarized structure
(which we call PEST[2], that gives the same three-nucleon functions to the quark distributions in the proton and neutron
observables as the original Paris potential in a full multichanand the possibility of extracting the neutron spin structure
nel Faddeev calculatiof8,4]. For comparison we consider function from polarized®*He data. Finally, in Sec. IV we
two other classes of potentials. The first is a rank one unitarpresent some concluding remarks.
pole approximatiofUPA) [5] to the Reid soft core potential
[6]. This has the property that it reproduces the position and
residue of the poles in th&S, and ®S,;- °D, channels—i.e.,
it reproduces the original potential’s deuteron wave function. For the three-nucleon problem we can determine the non-
As a result, it incorporates the short range behavior of theelativistic wave function by solving the Faddeev equations
original interaction. The second is a Yamaguchi type potenexactly for any realistic two-body interaction. However, to
tial with a D-state probability of 4% and 7%&]. These po- simplify the computational aspects of the problem, with no
tentials do not include the short range repulsion that is comsacrifice in the quality of the wave function, we turn to sepa-
monly present in nucleon-nucleon interactions. rable expansions that have been extensively td&ddl This
In Sec. Il, we present the procedure used to determine theill result in a three-nucleon wave function that can be used
three-nucleon wave functions for these potentials, as well a® calculate the spectral function and the light-cone momen-
the corresponding three nucleon observables. By comparinmm distribution. In the present section we detail the three-
the results for these three classes of potential, we are able taicleon formalism required to evaluate the wave functions
determine the importance of short range correlations and thier 3He and 3H.

Il. THE THREE NUCLEON WAVE FUNCTION
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A. Notation tions, having truncated the interaction to a set of partial

With the extensive literature on the Faddeev equatighs Waves, we have used the following coupling scheme:

and their use in the three-nucleon system, we restrict our-. . . L. = = L I
selves here to a summary of the notation used in the presentstJy=Sas  latSa=Jar JatJa=Sas Lot Se=J,
analysis. The Faddeev decomposition of the three-nucleon L

wave function is given by fﬁ+ r7= Ly Do+

> >
|

o=l

(W)=[e1) +|e2) +|es)={e+ (1239 +(132}|¢s). (1)  which is known as the channel coupling scheme. With this
coupling scheme the complete set of quantum nuniber

describing a three-body channelNs,={1,,S, .« Sa L al-
A subset of these quantum number that describe the two-

Here “e,” “ (123),” and “ (132" are members of the permu-
tation group of three objects, with being the unit element
(i.e., €le.)=|¢,)) and the other two being cyclic permuta-
tions of {1,2,3. The second equality results from the re- Pody channels isn «={la:Sa.Ja}, and therefore N,

quirement that we have identical particles, the wave function_ {Na,Sq Lo} We have not included, in the set of quan-
is then invariant under any cyclic permutation of our par-tum numbers since the tensor force mixes valuels, ofThis

ticles. Since we have a system of identical fermions, the totaf/OWs us to define the angular momentum and isospin basis
wave function must be antisymmetric under the exchange oS
any two particles in the system. This requirement leads to the

following conditions: 107\ ) =HLa [0 e, Up T )5 o) alSa}d)
(aP)|es)=—|ep), X“:(Iﬁaly)l_arla:“)' 3)
These basis states satisfy the following orthogonality rela-
= — , 2 X
(aB)lep)=—l¢ea) @ on: <Qi]CiNa|QJIN >:5'ax'55NavN5'

We are now in a position to write the partial wave expan-
sion of the total three-nucleon wave function as

(aB)le,)=—le¢,).

In the above equations, 8 andy are indices running from
1 to 3, and always different from each other, angsj is | W)= E Q) N )|u , (4
again a member of the permutation group of three objects
which exchange particles and 8 leaving the third one un-
changed. Smtge vF\)/e are deahn% with e?three body probIerﬁNhereW' N ) is defined as the radial part of the wave func-
there will be only two independent momenta in the center ofion correspondmg to the partial wave, ,N,}.
mass frame. All the particles have spin and isogpand one
must account for their orbital angular momentum. We briefly C. Separable potential
summarize the quantum numbers and momenta used
throughout this paper:

N, is a set of quantum numbers describing a three bod

To reduce the dimensionality of the Faddeev integral
)?quations from two to one, and in this way simplify the
. : X S hree-body wave function, we have employed a separable
chanﬁl fmtr; thetp'omt c.)f V'e\fN of thehp:;rtlc&e, ‘INh'Ch s the expansion of the nucleon-nucleon interaction. Our potential
sp%cgor, € s.e IS unique for each channel. ) for the interaction of particle@ and y in a given partial

I, is the orbital angular momentum between partiges \yave is of the forn{5]
and y.

L, is the orbital angular momentum between partiele V|n“’|,=|g|n ) <g| I, (5
and the center of mass of the system consisting of parti&les ara
andy

ja, JB _]y are the spins of each particle.
lys |B, , are the isospins of each particle.

|5a is the momentum of particle in the center of mass
frame.

ﬁa is the relative momentum of the pair of particlesand

y, defined agy, = (p,—pg)/2.

I andJ are, respectively, the total isospin and total angu-
lar momentum of the system. expansions, we have taken the view that the expansion is a
numerical procedure analogous to the use of quadratures.
However, a low order expansion, such as the UPA or the use
of a separable potential, is justified on the grounds that it

We now turn to the partial wave expansion of our wavegenerates the same analytic structure in the amplifude
function. To minimize the number of coupled Faddeev equabound or anti-bound state po)ess a corresponding realistic

where|g/ “) is a “form factor” and )\I “l

the potential in that partial wave. By taklrigqﬁl’ we can

accommodate a tensor interaction, as in the case of the
3S,- °D; nucleon-nucleon channel. The above expression for
the potential is for a rank one potential To incorporate higher

rank potentials, we turn the :streng)tI A into a matrix and

as a res;uldgI ) is a row matrix. In resorting to separable

is the strength of

B. The partial wave expansion
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potential[9]. The use of a separable potential gives rise to avhere €, is the energy of the spectator particke in the
separablet matrix that satisfies the Lippmann-Schwinger three-body center of mass.

(LS) equation, In Eq. (12) we have a set of coupled integral equations,
. known as the Faddeev equations, for the three-body bound
t(E)=V,+V,Go(E)t(E)=(1-Go(E)Vy) "V, state. For the three-nucleon system, where we have identical

(6)  fermions, we take advantage of the antisymmetry, as given in
with Go(E)=(E—H,) ! the two-body Green’s function. It Ed. (2), and the fact that £y) T.=T(B7)=~Ta, to re-

S L : duce the Faddeev equations to

is simple to show that the separalblmatrix in a given par-

tial wave, resulting from a solution of the LS equation, is of

the form |§Da>=GO(E)Ta(E)(1_(:87))|@B)zZGO(E)Ta(E)|‘P,LE:>Lv4)
"(E) o, >T' "(E)<g" : @ with a# 8. To recast this equation into a form that will admit

o _ _ numerical solutions, we need to first partial wave decompose

where the form factotg, «) is identical to that used in the the Faddeev equations and take into consideration the sepa-

separable potential. The funct|on ,(E), in a given chan- rability of the two-body amplitudes. This can all be achieved

by partial wave expanding the two-body amplitude in three-

body Hilbert space in terms of the angular momentum states

[«(E)] " =[\"] ' —(g™|Go(E)|g™). (g  definedin Eq(3) [10]

nel, can be a written in matrix form as

This separability of theé matrix will allow us to reduce the 3
dimensionality of the Faddeev integral equations from two toT«(E =2 dpapalﬂ N ,po)t, ,/(E €)(Pai Q]

one after the partial wave expansion described in(Ep. "\‘a'Jal
D. The three-nucleon wave function . 2 Ocdp p2|QIJ, 'gn“> e (E—e,)
. . . - aMa N ’ a
Having determined the structure of the two-body ampli- 0 aMa "o Tl

tude, we now turn to the wave function for the three-nucleon N,JI

system. The Schrbinger equation for this system is o

; X{g iy (15

(E=Ho)|¥)=V[¥)= > V,|¥). ©)
a=l where e, = (3/4m)p? and

This can be rewritten in a form that suggests the Faddeev

decomposition stated in Eql), i.e., 107y 59, “> 107y >|9. “Pa)- (16)
3 3
[W)=Go(E)V[¥)= 2 Go(E)V,|¥)=2 [¢,). We now can write Eq(14) as
a=1 a=1
(10)

) =2Gy(E J'wd o iQJ' o Tn“, E—e,
Here, Go(E)=(E—H,) ! is the three-body Green’s func- @) ol ),zl"r o PaP R g'a> 'a'a( )
tion. We now can write an equation for the Faddeev compo- N,JlI

nents of the wave function as

X<g|, ) | N |(P,8>

€)= Go(E)Va| W) = Go(E)Val 0a) + 2 Go(E)Vale,). . )

YFa n @

(11) =2Gy(E) .E| L APapZl Oy 1977 (B~ ea)
With the help of Eq(6), the set of coupled integral equations NaJl
for the Faddeev components of the wave functian,), be- X! (P (17)
comes o7
|04)=Go(E)Ta(E)(lep)+|@,)). (120 with the spectator functionXy | (p,), satisfying the equa-

Here T,(E) is the t matrix for particlesg and y in the tion

three-particle Hilbert space, which is related to the two-body
amplitude considered in the last section by
IFor the three-nucleon system in a nonrelativistic formulation,
TAE)=t (E—¢,), (13 €,=(3/4m)p? , wherem is the nucleon mass.
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XY (pa)5<9|na?QlJlN |0 p) 22, 1, 2 1, 9, 3
@a « aa p ﬁ_qa+Zpa+qapa§' q ﬁ_zqa_l_ Epa_zqapag’

:22 fo dpﬁpzﬁzﬁ;Na;lﬁNB(pa-pg;E) .
Iglg x:——(—pa+qa§ . 23)
N.B p’B -
n Ji
><T|5;;(E—GB)XNB|}3(I0;;). (18 The functioan‘iNaﬂﬁNﬁ is given in Appendix A. We only

observe here that the expression Ry, |, differs from

that forZ,J;Na;lﬂNB by the absence of the separable potential
z" 1N (pa,pB;E)E<g|"a;Qﬂ'N |Go(E)|Q} ;gI”B>, form factors and the three-body Green's function. The nor-
@t BA a et BB B(19) malization of the total wave function is then given by

where

with a# 8. In Appendix A we give an explicit expression for (VW) =3(¢al ) T6(al0p)

Z'aNa:'pNg’ for the coupling scheme used in the present 23S [t [ Yk 2 (2 )
analysis[8,10]. In Eq.(18) we have a set of coupled, homo- /R, NG TN, HNGI TN/
geneous, integral equations for the spectator wave function,

Ji : (24
XN 1 (Pa), which we can use to construct the total wave

function. Here, we note that the spectator wave function igjere the sum is restricted by the two-body partial waves
only a function of the momentum of the spectator particlejncjyded in the Faddeev equations. Since the partial wave
and the energy of the system, which is the binding energy oxpansion of the total wave function involves an infinite

3 3 i . .
He or H. We now turn to the total wave function for the sym, we need to truncate this sum such that the normaliza-
three-nucleon system. Making use of the orthogonality of thjon evaluated by the truncated sum, that is,

angular functions|Q}"\ ), we can write the total radial

a

wave function, defined in Eq4), as PP = w3 ) 2
(VIY)= 3 @i, i), (25

Jl JI
|uNa|a>:<Q|aNa|‘l’> i _
agrees with the result of EQR4). In this way we ensure that
=)' e+ lept @, our total wave function includes all the partial waves dictated
by the two-body interaction.

=l 7R, (20
E. Numerical results
where ' : S .
As a first step in the determination of our wave function,
7Y (.9 )=(pq |74 we calculate the binding energy of the three-nucleon system
LNt Pt He Al TaNe for the class of potentials being considered. For the UPA to
— Q| the Reid soft core and the Yamaguchi potentials the interac-
<paqa1 I N (Pa> . . . 3 3 .
@ tion is restricted to thé'S, and 3S;-3D; channels. This re-
:2G0(qa1pa;E)g|n:(qa) duces the homogeneous Faddeev equations to five coupled

integral equations for the spectator wave function. For the
N N PEST potentials the number of coupled channels depends on

X E 7, "‘I,(E— €)Xy 11 (Pa)s (2D the rank of the interaction in a given channel and the number
L, *e o of partial waves included. To get the optimal representation
of the Paris potential we need to have achieved convergence

with Go(d, ,Pa;E)=[E—(1/m)(g%+3p2)]1 " The second in the rank. This varies from channel to channel. In all cases

component of the radial wave function in EQO) is given  the rank has been chosen in such a way that the binding

by energy for a given number of channels has converged and is
12 B 12 in agreement with the results of calculations using the Paris
7 N (Pa do) =(Pulal N, potential directly{4]. In Table | we present the result for the

3 binding energy for the three classes of potentials. For the

=(Pala i Qi N |@pT @) PEST potentials we have taken the 5, 10, and 18 channel

" potentials. The 18 channel calculation corresponds to includ-

=p z dé FIJIN N (pa,p;g;x) ing all nucle_zon-nucleon _cha_nnels wil= 2. This will a_llow

IsNg J -1 atarfp us to examine the contribution to the spectral function from

I higher partial waves. Here we observe that the Yamaguchi

X7 N, (PpDp), (22 potentials overbind the three-nucleon system, while the UPA

_ and PEST potentials underbind. Since the binding energy
whereP=3[1—(—1)'«*S*'a], and determines the long range part of the wave function, this

024004-4
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TABLE I. Binding energy for a given potential and components whereP is the four momentum of the hadronic syste®is
of the wave function. its polarization, andM is its mass. Here] is the electromag-
netic current, andj the four momentum of the virtual pho-
Number of Binding energy P(S) P(S') P(D)  ton. Finally,W,; andW, are the form factors of the hadronic
Potential  channels (MeV) % % % system. In deep inelastic scattering, one prefers to use the
structure functions-; andF, instead. The relation between

RSC 5 —-7.15 88.37% 1.88% 8.89% the f fact d the struct f fi is the followina:
YAMA 5 _912 93.08% 158% 4979 (e form factors and the structure functions is the following:
YAM7 5 —8.05 89.1% 1.59% 8.71% P-q
PEST 5 —-7.27 89.3% 1.88% 8.11% Fa=MW, - Fo=mgmWa. @0
PEST 10 -r10 89.72% 1.71% 7.85% Tpgq leptonic tensor for unpolarized scattering has the follow-
PEST 18 —-7.32 89.56% 1.66% 8.07% ing structure[13—15;
difference allows us to examine the sensitivity of the struc- L V:l > uk’,s)y,uck,s)u(k’,s')y,u(k,s),
ture functions to the binding energy and therefore to the tail K25 .
of the wave function. A comparison of the PEST five channel R ,
and the UPA suggests that the difference between these two =2(k,k, kK, =g,k K, (28)

model_s is minimal. In_fact, that is the case for most reall'stlcwi,[h k(k') ands(s') the initial (final) four momentum and
potentials that do not include energy dependence. The hlgherOlarization of the lenton
partial waves in the PEST potential seem to have a small bt . pton.
significant contribution to the binding energy. Here again,. .I_:or pola_nzgd scattering one QOes not average over the
this potential, in common with all realistic potentials, tends'nItIaI polar|zat|on and the rgsultlng tensors then have two
to underbind the three nucleon system. The solution to thi@2ts; @ Symmetric part, identical to those of E2) and Eq.
problem may involve the short-range, velocity dependencé?d. and a new antisymmetric piece that is related to the
of the two-nucleon forcd11], as well as a genuine three- polarization. The antisymmetric part of the hadronic tensor
body force[12]. contains two new form factor§, andG,, which are in turn
Since we have neglected the Coulomb contribution to théinked to two new structure functiong; andgs.
energy of *He, and our more realistic potentials underbind The convolution formalism gives a prescription, valid un-
the three nucleon system, we have chosen to adjust thder certain conditions, to link structure functions of complex
strength of the'S, interaction to reproduce the experimental hadronic systems to structure functions of free nucleons
binding energy of bottfHe and3H. This procedure does not [16,17. In this formalism, the nucleon light cone momentum
effect the deuteron wave function, but could have some indistribution in a nucleus plays a central role, in that it relates
fluence on the continuum wave function in thg,. In this  the in-medium structure function to the nucleon structure
way, we may estimate the error in neglecting the Coulomifunction. This relation takes the form of a convolution inte-

energy for®He, and the possible error in the tail of the wave gral and, in the case d%,, given by(see Ref[18])
function due to underbinding of the three nucleon system.
The contribution of this correction will be discussed when A o [Malm X,
considering the spectral functions and light-cone momentum F2(x,Q%) = L dy f(y)F, )—/,Q : (29
distributions.
Here,F, (F’z*) is the free(in nuclear mediurstructure func-
IIl. LIGHT CONE MOMENTUM DISTRIBUTION tion, f is the nucleon light cone momentum distribution in-
. . . . side the nuclear mediunM , and m are the masses of the
Before we proceed with the discussion of light-cone mo-, 0., and of the free nucleon, respectively, finadlig the
mentum distributions, we should establish the relation befraditional Bjorken variable an@? is the momentum trans-
tween the cross section in charged lepton scattering and tl}gr squared JQz: —?). The above relation is valid for the
light-cone momentum distribution. The cross section for thq adi?]g twist of theqst.ructure functions, which is whgy)
scattering of a charged Ieptqn with a nuc_leus N propor'gonarl?as noQ? dependence. Another importr;mt assumption made
o the product of the leptonic tensby,, with the hadronic in this formula is the impulse approximation, namely the

tensorW,,, . For an unpolarized hadronic system of spin 1/2 X '
) /5 3 3 - assumption that the structure function of an off-shell nucleon
(i.e., free nucleon;yHe and*H) the hadronic tensor has the . .

is equal to the structure function of an on-shell nucleon. A

following form [13-15; more complete discussion about problems raised by this as-

1 _ sumption can be found in Ref13].
W;w:z}s: fd4xe'qx<P3~],L(X)Jy(0)|P5> The nucleon light cone momentum distribution in a
nucleus,f(y), is the probability to find the nucleon in the
a9, P.q nucleus with a given fraction of the total momentwn
=| =gt “—2 W;+| P,——-q, (=p*/P") of the nucleus on the light front. As a result, one
q q readily see that Eq(29) has a simple interpretation. The

structure function in the medium is the sum of all possible
2 (26) values of the free nucleon structure function, weighted by the
M2’ probability of finding the nucleon with a given momentum

024004-5
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fractiony. In this section, we will show how to determine the Here, |¥,0,) is the wave function of the initial nucleus
light cone momentum distributions for the neutron or protonwith spin, J,, and spin projectiong,, along thez axis,

in the three-nucleon system. while | ¢, 0y,) is the wave function of thd— 1 system in the

Since the light cone momentum distribution is essentiallystate c,. The sum ovels,, is restricted to those states al-

the probability of finding a given nucleon with a particular lowed by the energy conservindfunction. The energk® of
fraction of the momentum of a nucleus, it should be relatedhe nucleon in this equation is given as the sum of the
to the spectral function of the nucleon in that nucleus. In thenucleon massn plus the separation energy of this nucleon
instantaneous frame the spectral function is the combined,? and minus the recoil kinetic enerdyr, of the remaining

probability of finding a nucleon with a given momentudm  nucleus. The operatca;N(IZ) is the creation operator for a
while the remaining nucleus is in a state We denote this nucleonN (proton or neutropwith spin projectiono and
spectral function bys, (k). The light cone momentum distri-  ,omenturmk.

bution is then a sum over all possible staigsand all pos-

. . i .
siblek that are compatible with the fraction of momentym In the fo_II_owmg we wil no_te the prOdumi”N(k)a"'N(k_)
This is given by as the familiar number density operajgy y(k) and we will

define it in a way similar to Ref[25]. For example, the
density of protons with spir+1/2 along thez axis and mo-

0 3
(y— m )Sx(k)- (30) mentump, <p;(5)> , in a trinucleon, is defined by

3

fy)=>, f a1+ < s
) kO

In some casetsee Ref[13]) a light cone momentum distri- 1

butlsonols_deflned for each state In Eq. (30)_ t_he_ factor (1 <p;(p)>:§ E (‘I’,0A|p;(p)|‘l’,0A>.

+k°/k") is called the flux factor. It is a relativistic correction TA

arising from the fact that we are using a light front formalism 1 3

[19,2Q. Light cone momentum distributions, as well as spec- _- 33 z N+ >

tral functions, can also be defined for polarized nucleons. In 2 ;A 21 A, oa(P.Alppl V. 7a(P. ),

the following section, we will concentrate on the unpolarized 32)

spectral function and merely state the results for the polar-

ized nucleon spectral function.

We note that the calculation of the nucleon momentumwith

distributions presented here is very similar in spirit to the

pioneering work of Ciofi degli Atti and Liuti21]. That work

used a wave function based on variational method, rather (473 (1+0,)) 33

than the Faddeev equations. While the variational approach Ppi="3 2 '

is designed to produce an accurate estimate of the binding

energy of the system, one must work harder to obtain an ) o
equally accurate wave function. Indeed, for the trinucleord? Ed. (33) one can recognize the number density, in the

system this has led to the necessity to explicitly correct théense of Ref[25]. The other density operators which we
proton momentum distribution, as described in R22). We =~ May use are

are not aware of a similar correction being applied to the

neutron momentum distribution. In any case, it appears to us (1+73) (1—0ay))

that it is worthwhile to make the calculation with a different Poi=— 5 . 5 =

technique. In addition, we can study the dependence on the
assumed two-nucleon force explicitly.

(1-75) (1+0y)

+

A. The spectral function Pni > > ,
To determine the light cone momentum distribution we
need to know how to compute the spectral function. For the
unpolarized case, the “diagonal spectral function” is given _ (=73 (1-04))
by [23,24 Pni="5 2
S (k)=—1 > (W,04al y(K)a, y(K) [P, 0p) , . B
N 20p+1 o, N T AT N EeN A Using the notation of Sec. Il, and more specifically &),
we can rewrite Eq(32) in a slightly different way, showing
X (K= (m+e,—Try)) explicitly how we conduct this computation with our wave
1 function
_ " 2
23,71 2, [(rolann(R[ V.00
. %¢, is defined ass,=M—M, —m whereM, is the mass of the
X 8(kO— (Mm+ e, —Try)). (31)  remaining nucleus.
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.1 . A We stress that the two forms of E(R1) are equivalent and
{pp(P))=5 > [(E d’a(Q'y, ,oa(P.@)ppil  should give the same results. In order to demonstrate this we
la:NaTg Ng [ 110 computed the light cone momentum distribution, using Eq.
P (@0
XQIBNB’UA(paq»)
y k® 04 k2

f =jdk1+—6(— ) k), 36

< [ aactaiy Gty e co ) Ik RO

with the two forms of Eq(31). For the second form of this
equation, the final stafeb,,,) was taken to be a plane wave
3He is one of simplest nuclei, along wittH and deute- plus a pair of proton interacting in th&S, channel. This is
rium. It consists of two protons and one neutron. If we meaty far the most important channel for the final state interac-
sure the light-cone momentum distribution of the neutrontion. We found that the light cone momentum distributions

the remaining two protons can only be in a scattering stategomputed with the two forms of E¢31) were identical, for
since there is no bound state of two protons. On the otheg| purpose.

hand, if we measure the light cone momentum distribution of  Fqr the polarized case there are two useful spectral
the proton, the remaining two nucleons are a proton and g,nctions

neutron, which can be in either a bound state, the deuteron,

or a scattering state. We will therefore study first the simpler 1

case of the neutron momentum distribution and then turn to ST(p)== >, f (v (p,q)|p| ¥ (p,q))

the more difficult proton momentum distribution. In the fol- 2T

lowing equationgy will mean the following:Ei,tpﬁli .And

B. The case of°He

. . . . .. ~2 N2
whenever we omit the indek it means that we implicitly 0 b q
sum over all three patrticles. X 5(p m+E 2u 2v) | (37)

1. Neutron in *He

_ 1 e s w L
In Eq. (31), the sum ovew, is constrained by the energy Si(P)=35 Z f d*q(¥ = (p, )| pn ¥ (p,q))
conservings function, and for the neutron spectrum Thle -

this gives a scattering state for the final two protons with the 2
neutron off-shell. As a result the neutron does not satisfy the X 5(p0_ m+E— — __) ) (38)
on-mass-shell relatiofE?=p2+m?. Since we are using a 2n 2v

nonrelativistic wave function foPHe we will use a nonrel- ) ) ]
ativistic approximation for the relation between the energy’hese spectral functions are, respectively, for a neutron with
and the momentum. We then define the binding energy of th&PIn parallel or antiparallel to the spin of the nucleus. The
nucleus E, by the relationM = 3m+ E, wherem is the mass “ + " designates a positive projection of the spin of either the
of a nucleon. Since we are working with a nonrelativistic "eutron or the nucleus on tizeaxis, and the *-" a negative
wave function, we make use of the approximatiph~m  Projection. These computations of polarized spectral func-
+ |52/ (2m). Since we are working in the frame of the centerEfgi;r;zscvrgna;;c\;vzrg\gtgs( V\;o\/rvkefg:lrr:dc;rllcsgtiﬁtﬁj :Jnan-
of mass of the nucleus we have the followind:=p°+ p9 Y ALy q

0 tities, f (y) andf, (y), just by inserting the correct spectral
TP, As a result, the energy of the struck nucleonp functions. Then one can form the useful quantty,(y)

=m-+E—pj/(2m)—p3/(2m). One then findsy, in terms  _¢*(y)—f~(y), which is the equivalent of,(y) for polar-
of p, andq,: py=m+E—p’/(2u)—q2/(2v), wherev is  ized structure functions.

the reduced of the mass of the interacting pair anid their

total mass’ If we compare this result with the expression 2. Proton in 3He

given in Eq.(31), then the recoil energyr is P2/ (2u). In the case of the proton we have two possibilities for the
while the separation energy, is E—qi/(Zv)- So the unpo- final state, so we also have two spectral functions. The first
larized spectral function for the neutron fie is given by  state is a scattering state similar to the final state encountered
1 in the neutron case, with which it shares the formulagbr

Sip)=3 > | d*a(W,0a(p, @)l pn ¥,04(p,Q) The second possible final state is made of a scattered proton

oA and a deuteron. We can find the form of the proton energy in

v vy the same way we did for the scattering state, only it is now

m4+E— b _Q_> ) (35) much more simple as we have only two particles in the final
2 2v] ] state and not three. With the same nonrelativistic approxima-

tion as before, one easily finds that in this cgsp=M

—Md—ﬁil(ZM 4), WhereMy is the deuteron mass. Defin-

3Note that here, in the case of two identical particles, we have ing the binding energy of the deuterdfy, in same way we
=m/2 andu=2m. did for the trinucleon we havéM =2m+E, and finally,

X 5(p°—
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FIG. 1. Neutron light cone momentum distribution fhie for

various potentials.

p’=m+E—Ey4—p3/(2Mg). So we will have two spectral
functions, S,S)(p) (scattering staje and Sg(p) (deuteron

state:

S;

-2

0_
Xé(p 2u  2v

1 - N N
Sﬁ(p)=§§ fd3q<‘lfi(p,q)lppl‘l’i(p,q)>

~2
m+ E—Ed— P ))

0_ —
><5(p M,

As in Eq.(37) and Eq.(38) the “+" and “
nuclear spin projection on theaxis.

1 - - - - -
(0=5 3 [ G B0 (5.9)

~2
m+E_p__q_)),

— " indicate the

PHYSICAL REVIEW G54 024004
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FIG. 3. Neutron polarized light cone momentum distribution in
3He for various potentials.

3
1+E

KO+ k3

)(S;<k>+sg(k>>.
(42)

1
Foly) = 5] d*k 5(y— -

In the preceding equation we introduced a factor one-half
because there are two protons ifftde nucleus. Without this
coefficientf, would be normalized to 2 instead of 1. In the
same way we did for the neutron we can extract polarized
spectral functionssig,i , for the proton by using a polarized
densityp,f in combination with the right polarization of the
wave function. One can then gég by applying Eq.(41),
with the appropriate polarized spectral functions and in the

end compute\ f,(y)=f, (y) —f, ().

C. Results

Using the formalism presented above, we have computed
light cone momentum distributions for some of our three
nucleon wave functions. For all those distributions we used
only the first 42 three-body channels. This is because the
computation of the polarized distributions involves some
complicated matrix elements. However for all these wave

In term of these spectral functions we can write the lightf,nctions the 42 first channels add up to more than 99% of

cone momentum distribution of the proton

:I T T T IIIIIIIII IIIIIIIIIIII:
6 -
F —— PEST 3
55 -—- RSC 3
c -—-- YAM7 ]
4 =
’;\ E ]
= sF E
2F =
1__ .
oby 1 T B ol
0.4 0.6 0.8 1 1.2 14

y

FIG. 2. Proton light cone momentum distribution file for

various potentials.

the total, so one can safely assume that the contribution of

0.05

Afty)

-0.05

-0.1

-0.15

_0.|||||||||||||||||||||||||||
%). 0.6 0.8 1 1.2 14

y

FIG. 4. Proton polarized light cone momentum distribution in
3He for various potentials.
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TABLE Il. Effective polarization of the nucleons ifHe for various potentials.

2P(X) JT(y)
n- p p- n* n- p* p
PEST  93.97% 6.03% 48.96% 51.04% 93.62%  6.32%  48.98%  50.96%

RSC 93.45% 6.55%  48.83% 51.17% 92.92% 6.79%  48.76%  50.95%
YAM7  93.66%  6.34% 48.81% 51.19% 93.25% 6.35% 48.69%  50.92%

+ +

n

the rest of the channels is negligible. For the unpolarized 1
distribution the matrix elements are quite simple, so one can n-= f dyfy (y)=35(P(S")+2P(D)), (43
easily check, in this case, that the contribution from higher
channels is indeed small. We compared the light cone mo- 1 1
mentum distribution for a proton and a neutronHe for, p+:f dyfy(y)=5— =(P(D)—P(S"), (44)
respectively, 42 and 130 channels and found that for all pur- 2 6
pose they were indistinguishable. For the PEST potential we 11
also compared wave functions including five apd_lg thr_ee— pfzf dyf, (y) =5+ = (P(D)~P(S"). (45)
body channels and found that they were also indistinguish- 2 6
able. In Figs. 1 and 2 we show the proton and neutron light )
cone momentum distributions for our potentigREST, RSC [N Table Il we compare the numerical values of these two
and YAM7). The light cone momentum distributions given €Xpressions irtHe, for our various potentials. The results in
by the RSC and PEST potentials are almost indistinguishabl@uite good agreement, with the small discrepancies arising
and they cannot be separated on these figures. The YAMfom numerical errors in the computation of many nested
potential, however, shows some difference associated Wit_mtegrals.(Note, for example, that the overall normalization
the excess of high momentum component®iwave wave IS correct to about 0.06%In Table Ill we make the same
function, in comparison with realistic potential. It is also cOmparison but with wave functions in which we have ad-
important to note that to have consistent results one needs fgsted the binding energies to the experimental values.
use a deuteron wave function computed with the same po-
tential as the three nucleon system. IV. STRUCTURE FUNCTIONS

In Figs. 3 and 4 we show the proton and neutron polarized
light cone momentum distributions for the same potentials
used in Figs. 1 and 2. The polarized neutron light cone mo- In the incoherent impulse approximation, the structure
mentum distribution shows the same behavior and is similafunction of a nucleus is the sum of the contributions from alll
in size to its unpolarized counterpart. However, for the pro4ts constituents. As we have already said in the previous sec-
ton the polarized momentum distribution is far smaller thantion, the convolution formalism gives a way to link the in-
its unpolarized counterpart. In this case all the potentialsnedium structure functions to the free ones. This formalism,
gives very similar results. We note that one can extract morbowever, has some limitations, especially at small Bjorken
information from the polarized momentum distributions. where other physics, like multiple scattering, becomes im-
While in the unpolarized case the distributions are normalportant. It is also only valid in the Bjorken limit, as the
ized to one, in the polarized case they are normalized to theonvolution formalism itself does not depend Q4. In un-
polarization of the given nucleon. From R¢25] one can polarized scattering this formalism is a good tool to investi-
compute these polarizations analytically in terms of thegate the EMC effedt28], so we will use our previous results
S, S, andD waves probabilitiegsneglecting the small con- to study this effect in the three nucleon system. Another in-
tribution of theP waves. One can compute those probabili- teresting result from the previous section is the fact that in
ties from the wave function and then compare them with the’He, the proton polarizatiofi.e., A= pt—p =~—2%) is
values extracted from the momentum distributions. Fromvery small and negative, while the neutron polarizatioe.,
Ref.[25] we have the following relations: A,=n"—n"~87%) is quite big. This is also clear from
Figs. 3 and 4. This means that the neutron carries most of the
spin of ®He, so, at least for polarized scattering, this nucleus
should be a good approximation to a pure neutron target. The

A. Introduction

+ + 1 /
n =fdyfn(y)=1—§(P(S)+2P(D)), (42)

TABLE III. Effective polarization of the nucleons iAiHe and®H, with two-body interaction adjusted to
produce the experimental binding energiPEST potential only

2P(X) T1(y)
n* n- p* p- nt n- p* p-
%He 93.97% 6.03% 48.91% 51.09% 93.73% 6.24% 48.94% 51.02%
3H 93.45% 6.55% 48.85% 51.15% 93.86% 6.13% 48.89% 51.10%
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same argument is valid for the proton #l. Since we al- This should be close t&; if the deuteron is a quasifree
ready have a free proton target this may appear less interestystem of a proton and a neutron and if the nucleus studied is
ing at first sight. On the other hand, it provides an ideal waysymmetric, or almost, in its content of neutrons and protons.
to study the effect of the nuclear medium on the spin struc-*He and>H are highly asymmetric nuclei, as their content in

ture of a bound nucleon. one type of nucleon is twice as much as the other. To take
this into account, it is common to an isosymmetric correction
B. Unpolarized structure function and EMC effect so that the ratio studied [4.8]
As we explained at the beginning of the previous section, FA(x,02)
in unpolarized deep inelastic scattering of a charged lepton RA(X,Q%) = S—’|(X,Q2), (53
on a nuclear target, all the target information is included in F2(x,Q%)
the two structure function§,; and F,. In a simple quark _
model those functions have the following fofrh3,15: with
1 FB(x,Q%)+ F(x,Q?
FixQ)=5 > e2a(x,Q?), (46) (6, Q) =20V
I ZF5(x,Q%) + (A= 2)F5(x,Q%)
Fa(x,Q2%)=2xF;(x,Q%)=x>, €q(x,Q?). (47 This ratio is, strictly speaking, the ratio of the EMC ratios
2 ! q ad of the nucleusA and the deuteron. Following the same kind

) ) o of procedure used in the previous section, one can compute
In these expressiong(x) is the distribution of quarks of he |ight cone momentum distribution of a nucleon in the
flavor g and electric charge, . The relation betweeR, and  geyteron. To be consistent, this ratio has to be computed with
F» implies that the partons have spin 1/2 and no transversg,e same interaction for both the three nucleon system and
momentum in the infinite momgntum frame. A more generakne deuteron. To compute, we used several parametriza-
relation betweerf; andF, [13] is tions for the quark distributions.

The parametrization “CTEQ5” from the CTEQ Collabo-
S (48  ration[29]. The collaboration gives several parametrizations,
1+2xmy/v but we mainly used the one called “leading order,” and it
. . . : will be the one used when we talk about the CTEQS param-
where R is the ratio of the cross section for absorbing Aatrization. unless explicitly stated otherwise:
longitudinal photon to that for a transverse photon. The GR » parametrization from Glak Réya and Vogt

Given the relation betweelR; andF,, most studies con- 30] ' '
centrate on the latter. The convolution formula between th«g The “DOLA" parametrization from Donnachie and Land-
free and in mediunf, structure function$13,1§ is shoff [31]

1+R
Fa(x)=2xF1(x)

~ M /m X These distributions are usually given for quarks in a pro-
Fg‘(x,Qz)zf dny(y)F’z\' —,Q2>. (499  ton and in order to compute neutron structure functions we
x y used charge symmeft{32]. In Figs. 5 and 6 one can see the
ratio R, for *He and®H, with the CTEQ5 parametrization at
Q?=10 Ge\?, for the three potentials studied. In Fig. 7 we
showR; in 3He for the PEST potential alone but for all three
M /m X quark distributiongagain atQ?= 10 Ge\?). We also studied
FQ(X,QZ)ZJ dY(pr(Y)FE(—,QZ) the effect of adjusting the binding energy as described at the
X y end of the first section but did not include it in Figs. 5 and 6
X because it would have confused the plot. This adjustment of
+(A—Z)fn(y)F2(—,Q2)). (500  the binding energy caused a slightly deeper EMC effect in
y both He and *H and also a slightly steeper increase

In comparing theF, structure functions on various tar- at highx
gets, the European Muon Collaborati¢hubert et al. [28])
discovered what is now called the “EMC” effect. We define C. Polarized structure functions
a theoretical EMC ratio as the ratio of the structure func-
tion of the nucleus to the sum of the free structure functions‘be
of the nucleons in this nucleus:

Hence the-, structure function of a nucleus of mass number
A and proton numbeZ is given by

If one does experiments with both a polarized lepton
am and a polarized spin 1/2 nuclear target, one needs two
more structure functiongy; andg,. One can perform vari-
R.=FA/(ZF8+(A—Z)FY). (51 Ous measurements of cross sections with several polariza-

On the other hand, it is more common to compare the ratio of
the F; structure function of the nucleus to that of deuterium: 4wjith the exception of the DOLA distribution which gives proton

A D and deuteron distributions. In this case we took the neutron as the
Ry=(F2IA)(F312). (52 difference between the deuteron and the proton.
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FIG. 5. The ratioR;, given in Eq.(53), for ®He, at Q?=10 FIG. 7. The ratioR, given in Eq.(53), for *He, atQ?=10
GeV?, calculated for various potentials using the CTEQ5 quarkGe\?, calculated for the PEST potential, using various quark dis-
distributions. tributions for the nucleons.

tions in order to extract those two structure functions. Theywe computed theg; structure function of*He using the
are smaller tharF, andF, and g,, in particular, is often  same three potentials as fB,. The results from those po-
neglected. As we indicated in the Introduction, the figures foientials are sufficiently close that we will only use the results
the effective polarization of the nucleons in the three nucleofrom the PEST potential hereafter. To compgtewe mainly
system seem to indicate that the contribution to the nuclealised the NLO “standard scenario” of Reff35]. We also
spin structure functions from the doubly represented nuclestudied the impact of the off-shell correction from RF6]

ons is severely reduced. Thus, this system should be a goafh g,. (The off-shell correction was calculated using a local
approximation to a pure single nucleon target. At leadingdensity approximation and the quark meson coupling model

order,g; has the following forn{14,33,34: [37] to estimate the change of the parton distributions in a
1 bound nucleon. In Fig. 8 we show the following three
2_ :
X,Q2)= = e2Aq(x,02). 55 curves alQ?=10 Ge\?: xg,(x) for the free neutron, as well
9:(x.Q7) 2 E adax.Q") (59 asxg;(x) for 3He with and without the off-shell correction.

) o As one can see, the three of them are close. The main com-
In Eq. (55), Aq are the polarized quark distributions. They pication in the extraction ofy, for the free neutron from
involve the difference between the distributions of quarkssyg js that the free proton spin structure function is very big
with the same and opposite helicity from that of the nucleoncompared with that of the neutron. So, while its contribution

It is much harder to find a simple parton interpretation, 3ye js severely reduced by the low effective polarization,

for g, [14]. _ . _ it is still not negligible. One way to estimate the size of the
The convolution formula relating the free spin structure .ontribution of the proton is to compagg(3He) with a for-
function to that in-medium is the following: mula often used in the experimental analy§8§] (see Ref.
. : Ma/m dy A X - [15] for a derivation:
gl(XVQ ZJ —A N(y J1 _7Q . 56
x Y y 91(°He)=~A,g1(n) +2A,0:(p). (57)

—_
S+

I LA I I Y N L Y LI B B

=

1
T T T
11 1 1

o ] .

E free neutron ]

. *He with off-shell correction -

] - *He without off-shell correction ]

_- _0'015 i 1 1 1 1 | 1 1 1 1 | 1 1 1 1 I 1 1 1 1 I 1 1 1 1 ]

0 0.2 0.4 0.6 0.8 1

X x
FIG. 6. The raticRs, given in Eq.(53), for °H, atQ?=10 GeV?, FIG. 8. Comparison of several calculationsxaf;(x) for *He,
calculated for various potentials using the CTEQS quark distribu-at Q?=10 Ge\?, with the parametrization okg;(x) for the free
tions. neutron at the same energy.
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X FIG. 11. Corrections t@,(n) data from E154. White circles

represent the original data. Black circles are corrected for binding
energy and nuclear effect. Diamonds have all corrections from the
black circles as well as off-shell corrections. The error bars are
statistical errors.

FIG. 9. A4, Ay, andg,(n) atQ*=10 GeV’. Note that all three
curves have been divided Hidxg,(3He).

If the contribution of the proton tg;(3He) is negligible, Eq.
(57) is equivalent tay; (®He)~A,g;(n). To estimate the ef- error in the differences .t is clear from both plots that one
fect of the proton contribution in the extraction®f(n), we  gets more accurate results by including the proton contribu-
plotted the following differences: tion for midrangex(0.2<x=<0.6), the biggest error in this
region occurring when the structure function crossesxthe
91(3He) — 2A .,(p) aX|s At higher_x(x_>0.6) the effect _of Fermi motion is sig-
Ag= 1 P gy(n) (58  nificant and this will be even more important foH, below.

Ay Nevertheless, the absolute value of the structure function
is small and the corrections have little effect on the spin
sum rule. If we apply the corrections computed with this
parametrization to the experimental results of E[%@] and
HERMES[40], we get Figs. 11 and 12. It is quite clear from
those figures that it is possible to extragt(n) from 3He
data without worrying too much about nuclear effects on
most of the kinematical range. Similar results are found for
other partons distributions such as those from R&f]

In Figs. 9 and 10 we plot bothy andA; . The second plot In the case of tritium one can plot a ratio, @gp) does

includes the off-shell effect30f Reff36]. Note that the curves not change sign. Therefore, to illustrate the effect of the neu-
have been divided bydxg,(*He)(~ — 1/16) so that one can tron contribution in this case we plot

judge the effect on the spin sum rule. Since one ultimately
:gl(sH)_ZAngl(n)

and

3He
A,:gl( )_

o= A 91(n). (59

wants to extracg,(n), we have also plotted that with the

same normalization, so as to have an idea of the size of the Ry Apg1(p) (60)
:ll T T I‘l T T T T I T T T T | T T T T I T T T T : and
o . ]
0.6 \ — 3H
0sEL \ — o= 5,CHeYA,5,(0) ] ,:Ag - ' (61
SE i —— < (g,(He)}2A g (/A -2, ] p91(P)
04 ! F—en g ] In Fig. 13 we show both ratiosR(; is the solid line andRy is
03F \ = the dashed linewithout including the off-shell corrections
025_ \ E [36] as well asR, with the off-shell correctiongdot-dashed
“r 1 line). In this figure we can clearly see that on most of the
0.1F 3 interval the contribution of the neutron is negligible, some
OE ] difference appearing for smal. This is expected simply
E = ] becauseg,(n) is significantly smaller tham,(p) for most
IR A B R '\ | IS TP < M T NN N WY S O I
016 03 0a 05 0R 1 values ofx. On the other hand, we can also see that medium
X

FIG. 10. A4, Aé, andg;(n), including off-shell corrections, at ~ ®We do not plot the ratio of structure functions because in both the
Q?=10 Ge\?. Note that all three curves have been divided by neutron and®He caseg),; can be zero, leading to singularities in the
fdxg,(3He). plots.
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FIG. 12. Corrections tog,(n) data from HERMES. White *

circles represent the original data. Black circles are corrected for £ 13. The ratio of the proton spin spin structure functigh
binding energy and nuclear effect. Diamonds have all correction§at 10 Ge\), extracted from*He data under two approximations
from the black circles as well as off-shell corrections. The error baq R, andR}, ; see Eqs(60) and(61)] to the free protorg? . The solid
are statistical errors. line is Ry and the dashed line ®B;, both computed without off-

o shell corrections. Dash-dotted lineRg when one includes off-shell
effects seem to be quite important and that the off-shell corgorrections

rection makes an important difference. One can also see
clearly the effect of Fermi motion at high while it would @ polarized neutron with reasonable accuracy. However, it is
be invisible if one were to plot differences. It is clear from necessary to account for the contribution from the pair of
these results that from a measurememgme’H) one can protons which are not totally unpolarized. Turning to the
expect to extract the size of the change in the spin structurgolarized structure function ofH, we saw that while the
function of the bound proton and one might even hope tgxperiment is extremely challenging it could also be very
separate the origin of this effect. valuable. In particular, one can measure the size of the me-
dium corrections and check experimentally the predicted
modification of the spin dependent parton distributions of the
bound nucleon.

We have computed the three-nucleon structure functions
from various two body potentials. This involved calculating ACKNOWLEDGMENTS
wave functions, light cone momentum distributions and fi-
nally the structure functions. We have presented our compus
tations of the effects of nuclear binding and Fermi motion in
the ratioR, for both He and®H. We have shown that those
effects were quite close for various two-body potentials and
quark distributions. In addition, we saw that isospin breaking
would have only a small effect on these findings. This result
has been used elsewhdd?] in a proposal to measure the  For completeness, we present in this appendix the explicit
d/u ratio at largex at Jefferson Laboratorj43,44. expression for the kernel of the homogeneous Faddeev equa-

From our study of the spin structure function 3#le, we  tion when the interaction is represented by a separable po-
showed that it is possible to extract the structure function otential. The details of the derivation are in RE]. We have

V. CONCLUSIONS
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helpful discussions.

APPENDIX A: THE KERNEL OF THE HOMOGENEOUS
FADDEEV EQUATION

Ny nﬁ

3l N ] TN T 9i,/(da)9; /(ap) . |

ZIaNa:IﬁNIB=<g|a1QIQNQ|G0(E)|QIBNB!Q|B>_z —1dx 1 F'aNa:lﬁNﬁ(pa'pB'X)' (A1)
E— —(Pat P+ PuPsX)

where

la lB p a—b
AL.ab ( ‘”) : (A2)
0

a=0 b=0 'aNailgNg

! ( -_@la&lﬁB > P
N i1 Ny (PP X) = a.) \gy PhaNeZ £(X)

with P .(x) the Legendre polynomial of orde?, and
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A a - - 1. - - 1.
X=Pa Ppg: Qo= Pp— Epa! qB:pa+ Epﬁ (A3)

The coefficientsAf'ﬁ,'b;|ﬂNﬂ which results from the recoupling of the spin and orbital angular momentum is given by

e L0201 (S, s f
L,a,b _/_a\R 2 b a B "2
AN 1N, = (T D ol glal 55,Sp o] gSaSpL "3”5’\/(2;;1)!(2b)1(2|a—2a)!(2|,3—2|o)!f2 (AT, L, o

AN’
j S S i I | f
LaLﬂf“_”‘fﬁ_ﬂ, “l'gbAa|ﬁ—bA
a —
AA L Ja Joo b g , 0 0
a I a | B S,B | a a b A
» AN L Lg\([A L Ly\(l,—a b A’ (Ad)
0O 0O 0/\0 O O 0 0 0/
where the 12-j symbol is that defined by Ord-Smifd5], the phaseR is defined as
R=—J+L,+Lg+S,+SstJatts—iatSstlatL,
and finallyp, andp; are
mg 1 m,, 1
p“_mﬁ+my_2’ pﬁ_mD(ery_Z'
The isospin recoupling coefficielﬁiNaNB is given in terms of 6-j symbol by the relation
— g, oy,
Bn Nﬁ:(_l)'“ﬂf"ﬁm'a'ﬁ — (- (A5)
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