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Local structure of topological charge fluctuations in QCD
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We consider the lattice topological charge density introduced by Hasenfratz, Laliena, and Niedermayer and
propose its eigenmode expansion as a tool to investigate the structure of topological charge fluctuations in
QCD. The resulting effective density is built from local chiralities studied previously. At every order of the
expansion, the density exactly sums up to the global topological charge, and the leading term describes the
maximally smooth space-time distribution of charge relevant for propagating light fermions. We use this
framework to demonstrate our previous suggestion that the bulk of the topological charge in QCD does not
effectively appear in the form of quantized unit lumps. Our conclusion implies that it is unlikely that the
mixing of ‘‘would-be’’ zero modes associated with such lumps is the prevalent microscopic mechanism for
spontaneous chiral symmetry breaking in QCD. We also present the first results quantitatively characterizing
the space-time behavior of effective densities. For coherent fluctuations contained in spherical regions, we find
a continuous distribution of associated charges essentially ending at' 0.5.
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Some intriguing effects in QCD, such as the largeh8
mass andu dependence, are related to vacuum fluctuati
of topological charge@1#. Understanding thelocal structure
of topological charge fluctuations is thus of great interest
building a detailed picture of how these phenomena aris
terms of fundamental degrees of freedom. Another impor
phenomenon possibly related to topological charge fluc
tions is spontaneous chiral symmetry breaking (SxSB). This
is based on the proposition that the effective low-ene
structure of topological charge fluctuations in QCD is su
that in a typical configurationmostof the topological charge
is concentrated inNL typically nonoverlapping, four-
dimensional space-time regionsLi , each containing a sign
coherent lump of approximately unit topological charge~i.e.,
the generalization of the instanton liquid picture!. If true, this
would imply an appealing microscopic explanation for t
origin of Dirac near-zero modes@2# and hence the origin o
SxSB @3#. The connection to fermions arises by associat
with each lumpLi a localized chiral modex i which ‘‘would
be’’ a zero mode in the absence of other lumps, and a for
tion of a topological subspace of low-lying eigenmodesc i

'( jai j x
j ,i 51, . . . ,NL . Verifying this ‘‘topological mix-

ing’’ scenario has long been hindered by inherent difficult
in interpreting thelocal behavior of topological charge den
sity for typical configurations of lattice-regularized theo
We have argued@4,5# that meaningful information can b
extracted indirectly by studying the local chirality of low
lying modes. The flat behavior of the associatedX distribu-
tion observed in the initial study suggested that topolog
mixing was not the origin of the near-zero modes, and a
indicated the lack of extended self-dual excitations@4#. How-
ever, later studies revealed the double-peaked behavio@6#
which is qualitativelyconsistentwith both these aspects, bu
not sufficient for their demonstration@5#. Being agnostic
about self-duality, we observed in Ref.@5# that even with the
0556-2821/2003/67~1!/011501~5!/$20.00 67 0115
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double-peak structure present, the patterns in low eig
modes of the overlap operator are inconsistent with the p
ence of a distinctive topological subspace, and hence w
the topological mixing scenario. In this work, we propose
framework generalizing the local chirality method, and use
to demonstrate this conclusiondirectly. The basis of our ap-
proach is the topological charge densityqx5 1

2 trg5Dx,x @7#
associated withg5-Hermitian D satisfying $D,g5%5Dg5D
@Ginsparg-Wilson ~GW! fermions#. Note that since trg5
50, one can also writeqx52trg5(C2 1

2 Dx,x) with arbitrary
constantC. We chooseC51 ~see also Ref.@8#!, which guar-
antees that the eigenmode expansion ofqx is properly nor-
malized and satisfies the index theorem for arbitrary trun
tion ~see below!. In this case we have

qx52trg5~12 1
2 Dx,x!52(

l
S 12

l

2D cx
l , ~1!

wherecx
l5cx

l1g5cx
l is the local chirality of the mode with

eigenvaluel. For low-lying truncation (ulu'0) this is ef-
fectively the sum of individual local chiralities. Very re
cently, Gattringer offered evidence for a large degree of s
duality in the vicinity of peaks of an eigenmode-filtere
action density@9#. If the extended nature of self-dual region
is confirmed, then combined with our conclusions one is
to a picture of inhomogeneous, but essentially continu
topological charge fluctuations at low energy, with a sign
cant level of self-duality in the vicinity of local maxima. Th
origin of the double-peaked behavior of local chirality wou
then be thelocal attraction of spinorial components by a
~anti-!self-dual field, as argued in@4#, with topological mix-
ing not playing a role. In the last part of this work, we d
scribe the first attempt to characterize the typical amount
topological charge associated with coherent fluctuations
well as some interesting quantitative results that emerge
©2003 The American Physical Society01-1
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~i! In the usual discussion of topological mixing, there is
paradox rooted in the negativity of the Euclidean topologi
charge-density correlator at nonzero distance,

^q~x!q~0!&<0, uxu.0. ~2!

This follows from reflection positivity and the fact that th
operatorq(x) is reflection-odd@10,11#. One consequence i
that it is impossible that in typical configurationsmost of
topological charge is concentrated in coherent fo
dimensional lumps of finite physical size~e.g., instantons!.
Indeed, if this were the case and the typical size of s
lumps wasr c , then the average correlator would be positi
over r c , thus contradicting~2!. This means that lumpsLi
cannot be identified inq(x).

These considerations do not rule out topological mix
as an effective low-energy scenario for SxSB, but emphasize
the necessity of some short-distance filtering when study
these issues. This can be achieved by replacing the l
operatorq(x) by a nonlocalone. While the use of nonloca
operators is generally unacceptable, here they will only se
as a filter to smear the singular contact term in Eq.~2! into a
finite positive core. The dominance of coherent structure
then possible. Following up on our reasoning in Refs.@4,5#,
we propose that the low-energy truncation of the Dir
eigenmode expansion forq(x) ~see below! can serve as the
physically motivated nonlocal operator needed. We stress
physical motivation because, for the problem at hand,
underlying issue is whether the light fermion effectively fee
a collection of coherent unit lumps as it moves through
vacuum, or whether there is some other dynamics govern
its propagation. This is to be decided by the fermion.

The desired fermion filtering can be realized starting fro
lattice-regularized theory. Among the lattice topologic
charge-density operators considered, the ones assoc
with GW fermionic kernels are perhaps theoretically m
appealing@7#. These are constrained so that they sum up
integer global charge defined by counting the exact z
modes of the GW kernel used. The continuum gauge-ferm
correspondence~index theorem! for smooth gauge fields is
thus extended to the lattice by construction@7#. Before de-
fining the filtered densities starting from Eq.~1!, it is useful
to recall that the spectrum ofD containsN0 zero modes with
global chirality 11 (N0

1) or 21 (N0
2), N2 modes atl52

with global chirality11 (N2
1) or 21 (N2

2), andNp pairs of
complex modes with zero global chirality. The dimension
Dirac space isN5N01N212*Np , and the topological
charge isQ5(xqx5N0

22N0
15N2

12N2
2 . We now associ-

ate withqx the set of related densities

qx
(k)52(

i 51

N0

cx
0,i 2(

j 51

k

~22Rel j !cx
l j ~3!

representing the truncated eigenmode sum that include
zero modes and thek lowest-lying complex pairs. Comple
eigenvaluesl j enter the sum ordered on the upper~lower!
half of the spectral circle. Eigenmode-filtered densitiesq(k)

are real and(xqx
(k)5Q5N0

22N0
1 , thus leading to identica

global fluctuations satisfying the index theorem. We ha
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(Np)

5qx , and sinceq(0) can be identically zero forQ50
configurations, we considerq(1) to be the leading order in the
expansion. The infrared eigenmodes ofD are significantly
smoother than the underlying gauge field@5#, and q(1) is
expected to be maximally smooth. Ask increases,q(k) gradu-
ally incorporates more short-distance structure. This does
mean that there is a strict new cutoff present in filtered d
sities. However, ultraviolet fluctuations irrelevant for prop
gation of light quarks are filtered out.

We now use the overlap Dirac operator@12# ~see details in
Ref. @5#! on Wilson gauge backgrounds~see Table I! to dem-
onstrate the basic properties of filtered densities discus
above. We have calculated the full densityq for configura-
tion C2 from ensembleE4. In Fig. 1, we show its correlato
Cq(r ) ~normalized at the origin! and compare it toCq(1) and
Cq(16) for filtered densities. Note thatCq has a very short-
ranged positive core as expected from Eq.~2!. This provides
indirect evidence that the locality of the nonultralocal ope
tor q is quite good. As for the correlatorsCq(k), their range is
evidently larger. The shape stabilizes at aboutk56 and
changes very slowly from then on. To further character
the roughness of filtered densities, we calculate

~G(k)!2[(
x,m

~qx1m
(k) 2qx

(k)!2 ~4!

and plotG(k) as a function ofk. As expected,q(k) becomes
rougher ask increases. While thephysical sizeof the positive
core inCq is expected to go to zero in the continuum lim
this is not necessarily so forCq(k). To see that, we have
calculatedCq(2) for ensemblesE1–E3. The size of the posi-
tive core in the average correlator was determined as^r &
over the probability distribution given byCq(2)(r ) in the
range from zero up to the maximal distance whereCq(2)(r ) is
manifestly positive~with errors taken into account!. As can
be seen in Fig. 1, the size scales well, indicating that if
dominance of coherent four-dimensional structures inq(2)

can be established, these structures can survive the
tinuum limit.

~ii ! Introduction of fermion-filtered densities allows us
study the relevance of topological mixingconsistently. If the
topological subspace of low-lying modesc i'( jai j x

j , i
51, . . . ,NL is formed, then

(
xPLi

(
j 51

NL

cx
j 1g5cx

j ' si , g5x i5six
i , si561. ~5!

TABLE I. Ensembles of Wilson gauge configurations.

Ensemble b a ~fm! V Configs. Eigenpairs

E1 6.00 0.093 144 12 2
E2 6.20 0.068 204 8 2
E3 6.55 0.042 324 5 2
E4 5.91 0.110 124 6 9
E5 6.20 0.068 204 3 10
1-2
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This implies that the structure of quantized unit lumpsLi
will be revealed inq(k) when all modes belonging to th
topological subspace are included. Indeed, from Eq.~5! we
have

FIG. 1. ~a! Cq , Cq(1), and Cq(16) for configurationC2 (Q50)
from E4. ~b! RoughnessG(k) of q(k) for the same configuration. Fo
the full density,G(Np)50.87. ~c! Size of the positive core of the
averageCq(2) correlator for ensemblesE1–E3. The Sommer param
eter was used to set the scale.
01150
(
xPL i

qx
(k)[Qi'61, 2k'NL2N0 ~6!

since Rel'0 for modes in topological subspace. Moreov
the value of pure gauge topological susceptibil
('1fm24) constrainsNL in lump-dominated configuration
of volume V fm4 to beNL'V. This implies that the lumpy
structure should typically be saturated inq(k) with k&V/2.
Consequently,q(2) is expected to be well sufficient for a
ensembles in Table I.

We now ask whether the subsetø iLi of the lattice con-
taining most of the topological charge can be identified us
q(k). A simple way to proceed is to order lattice points by t
magnitude ofqx

(k) and compute the running sum of positiv
@Q1,k( f )# and negative@Q2,k( f )# charge as the fractionf of
the highest points included increases. FunctionsQ1,k (Q2,k)
should stabilize to a constant (' integer-valued! plateau at a
well-defined value off corresponding to the fraction of vol
ume occupied byø iLi . In Fig. 2, we show the behavior o
Q1,k for configurationC2 (Q51) from E5. We find no sign
of plateaus for anyk, and nothing special happens aroundk
52. Such behavior is characteristic forall configurations
from the ensembles in Table I. The same conclusion app
to functions Qk( f ) monitoring total charge. The smoot
monotonic behavior exhibited in Fig. 2 excludes the pos
bility that the bulk of the topological charge is effective
concentrated in a small subvolumeø iLi of typically isolated
lumps.

For another quantitative test, consider a configurat
with topological chargeQ and assumeit is dominated by
uQu1j unit lumps ~antilumps! and j antilumps~lumps!. If
the number of zero modes is minimal, i.e.,uQu5N0 ~true for
all our configurations!, then the dimension of the topologica
subspace isNL5uQu12j and we should have(xuqx

(j)u
[Qj,abs'NL5uQu12j. In fact, the quantity uQu12k
2Qk,abswould be close to zero for allk<j ~since each mode

FIG. 2. The functionQ1,k( f ) for configurationC2 (Q51) of
ensembleE5. The lowest curve corresponds tok51.
1-3
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I. HORVÁTH et al. PHYSICAL REVIEW D 67, 011501~R! ~2003!
in the topological subspace contributes approximately u
to Qk,abs), and it would start to increase rapidly fork.j. In
a theory where the topological mixing scenario is releva
monitoring thek dependence ofuQu12k2Qk,abs could thus
serve as a procedure for determining the dimension of
topological subspace for a given configuration. We ha
computed thisk dependence for all of our configuration
The minimal value is always achieved atk51 and is of order
1 rather than close to zero. Moreover, in ensemblesE4 ,E5,
where a wide range ofk is available, we observe a monoton
~linear! increase for every configuration. This robust beha
ior is illustrated in Fig. 3, confirming again that there are
signs of a distinctive topological subspace and hence
signs of dominance by unit lumps.

~iii ! The above arguments do not depend on specific p
erties ofLi , such as their shape, volume, or particular fie
content. The results show that the topological charge is
fectively carried by the bulk of the lattice, which is inconsi
tent with dominance by unit-quantized lumps. At the sa
time, we find inhomogeneous behavior with noticeable pe
in q(k), accompanied by visible coherence~seeCq(k) in Fig.
1!. As a first step toward understanding this structure,
now provide a simple characteristic of the typical values
charge associated with such coherent fluctuations. Give
arbitrary densityq, we consider the setsI l of centersof
coherent behavior with lattice resolutionAl , namely

I l[$x:uqyu,uqxu,qxqy.0;y;0,ux2yu2< l %.

The elements ofI l are local maxima ofuqu over distanceAl ,
for which the sign ofq is coherent over at least the sam
distance. Obviously,I 1.I 2.I 3.•••. To everyxPI l we
assign a radiusRx defined as the maximal distance fromx
over which the density is still coherent, i.e.,Rx>Al . The
chargeQx is also assigned by summing the density over
sphere of radiusRx centered atx. However, to be able to
interpretQx as a charge corresponding to an individual flu
tuation, there should typically be no other centers withinRx .

FIG. 3. uQu12k2Qk,abs for ensembleE4.
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This allows for fixing the resolution in a self-consistent w
by choosing the smallestl with this condition satisfied.

To carry out the above procedure meaningfully forq(k),
one should work in the range ofk where coherent fluctua
tions and their charges are relatively stable with respect
change ofk. For our ensembles, this is best satisfied forE4,
whereq(9) is available. In physical terms, this corresponds
including eigenmodes with imaginary parts up
'500 MeV. The fraction of overlapping centers drops d
matically ~to 5%! at l 53, which is the value we have use
The corresponding distribution of charges for nonoverla
ping centers is shown in Fig. 4. A property which is insen
tive to the choice ofk andl is that the distribution effectively
ends at about 0.5. This appears to hold also in the case o
densityqx ~with only two configurations available!. Interest-
ingly, this behavior might be compatible with the presence
center vortices in the QCD vacuum as the recent discus
of topology in the field of an idealized vortex suggests@13#
~the possible manifestation of center vortices in topologi
charge fluctuations was also recently discussed in Ref.@14#!.

To summarize, we have proposed that the low-energy
havior of the topological charge density can be studied
using a suitable nonlocal realization ofq(x) as a filter for
short-distance fluctuations. If one is interested in the asp
of topological charge affecting the low-momentum propag
tion of light quarks, then the appropriate nonlocal realizat
is naturally available through the low-eigenmode expans
of q(x). Such fermion filtering can be explicitly realize
starting from lattice-regularized theory. We have propos
the expansion ofqx associated with GW fermions as an ide
tool for this purpose. This provided us with a consiste
framework to test whether the propagation of light fermion
effectivelydriven by the dominance of unit topological lump
in the QCD vacuum. We find that this is not the case, imp
ing that the picture of SxSB based on the mixing of corre
sponding topological ‘‘would-be’’ zero modes is not acc
rate. We emphasize that we have not ruled out the log
possibility that some unit-quantized structures with we
defined boundaries can occur. However, we have shown

FIG. 4. Distribution of charges in coherent fluctuations for e
sembleE4.
1-4
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the bulk of the topological charge does not come in th
form. A first attempt to characterize the inhomogeneous
ture of topological charge fluctuations in filtered densit
resulted in very interesting results indicating that patterns
local behavior can provide us with detailed informati
about dynamically important structures in the QCD vacuu
ev
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