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We consider the lattice topological charge density introduced by Hasenfratz, Laliena, and Niedermayer and
propose its eigenmode expansion as a tool to investigate the structure of topological charge fluctuations in
QCD. The resulting effective density is built from local chiralities studied previously. At every order of the
expansion, the density exactly sums up to the global topological charge, and the leading term describes the
maximally smooth space-time distribution of charge relevant for propagating light fermions. We use this
framework to demonstrate our previous suggestion that the bulk of the topological charge in QCD does not
effectively appear in the form of quantized unit lumps. Our conclusion implies that it is unlikely that the
mixing of “would-be” zero modes associated with such lumps is the prevalent microscopic mechanism for
spontaneous chiral symmetry breaking in QCD. We also present the first results quantitatively characterizing
the space-time behavior of effective densities. For coherent fluctuations contained in spherical regions, we find
a continuous distribution of associated charges essentially endisg0es.
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Some intriguing effects in QCD, such as the large  double-peak structure present, the patterns in low eigen-
mass andd dependence, are related to vacuum fluctuationgnodes of the overlap operator are inconsistent with the pres-
of topological chargg1]. Understanding théocal structure ~ ence of a distinctive topological subspace, and hence with
of topological charge fluctuations is thus of great interest fothe topological mixing scenario. In this work, we propose a
building a detailed picture of how these phenomena arise iffamework generalizing the local chirality method, and use it
terms of fundamental degrees of freedom. Another importanto demonstrate this conclusiafirectly. The basis of our ap-
phenomenon possibly related to topological charge fluctuaproach is the topological charge densiy= 3trysD, x [7]
tions is spontaneous chiral symmetry breaking$8). This  associated withys-Hermitian D satisfying{D, ys} =D ysD
is based on the proposition that the effective low-energyGinsparg-Wilson(GW) fermiong. Note that since tys
structure of topological charge fluctuations in QCD is such=0, one can also writg,= —trys(C— 3D, ) with arbitrary
that in a typical configuratiomostof the topological charge constaniC. We chooseC=1 (see also Ref.8]), which guar-
is concentrated inN, typically nonoverlapping, four- antees that the eigenmode expansiormpis properly nor-
dimensional space-time regios, each containing a sign- malized and satisfies the index theorem for arbitrary trunca-
coherent lump of approximately unit topological chafge.,  tion (see below In this case we have
the generalization of the instanton liquid picturé true, this
would imply an appealing microscopic explanation for the
origin of Dirac near-zero moddg®] and hence the origin of
SxSB [3]. The connection to fermions arises by associating
with each lumpZ; a localized chiral modg' which “would ~ whereck= ¢} " ys¢} is the local chirality of the mode with
be” a zero mode in the absence of other lumps, and a formaeigenvalue\. For low-lying truncation (\|~0) this is ef-
tion of a topological subspace of low-lying eigenmodgs fectively the sum of individual local chiralities. Very re-
~2a;x',i=1,... N_. Verifying this “topological mix-  cently, Gattringer offered evidence for a large degree of self-
ing” scenario has long been hindered by inherent difficultiesduality in the vicinity of peaks of an eigenmode-filtered
in interpreting thelocal behavior of topological charge den- action density9]. If the extended nature of self-dual regions
sity for typical configurations of lattice-regularized theory. is confirmed, then combined with our conclusions one is led
We have argued4,5] that meaningful information can be to a picture of inhomogeneous, but essentially continuous
extracted indirectly by studying the local chirality of low- topological charge fluctuations at low energy, with a signifi-
lying modes. The flat behavior of the associa¥edistribu-  cant level of self-duality in the vicinity of local maxima. The
tion observed in the initial study suggested that topologicabrigin of the double-peaked behavior of local chirality would
mixing was not the origin of the near-zero modes, and alsdéhen be thelocal attraction of spinorial components by an
indicated the lack of extended self-dual excitatipfls How-  (anti-)self-dual field, as argued i#], with topological mix-
ever, later studies revealed the double-peaked beh@&jor ing not playing a role. In the last part of this work, we de-
which is qualitativelyconsistentvith both these aspects, but scribe the first attempt to characterize the typical amounts of
not sufficientfor their demonstratior{5]. Being agnostic topological charge associated with coherent fluctuations, as
about self-duality, we observed in RE5] that even with the well as some interesting quantitative results that emerged.
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(i) In the usual discussion of topological mixing, there is a TABLE I. Ensembles of Wilson gauge configurations.
paradox rooted in the negativity of the Euclidean topological : : _
charge-density correlator at nonzero distance, Ensemble a (fm) V. Configs.  Eigenpairs
& 6.00 0.093 1% 12 2
x)q(0))=<0, |x|>0. 2 1
(a09a(0) X @ & 6.20 0.068 26 8 2
This follows from reflection positivity and the fact that the &; 6.55 0.042 32 5 2
operatorq(x) is reflection-odd 10,11]. One consequence is & 5.91 0.110 1% 6 9
that it is impossible that in typical configuratiomsostof & 6.20 0.068 26 3 10

topological charge is concentrated in coherent four
dimensional lumps of finite physical siZe.g., instantons
Indeed, if this were the case and the typical size of suc (NP)=qX and sinceq® can be identically zero fo=0
e X !

lumps wasr, then the average correlator would be positive o nfigyrations, we considef®) to be the leading order in the
overre, thus contradicting2). This means that lumpg;  expansion. The infrared eigenmodes Dfare significantly
cannot be identified imj(x). _ ____smoother than the underlying gauge fi¢ll, and q*) is

These considerations do not rule out topological MiXiNgexpected to be maximally smooth. Réncreasesy® gradu-
as an effective low-energy scenario fofSB, but emphasize 4y incorporates more short-distance structure. This does not
the necessity of some short-distance filtering when studyingyean that there is a strict new cutoff present in filtered den-
these issues. This can be achieved by replacing the 10cgjties. However, ultraviolet fluctuations irrelevant for propa-
operatorq(x) by anonlocalone. While the use of nonlocal yation of light quarks are filtered out.
operators is generally unacceptable, here they will only servé \ye now use the overlap Dirac operaf®] (see details in
as a filter to smear the singular contact term in @jinto a  Ref.[5]) on Wilson gauge backgroundsee Table)ito dem-
finite positive core. The dominance of coherent structures ignsirate the basic properties of filtered densities discussed
then possible. Following up on our reasoning in RS,  ahove. We have calculated the full densifyor configura-
we propose that the low-energy truncation of the DiraCion ¢, from ensemblet,. In Fig. 1, we show its correlator
eigenmode expansion fai(x) (see below can serve as the C4(r) (normalized at the originand compare it t&€ ) and
physically motivated nonlocal operator needed. We stress th@q(le) for filtered densities. Note tha€, has a very short-

physical motivation because, for the problem at hand, theangeqd positive core as expected from E2). This provides
underlying issue is whether the light fermion effectively feels;,qiract evidence that the locality of the nonultralocal opera-

a collection of coherent ur)it lumps as it moves through thqor qis quite good. As for the correlato@yw, their range is
vacuum, or whether there is some other dynamics govemingyidently larger. The shape stabilizes at ab&st6 and

its propaggtion. Thi? is t.o b? decided by the fermiop. changes very slowly from then on. To further characterize
The desired fermion filtering can be realized starting fromy,o roughness of filtered densities, we calculate

lattice-regularized theory. Among the lattice topological

charge-density operators considered, the ones associated

with GW fermionic kernels are perhaps theoretically most (GW2=S (ql  —qld)2 (4)
appealing7]. These are constrained so that they sum up to ra

integer global charge defined by counting the exact zero

modes of the GW kernel used. The continuum gauge-fermion ® . (k)
correspondencéndex theorem for smooth gauge fields is and plotG asa functlon. ok. As e.xpect.edq beCO,”.“'-‘S
thus extended to the lattice by constructiaf). Before de- rougher asb_uncreases. While thphy3|c_al sizeof ‘h‘? positive
fining the filtered densities starting from EQ), it is useful core inC, is expected to go 10 zerg in the continuum limit,

to recall that the spectrum &@f containsN, zero modes with gﬁ:ljlsatr;)c()jtcnec?osrsZzger?ﬁ)l;?q(% T'Ic')hzesizteh?)tf t¥1vee hoi\ge
global chirality +1 (Ng) or —1 (Ng), N, modes at =2 q@ 1¢3- p

: L + - - : tive core in the average correlator was determinedras
with gllobal cglralltyt;ql (NZ)I ot: | 1h('N2I't), "f‘rr;]ng_ palrs_of fover the probability distribution given bfq@(r) in the
compiex modes with zero global chirality. The dimension o range from zero up to the maximal distance whege)(r) is
Dirac space isN=Ny+N,+2*N,, and the topological

h o e bt . - manifestly positive(with errors taken into accountAs can
charge 1SQ=20x=No =Ng =Nz =N, . We now assoc- ¢ geen in Fig. 1, the size scales well, indicating that if the
ate withq, the set of related densities

dominance of coherent four-dimensional structuresyift
No k can be established, these structures can survive the con-
(= c0i _ 2_Re\:)ch 3 tinuum limit.
X |=21 X jzl ( S ® (ii) Introduction of fermion-filtered densities allows us to
study the relevance of topological miximgnsistentlyIf the
representing the truncated eigenmode sum that includes abpological subspace of low-lying modaﬁ‘wzjaijxi, i

zero modes and thie lowest-lying complex pairs. Complex =1 ... N, is formed, then

eigenvalues\; enter the sum ordered on the upgkwer)

half of the spectral circle. Eigenmode-filtered densiti€s N,

are real an&®,q¥=Q=Ny —Ng , thus leading to identical S Wb~ s, yex=sx, s==1. (5

global fluctuations satisfying the index theorem. We have Xeli [=1
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0.1F 1 Fraction of Lattice Points
GMK)
L FIG. 2. The functionQ™*¥(f) for configurationC, (Q=1) of
0.08 | o ] ensemblefs. The lowest curve correspondshke-1.
0.06 L -
. 2 a?=Qi==1, 2k=N.—No )
0.04 | ) . -
002 | , . since Re\~0 for modes in topological subspace. Moreover,
the value of pure gauge topological susceptibility
0 e (=1fm~#) constrainsN, in lump-dominated configurations
0 2 4 6 8 10 12 14 16 of volume V fnf* to be N, ~V. This implies that the lumpy
(b) k structure should typically be saturateddff with k=<V/2.
0.35 . Consequen?lyq(z) is expected to be well sufficient for all
' <t>[fm] ensembles in Table I.
03 L il We now ask whether the subsetL; of the lattice con-
taining most of the topological charge can be identified using
025 | l 1 q®. A simple way to proceed is to order lattice points by the
| I magnitude ofg(® and compute the running sum of positive
0.2} ‘ ‘ | 1 [Q"X(f)] and negativ§ Q X(f)] charge as the fractiohof
the highest points included increases. Functiofs< (Q )
015 1 i should stabilize to a constarv=(integer-valueglplateau at a
04 | | well-defined value of corresponding to the fraction of vol-
) ume occupied byJ;Z; . In Fig. 2, we show the behavior of
0.05 - ) Q" for configurationC, (Q=1) from &. We find no sign
of plateaus for ank, and nothing special happens around
0 . : . . . . =2. Such behavior is characteristic fatl configurations
0 002 004 0.06 008 01 012 from the ensembles in Table I. The same conclusion applies
(c) affml] to functions QX(f) monitoring total charge. The smooth

monotonic behavior exhibited in Fig. 2 excludes the possi-

from &,. (b) Roughnes&® of g for the same configuration. For bility that the bulk of the topological charge is effectively
the full density,G™»'=0.87. (c) Size of the positive core of the concentrated in a small subvolurhig £; of typically isolated

averageCy) correlator for ensemble$; —&;. The Sommer param- lumps. o ) ) )
eter was used to set the scale. For another quantitative test, consider a configuration

with topological chargeQ and assumeit is dominated by

|Q|+ & unit lumps (antilumps and ¢ antilumps (lumps. If

the number of zero modes is minimal, .| =N (true for
This implies that the structure of quantized unit lumfs  all our configurationg then the dimension of the topological
will be revealed ing™ when all modes belonging to the subspace isN,=|Q|+2¢ and we should haves,|q{?)|
topological subspace are included. Indeed, from Bywe =Q%¥S<~N, =|Q|+2¢. In fact, the quantity |Q|+ 2k
have —Q"aswould be close to zero for all< ¢ (since each mode

FIG. 1. (@ C4, Cqw, and C?<(16) for configurationC, (Q=0)
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FIG. 3.|Q|+2k—Q"2*for ensemblet,. FIG. 4. Distribution of charges in coherent fluctuations for en-
sembleé&,.

in the topological subspace contributes approximately unit
to Q%29 and it would start to increase rapidly fer£. In
a theory where the topological mixing scenario is relevant

monitoring thek dependence dRQ| T.ZK_Qkyab.scowd. thus  one should work in the range & where coherent fluctua-
serve as a procedure for determining the dimension of thg,ng ang their charges are relatively stable with respect to a
topological subspace for a given configuration. We have:pange ofk. For our ensembles, this is best satisfieddgr
computed thisk dependence for all of our configurations. \yhereq(® s available. In physical terms, this corresponds to
The minimal value is always achievedkat 1 and is of order  jncjuding eigenmodes with imaginary parts up to
1 rather than close to zero. Moreover, in ensembles’s,  ~500 MeV. The fraction of overlapping centers drops dra-
where a wide range d&fis available, we observe a monotonic matically (to 5%) at| =3, which is the value we have used.
(linean increase for every configuration. This robust behav-The corresponding distribution of charges for nonoverlap-
ior is illustrated in Fig. 3, confirming again that there are noping centers is shown in Fig. 4. A property which is insensi-
signs of a distinctive topological subspace and hence ntive to the choice ok andl is that the distribution effectively
signs of dominance by unit lumps. ends at about 0.5. This appears to hold also in the case of full
(iii ) The above arguments do not depend on specific propdensityq, (with only two configurations availablelnterest-
erties of£;, such as their shape, volume, or particular fieldingly, this behavior might be compatible with the presence of
content. The results show that the topological charge is efeenter vortices in the QCD vacuum as the recent discussion
fectively carried by the bulk of the lattice, which is inconsis- of topology in the field of an idealized vortex suggeis]
tent with dominance by unit-quantized lumps. At the same(the possible manifestation of center vortices in topological
time, we find inhomogeneous behavior with noticeable peaksharge fluctuations was also recently discussed in [Réf).
in g, accompanied by visible coheren@eeC ) in Fig. To summarize, we have proposed that the low-energy be-
1). As a first step toward understanding this structure, wehavior of the topological charge density can be studied by
now provide a simple characteristic of the typical values ofusing a suitable nonlocal realization qfx) as a filter for
charge associated with such coherent fluctuations. Given aghort-distance fluctuations. If one is interested in the aspects
arbitrary densityq, we consider the setg' of centersof  of topological charge affecting the low-momentum propaga-
coherent behavior with lattice resolutigfi, namely tion of light quarks, then the appropriate nonlocal realization
is naturally available through the low-eigenmode expansion
of gq(x). Such fermion filtering can be explicitly realized
starting from lattice-regularized theory. We have proposed
the expansion of], associated with GW fermions as an ideal
The elements of ' are local maxima ofq| over distance/l,  tool for this purpose. This provided us with a consistent
for which the sign ofq is coherent over at least the same framework to test whether the propagation of light fermion is
distance. ObviouslyZ'DZ?D73%>---. To everyxeI' we effectivelydriven by the dominance of unit topological lumps
assign a radiuR, defined as the maximal distance from in the QCD vacuum. We find that this is not the case, imply-
over which the density is still coherent, i.&,=\1. The ing that the picture of $SB based on the mixing of corre-
chargeQy is also assigned by summing the density over thesponding topological “would-be” zero modes is not accu-
sphere of radiusk, centered a. However, to be able to rate. We emphasize that we have not ruled out the logical
interpretQ, as a charge corresponding to an individual fluc-possibility that some unit-quantized structures with well-
tuation, there should typically be no other centers wiRjn defined boundaries can occur. However, we have shown that

yI'his allows for fixing the resolution in a self-consistent way
by choosing the smallestwith this condition satisfied.
' To carry out the above procedure meaningfully ¢,

T'={x:|ay|<[a,a,a,>0Vy;0<[x—y|><I}.
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