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We use the procedure of pinched-weight finite energy sum rules to determine the operator product expansion
~OPE! coefficientsa6 , . . . ,a16 of the flavorud V2A correlator in terms of existing hadronict decay data. We
show by appropriate weight choices that the error on the dominantd56 contribution, which is known to be
related to theK→pp matrix elements of the electroweak penguin operator in the chiral limit, may be reduced
to below the;15% level. The values we obtain for OPE coefficients withd.8 are shown to naturally account
for the discrepancies between our results for thed56 andd58 terms and those of previous analyses, which
were obtained neglectingd.8 contributions.
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I. INTRODUCTION

In a recent work@1#, a pinched-weight finite energy sum
rule ~PFESR! analysis of the flavorud two-point V2A cur-
rent correlator,DP(Q2), was performed. This allowed ex
traction of the dimension sixV2A operator product expan
sion ~OPE! coefficient, a6, which is related by chiral
symmetry to theK→pp matrix element of the electrowea
penguin operator,Q8. The result fora6 led directly to an
improved determination ofe8/e in the chiral limit.

The current paper is devoted to a more detailed accoun
this analysis. In it, we present the rationale for our choice
weight functions, describe the calculation of higher dime
sion OPE contributions, and discuss the relation of our w
to previous treatments of theV2A correlator. The advan
tages of the particular version of the FESR formulation e
ployed in our analysis are pointed out.

A. Background

We recall that nonstrange hadronict decay data provide
access to the spectral functions of the flavorud vector ~V!
and axial vector~A! current correlators@2–5#. With JV,A

m the
standardV,A currents and the standard definitions of the s
J50,1 parts of the correlators,

i E d4xeiq•x^0uT@JV,A
m ~x!JV,A

n ~0!†#u0&

[~2gmnq21qmqn!PV,A
(1) ~q2!1qmqnPV,A

(0) ~q2!, ~1!

the ratios
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RV,A[
G@t2→nthadronsV,A~g!#

G@t2→nte
2n̄e~g!#

~2!

@with (g) indicating additional photons or lepton pairs# are
expressible as weighted integrals over the correspond
spectral functionsrV,A

(J) [(1/p)Im PV,A
(J) . Working with the

combinationsPV,A
(011)(s)[PV,A

(0) (s)1PV,A
(1) (s) andsPV,A

(0) (s),
which have no kinematic singularities, one has, explici
@2–5#,

RV,A512p2SEWuVudu2E
0

mt
2 ds

mt
2 S 12

s

mt
2D 2

3F S 112
s

mt
2D rV,A

(011)~s!2
2s

mt
2
rV,A

(0) ~s!G ~3!

where SEW51.019460.0040 represents the leading ele
troweak corrections@6#,1 and Vud is the ud Cabibbo-
Kobayashi-Maskawa~CKM! matrix element.2 Since the in-
tegrals over theJ50 part of the spectral function ar
saturated by the pion pole contribution, up to numerica
negligible corrections ofO(mu,d

2 ), nonstrange hadronict de-
cay data provide detailed information on the sumrV

(011)(s)

1A recent update@7# yields SEW51.020160.0003, compatible,
within errors, with the value 1.019460.0040 quoted above, an
employed in our recent paper@1#. Since the60.0040 uncertainty on
SEW produces a negligible contribution to our total errors below,
have chosen to retain the input employed in Ref.@1# in what fol-
lows.

2The additional radiative correction, conventionally denoteddEW8 ,
has been dropped in writing this equation since it cancels in thV
2A difference which is the subject of this paper.
©2003 The American Physical Society13-1
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1rA
(011)(s). For states containing only pions, G-parity allow

an unambiguous separation of theV and A components of
this sum. In the range where the decay to states contai
kaon pairs is negligible~say s<2 GeV2), the individualV
and A terms, and hence also the differenceDr[rV

(011)

2rA
(011) , are thus known very accurately from experime

Knowledge of theV and A spectral functions allows ac
cess to the corresponding correlators through the use o
ther dispersion relations or FESR’s. The latter may be ta
to have the form

E
sth

s0
dsr~s!w~s!5

21

2p i Rusu5s0

dsP~s!w~s!, ~4!

valid for anyw(s) analytic in the region of the contour, an
anyP(s) without kinematic singularities. An example is th
standard OPE representation ofRV,A @2–5#,

RV,A56pSEWuVudu2i R
usu5mt

2

ds

mt
2S 12

s

mt
2D 2

3F S 112
s

mt
2D PV,A

(011)~s!22
s

mt
2
PV,A

(0) ~s!G , ~5!

which results from the application of Eq.~4! to Eq. ~3!.
If one works at sufficiently larges0 that the OPE repre

sentation ofP(s) may be used reliably on the right-han
side ~RHS! of Eq. ~4!, appropriate choices for the weigh
w(s) allow one to determine OPE contributions of differe
dimension,d, in terms of experimental data forr(s) ~analo-
gous statements are true for the corresponding dispersio
lations and/or their Borel transforms!. To reflect the fact that
P(s) will differ from its OPE representation over at lea
some portion of the contourusu5s0, we recast Eq.~4! in the
general form

E
sth

s0
dsr~s!w~s!1R@s0 ,w#

5
21

2p i Rusu5s0

dsPOPE~s!w~s!, ~6!

where

R@s0 ,w#[
21

2p i Rusu5s0

ds@POPE~s!2P~s!#w~s!. ~7!

R@s0 ,w# then quantifies what is usually referred to as ‘‘OP
breakdown’’ or ‘‘duality violation.’’

Due to the intractibility of strong-coupling QCD, it is no
possible at present to obtain an analytic expression
R@s0 ,w#, and its neglect~common to all FESR analyses!
therefore represents a key dynamical assumption. There
several strategies, however, to minimize the impact of
assumption:

~i! Work at the highest possibles0[smax, wheresmax is
the maximum value ofs for which r(s) is experimentally
known. At highs0, one has increased confidence in the re
05401
ng
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ability of the OPE. One can check the stability of any nom
nal OPE output against changes ins0 to assess theoretica
uncertainties associated with possible OPE breakdown.

~ii ! Work in the vicinity of certain ‘‘optimal’’ s0 values
s0

(d) , called duality points @8#. The set of all suchs0
(d) is

nothing but the zeros ofR@s0 ,w# for certain special weight
choices. By ‘‘special’’ is meant that the zeros can be de
mined independent of the values of any unknown OPE c
densates. For example, the weightsw(s)51 and w(s)5s
are special for theV2A correlator, since thed52 and d
54 OPE contributions are known to be zero in the chi
limit @this is the OPE statement of the two Weinberg su
rules ~WSR’s! @9##. In general, the sets of zeros ofR@s0 ,w#
for different correlators and/or different weights a
different.3 The duality point approach relies on the observ
tion that, for theV2A correlator, thew(s)51 duality points
lie close to the correspondingw(s)5s duality points~two
such points exist in the interval 0,s0,mt

2). This is taken to
suggest the possibility that the zeros ofR@s0 ,w# for all w(s)
might be~approximately! the same. If so, sum rules based
other weights would be reasonably satisfied at thew(s)
51, w(s)5s duality points. Such sum rules, restricted
these values ofs0, could then be used to extract unknow
OPE coefficients. However, the uncertainty about how cl
the true duality point for a given sum rule is to that for th
w(s)51,s sum rules will produce a corresponding unce
tainty in the extracted OPE coefficients. This uncertainty c
be large if thes0 dependence of the corresponding spec
integrals is strong@as it is, for example, for the weight
w(s)5sk with k>2].

~iii ! Work with ‘‘pinched weights,’’ i.e., those satisfying
w(s0)50. Such weights suppress OPE contributions fro
the region of the contour near the timelike real axis wh
@POPE2P# is expected to be largest@11#. R@s0 ,w# will then
be small at those scales,s0, for which the region of OPE
breakdown, on the contourusu5s0, is restricted to the vicin-
ity of the timelike point. If the region of scales for which th
is true extends down as far as the experimentally access
region, one can find a window ofs0 values within which the
data-based spectral integrals admit an OPE-like represe
tion @as given by the RHS of Eq.~6!# for suitable choices of
the unknown QCD parameters~i.e. the appropriate OPE con
densates!. A successful OPE/data match implies th
R@s0 ,w# is not detectable, within experimental errors, in t
given analysis window. The analysis window then represe
an extended dualityinterval, since every point in it, in the
sense of the terminology above, is a duality point. Moreov
working with weights which differ significantly in the way
they weight the experimental spectral data, but whose in
grated OPE contributions involve the same set of QCD
rameters, allows one to perform additional checks.

We shall follow the last of these approaches and emp
PFESR’s to analyze theud V2A correlator. Evidence in sup
port of this choice can be inferred from the results of FE
studies of the flavorud V and A correlators, where one

3See, for example, Fig. 1 of Ref.@10#.
3-2
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knows with good accuracy both the data and the OPE i
grals for s0 above ;2 GeV2. These studies show tha
FESR’s based on theunpinched weights, w(s)5sk

(k50, . . . ,3), arerather poorly satisfied over the rang
2 GeV2,s0,mt

2 @12,10# ~i.e., at these scales,R@s0 ,sk# is
typically large!. In contrast, the FESR predictions, Eq.~5!,
for RV andRA , which are obtained by taking the appropria
linear combinations of thew(s)51,s2 ands3 FESR’s, with
s0 set equal tomt

2 and R@mt
2 ,w# to zero, are in extremely

good agreement with experiment@13,14#. The failure of the
sk-weighted FESR’s is a manifestation of the breakdown
the OPE representation near the timelike reals axis for in-
sufficiently larges0, as shown by Poggio, Quinn and Wei
berg ~PQW! @11#. The success of the OPE predictions f
RV,A presumably arises from the suppression of this dan
region by the~double! zeros of the kinematic weights ats
5mt

2 ~the edge of hadronic phase space!. It turns out that for
any weight of the form eitherwN(y)5(12y)(11Ay) or
wD(y)5(12y)2(11Ay) ~with A arbitrary andy5s/s0),
the correspondingRV,A-like PFESR is extremely well satis
fied for all s0 in the range 2 GeV2,s0,mt

2 @12,10#. This
indicates that for the separateV and A correlators, and for
such ‘‘intermediate’’ scales, the OPE breakdown is clos
localized to the vicinity of the timelike real axis. At thes
scales, it appears safe to neglectR@s0 ,w# also for other cor-
relators providedw(y) satisfiesw(y51)50, but not other-
wise. A more detailed discussion of these issues may
found in Sec. V.

B. Summary of content

In this paper we focus on the differenceDP5PV
(011)

2PA
(011) of theJ5011 components of the flavorud Vand

A correlators. In the chiral limit, its OPE is purely nonpe
turbative, with contributions beginning at dimensiond56.
The smallness ofmu,d means that the physical OPE will b
dominated byd56 ~and higher! terms, at least until one get
to extremely large scales. Accurate data for the associ
spectral functionDr thus allow the extraction of variou
vacuum condensate combinations. Of particular interest
the two condensates appearing in thed56 part of@DP#OPE,
which turn out to determine the chiral limit values of theK
→pp matrix elements of the electroweak penguin operat
Q7,8 @15#. Thed.6 terms in@DP#OPE, which enter disper-
sive sum rules for these matrix elements@16,17#, are also of
phenomenological interest since a determination of their
ues would allow the dispersive determination of Ref.@17# to
be performed at lower scales, where uncertainties assoc
with the classical chiral sum constraints are drastically
duced.

We will extract the higher dimension (d.4) terms ap-
pearing in the OPE ofDP by constructing a set of PFESR
designed in such a way as to minimize the impact of exp
mental errors. As we will show below, it is possible to ma
such determinations ford56, . . . ,16with good accuracy us
ing the existing experimentalt decay data base.

In Sec. II, we detail the input required for the OPE a
data sides of the flavorud V2A t decay sum rules and
05401
e-

f

er

y

e

ed

re

s

l-

ted
-

i-

discuss some practical considerations relevant to the ch
of PFESR weight. In Sec. III, we describe how, by approp
ate PFESR choices, it is possible to~i! significantly improve
on previous determinations of thed56 andd58 OPE con-
tributions and~ii ! at the same time, extract OPE contrib
tions with dimensionsd510, . . . ,16 notobtained in those
earlier analyses. A comparison with previous analyses is
sented in Sec. IV. An expanded discussion of the issue
duality violation is given in Sec. V. This section also contai
an outline of the techniques we have employed to test for
presence of possible residual duality violation in our analy
of the V2A correlator. Certain details of these tests whi
are relevant to the comparison to earlier work are deferre
the Appendix. Our conclusions, together with a brief disc
sion, are given in Sec. VI. The implications of our results f
the chiral-limit values of the electroweak penguin matrix
ements have already been worked out in Ref.@1#.

II. SUM RULE ANALYSES OF THE
VÀA CORRELATOR DP

We now describe the input required for the OPE and d
sides of the flavorud V2A sum rules. The emphasis is o
practical considerations relevant to the choice of PFE
weight functions.

A. The data side

We shall employ both the ALEPH and OPAL data forDr
@13,14#. The respective ALEPH and OPAL spectral functio
are displayed in Fig. 1.4

In the case of ALEPH, we use the publicly available da
files corresponding to the 1998 analysis, whose overall n
malization was set by the preliminary result for the resca
total strange hadronic branching fraction,Rus[Bus /Be ,
Rus50.155, and the 1998 PDG values ofBe and Bm . The
1999 published version,Rus50.161 @18# and the recent up-
date,Rus50.1625@19,20# both differ slightly from the pre-
liminary value. This change, together with minor changes
the values ofBe , Bm and thet→pnt branching fraction,
Bp , necessitates a small global rescaling of the 1998V2A
data and covariance matrix.5 An input value ofVud is re-
quired to convert from the experimental number distributi
provided by ALEPH toDr. We have taken this to beVud
50.974260.0016, a value which spans both the range ba
on theKe3 decay analysis and that based on the combina
of 01→01 nuclear decays and neutron decay, as quote
PDG2002@21#. In the case of OPAL, we use the public
available data files forDr and its correlation matrix, corre
sponding to the results of Ref.@14#. These files were con
structed using a central valueVud50.9753. We have, there
fore, performed a small global rescaling in order to wo

4The points shown represent bin-averagedDr(s) values and are
plotted at the midpoints of the ALEPH/OPAL experimental bins

5We thank Shaomin Chen for pointing out the necessity of t
rescaling to us. ForRus50.1625, the PDG2002 average value@21#
Be50.1781,Bm as implied bym-t universality and thepm2 value
of Fp , the rescaling turns out to be 1.003, i.e., very close to 1.
3-3
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with ALEPH and OPAL versions of the spectral functio
which both correspond toVud50.974260.0016.

As noted previously, the data are very accurate belos
;2 GeV2. Near the kinematic end pointyt51 (yt

[s/mt
2), however, the errors onDr become large. This is a

consequence of several factors:
~i! The event rate becomes small in that region due

phase space suppression.
~ii ! There is, at present, no complete separation ofV andA

contributions to the spectrum for states containing aKK̄ pair
and>1 p ’s.

FIG. 1. The ALEPH~top panel! and OPAL~bottom panel! ver-
sions of theV2A spectral function. The errors shown are t
square roots of the diagonal entries of the corresponding covari
matrices.
05401
o

~iii ! In order to extractDr from the experimental deca
distribution @cf. Eq. ~3!# one must divide by the kinemati
weight factorwt(yt)5(12yt)

2(112yt). The double zero
of wt at s5mt

2 thus amplifies the errors on theV2A number
distributions for thoses nears5mt

2 .
In view of item ~iii !, pinched weights with only a single

zero ats5s0 will weight the experimental number distribu
tion and errors with a factor which diverges ass→s0 for s0

nearmt
2 . Such behavior is to be avoided if one wishes

keep the errors on the weighted spectral integrals under
trol. For this reason we restrict our attention in the followin
to PFESR’s based on polynomial weights of the fo
p(y)(12y)2 (y[s/s0). Though this restriction is forced on
us by necessity, it has the virtue of enforcing a stronger s
pression of OPE contributions from the vicinity of the tim
like real axis, and hence of improving the reliability of th
OPE side of the PFESR’s.

An important practical consideration in choosing PFES
weights is the nonpositive definiteness ofDr. Even with the
very precise data below 2 GeV2, weighted integrals which
involve significant cancellations between contributions fro
the regions of positive and negativeDr will have much
larger fractional errors than would be expected based only
the accuracy of the spectral data alone. For some of
weights employed previously in the literature, for examp
the V2A cancellation is at the level of a few percent of th
individual V andA integrals, leading to large errors and si
nificant sensitivities~as large as 20%! to the exact treatmen
of the p pole contribution. Avoiding strong cancellations o
this type is crucial to reducing the errors on the final det
minations of the various vacuum condensates. To quan
this point in our discussions below, we introduce a quan
r V2A defined as the ratio of theV2A spectral integral to the
corresponding vector spectral integral.

B. The OPE side

The OPE representation ofDP is schematically of the
form

DP~Q2!5 (
d52,4,•••

Xd

Qd
, ~8!

whereQ252s. Perturbative corrections lead to logarithm
dependences of theXd on Q2. To NLO in QCD one has

Xd5ad~m!1bdlogS Q2

m2D . ~9!

The bd(m) are known explicitly ford52,4,6, but not for
higherd. For polynomial weights, OPE contributions propo
tional to bd(m) involve the integrals* uxu51dxxklog(x). For
the weightsw(y)5p(y)(12y)2 employed in our analysis
the variations of sign in the coefficients ofw(y) produce
significant cancellations~and hence additional numerica
suppressions! of these contributions relative to those of th
leading nonlogarithmic terms. We thus consider it very s

ce
3-4
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to follow earlier analyses in neglecting such corrections
d>8. The remaining nonlogarithmic OPE integral contrib
tions follow from

21

2p i Rusu5s0

dsF ad

QdG S s

s0
D k

5~21!kdk,(d/2)21Fad

s0
k G . ~10!

Weights of degree 2 thus contain leading OPE contributi
up to d56, those of degree 3 contributions up tod58, etc.
Neglect of d510, . . . ,2N12 contributions in PFESR’s
based on weights with degreeN.3 is therefore dangerou
unless one is working ats0 large enough that such contribu
tions may be taken to be safely small. Typically one does
know a priori how large ans0 is ‘‘large enough’’; however,
the stronger 1/s0-dependence of the higherd integrals allows
this question to be addressedpost facto, provided one works
with a range ofs0 large enough to expose the presence
higher d contributions which may have been omitted wh
they should not have been. If one finds that the range os0
employed is such that the presence of such contribution
indicated, one can use the PFESR in question to place
straints on the relevant higher dimensionad terms. Obvi-
ously, both the reliability of thepost factocheck and the
accuracy of the higherd extraction will be enhanced fo
PFESR’s having fewer separatead contributions on the OPE
side of the sum rule and larger separations between the
mensions of the contributions which do occur.

The d52 term in Eq.~8! is of O(mu,d
2 ). That it can be

safely neglected can be confirmed numerically by integra
the J5011 expression of Ref.@22#, which is known to
O(as

2).6

The d54 term in Eq.~8! is given by@3,26#

@DP~Q2!#d545S 8

3
ā1

59

3
ā2D ^~mu1md!ūu&

Q4
, ~11!

6The reader might worry that the rather bad behavior of the in
gratedJ50, d52 OPE series precludes reliably subtracting t
non-p-pole part of theJ50 contribution from the data, and henc
prevents us from making such a definitive statement. While it is t
that ~i! for the kinematic weight case shown above, the last th
terms in the integratedJ50 d52 series@which is known toO(as

3)
@23## are actually increasing@23,24#, even at the scales05mt

2 and
~ii ! theO(as

3)-truncatedJ50 d52 OPE integrals corresponding t
different ‘‘(k,0) spectral weights’’@4# display a significant unphysi
cal dependence onk @25#, this turns out not to be a problem. Th
reason is that the behavior of the integratedJ50 series has been
investigated in the analogous case involving the flavorus currents,
where additional sum rule constraints were shown to allow a de
mination of the corresponding spectral integrals@25#. The
O(as

3)-truncatedJ50 OPE estimates were found to represent s
nificant overestimates@25#. We may thus use the~albeit poorly be-
haved! OPE determinations to conclude that, apart from thep pole
contribution, thed52 J50 contributions to the measured spect
distribution are indeed completely negligible. TheJ5011 part of
the spectral function can thus be reliably determined. The integr
series inas for thed52 J5011 OPE contribution converges wel
and is numerically negligible.
05401
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where ā[as(Q
2)/p, with as(Q

2) the running coupling at
scalem25Q2 in the MS scheme. The quark condensate fa
tor can be evaluated using the GMOR relation@27#

^~mu1md!ūu&52Fp
2 mp

2 , ~12!

which is accurate to better than 6%@28#. We compute the
weighted integrals of@DP(Q2)#d54 using the ‘‘contour im-
provement’’ scheme@4,29#, taking for ā the version corre-
sponding to 4-loop running@30# with the ALEPH determina-
tion @13# as(mt

2)50.33460.022 as input. This contribution
represents only a small correction to the dominantd56 term
because of theO(mu,d) chiral suppression. In the numerica
analysis we have expanded to620% the errors assigned t
the GMOR evaluation of thed54 OPE contributions in or-
der to account for the truncation of the series for the Wils
coefficient atO(ā2). Because thed54 contribution is so
small, the resulting contribution to the total error is, howev
negligible.

Observe that in the chiral limit thed52 andd54 contri-
butions are zero. Takinga25a450 is then the OPE imple-
mentation of the first and second WSR’s. To the extent t
we usea250 and a4;mp

2 the WSR’s are built into our
procedure.

For thed56 contribution, there exist several determin
tions in the literature@17,31,32#, corresponding to differen
schemes for the choice of evanescent operator basis@33#.
Since one of our goals is to use our results for thed56
contribution to improve the determination of the chiral lim
value of the electroweak penguin contribution to theK
→pp decay amplitudes, we employ the most recent de
mination @17#, which corresponds to the same scheme
used in the calculation of the Wilson coefficients of the
fective weak Hamiltonian@34#.7 To simplify the later appli-
cation of our results it is also convenient to work with th
vacuum condensates^O1& and ^O8& defined in Ref.@17#,

^O1&5 K q̄gm

t3

2
qq̄gm

t3

2
q2q̄gmg5

t3

2
qq̄gmg5

t3

2
qL ,

^O8&5 K q̄gmla
t3

2
qq̄gmla

t3

2
q

2q̄gmg5la
t3

2
qq̄gmg5la

t3

2
qL , ~13!

whereq5u,d,s, t3 is a Pauli~flavor! matrix, and$la% are
the Gell-Mann color matrices. With these choices one ha

@DP~Q2!#d565
1

Q6Fa6~m!1b6~m!ln
Q2

m2G , ~14!

with

-

e
e

r-

-

l

ed7An independent determination of@DP#d56 in this scheme was
given in Ref.@35#. The results quoted in version 2 of this referen
are now in agreement with those of Ref.@17#.
3-5



n
h
is

ll
te

,
-

t
,

al
f

li

, t
t
o

m

de-
-

m-
der
o

his

-

e.
r
e

-
set

r

-

-
ra-
g

ce

f

to
co

al

CIRIGLIANO, GOLOWICH, AND MALTMAN PHYSICAL REVIEW D 68, 054013 ~2003!
a6~m!52@2p^asO8&m1A8^as
2O8&m1A1^as

2O1&m#,

b6~m!52@B8^as
2O8&m1B1^as

2O1&m#, ~15!

whereA1 , A8 , B1 and B8 are the coefficients tabulated i
Ref. @17#.8 They depend on the number of active flavors, t
scheme employed forg5, and the evanescent operator bas
For Nf53, the values for the NDR and HVg5 schemes are

A152~NDR!, 210/3~HV!

A8525/4~NDR!, 21/4~HV!

B158/3~NDR and HV!

B8521~NDR and HV!. ~16!

The logarithmic (B1,8) terms turn out to play a very sma
role in the analysis, though we have kept them for comple
ness. We do this by first writingb65a6(b6 /a6) and then
employing the existing dispersive determination of^O1& and
^O8& @17# to estimater 65b6 /a6. With this estimate as input
the integratedd56 OPE contribution is now, like the non
logarithmic d56 term, proportional toa6. The overalla6
factor multiplying the fulld56 contribution is then to be fi
to data. The central value forr 6 turns out to be very small
.20.03. Since only the first term in the expansion ofb6 in
powers ofas is known, we assign a~conservative! 50% un-
certainty to this estimate.

For d58 and higher we take

@DP~Q2!#d5
ad

Qd
. ~17!

With this notation,a8 is identical to^O8& of Ref. @36# and
O8 of Ref. @37#. It is also twice the negative of the integr
M3 of Refs. @35,38#, independent ofs0, in the absence o
duality violation in thes3-weighted FESR.

III. EXTRACTION OF OPE CONDENSATES
FROM PFESR’S

A. Choice of PFESR weights and thes0 analysis window

We consider a sequence of PFESR’s designed to simp
the extraction of the OPE coefficientsad of DP. Working
with PFESR’s allows us to take advantage of the freedom
the choice of weight profile, and hence, by construction
avoid strongV2A cancellations. The freedom of weigh
choice also allows us to considerably simplify the task

8The coefficientsa6 and b6 appearing here differ from those o
Ref. @17# by a factor of 2. This reflects the fact that in Ref.@17# the
coefficients correspond to the neutral isovector current correla
while here they correspond to the charged isovector current
relator. The~isospin! factor of 2 has been made explicit in Eqs.~15!.
The A1 , A8 , B1 andB8 of Eqs.~15! thus have the same numeric
values as in Ref.@17#.
05401
e
.

-

fy

in
o

f

constraining thed.8 contributions and separating the
from thed56 andd58 contributions.

Within the space of PFESR weightsw(y)5p(y)(12y)2

employed in our analysis, the weight of lowest possible
gree is w(y)5(12y)2. In a zero-error world, the corre
sponding PFESR would allow an extraction ofa6. Unfortu-
nately, this weight produces a high degree ofV2A
cancellation, and hence is not practical for use when e
ployed with present experimental data. We thus consi
weights of degree 3~the highest degree possible involving n
ad contributions with d.8), w(y)5(12y)2(11Ay).
There will be some value ofA for which the fractional errors
on the spectral integrals are minimized. It turns out that t
value is almost exactly equal to23. The PFESR based on

w1~y!5~12y!2~123y! ~18!

will then provide the most restrictive constraint ona6 , a8,
and this is our first choice of weight. The weightw2(y)
5y(12y)2 also has reducedV2A cancellation, and pro-
vides independent constraints on the determination ofa6 and
a8, since degree three polynomials yield onlya4 , a6 anda8
OPE contributions, anda4 is small. Thes0 dependence of
both thew1- andw2-weighted spectral integrals will be well
described using only two parameters,a6 and a8, provided
the use of the OPE representation is justified.w2 has been
chosen, by construction, to weightDr(s)5Dr(s0y) with a
profile very different fromw1 to make this test of the reli-
ability of the OPE representation as nontrivial as possibl

We determine ours0 analysis window by fixing the uppe
edge ats053.15 GeV2.mt

2 and decreasing the lower edg
until the fitted coefficients cease to be consistent~within ex-
perimental errors!. Since a6 is the most accurately deter
mined coefficient we use it as our basic monitor of the on
of duality violation. We find that duality violation for the
V2A correlator and thew1 , w2 weight set begins to set in
belows0;1.8 GeV2, and hence we fix the lower edge of ou
analysis window at 1.95 GeV2.

To investigated.8 contributions it is convenient to con
struct weights for which the only OPE contributions withd
.4 are those proportional toa6 and ad , with d
510,12, . . . . Thepossibility of working with s0 down to
;2 GeV2 is also helpful since an increased range ofs0 cre-
ates an increased variation in the relative size of thed
510,12, . . . andd56 contributions over the analysis win
dow, and hence improves our ability to perform the sepa
tion of contributions of different dimension. Weights havin
a double zero aty51, reducedV2A cancellation, and only
a singlead contribution beyondd56, are

wN~y!5yF12S N

N21D y1S 1

N21D yNG N52,3,4,5,6.

~19!

The overall factor ofy has been introduced in order to redu
the level ofV2A cancellation. The caseN52 corresponds
to the previously introduced weightw25y(12y)2. For N
.2, wN(y) produces contributions proportional toa4 , a6
anda2N14 on the OPE side of the sum rule. We considerN

r,
r-
3-6
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QCD CONDENSATES FOR THE LIGHT QUARKV2A . . . PHYSICAL REVIEW D68, 054013 ~2003!
up to 6, and hencead contributions withd up to 16.9 Since
each of the resulting sum rules allows a determination
both a6 and a2N14, the consistency of thea6 solutions ob-
tained from thew1 through w6 PFESR’s also provides
strong self-consistency constraint on the reliability of t
analysis. Further constraints ona8 and the higher dimension
ad can be obtained by considering the weights

w41N~y!5yF12S N

N22D y21S 2

N22D yNG N53,4,5,6.

~20!

These weights producea4 , a8 and ad contributions withd
510,12,14 and 16 forN53,4,5 and 6, respectively. Thea8
and ad.8 values extracted usingw7 throughw10 should be
consistent with those obtained usingw1 through w6, pro-
vided the OPE representation ofDP is reliable for thes0
employed in our analysis. We find the consistency is exc
lent for all thead with d.4.

Finally, we observe that PFESRs based on the weight
Eqs.~19! and ~20! allow one in principle to extract conden
sates of even higher dimension. With the present experim
tal errors, however, higher degree PFESR’s effectively w
with a smaller analysis window, localized arounds0
52 GeV2 ~points at highers0 suffer from much larger ex-
perimental errors, and become irrelevant in the analys!.
This feature weakens the power of this method to de
inconsistencies through the use of an extendeds0 analysis
window. We therefore quote our results for the condensa
only up tod516.

With the above choice of weights, and assumi
R@s0 ,w#50, thew1 throughw10 PFESR’s may be written a

Jwn
~s0!5 f wn

~$ad%;s0! ~21!

where

Jwn
~s0!5E

0

s0
dswnS s

s0
DDr~s!1

1

2p i

3 R
usu5s0

dswnS s

s0
D @DPOPE~s!#d54 ~22!

9We also investigated PFESR’s based on the weightsw̄N(y)5$1
2@N/(N21)#y1@1/(N21)#yN% N>2, which produce onlya4

and a2N12 OPE contributions. TheN52 case is justw1(y)5(1
2y)2. For largerN the smallness of thed54 contributions would,
in principle, make PFESR’s based on these weights good cho
for determining the higher dimensionad terms. TheV2A cancel-

lations for thew̄N family are, however, considerably stronger th
for thewN family of Eq. ~19!, making the errors on the extractedad

significantly larger than those obtained using the PFESR’s base
w1 throughw10. While the results for thead obtained using the two
sets of sum rules are in excellent agreement, the larger errors m

the analysis based on thew̄N inferior to that based on thewN , at
least with current experimental data as input.
05401
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f wn
~$ad%;s0!52

1

2p i Rusu5s0

dswnS s

s0
D @DPOPE~s!#d.4 .

~23!

The explicit form for the OPE integrals is

f w1
~$ad%;s0!5

7

s0
2

a6F11r 6logS s0

m2D 1
3

14
r 6G1

3a8

s0
3

f w2
~$ad%;s0!52

2

s0
2

a6F11r 6logS s0

m2D G2
a8

s0
3

f w3
~$ad%;s0!52

3

2s0
2

a6F11r 6logS s0

m2D 1
1

2
r 6G1

a10

2s0
4

f w4
~$ad%;s0!52

4

3s0
2

a6F11r 6logS s0

m2D 1
2

3
r 6G2

a12

3s0
5

f w5
~$ad%;s0!52

5

4s0
2

a6F11r 6logS s0

m2D 1
3

4
r 6G1

a14

4s0
6

f w6
~$ad%;s0!52

6

5s0
2

a6F11r 6logS s0

m2D 1
4

5
r 6G2

a16

5s0
7

f w7
~$ad%;s0!52

3

s0
2

r 6a61
3a8

s0
3

1
2a10

s0
4

f w8
~$ad%;s0!52

8

3s0
2

r 6a61
2a8

s0
3

2
a12

s0
5

f w9
~$ad%;s0!52

5

2s0
2

r 6a61
5a8

3s0
3
1

2a14

3s0
6

f w10
~$ad%;s0!52

12

5s0
2

r 6a61
3a8

2s0
3

2
a16

2s0
7

. ~24!

Note that the small, knownd54 OPE contribution has bee
moved to the spectral integral side in definingJwn

(s0).

B. PFESR fit: Input and results

For our final results, we proceed in two steps. In the fi
step, we extract a preferred value fora6 in an analysis em-
ploying only the weightsw1 andw2 @1#. Such an analysis is
‘‘maximally safe’’ in the sense that the numerical suppre
sions of the integratedd.8 OPE logarithmic corrections ar
strongest whend22n, wheren is the degree of the PFESR
polynomial, is as large as possible; the neglect of sucd
.8 logarithmic terms in the OPE is thus safest when o
uses the weight~s! of the minimum possible degree. As ex
plained above, the accuracy of current data means that
lowest such degree which still allows an accurate extrac
of a6 is 3. In the second step, we perform a combined lea

es

on

ke
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CIRIGLIANO, GOLOWICH, AND MALTMAN PHYSICAL REVIEW D 68, 054013 ~2003!
squares fit for the coefficientsa6 , . . . ,a16 using, for each of
the weightsw1 throughw10, defined in Eqs.~18!, ~19!, and
~20!, the set of 7s0 values 1.9510.2k GeV2, k50, . . . ,6,
which span the range froms0;2 GeV2 to 3.15 GeV2

.mt
2 .

On the data side we use as input for the analyses base
both the ALEPH and OPAL dataBe50.178160.0006@21#,
Fp592.460.0760.25 MeV @21#, SEW51.019460.0040,
and uVudu50.974260.0016. The rescaling of the 199
ALEPH data is determined usingRud[Bud /Be53.480
60.014@20#. This value is based on the most recent upda
Rus50.162560.0066 @19,20#, in combination with the
PDG2002 average forBe ~quoted above!, and the assumption
of m-e universality. On the OPE side we usê(mu

1md)ūu&52Fp
2 mp

2 , andr 6[b6 /a6520.03060.015.
In listing final errors for the ALEPH-based analysis w

quote separately the errors produced by the uncertaintie
the ALEPH number distribution, and those due to all oth
sources, including the uncertainties on the OPE input qu
tities a4 andr 6. The former are calculated using the resca
ALEPH covariance matrix. The latter are combined
quadrature.

In the analysis based on the OPAL data, we again qu
two uncertainties. The first is that computed using the OP
covariance matrix, the second that obtained by combinin
quadrature the errors associated with uncertainties in
other input parameters (Vud , SEW , a4, andr 6).

1. Fits to the ALEPH data

The results of the ‘‘maximally safe’’ analysis fora6 and
a8 are10

a652~4.4560.6160.34!31023 GeV6

a852~6.1662.7861.40!31023 GeV8.
~25!

For the ‘‘combined fit’’ analysis, we find

a652~4.5460.8360.18!31023 GeV6

10Due to strong correlations between the data integrals for dif
ents0 and different weights, the fit values are obtained by minim
ing the sum of the squared deviations between the data and
integrals, weighted by the inverse of the diagonal elements of
covariance matrix for the set of data integrals@1#. With this proce-
dure, as is well known, the one-sigma errors and rms errors do
coincide. The former are smaller, and underestimate the variatio
the fittedad produced by variations in the input experimental da
All errors quoted in what follows are, therefore, the~larger! rms
errors, i.e., the square roots of the diagonal elements of the co
ance matrix for the$ad% solution set. The fitted values are, o
course, also strongly correlated, and it is crucial to employ the
covariance matrix for the solution set if one wishes to have accu
errors for various sums of higherd OPE contributions such as thos
that enter the dispersive test of the solution set described in
Appendix, or those required if one wishes to perform the resid
weight analysis for theK→pp EW penguin matrix elements a
lower scales@17#.
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a852~5.7063.7260.64!31023 GeV8

a105~4.8261.0260.20!31022 GeV10

a1252~1.6060.2660.05!31021 GeV12

a145~4.2660.6260.14!31021 GeV14

a1652~1.0360.1460.03! GeV16. ~26!

2. Fits to the OPAL data

The results of the ‘‘maximally safe’’ analysis fora6 and
a8 are

a652~5.4360.7260.25!31023 GeV6

a852~1.3563.3261.0!31023 GeV8.
~27!

For the combined analysis, we find

a652~5.0660.8960.12!31023 GeV6

a852~3.1263.8260.45!31023 GeV8

a105~3.8761.0660.10!31022 GeV10

a1252~1.3260.2760.03!31021 GeV12

a145~3.5460.6660.06!31021 GeV14

a1652~0.8560.1560.02! GeV16. ~28!

We note that the ALEPH and OPAL determinations
OPE coefficients are in good agreement within errors. Th
is also extremely good agreement between the combine
and maximally-safe-fit values fora6 and a8 in both the
ALEPH and OPAL cases, providing strongpost factosupport
for the neglect of the higherd logarithmic corrections. One
further point of relevance to the self-consistency of t
analysis, not evident from the results quoted above, is
following. For each of the ten PFESR’s considered above
is possible, because of the differents0-dependence of contri
butions of different dimension, to extract values for the tw
unknown (d.4) ad coefficients occurring on the OPE sid
of the sum rule in question. One can then compare the va
of a given ad obtained using various different individua
PFESR’s. It turns out that the agreement among the resul
different single-PFESR analyses is excellent for all thead ,
d56, . . .,16. By construction six such determinations, a
hence six such consistency tests, exist fora6 anda8.

Our combined fit leads to a determination of the six p
rametersa6 . . . a16. Because of the strong correlations b
tween data integrals corresponding to differents0 and/or dif-
ferent weights, the resulting fit parameters are hig
correlated. IfCDD8 is the DD8 element of the correlation
matrix, we find that the smallest of theuCDD8u is 0.90 for the
solution set associated with the ALEPH data and 0.82
that associated with the OPAL data. The full covariance m
trices are available upon request.
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QCD CONDENSATES FOR THE LIGHT QUARKV2A . . . PHYSICAL REVIEW D68, 054013 ~2003!
C. The optimized OPEÕspectral integral match

It is important to verify that, after fitting the OPE coeffi
cientsad , the resulting OPE integralsf wn

($ad%;s0) provide a

good match to the corresponding spectral integralsJwn
(s0)

over the whole of thes0 analysis window. Failure to achiev
such a match would represent a clear sign of duality vio
tion. In Figs. 2, 3 and 4 we display the quality of th
f wn

($ad%;s0)/Jwn
(s0) match for the combined fit to the

FIG. 2. Jwn
(s0) and f wn

($ad%;s0) for thew1 ~top panel! andw2

~bottom panel! PFESR’s. TheJwn
(s0) integrals and errors were ob

tained using the ALEPH data and covariance matrix. Three vers
of the f wn

($ad%;s0) curve are shown. The solid line corresponds
either the ‘‘maximally safe’’ or combined fit fora6 anda8, as de-
scribed in the text, the short-dashed and long-dashed lines to
corresponding DGHS and IZ solutions, respectively.
05401
-

ALEPH data.~The match for the combined fit to the OPA
data is of identical quality, and hence not shown separate!
Figure 2 shows the results for thew1 andw2 PFESR’s,11 Fig.
3 for the w3 through w6 PFESR’s, and Fig. 4 for thew7
throughw10 PFESR’s. Our results forf wn

($ad%;s0), corre-
sponding to Eqs.~26!, are given by the solid lines. There
clearly no sign of duality violation for any of the PFESR
employed at any of the scales,s0, in our analysis window.
Improved data would reduce the errors onJwn

(s0) and allow
us to sharpen this test even further. Also shown for comp
son in each figure are the OPE results corresponding to
a6 , a8 fits of Refs.@36,37#, where, as in those references w
take as central input valuesad50 for d.8. The inclusion of
d.8 contributions clearly leads to a significantly improve
fit to the data, as well as a significantly reduced error on
determination, in particular, ofa6.

The excellent agreement between the optimized OPE
resentation and the corresponding data integrals displaye
Figs. 2 through 4, while a necessary condition that signific
duality violation be absent from our analysis, is not a su
cient one. In order to investigate this question further,
have performed a number of additional tests on our solu
sets. Since several of these tests correspond to sum
studied in earlier analyses of theV2A correlator, we first
discuss the relation between our results and those of th
earlier analyses. Having introduced the relevant sum rule
part of this discussion, we will then return to a discussion
the additional tests which such sum rules allow us to perfo
on our solution sets in Sec. V.

IV. PREVIOUS ANALYSES

Several determinations of thed56 and d58 contribu-
tions to the OPE ofDP exist already in the literature
@36,13,14,37,35,38,39#. In some cases the quoted results~es-
pecially for a8) differ significantly from ours. To pin down
the source of these discrepancies, a closer scrutiny of
previous analyses is in order. In general, previous res
have errors much larger than those on the spectral func
over most of its measured range. This suggests either
impact of strong cancellations or the presence of additio
theoretical systematic uncertainties. One obvious possib
is the presence ofd.8 contributions, neglected in the analy
ses of Refs.@36,13,14,37#, in the solutions fora6 , a8. We
will demonstrate below that, for botha6 anda8, the differ-
ences between our results and those of previous analyse
naturally accounted for by thed.8 coefficients given in
Eqs.~26!,~28!.

In what follows, we shall recall the basic ingredients
the earlier analyses and discuss possible sources of un
tainty.

A. Spectral weight analyses

In Refs.@36,13,14#, the ‘‘~k,m! spectral weights,’’

w(k,m)~y!5ym~12y!21k~112y!, ~29!

11We plot only the results of the combined fit in this case sin
they are indistinguishable from those of the ‘‘maximally safe’’ fit o
the scale of the figure.
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FIG. 3. Jwn
(s0) and f wn

($ad%;s0) for the w3 ~top left panel!, w4 ~top right panel!, w5 ~bottom left panel! andw6 ~bottom right panel!
PFESR’s. TheJwn

(s0) integrals and errors were obtained using the ALEPH data and covariance matrix. Three versions of thef wn
($ad%;s0)

curve are shown. The solid line corresponds to the combined fit given in Eqs.~26! of the text, the short-dashed and long-dashed lines to
DGHS and IZ solutions~for which ad50 for d.8).
-

he

er
e
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ou
with (k,m)5(0,0) and (1,m), m50, . . . ,3,were employed
to extracta6 anda8, under the implicit assumption that con
tributions with d.8 were negligible in all cases.12 The fits
for a6 and a8 were, in all cases, performed using only t
highests0 available,s05mt

2 .

12Reference@36# also employed the (1,21) spectral weight, not
included in the other analyses, in order to allow the simultane
extraction of the NLO chiral LECL10.
05401
Reference@36# ~DGHS! represents an update of the earli
ALEPH analysis@13#, and concentrates specifically on th
V2A combination, which was not studied independently
the original ALEPH paper. The results fora6 , a8 thus super-
cede those inferred from the separateV, A extractions per-
formed in Ref.@13#. The results, in our notation, are

a65~26.461.8!31023 GeV6

a85~8.762.4!31023 GeV8. ~30!
s
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FIG. 4. Jwn
(s0) and f wn

($ad%;s0) for the w7 ~top left panel!, w8 ~top right panel!, w9 ~bottom left panel! andw10 ~bottom right panel!
PFESR’s. TheJwn

(s0) integrals and errors were obtained using the ALEPH data and covariance matrix. The notation for the thre
curves is as in Fig. 3.
A
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ow
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en
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, at
They are in good agreement with the results of the OP
analysis@14#,

a65~26.060.1!31023 GeV6

a85~7.660.6!31023 GeV8. ~31!

One should bear in mind that the DGHS and OPAL analy
methods are somewhat different: the DGHS results foll
from a dedicatedV2A analysis, while the OPAL result
were generated by combining thed56,8 contributions ex-
tracted for the separateV andA correlators. The separateV,
05401
L

is

A analyses, however, involve an additional OPE fitting p
rameter, the gluon condensate, which is absent in theV2A
difference. The fits display very strong correlations betwe
a6 , a8 and the gluon condensate@14#. A dedicatedV2A
analysis of the OPAL data would thus, in general, be
pected to give different results fora6 , a8.13 In view of this,

13We thank Sven Menke for bringing this point to our attentio
No analogue of the DGHS update of the ALEPH analysis exists
present, for the OPAL data.
3-11
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and the good agreement between the OPAL and DGHS
sults, we concentrate on the DGHS solution in the discuss
which follows.14

The DGHS value fora6 is consistent with ours, within
errors, but that fora8 is not. We have studied the origin o
this discrepancy, and we find that~i! the discrepancy can b
understood as arising from the neglect of thed.8 contribu-
tions to the spectral weight sum rules employed by DGH
and~ii ! the ‘‘~k,m! spectral weights’’ FESR actually provid
a consistency check on our solution set. We first note that
(0,0) and (1,0) PFESR’s have strongV2A cancellations,
and hence large experimental errors on the data sides o
sum rules. For the (0,0) case, which involves, from amo
the unknownd.4 ad terms, only thea6 and a8 contribu-
tions, r V2A;3% for s05mt

2 . The (1,0) case, whose OP
side in principle involvesa6 , a8 and a10, also hasr V2A

;3% for s05mt
2 . The (1,1), (1,2) and (1,3) weights pro

duce much less pronouncedV2A cancellations,15 and hence
must dominate the DGHS fit. Note, however, thatw(1,m)(y)
5ym@12y23y215y322y4#; these weights thus produc
numerical enhancements of thead , d.8 terms, whose pres
ence on the OPE sides of the sum rules has been assum
be numerically negligible~see the explicit example below!.
The PFESR’s dominating the fit are thus those for wh
neglect of thed.8 terms is least safe.

It is easy to check that the combined fit values
a10, . . . ,a16 predict non-negligibled.8 contributions for
all the (1,m) PFESR’s. Our results thus imply that the DGH
values for a6 and a8, which are dominated bym51,2,3
cases, must contain higher dimension contamination. T
the central DGHSa6 , a8 values do not provide as good a
to thew1 andw2 PFESR’s~for which d.8 contributions are
absent! as does our combined fit is, presumably, a reflect
of this contamination. Further evidence is provided by thew3

throughw10 PFESR’s.
One can also explicitly demonstrate that the neglected

.8 contributions are, indeed, important for the spec
weight PFESR’s. This demonstration is most transparent
the (1,3) PFESR since, in this case, the OPE integral is

14A slightly different set of values, corresponding to an average
the results of Refs.@13# and@14#, has been used in the (0,0) spect
weight analysis of Sec. 7 of Ref.@40#. The value fora6 is the same
as that of DGHS, while that fora8 is ;15% higher. The reade
interested in the chiral limit value of theK→pp matrix element of
the electroweak penguin operator,Q8, should bear in mind, no
only the difference between thea6 values of Refs.@36,40# and our
results above, but also the fact that the extractions of the domin
^O8&, contribution toa6 in Refs. @36,40# employ a value for the
coefficientA8 much larger than that given above. To convert^O8&
as determined in Refs.@36,40# to the same renormalization schem
as used for the Wilson coefficients of the effective weak Ham
tonian~and hence to make meaningful comparisons with the res
of Refs.@1,17,35,38,41#!, one must multiply these results by facto
1.15 and 1.27 for the NDR and HVg5 schemes, respectively.

15For example, for the (1,1) PFESR,r V2A532% for s05mt
2 .
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~32!

If d.8 OPE contributions are indeed negligible, then resc
ing Jw(1,3)(s0) by s0

3 should produce a result,2a8, indepen-
dent ofs0.16 We plots0

3Jw(1,3)(s0) for the ALEPH data in Fig.
5. The result is clearly far from constant with respect tos0,
unambiguously demonstrating the presence of non-neglig
d.8 contributions. The solid line shows, for compariso
the predictions corresponding to the combined fit solution
Eqs.~26!. The good match shows that thed.8 contributions
produced by our solution naturally account for the discre
ancy between the DGHS predictions and the experime
results.

A similar situation holds for the other spectral weight su
rules, as shown in Fig. 6. In the figure we display t
Jw(k,m)(s0) together with the OPE expression
f w(k,m)($ad%;s0) corresponding to~i! the central values of the
DGHS fit, Eqs.~30!, together withad50 for d.8, ~shown
by the dashed line!, and ~ii ! our combined~ALEPH-based!
fit, Eqs. ~26! ~shown by the solid line!. In all cases, if one
takes into account the errors and correlation for the DGHS

f
l

nt,

-
ts

16This is valid up to small logarithmic corrections. For the DGH
solution, the correction associated with thed56 logarithmic term
varies from 2.3% to 1.5% ass0 increases from 1.95 to 3.15 GeV2.

FIG. 5. The rescaled (1,3) spectral weight combinatio
s0

3Jw(1,3)(s0) versuss0. The integralsJw(1,3)(s0) and errors were ob-
tained using the ALEPH data and covariance matrix. The solid
shows the OPE predictionf w(1,3)($ad%;s0) corresponding to the
combined fit of Eqs.~26!.
3-12
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FIG. 6. Jw(k,m)(s0) and f w(k,m)($ad%;s0) for the (0,0)~top left panel!, (1,0) ~top right panel!, (1,1) ~bottom left panel! and (1,2)~bottom
right panel! spectral weight PFESR’s. TheJw(k,m)(s0) integrals and errors were obtained using the ALEPH data and covariance matrix
dashed and solid curves correspond to the OPE fit of DGHS, and our combined fit@Eqs.~26!#, respectively.
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parameters, the resulting OPE error bar overlaps the spe
integral bar ats05mt

2 , even when the central values are n
in particularly good agreement. However, when one goe
lower s0 this is no longer the case; the shape of the curve
the OPE integrals as a function ofs0 is typically rather dif-
ferent from that for the spectral integrals. This is anoth
signal of missing higher dimension contributions on the O
sides of the sum rules. On the other hand when one cons
the OPE contributions implied by our combined fit, a hig
quality match between the OPE and data integrals is
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tained. This is a nontrivial consistency test on our solut
set.

B. The IZ PFESR and Borel sum rule analyses

In Ref. @37# ~IZ!, three approaches were considered:~i!
PFESR’s with w(y)5(12y)2 and y(12y)2, ~ii ! Borel
transformed dispersion relations involvingDP(Q2) for Q2

lying along various fixed rays in the complexQ2-plane, and
~iii ! Gaussian sum rules. The results, in this case, are
3-13
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a65~26.862.1!31023 GeV6

a85~764!31023 GeV8, ~33!

and are dominated by the Borel sum rule~BSR! part of the
analysis, though the other determinations are compat
with these, within their~larger! errors.

The PFESR part of the IZ analysis involves one weig
w(y)5(12y)2, for which the V2A cancellation is ex-
tremely strong (r V2A;24% for s05mt

2), and one,w(y)
5y(12y)2, for which it is considerably less so (r V2A

;25% for s05mt
2). The strong cancellation for the (

2y)2 case leads to large errors ona6, and to the strong
sensitivity to the errors onFp noted in Ref.@37#. The neces-
sity of subtracting the poorly determineda6 contribution to
the y(12y)2 sum rule before obtaining the residuala8 con-
tribution, then leads to large errors ona8 as well.

BSR’s were employed in the second part of the analy
because of factorial suppression of highd contributions„ad

contributions appear in the Borel transform of the OPE s
of the sum rule multiplied by 1/@(d22)/2#! Md @42#, where
M is the Borel mass…. Since, however, the spectral data a
known only up tos5mt

2 , and have significant errors abov
2 GeV2, IZ are forced to work at quite low Borel masses
suppress contributions from the region of the spectr
where either data errors are large or data are absent. Ex
itly, M2.0.8 GeV2 is used for sum rules dominating th
determination ofa6, and M2.0.6 GeV2 in sum rules used
for a8. At such low M2, factorial suppression of highd
contributions is counteracted by the enhancement assoc
with the smallness of theM2N12 factor in the denominator
making the sum rules potentially sensitive to higher dim
sion contributions.

While the central IZ values fora6 and a8 are obtained
neglectingd.8 contributions, the quoted errors include, n
only the uncertainties due to experimental errors, but als
contribution meant to represent a plausible bound on
magnitude of thed.8 terms. This bound is based on th
assumptions thatua10u and ua12u are bounded by 2 GeV4ua6u
and 5 GeV6ua6u, respectively. According to the results of o
fit, these assumptions are not sufficiently conservative:
bounds, in both cases, lie well outside the range allowed
the errors on the combined fit values. Recall also that
shown in Figs. 2, 3 and 4, the central IZa6 , a8 values do not
provide good fits to thew1 throughw10 PFESR’s. In contrast
our combined fit implies values for the OPE sums for t
four IZ BSR’s which are in excellent agreement with expe
ment. A demonstration of this claim, together with a mo
detailed discussion of the four IZ BSR’s, may be found in t
Appendix.

Comments similar to those on the BSR’s apply to t
Gaussian sum rules studied by IZ. Since, however,
Gaussian sum rulea6 anda8 errors are larger than those o
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the BSR analysis, and the OPE convergence even slowe
will not comment further on that part of the IZ analysis.

C. Duality point analyses

A recent discussion of duality point analyses~summarized
earlier in Sec. I! can be found in Ref.@8#. We comment here
on the most recent numerical results, obtained in R
@35,38# ~BGP!.17

BGP determinea6 and a8 from FESR’s based on the
weights w(s)5s2 and w(s)5s3,18 working at the highest
duality point determined through the second WSR. From
analysis based on ALEPH data~for which s0

(d)

52.5320.12
10.13 GeV2) the following results are quoted:

a652~3.422.0
12.4!31023 GeV6

a852~14.428.0
110.4!31023 GeV8. ~34!

These values are in qualitative agreement with ours, but
affected by large uncertainties. The origin of these uncerta
ies is twofold. On the one hand the analysis uses weig
which emphasize the region where the data errors are l
and, on the other, the uncertainty in the exact location of
WSR duality point gets amplified by the strong slope of t
relevant spectral integrals with respect tos0 nears05s0

(d) .
The errors on the second WSR duality point,s0

(d) , quoted
above are entirely experimental in origin. The fact that t
duality points for thes2, s3 FESR’s may not coincide exactl
with those of the second WSR, however, leads to an a
tional uncertainty which is not amenable to experimental i
provement. We think this uncertainty is unlikely to be neg
gible, as argued below. If the duality points for the WSR
are universal, i.e.all FESR’sare satisfied at suchs0

(d) , then
the values of the extracted OPE parameters should not
pend on the particular duality point used in the analys
Empirically, however, if one uses the lower of the two se

17An estimate of the four-quark vacuum matrix elements wh
determinea6, obtained by truncating the spectral integrals appe
ing in the dispersive sum rules of Ref.@15# at the duality points of
the WSR’s, was also given in Sec. VI of Ref.@40#. The assumptions
underlying this analysis are even stronger than those underlying
duality point truncation of the WSR’s, where the corrections for t
truncation can be shown to be numerically small. In addition,
original dispersive sum rule for the dominant^O8& contribution
suffers from potential contamination by higher dimension effe
@16# at the scalem52 GeV employed in Ref.@40#. Since, in any
case, the errors from this approach are a factor of.3 larger than
those obtained by averaging the results of the ALEPH and OP
(0,0) spectral weight analyses in Sec. 7 of the same reference
do not discuss this estimate any further.

18A second determination of the dominant^O8& contribution to
a6, which however requires an additional input assumption, give
compatible result.
3-14
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ond WSR duality points (s051.4760.02 GeV2 @35#!, as ad-
vocated in Refs.@8,39#, one obtains@35#

a652~13.260.4!31023 GeV6

a85~2424
12!31023 GeV8. ~35!

These results have much smaller errors~reflecting the better
data quality at lowers0) but are not compatible with thos
obtained using the higher duality point, Eq.~34!. It is thus
impossible for the two duality points of the second WSR
both be duality points of thes2 ands3 FESR’s. Since at leas
one of the two WSR duality pointsmust differ from the
correspondings2, s3 duality point, it seems unlikely to us
that either is exactly identical to itss2, s3 counterpart.

We emphasize that it is the strong slope of the data in
grals with respect tos0 which is particularly problematic for
the duality point approach. The possibility of the existence
a reasonably narrows0 region within which the actual dual
ity points of a number of differently weighted FESR’s mig
lie is not itself implausible. Indeed, at those intermedi
scales suggested by the PQW argument@11# ~where OPE
violation is small, except near the timelike real axis!, duality
points for a wide range of FESR’s would be expected
cluster in the vicinity of anys0 for which the real and imagi-
nary parts ofP(s0)2POPE(s0) happened to be simulta
neously small. In the case ofDP, the zeros of Im@P(s0)
2POPE(s0)# on the real axis occur ats0.0.9 and
2.1 GeV2, somewhat removed from the locations of t
WSR duality points. We would thus expect thes2 and s3

duality points to, indeed, differ somewhat from the cor
sponding WSR duality points. Since uIm@P(s0)
2POPE(s0)#u is considerably smaller at the higher of th
two WSR duality points, we are in agreement with the a
thors of Refs.@35,38# in expecting the higher of the two
duality points to provide the more reliable estimate ofa6 and
a8. This expectation would appear to be borne out by co
parison to our results. In particular, the result thata6 anda8
have the same sign, first obtained in Ref.@35#, is confirmed
by our analysis. We remind the reader that the opposite
for a8 obtained in both the spectral weight and BSR analy
is naturally accounted for by thed.8 contributions implied
by our solution but neglected in those analyses.

D. The MHA analysis

In Ref. @39#, thead.4 are determined, not from data, b
using a large-Nc-inspired, 3-pole, model approximation t
Dr ~the so-called ‘‘minimal hadronic ansatz’’ or MHA!. The
sk-weighted physical and MHA spectral integrals, for a giv
s0, are in general very different. For all22<k<4, how-
ever, the point where the two agree happens to lie in
vicinity of the lower of the duality points for the two WSR’s
This observation is taken as evidence in support of the
tern of long-/short-distance duality predicted by the MH
05401
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and of the reliability of the model values ofa6 , a8 and
a10.19 The results quoted in Ref.@39# correspond to

a652~9.562.0!31023 GeV6

a85~16.064.2!31023 GeV8

a1052~20.8610.2!31023 GeV10, ~36!

which are not in good agreement with our central fit valu
One should bear in mind that the errors in Eqs.~36! reflect

only the uncertainties in the fitted values of the three in
pendent MHA parametersF0 , mV , and gA , and not any
possible theoretical systematic errors~due to working with
the minimal set of hadronic states, and in the largeNc limit !.
The latter are not necessarily negligible. As a first indicat
of this, let us observe that MHA predicts the duality poin
for the varioussk-weighted FESR’s~thoses0 for which the
model and data integrals match! to be different.20 Because of
the strong slope of thesk(k52,3,4) spectral integrals with
respect tos0, even small errors in the model predictions f
these differences can correspond to large uncertainties on
ad .

To further test the MHA predictions, and to get an idea
whether or not potential systematic uncertainties might
count for the discrepancy between the MHA predictions a
our results, we may study those PFESR’s sensitive only
a6 , a8 anda10. We display, in Fig. 7, the MHA predictions
for the Jw(s0) associated with thew1 , (0,0), w3 and (1,0)
PFESR’s.~The first and second sum rules are sensitive to
MHA values of a6 , a8, the third to a6 and a10, and the
fourth to a6 , a8, anda10.) We see that, although the repr
sentation of the physical spectral integrals is not unreas
able for a three-parameter model, the quality of this rep
sentation is not good at the detailed level. This misma
suggests to us the presence of residual theoretical system
uncertainties in the MHA approach, which might be remov
by going beyond the minimal ansatz and/or incorporat
1/Nc corrections.

V. DUALITY VIOLATION AND VÀA PFESR’S

Our interpretation of thead obtained above as the tru
asymptotic OPE coefficients of theud V2A correlator rests
on the assumption that residual duality violation~param-
etrized by R@s0 ,w#) is small for the doubly pinched

19Recall thata2k125(21)k*0
s0dsskDr(s) if s0 is a true duality

point.
20This can be seen, for example, by superimposing the plots

thes0 ands2 moments~the top panels of Figs. 1 and 2 of Ref.@39#,
respectively!. One finds that the band within which thes0 matching
point must lie ~given the uncertainties in the model paramete!
does not overlap with the corresponding allowed band for thes2

moment. The situation is similar for thes3 and s4 moments~the
allowed matching band in fact lies somewhat farther from the c
respondings0 band than in thes2 case!.
3-15
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FIG. 7. Jw(s0) and the corresponding MHA integrals for thew1 ~top left panel!, (0,0) ~top right panel!, w3 ~bottom left panel! and (1,0)
~bottom right panel! PFESR’s. TheJw(s0) integrals and errors were obtained using the ALEPH data and covariance matrix.
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PFESR’s and scales employed in our analysis. As no
above, the high quality of the match between the optimiz
OPE representation and the corresponding spectral inte
is a necessary, but not sufficient, condition for the validity
this assumption. In this section we discuss additional e
dence in its favor. We begin by reviewing certain releva
aspects of what is known about the nature of duality vio
tion in QCD.

A. General expectations for duality violation in QCD

A useful review of the current status of our understand
of duality violation in QCD is given in Ref.@43#. It is im-
portant to bear in mind that duality violation may be small
05401
d
d
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f
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g

weighted spectral integrals even when the level of dua
violation in the spectral function itself is large over signi
cant portions, or even all, of the integration range.21

Two distinct types of duality violationin the spectral
functionare identified in Ref.@43#. The first is that produced
by contributions to the correlator which, asymptotically, a
exponentially suppressed relative to OPE contributions

21Examples are the spectral integrals corresponding to~i! disper-
sion representations of correlators for spacelikeQ2@LQCD

2 , ~ii !
Borel transformed dispersion relations involving Borel massesM
@LQCD

2 and~iii ! the (12y)k(11Ay)-weighted (k51,2) PFESR’s
for the flavorud V andA correlators at scaless0;2 to 3 GeV2.
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spacelike Q2. Such terms behave asymptotically
exp(2bQ)/Qk, and hence acquire oscillating imagina
parts for timelikeQ252s. The second type of duality vio
lation occurs inNc→` QCD, where the spectrum consists
a tower of infinitely narrow resonances. As a result of t
spectral structure, the associated correlator has a diffe
convergent Laurent expansion in each of the annuli ly
between successive poles in the complexs-plane. In none of
these annuli is the Laurent expansion equal to the asymp
expansion; hence duality violation exists, in this case, in
such annuli.

An important difference in the nature of duality violatio
in these two cases lies in the structure of the duality violat
contributions to the correlator in the complex plane. In t
Nc→` scenario, one has a series of different ‘‘subasym
totic’’ expansions, each valid in a different annulus. Wh
one crosses from one annulus to the next, all Laurent co
cients are altered, and for no annulus are they equal to
corresponding asymptotic OPE coefficients. Duality vio
tion in a given annulus is thus equally large at all points
the circleusu5s0 lying within the given annulus, and isnot
localized to the vicinity of the timelike point on that circl
for any s0, no matter how large. In contrast, forQ25s0eif

@with f52p(1p) corresponding to the top~bottom! of the
physical cut#, a term of the form;exp(2bQ)/Qk behaves
as

1

s0
k

exp@2bs0cos~f/2!#exp$ i @kf/21sin~f/2!#% ~37!

and hence retains an exponential suppression, via the fa
exp@2s0b cos(f/2)#, for all but the timelike point onusu
5s0. This suppression will remain quite significant ov
most of the circle for scaless0 larger than 1/b. This may be
the case even if the oscillating, duality-violating compone
of the spectral function is far from negligible at the sames0.
Duality violation via such terms is thus PQW-like: ‘‘interme
diate’’ scales exist for which duality violation in the co
relator@POPE(s)2P(s)# is strongly localized to the vicinity
of the timelike real axis.

B. Detecting the presence and nature of duality violation

The two distinct patterns of duality violation for a give
correlator in the complex plane manifest themselves
readily distinguishable different ways in sum rule analys
In particular, these patterns suggest different strategies
tests to explore the impact of duality violation in a give
analysis. In this section we identify such strategies and e
merate a number of possible tests. In the next section,
then specialize to the flavorud V2A correlator, and we dis-
cuss the practical implementation of these tests.

In the presence of a PQW-like component of duality v
lation, there will exist intermediate scaless0 where ~i!
power-weighted@w(s)5sk# FESR’s, which fail to suppres
contributions from the integral overusu5s0 near the timelike
axis, are poorly satisfied;~ii ! PFESR’s involving weights
which suppress contributions from the vicinity of the tim
like point are well satisfied. This observation motivates
use of ‘‘pinched weights’’ in FESR analyses to tame PQ
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like duality violation. Having adopted a set of weights, o
wants to verify that residual duality violating contribution
from the region nears5s0 are not present in the results o
the analysis. In this respect, an important test is as follow

~1! Verify that the~nominally asymptotic! ad coefficients
extracted in the PFESR analysis provide accurate repre
tations, not only of the spectral integrals used in fitting t
ad , but also of spectral integrals corresponding to weig
with zeros of a higher order ats5s0 ~which therefore further
suppress PQW-like duality violating effects!.

In the (Nc→`)-like scenario, where duality violation is
not localized to the vicinity of the timelike real axis, a rath
different pattern of sum rule behavior will be observed. Sin
OPE-like Laurent expansions exist in any given annulus,
long as one restricts oneself tos0 lying in a single annulus,
one will obtain a set of coefficients,ad , which provide a
perfect match between the ‘‘OPE’’ and data sides of b
power-weighted and pinch-weighted FESR’s at those sca
That set will, of course, consist of just the coefficients
those terms in the Laurent expansion for the given annu
which survive when integrated against the weights e
ployed. If one performs the same basic analysis~i.e., using
the same set of weights!, but now fors0 lying entirely in a
different annulus, one will obtain a different set ofad . These
ad will provide a perfect match between the ‘‘OPE’’ and da
sides of the sum rules employed in the new annulus. Sc
matically, this type of duality violating contribution implie
~i! the existence of several subasymptotic regimes;~ii ! that
pinching is not effective in removing this type of dualit
violating effect ~both pinch-weighted and power-weighte
FESR’s are equally well satisfied in each sub-asymptotic
gion!. The existence of several such subasymptotic regim
in this type of scenario can also, in principle, be exposed
a PFESR analysis, as follows. Starting with some particu
small range ofs0 one may gradually decrease the lower ed
of the s0 analysis window, keeping the upper edge fixed.
long as the lower edge lies in the same annulus as the u
edge, a PFESR analysis extraction of OPE-like coefficie
obtained by means of matching to spectral integral data,
produce an exact determination of the relevant coefficient
the singular part of the Laurent expansion for that annu
As soon as the lower edge of thes0 analysis window leaves
the single annulus, however, there is no longer a single se
expansion coefficients valid for all thes0 being employed.
The existence of such a two-annulus regime will be evid
by the sudden appearance of a poor match between the
timized OPE-like integral and spectral integral sets. One
check these expectations explicitly within the equal-spac
pole model of Refs.@8,43#. This exercise shows that, in pe
forming a PFESR analysis, it is crucial to do the followin

~2! Demonstrate that there is no drift in the values of t
extracted coefficients as one decreases the lower edge o
s0 analysis window.

~3! Demonstrate that the optimized values of the fit p
rameters in fact produce an accurate match to the spe
integral data used to produce the fitover the whole of the s0
analysis window employed.

These tests serve not only to verify the reliability of th
assumed OPE-like expansion form, but also, at least po
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tially, to expose the existence of multiple subasymptotic
pansion regimes.22

In the context of theNc→` discussion, however, it is
clear that, while passing these tests is anecessarycondition
for the reliability of the extraction of the OPE coefficien
from data, it is not asufficientone: if one happened to b
unlucky and perform the PFESR analysis only for thoses0

lying in a single, but subasymptotic, annulus, one would
a high quality match~exact in the case of the pole mode!
between the spectral integrals and optimized OPE-like in
grals even though one would have actually extracted the
efficients relevant to the Laurent expansion in the subasy
totic annulus, and not those relevant to the asympt
regime. A simple way to test whether or not this is the cas
to do the following:

~4! Take the coefficients extracted in the PFESR analy
and employ them as input to a dispersive analysisrelevant to
the asymptotic regime.

If the coefficients extracted in the PFESR analysis are
those relevant to the asymptotic regime, the resulting dis
sive integrals will be poorly approximated by the OPE-li
representation generated using the fitted coefficients. Ag
explicit illustrations of this point can be worked out with
the equal-spacing pole model of Refs.@8,43#. In the case of
the model, performing the dispersive test is straightforw
because the spectral function of the model is actually kno
for all s. The situation of interest to us, however, is o
where spectral data are available for only a limited range
s. In such a situation, it would typically be difficult to con
struct a dispersive test for which the errors on the disper
integrals were under sufficient control to make the test u
ful. One general solution is to work with BSR’s and restr
one’s attention to Borel masses which are both low eno
that the spectral weight, exp(2s/M2), is negligible in the
region where spectral data are absent and, simultaneo
high enough that the convergence withd of the Borel trans-
formed OPE seriesfor the set of ad one wishes to testis
acceptable. For a given BSR, suchM may or may not exist.
Three of the four IZ BSR’s turn out to provide examples
such tests for our solution set~details are reported in th
Appendix!. Additional asymptotic tests, involving BSR’s a
larger M, are possible for the flavorud V2A correlator. In
this case, the spectral integral uncertainties are brought u
control using the classical chiral sum rule constraints ass
ated with the Weinberg sum rules and the sum rule for thp
electromagnetic mass splitting. An efficient procedure

22One may also test whether an observed deterioration in the q
ity of the optimized ‘‘OPE’’/spectral integral match ass0 is lowered
is, or is not, due to the existence of a new subasymptotic regim
it is, then the firsts0 for which the deterioration appears must lie
the lower annulus. Working withs0 lying in a narrow range just
below this point should then produce a new set of fittedad which
provide a good quality representation of the corresponding spe
integrals, when restricted to this new range ofs0. If a good quality
match is not found, then the deterioration is due to a breakdow
the OPE-like expansion form, and not to the fact that one has
tered a new subasymptotic region.
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implementing these constraints is provided by the ‘‘resid
weight method,’’ which is described in detail in Ref.@17#.

C. The nature of duality violation in the ud VÀA channel

In the following we argue that duality violation in theud
V2A correlator is predominantly PQW-like. From previou
work @10#, one has empirical evidence that duality violatio
in the individual ud V and A channels is predominantly
PQW-like. Checking for the presence or absence of dua
violations in theud VandA correlators at intermediate scale
is straightforward because one has independent~asymptotic!
information on the value of the OPE parameteras . Such a
straightforward check is not possible for theud V2A differ-
ence. A qualitative argument is however available, based
the observation that duality violation in the flavorud V1A
sum cancels, within experimental errors, for scales abovs
;2 GeV2. This can be seen from~i! the fact that the corre-
sponding spectral function is in agreement with the O
prediction for suchs ~see, e.g., Fig. 6 of the second of Re
@13#! and ~ii ! the observation that the spectral integrals
thesk-weighted FESR’s,k50, . . . ,3, are ingood agreemen
with the corresponding OPE integrals fors0 above
;1.9 GeV2 @10#. This implies that the duality violating con
tribution to theud V2A correlator is, within experimenta
errors, twice that of theud V correlator. The latter is known
to be strongly localized to the vicinity of the timelike re
axis for the scales of interest to us, and hence so is
former. This conclusion is compatible with the observati
that, although theud V2A sk-weighted FESR data integral
are not constant with respect tos0 ~i.e., not in agreemen
with the behavior of thesk-weighted ‘‘OPE’’ integrals!, the
agreement between the data and ‘‘OPE’’ sides of o
PFESR’s is very good for the optimized OPE-like fits giv
above.

1. Tests of the type (1)

Having a suppression of duality violating contribution
which is strong enough to make such contributions ne
gible relative to thed50 terms in theud VandA correlators
does not necessarily mean that the same suppression is
ficient to make such contributions small relative to thed
56 and higher OPE contributions in theud V2A difference.
In order to check for residual duality violating contribution
localized to the vicinity of the timelike real axis, we hav
performed tests of the type defined in the previous sect
item ~1!. The (1,m) spectral weights discussed above~with
m50, . . . ,3)have zeros of order 3. As we have already se
in Figs. 5 and 6, the results of our combined fit produce
extremely good ‘‘OPE’’/spectral integral match for all o
these weights, with no quality deterioration. We have a
investigated the (2,0), (2,1), (3,0), (3,1) and (4,0) spec
weight PFESR’s, which have weights with zeros of order
4, 5, 5 and 6, respectively, ats5s0. Again the quality of the
match to the spectral integral sides of these sum rules
vided by our combined fit is excellent in all cases, despite
much stronger suppression of contributions from the reg
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QCD CONDENSATES FOR THE LIGHT QUARKV2A . . . PHYSICAL REVIEW D68, 054013 ~2003!
on usu5s0 nears5s0. We illustrate the quality of this match
for the most extreme cases@the (3,1) and (4,0) PFESR’s# in
Fig. 8.

2. Tests of the type (2), (3), and (4)

The arguments given above do not completely rule out
presence of residual duality violation of non-PQW-like n
ture @the (Nc→`)-like scenario#. In order to deal with this,
we have subjected our solution set to tests of the type
scribed in items~2!, ~3!, and~4! of the previous section. As
for test ~2!, we find that within the present experimental e

FIG. 8. Jw(k,m)(s0) and f w(k,m)($ad%;s0) for the (3,1)~top panel!
and (4,0)~bottom panel! spectral weight PFESR’s. TheJw(k,m)(s0)
integrals and errors were obtained using the ALEPH data and
variance matrix. The solid line shows the predictions based on
d.4 OPE solution represented by our combined fit, Eqs.~26!.
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rors there is no drift in the extracted OPE parameters as
lowers the lower edge of thes0 analysis window~see below
for details and prospect of sharpening this test with improv
data!. Also tests of the type~3! are successfully passed b
our solution set~see Sec. III C!.

Finally, to deal with the possibility that our entires0
analysis window lies within a single subasymptotic regio
we have performed a number of asymptotic dispersive t
of the type described in the previous subsection, item~4!. A
first set of asymptotic dispersive tests is provided by the f
IZ BSR’s. These are highly nontrivial since, because of
difference in the sign ofa8 between our combined fit and th
IZ solutions, those IZ BSR’s for whichd56 contributions
are absent would appear to be problematic for our combi
fit. It turns out that this is not the case; in fact, the conv
gence of the Borel transformed OPE series is quite slow
the low M employed by IZ and, once one extends the s
involving our combined fit to sufficiently highd to obtain
convergence, the OPE predictions are in excellent agreem
with the spectral data. Since these tests are also releva
the comparison to previous work, we provide a detailed de
onstration of these claims in the Appendix.

To obtain BSR’s at larger Borel mass,M, one needs to use
‘‘residual weight method’’ improvement on the spectral int
grals @17#. In order to keep the errors under control, it
necessary to work with the product ofDP with appropriately
chosen polynomials. We find that the combined fit OPE p
dictions are in excellent agreement with the spectral integ
sides of these BSR’s forM over a range sufficiently wide
that, at the upper end, the OPE integrals are comple
dominated by theird56 contribution while, at the lower
end, the full set of ad obtained in the combined fi
(d56,•••,16) must be included before convergence of t
Borel transformed OPE sum is obtained.

3. Model explorations

In principle, explicit models of theV2A spectral function
could be used to try and address the level of duality violat
present in our analysis. One should bear in mind, howe
that the only information we have aboutDr in the region
aboves5mt

2 is in the form of the constraints provided by th
classical chiral sum rules. These constraints are far from
ficient to fully constrain the behavior ofDr aboves5mt

2

and, as a result, there exists a wide range of model ex
sions of the data forDr to s.mt

2 , all of which are compat-
ible with these constraints. It is easy to construct, amo
these, models forDr(s) for which the asymptotic expansio
coefficients are the same as those of our combined fit.
models which have this property display continued damp
oscillations inDr as one goes to highers, and hence appea
quite natural. It is also possible to construct models
which the asymptotic OPE parameters differ significan
from those of our combined fit@44#.

Because the integrated PFESR OPE contributions of
mensiond scale as 1/s0

(d22)/2, one finds that, for larges0, the
higherd ad contributions drop rapidly in size with increasin
d. With such small highd contributions, a small change i
the modelling ofDr in the region where it is not known
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e
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CIRIGLIANO, GOLOWICH, AND MALTMAN PHYSICAL REVIEW D 68, 054013 ~2003!
experimentally typically produces a large change inad . A
very large theoretical systematic uncertainty for the hig
dimensionad will thus be associated with any attempts
modelDr in the region aboves5mt

2 . Without being able to
control this theoretical systematic error, obtaining meani
ful information on the level of duality violation from suc
model studies is somewhat problematic.

4. Prospects of improving the data-based tests

It is worth stressing that significant improvements in t
analysis will become possible once the new hadronict decay
data from the B-factory experiments is available. At pres
both the errors on thead and the accuracy with which it is
possible to determine the location of the onset of dua
violation in the analysis are limited by the errors onDr(s)
aboves;2 GeV2. These errors are dominated by expe
mental uncertainties on the 4p, K̄Kp and K̄Kpp spectral
distributions and uncertainties in theV/A separation for
K̄Kp and K̄Kpp states. Major improvements should b
forthcoming as a result of the expected;102-fold increase
in the size of thet decay data base. The improved spect
integral errors which result will allow us to improve signifi
cantly on the efficiency of our tests for the absence of
sidual duality violation. The current situation in this regard
discussed in brief below.

Recall that, by decreasing the lower edge of the anal
window, we were able to demonstrate the presence of du
violation for the PFESR’s used in our analysis at scales
low ;1.8 GeV2. With current experimental errors there
no evidence for duality violation in our analysis window
Ideally one would like to work at scales well abov
1.8 GeV2, in order to suppress, as much as possible,
residual duality violating contributions which might b
present, but masked by current experimental errors. W
current errors are small enough thata6 may still be deter-
mined, even if one works with only a small portion of o
present analysis window,23 this is not true for thead with d
>8. In fact, with current experimental errors, the uncerta
ties on the extractedd>8 ad do not become smaller tha
uadu, until the lower edge of the analysis window has be
reduced to belows0;2.5 GeV2. If, as an example, we per
form our analysis of the ALEPH data using thes052.35
→3.15 GeV2 subwindow, then, with central values for a
nonspectral input, the maximally safe output fora6 anda8 is

a652~3.8861.21!31023 GeV6

a852~9.3266.58!31023 GeV8. ~38!

23For example, using onlys052.75,2.95 and 3.15 GeV2, one
finds, from the maximally safe analysis of the ALEPH data,a65
20.004960.0022, where the error quoted is that associated w
the ALEPH covariance matrix. The error is, of course, significan
larger than that obtained from the larger analysis window, but
less than 50% of the signal.
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Within the quoted errors, these results are compatible w
those of the full-window analysis. The situation is similar f
the results of the combined analysis: the results of the s
window analysis fora10 througha16 are

a105~6.6262.83!31022 GeV10

a1252~2.1660.86!31021 GeV12

a145~5.8862.48!31021 GeV14

a1652~1.4760.69! GeV16, ~39!

again compatible with the full-window analysis within th
subwindow analysis errors. Were the errors to be 1/3 as la
however, the full-window and subwindow results would n
longer be compatible and we would be forced to conclu
that residual duality violation was present for thoses0 in the
lower part of the full analysis window. We stress that there
no reason for reaching such a conclusion at present. In
there are strong reasons for trusting the results of the f
window analysis:

~i! Where the existence of duality violation can be expl
itly demonstrated, the OPE-like expansion is knownnot to
provide a good representation of the spectral integrals.

~ii ! In the lower part of our full analysis window the OPE
like form provides an excellent representation of the spec
integrals.

~iii ! The combined fit from the full analysis window pro
vides an excellent representation of the spectral integrals
only in the lower part, but also the upper part, of the analy
window.

~iv! The combined fit results obtained fromthe subwin-
dow version of the analysisturn out to provide a poor repre
sentation of the spectral integrals in the lower part of the
window.

Nonetheless, the size of the subwindow errors is such
much stronger tests of the absence of residual duality vi
tion, using various subwindows, will become possible on
the errors onDr(s) above 2 GeV2 are reduced.24 While it
seems unlikely to us, for the reasons given above, it is no
present possible to conclusively rule out additional unc
tainties, associated with residual duality violating, at t
level of the difference of the full-window and subwindo
analysis centralad values.

VI. CONCLUSIONS

In this paper we have used finite energy sum rules w
‘‘pinched-weights’’ ~PFESR’s! to determine the OPE coeffi
cients a6 , . . . ,a16 of the flavor ud V2A correlator with
good accuracy using existing hadronict decay data. While it
is not possible at present to either prove or disprove onrig-
orous analytic grounds that this approach~or any other!
yields a valid approximation to the actual dynamics of QC

h

ll

24If such reduced errors were to expose residual duality violat
in the lower part of the current full-window analysis, one would
course be forced to raise the lower edge of the analysis windo
3-20
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we have carefully demonstrated the advantages of PFE
among the class of sum rule techniques and have describ
large number of checks on our own work and that of othe

At a technical level, we have employed a set of ten po
nomial weights carefully chosen to minimize the impact
experimental errors and of duality violating effects, as w
as to optimally separate the contributions from condens
combinations of different dimension. Our analysis shows t
the OPE contributions withd.8 are typically not negligible
at scales;223 GeV2.

We have performed a number of tests to explore the p
ence of duality violating effects in our analysis. These s
port the conclusion that our combined fit values are not
fected by duality violation within the existing experimental
induced errors. We recall the main observations in suppor
this statement:

~i! Independent determinations of thead using PFESR’s
based on different~independent! weights are in excellen
agreement.

~ii ! The results of the combined fit for thead lead to an
extremely good match between the OPE and spectral inte
sides of all the PFESR’s employed in the fitting procedur

~iii ! The combined fit values also lead to extremely go
matches for the (k,m) spectral weight PFESR’s, whered
.8 contributions are much larger relative tod56,8 contri-
butions than is the case for thew3 throughw10 PFESR’s.

~iv! There is no deterioration in the quality of the com
bined fit prediction for the PFESR spectral integrals even
those spectral weights with zeros ats5s0 of much higher
order than those used in obtaining the combined fit.

~v! The dispersive tests, described above, and in the
pendix, are successfully passed by our solution set. This
vides additional support for the reliability of the extract
values, and our interpretation of them as asymptotic O
coefficients of theV2A correlator.

Improved experimental data would allow one to sign
cantly sharpen some of the tests reported above.

Some general observations also follow from the res
and discussion above. First, the OPE representation ofDP,
with the ad given by the combined fit values of either E
~26! or Eqs.~28!, provides a very accurate representation
the corresponding spectral integrals down to scales as lo
s052 GeV2, at least for PFESR’s based on weights with
double zero ats5s0. This suggests that the OPE remai
reliable at intermediate scales,Q2;2→3 GeV2, apart per-
haps from a region near the timelike real axis. In contras
one considers weights which do not suppress contribut
from this region, one sees clear evidence for the breakd
of the OPE. The situation is similar to that for the flavorud
V andA correlators. The double zeros of the PFESR weig
at s5s0 in the V2A case evidently again provide suffi
ciently strong suppression in the vicinity of the timelike re
axis to efficiently remove contributions from the region
OPE breakdown on the circleusu5s0.

A second point concerns the relative sizes of the vari
ad . The results of the combined fit indicate thatad12 /ad is
typically of order 2→3 GeV2 for the V2A correlator. This
means that, at intermediate (2→3 GeV2) scales, there is no
‘‘natural’’ ordering of contributions with differentd, in the
05401
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sense that PFESR weights with comparable coefficients
the yN and yM terms in w(y) will produce comparabled
52N12 andd52M12 contributions to the PFESR OP
integrals. This makes explicit the danger of neglecting ter
with d.8 for PFESR’s based onw(y) with degree greater
than 3. This observation also raises the possibility that
analogous neglect of higherd terms in other PFESR analy
ses, such as those used to extractms from the flavor-breaking
difference ofud andus V1A correlators@23,45#, may suffer
from similar problems.
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APPENDIX: THE IZ LOW-SCALE ASYMPTOTIC
DISPERSIVE TESTS

In this appendix we provide details of the four IZ BSR
and complete the comparison of our results to those of e
work by subjecting our combined fit to the asymptotic d
persive tests provided by these sum rules.

Incorporating the smalld56 logarithmic contribution, the
BSR’s employed by IZ may be cast into the form25

E
0

`

dsexp@s cos~f!/M2#cos@s sin~f!/M2#Dr (011)~s!

5 (
k.0

~21!k
cos~kf!a2k12

k! M2k
2

b6

2M4
$~f2p!sin~2f!

1@ ln~M2/m2!2gE13/2#cos~2f!% ~A1!

25In writing Eqs.~A1!, the factorFp
2 from the RHS of Eq.~21! of

IZ has been moved to the LHS of Eq.~A1!, and absorbed into the
spectral function via the shiftDr (1)→Dr (011). Equation~A2! is
just M2 times Eq.~22! of IZ, up to the logarithmic correction term
~proportional tob6).
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TABLE I. The relative size ofd.4 OPE contributions to the four IZ BSR’s for the extended version
the combined fit described in the Appendix. In all cases, the entries have been normalized to the
dimension (d56 or d58) contribution. IZ cases 1 through 4 label the four IZ BSR’s according to
enumeration scheme given in the Appendix.

IZ case d56 d58 d510 d512 d514 d516 d518 d520 d522 d524

1 1 0 1.33 21.93 1.23 20.46 0.09 0.00 20.01 0.00
2 1 0 1.18 20.93 0.00 0.20 20.07 0 0.00 0.00
3 0 1 25.19 4.09 0.00 21.73 1.16 20.34 0.00 0.04
4 1 0.42 0.00 21.46 1.41 20.53 0 0.09 20.04 0.01
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dsexp@s cos~f!/M2#sin@s sin~f!/M2#Dr (011)~s!

5 (
k.0

~21!k
sin~kf!a2k12

k! M2k
2

b6

2M4
$~f2p!cos~2f!

2@ ln~M2/m2!2gE13/2#sin~2f!%, ~A2!

wheref is the angle fixing the ray in the complexQ2 plane
along which the Borel transform was performed (f50 cor-
responds to the top of the physical cut!. The four cases con
sidered by IZ correspond to~1! Eq. ~A1! with f55p/6 and
M250.8 GeV2, ~2! Eq. ~A2! with f52p/3 and M2

50.85 GeV2, ~3! Eq. ~A1! with f53p/4 and M2

50.6 GeV2, and ~4! Eq. ~A2! with f53p/4 and M2

50.65 GeV2. The first two cases have nod58 contribution,
the third nod56 contribution. We test the combined fit b
employing the fittedad values as input on the OPE side
the IZ BSR’s. This leads to a prediction for the value of t
corresponding spectral integral~less the knownd54 contri-
bution! for each such sum rule.

Since thea6 or a8 values obtained by IZ reflect the value
of the spectral integrals, the change in sign ofa8 between the
IZ fit and our combined fit would seem to represent a pr
lem for the combined fit, especially in the case of the third

TABLE II. The combined fitd.4 predictions for the four IZ
BSR’s. IZ cases 1 through 4 label the four IZ BSR’s according
the enumeration scheme given in the Appendix. Column 2 gives
prediction for thed.4 OPE sum, obtained using an extended v
sion of the combined fit corresponding to the ALEPH data. T
results obtained using the OPAL data are the same, except in
fourth case, where our prediction becomes .00516.0001. Column 3
gives thed.4 OPE sum corresponding to the central values of
IZ fit. Column 4 gives the spectral integrals, less the knownd54
terms, corresponding to the results quoted by IZ. The entrie
columns 2, 3, and 4 are in GeV2.

IZ case Combined fit IZ fit Data2(d54)

1 20.002360.0002 20.002760.0008 20.002360.0006
2 0.003860.0002 0.004160.0013 0.004160.0009
3 20.003060.0004 20.003860.0022 20.003260.0009
4 0.005060.0001 0.005060.0033 0.005160.0004
05401
-

sum rule. This is, however, not the case. It is easy to ch
that, with the combined fit values as input, the converge
of the Borel transformed OPE series, at the low values ofM2

employed by IZ, is rather slow. Not only is the first of th
d.8 contributions neglected by IZ in obtaining their centr
values, in all cases, larger in magnitude than the correspo
ing sum ofd56 and/ord58 contributions, but also, in orde
to be certain that we have reached the region of converge
we have had to extend the extraction of thead to higherd.
This is done using the extensions to higherN of the families
of weights of whichw6 and w10 are members~recall that
these weights produced.4 OPE contributions proportiona
to either a6 and a2N14 or a8 and a2N14). We are able to
extract terms withd up to 24, albeit with larger errors tha
for the ad given by the combined fit. Thead d518, . . . 24
values obtained from the two different weight families are
good agreement, and thea6 and a8 values obtained using
each of the new sum rules separately are also in good ag
ment with those corresponding combined fit values. W
these values in hand one finds that the OPE sides of
BSR’s may be safely truncated, as can be seen from Tab
As in turns out, the additional (d.16) terms play a role in
the full OPE sum only for the third of the IZ sum rules. I
none of the four cases is thed56 or d58 contribution the
dominant one.

In Table II we show the combined-fit predictions, togeth
with the actual values~inferred from IZ! for the IZ spectral
integrals~less the knownd54 OPE terms!. Shown for com-
parison are the predictions corresponding to the IZ soluti
Note that the second of the four sum rules has been use
IZ to obtain their quoted value fora6. The errors quoted for
the combined fitd56 throughd524 sum are obtained usin
the covariance matrix for the solution set, generated from
covariance matrix of the ALEPH data.26 As is evident from

26Because there are significant cancellations amongst thed.4
contributions, and strong correlations among the combined fit
ues for thead , it is crucial to employ the full covariance matrix fo
the solution in determining the uncertainties on the combined
predictions shown in Table II. The fact that, at the low values ofM
for which the spectral integral errors are under control, the O
sides of the IZ BSR’s turn out to involve a complicated cancellat
between a large number of terms of different dimension, in f
means that it would not be possible to disentangle such contr
tions using a BSR analysis.
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the table, the combined fit predictions are in excelle
agreement with the data, providing further supp
for the asymptotic nature of the coefficients extrac
in the combined fit. Table I, in addition, shows that t
n,

.

.

igh

gy

n,

l.

05401
t
t
d

four sum rules weight the differentad contributions in very
different ways, demonstrating that the results repres
four independent, highly nontrivial tests of the combined
results.
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