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We use the procedure of pinched-weight finite energy sum rules to determine the operator product expansion
(OPB coefficientsag, . . . ,a;6 0f the flavorud V— A correlator in terms of existing hadronicdecay data. We
show by appropriate weight choices that the error on the domuhar®& contribution, which is known to be
related to the&K — 777 matrix elements of the electroweak penguin operator in the chiral limit, may be reduced
to below the~15% level. The values we obtain for OPE coefficients wiith8 are shown to naturally account
for the discrepancies between our results fordke6 andd=8 terms and those of previous analyses, which
were obtained neglecting>8 contributions.
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I. INTRODUCTION . F[T‘Hv,hadronst( ] o
VA= - —
In a recent wor 1], a pinched-weight finite energy sum I'l7"—v.e ve(y)]

rule (PFESR analysis of the flavoud two-pointV—A cur-
rent correlatorATI(Q?), was performed. This allowed ex- [with () indicating additional photons or lepton pdimre
traction of the dimension si¥— A operator product expan- expressible as weighted integrals over the corresponding
sion (OPB coefficient, a5, which is related by chiral spectral functionsp(’y=(1/m)ImII{}. Working with the
symmetry to theK — 777r matrix element of the electroweak comblnatlonsl'[(‘)”)(s) 1) (s)+1'[(1) (s) andsII{h(s),
penguin operatorQg. The result forag led directly to an  which have no kinematic smgularmes, one has, explicitly
improved determination oé’/e in the chiral limit. [2-5],

The current paper is devoted to a more detailed account of

this analysis. In it, we present the rationale for our choice of m2 ds s |2
weight functions, describe the calculation of higher dimen- Ry a=127 SEW|Vud|2J —|1-—
sion OPE contributions, and discuss the relation of our work o m: my;
to previous treatments of thé— A correlator. The advan- 2s
tages o_f the partlculgr version of the FESR formulation em- 1+ 2_ psloxl)(s)_ _p(O) (s) 3
ployed in our analysis are pointed out. m? m?
A. Background where Sgy=1.0194+0.0040 represents the leading elec-

troweak corrections[6],> and V4 is the ud Cabibbo-

We recall that nonstrange hadroniadecay data provide . i 2 si i
access to the spectral functions of the flavorvector (V) Kobayashi-MaskawaCKM) matrix element. Since the in-
tegrals over theJ=0 part of the spectral function are

and axial vectofA) current correlator§2—5]. With J§ , the d by the bi | buti icall
standard/, A currents and the standard definitions of the Spmsaturate y the pion pole contribution, up to numerically
negligible corrections o@(mu 1), honstrange hadronicde-

J=0,1 parts of the correlators, 1)
cay data provide detailed information on the sp(ﬁ (s)

| @i OITLG A03%,0(0)T10)
5 (1) /2 0) /2 1A recent updatg7] yields Sgy=1.0201=0.0003, compatible,
=(—g""q°+g“q") Iy A(a%) +9*q"lI; A(Q%), (1)  within errors, with the value 1.01940.0040 quoted above, and
employed in our recent papgt]. Since the+0.0040 uncertainty on

the ratios Sew produces a negligible contribution to our total errors below, we
have chosen to retain the input employed in R&f.in what fol-
lows.
*Email address: Vincenzo.Cirigliano@ific.uv.es 2The additional radiative correction, conventionally denatgg,
"Email address: golowich@physics.umass.edu has been dropped in writing this equation since it cancels itVthe
*Email address: kmaltman@physics.adelaide.edu.au — A difference which is the subject of this paper.
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+pP*1(s). For states containing only pions, G-parity allows ability of the OPE. One can check the stability of any nomi-
an unambiguous separation of tieand A components of nal OPE output against changessg to assess theoretical
this sum. In the range where the decay to states containingncertainties associated with possible OPE breakdown.

kaon pairs is negligiblésay s<2 Ge\?), the individualV (i) Work in the vicinity of certain “optimal” s, values
and A terms, and hence also the differenag=p{*" s called duality points[8]. The set of all sucts{ is
—p{"), are thus known very accurately from experiment. nothing but the zeros dR[s,,w] for certain special weight

Knowledge of theV and A spectral functions allows ac- choices. By “special” is meant that the zeros can be deter-
cess to the corresponding correlators through the use of emined independent of the values of any unknown OPE con-
ther dispersion relations or FESR’s. The latter may be takegensates. For example, the weightés)=1 andw(s)=s

to have the form are special for th&/—A correlator, since thel=2 andd
5 1 =4 OPE contributions are known to be zero in the chiral
f dsp(s)w(s)= =— dsII(s)w(s), (4)  limit [this is the OPE statement of the two Weinberg sum

Sth 2l Jis|=s, rules (WSR’s) [9]]. In general, the sets of zeros Bf sy, W]

for different correlators and/or different weights are
different® The duality point approach relies on the observa-
tion that, for theV — A correlator, thev(s)=1 duality points
lie close to the corresponding(s)=s duality points(two
ds s \? such points exist in the intervalkQs,< mf). This is taken to
Rv.a=67Sgw|Vud i % . —2( 1 ) suggest the possibility that the zerosRjfs,,w] for all w(s)
Is=m: m might be(approximately the same. If so, sum rules based on
other weights would be reasonably satisfied at w(s)
. (5) =1, w(s)=s duality points. Such sum rules, restricted to
these values o§,, could then be used to extract unknown
OPE coefficients. However, the uncertainty about how close
which results from the application of E(4) to Eq. (3). the true duality point for a given sum rule is to that for the
If one works at sufficiently largs, that the OPE repre- w(s)=1,s sum rules will produce a corresponding uncer-
sentation of[I(s) may be used reliably on the right-hand tainty in the extracted OPE coefficients. This uncertainty can

side (RHS) of Eq. (4), appropriate choices for the weight pe large if thes, dependence of the corresponding spectral
w(s) allow one to determine OPE contributions of different integrals is strondas it is, for example, for the weights

dimensiond, in terms of experimental data fpi(s) (analo- W(S):Sk with k=2].
gous statements are true for the corresponding dispersion re- (jii) Work with “pinched weights,” i.e., those satisfying
lations and/or their Borel transformsTo reflect the fact that w(s;)=0. Such weights suppress OPE contributions from
II(s) will differ from its OPE representation over at least the region of the contour near the timelike real axis where
some portion of the contoys| =s,, we recast Eq4) inthe  [I,p— 1] is expected to be largelst1]. R[sy,w] will then
general form be small at those scalesy, for which the region of OPE

. breakdown, on the gonto¢$| =y, Is restricted to the vicin-

f OdSp(S)W(S) +R[S,W] ity of the timelike point. If the region of scales for which this
Sth

valid for anyw(s) analytic in the region of the contour, and
anyII(s) without kinematic singularities. An example is the
standard OPE representationR§ 5 [2-5],

m2

T T

X

S S
( 1+2— H‘V‘?;l)(s)—z—zng?g(s)
m m:

T

is true extends down as far as the experimentally accessible
region, one can find a window @&f, values within which the
__ data-based spectral integrals admit an OPE-like representa-
2 §s|=sodSHOPE(S)W(S)’ © tion [as given by the RHS of E@6)] for suitable choices of
the unknown QCD parametefise. the appropriate OPE con-
where densates A successful OPE/data match implies that
1 R[sg,w] is not detectable, within experimental errors, in the
_ - _ given analysis window. The analysis window then represents
RlSo.WI=5 5 ﬁs_sodS[HOPE(S) W), (D 20 extended dualitynterval, since every point in it, in the
sense of the terminology above, is a duality point. Moreover,
R[sq,w] then quantifies what is usually referred to as “OPE working with weights which differ significantly in the ways
breakdown” or “duality violation.” they weight the experimental spectral data, but whose inte-
Due to the intractibility of strong-coupling QCD, it is not grated OPE contributions involve the same set of QCD pa-
possible at present to obtain an analytic expression forameters, allows one to perform additional checks.
R[sg,w], and its neglecicommon to all FESR analyses We shall follow the last of these approaches and employ
therefore represents a key dynamical assumption. There exiBFESR's to analyze thed V— A correlator. Evidence in sup-
several strategies, however, to minimize the impact of thiport of this choice can be inferred from the results of FESR
assumption: studies of the flavoud V and A correlators, where one
(i) Work at the highest possib&y=Sy,a2x, Wheres,ax IS
the maximum value o6 for which p(s) is experimentally
known. At highs,, one has increased confidence in the reli- 3see, for example, Fig. 1 of Ref10].
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knows with good accuracy both the data and the OPE intediscuss some practical considerations relevant to the choice
grals for s, above ~2 Ge\?. These studies show that of PFESR weight. In Sec. lIl, we describe how, by appropri-
FESR's based on theunpinched weights, w(s)=s® ate PFESR choices, it is possible(ipsignificantly improve
(k=0,...,3), arerather poorly satisfied over the range on previous determinations of tlte=6 andd=8 OPE con-

2 Ge\ﬂ<so<m§ [12,1Q (i.e., at these scale§[s,,sv] is  tributions and(ii) at the same time, extract OPE contribu-
typically large. In contrast, the FESR predictions, E®), tions with dimensiongl=10, . ..,16 notobtained in those

for Ry andR,, which are obtained by taking the appropriate earlier analyses. A comparison with previous analyses is pre-
linear combinations of thev(s)=1,s? ands® FESR’s, with sented in Sec. IV. An expanded discussion of the issue of
so set equal tom? and R[m?,w] to zero, are in extremely duality violation is given in Sec. V. This section also contains
good agreement with experimefit3,14). The failure of the ~@n outline of the techniques we have employed to test for the

sk-weighted FESR's is a manifestation of the breakdown of°f€Sence of possible residual duality violation in our analysis
the OPE representation near the timelike reakis for in- ~ Of the V—A correlator. Certain details of these tests which

sufficiently larges,, as shown by Poggio, Quinn and Wein- &€ relevan'g to the compari.son to earlier wqu are _defe_rred to
berg (PQW) [11]. The success of the OPE predictions forthe Appen(_d|x. O_ur conclusmns', tog_ethgr with a brief discus-
Ry  presumably arises from the suppression of this danget!on are given in Sec. VI. The implications of our resul?s for
region by the(doublg zeros of the kinematic weights at the chiral-limit values of the electroweal_< penguin matrix el-
—m2 (the edge of hadronic phase spadeturns out that for  €MeNts have already been worked out in REf.

any weight of the form eithewy(y)=(1-Yy)(1+Ay) or
wp(Y)=(1—Yy)2(1+Ay) (with A arbitrary andy=s/s),
the correspondingry o-like PFESR is extremely well satis-
fied for all sy in the range 2 Ge¥<so<m? [12,10. This We now describe the input required for the OPE and data
indicates that for the separateand A correlators, and for sides of the flavoud V—A sum rules. The emphasis is on
such “intermediate” scales, the OPE breakdown is closelypractical considerations relevant to the choice of PFESR
localized to the vicinity of the timelike real axis. At these weight functions.

scales, it appears safe to neglBfs,,w] also for other cor-

Il. SUM RULE ANALYSES OF THE
V—A CORRELATOR All

relators providedv(y) satisfiesw(y=1)=0, but not other- A. The data side
wise A more detailed discussion of these issues may be
found in Sec. V. We shall employ both the ALEPH and OPAL data fop

[13,14). The respective ALEPH and OPAL spectral functions
are displayed in Fig. 1.

B. Summary of content In the case of ALEPH, we use the publicly available data
) ) _ files corresponding to the 1998 analysis, whose overall nor-

Irzot+hl|)s paper we focus on the differencell=II malization was set by the preliminary result for the rescaled
— 1T of theJ=0+1 components of the flavard Vand  {ota) strange hadronic branching fractioR,.=B,/Be,
A correlators. In the chiral limit, its OPE is purely nonper- R,s=0.155, and the 1998 PDG values Bf andB,,. The
The smallness ofn, ¢ means that the physical OPE will be gate R,=0.1625[19,20 both differ slightly from the pre-
dominated byd=6 (and highef terms, at least until one gets |iminary value. This change, together with minor changes in
to extremely large scales. Accurate data for the associatgfle values ofB,, B, and ther— v, branching fraction,
vacuum condensate combinations. Of particular interest argata and covariance matrixaAn input value ofV,q4 is re-
the two condensates appearing in the6 part of[AllJope,  quired to convert from the experimental number distribution
which turn out to determine the chiral limit values of tke provided by ALEPH toAp. We have taken this to b€y
—arr matrix elements of the electroweak penguin operators- g 9742+ 0.0016, a value which spans both the range based
Q7,4[15]. Thed>6 terms in[All]ope, Which enter disper- o theK .5 decay analysis and that based on the combination
sive sum rules for these matrix elemeft$,17, are also of  4f o+ _0* nuclear decays and neutron decay, as quoted in
phenomenological interest since a determination of their ValPDGZOOZ[Zl]. In the case of OPAL, we use the publicly
ues would allow the dispersive determination of R&fJto  yailable data files foAp and its correlation matrix, corre-
be performed at lower scales, where uncertainties assomat%gonding to the results of Refl4]. These files were con-
with the classical chiral sum constraints are drastically rexiycted using a central valog,y=0.9753. We have, there-

duced. _ _ _ fore, performed a small global rescaling in order to work
We will extract the higher dimensiond4) terms ap-

pearing in the OPE oAl by constructing a set of PFESR'’s
designed in such a way as to minimize the impact of experi- 4rhe noints shown represent bin-averagea(s) values and are
mental errors. As we will show below, it is possible to makepjgtted at the midpoints of the ALEPH/OPAL experimental bins.
such determinations fat=6, . . . ,16with good accuracy us- 5k thank Shaomin Chen for pointing out the necessity of this
ing the existing experimental decay data base. rescaling to us. FoR,.=0.1625, the PDG2002 average va[2d]

In Sec. Il, we detail the input required for the OPE andB,=0.1781,B,, as implied byu-7 universality and ther ,, value
data sides of the flavoud V—A 7 decay sum rules and of F_, the rescaling turns out to be 1.003, i.e., very close to 1.

(0+1)
Vv
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(iii) In order to extractAp from the experimental decay
distribution [cf. Eq. (3)] one must divide by the kinematic
weight factorw.(y,)=(1—-y,)?(1+2y,). The double zero
of w, ats=m? thus amplifies the errors on tve- A number
distributions for thoses nears=m?.

In view of item (iii), pinched weights with only a single
zero ats=sy will weight the experimental number distribu-
tion and errors with a factor which diverges &ts s for s
nearm?. Such behavior is to be avoided if one wishes to
keep the errors on the weighted spectral integrals under con-
trol. For this reason we restrict our attention in the following
to PFESR’'s based on polynomial weights of the form
p(y)(1—y)? (y=slsp). Though this restriction is forced on
us by necessity, it has the virtue of enforcing a stronger sup-
pression of OPE contributions from the vicinity of the time-
like real axis, and hence of improving the reliability of the
OPE side of the PFESR’s.

An important practical consideration in choosing PFESR
weights is the nonpositive definitenessAgs. Even with the
very precise data below 2 GéVweighted integrals which
involve significant cancellations between contributions from
the regions of positive and negativep will have much
larger fractional errors than would be expected based only on
the accuracy of the spectral data alone. For some of the
weights employed previously in the literature, for example,
the V— A cancellation is at the level of a few percent of the
individual V and A integrals, leading to large errors and sig-
nificant sensitivitiegas large as 20%o the exact treatment
of the 7r pole contribution. Avoiding strong cancellations of
this type is crucial to reducing the errors on the final deter-
minations of the various vacuum condensates. To quantify
this point in our discussions below, we introduce a quantity
ry_p defined as the ratio of thé— A spectral integral to the
corresponding vector spectral integral.

B. The OPE side

The OPE representation &II is schematically of the
form

AH(Q2)=d:24m

so{GeV?) g (8)

X4

Q
FIG. 1. The ALEPH(top panel and OPAL(bottom panel ver-

sions of theV—A spectral function. The errors shown are the WhereQ2

square roots of the diagonal entries of the corresponding covarian

matrices.

= —s. Perturbative corrections lead to logarithmic
thependences of thé, on Q2. To NLO in QCD one has

with ALEPH and OPAL versions of the spectral function
which both correspond tv,4=0.9742+0.0016.

As noted previously, the data are very accurate bedow
~2 Ge\?. Near the kinematic end pointy,=1 (y,

Q2
Xg=ag(p)+ bd|09( ;) : 9

, Y The by(u) are known explicitly ford=2,4,6, but not for
=s/m7), however, the errors ofAp become large. This is @ hjgherd. For polynomial weights, OPE contributions propor-
consequence of several factors: tional to by(u) involve the integralsf |, — ;dxxlog(x). For

(i) The event rate pecomes small in that region due tahe weightsw(y)=p(y)(1—y)? employed in our analysis
phase space suppression. the variations of sign in the coefficients of(y) produce

(ii) There is, at present, no complete separatiod ahdA  sijgnificant cancellationgand hence additional numerical
contributions to the spectrum for states containingkapair  suppressionsof these contributions relative to those of the
and=1 w’s. leading nonlogarithmic terms. We thus consider it very safe
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to follow earlier analyses in neglecting such corrections folyherea= a(Q?)/, with ay(Q?) the running coupling at
d=8. The remaining nonlogarithmic OPE integral contribu—sca|eM2:Q2 in the MS scheme. The quark condensate fac-

tions follow from tor can be evaluated using the GMOR relatj@)]
k R
- agl|(s ay ((my+mg)uu)=—F2m? (12
—— ds — —)2—1"5 R ETo) ut Mg M
21 T Qd | 50 (=1)%6 (ar2)-1 5 (10

which is accurate to better than 6P28]. We compute the
Weights of degree 2 thus contain leading OPE contributiongveighted integrals of ATI(Q?)]4-4 using the “contour im-
up tod=6, those of degree 3 contributions upde- 8, etc.  provement” schemég4,29], taking for a the version corre-
Neglect of d=10,...,N+2 contributions in PFESR’s sponding to 4-loop runningB0] with the ALEPH determina-
based on weights with degré¢>3 is therefore dangerous tion [13] ag(m?)=0.334+0.022 as input. This contribution
unless one is working &, large enough that such contribu- represents only a small correction to the domirgais term
tions may be taken to be safely small. Typically one does nobecause of th€)(m, 4) chiral suppression. In the numerical
know a priori how large ars is “large enough”; however, analysis we have expanded #020% the errors assigned to
the stronger Ky-dependence of the highdiintegrals allows the GMOR evaluation of thd=4 OPE contributions in or-
this question to be addresspdst facto provided one works  der to account for the truncation of the series for the Wilson
with a range ofs, large enough to expose the presence ofpqefficient at®(a?). Because thal=4 contribution is so

higherd contributions which may have been omitted whengm g the resulting contribution to the total error is, however,
they should not have been. If one finds that the rangs, of negligible.

employed is such that the presence of such contributions is pserve that in the chiral limit theé=2 andd=4 contri-
indicated, one can use the PFESR in question to place ol tions are zero. Taking,=a,=0 is then the OPE imple-

straints on the relevant higher dimensiag terms. Obvi-  antation of the first and second WSR's. To the extent that
ously, both the reliability of thepost factocheck and the o sea.=0 anda,~m2 the WSR’s are built into our
accuracy of the highed extraction will be enhanced for procedurezz e

PFESR'’s having fewer separaig contributions on the OPE For thed=6 contribution, there exist several determina-

side qf the sum rule a'md'larger geparatlons between the d'fl'ons in the literaturd17,31,33, corresponding to different
mensions of the cpntrlbutlorjs which czio oceur. schemes for the choice of evanescent operator §asis
The d=2 term in Eq.(8) is of O(m} q). That it can be  gjnce one of our goals is to use our results for the6
safely neglected can be confirmed numerically by integrating,ntribution to improve the determination of the chiral limit
the J=0+1 expression of Ref[22], which is known 10 \aue of the electroweak penguin contribution to tie

2y 6
e i is gi —mm decay amplitudes, we employ the most recent deter-
Thed=4 term in Eq.(8) is given by[3,26] mination [17], which corresponds to the same scheme as
8 59_\(( Yuu) used in the calculation of the Wilson coefficients of the ef-
my+mg)uu : o - on Ct 3
2 | Zqy | N T fective weak Hamiltoniai34].” To simplify the later appli
Ao CRlE ) Q* - @Y cation of our results it is also convenient to work with the

vacuum condensat€®,) and(Og) defined in Ref[17],

5The reader might worry that the rather bad behavior of the inte- :<_ 8 gt B q_a- T3 g 3 >
gratedJ=0, d=2 OPE series precludes reliably subtracting the (01 A% 2 aqy 2 a7 arurs 2 a9r=s 2 a/
non-rr-pole part of thel=0 contribution from the data, and hence

prevents us from making such a definitive statement. While it is true = ya’3 — uya’3

that (i) for the kinematic weight case shown above, the last three (Og)={ ay,A > a9y A 2

terms in the integrated=0 d=2 seriegwhich is known toO(ag)

[23]] are actually increasinf23,24], even at the scaleo:mf and — T3 — 73

(i) the O(a?)-truncated) =0 d=2 OPE integrals corresponding to - q7u7’57‘a§qu7’5)‘a§q> , (13
different “(k,0) spectral weights{4] display a significant unphysi-

cal dependence ok [25], this turns out not to be a problem. The whereq=u,d,s, 75 is a Pauli(flavor) matrix, and{\?} are

reason is that the behavior of the integradedO series has been the Gell-Mann color matrices. With these choices one has
investigated in the analogous case involving the flav®currents,

where additional sum rule constraints were shown to allow a deter- 1
mination of the corresponding spectral integrdl85]. The [AH(QZ)]d:GZ_G
O(ag)-truncatedJ=O OPE estimates were found to represent sig- Q
nificant overestimate$25]. We may thus use th@lbeit poorly be- )

haved OPE determinations to conclude that, apart from#hgole with

contribution, thed=2 J=0 contributions to the measured spectral

distribution are indeed completely negligible. The 0+ 1 part of

the spectral function can thus be reliably determined. The integrated’An independent determination AI1],4_g in this scheme was
series inag for thed=2 J=0+ 1 OPE contribution converges well, given in Ref.[35]. The results quoted in version 2 of this reference
and is numerically negligible. are now in agreement with those of REE7].

2
ag(p)+ bs(M)mF

. (14

054013-5
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as(M)Z2[27T<asos>M+As<aios>ﬂ+A1<a§01>u]a constraining thed>8 contributions and separating them
from thed=6 andd=8 contributions.
be( 1) =2[Bg(a?0g) .+ B1(a?01) .1, (15) Within the space of PFESR weightgy) =p(y)(1—y)?

employed in our analysis, the weight of lowest possible de-

whereA,, Ag, B, andBg are the coefficients tabulated in 9ree isw(y)=(1-y)? In a zero-error world, the corre-
Ref.[17].2 They depend on the number of active flavors, theSPonding PFESR would allow an extractionay. Unfortu-
scheme employed foys, and the evanescent operator basis.nately, this weight produces a high degree Wf-A

For N;=3, the values for the NDR and Hys schemes are cancellation, and hence is not practical for use when em-
ployed with present experimental data. We thus consider

A;=2(NDR), —10/3HV) weights of degree &he highest degree possible involving no
aq contributions with d>8), w(y)=(1-y)?(1+Ay).
Ag=25/4NDR), 21/4HV) There will be some value d for which the fractional errors
on the spectral integrals are minimized. It turns out that this
B,=8/3(NDR and HV) value is almost exactly equal toe 3. The PFESR based on
— 2
By— — 1(NDR and HV). (16) wi(y)=(1-y)(1-3y) (18

will then provide the most restrictive constraint ag, as,
and this is our first choice of weight. The weight(y)
=y(1—y)? also has reduce¥—A cancellation, and pro-
vides independent constraints on the determinaticay@&nd
ag, since degree three polynomials yield oaly, ag andag
OPE contributions, and, is small. Thes, dependence of
both thew,- andw,-weighted spectral integrals will be well-
described using only two parameteeg, and ag, provided
the use of the OPE representation is justified. has been
chosen, by construction, to weightp(s)=Ap(spy) with a
profile very different fromw; to make this test of the reli-
ability of the OPE representation as nontrivial as possible.
We determine ous, analysis window by fixing the upper
edge ats,=3.15 GeVf= mf and decreasing the lower edge
until the fitted coefficients cease to be consisi{@vithin ex-
[AH(QZ)]d:ﬂ' 17) pe_rimental _er_ror)s Since ap is the most accyrately deter-
d mined coefficient we use it as our basic monitor of the onset
of duality violation. We find that duality violation for the
With this notation,ag is identical to(Og) of Ref.[36] and V—A correlator and thev,, w, weight set begins to set in
Og Of Ref.[37]. It is also twice the negative of the integral belows,~1.8 Ge\?, and hence we fix the lower edge of our
M, of Refs.[35,38, independent of,, in the absence of analysis window at 1.95 G&V

The logarithmic B, g terms turn out to play a very small
role in the analysis, though we have kept them for complete
ness. We do this by first writindpg=ag(bg/as) and then
employing the existing dispersive determination{6f;) and
(Og) [17] to estimate g=bg/ag. With this estimate as input,
the integratedd=6 OPE contribution is now, like the non-
logarithmic d=6 term, proportional taag. The overallag
factor multiplying the fulld=6 contribution is then to be fit
to data. The central value fog turns out to be very small,
=—0.03. Since only the first term in the expansiorbgfin
powers ofag is known, we assign gonservative 50% un-
certainty to this estimate.

Ford=8 and higher we take

duality violation in thes®-weighted FESR. To investigated>8 contributions it is convenient to con-
struct weights for which the only OPE contributions with
ll. EXTRACTION OF OPE CONDENSATES >4 are those proportional toas and ay, with d
FROM PFESR'S =10,12. e Thep035|b|I!ty of quk|ng withs, down to
~2 Ge\? is also helpful since an increased rangesgtre-
A. Choice of PFESR weights and thes, analysis window ates an increased variation in the relative size of the
We consider a sequence of PFESR’s designed to simplify- 10,12 ... andd=6 contributions over the analysis win-

the extraction of the OPE coefficienss; of AIl. Working ~ dow, and hence improves our ability to perform the separa-

with PFESR’s allows us to take advantage of the freedom iffion of contributions of different dimension. Weights having

the choice of weight profile, and hence, by construction, tc® double zero ag=1, reduced/—A cancellation, and only

avoid strongV—A cancellations. The freedom of weight @ Singleay contribution beyondi=6, are

choice also allows us to considerably simplify the task of N
o

1 N
N—1/Y " IN=T)Y

8The coefficientsag and bg appearing here differ from those of (19

Ref.[17] by a factor of 2. This reflects the fact that in REf7] the ) )
coefficients correspond to the neutral isovector current correlator! N€ overall factor of has been introduced in order to reduce

while here they correspond to the charged isovector current coth€ level ofV—A cancellation. The casél=2 corresponds
relator. The(isospin factor of 2 has been made explicitin E¢s5).  to the previously introduced weight,=y(1—y)?. For N
TheA,, Ag, B; andBg of Egs.(15) thus have the same numerical >2, Wy(y) produces contributions proportional &, ag
values as in Ref17]. andayy, 4 on the OPE side of the sum rule. We consitler

wn(Y)=Y N=2,3,4,5,6.
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up to 6, and hencay contributions withd up to 16° Since _
each of the resulting sum rules allows a determination of an({ad}'SO)_

S
2qi Is—sodswn(s_o) [AHope(8) Jo>s-

both ag anda,y. 4, the consistency of thag solutions ob- (23)
tained from thew; throughwg PFESR'’s also provides a o _ _
strong self-consistency constraint on the reliability of theThe explicit form for the OPE integrals is
analysis. Further constraints ag and the higher dimension
i ideri ' 7 S 3 3a
a4 can be obtained by considering the weights ., ({ag)iS0) = —ag| 1+ 14log S0l Zrols odg
1 &2 2 14 3
0 0
=y|1 N 2+ 2 NI N=3,45,6
Wain(Y) =Y =2V TIN=2]Y =3,4,5,6. 2 s ag
fw,({ad};s0) = — ?as 1+rglogl = | |— =
0 2 So
These weights produce,, ag anday contributions withd 3 1
=10,12,14 and 16 foN=3,4,5 and 6, respectively. Ta fofat-s)—— ——al1+ro So Loy 10
anday-g values extracted using; throughw,, should be ws({8a}:50) 2s3 6_ 6100 w?) 2 6_ 2s;
consistent with those obtained usimg throughwg, pro-
vided the OPE representation afll is reliable for thes, 4 S| 2 ay,
employed in our analysis. We find the consistency is excel-  f,, ({ag};so) = — ;ae 1+rglogl — |+ 376|~ 3
lent for all theay with d>4. So L iz ] 35S
Finally, we observe that PFESRs based on the weights of
Egs.(19) and(20) allow one in principle to extract conden- .5 So 3 ay
sates of even higher dimension. With the present experimen-  ws(12a};S0) = — 25256 1+relog 2 t20e 258
tal errors, however, higher degree PFESR'’s effectively work 0 0
with a smaller analysis window, localized arours) 6 4
=2 Ge\ (points at highers, suffer from much larger ex- fu,(18q};So) = — —5ag| 1+ r¢log So +—rg|— a_1‘73
perimental errors, and become irrelevant in the analysis 6 555 | w?) 57| 5s]
This feature weakens the power of this method to detect
inponsistencies through the use of an extensig@nalysis 3 3ag 2aj
window. We therefore quote our results for the condensates  fu_({aa};S0)=— 5 red6+ —75 +—
only up tod=16. So So So
With the above choice of weights, and assuming
R[sp,W]=0, thew; throughw,, PFESR’s may be written as 8 2ag  ap
[So.W] 1 ghwio y fu ({2a}iS0)= — —5TeB6+ — — —
8 3s S S
0 0 0
Jw, (S0) = fw_({ad}:so) (21)
S5ag 2ayp,
fw,(184};S0)=— —Sredet+ —+ —+
where Wg({ d} 0 253 66 338 388
J (SO)=fsodsv\41<i)Ap(s)+i, e 3ag  agp
Wn 0 So 27i fu,({aa}iso)=— 5_5(%r6a6+ 28 25 (29

Note that the small, knowd=4 OPE contribution has been

S
X fﬁ dSV\h(—)[AHOPE(S)]d—4 (22 ) o e
Is|=so So moved to the spectral integral side in defm%(so).

_ B. PFESR fit: Input and results
%We also investigated PFESR’s based on the weighity) ={1

—[N/(N=1)]y+[1/(N—1)]yN} N=2, which produce onlya, . ;
and a,y. , OPE contributions. Th&=2 case is jusw,(y)=(1  Step, we extract a preferred value fay in an analysis em-
—y)2. For largerN the smallness of thé=4 contributions would, ~ PIoying only the weightsv; andw; [1]. Such an analysis is

in principle, make PFESR’s based on these weights good choicegnaximally safe” in the sense that the numerical suppres-
for determining the higher dimensian, terms. TheV—A cancel-  sions of the integrated>8 OPE logarithmic corrections are
lations for thewy, family are, however, considerably stronger than Strongest whenl—2n, wheren is the degree of the PFESR
for thew,, family of Eq. (19), making the errors on the extractag ~ Polynomial, is as large as possible; the neglect of sdch
significantly larger than those obtained using the PFESR’s based ok 8 logarithmic terms in the OPE is thus safest when one
w;, throughw,,. While the results for thaey obtained using the two  uses the weigk$) of the minimum possible degree. As ex-
sets of sum rules are in excellent agreement, the larger errors makgained above, the accuracy of current data means that the

For our final results, we proceed in two steps. In the first

the analysis based on ttv_m inferior to that based on the, at
least with current experimental data as input.

lowest such degree which still allows an accurate extraction
of ag is 3. In the second step, we perform a combined least-

054013-7



CIRIGLIANO, GOLOWICH, AND MALTMAN PHYSICAL REVIEW D 68, 054013 (2003

squares fit for the coefficients, . . . ,a;6 Using, for each of ag=—(5.70+3.72-0.64x 10 3 Ge\®
the weightsw, throughw,q, defined in Eqs(18), (19), and
(20), the set of 7s, values 1.95-0.% GeV?, k=0, ... ,6, ao=(4.82-1.02+0.20 X 10 2 GeW'°
which span the range frons,~2 Ge\? to 3.15 GeV
~m2. a;,=—(1.60+0.26+0.05x 10 * GeV*?
On the data side we use as input for the analyses based on
both the ALEPH and OPAL datB.=0.1781 0.0006[21], a;4=(4.26+0.62+0.14x10"* GeV**
F,.=92.4+0.07+0.25 MeV [21], Sgw=1.0194+0.0040, 16
and |V,4=0.9742:0.0016. The rescaling of the 1998 a6~ —(1.03:0.14£0.03 GeV™ (26)

ALEPH data is determined usindgR,q=B,q/B.=3.480 _
+0.014[20]. This value is based on the most recent update, 2. Fits to the OPAL data
R,s=0.1625+0.0066 [19,20, in combination with the The results of the “maximally safe” analysis fag and
PDG2002 average fd, (quoted above and the assumption ag are
of w-e universality. On the OPE side we usgm, s
+mg)uuy=—F2mZ, andrs=bg/as=—0.030+0.015. 8=~ (5.43£0.72:0.25 X 107* GeV®

In listing final errors for the ALEPH-based analysis we _
guote separately the errors produced by the uncertainties in 35=—(1.35+3.32:1.0x10° GeV, 5
the ALEPH number distribution, and those due to all other @7
sources, including the uncertainties on the OPE input quan=gr the combined analysis, we find
titiesa, andrg. The former are calculated using the rescaled

ALEPH covariance matrix. The latter are combined in ag=—(5.06-0.89+0.12x 10 ° Ge\®
quadrature.

In the analysis based on the OPAL data, we again quote ag=—(3.12+3.82-0.45x 10 3 Ge\®
two uncertainties. The first is that computed using the OPAL
covariance matrix, the second that obtained by combining in a;o=(3.87+1.06+0.10 X 10 2 GeV'°
qguadrature the errors associated with uncertainties in all
other input parameters/(,y, Sgw, a4, andrg). app=—(1.32+0.27+0.039 x 10 * GeV*?

1. Fits to the ALEPH data a;,=(3.54+0.66+0.06 x 10 ! GeV!*

N ;?:loresults of the “maximally safe” analysis faz and aje= — (0.85+0.15-0.02 GeV2S 29)

We note that the ALEPH and OPAL determinations of
OPE coefficients are in good agreement within errors. There
ag=—(6.16-2.78+1.40 X103 Ge\~. is also extremely good agreement between the combined-fit
(25) and maximally-safe-fit values foag and ag in both the

ALEPH and OPAL cases, providing stropgst factosupport

ag=—(4.45r0.61+0.34x 10 3 Ge\’

For the “combined fit” analysis, we find for the neglect of the highedt logarithmic corrections. One
. further point of relevance to the self-consistency of the
ag=—(4.54+0.83+0.18 10 Ge\ analysis, not evident from the results quoted above, is the

following. For each of the ten PFESR’s considered above, it
is possible, because of the differesgtdependence of contri-
%ue to strong correlations between the data integrals for differputions of different dimension, to extract values for the two
ents, and different weights, the fit values are obtained by minimiz-ynknown @>4) a4 coefficients occurring on the OPE side
ing the sum of the squared deviations between the data and OP& the sum rule in question_ One can then compare the values
integrals, weighted by the inverse of the diagonal elements of thgyf 5 given ay obtained using various different individual
covariance matrix for the set of data integrel$. With this proce-  prEgSR's, |t turns out that the agreement among the results of

dure, as is well known, the one-sigma errors and rms errors do n(aifferent single-PFESR analyses is excellent for all ghe
coincide. The former are smaller, and underestimate the variation if _ ~ 16. By construction six such determinations, and

the fitteday produced by variations in the input experimental data.hence six such consistency tests, existdgrand as.

All errors quoted in what follows are, therefore, tfiargep rms . . LU .
errors, i.e., the square roots of the diagonal elements of the covari- Our combined fit leads to a determination of the six pa-

ance matrix for the{ay} solution set. The fitted values are, of rametersag - -6 Because of Fhe strqng correlat|0n§ be-
course, also strongly correlated, and it is crucial to employ the fulfWeen data integrals corresponding to differgnand/or dif-
covariance matrix for the solution set if one wishes to have accuratferént weights, the resulting fit parameters are highly
errors for various sums of highdrOPE contributions such as those correlated. IfCpp/ is the DD’ element of the correlation
that enter the dispersive test of the solution set described in thenatrix, we find that the smallest of th€p.| is 0.90 for the
Appendix, or those required if one wishes to perform the residuabolution set associated with the ALEPH data and 0.82 for
weight analysis for theK — 77 EW penguin matrix elements at that associated with the OPAL data. The full covariance ma-
lower scale§17]. trices are available upon request.
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ALEPH data.(The match for the combined fit to the OPAL
data is of identical quality, and hence not shown separately.
Figure 2 shows the results for thg andw, PFESR’s! Fig.

3 for the wy throughwg PFESR’s, and Fig. 4 for thev;
throughw,, PFESR's. Our results fof,, ({ag};so), corre-

sponding to Eqs(26), are given by the solid lines. There is
clearly no sign of duality violation for any of the PFESR’s
employed at any of the scales, in our analysis window.
Improved data would reduce the errorslmn(so) and allow

us to sharpen this test even further. Also shown for compari-
son in each figure are the OPE results corresponding to the
ag, ag fits of Refs.[36,37), where, as in those references we
take as central input valueg =0 for d>8. The inclusion of
d>8 contributions clearly leads to a significantly improved
fit to the data, as well as a significantly reduced error on the
determination, in particular, ag.

The excellent agreement between the optimized OPE rep-
resentation and the corresponding data integrals displayed in
Figs. 2 through 4, while a necessary condition that significant
duality violation be absent from our analysis, is not a suffi-
cient one. In order to investigate this question further, we
have performed a number of additional tests on our solution
sets. Since several of these tests correspond to sum rules
studied in earlier analyses of thé—A correlator, we first
discuss the relation between our results and those of these
earlier analyses. Having introduced the relevant sum rules as
part of this discussion, we will then return to a discussion of
the additional tests which such sum rules allow us to perform
on our solution sets in Sec. V.

IV. PREVIOUS ANALYSES

Several determinations of th#=6 andd=28 contribu-
tions to the OPE ofAIl exist already in the literature
[36,13,14,37,35,38,39In some cases the quoted resués-
pecially for ag) differ significantly from ours. To pin down
the source of these discrepancies, a closer scrutiny of the
previous analyses is in order. In general, previous results
have errors much larger than those on the spectral function
over most of its measured range. This suggests either the
impact of strong cancellations or the presence of additional
theoretical systematic uncertainties. One obvious possibility
is the presence af>8 contributions, neglected in the analy-
ses of Refs[36,13,14,37, in the solutions forag, ag. We
will demonstrate below that, for botly, andag, the differ-

(bottom panel PFESR's. Thel,, (so) integrals and errors were ob- ances petween our results and those of previous analyses are

tained using the ALEPH data and covariance matrix. Three versiongaturally accounted for by thd>8 coefficients given in
of the f, ({a4};so) curve are shown. The solid line corresponds to Egs.(26),(29).

either the “maximally safe” or combined fit foag andag, as de-

In what follows, we shall recall the basic ingredients of

scribed in the text, the short-dashed and long-dashed lines to th@e earlier analyses and discuss possible sources of uncer-

corresponding DGHS and IZ solutions, respectively.

C. The optimized OPHspectral integral match

tainty.

A. Spectral weight analyses

It is important to verify that, after fitting the OPE coeffi-  In Refs.[36,13,14, the “(k,m) spectral weights,”
cientsay, the resulting OPE integra a4}:;Sp) provide a
d g g f$\/n({ d} .0) p W(k,m)(y):ym(l_y)2+k(1+ 2y), (29)
good match to the corresponding spectral mtegﬂa,lrgso)

over the whole of the, analysis window. Failure to achieve
such a match would represent a clear sign of duality viola- e plot only the results of the combined fit in this case since

tion. In Figs. 2, 3 and 4 we display the quality of the they are indistinguishable from those of the “maximally safe” fit on
fu, ({aa};S0)/dw, (So) match for the combined fit to the the scale of the figure.
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FIG. 3. an(so) andfwn({ad};so) for the w; (top left panel, w, (top right pane), ws (bottom left panélandwg (bottom right panel
PFESR's. The]wn(so) integrals and errors were obtained using the ALEPH data and covariance matrix. Three versiorfa,,rg(ﬁag,@;so)
curve are shown. The solid line corresponds to the combined fit given i Eof the text, the short-dashed and long-dashed lines to the

DGHS and 1Z solutiongfor which aq=0 for d>8).

with (k,m)=(0,0) and (Im), m=0, .. .,3,were employed

Referencg36] (DGHS) represents an update of the earlier

to extractag andag, under the implicit assumption that con- ALEPH analysis[13], and concentrates specifically on the
V—A combination, which was not studied independently in

tributions with d>8 were negligible in all case¥ The fits

for ag andag were, in all cases, performed using only the the original ALEPH paper. The results fag, ag thus super-
cede those inferred from the separ&teA extractions per-
formed in Ref.[13]. The results, in our notation, are

highests, available,so=m?.

1?Reference36] also employed the (%,1) spectral weight, not

included in the other analyses, in order to allow the simultaneous

extraction of the NLO chiral LEQ. 4.
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PFESR's. The]Wn(so) integrals and errors were obtained using the ALEPH data and covariance matrix. The notation for the three OPE

curves is as in Fig. 3.

They are in good agreement with the results of the OPALA analyses, however, involve an additional OPE fitting pa-

analysis[14],
ag=(—6.0=0.1)x10"3 Ge\®

ag=(7.6+0.6)x10 % Ge\”.

(31)

rameter, the gluon condensate, which is absent invthed
difference. The fits display very strong correlations between
ag, ag and the gluon condensaié4]. A dedicatedV—A
analysis of the OPAL data would thus, in general, be ex-
pected to give different results far;, ag.'® In view of this,

One should bear in mind that the DGHS and OPAL analysis
methods are somewhat different: the DGHS results follow————

from a dedicatedv—A analysis, while the OPAL results
were generated by combining tlie=6,8 contributions ex-
tracted for the separad and A correlators. The separaté

B3We thank Sven Menke for bringing this point to our attention.
No analogue of the DGHS update of the ALEPH analysis exists, at
present, for the OPAL data.
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and the good agreement between the OPAL and DGHS re- L L e
sults, we concentrate on the DGHS solution in the discussio
which follows*

The DGHS value forag is consistent with ours, within
errors, but that folag is not. We have studied the origin of
this discrepancy, and we find th@j the discrepancy can be
understood as arising from the neglect of the8 contribu-
tions to the spectral weight sum rules employed by DGHS,
and (ii) the “(k,m) spectral weights” FESR actually provide
a consistency check on our solution set. We first note that the
(0,0) and (1,0) PFESR’s have strody-A cancellations,
and hence large experimental errors on the data sides of th
sum rules. For the (0,0) case, which involves, from among
the unknownd>4 a4 terms, only theag and ag contribu-
tions, ry_,~3% for so=mf. The (1,0) case, whose OPE
side in principle involvesag, ag and a;qg, also hasry_p
~3% for sp,=m?2. The (1,1), (1,2) and (1,3) weights pro- —0o014 — T T T T T T T 1
duce much less pronouncsd- A cancellations? and hence 18 20 22 24 268 28 30 32
must dominate the DGHS fit. Note, however, thdt™ (y)
=yM1—y—3y?+5y3—2y*]; these weights thus produce
numerical enhancements of thg, d>8 terms, whose pres-  FiG. 5. The rescaled (1,3) spectral weight combination,
ence on the OPE sides of the sum rules has been assumedsfo, . 4(s,) versuss,. The integralsl,w.3(So) and errors were ob-
be numerically negligibldsee the explicit example belgw  tained using the ALEPH data and covariance matrix. The solid line
The PFESR’s dominating the fit are thus those for whichshows the OPE predictiofiywzs({aq};so) corresponding to the
neglect of thed>8 terms is least safe. combined fit of Eqs(26).

It is easy to check that the combined fit values for
aq, - - - 416 predict non-negligibled>8 contributions for
all the (1m) PFESR’s. Ou_r results thus.|mply that the DGHS . ag Ay _@1» A4 A
values forag and ag, which are dominated byn=1,2,3 fuawa({ad;so))=—z——F+3—=< +55+2—.
cases, must contain higher dimension contamination. That S0 S S So  So
the central DGHSg, ag values do not provide as good a fit (32)
to thew; andw, PFESR’s(for which d>8 contributions are
absent as does our combined fit is, presumably, a reflection

of this contamination. Further evidence is provided bywhe |t 4>g8 OPE contributions are indeed negligible, then rescal-
throughw,, PFESR’s. ing J,,13(S) by s3 should produce a result; ag, indepen-
One can also explicitly demonstrate that the negledted gent ofs,.16 We plotsd,wa(s,) for the ALEPH data in Fig.
>8 contributions are, indeed, important for the spectrals The result is clearly far from constant with respectgp
weight PFESR’s. This demonstration is most transparent fofnambiguously demonstrating the presence of non-negligible
the (1,3) PFESR since, in this case, the OPE integral is  d>8 contributions. The solid line shows, for comparison,
the predictions corresponding to the combined fit solution of
Egs.(26). The good match shows that tbe-8 contributions
roduced by our solution naturally account for the discrep-
ncy between the DGHS predictions and the experimental
results.
A similar situation holds for the other spectral weight sum
rules, as shown in Fig. 6. In the figure we display the

the electroweak penguin operat@g, should bear in mind, not Jutkm (So)  together W!th .the OPE  expressions
only the difference between the values of Refs[36,40 and our fucem({aq};so) corresponding tai) the central values of the
results above, but also the fact that the extractions of the dominanPCGHS fit, Egs.(30), together withaq=0 for d>8, (shown
(Og), contribution toag in Refs.[36,40 employ a value for the DY the dashed line and (i) our combined(ALEPH-based
coefficientAg much larger than that given above. To conv@)  fit. Eas. (26) (shown by the solid ling In all cases, if one
as determined in Ref§36,4( to the same renormalization scheme takes into account the errors and correlation for the DGHS fit
as used for the Wilson coefficients of the effective weak Hamil-
tonian(and hence to make meaningful comparisons with the results
of Refs.[1,17,35,38,4)), one must multiply these results by factors  ®This is valid up to small logarithmic corrections. For the DGHS
1.15 and 1.27 for the NDR and HYs schemes, respectively. solution, the correction associated with tthee6 logarithmic term
BFor example, for the (1,1) PFESR,_,=32% forsy=m?. varies from 2.3% to 1.5% as, increases from 1.95 to 3.15 G&V

V%)

-0.002 — —_

spectral integrals (Ge

(1.9)
)

-0.010 — —

s3-rescaled w

S,(GeV?)

1A slightly different set of values, corresponding to an average otlz1
the results of Refd13] and[14], has been used in the (0,0) spectral
weight analysis of Sec. 7 of R4#0]. The value forag is the same
as that of DGHS, while that foag is ~15% higher. The reader
interested in the chiral limit value of the— 7 matrix element of
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FIG. 6. J,xm(Sp) andf,wm({ag};so) for the (0,0)(top left pane), (1,0) (top right panel, (1,1) (bottom left paneland (1,2)(bottom
right panel spectral weight PFESR’s. ThEk,«m(Sp) integrals and errors were obtained using the ALEPH data and covariance matrix. The
dashed and solid curves correspond to the OPE fit of DGHS, and our combifEdgit26)], respectively.

parameters, the resulting OPE error bar overlaps the spectriained. This is a nontrivial consistency test on our solution
integral bar asy= mf, even when the central values are notset.
in particularly good agreement. However, when one goes to
lower s, this is no longer the case; the shape of the curve for
the OPE integrals as a function sf is typically rather dif-

ferent from that for the spectral integrals. This is another In Ref.[37] (1Z), three approaches were considergdg:
signal of missing higher dimension contributions on the OPEPFESR’s with w(y)=(1—y)? and y(1-y)?, (ii) Borel
sides of the sum rules. On the other hand when one considetsinsformed dispersion relations involving1(Q?) for Q?
the OPE contributions implied by our combined fit, a high-lying along various fixed rays in the compl€é-plane, and
quality match between the OPE and data integrals is obfiii) Gaussian sum rules. The results, in this case, are

B. The 1Z PFESR and Borel sum rule analyses
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ag=(—6.8+2.1)x10 3 Ge\P the BSR analysis, and the OPE convergence even slower, we
will not comment further on that part of the IZ analysis.

ag=(7+4)x10"3% Ge\®, (33 C. Duality point analyses

A recent discussion of duality point analygesmmarized
earlier in Sec.)l can be found in Ref.8]. We comment here
) on the most recent numerical results, obtained in Refs.
and are dominated by the Borel sum r¢BSR) part of the (35,39 (BGP).Y
analysis, though the other determinations are compatible ggp determineag and ag from FESR’s based on the
with these, within theillargey errors. weights w(s)=s? and w(s)=s3'8 working at the highest
The PFESR part of the IZ analysis involves one weightduality point determined through the second WSR. From the
w(y)=(1-y)? for which the V-A cancellation is ex- analysis based on ALEPH datafor which s{®
tremely strong Ky_a~—4% for s,=m?), and onew(y)  =253313Ge\?) the following results are quoted:
=y(1—y)?, for which it is considerably less sor{_a
~25% for sosz). The strong cancellation for the (1 s .
—vy)? case leads to large errors @g, and to the strong ag=—(3.4255x107° GeV
sensitivity to the errors oR . noted in Ref[37]. The neces-
sity of subtracting the poorly determineg contribution to
they(1—y)? sum rule before obtaining the residugl con- ag=—(14.4"3%9x107% Ge\l. (34)
tribution, then leads to large errors ag as well.
BSR’s were employed in the second part of the analysis

because of factorial suppression of higltontributions(aq  These values are in qualitative agreement with ours, but are
contributions appear in the Borel transform of the OPE sideyffected by large uncertainties. The origin of these uncertain-
of the sum rule multiplied by 1(d—2)/2]!M? [42], where jes is twofold. On the one hand the analysis uses weights
M is the Borel mags Since, however, the spectral data arewhich emphasize the region where the data errors are large
known only up tos=m?, and have significant errors above and, on the other, the uncertainty in the exact location of the
2 Ge\?, I1Z are forced to work at quite low Borel masses to WSR duality point gets amplified by the strong slope of the
suppress contributions from the region of the spectruntelevant spectral integrals with respectstpnears,=s. .
where either data errors are large or data are absent. Explic- The errors on the second WSR duality po'sﬁf,) , quoted

ity, M2=0.8 GeV is used for sum rules dominating the above are entirely experimental in origin. The fact that the
determination ofag, andM2=0.6 Ge\? in sum rules used duality points for thes?, s* FESR’s may not coincide exactly
for ag. At such low M?, factorial suppression of higd with those of the second WSR, however, leads to an addi-
contributions is counteracted by the enhancement associaté@nal uncertainty which is not amenable to experimental im-
with the smallness of th&12N"2 factor in the denominator, Provement. We think this uncertainty is unlikely to be negli-

making the sum rules potentially sensitive to higher dimen9iPle, as argued below. If the duality points for dthe WSR's
sion contributions. are universal, i.eall FESR'sare satisfied at suc’’, then

While the central 1Z values foas and ag are obtained the values of the extracted OPE parameters should not de-

neglectingd>8 contributions, the quoted errors include, not penq .on”theh particulg; duality potirr:t :Jsed inf me tanalysis.
only the uncertainties due to experimental errors, but also gmplrlca Y, however, it one uses the fower ot the two sec-
contribution meant to represent a plausible bound on the

magnitude of thed>8 terms. This bound is based on the ’An estimate of the four-quark vacuum matrix elements which

assumptui;]s thaih ang|a|12| are bqundedhby 2 Gf%‘? determinea, obtained by truncating the spectral integrals appear-
and 5 Ge |agl, respectively. According to the results of our o i the dispersive sum rules of RELS] at the duality points of

fit, these assumptions are not sufficiently conservative: the,e wsRr's, was also given in Sec. VI of Re40]. The assumptions
bounds, in both cases, lie well outside the range allowed byinderlying this analysis are even stronger than those underlying the
the errors on the combined fit values. Recall also that, aguality point truncation of the WSR’s, where the corrections for the
shown in Figs. 2, 3 and 4, the centraldg, ag values do not truncation can be shown to be numerically small. In addition, the
provide good fits to thev, throughw,, PFESR's. In contrast, original dispersive sum rule for the dominat®g) contribution

our combined fit implies values for the OPE sums for thesuffers from potential contamination by higher dimension effects
four 1Z BSR’s which are in excellent agreement with experi-[16] at the scaleu=2 GeV employed in Refl40]. Since, in any
ment. A demonstration of this claim, together with a more®ase; the errors from this approach are a factor-8f larger than

detailed discussion of the four IZ BSR’s, may be found in thethose obtained bY averaging th.e results of the ALEPH and OPAL
(0,0) spectral weight analyses in Sec. 7 of the same reference, we

Appendix. o , do not discuss this estimate any further.

Comments similar to those on the BSR's apply to the 18 second determination of the dominaf®g) contribution to
Gaussian sum rules studied by IZ. Since, however, the, which however requires an additional input assumption, gives a
Gaussian sum rulag andag errors are larger than those of compatible result.
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ond WSR duality pointsg,=1.47+0.02 Ge\f [35]), as ad- and of the reliability of the model values @, ag and
vocated in Refs[8,39], one obtaing35] ajo.1° The results quoted in Reff39] correspond to

ag=—(9.5-2.00x10" 3 Ge\®
ag=—(13.2+0.4x10 % Ge\®

ag=(16.0-4.2x10 3 Ge\®

=(24'9)x10°% Ge\~.
ag=(24-5)X 10" Ge (35 a;0= —(20.8£10.2 X103 GeV', (36)

These results have much smaller errgedlecting the better which are not in goqd agreement with our central fit values.
data quality at lowes,) but are not compatible with those ~ ©One should bear in mind that the errors in EG$) reflect
obtained using the higher duality point, E@4). It is thus only the uncertainties in the fitted values of the three inde-
impossible for the two duality points of the second WSR toPendent MHA parameters,, my, andga, and not any
both be duality points of the? ands® FESR’s. Since at least possible theoretical systematic errqriie to working with
one of the two WSR duality pointsust differ from the the minimal set of hadronic states, and in the laxgdimit).
correspondings?, s° duality point, it seems unlikely to us The latter are not necessarily negligible. As a first indication
that either is exactly identical to i, s* counterpart of this, let us observe that MHA predicts the duality points
! " - K - , .

We emphasize that it is the strong slope of the data intefor the variouss®-weighted FESR'dthoses, IZ%r which the
grals with respect ts, which is particularly problematic for Model and data mtegralks majdb be different.” Because of
the duality point approach. The possibility of the existence ofhe strong slope of the(k=2,3,4) spectral integrals with
a reasonably narrow, region within which the actual dual- respect tas,, even small errors in the model predictions for
ity points of a number of differently weighted FESR’s might these differences can correspond to large uncertainties on the
lie is not itself implausible. Indeed, at those intermediate@d - o )
scales suggested by the PQW argumigrii] (where OPE To further test the MHA predictions, and to get an idea of
violation is small, except near the timelike real axuality ~ Whether or not potential systematic uncertainties might ac-
points for a wide range of FESR’s would be expected totount for the discrepancy between the MHA predictions and
cluster in the vicinity of anys, for which the real and imagi- ©OUr results, we may study those PFESR’s sensitive only to
nary parts ofI1(sy) — ope(So) happened to be simulta- 6 8s anda,,. We display, in Fig. 7, the MHA predictions
neously small. In the case &II, the zeros of Ifill(sy) O the Ju(So) associated with thevy, (0,0), ws and (1,0)
—~Tlope(So)] On the real axis occur asy,=0.9 and PFESR's(The first and second sum rules are sensitive to the
2.1 Ge\?, somewhat removed from the locations of the MHA values ofas, ag, the third toas and a,o, and the
WSR duality points. We would thus expect thé ands®  fourth toas, ag, andase.) We see that, although the repre-
duality points to, indeed, differ somewhat from the corre-S€ntation of the physical spectral integrals is not unreason-
sponding WSR duality points. Since|Im[II(s) able for a three-parameter model, the quality of this repre-
—Tope(So)]| is considerably smaller at the higher of the sentation is not good at the detailed level. This mismatch
two WSR duality points, we are in agreement with the au-SU99€sts to us the presence of residual theoretical systematics
thors of Refs.[35,3§ in expecting the higher of the two Uncertainties in the MHA approach, which might be removed
duality points to provide the more reliable estimatagand ~ 0Y 90ing beyond the minimal ansatz and/or incorporating

ag. This expectation would appear to be borne out by com/Ne corrections.

parison to our results. In particular, the result tagtandag

have the same sign, first obtained in R&B], is confirmed V. DUALITY VIOLATION AND ~ V—A PFESR’S
by our analysis. We remind the reader that the opposite sign
for ag obtained in both the spectral weight and BSR analyse‘sjls
is naturally accounted for by thee>8 contributions implied
by our solution but neglected in those analyses.

Our interpretation of thea; obtained above as the true
ymptotic OPE coefficients of thel V—A correlator rests
on the assumption that residual duality violatigmaram-
etrized by R[sg,w]) is small for the doubly pinched

D. The MHA analysis 1 o

L . L .
In Ref.[39], theay-, are determined, not from data, but poi:?teca” thatazy.o= (= 1)"'dss'Ap(s) if sy is a true duality
using a Iargd\lc-ln“sp!rgd, 3-pole, model ar,)’prOXImatlon to 20This can be seen, for example, by superimposing the plots for
Akp (the so-called “minimal hadronic ansatz” or MHAThe e <0 ands? moments(the top panels of Figs. 1 and 2 of RE39)],
s“-weighted physical and MHA spectral integrals, for a givenegpectively. One finds that the band within which ts& matching
So, are in general very different. For att2<k<4, how-  point must lie (given the uncertainties in the model parameters
ever, the point where the two agree happens to lie in th@oes not overlap with the corresponding allowed band forsthe
vicinity of the lower of the duality points for the two WSR’S. moment. The situation is similar for th& ands* moments(the
This observation is taken as evidence in support of the patllowed matching band in fact lies somewhat farther from the cor-
tern of long-/short-distance duality predicted by the MHA, respondings® band than in thes? casg.
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FIG. 7. J,(sg) and the corresponding MHA integrals for the (top left panel, (0,0) (top right pane), w; (bottom left paneland (1,0)
(bottom right pangl PFESR’s. Thel,,(Sp) integrals and errors were obtained using the ALEPH data and covariance matrix.

PFESR’s and scales employed in our analysis. As notedeighted spectral integrals even when the level of duality
above, the high quality of the match between the optimizediolation in the spectral function itself is large over signifi-
OPE representation and the corresponding spectral integratgnt portions, or even all, of the integration raige.

is a necessary, but not sufficient, condition for the validity of Two distinct types of duality violatiorin the spectral
this assumption. In this section we discuss additional evifunctionare identified in Ref[43]. The first is that produced
dence in its favor. We begin by reviewing certain relevantby contributions to the correlator which, asymptotically, are
aspects of what is known about the nature of duality viola-exponentially suppressed relative to OPE contributions for
tion in QCD.

2lExamples are the spectral integrals corresponding) tdisper-
sion representations of correlators for space@(@/\éw, (i)
A useful review of the current status of our understandingBorel transformed dispersion relations involving Borel masges
of duality violation in QCD is given in Refl43]. Itis im-  >A2.; and(iii) the (1-y)*(1+Ay)-weighted k=1,2) PFESR’s
portant to bear in mind that duality violation may be small in for the flavorud V and A correlators at scalesy~2 to 3 Ge\f.

A. General expectations for duality violation in QCD
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spacelike Q2. Such terms behave asymptotically aslike duality violation. Having adopted a set of weights, one
exp(—bQ)/Q*, and hence acquire oscillating imaginary wants to verify that residual duality violating contributions
parts for timelikeQ?= —s. The second type of duality vio- from the region neas=s; are not present in the results of
lation occurs iMN.— o QCD, where the spectrum consists of the analysis. In this respect, an important test is as follows:
a tower of infinitely narrow resonances. As a result of this (1) Verify that the(nominally asymptotitay coefficients
spectral structure, the associated correlator has a differeeitracted in the PFESR analysis provide accurate represen-
convergent Laurent expansion in each of the annuli lyingations, not only of the spectral integrals used in fitting the
between successive poles in the comelane. In none of ay, but also of spectral integrals corresponding to weights
these annuli is the Laurent expansion equal to the asymptotigith zeros of a higher order at=s, (which therefore further
expansion; hence duality violation exists, in this case, in alsuppress PQW-like duality violating effets
such annuli. In the (N.—x)-like scenario, where duality violation is
An important difference in the nature of duality violation not localized to the vicinity of the timelike real axis, a rather

in these two cases lies in the structure of the duality violatingiifferent pattern of sum rule behavior will be observed. Since
contributions to the correlator in the complex plane. In theOPE-like Laurent expansions exist in any given annulus, so
N.— scenario, one has a series of different “subasympiong as one restricts oneself $ lying in a single annulus,
totic” expansions, each valid in a different annulus. Whenone will obtain a set of coefficientsy, which provide a
one crosses from one annulus to the next, all Laurent coeffiperfect match between the “OPE” and data sides of both
cients are altered, and for no annulus are they equal to thsower-weighted and pinch-weighted FESR’s at those scales.
corresponding asymptotic OPE coefficients. Duality viola-That set will, of course, consist of just the coefficients of
tion in a given annulus is thus equally large at all points onthose terms in the Laurent expansion for the given annulus
the circle|s|=s, lying within the given annulus, and isot  which survive when integrated against the weights em-
localized to the vicinity of the timelike point on that circle ployed. If one performs the same basic analysis, using
for any sp, no matter how large. In contrast, f@°=sy€'®  the same set of weightsbut now fors, lying entirely in a
[with ¢=—ar(+ ) corresponding to the tofiottom of the  different annulus, one will obtain a different setayf. These
physical cut, a term of the form~exp(—bQ)/Q" behaves a, will provide a perfect match between the “OPE” and data
as sides of the sum rules employed in the new annulus. Sche-

1 matically, this type of duality violating contribution implies

—exfd —bsycod ¢/2) Jexpli k pl2+sin(H/2)]} (37) (i) the existence of several subasymptotic regintgs;that

So pinching is not effective in removing this type of duality
and hence retains an exponential suppression, via the factESlO'at”fg effect (both pinch-weighted and power-weighted
ex] —sob cos@/2)], for all but the timelike point ors| F_ESRs are e_qually well satisfied in each sub-asymptotlt_: re-
—s,. This suppression will remain quite significant over 9i0- The existence of several such subasymptotic regimes
most of the circle for scales, larger than 1. This may be N this type of scenario can also, in |_or|nC|pIe, be expos_ed in
the case even if the oscillating, duality-violating component® PFESR analysis, as follows. Starting with some particular
of the spectral function is far from negligible at the sasge ~ SMall range of, one may gradually decrease the lower edge
Duality violation via such terms is thus PQW-like: “interme- Of the So analysis window, keeping the upper edge fixed. So
diate” scales exist for which duality violation in the cor- |0Ng as the lower edge lies in the same annulus as the upper

relator| T ope(S) — T1(s)] is strongly localized to the vicinity edge_, a PFESR analysis ext_raction of OPE_-Iike coefficient_s,
of the timelike real axis. obtained by means of matching to spectral integral data, will

produce an exact determination of the relevant coefficients in
the singular part of the Laurent expansion for that annulus.
As soon as the lower edge of teg analysis window leaves
The two distinct patterns of duality violation for a given the single annulus, however, there is no longer a single set of
correlator in the complex plane manifest themselves irexpansion coefficients valid for all thg being employed.
readily distinguishable different ways in sum rule analysesThe existence of such a two-annulus regime will be evident
In particular, these patterns suggest different strategies artyy the sudden appearance of a poor match between the op-
tests to explore the impact of duality violation in a given timized OPE-like integral and spectral integral sets. One can
analysis. In this section we identify such strategies and enwzheck these expectations explicitly within the equal-spacing
merate a number of possible tests. In the next section, wpole model of Refs[8,43]. This exercise shows that, in per-
then specialize to the flavard V—A correlator, and we dis- forming a PFESR analysis, it is crucial to do the following:
cuss the practical implementation of these tests. (2) Demonstrate that there is no drift in the values of the
In the presence of a PQW-like component of duality vio-extracted coefficients as one decreases the lower edge of the
lation, there will exist intermediate scales where (i) Sp analysis window.
power-weighted w(s) =s] FESR’s, which fail to suppress (3) Demonstrate that the optimized values of the fit pa-
contributions from the integral ovés| =s, near the timelike rameters in fact produce an accurate match to the spectral
axis, are poorly satisfiedii) PFESR’s involving weights integral data used to produce thediter the whole of thegs
which suppress contributions from the vicinity of the time- analysis window employed
like point are well satisfied. This observation motivates the These tests serve not only to verify the reliability of the
use of “pinched weights” in FESR analyses to tame PQW-assumed OPE-like expansion form, but also, at least poten-

B. Detecting the presence and nature of duality violation
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tially, to expose the existence of multiple subasymptotic eximplementing these constraints is provided by the “residual

pansion regime# weight method,” which is described in detail in R¢L7].
In the context of theN,—< discussion, however, it is
clear that, while passing these tests isegessarncondition C. The nature of duality violation in the ud V—A channel

for the reliability of the extraction of the OPE coefficients In the following we argue that duality violation in the

from data, it is not asufficientone: if one happened to be VA correlator is predominantly PQW-like. From previous

uniucky and perform the PFESR analysis only for thege work [10], one has empirical evidence that duality violation

Iymg n a S|r_1gle, but subasymptonc, annulus, one would €% the individual ud V and A channels is predominantly

a high quality matchexact in the case of the pole mogel . . .
. - .7 PQW-like. Checking for the presence or absence of duality
between the spectral integrals and optimized OPE-like inte-. < " . . . X
violations in theud VandA correlators at intermediate scales
grals even though one would have actually extracted the co- : . .
. o Is straightforward because one has indepen¢aEsymptoti¢
efficients relevant to the Laurent expansion in the subasymp- !
. ‘information on the value of the OPE parametgr. Such a
totic annulus, and not those relevant to the asymptotic, _. . . .
) . . . Straightforward check is not possible for thd V— A differ-
regime. A simple way to test whether or not this is the case is o . .
S ence. A qualitative argument is however available, based on

to do the following:

(4) Take the coefficients extracted in the PFESR anaIysi.%he observation that duality violation in the flavod V+A

: . : . sum cancels, within experimental errors, for scales atsve
;nedaesr;rrr):gi/oi?cere]gﬁrsng]pm t0 2 dispersive analjelisvant to ~2 G_e\F. This can be s_een_fro_rﬁil) the fact that _the corre-

If the coefficients extracted in the PFESR analysis are notPonding spectral function is in agreement with the OPE
those relevant to the asymptotic regime, the resulting dispeRrediction for sucts (see, e.g., Fig. 6 of the second of Refs.
sive integrals will be poorly approximated by the OPE-like [13]) and (ii) the observation that the spectral integrals for
representation generated using the fitted coefficients. Agairthe s‘-weighted FESR'sk=0, . . . ,3, are igood agreement
explicit illustrations of this point can be worked out within with the corresponding OPE integrals fos, above
the equal-spacing pole model of Ref8,43]. In the case of ~1.9 GeV [10]. This implies that the duality violating con-
the model, performing the dispersive test is straightforwardribution to theud V—A correlator is, within experimental
because the spectral function of the model is actually knowrrrors, twice that of theid V correlator. The latter is known
for all s. The situation of interest to us, however, is oneto be strongly localized to the vicinity of the timelike real
where spectral data are available for only a limited range ofxis for the scales of interest to us, and hence so is the
s. In such a situation, it would typically be difficult to con- former. This conclusion is compatible with the observation
struct a dispersive test for which the errors on the dispersivenat, although theid V—A sf-weighted FESR data integrals
integrals were under sufficient control to make the test useyre not constant with respect g (i.e., not in agreement
ful. F)ne general solution is to work with BSR's and restrict yith the behavior of thes*-weighted “OPE” integrals, the
one’s attention to Borel masses which are both low eno“gggreement between the data and “OPE” sides of our

tha'; the spectral weight, exp(s/M?), is negligiple in the FESR’s is very good for the optimized OPE-like fits given
region where spectral data are absent and, simultaneous bove

high enough that the convergence wittof the Borel trans-
formed OPE seriesﬁpr the set of g one wishes to tes'_ls 1. Tests of the type (1)
acceptable. For a given BSR, sughmay or may not exist.
Three of the four 1Z BSR’s turn out to provide examples of Having a suppression of duality violating contributions
such tests for our solution sétletails are reported in the Which is strong enough to make such contributions negli-
Appendix. Additional asymptotic tests, involving BSR'’s at gible relative to thed=0 terms in theud VandA correlators
larger M, are possible for the flavard V—A correlator. In  does not necessarily mean that the same suppression is suf-
this case, the spectral integral uncertainties are brought undécient to make such contributions small relative to tie
control using the classical chiral sum rule constraints associ=6 and higher OPE contributions in thel V— A difference.
ated with the Weinberg sum rules and the sum rule forthe In order to check for residual duality violating contributions
electromagnetic mass splitting. An efficient procedure forgcalized to the vicinity of the timelike real axis, we have
performed tests of the type defined in the previous section,
) o item (1). The (1m) spectral weights discussed abdwéth
“One may also test whether an observed deterioration in the quajy— 0,...,3)have zeros of order 3. As we have already seen
ity of the optimized "OPE"/spectral integral match agis lowered  , pigs 5 and 6, the results of our combined fit produce an
Is, or Is not, du.e o the existence Ofar.‘ew .S’Ubasympmt'c regime. I(E\xtremely good “OPE"/spectral integral match for all of
it is, then the firss, for which the deterioration appears must lie in . . . ) .
these weights, with no quality deterioration. We have also

the lower annulus. Working witlsy lying in a narrow range just . .
below this point should then produce a new set of fitlgdvhich investigated the (2,0), (2,1), (3,0), (3,1) and (4,0) spectral

provide a good quality representation of the corresponding spectrd¥€ight PFESR’s, which have weights with zeros of order 4,
integrals, when restricted to this new rangesgf If a good quality ~ 4, 5, 5 and 6, respectively, at=s,. Again the quality of the
match is not found, then the deterioration is due to a breakdown ofatch to the spectral integral sides of these sum rules pro-
the OPE-like expansion form, and not to the fact that one has ervided by our combined fit is excellent in all cases, despite the
tered a new subasymptotic region. much stronger suppression of contributions from the region
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FIG. 8. Jym(Sp) andf,«m({ag};so) for the (3,1)(top panel
and (4,0)(bottom panel spectral weight PFESR’s. Thk,«.m)(Sg)

d>4 OPE solution represented by our combined fit, £E86).
on|s|=s, nears=s,. We illustrate the quality of this match
for the most extreme caséthe (3,1) and (4,0) PFESR'tn
Fig. 8.

2. Tests of the type (2), (3), and (4)

PHYSICAL REVIEW D68, 054013 (2003

rors there is no drift in the extracted OPE parameters as one
lowers the lower edge of thg, analysis window(see below

for details and prospect of sharpening this test with improved
datg. Also tests of the typé3) are successfully passed by
our solution setsee Sec. Il ¢.

Finally, to deal with the possibility that our entirg,
analysis window lies within a single subasymptotic region,
we have performed a number of asymptotic dispersive tests
of the type described in the previous subsection, itémA
first set of asymptotic dispersive tests is provided by the four
IZ BSR’s. These are highly nontrivial since, because of the
difference in the sign ofg between our combined fit and the
IZ solutions, those 1Z BSR's for whickd=6 contributions
are absent would appear to be problematic for our combined
fit. It turns out that this is not the case; in fact, the conver-
gence of the Borel transformed OPE series is quite slow at
the low M employed by IZ and, once one extends the sum
involving our combined fit to sufficiently higll to obtain
convergence, the OPE predictions are in excellent agreement
with the spectral data. Since these tests are also relevant to
the comparison to previous work, we provide a detailed dem-
onstration of these claims in the Appendix.

To obtain BSR’s at larger Borel magdd, one needs to use
“residual weight method” improvement on the spectral inte-
grals[17]. In order to keep the errors under control, it is
necessary to work with the product 11 with appropriately
chosen polynomials. We find that the combined fit OPE pre-
dictions are in excellent agreement with the spectral integral
sides of these BSR’s foM over a range sufficiently wide
that, at the upper end, the OPE integrals are completely
dominated by theid=6 contribution while, at the lower
end, the full set ofay; obtained in the combined fit
(d=6,---,16) must be included before convergence of the
Borel transformed OPE sum is obtained.

3. Model explorations

In principle, explicit models of th& — A spectral function
could be used to try and address the level of duality violation
present in our analysis. One should bear in mind, however,
that the only information we have abonip in the region
aboves=m? is in the form of the constraints provided by the
classical chiral sum rules. These constraints are far from suf-
ficient to fully constrain the behavior akp aboves= mf

%nd, as a result, there exists a wide range of model exten-

Sions of the data fop to s> m?, all of which are compat-
ible with these constraints. It is easy to construct, among
these, models foA p(s) for which the asymptotic expansion
coefficients are the same as those of our combined fit. The
models which have this property display continued damped
oscillations inAp as one goes to higher and hence appear
quite natural. It is also possible to construct models for
which the asymptotic OPE parameters differ significantly

The arguments given above do not completely rule out thérom those of our combined fj4].

presence of residual duality violation of non-PQW-like na-

ture [the (N.—)-like scenarid. In order to deal with this,

Because the integrated PFESR OPE contributions of di-
mensiond scale as B2, one finds that, for largs,, the

we have subjected our solution set to tests of the type dehigherd ay contributions drop rapidly in size with increasing

scribed in itemg2), (3), and(4) of the previous section. As

d. With such small highd contributions, a small change in

for test(2), we find that within the present experimental er-the modelling ofAp in the region where it is not known
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experimentally typically produces a large changeajn A
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Within the quoted errors, these results are compatible with

very large theoretical systematic uncertainty for the highethose of the full-window analysis. The situation is similar for

dimensionay will thus be associated with any attempts to
modelAp in the region above=m?. Without being able to
control this theoretical systematic error, obtaining meaning
ful information on the level of duality violation from such
model studies is somewhat problematic.

4. Prospects of improving the data-based tests

It is worth stressing that significant improvements in the
analysis will become possible once the new hadraerdecay
data from the B-factory experiments is available. At presen
both the errors on thaey and the accuracy with which it is

the results of the combined analysis: the results of the sub-
window analysis for,q througha,g are

a;0=(6.62+2.83 X102 GeW?
a;,=—(2.16+0.86x 10 ! Ge\W?
a;,=(5.88-2.49x10 ! GeV

a;=—(1.47+0.69 GeV*, (39)

t
again compatible with the full-window analysis within the

possible to determine the location of the onset of dua"tysubwmdow analysis errors. Were the errors to be 1/3 as large,

violation in the analysis are limited by the errors Ap(s)
aboves~2 Ge\?. These errors are dominated by experi-
mental uncertainties on thed KKz and KK 77 spectral
distributions and uncertainties in thé/A separation for
KK# and KK#7 7 states. Major improvements should be
forthcoming as a result of the expectedl(’-fold increase

in the size of ther decay data base. The improved spectral

integral errors which result will allow us to improve signifi-

however, the full-window and subwindow results would no
longer be compatible and we would be forced to conclude
that residual duality violation was present for thegen the
lower part of the full analysis window. We stress that there is
no reason for reaching such a conclusion at present. In fact,
there are strong reasons for trusting the results of the full-
window analysis:

(i) Where the existence of duality violation can be explic-
itly demonstrated, the OPE-like expansion is knomat to

cantly on the efficiency of our tests for the absence of reprovide a good representation of the spectral integrals.

sidual duality violation. The current situation in this regard is
discussed in brief below.
Recall that, by decreasing the lower edge of the analysi

(i) In the lower part of our full analysis window the OPE-
like form provides an excellent representation of the spectral
fhtegrals.

window, we were able to demonstrate the presence of duality (jii) The combined fit from the full analysis window pro-
violation for the PFESR’s used in our analysis at scales beyides an excellent representation of the spectral integrals not

low ~1.8 Ge\E. With current experimental errors there is
no evidence for duality violation in our analysis window.
Ideally one would like to work at scales well above

only in the lower part, but also the upper part, of the analysis
window.
(iv) The combined fit results obtained frothe subwin-

1.8 GeV, in order to suppress, as much as possible, anylow version of the analystsirn out to provide a poor repre-

residual duality violating contributions which might be

sentation of the spectral integrals in the lower part of the full

present, but masked by current experimental errors. Whilgindow.

current errors are small enough treg may still be deter-
mined, even if one works with only a small portion of our
present analysis windof¥,this is not true for theay with d

Nonetheless, the size of the subwindow errors is such that
much stronger tests of the absence of residual duality viola-
tion, using various subwindows, will become possible once

=8. In fact, with current experimental errors, the uncertain-the errors omA p(s) above 2 Ge¥ are reduced? While it

ties on the extracted=8 a4 do not become smaller than

seems unlikely to us, for the reasons given above, it is not at

lag|, until the lower edge of the analysis window has beenpresent possible to conclusively rule out additional uncer-
reduced to belove,~2.5 Ge\’. If, as an example, we per- tainties, associated with residual duality violating, at the

form our analysis of the ALEPH data using tlsg=2.35
—3.15 Ge\f subwindow, then, with central values for all
nonspectral input, the maximally safe output &grandag is

ag=—(3.88+1.21)x10 3 Ge\P
ag=—(9.32:6.58 X103 Ge\~. (39)

ZFor example, using onls,=2.75,2.95 and 3.15 G&Y one
finds, from the maximally safe analysis of the ALEPH datgs=

level of the difference of the full-window and subwindow
analysis centrafy values.

VI. CONCLUSIONS

In this paper we have used finite energy sum rules with
“pinched-weights” (PFESR'’$ to determine the OPE coeffi-
cients ag, . .., a1 Of the flavorud V—A correlator with
good accuracy using existing hadronidecay data. While it
is not possible at present to either prove or disproveign
orous analytic grounds that this approadhr any other
yields a valid approximation to the actual dynamics of QCD,

—0.0049+0.0022, where the error quoted is that associated with

the ALEPH covariance matrix. The error is, of course, significantly
larger than that obtained from the larger analysis window, but still
less than 50% of the signal.

24f such reduced errors were to expose residual duality violation
in the lower part of the current full-window analysis, one would of
course be forced to raise the lower edge of the analysis window.
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we have carefully demonstrated the advantages of PFESR&nse that PFESR weights with comparable coefficients for
among the class of sum rule techniques and have describedfze yN and yM terms inw(y) will produce comparablel
large number of checks on our own work and that of others=2N+2 andd=2M + 2 contributions to the PFESR OPE
At a technical level, we have employed a set of ten poly-integrals. This makes explicit the danger of neglecting terms
nomial weights carefully chosen to minimize the impact ofwith d>8 for PFESR’s based ow(y) with degree greater
experimental errors and of duality violating effects, as wellthan 3. This observation also raises the possibility that the
as to optimally separate the contributions from condensatgna|ogous neglect of higherterms in other PFESR analy-
combinations of different dimension. Our analysis shows thakeg g ch as those used to extragfrom the flavor-breaking

the OPE contributions witd>8 are typically not negligible difference ofud andus V+ A correlatorg 23,45, may suffer
at scales~2-3 Ge\~. from similar problems.

We have performed a number of tests to explore the pres-
ence of duality violating effects in our analysis. These sup-
port the conclusion that our combined fit values are not af-
fected by duality violation within the existing experimentally

induced errors. We recall the main observations in support of The work of E.G. was supported in part by the National
this statement: Science Foundation under Grant PHY-9801875. The work of

(i) Independent determinations of thg using PFESR’s  \.C. was supported in part by MCYT, Spai@rant No. FPA-
based on differen(independent weights are in excellent 2001-303}, by ERDF funds from the European Commis-
agreement. sion, and by the EU RTN Network EURIDICE, Grant No.

(if) The results of the combined fit for treg lead to an HPRN-CT2002-00311. K.M. would like to thank A. idker
extremely good match between the OPE and spectral integrahd S. Chen for providing detailed information on the
sides of all the PFESR’s employed in the fitting procedure. ALEPH data, S. Chen for pointing out the need for the nor-

(iii) The combined fit values also lead to extremely goodmalization correction to the 1998 nonstrange data necessi-
matches for the K,m) spectral weight PFESR’s, wher  tated by the results of the 1999 strange data analysis, and to
>8 contributions are much larger relative de=6,8 contri-  acknowledge the ongoing support of the Natural Sciences
butions than is the case for the; throughw,, PFESR’s. and Engineering Research Council of Canada, and the hos-

(iv) There is no deterioration in the quality of the com- pitality of the Special Research Center for the Subatomic
bined fit prediction for the PFESR spectral integrals even foiStructure of Matter at the University of Adelaide and the
those spectral weights with zeros sts, of much higher  Theory Group at TRIUMF. We are happy to acknowledge
order than those used in obtaining the combined fit. useful input from M. Eidemuller, S. Menke, S. Peris, A. Pich,

(v) The dispersive tests, described above, and in the Ap3. Prades and M. Roney and especially from J. Donoghue for
pendix, are successfully passed by our solution set. This praris many stimulating and instructive discussions.
vides additional support for the reliability of the extracted
values, and our interpretation of them as asymptotic OPE
coefficients of thev—A correlator. ~_ APPENDIX: THE IZ LOW-SCALE ASYMPTOTIC

Improved experimental data would allow one to signifi- DISPERSIVE TESTS
cantly sharpen some of the tests reported above.

Some general observations also follow from the results In this appendix we provide details of the four IZ BSR’s
and discussion above. First, the OPE representatianIbf and complete the comparison of our results to those of early
with the a4 given by the combined fit values of either Eq. Work by subjecting our combined fit to the asymptotic dis-
(26) or Eqgs.(28), provides a very accurate representation ofPersive tests provided by these sum rules.
the corresponding spectral integrals down to scales as low as Incorporating the small=6 logarithmic contribution, the
so=2 Ge\?, at least for PFESR’s based on weights with aBSR’s employed by 1Z may be cast into the féim
double zero as=sy. This suggests that the OPE remains
reliable at intermediate scale®?~2—3 Ge\?, apart per-
haps from a region near the timelike real axis. In contrast, if
one considers weights which do not suppress contributions
from this region, one sees clear evidence for the breakdown

ACKNOWLEDGMENTS

fwdsexp:s cog ¢)/M?]cog ssin(¢)/M2]Ap@*+1)(s)
0

of the OPE. The situation is similar to that for the flawat coske)ag+r, bg
. — _ 11k _ H
V andA correlators. The double zeros of the PFESR weights =2, (—1 m (= m)sin(2¢)
. - . . . k>0 kIM 2M
at s=s;y in the V—A case evidently again provide suffi-
ciently strong suppression in the vicinity of the timelike real +[IN(M?/ u?) — ye+ 3/2]cog 2 )} (A1)

axis to efficiently remove contributions from the region of
OPE breakdown on the circls|=s;. _—

A second point concerns the relative sizes of the various 25, yyriting Egs.(A1), the factorF2 from the RHS of Eq(21) of
ag. The results of the combined fit indicate ttegt, »/ag IS |z has been moved to the LHS of EGAL), and absorbed into the
typically of order 23 Ge\? for the V— A correlator. This spectral function via the shiftp(®— Ap©*Y). Equation(A2) is
means that, at intermediate {23 Ge\?) scales, there is no just M2 times Eq.(22) of 1Z, up to the logarithmic correction term
“natural” ordering of contributions with different, in the  (proportional tobyg).
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TABLE I. The relative size oi>4 OPE contributions to the four I1Z BSR’s for the extended version of
the combined fit described in the Appendix. In all cases, the entries have been normalized to the lowest
dimension (I=6 or d=8) contribution. IZ cases 1 through 4 label the four IZ BSR’s according to the
enumeration scheme given in the Appendix.

IZcase d=6 d=8 d=10 d=12 d=14 d=16 d=18 d=20 d=22 d=24

1 1 0 133 —1.93 1.23 —-0.46 0.09 0.00 -0.01 0.00
2 1 0 1.18 -0.93 0.00 0.20 -0.07 0 0.00 0.00
3 0 1 —-5.19 4.09 0.00 —-1.73 1.16 —-0.34 0.00 0.04
4 1 0.42 0.00 —1.46 141 -0.53 0 0.09 -0.04 0.01
o sum rule. This is, however, not the case. It is easy to check
f dsex['s cog ¢)/M?Isin s sin(¢)/M?]ApC* 1)(s) that, with the combined fit values as input, the convergence
0 of the Borel transformed OPE series, at the low valueldl 6f
sin(ke)a b employed _by 1Z, is rather slow. Not only ﬁs_the fir_st of the
= (— 1)K 2kr2_ 76 {(¢p—m)cog2¢) d>8 contributions neglected by IZ in obtaining their central
k>0 ki M2k 2M4 values, in all cases, larger in magnitude than the correspond-
5 o . ing sum ofd=6 and/ord=8 contributions, but also, in order
—[In(M*/p%) = e+ 3/2]sin(2)}, (A2) " {o be certain that we have reached the region of convergence,

we have had to extend the extraction of #yeto higherd.

This is done using the extensions to highkof the families

of weights of whichwg and w;, are membergrecall that
these weights produag>4 OPE contributions proportional

to eitherag and ayy,4 OF ag and a,y.4). We are able to
extract terms withd up to 24, albeit with larger errors than
for the a4 given by the combined fit. Thay d=18,...24

_ . _ »  Vvalues obtained from the two different weight families are in
:0'6 Ge\f-\? and (.4) Eq. (A2) with ¢=37/4 a.”d M good agreement, and the; and ag values obtained using
_0'65 GeV. The first two cases have wb=8 cont_r|but|o_n, each of the new sum rules separately are also in good agree-
the th'“?' nod=6_ contribution. We, test the combined _f't by ment with those corresponding combined fit values. With
employing the fitteday values as input on the OPE side of yhaqe values in hand one finds that the OPE sides of the

the IZ BSR’s. This leads to a prediction for the value of theggrg may be safely truncated, as can be seen from Table I.
corresponding spectral integrdéss the knowrd=4 contri-  aq in turns out, the additionaldt>16) terms play a role in

butiqn) for each such sum rule._ the full OPE sum only for the third of the 1Z sum rules. In
Since theag or ag values obtained by I1Z reflect the values ;1o of the four cases is thie=6 or d=8 contribution the

of the spectral integrals, the change in sigmgbetween the 44 inant one.

IZ fit and our combined fit would seem to represent & prob- |, Tapje || we show the combined-fit predictions, together

lem for the combined fit, especially in the case of the third IZ,iiy the actual valueginferred from 12 for the IZ spectral

integrals(less the knowrd=4 OPE terms Shown for com-
, , . parison are the predictions corresponding to the IZ solution.
BSR'S. IZ cases 1 through 4 label the four 12 BSR's according (o 4t the second of the four sum rules has been used by
the enumeration scheme given in the Appendix. Column 2 gives OU{ . .

Z to obtain their quoted value fag. The errors quoted for

prediction for thed>4 OPE sum, obtained using an extended ver- . L - : .
sion of the combined fit corresponding to the ALEPH data. Thethe combined fiti=6 throughd =24 sum are obtained using

results obtained using the OPAL data are the same, except in tﬁ'ge cqvariance rr_latrix for the solutior%]aset, _gene_rated from the
fourth case, where our prediction becomes .0851001. Column 3 ~ Covariance matrix of the ALEPH datdAs is evident from

gives thed>4 OPE sum corresponding to the central values of the
1Z fit. Column 4 gives the spectral integrals, less the knawn4
terms, corresponding to the results quoted by IZ. The entries in °Because there are significant cancellations amongstithé

where ¢ is the angle fixing the ray in the compl€X plane
along which the Borel transform was performefl=0 cor-
responds to the top of the physical cuthe four cases con-
sidered by 1Z correspond td) Eq. (A1) with ¢=5#/6 and
M2=0.8 GeV’, (2) Eq. (A2) with ¢=2m/3 and M?
=0.85 GeV, (3) Eqg. (Al) with ¢=3w/4 and M?

TABLE II. The combined fitd>4 predictions for the four 1Z

columns 2, 3, and 4 are in G&V contributions, and strong correlations among the combined fit val-
ues for theay, it is crucial to employ the full covariance matrix for
IZ case  Combined fit 1Z fit Data(d=4) the solution in determining the uncertainties on the combined fit

predictions shown in Table II. The fact that, at the low value®of

1 —0.0023£0.0002 —0.0027-0.0008 —0.0023-0.0006  for which the spectral integral errors are under control, the OPE
2 0.0038-0.0002  0.004%+0.0013  0.004%+0.0009  sides of the 1Z BSR’s turn out to involve a complicated cancellation

3 —0.003G:0.0004 —0.0038-0.0022 —0.0032£0.0009  between a large number of terms of different dimension, in fact
4 0.005G-0.0001  0.0058:0.0033 0.005%0.0004 means that it would not be possible to disentangle such contribu-
tions using a BSR analysis.
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the table, the combined fit predictions are in excellentfour sum rules weight the differemty contributions in very
agreement with the data, providing further supportdifferent ways, demonstrating that the results represent
for the asymptotic nature of the coefficients extractedfour independent, highly nontrivial tests of the combined fit
in the combined fit. Table I, in addition, shows that theresults.
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