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Abstract 

Rock cutting involves removing the rock material in front of the cutter when it 

moves against the rock at certain penetrating depth. The responses of rocks 

under cutting are influenced by rock properties such as mineral constituents, 

strength and fracture properties, as well as the operational parameters such as 

the depth of cut, cutting velocity and the back rake angle. A common 

approach to characterise the interaction between rock and cutter is to model 

the cutting forces. When the depth of cut is small, cutting forces show a linear 

relationship against the depth of cut, indicating a ductile-dominant failure 

mode. As the depth of cut increases, the rock cutting failure shifts from 

ductile-dominant mode to brittle-dominant mode and the cutting forces 

gradually deviate from the linear relationship. The depth of cut at which the 

dominant failure mode changes is termed the critical transition depth in rock 

cutting. The challenge lies in developing a generalised model for cutting force 

prediction based on rock properties and various complex cutting conditions 

while incorporating both ductile and brittle failure regimes. 

 

In this thesis, the discrete element method (DEM) was employed to 

investigate the key rock properties that influence the failure pattern in rock 

cutting. It was demonstrated that rock (Brazilian) tensile strength (BTS) is as 

important as the uniaxial compressive strength (UCS) in the determination of 

the critical transition depth. The mineral grain size is also an important factor. 

Experiments were then carried out on two types of rock, namely Savonnières 

and Tuffeau limestone, to study changes in failure modes under different 

operational parameters of cutting velocity, back rake angle and depth of cut. 

Bažant’s size effect law was used for in-depth analysis of the cutting data, 

which performs exceptionally well in the quantification of the critical failure 

mode transition depth. These derived transition depths were then incorporated 

into the established generalised cutting force prediction model, which uses a 
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more realistic assumption that the cutting failure is neither purely ductile nor 

purely brittle, but a combination of both.  

 

It was demonstrated that the generalised cutting force prediction model 

captures reasonably well the cutting responses and failure mechanisms for the 

rock under various cutting conditions. The insights presented in this study will 

help in the understanding of rock cutting failure mechanisms and rock cutting 

mechanics and will be beneficial to the optimisation of tool design and rock 

cutting operations. 
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